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Implications of Dam Removal: Modeling Streamflow in Lansing,
Michigan Using the Soil and Water Assessment Tool

Abstract
This paper uses hydrologic modeling methods to determine the effects of dam removal in Lansing, Michigan,
on the streamflow of the Grand River, flooding risks, and flood mitigation strategies. In Michigan, more than
one-half of the state’s dam infrastructure is more than 50 years old, and more than one-third are classified as
having a moderate-to high-risk potential. Lansing, Michigan, contains two moderate-to high-risk dams along
the Grand River that are a significant hazard to the surrounding community in the event of structural failure.
This research utilizes the Soil and Water Assessment Tool (SWAT) to model the impacts of the Moores Park
Dam and the North Lansing Dam on streamflow in the greater Lansing area. The purpose of using SWAT was
to represent baseline streamflow conditions in the Grand River, compare the differences in streamflow
magnitude between baseline conditions and a "dam-out" environment, and interpret the implications of
modeling results for mitigation and management strategies in the study area. Our model exhibited similar
streamflow patterns to USGS historical data, with overestimation errors during calibration and validation
stemming from groundwater infiltration inaccuracies. The dams-out model for streamflow was higher than the
baseline model for streamflow; however, both model iterations require further calibration and validation for
the magnitude differences to be considered statistically significant. Despite issues of model calibration and
validation, and ongoing model adjustments for accurately representing heavily impounded watershed, the
results of this study provide a template for the City of Lansing to adapt their flood mitigation strategies in the
study area and further calibrate SWAT with improved sediment, nutrient, and dam attribute data.
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1 INTRODUCTION 
 

Dam building and dam infrastructure are vital to increase economic productivity and 

viability for many global regions. The geologic setting of the site, mechanisms and 

magnitude of sediment transport, channel processes, and disturbances drive the response 

of a river and watershed to impoundment (Grant et al. 2003). Dams serve as barriers that 

impact downstream streamflow conditions and sediment transport, causing a change in 

thermal regimes and the function of riparian and aquatic habitats (Poff and Hart 2002).   

Dam removal may yield improved ecological health and natural river restoration 

but may also disrupt the current equilibrium surrounding the site (Grabowski et al. 2018). 

The removal of the Dead Lake Dam (Florida), Edwards Dam (Maine), and Elwha Dam 

(Washington) yielded improvements in spawning grounds for fish, fish passage, 

sediment transport, and water quality (Bednarek 2001). Other removal efforts with the 

Fort Edwards Dam (New York) and Fulton Dam (Wisconsin) have negatively impacts 

ecology through changes in the thermal regimes and community composition within the 

ecosystem, the loss of reservoir species, and the release of toxic polychlorinated 

biphenyls downstream from the dam site (Bednarek 2001).   

Multivariate models are utilized to model the response of a river to the presence 

of a dam. The Indicators of Hydrologic Alteration model has found impoundments to 

reduce the discharge of 1-day flows most severely, with a less pronounced effect on 90-

day flows, indicating that the impact on flow becomes more consistent with increased 

flow duration (Magilligan and Nislow 2005). The Spatially Explicit Delivery Model was 

implemented for four aging dams on the Kalamazoo River between Allegan and 

Plainwell, Michigan. Sediment transport simulations reflected a dynamic equilibrium 

state, and the absence of dams would lower the channel head, promoting further stream 

erosion and sediment transport (Syed et al. 2005). A study of an 8.8 km reach of the 

Kalamazoo River between Plainwell and Otsego, MI, where two low-head dams are 

being evaluated for removal by the state of Michigan, offered several options for the 

assessment of outcomes related to dam removal (Wells et al. 2007). A stretch of the 

Kalamazoo River between Plainwell and Otsego, Michigan, was evaluated for erosion, 

transport, and deposition of sediments over a 17.7-year period using the CONCEPTS 

model. Under a dams-out scenario, bed erosion and sediment transport would greatly 

increase, headlined by a 187% increase in average annual sediment load (Wells et al. 

2007).   

The Soil and Water Assessment Tool (SWAT) provides one of the best 

approaches for modeling changes in hydrological basins. This software was developed 

by the United States Department of Agriculture (USDA) to analyze and predict impacts 

of land use practices and changes on watersheds (Gassman et al. 2007). A study of the 

Huron and Raisin River watersheds of southeast Michigan used SWAT to analyze the 

influence of impoundments, including for stream nutrient transport (Bosch 2008). Both 

cases showed an increase in nitrogen and phosphorus loads in the absence of 

impoundments, with the most noticeable change near river mouths or high runoff source 

areas. More specifically, the Raisin River watershed model underpredicted discharge 

against daily and monthly records, while the Huron River watershed model 

overpredicted monthly discharge and underpredicted daily discharge. Furthermore, 

simulated stream flow during the validation period was consistently overpredicted 

during the summer; when flow magnitudes are typically lower (Bosch 2008).  
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Recent SWAT literature has emerged assessing the impacts of dams on sediment 

inflow into reservoirs, changing flood frequency conditions from new dams, and 

changing natural flows resulting from hydropower development (Djebou 2018; Lee et 

al. 2017, Wang et al. 2018). Further empirical contributions to hydrologic modeling and 

the cumulative impacts of impoundments are critical to address interdisciplinary gaps in 

the science of dam removal (Grabowski et al. 2018). 

The Moores Park and North Lansing Dams are deteriorating structures presenting 

a threat to the downtown Lansing area. These dams are identified as significant risks 

because of the potential impacts if they were to fail, not necessarily because of the 

respective structural integrities (Dam Failure n.d.). This research uses SWAT to simulate 

stream flow without the presence of the Moores Park and North Lansing Dams along the 

Grand River to evaluate changes in streamflow and flooding risks. The study contributes 

to potential mitigation and planning strategies for the riverfront area in Lansing as the 

dams are evaluated for future removal. The purposes of this research are: (1) to model 

baseline conditions in the Grand River Watershed, (2) to determine the difference in 

streamflow magnitude between baseline conditions and a “dam-out” scenario; and (3) to 

relate modeling results to potential mitigation and management strategies for the dams 

and surrounding area.  

The null hypothesis for this study was no significant change in streamflow 

magnitude and flooding risk with the dams in-place versus the dams not in-place. Based 

on a Draft Grand River Assessment by Hanshue and Harrington (2011), we expected a 

decrease in stream flow magnitude and a decrease in flooding risks.   

 

 

2 MATERIAL AND METHODS 
 

2.1 Study Area 

 

The Grand River is the longest river in Michigan (260 km), and the watershed is the 

second largest in the state (14,431 km2). The river drains portions of 15 counties from 

its headwaters near Jackson to its terminus in Grand Haven. The land use for the 

watershed is shown in Figure 1, using the United States Geological Survey (USGS) Land 

Cover Institute’s National Land Cover Database (NLCD) for 2011. Southern Michigan 

has a continental climate pattern with an average annual precipitation of 86 centimeters 

and average annual snowfall of roughly 101 centimeters (Hanshue and Harrington 

2011). The location of the watershed with respect to the Great Lakes region is shown in 

Figure 2.   

The USGS attributes uncertainty in discharge-frequency estimates to fluctuations 

in soil permeability, channel slope, and mean annual precipitation in the watershed 

(Perry, 2008). The flow pattern of the Grand River varies seasonally, yet predictably. 

Flows of greater magnitude correspond to heavier spring and early summer precipitation 

with saturated soils and snowmelt, along with seasonal fall rains and plants ceasing 

transpiration processes. Flows of lower magnitude correspond to lessening precipitation 

in late summer and less winter infiltration and runoff with precipitation stored as snow 

and ice (Hanshue and Harrington 2011).  
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Figure 1. Grand River watershed land use, 2011. 

 

The US Army Corps of Engineers lists 941 Michigan dams in its National Dam 

Inventory Report. Of these 941 dams, 322 are classified as having a moderate-to high-

risk potential. Several dams along the Grand River have a high hazard potential because 

major structural failure would result in major property damage and/or the loss of life 

(Hanshue and Harrington 2011). Including the Moores Park Dam and North Lansing 

Dam, 30 percent of the 231 dams in the watershed were constructed prior to 1960 and 

have outlived their function ability (Hanshue and Harrington 2011). The relative 

locations of the researched dams in respect to the Grand River Watershed are shown in 

Figure 2.  

 

2.2 Model Setup 

 

Modeling utilized ArcSWAT utilities within ESRI ArcGIS. Part of the utility of SWAT 

is its ability to account for land use changed through time (Arnold et al. 1998). Bosch 

(2008) outlines the methods for calibrating SWAT for a watershed. There are three main 

components to SWAT model setup: Watershed delineation, Hydrologic Response Unit 

(HRU) Analysis, and Weather Data Definition. Watershed delineation involved setting 

the watershed boundary, importing an elevation profile, and defining watershed outlets. 

Watershed boundary data were available via the HUC-8 sub-watershed boundaries 
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provided by the USDA. The Digital Elevation Model (DEM) for Michigan was obtained 

from the Michigan Center for Geographic Information (MiCGI). Watershed outlets were 

defined in ArcSWAT through DEM analysis.   

 
Figure 2. Locator map of the Grand River watershed.  

 

HRU analysis combined layers for land use/land cover, major soil types, and 

watershed slopes. HRUs represented modeled soil/land use/management combinations 

within a sub-watershed and are represented as a percentage of the watershed area. For 

ArcSWAT, sub-watershed delineation was utilized to divide the watershed based on 

topographic features. Land cover data (30-meter spatial resolution) was obtained from 
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the USGS NLCD 2011 data. Soil data were available for Michigan through the MiCGI. 

Slope data for the watershed were derived from the watershed DEM in ArcGIS. Climate 

data were extracted from weather stations in the watershed from the Global Weather 

Data for SWAT website (Global Weather Data for SWAT 2017). Variables of interest 

included temperature (°C), precipitation (mm), wind (m/s), relative humidity (percent), 

and solar radiation (MJ/m2).   

The model setup initially involved delineating the watershed using Automatic 

Watershed Delineation. The DEM (90-meter resolution) for the watershed was analyzed 

to estimate the flow direction and flow accumulation of the watershed stream network. 

Following this, the model required information for the minimum area of each HRU in 

the watershed to create the stream network and outlets. We selected 3572 hectares per 

HRU as the optimal minimum size to depict the frequency and extent of streams in the 

watershed. Once the stream network was created, watershed outlets were defined. We 

manually added watershed outlets for the Moores Park and North Lansing Dams, along 

with all other dams in the upper reaches of the catchment. This was important because 

the SWAT program will only allow for placement of the dams and reservoirs at HRU 

outlets or user-defined outlets. The USGS stream gauge at Lansing was selected as the 

whole watershed outlet, as all flows that contribute to the dam study area also contribute 

to this location. The final steps in the Automatic Watershed Delineation were to delineate 

the watershed, calculate subbasin parameters, and manually add reservoirs to represent 

dam locations. A total of eight reservoirs were added to the basin at the user-defined 

subbasin outlets. 

Land use, soils, and slope definitions were reclassified using HRU Analysis. The 

process divided the watershed into unique sub-watersheds that contribute to the overall 

flow of water in the system. HRU Analysis confirmed that the delineated watershed is 

dominated by agriculture uses and wetlands, with low slope gradients and variations in 

topography. 

The last step before SWAT calibration was creating database input tables for 

weather, soil, water use, groundwater, channel, management, and configuration files. 

Following this, the preliminary SWAT iteration ran from January 1, 2000, until 

December 31, 2013. The first four years were used as the recommended warm-up period 

for the model.  

 

2.3 Model Calibration and Validation  

 

Local sensitivity analysis involved the manipulation of values individually (Arnold et al. 

2012b). This was done using Manual Calibration, which allows for multiplying a 

parameter by a threshold, adding to a parameter by a threshold, or replacement of the 

parameter value (Arnold et al. 2012a). Initial model iterations significantly 

overestimated water depth (discharge) at the watershed outlet and overestimated the ratio 

of surface flow to baseflow into the stream channel. Streams in south-central Michigan 

typically have a baseflow index of 50-70% (Santhi et al. 2008). Adjustments made 

during sensitivity analysis are described in Table 1.  

Monthly average streamflow data were applied during calibration and validation. 

These data were available from the USGS. The USGS maintains 21 stream gauges in 

this watershed, offering varying data availability, data coverage, and temporal span of 

records. The primary location of concern for stream discharge was Lansing since this 

location is downstream of both dams and is the whole watershed outlet of the delineated 

watershed.   
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Table 1. Parameter adjustments for manual calibration.  

Parameter SWAT Range Substituted Value Land Use 

ALPHA_BF 0-1 0.1 All 

Cn2 10-90 55 AGRR, FRSD 

Cn2 10-90 60 HAY 

Cn2 10-90 65 
UIDU, URHD, URLD, 

URMD, WETN 

Cn2 10-90 62 WETF 

ESCO 0-1 0.1 All 

GWQMN 0-5000 200 All 

GW_REVAP 0.02-0.20 0.20 All 

Rchrg_dp 0-1 0.5 All 

SOL_AWC 0.1-0.2 0.15 All 

 

Calibration of the “dam-in” scenario used data from January 1, 2004, to December 

31, 2008, and validation of the “dam-in” scenario used data from January 1, 2009, to 

December 31, 2013. This duration was selected with consideration of the complete 

weather and stream flow records available, and to generate a model more correlated with 

modern land use/land cover within the watershed.  

The significance of the model results was determined based on statistical 

goodness of fit. Simulation evaluation metrics included standard deviation, Pearson’s 

correlation coefficient (R), Nash-Sutcliffe efficiency (NSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Percent Bias (PBIAS). Significance of 

model parameters follows the guidelines of previous SWAT and hydrologic modeling 

literature (Moriasi et al. 2007; Santhi et al. 2001; Willmott and Matsuura 2005).  

 

 

3 RESULTS 
 

3.1 Scenario One – Dams-In 

 

The methodology was implemented for two scenarios – one with the Moores Park and 

North Lansing Dams in place (dams-in), and one with the dams not in place (dams-out). 

SWAT simulations were performed with the same hydrological parameter adjustments, 

period, and geospatial data in each case. The model was only calibrated and validated 

for the Dams-In simulation.   

A comparison of the observed and calibrated water depth values is shown in 

Figure 3. The model accounted for 419 mm of the 337 mm of the annual discharge at 

the USGS gauge in Lansing, yielding an overprediction of roughly 25%. A comparison 

of the observed and validated water depth values is shown Figure 4. The model 

accounted for 426 mm of the 342 mm of the annual discharge at the USGS gauge in 

Lansing, yielding an overprediction of roughly 25%.   

Simulated and observed stream data exhibit similar trends throughout the year. 

The model overestimates higher flow events during peak flooding from January through 

May, and underestimates lower flow events in late fall and early winter (October-

December). The model outputs for calibration and validation also have a greater range 

than the observed data. The standard deviation for calibration and validation are rather 

similar, indicating a similar dispersion of streamflow for individual months (Table 2).  
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Figure 3. Graph of observed streamflow and dams-in calibrated streamflow outputs.  

 

 
Figure 4. Graph of observed streamflow and dams-in validated streamflow outputs.  

 

Pearson’s correlation coefficient was found for the correlation between calibrated 

streamflow and observed streamflow, based on monthly flow data (Table 2). The 

analysis indicated a strong correlation. Simulated higher and lower flow months tended 

to correspond well with observations. The Nash-Sutcliffe Efficiency compared the 

relationships between calibrated data and observed data, and between validated data and 

observed data (Table 2). In both scenarios, the NSE statistic fell within the general 

accepted range of values but just beyond the preferred range for SWAT simulations, 

indicating moderate statistical significance. The Root Mean Square Error (RMSE) was 
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estimated for amount of error associated with both calibrated and validated streamflow 

(Table 2). They are similar, which indicates considerable uncertainty in predicting the 

streamflow over the course of the year. While RMSE is an effective measure of model 

uncertainty, it is skewed by large error magnitudes in predicted data. The magnitude of 

errors associated with calibrated and validated data was also determined using Mean 

Absolute Error (MAE, Table 2). The MAE values for the calibration and validation 

scenarios are similar, indicating noticeable variance of the frequency distribution of error 

magnitudes. A Percent Bias statistic determined the average tendency of calibrated and 

validated data as compared with observed data (Table 2). In each scenario, a negative 

PBIAS value was derived, meaning that calibrated and validated data were overpredicted 

by roughly 25%.   

 
Table 2. Dams-In calibration and validation statistics. 

Scenario 
Standard 

deviation 
R NSE 

RMSE MAE 

(mm) 

PBIAS 

(%) 

Calibration – Dams-In 

 

23.848 0.786 0.141 16.186 12.743 -24.475 

Validation – Dams-In 

 

24.950 0.803 0.337 16.309 11.721 -25.555 

 

We calculated calibration and validation statistics in Table 3 and Table 4 to 

separate data into the four seasons. The grouping of months is: Winter: December-

February; Spring: March-May; Summer: June-August; and Fall: September-November. 

These groupings reflect meteorological seasonality and conventional seasonal grouping 

in hydrologic modeling literature (Blandford et al. 2008; Wang et al. 2018). Pearson’s 

correlation coefficient was found for the correlation between calibrated streamflow and 

observed streamflow for each season (Table 3). The analysis indicated a strong 

correlation for each season, except for the summer. During the summer, the model 

significantly overpredicted streamflow in July but only marginally overpredicted 

streamflow in August, despite both months having a similar average streamflow. During 

the fall, the model nearly predicted the average streamflow for December, and 

underpredicted the average streamflow for October and November. Pearson’s 

correlation coefficient was also determined between validated streamflow and observed 

streamflow for each season (Table 3). It indicated a strong correlation for each season, 

except for the fall. During the fall, the model nearly predicted the average streamflow 

for October, and underpredicted the average streamflow for November and December. 

During the winter, the model overpredicted average streamflow by roughly 130%.  

The Nash-Sutcliffe Efficiency compared the relationships between calibrated data 

and observed data for each season (Table 3). The best statistical significance was found 

for the summer, while NSE values for winter and fall were positive and close to 0, 

indicating that model predictions for average streamflow were roughly as accurate as 

predictions based on the observed monthly average. The spring NSE value (Table 3) was 

negative and skewed the yearly NSE value (Table 2), as individual spring months had 

large overestimations of average monthly streamflow. The NSE also compared the 

relationships between validated data and observed data for each season (Table 3). The 

fall NSE value fell within the preferred range for SWAT simulations, while values for 

spring and summer also exhibited moderate statistical significance. The winter NSE 

value (Table 3) skewed the yearly NSE value (Table 2) as individual winter months had 

large overestimations of average monthly streamflow.   
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Table 3. Seasonal calibration and validation statistics. 

Scenario Season R NSE PBIAS (%) 

Calibration Winter 0.731 0.004 -17.200 

 Spring 0.609 -0.107 -39.705 

 Summer 0.751 0.145 -52.986 

 Fall 0.663 0.629 27.896 

Validation Winter 0.640 -0.209 -11.871 

 Spring 0.605 0.539 -24.294 

 Summer 0.669 -0.449 -55.010 

 Fall 0.324 0.861 1.740 

 

Percent Bias determined the average tendency of calibrated data as compared with 

observed data for each season (Table 3). In every season besides the fall, a negative 

PBIAS value was derived, meaning that calibrated data were overpredicted. The positive 

PBIAS value in the fall indicates that the model underpredicted average monthly 

streamflow. PBIAS is also determined to compare the average tendency of validated data 

with observed data for each season (Table 3). A negative PBIAS value was derived for 

each season besides the fall, meaning that calibrated data were overpredicted. The 

positive PBIAS value in the fall indicates that the model underpredicted average monthly 

streamflow. In both the calibration and validation scenarios, the magnitude of the PBIAS 

value was highest during the summer, indicating more severe overprediction of average 

monthly streamflow. 

 

3.2 Scenario Two – Dams-Out 

 

In the Dams-Out scenario, the same input data, hydrological parameters, and simulation 

timeframe were used in SWAT. The only changes from the Dams-In scenario were not 

including data for the Moores Park and North Lansing Dams, and not calibrating or 

validating the model results. The Dams-In and Dams-Out water depth values is shown 

in Figure 5. The dams-out model accounted for an annual discharge of 749 mm, or a 

77.1% increase in annual discharge over the dams-in value of 423 mm. The Dams-Out 

scenario appeared to overestimate higher flow events more than the Dams-In scenario 

during peak flooding season from January through May. The Dams-Out and Dams-In 

scenarios both have a larger range of data than the observed data.  

The standard deviation for Dams-In and Dams-Out was rather similar, indicating 

a similar dispersion of streamflow for individual months. However, the average monthly 

streamflow for Dams-Out was nearly double the average monthly streamflow for Dams-

In, indicating a significant increase in average streamflow at the Lansing gauge with the 

Moores Park and North Lansing Dams removed.  

 
Table 4. Observed and modeled statistics. Font style indicates statistical groupings of data. 

Scenario Mean Standard deviation R 

Dams-In 35.245 24.304 0.880 

Dams-Out 62.435 24.041   

USGS 28.306 18.870 0.797 

Dams-Out 62.435 24.041   
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Pearson’s correlation coefficient was found for the correlation between Dams-In 

streamflow and Dams-Out streamflow, indicating a strong correlation (Table 4). Dams-

Out higher flow months tended to correlate with Dams-In higher flow months, while 

Dams-Out lower flow months corresponded with Dams-In lower flow months. Pearson’s 

correlation coefficient was found for the correlation between USGS streamflow and 

Dams-Out streamflow, indicating a strong correlation (Table 4). Simulated higher flow 

months correlated with observed higher flow months, and simulated lower flow months 

correlated with observed lower flow months. Therefore, the simulated Dam-Out 

streamflow systematically shifted the normal streamflow behavior of Grand River when 

this is dam in. 

 

 
Figure 5. Graph of dams-in and dams-out streamflow outputs.   

 

 

4 DISCUSSION 
 

4.1 Model Performance 

 
The first purpose of this research was to accurately represent hydrologic conditions in 

the Grand River Watershed. Statistical analysis of the dams-in scenario confirmed the 

difficulty in using SWAT to represent conditions in the delineated watershed. Pearson’s 

correlation coefficient signified strong agreement between calibrated/validated data and 

observed data, and between dams-in data and dams-out data. NSE values were 

predominantly greater than 0 and were in the acceptable range for general model 

simulations. However, other error statistics indicated that the model-produced values 

were not acceptable for representing watershed conditions, based on measures of 

statistical significance.   

SWAT results followed roughly the same pattern of streamflow throughout the 

year as the observed USGS streamflow. The cause of the overestimations is likely 

inaccurate representations of infiltration, with which SWAT has been known to have 
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errors (Kleinschmidt 2010). Southern Michigan has little topographic relief, and a DEM 

with a finer spatial resolution may have better represented the topography and natural 

flow basins of the watershed. Errors may also be attributed to biases of the NSE and R2 

statistics towards higher flow events (Arnold et al. 2012b), as individual months had 

more extreme NSE values that skewed the seasonal and annual NSE values.   

The second purpose of this research was to determine if a significant difference 

existed between streamflow in a dams-in scenario and a dams-out scenario. Since the 

measured dam-out streamflow data is not on record with the USGS, the results of the 

dams-out modeling were not validated. While the increase in streamflow from a dams-

in scenario to a dams-out scenario was substantial, it is not considered statistically 

significant because of the difference between modeled data and observed data. However, 

the dams-out scenario is well represented by the model because the whole behavior of 

the immediate river will have changed. 

 

4.2 Implications of Results 

 

The third purpose of this research was to make recommendations for dam management 

and flood mitigation in Lansing. With respect to the third purpose of this research, the 

City of Lansing should still consider flood mitigation and waterfront redevelopment 

options in association with dam removal and the potential for increased streamflow in 

the study area. Since city officials have targeted dam removal as their Best Management 

Practice, we recommend for the drafting of an Environmental Impact Statement to 

determine the cumulative effects of removing the dams. Definitive recommendations 

regarding dam removal and flood mitigation strategies would be strengthened with flood 

frequency analysis and alterations of the river using SWAT or other simulation models 

(Lee et al., 2017). Overall, the results of the research imply the importance of primary 

data acquisition for improved hydrologic modeling and the potential hydrologic effects 

of dam removal scenarios in the Great Lakes region. Future dam removal analysis in this 

region should expand the research scope to investigate the cumulative effects of dam 

removal under changing climate, urbanization, and intergovernmental water policy 

scenarios.  

 

4.3 Study Limitations 

 

Limited stream flow, land use/land cover, and weather data exists from prior to 

construction of the Moores Park and North Lansing Dams. Thus, calibration and 

validation of the model was not assessed in a dam-out scenario. Simulation of the dam-

out scenario followed the same temporal span as in the dam-in calibration and validation 

procedure. A considerable obstacle was the lack of available monthly streamflow data 

for each dam. This limitation was remedied by substituting the maximum discharge at 

each dam for the target release flow. Other obstacles included estimations of volume to 

fill the emergency spillway, volume to fill the principal spillway, and surface area when 

filled to the emergency spillway. Previous work by Murphy (2010) discusses the 

inaccuracies in modeling reservoirs in SWAT.  

Three error scenarios in SWAT hydraulic calibration include the model failing to 

simulate peak flow events, the model overpredicting surface flow and base flow 

throughout the year, and the model lagging observed flow despite following the pattern 

of observed data (Arnold et al. 2012b). The most prevalent errors with this hydraulic 
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calibration were overpredictions of surface flow and base flow amounts. This required 

manipulating model parameters during sensitivity analysis as previously outlined.   

Calibration and validation for streamflow should be process-based and account 

for hydrologic variables including evapotranspiration, surface runoff, groundwater 

recharge, lateral flow, and deep aquifer recharge (Arnold et al. 2012b). While several 

studies have utilized automatic calibration and validation techniques, manual calibration 

was utilized and intended to work as a function of selected sensitivity parameters, 

uncertainty ranges, and acceptable R2 and NSE statistics (Santhi et al. 2001). 

To depict the streamflow values for the watershed, we would have needed to 

adjust hydrologic parameters beyond realistic values for the catchment. Some trial 

calibrations produced a yearly streamflow amount within 10% of the observed yearly 

streamflow amount. However, this required adjusting the threshold water depth in the 

shallow aquifer required for the base flow to occur, to a high value (~1000mm). This 

parameter increase caused the baseflow index to fall below 5%.  

Despite ongoing efforts to adjust hydrologic parameters and calibrate/validate 

baseline streamflow results, there existed inaccuracies in replicating conditions in the 

study area. Modeled streamflow was only able to statistically match observed 

streamflow with extreme adjustment of hydrologic parameters beyond the acceptable 

values for SWAT. However, from an urban planning perspective, the overestimated 

model results in both the dams-in and dams-out scenarios are still useful. If Lansing city 

officials adapted this study in their flood mitigation strategies, model overestimations 

would highlight the potential of increased streamflow with the dams removed. This 

potential for increased streamflow may be most significant for peak flow events during 

late winter or early spring flooding, when greater deviations in streamflow from the long-

term average would be expected (Hanshue and Harrington 2011).  

 

 

5 CONCLUSIONS 

 
This study utilized the Soil and Water Assessment Tool (SWAT) for investigating the 

effects of removing the Moores Park and North Lansing Dams on streamflow 

characteristics of the Grand River. The purposes of this research was to model baseline 

watershed conditions, determine the difference in streamflow between a dams-in and 

dams-out scenario, and suggest waterfront mitigation and management in the study area. 

While baseline conditions were modeled with statistical significance during individual 

seasons, collective yearly results were not accurate. Therefore, conclusions regarding 

the increase in streamflow between a dams-in and dams-out scenario may not reject the 

null hypothesis if the study were to be further calibrated for sediment and water quality.   

This research demonstrates the ongoing need to improve hydrological modeling 

for heavily impounded watersheds. While the dams-out scenario predicted a sharp 

increase in mean monthly streamflow, the calibration/validation results were not 

statistically significant. However, this potential increase in streamflow may be 

confirmed if the City of Lansing or Michigan Department of Natural Resources 

continued SWAT calibration of the watershed with improved sediment, water quality, 

and reservoir data.  
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