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Figure 32: Spline interpolation method deviations of the centers.

Figure 33: Grid interpolation method deviations of the centers.

not su�ciently predict the data and did not o�er any signi�cant estimation bene�ts, as can be seen

in Figure 33. The points that are out of bounds of the plot are where the interpolation failed and

the �t estimation was not possible. As mentioned, those points are omitted from standard deviation

and maximum error calculations.

A comparison of the cross locations form the grid method can be seen in Figure 36. The esti-

mations are often seen closer to the perfect crosses, but by varying degrees. Also, the complexity of

the regressed surface does not guarantee that a crossover point on the interpolation axis exists.

6.2.5 Pixel surface interpolation

After noticing that the curvature of the intensity pro�le across the pixel could a�ect the model, an

attempt was then made to just investigate the pixel pro�le. In two simple cases where the intensity

across a pixel is constant or linear, the intensity at the center is the same as the average intensity.
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Figure 34: First order interpolation vs grid interpolation estimated contour points.
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Figure 35: Surface interpolation method deviations of the centers.

This is not the case when more complex pro�les are considered. An example of a modelled pixel

surface is shown in Figure 29. Modelling the pro�le across a pixel was hypothesized to be able to

give insight as to what exactly could be considered in such cases and possibly assumptions that

could be made given certain low resolution data.

The comparison of the �rst order and the pixel surface estimated contour point locations can

be seen in Figure 36. There seems to be a signi�cant improvement toward the 'perfect' points, but

the estimation does not o�er signi�cant improvement over the linear estimation. The results can be

seen in Figure 35.

No clear patterns were observed regarding the contour across a pixel in the high resolution data.

As a result, it would be very di�cult to accurately model the intensity pro�le across a pixel in all

cases. As a result, this process is not practical for use in actual imaging scenarios.
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Figure 36: First order interpolation vs pixel surface interpolated estimated contour points.

6.3 Conclusion

Curvature in the illuminance function introduces bias in the estimated contour points, which biases

the landmark location. Several techniques were implemented in order to reduce bias in the estimated

contour point locations but were unsuccessful. The e�ect of the bed of nails model is detrimental to

every method that has been tested for contour point interpolation of PLL. Chapter 7 attempts to

utilize all of the data in order to model a landmark to increase PLL accuracy.
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7 Butterworth Tepuy Investigation

Attempts to improve estimation of contour points were shown to be unfruitful. Investigation led to

the possibility of �tting a model to the entire data instead of single pixels. The thought was that

utilizing all of the pixel data would make the model less sensitive to errors in the bed of nails model.

7.1 Techniques

Two techniques are investigated in this chapter, both are variations on the Butterworth Tepuy model.

7.1.1 Butterworth tepuy �t

Gutierrez and Armstrong [20] propose a �t for a circular or ellipsoidal landmark known as the

Butterworth-Tepuy function. The function is supposed to re�ect an image having a �at top, sharp

transition region, and a �at bottom. The Butterworth Tepuy function has ten parameters which we

used as a Û vector.

Û = [x, y; a, b, c, x0, y0, Lmax, Lmin, sb]
T

(23)

The expected illuminousity function is given as

E (x, y) ≈ EBT
(
x, y; Û

)
=

Lmax − Lmin

1 +
(

(x−x0)
2+(y−y0)2

R(x,y)2

)R(x,y)
sb

+ Lmin (24)

The function R (x, y) ∈ <p is de�ned as

R (x, y) = R (x, y; a, b, c, x0, y0) =

√√√√√ (x−x0)
2

(y−y0)2
+ 1

a (x−x0)
2

(y−y0)2
+ 2b (x−x0)

(y−Y0)
+ c

(25)

Let E (x, y) ∈ <p where p = m ∗ n, the size of the low resolution image. As described in [20],

Equation 25 re�ects the distance of a point relative to the ellipse in �gure 37.

Taking EBT

(
Û
)

= E (x, y), then

Φ (x, y) =
δEBT
δU

=
[
∂EBT
∂a

,
∂EBT
∂b

,
∂EBT
∂c

,
∂EBT
∂x0

,
∂EBT
∂y0

,
∂EBT
∂Lmax

,
∂EBT
∂Lmin

,
∂EBT
∂sb

]T
(26)

ε = EBT

(
Û
)
− E (x, y) (27)

where Φ (x, y) ∈ <px8and ε ∈ <p.



40

Figure 37: Graphical representation of the R(x,y) function.

By setting

ε = δEBT =
δEBT
δU

δÛ = ΦδÛ (28)

a Newton-Raphson Algorithm can be used to solve for δÛ ∈ <8 that minimizes ε. This uses the

left-pseudo inverse of Φ and solving

δÛ = − (Φ′Φ)−1 Φ′ε (29)

Setting

Ûi+1 = Ûi + δÛi (30)

and iterating until an exit condition is met, namely the relative di�erence

δÛi

Ûi
< α (31)

a �nal model EBT

(
x, y; Û

)
could be reached.

An example of a Butterworth Tepuy landmark can be seen in Figure 39 with the actual landmark

shown in Figure 38.

7.1.2 Butterworth Tepuy �t with 2D Simpsons integration

One last method used proposed by Gutierrez and Armstrong[20] was a 2D-Simpsons Integration

method in conjunction with the Butterworth-Tepuy �t. The 2D Integration was meant to give a
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Figure 38: 3D plot of an original landmark.
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Figure 39: 3D plot of a tepuy �t estimation to a landmark.
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more accurate estimation of pixel values based on a 100% sensitive area pixel model.

A 3x3 grid of points within a pixel were used where if [xc, yc] represents the center of the pixel and

the total pixel area is [xc ± 0.5, yc ± 0, 5] then the grid would include ∆x =
[−1

2 , 0,
1
2

]
, x = xc + ∆x

and, similarly, ∆y =
[−1

2 , 0,
1
2

]
, y = yc + ∆y.

Then, for 2D Simpsons Integration to take place, a weight matrix was created,

W =


1 4 1

4 16 4

1 4 1


This matrix was condensed to a column vector

W = [1, 4, 1, 4, 16, 4, 1, 4, 1]T

and the vector of modeled values

E =
[
EBT

(
x+ ∆x, y + ∆y; Û

)]
(32)

was created.

The Simpsons Integral in a 3x3 grid is then de�ned as

¨
EBT

(
x, y; Û

)
dxdy ≈ 1

9
hxhyW ∗ E (33)

where hx and hy are de�ned to be the magnitude of the steps in ∆x and ∆y, respectively.

These new points were �t using the Newton-Raphson algorithm described in Section 7.1.1.

7.2 Results

7.2.1 Butterworth Tepuy �t

The Butterworth-Tepuy �t was performed on the low resolution data and produced the most accurate

results of any of the low resolution methods. An image of a landmark and the Butterworth Tepuy

�t can be seen in Figures 38 and 39, respectively. The deviations from the center estimates can be

seen in Figure 40. The magnitude of the deviations appears signi�cantly smaller than the deviations

seen in the original linear case in Figure 18.

There are many di�erences between the Butterworth Tepuy method and the contour point esti-
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Method STDx STDy x̃max ỹmax

Linear .0067 .0068 .0207 .0207
Quadratic .0050 .0051 .0157 .0157
Butterworth .0023 .0024 .0085 .0085

Butterworth 2D .0024 .0025 .0087 .0087
Pixel Grid ab .0052 .0053 .0161 .0198
Pixel Surface b .0020 .0021 .0067 .0067

Spline b .0020 .0020 .0064 .0064
High Resolution, 11 Multiplier b .0020 .0020 .0064 .0064
High Resolution, 33 Multiplier b .0004 .0004 .0012 .0012

aSome data points did not converge and were omitted from the calculations
bThese Calculations were performed using high resolution data

Table 3: Table of results from all corrective methods.

mation methods.

� Taking the entire model into account

The Butterworth-Tepuy �tting process takes into account the entire model, not just two or more

pixel values. This has certain advantages and disadvantages, described below.

� Curvature is accounted for in the model

The Butterworth Tepuy model has curvature, whereas Linear Models do not. Therefore, given

accurate �ts, the errors across a pixel could be greatly reduced.

� All of the data is considered

By increasing the number of data points, there is a reduction in the sensitivity to noise. Linear

Interpolation cases simply ignore almost all of the data above and below a speci�c threshold. The

Butterworth-Tepuy algorithm utilizes all of this data to attempt to predict a model. Theoretically

more data yields a better �t.

� There is no dependence on a threshold

A threshold variable is not considered in a Butterworth Tepuy model. This reduces one less user-

created variable that needs to be implemented in the model.

� The model doesn't consider uneven lighting pro�les

Not all side e�ects are good. In this case, if the lighting pro�le were uneven; say, the �at top or

bottoms weren't �at, the model would currently be unable to predict this. In the future this could

probably be implemented into the model if it were seen to be bene�cial.
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Figure 40: Butterworth Tepuy estimated deviations from center.
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Figure 41: 2D Butterworth Tepuy estimated deviations from center.

7.2.2 Butterworth Tepuy �t with 2D Simpsons integration

Despite promising hypotheses, this integration did not greatly improve the estimation. Investigation

could be performed as to whether a larger integration grid (a 3x3 grid was used) could improve

accuracy. This method was not pursued further, as the Butterworth-Tepuy model seemed su�ciently

accurate to draw conclusions. The results from the investigation can be seen in Figure 41 and the

di�erences between the integrated method and the original Butterworth Tepuy method can be seen

in Figure 42.

7.3 Conclusion

The Butterworth Tepuy algorithm o�ered the best corrective method analytically from the low

resolution image data. The technique is robust enough for practical implementation and accurate
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Figure 42: Di�erences between the two Butterworth methods.

enough to justify use. The magnitude of correction from the Butterworth Tepuy algorithm is similar

to having the original high resolution pixel info, or 121 times more image data. The results from the

Butterworth Tepuy method are very promising and could yield much better estimations with little

jump attributed to bias.
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Part III

Results and Conclusion

8 Butterworth Tepuy method in a jump

A method was created to make the Tepuy algorithm robust enough to deal with actual images. This

is necessary because pixels that are outside the tepuy might be a�ected by the nearby white regions

of the target. The algorithm performs as follows.

1. Locate possible pixels near a tepuy

2. Find which of those pixels are outside the tepuy

3. If the pixels are outside the tepuy, ensure that they are dark enough

4. Fit a tepuy, placing weights on the transition regions

5. Search to �nd if any pixels outside the tepuy are unusually higher than the others and omit

them

6. Repeat steps 4 and 5 for a more precise �t

7. Fit a �nal tepuy

The resulting technique was used to analyze images in Section 8.1.

8.1 Observing depth vs roll angles

The images from the jump referenced in Chapter 2 were re-analyzed with the Butterworth Tepuy

algorithm in place of the contour point estimation algorithm.

The results of the initial observation can be seen in Figure 43. This �gure shows angles where

there are patterns of bias. Between 84 and 84.5 degrees of rotation, there seems to be a spike in the

positive Z direction, away form the regression line of the data. There seem to be a number of these

phenomena over the range of the experiment.

Figure 44 shows the result of the data with the tepuy algorithm applied. The variance of the

tepuy corrected data was less than half of the variance of the standard data. Additionally, the

apparent spikes in the data appear to be all but removed completely. It appears that the bias has

been removed and Gaussian noise dominates the errors. The two data sets over a smaller angle
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Figure 43: Linear interpolated contour point technique Z measurements vs calculated roll.

80 82 84 86 88
2359

2359.5

2360

2360.5

2361

2361.5

2362

2362.5

2363

2363.5

2364
Three pass correction, Variance=0.106727 Range[2359.383000 2362.603000]

Measured Degrees

M
ea

su
re

d 
Z

 (
m

m
)

Figure 44: Butterworth Tepuy estimation technique Z measurements vs calculated roll

can be seen in Figure 45. The histograms of Figure 46 appear to support the idea that the tepuy

corrected method has much more random errors than the ellipse algorithm.

The di�erences in Z (Figure 47) show that the Tepuy estimation measures closer to the camera

than the ellipse algorithm. The magnitude of the di�erences are on the order of 1mm. This distance

appears to be a�ected by the sharpness of the weighting algorithm used, which is described in Section

8.4.

8.2 Observing locations of each ellipse

Observations can be made on the position of each ellipse individually. In the image set, one ellipse

is especially interesting because it consists of two signi�cantly di�erent magnitudes of motion. The

movement of the estimated location of X with respect to roll shows a range of only .25 pixels, whereas
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Figure 45: Linear estimation of contour points and Butterworth Tepuy corrected estimation of a
jump.
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Figure 46: Histograms of the errors with linear contour point estimation (left) and Butterworth
Tepuy estimation (right).
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Figure 47: Di�erences in measured Z between ellipse �tting and Butterworth Tepuy techniques.
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Figure 48: Estimated X movement of the circular landmark using the Butterworth Tepuy method
(left) and the ellipse method (right)

the Y movement shows movement over 12 pixels. This motion can be seen in Figures 48 and 49.

The estimation and deviations from a second order regression can also be seen in the �gures.

In these �gures it is not clear that the Tepuy �t o�ers a better estimation. Errors and trends can

be seen in both estimation procedures, and the magnitude of the errors are very similar. Although

a second-order regression of Position vs Roll was believed to be su�cient, it is possible that higher

order paths might be necessary in order to estimate the path of a landmark. Additionally, roll is

the X-axis of each of the plots, which is also a measured quantity. It is possible that errors observed

could actually be ampli�ed by the miscalculation of roll angle.

8.3 E�ects of the multiple-pass tepuy algorithm

As described at the beginning of this chapter, the tepuy �tting algorithm takes multiple passes in

order to improve estimation. The e�ects of the measurements from each pass can be seen in Figure

50 with the errors shown in Figure 51.
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Figure 49: Estimated Y movement of the circular landmark using the Butterworth Tepuy method
(left) and the ellipse method (right)
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Figure 50: E�ects of multiple passes on the tepuy algorithm. Single pass (upper left), double pass
(upper right) and triple pass (lower) Butterworth Tepuy algorithms.

It is noted that the variance of the measurements actually increases with each pass. The errors,

however, appear to be slightly more Gaussian after the third pass than the �rst, so it is possible

that the biases were further reduced after the third pass.

A strategy to combat this phenomena would be to modify the target design to allow for more

guaranteed outside pixels. In this case, more data would be kept for analysis and could allow for a

more accurate �t.

8.4 E�ects of weights applied to the Butterworth Tepuy algorithm

The data was weighted to put an emphasis on the transition data instead of the �at regions. The idea

of weighting the transition regions of contour was shown in Chiorboli and Vecci[32]. The function

used to perform this was

Weight (p) = e
−k∗
(

IBT (p)−I
Imax−Imin

)2
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Figure 51: Histogram of the errors from each pass of the tepuy algorithm. Single pass (upper left),
double pass (upper right) and triple pass (lower) Butterworth Tepuy algorithms
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Figure 52: E�ects of weights on the Tepuy algorithm. Double weights (upper left), half weights
(upper right) and standard (lower) are shown.

where k is a constant, IBT (p) is the estimated intensity at the pixel, I is the average intensity over

the pixels being analyzed, and Imin,max are the minimum and maximum intensities, respectively.

Originally k = 2 was used. The graphs of using di�erent values of k are shown in Figure 52 with

the errors in Figure 53. Biases seem much less of a factor when the original, k = 2 weighting was

used than the other two weighted cases. When weighting is turned o�, the variance increases.

8.5 Introducing a gradient to the Butterworth Tepuy algorithm

The calculation for the Butterworth Tepuy was modi�ed to support a 2D gradient, as such.

E (x, y) ≈ EBT
(
x, y; Û

)
=
Lmax (1 + g0x+ g1y)− Lmin

1 +
(

(x−x0)
2+(y−y0)2

R(x,y)2

)R(x,y)
sb

+ Lmin (34)

This gradient was added to simulate non-uniform lighting over the observed area. An example

of a single �t can be seen in Figure 54 where the circles represent the estimation and the crosses
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Figure 53: Errors from di�erent weights of the Tepuy algorithm. Double weights (upper left), half
weights (upper right) and standard (lower) are shown.
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Figure 55: Errors with a gradient introduced in Butterworth Tepuy algorithm.

represent the observed data. The full results of the 840 images are shown in Figure 55. The

variance increased using this process and the bias trends seem to appear in the data. Although

this was considered to be a helpful addition to the Butterworth Tepuy algorithm, it seems that this

technique does not improve accuracy.

The maximum gradients observed were on the order of .035 countspixel with most observations being

an order of magnitude smaller than this.
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9 Conclusions/Recap

9.1 Bias as a source of error

It has been shown in Section 4.2.2 that bias exists in precision landmark location. This bias is much

larger than deviations attributed to noise, as shown in Section 4.2.4. It has also been shown in Section

4.2.3 that this bias could be the main cause of the observed jump phenomena. Butterworth Tepuy

estimation minimizes this bias and theoretically should minimize the jump phenomena. Real-world

experiments show this to be the case, and the e�ects of jumps appear to be reduced signi�cantly.

9.2 Curvature of intensity pro�le causes bed of nails to be inaccurate

Curved intensity pro�les yield cases where the average intensity and intensity at the center are two

di�erent values. These di�erences cause a systematic inaccuracy in precision landmark location.

Proper estimation procedures and estimation models as introduced in Section 7.1.2 should be able

to combat the bed of nails inadequacies and provide a better estimation.

9.3 Curvature causes linear interpolation to be inaccurate

Contour point estimation is not accurate enough to perform precision landmark location. They are

not near enough to the true transition locations. This model must be improved upon or, in the case

of Butterworth Tepuy estimation, abandoned completely. Several methods to improve this technique

were quantitatively investigated in this Thesis.

9.4 Butterworth Tepuy o�ers more accurate landmark estimation than

the ellipse algorithm

Errors attributed to bias were reduced by a factor of 3 by using the Butterworth Tepuy algorithm.

The degree of improvement is similar in magnitude to having 11 times the amount of data during

a linear interpolation. Several correction methods were proposed and tested, and the Butterworth

Tepuy method had the best results.

The deviations from real world data were shown to be signi�cantly reduced. This is a strong

veri�cation of the prediction that the Tepuy algorithm o�ers much more accurate results than the

ellipse algorithm.
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9.5 Impact of this Thesis

This research o�ers insight to what causes the errors in MPT. Before the research was performed,

hypotheses were constructed as to why the jump phenomenon was taking place, many of which

suspected imperfections in the imager. The research has shown that the jump phenomenon would

still happen in an ideal imager. Additionally, the research uncovers two facts regarding contour

estimation: the intensity of a pixel is not equal to the intensity at the center of a pixel, and the

contour between two pixels is non-linear. This is due to curvature in the intensity pro�le across the

imager. In studied cases referenced by Tian and Huhns[23] errors were acceptable on the order of

±1 to 0.1 pixels. The accuracy of MPT is sensitive to errors of ±.002 pixels. The precision of this

research is believed to be unparalleled.

This research continues by implementing a corrective algorithm for this phenomenon. Simulation

showed that improvements should be observed and experimental validation supports this theory.

MPT and any other technology that requires the precise location estimation of circular landmarks

can bene�t from the �ndings of this work.

9.6 Future investigations

There are a few di�erent investigative paths that could be further pursued in order to improve

precision landmark location.

9.6.1 Further investigation into modeling the curvature of landmarks

An improvement could potentially be achieved by investigating landmark structure relative to the

bed of nails model. There could potentially be a contour point estimation procedure that would

improve the accuracy of the contour points. This could improve the ellipse estimation technique.

9.6.2 Gather more contour points before the interpolation process

Potentially utilizing more or di�erent interpolation axes could prove to be bene�cial. Instead of

interpolating along pixel boundaries, one could create contours with several neighboring pixels and

interpolate along one or several axes. There is potential for improvement by investigating speci�c

direction vectors, namely ones tangential to the contour of the ellipse being investigated.
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9.6.3 Using more re�ned 2D Simpsons Integration techniques in order to get a better

Butterworth Tepuy estimation

It is very counter-intuitive that the 2D Simpsons Integration technique did not improve landmark

estimation. Perhaps using more precise integration techniques with more samples could yield promis-

ing results.

9.6.4 Robust statistical methods to improve Butterworth Tepuy estimation

Investigations have been done to attempt to create better Butterworth Tepuy estimations using roust

statistics, but have not yielded promising results. A deeper understanding and further attempts to

re�ne the statistical methods could prove bene�cial and lead to a better center estimation.

9.6.5 Modi�cations to the Butterworth Tepuy model

The Butterworth Tepuy model uses the parameter R (x, y). This parameter represents the distance

from a point to the de�ned ellipse on a line through the ellipse center. A more appropriate model of

R (x, y) would represent the distance to a line normal to the ellipse. During most of the investigation

a circular landmark was used in which case the two lines are the same.

Further studies regarding the introduction of higher-order gradients could be tested in order to

account for non-uniform lighting conditions. It is known that non-uniform lighting is the case in

these images, and perhaps knowing that model more precisely could improve estimation.

9.6.6 Modi�cations to the target

Multiple passes were necessary in order to discover which pixels to use in �tting the Butterworth

Tepuy model. This step might not be necessary at all if the targets were designed to have a

more consistent dark region outside of the landmark. This e�ect was not necessary to take into

consideration in the current model but for future revisions it might be bene�cial.
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