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Effects of Stormwater Green Infrastructure on Watershed Outflow: Does
Spatial Distribution Matter?

Abstract
Green Stormwater Infrastructure (GSI) has become a popular method in urban stormwater management. We
examined how spatial distribution of GSI affected rainfall-runoff relationships in a recently developed
neighborhood in Gresham, Oregon, USA for the 2017-2018 water year. Runoff ratio, peak discharge, and
flashiness were compared under four precipitation scenarios (of differing intensity and duration) and different
spatial arrangements of GSI. Distributed GSI reduced runoff ratio (10 - 20%), peak discharge (26 - 68%), and
flashiness index (56 - 70%). Distributed GSI outperformed centralized structures for all metrics, reducing
runoff ratio (22 - 32%), peak discharge 67 to 69%, and flashiness index (32 - 62%). This research serves as a
basis for urban stormwater managers to understand potential impact of GSI on reducing runoff and
downstream flooding in small urban watersheds with frequent rain.
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1 INTRODUCTION  
 

Green Stormwater Infrastructure (GSI) refers to all systems that attempt to promote 

infiltration and detention of runoff by integrating natural porous surfaces or artificial 

structure (e.g., cistern) into residential or urban landscapes (Golden and Hoghooghi 2017; 

Palmer et al. 2015). GSI has grown in popularity in recent years among urban managers 

and practitioners as it not only reduces flooding and pollution risk but also is an efficient 

alternative to traditional structural methods. GSI also offers positive social and 

ecological benefits such as improving real estate value, reducing crime rate, and 

mitigating the urban heat island effect (Wang et al. 2016; García-Cuerva et al. 2018; 

Baker et al. 2019). Furthermore, previous studies have predicted that some of the risks 

GSI is designed to mitigate (flooding and urban heat) may in fact worsen for cities in 

which a warming global atmosphere would lead to greater precipitation and temperature. 

At the very least, GSI can promote urban resilience in cities where precipitation intensity 

is projected to increase in the future (Rosenzweig et al. 2018), bringing more surface 

flooding (Matthews et al. 2015; Demuzere et al. 2014; Hirabayashi et al. 2013; Gill et 

al. 2007; Ashley et al. 2005).  

Although the potential and observed benefits of GSI have been well researched, 

the optimal location of such infrastructure is still largely unknown (Ahiablame et al. 

2012). In the past, GSI has been evaluated either at a regional scale (e.g. city, 

metropolitan area), or structural scale (individual structures), leaving a need for sub-

catchment scale analyses (Avellaneda et al. 2017; Golden and Hoghooghi 2017; Bell et 

al. 2016). Localized studies can provide key information about the functionality of 

individual structures and are useful in designing blueprints for implementation. Much of 

this research compares inflow and outflow metrics for water quality and quantity of 

individual structures, and any measured changes is attributed solely to the structures 

(Jarden et al. 2016; Burns et al. 2012; Fassman & Blackbourn 2010; Hunt & Szpir 2006). 

Because many of the aforementioned studies evaluate structures independently, there 

still exists a need to identify cumulative impacts of combined infrastructure and the 

effects of different spatial configurations (i.e. proximity to impervious surfaces, to flow 

accumulation, to other GSI) (Bhaskar et al. 2016; Loperfido et al. 2014; Gilroy & 

McCuen 2009).   

Conversely, broader scale comparisons can reduce errors based on spatial and 

temporal heterogeneity of individual structures, such as soil saturation, antecedent rain 

conditions and temperature (Thomas et al. 2016). However, these analyses typically 

assume spatial homogenization in otherwise heterogeneous parameters and are therefore 

more likely to identify external influential factors (Burns et al. 2012; Wainwright et al. 

2011). Baker et al. (2004) found watershed area and flow path length far outweighed 

GSI variation when evaluating catchment flashiness, while Bell et al. (2016) reported 

only total imperviousness had a significant influence on watershed outflow. Factors that 

influence runoff can eclipse GSI when not controlled across comparison groups. 

Loperfido et al. (2014) measured GSI performance by controlling for landscape factors 

but found considerable variation in distribution, connectivity, and density of GSI. Using 

broad scale watersheds makes it difficult to discern factors (watershed size, impervious 

surface cover) that influence hydrology, even when attempting to control for them in the 

comparison (Pennino et al. 2016). In sum, large scale analyses allow for identification 

of statistical correlations between GSI and runoff but can be preventative in establishing 

well controlled comparisons (Zellner et al. 2016). 
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To solve these problems, we focus on subcatchments, which function as 

hydrologically independent areas with topological characteristics that carry surface flow 

to a common point that is not necessarily an inlet to a lake or ocean (Martz & Garbrecht 

1992). Because discharge dynamics represent drainage basins, it is necessary to delineate 

boundaries that exclude the possibility of water exchange outside of a study site--

something that is rarely achieved in local studies. Conversely, it is also necessary to 

isolate GSI in comparisons by controlling for all other variables that influence flow, 

which can be difficult when regional comparisons are too large to provide accurate 

accounts of differences in catchments. As shown in Table 1, many of the limitations in 

local and regional scales are absent for sub-catchment scale studies. The table shows 

how local scales (<0.01 km2) may overlook cumulative and interactional effects of GSI, 

and broad scales (>1 km2) may be subject to uncontrolled variables. We identify a 

general gap in existing literature and propose to investigate GSI at a controlled sub-

catchment scale.  

To fully understand the relative efficacy of varying spatial arrangements of GSI 

under changing climatic conditions, multiple climate scenarios should be tested to ensure 

how runoff characteristics will shift under differing precipitation conditions. Many 

previous studies on GSI measure flow in a single location over long term periods of 

precipitation (Jarden et al. 2016, Thomas et al.2016), or by comparing areas with 

different precipitation patterns (Kim & Park 2016; Noreen 2015; Miles & Band 2015). 

To test GSI performance under different climate scenarios, comparison groups should 

be evaluated for different types of rain events. Optimizing GSI in future projects requires 

understanding the most effective distribution of structures (Moore et al. 2016, Lim et al. 

2016). While many studies discuss the overall impacts of GSI or compare types of GSI, 

there still exists a need to evaluate different arrangements (Bell et al. 2016; Lim and 

Welty 2016; Golden and Hoghooghi 2016). Distributed structures have recently been 

discovered to function more effectively than centralized. The literature has evidenced 

that there are optimal scales and arrangements for GSI, but a limited number of studies 

have directly addressed this question (Jayasooriya and Ng 2014). We seek to answer the 

following research questions. 

(1) How effective is a combined GSI approach at reducing pluvial nuisance 

flooding in a climate that receives frequent rainfall? 

(2) How does a distributed GSI arrangement compare to a centralized arrangement?  

(3) How does intensity and duration of precipitation impact GSI functionality? 

 

  

2 MATERIALS AND METHODS  
 

2.1 Study Area  

 
As shown in Figure 1, the Brookside neighborhood is located in Portland’s neighbor, 

Gresham, Oregon, USA. The area received approximately 917mm of annual 

precipitation (based on station located at Portland International Airport) with the 

majority of it (73%) falling in the wet season from October to March (Western Regional 

Climate Center 2019). This neighborhood has clay soils (~0.25-1.27 cm/hr of infiltration) 

and steep slopes (up to 12%), a condition typically not favorable for installing GSI. The 

area is undergoing rapid development projects that will increase impervious surface 

f r o m  l e s s  t h a n  3 %  t o  o v e r  4 5 %  i n  l e s s  t h a n  a  d e c a d e  ( C i t y  o f  
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Table 1. Location, study site median area, GSI type, and limitations of spatial scales for selected studies. Additional information in Hammel et al. (2013).  

Case Study  Location  Scale (km2) GSI Type  Limitations due to spatial scale 

Hunt & Szpir (2006) North Carolina 0.000001 Bio-retention cells No combined functionality of GSI  

Gregoire & Clausen (2011) Connecticut 0.0002 Green roofs (GRs) Only green roofs examined 

Burns et al. (2012) Melbourne, AU 0.0005 Lined bio-infiltration system No outcome of “flow-through” water 

Fassman & Blackbourn (2010) Auckland, NZ 0.00062 Permeable streets No recorded catchment outflow, only structural 

Jarden et al. (2016) Ohio 0.001 Green streets  Street repairs offset impact 

Davis (2008) Maryland 0.0024 Bio-retention facilities No combined effects of outflow at catchment scale 

Zimmerman et al. (2010) Massachusetts 0.01 Pavement, GRs, rain gardens Small sample size 

Wang et al. (2010) Ohio 0.03 Building specific LID Calibrated model only to pre-development period 

Bedan & Clausen (2009) Connecticut 0.031 Bio-retention, grassed swales None 

Lim & Welty (2017) Washington D.C. 0.05 Distributed residential GSI No model Calibration 

Selbig & Bannerman (2008) Wisconsin 0.66 Infiltration basin, swales, pond None 

Miles & Band (2015) N. Carolina, D.C. 1.5 Rain gardens, detention basins Sites differ (soil, vegetation, precipitation) 

Loperfido et al. (2014) Chesapeake Bay 4 Distributed & centralized GSI No controlled variables between locations 

Zellner et al. (2016) Illinois 4 Bioswales, green roofs, etc Only compare models, no empirical calibration 

Pennino et al. (2016) Maryland, D.C 6 Rain gardens, ponds, swales, Only normalize for watershed size & impervious 

Granados-Olivas et al. (2016) New Mexico 11.65 N/A Only suitability, not a performance evaluation 

Bell et al. (2016) North Carolina 15 Bio-retention cells Unclear connection between GSI and pipeshed 

Thomas et al. (2016) Iowa 45 Stormwater detention basins Many unidentified variables. No model calibration 

Lim, (2016) Eastern USA 85 Combined sewer, all GSI Only measured presence of GSI, not functionality 

Kim & Park (2016) Texas 253 N/A Sites differ greatly (not a controlled comparison) 

Noreen (2015) Sweden 420 Stormwater ponds Sites differ greatly (not a controlled comparison) 
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Gresham 2017). In response, the City has worked with developers to incorporate GSI 

projects with the development to reduce and treat runoff into a nearby creek as a means 

to meet legislative requirements, reduce flooding further downstream, and to protect and 

enhance the water quality and habitat in the creek. 

 

 
Figure 1. Study area Brookside neighborhood in the Portland metropolitan area (Google 

Streetview, 2018).  

 
Based on lidar-derived topography and detailed sewer network, the Brookside 

neighborhood functions as a hydrologically independent watershed, with runoff 

generated by either building roofs, driveways, streets, or sidewalks. Runoff from roofs 

flows either to lot level GSI, centralized GSI, or streets, whereas runoff from driveways 

and streets flows to the street, overland along the street, and eventually through street 

side GSI or manholes that connect to a centralized pipeshed. Brookside is composed of 

similar size and density of housing and infrastructure designs throughout, but with sub-

neighborhoods that differ in type, arrangement and density of GSI. As shown in Figure 

2, subcatchments consist of five residential GSI and three street GSI treatment types 

containing varying combinations of distributed and centralized structures. The outflow 

from Brookside is monitored by a flow height and velocity data loggers, providing a 

historical record of discharge. 

 

2.2 Observed Data Collection and Processing  

 
We used the empirical outflow data measured by using Greyline Stingray 2.0 units and 

provided by the City of Gresham Department of Environmental Services. To ensure 

consistency, data were selected to consist of the maximum number of storms during a 

period without construction or alterations in the Brookside neighborhood and 

stormwater infrastructure design. More recent periods from June 1, 2017 to May 1, 2018 

were prioritized as they best represent completed neighborhoods elsewhere. 

Precipitation data were obtained from the Pleasant Valley School Rain Gage in Gresham 

(via Portland Hydra Rainfall Network 2018).   

Brookside 
neighborhood 

Portland 
Gresham 

5km 0 
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Figure 2. Study site area displaying boundaries, GSI treatment types, and gage locations.  

To avoid errors, we removed storms with two-minute interval discharge readings 

greater than quadruple the neighboring values. These values were likely results from 

errors with the data loggers, perhaps from objects such as sticks causing the flow height 

gauge to misread water depth. Hourly precipitation data from the rain gage previously 

mentioned in Figure 2 was matched with outflow data and was considered accurate for 

the study site as the rain gage is less than one kilometer away. Because rainfall precedes 

discharge, rainfall data for 24 hours preceding the date and time of the first non-zero 

runoff value was included. 

 

2.3 Preparing SWMM  

 

The first step in building a model to use for sensitivity testing and calibration was to 

determine all necessary fixed input parameters to model the neighborhood. Site 

boundaries and flow paths (both surface and pipeshed) were determined using Digital 

Elevation Models (DEMs) at a one-meter resolution from the City of Gresham and the 

Hydrology tool set in the Environmental Systems Research Institute’s ArcGIS software. 

DEMs were processed to produce slope and gradient inputs which are used by SWMM 

to determine overland and pipe flow dynamics. Buildings, roads, pipes, and GSI 

structures were delineated using blueprints and high-resolution aerial photographs 

provided by the City of Gresham and Google Earth, 2017. From this, the percentage of 

impervious surfaces, flow path widths, landscape slopes, and other input parameters 

were calculated. Flow paths and GSI and building dimensions were ground-truthed to 

reduce measurement errors as much as possible. Because SWMM allows multiple 

options for routing flow, subcatchment design, processing infiltration, and incorporating 

infrastructure, various theoretical designs and parameters were compared to identify a 

model with the least amount of error. In the case of Brookside, the most accurate model 

routed flow from residential catchments with lot-level GSI treatment bioswales and 

detention ponds catchments to outfall nodes. 
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2.4 Sensitivity Analysis  

 

Prior to calibration, a sensitivity analysis was ran to understand which parameters were 

dominating the outputs of the model. To identify such parameters, preliminary testing 

and the review of two past SWMM sensitivity analyses (Tsai et al. 2017; Tsihrintzis et 

al.1998) yielded a list of fourteen parameters and methods that significantly impacted 

model performance. The order of most to least sensitive parameters are subarea routing, 

GSI outflow routing, monthly evaporation constant, width of overland flow, evaporation 

method, impervious depression storage, Manning’s N (impervious), % zero 

imperviousness, pervious depression storage, Manning’s N (pervious), infiltration 

routing method, conductivity constant, suction head, and initial moisture deficit. 

Parameters were then altered independently of one another against the original base 

model designed with fixed (empirically measured) input parameters and suggested 

variable parameters from the SWMM user manual. The sensitivity analysis identified 

which parameters had the greatest impact on model performance and were refined in 

order of decreasing impact to the model during the calibration phase. 

 

2.5 Calibration and Validation 

 

Although SWMM offers an automated calibration process, this process requires 

individual subcatchment runoff values, and cannot be used for a system of multiple 

subcatchments as used in this study. For that reason, a manual calibration process was 

used to improve model performance by manually adjusting one variable input parameter 

at a time. In each step during calibration, we adjusted one parameter at a time, mostly in 

decreasing order of the most sensitive parameters via the sensitivity analysis.  Table 2 

summarizes the results of calibrated parameter values.  

 
Table 2. Calibration results for optimized for the corresponding input parameter.  

 Parameter Calibrated value Unit 

Monthly evaporation constant 0.28 cm/day 

Impervious depression storage 3.81 mm 

Manning’s N (impervious) 0.024 s/[m1/3] 

Pervious depression storage 2.54 mm 

Manning’s N (pervious) 0.15 s/[m1/3] 

Conductivity constant 1.52 cm/hour 

Suction head 9.65 cm 

 

The model’s outflow hydrograph for the selected water year was first used to 

compute a Nash-Sutcliffe Equilibrium (NSE) statistic, a metric for optimizing the model 

for each given input parameter (Nash and Sutcliffe, 1970). NSE ranges between −∞ and 

1, with values between 0 and 1 being acceptable, and higher values signaling stronger 

performance (Moriasi et al. 2007). Once the model was calibrated to optimize NSE, the 

Percent Bias (PBIAS) statistic was used for verification and was only tested for the final 

model (and the base model for comparison). Unlike NSE, PBIAS measures the tendency 

of the model output to differ from the empirical data. The optimal value of PBIAS is 0, 

with low-magnitude (absolute value) measurements indicating accuracy (Gupta et al. 
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1999). Once calibrated and verified using the NSE and PBIAS statistics, the refined 

model was used simulate scenario storms in order to test GSI performance in Brookside, 

as well as alternate arrangement strategies. 

 

2.6 Runoff Metrics 

  

2.6.1 Runoff Ratio  

 

Runoff ratio is similar to total discharge in that it is a measure of the total quantity of 

precipitation that fails to infiltrate, evaporate, or increase storage during a storm event. 

Using a ratio adjusts for small alterations to landscapes in different scenarios that may 

change the total volume of precipitation entering the system. Downstream flooding can 

reduced and prevent large quantities of discharge from entering waterways. 

Understanding how much water GSI can potentially detain from a riverine system during 

a flood event can inform the knowledge towards the ability for GSI to mitigate flooding 

(Johnson Creek Watershed Council, 2005). 

 

2.6.2 Peak Discharge  

 

Peak discharge is the maximum of the instantaneous peak flow (cubic meters per second) 

in the hydrographs of simulation events, as shown in the equation below. Peak flow can 

lead to combined sewer overflow (CSO) and both flooding and water quality problems, 

peak discharge will be compared across GSI arrangements to understand different CSO 

mitigation potentials (Department of Ecology, 2015). 

 

2.6.3 Flashiness Index  

 

The shape of hydrograph will serve as a basis to compare flashiness; because flashy 

hydrographs depict sharp vertical jumps and steep vertical declines, the slope of the 

maximum tangent line along the first rising limb was computed and used for comparison. 

Development and impervious surfaces can exacerbate flashiness and increase the rate at 

which water enters pipes, water treatment facilities, and stream networks, thus leading 

to higher discharge downstream (Baker et al. 2004). 

 

2.7 Scenario Analysis 

 

To identify the most effective arrangements of GSI and under which conditions they are 

most effective, we use a synthetic scenario analysis to perform two tests: first, to quantify 

the impact of GSI in the Brookside neighborhood against an absence of GSI; and second, 

to compare performance of dispersed vs. centralized GSI. In the first analysis, the 

Brookside arrangement is represented by the calibrated model. The No GSI model is 

designed exactly as Brookside with all GSI (both centralized and dispersed structures) 

removed. For the second test, two synthetic neighborhoods were designed to compare 

the performance of completely dispersed and completely centralized GSI designs. For 

the centralized scenario, dispersed GSI was removed, and new centralized structures 

(bioswales, detention pipes, and detention ponds) were applied to regions previously 

treated by dispersed structures. Conversely, for the dispersed arrangement, all 

centralized facilities were removed and replaced by dispersed structures in order to 

mimic treatment in the dispersed GSI regions. 
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All tests evaluated four synthetic precipitation events including two levels of both 

precipitation volume and duration to measure the directional relationship of storm type 

and performance of the GSI arrangement in question (Table 3). Precipitation values were 

based on historical rainfall data from Portland HYDRA Rainfall Network, and validated 

with precipitation Intensity-Duration-Frequency (IDF) curve values from the 2007 

Portland Bureau of Environmental Services’ Sewer Drainage Facilities Design Manual 

and the 2013 Stormwater Management Facilities Monitoring Report. The former defines 

a 2-year 24-hour storm event with 0.254 cm/hr average precipitation, and the later 

references design storms ranging from 0.087 cm/hr to 0.800 cm/hr with peak intensity 

starting at 0.432 cm/hr for 24 hour events, thereby validating the selected scenario 

storms used in this analysis. Holding precipitation volume constant to 1.83 and 3.66 cm, 

storm durations of 16 and 32 hours were tested. 

 
Table 3. Characterization of four storm types used in scenario analyses.  

 

By testing four storm types for four metrics for two arrangements, both scenario analyses 

consisted of sixteen simulations (Figure 3). Differences between arrangements were 

calculated as percent change from one arrangement to the other (from no GSI to 

Brookside GSI and from centralized GSI to dispersed GSI) to quantify the extent to 

which one arrangement outperformed the other for each metric. 

 

Figure 3. Conceptual Diagram illustrating scenario analysis categories. 

Storm Type Total 

Precipitation 

(cm) 

Total 

Duration 

(hours) 

Average 

Precipitation 

(cm/hour) 

Max 

Precipitation 

(cm/hour) 

Low volume, short duration 1.83 6 0.114 0.203 

Low volume, long duration 1.83 32 0.057 0.102 

High volume, short duration 3.66 16 0.229 0.406 

High volume, long duration 3.66 32 0.114 0.203 
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3 MATERIALS AND METHODS  
 

3.1 Model Calibration 

 

The final calibrated SWMM model had an NSE coefficient of 0.76 and the PBIAS of 

3.3% at an hourly scale (see Figure 4). These numbers are well within the accepted range 

of values in other previous studies. 

 

Figure 4. Hydrograph showing model iterations attempting to simulate observed outflow.  

3.2 Presence and Absence of GSI 

 

Table 4 summaries the impact of GSI in Brookside by testing the modeled neighborhood 

with the current GSI arrangement against that with no GSI for four hydrologic metrics, 

for four different storm types per metric. For runoff ratio, GSI in Brookside decreases 

runoff between roughly 10 and 20%, with the most significant impacts occurring in low 

volume storms, and for longer duration events. For peak flow, all storms illustrate that 

GSI in Brookside reduces peak discharge rates, with reductions ranging from roughly 

26 to 68% and the greatest reductions occurring in smaller and longer, or more spread 

out storms. Lastly, Brookside GSI reduced flashiness for all storms, ranging from 56% 

to 70%, with the largest reductions occurring in smaller and longer duration events. 

 

3.3 Spatial Distribution of GSI 

 

The second scenario analysis, comparing synthetic designs of distributed with 

centralized GSI arrangements, shows similar trends to that of the No GSI vs. Brookside 

GSI comparison, except for lag time. As shown in Table 5, all scenarios illustrated that 

dispersed GSI decreases runoff ratio, ranging from 22 to 33%, with the largest reduction 

occurring in the low volume, short duration event.  For peak flow, all storms showed a 

consistent trend of a reduction in flow between 67 and 69%. Lastly, dispersed was found 

to reduce flashiness for all storms with the greatest relative reductions occurring in high 
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volume storms (between 60 and 62% decrease) compared to low volume events (32 to 

46% reductions). 

 
Table 4.  Model Results – No GSI vs. current Brookside GSI design. 

Variable    tested Rain      

volume 

Storm 

duration 

No  

GSI 

Brookside  

GSI 

Relative Difference 

(% change from No 

GSI) 

Runoff/Precip. Low Short 0.23 0.20 −16.2% 

  Long 0.17 0.14 −19.6% 

 High Short 0.40 0.36 –9.8% 

  Long 0.36 0.32 –10.9% 

Peak flow (cms) Low Short 0.473 0.263 –44.4% 

  Long 0.395 0.128 –67.6% 

 High Short 1.138 0.840 –26.2% 

  Long 0.930 0.486 –47.8% 

Flashiness Low Short 0.222 0.086 –61.1% 

  Long 0.100 0.030 –70.0% 

 High Short 0.623 0.276 –55.7% 

  Long 0.218 0.094 –57.0% 

 
Table 5.  Model Results:  Centralized vs. dispersed GSI arrangement scenarios. 

Variable tested Rain      

volume 

Storm 

duration 

Centralized  

GSI 

Dispersed  

GSI 

Relative Difference 

(% Δ from Cent. 

GSI) 

Runoff/Precip. Low Short 0.211 0.142 –32.6% 

  Long 0.150 0.117 –22.4% 

 High Short 0.378 0.294 –22.1% 

  Long 0.337 0.257 –23.8% 

Peak flow (cms) Low Short 1.112 0.346 –68.9% 

  Long 0.585 0.185 –68.4% 

 High Short 3.542 1.208 –65.9% 

  Long 2.089 0.693 –66.8% 

Flashiness Low Short 0.101 0.069 –31.5% 

  Long 0.034 0.019 –46.2% 

 High Short 0.354 0.134 –62.1% 

  Long 0.123 0.050 –59.7% 
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4 DISCUSSION  
 

The results of the first scenario analysis quantifies how the configuration of GSI in the 

Brookside neighborhood performed for three different metrics under four different types 

of precipitation events. In general, Brookside GSI appears to reduce flooding risk for all 

storms, with the greatest impact occurring in low volume and long duration precipitation 

events. This is evidenced by reductions in runoff ratio, peak flow, and flashiness indices, 

with the largest reductions occurring in low volume long duration storms for all three 

metrics. The findings with runoff ratio and peak flow suggest that, as precipitation events 

increase in size and decrease in duration, soil and storage quickly becomes saturated, 

prohibiting infiltration and redirecting runoff downstream, rendering the structures less 

effective. These findings are consistent with previous studies (Pennino et al. 2016; 

Thomas et al. 2016; Zellner et al. 2016; Loperfido et al. 2014; Bell et al. 2016). Another 

possible reason why direct runoff increases with increase in rainfall intensity is that 

rainfall and direct runoff have less time to be infiltrated while being transported to 

downstream areas, as rainfall intensity is greater than infiltration rate. With the 

dominance of clay-type soils, the study area’s soil could quickly expand, decreasing pore 

sizes and thus not allowing rainwater to infiltrate into soils. Although mostly consistent 

across storms (ranging 57-70%), the trend exhibited with flashiness suggests that small 

and long precipitation events are more likely to allow for GSI to function without 

becoming quickly overwhelmed and failing to capture additional runoff. This finding is 

supported by previous studies that have found flashiness⎯sometimes referred to 

hydrograph kurtosis⎯is either unaffected or dampened by GSI (Hood et al. 2007).  

One of the most frequently mentioned gaps in GSI literature is the need for 

research to compare different types of spatial arrangements of infrastructure, particularly 

as it relates to the dispersion of structures across a landscape (Lim and Welty 2017). As 

noted in a review by Golden and Hoghooghi (2017), there exist “future questions about 

optimal spatial configurations for [GSI] practices” and recommend “considering the 

placement and spatial configurations of [GSI] practices in the catchment. The second 

scenario seeks to answer this question by comparing distributed GSI to centralized GSI. 

In general, we find that distributed infrastructure outperforms centralized for all three 

metrics, and to a greater extent for smaller, shorter duration storms (albeit for flashiness, 

large short storms exhibited the greatest relative reduction). This indicates that 

distributed infrastructure is key in reducing runoff volumes and peak discharges, and 

likely because flow paths are intercepted before runoff can amalgamate and exacerbate 

centralized facilities downstream. The findings that stronger reductions occur for smaller 

shorter events indicates that GSIs are more effective for smaller events because they are 

typically designed to deal with smaller events than larger events that grey infrastructure 

may handle.  While many studies have found that GSI is more effective at lower 

precipitation volumes and duration (Her et al. 2017; Thomas et al. 2016; Loperfido et al. 

2014; Qin et al. 2013; Chapman & Horner 2010; Hood et al. 2007; Mentens et al. 2006), 

our findings suggests that the distributed structures may be the driving force behind the 

impact of GSI in these types of storms. Identifying that larger storms exhibit the greatest 

relative reduction in flashiness from centralized to dispersed arrangements is likely an 

outcome of the lack of an ability for large centralized facilities to absorb water quickly 

when overwhelmed with high intensity runoff. Furthermore, because the speed of runoff 

increases as it amalgamates, dispersed GSI may be better suited to separate flows that 

would otherwise combine and move at higher rates towards centralized facilities and 

11

Fahy and Chang: Stormwater Green Infrastructure and Watershed Outflow

Published by UWM Digital Commons, 2019



 

system outfalls (Horner et al. 1994; Schueler 1987). All things considered, previous 

studies comparing the spatial dispersion of GSI are largely aligned with the findings of 

this paper (Fry and Maxwell, 2017; Kim and Park, 2016). Our research supports these 

findings in suggesting that distributed structures are the driving force in GSI efficacy 

and may be better suited to mitigate nuisance frequent flooding than centralized facilities. 

 

 

5 CONCLUSIONS  
 

Understanding the types of spatial arrangements and climate scenarios under which GSI 

is most effective can lend direction not only to future academic and scientific research 

but also to city practitioners looking to guide planning efforts as they pertain to reducing 

flooding hazards. As with any municipality promoting development of new residential 

neighborhoods, careful consideration is spent identifying costs and benefits in investing 

in disaster risk reduction. Because GSI becomes increasingly more expensive as it is 

designed to capture greater volumes of runoff (Lim and Welty 2016), there exists a need 

to quantify performance and identify the point in which it ceases to function effectively. 

This research shows that GSI is most effective when distributed across a landscape, and 

when designed with the purpose of reducing the impact of low volume, short duration 

precipitation events. Moreover, the results in this research can serve urban planners 

aiming to build risk resilient neighborhoods with potential increases in precipitation and 

the resulting flooding as with the city of Portland. Lastly, this study contributes to the 

growing body of literature addressing the importance of the spatial scale of analyzing 

hydrologic phenomena and the relationship between runoff and connectivity of 

neighborhood systems. 
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