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A DISCUSSION ON CHAOS

Anastasios A. Tsonis
Department of Geosciences

University ofWisconsin-Milwaukee
Milwaukee, Wisconsin 53201

ABSTRACT

In this paper I review some of the basis principles of the theory of

dynamical systems. I introduce the reader to the definition of chaos and strange

attractors and discuss their implications.

DEFINITIONS

Over the last decade physicists, astronomers, biologists and scientists from

many other disciplines have developed a new way of looking at complexity in

nature. This new way has been termed 'chaos'. Chaos, which is defined as

randomness generated by simple dynamical systems, allows us to see order in

processes that were thought to be completely random. It is the purpose of this

paper to introduce the reader to the concept and implication of chaos.

In the preceding paragraph the term 'dynamical systems' was used. What is a

dynamical system? In simple terms it is a system whose evolution from some

initial state (which we know) can be described by some rule(s). These rules are

conveniently expressed as mathematical equations. The evolution of such a system

is best described by the so-called state space.

A pendulum is allowed to swing back and forth from some initial state as

described in Figure la. This initial state can be completely described by the

speed and position of the pendulum. The position of the pendulum at any time

can be given by the angle x. Under such an arrangement, Newtonian Physics

provide the equations (rules) which describe the evolution of that initial state

in tjjne.

Let us assume that to begin with the pendulum is held at position 1. Then

its initial state will be x = xl, and velocity v = 0. The pendulum is then let

free. As the pendulum moves toward point 0, its speed increases due to gravity

acceleration. Therefore, after a while (position 2) the pendulum will be closer

to point 0 and will have a higher speed. Once the pendulum crosses point 0 its

speed decreases because now gravity acts in a direction opposite to its motion.

Therefore at some point (position 3) the pendulum's speed will become zero again.

Immediately after the pendulum will begin to swing back, and after it crosses

point 0 it will once again attain, at some point, a zero speed (position 4).

Because there is always some friction, however, the points at which the speed

becomes zero (to the right and left of point 0) are not fixed but are found

closer and closer to point 0. Finally the pendulum will come to rest at point 0.
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A.

B.

Fig. 1. (a) A dynamic system is a system whose evolution from initial state can
be determined by some rules. In the above figure the motion of the pendulum can
be completely described by the laws of physics if its initial position and
velocity are known. (b) A useful concept in studying the evolution of dynamical
systems is the state space. The coordinates of the state space are necessary
variables that are needed to completely describe the evolution of the dynamical
system in question. In our example these coordinates are the velocity and the
angle x of the pendulum. As the pendulum swings back and forth it follows a
trajectory in the state phase which converges to a fixed point. This point is
called an attractor of the dynamical system.
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Apparently, the evolution of the above dynamical system can be completely

described by two variables, namely velocity and angle x. These two variables

define the coordinates of the so-called state space. If one plots the velocity

(v) as a function of the angle (x) of the pendulum one will get Figure Ib. The

solid line is called the trajectory in the state space and apparently describes

the evolution of our dynamical system. As it can be seen, the trajectory

converges to point 0. As a matter of fact, any other trajectory which will

correspond to an evolution of the above dynamical system from a different initial

state (velocity and angle) will converge to point 0 (i.e. no matter what the

initial state, the pendulum will always come to rest at point 0). The point 0 in

the state space is called an attractor. It attracts all the trajectories in the

state space. Apparently, the behavior of predictability is guaranteed. The

evolution of that system can be accurately predicted. The pendulum will always

rest at point 0. Point attractors, therefore, correspond to systems that reach

steady state of no motion.

So far we have discussed only one form of attractor (i.e. a point) . The

next simplest form is the limit cycle (Fig. 2) . A limit cycle in the state space

indicates a periodic motion. An example of a system whose attractor is a limit

cycle is the grandfather clock where loss of kinetic energy due to friction is

compensated mechanically via a mainspring. No matter how the pendulum clock is

set swinging a perpetual periodic motion will be achieved. This periodic motion

manifests itself in the state space as a limit cycle. Again, in the cases of

systems which have a limit cycle as an attractor, long-term predictability is

guaranteed.

Fig. 2. Another form of an attractor is the limit cycle. In this case all
trajectories are attracted by the limit cycle which represents a period
evolution. The grandfather clock is a system which possesses a limit cycle as an
attractor. Another familiar system with a limit cycle as its attractor is the
heart.
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Another form of an attractor is a torus. The torus looks like the surface

of a donut (Fig. 3). In this case all the trajectories in the state space are

attracted to and remain on that surface. Systems that possess a torus as an

attractor are quasi-periodic. In quasi-periodic evolution a periodic motion is

modulated by a second motion, itself periodic, but with another frequency. The

combination of frequencies will produce a time series whose regularity is not

clear. The power spectrum, however, should consist of sharp peaks at each of the

basic frequencies with all its other prominent features being combinations of the

basic frequencies. Geometrically a quasi-periodic trajectory fills the surface

of a torus in the appropriate state space. An important characteristic of such

an attractor is that two trajectories which represent the evolution of the system

from different initial conditions and which are close to each other when they

approach the attracting surface will remain close to each other forever (Fig.

3). This characteristic can be translated as follows. The two points in the

state space where the trajectories enter the attractor can be two measurements

(initial states) which differ by some amount. Since these trajectories remain

close to each other it means that the states of the system at a later time are

going to differ by the same amount that they differed initially. Thus, if we

know the evolution of such a system from an initial condition we can predict the

evolution of the system from some other initial condition accurately. Again in

this case long-term predictability is guaranteed.

Fig. 3. Another form for an attractor is the torus. In this case the evolution
of the corresponding dynamical system from any initial condition will follow^a
trajectory in the state space which will eventually be attracted and remain
forever on the torus. The most important characteristic of a system which
exhibits such an attractor is that if the two involved frequencies have no common
divisor two initially nearby trajectories on the attractor remain nearby forever.
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The above-mentioned forms of attractors are 'well behaved1 attractors and

usually correspond to a system whose evolution is predictable. Often they are

called non-chaotic attractors. In mathematical terms the above-mentioned

attractors are topological submanifolds of the available state space.

SUttNGE AT1RACDQRS - CHBOS

In 1963, Lorenz, in a paper which started everything, discovered a system

which under certain circumstances possessed an attractor that did not look like

anything described above. Lorenz was experimenting with a very simple model of

three differential equations that describe the motion of an individual molecule

in a fluid flow which travels over a heated surface. The warmer fluid formed at

the bottom is lighter and it tends to rise, creating convection. The attractor

of this dynamical system is shown in Figure 4a. Since the state of the system is

described by three equations the state space has three coordinates. Not only

does this attractor not look like anything described above, but also it has two

very important properties: (i) the evolution described by a trajectory is

deterministic but strictly nonperiodic (never repeats itself); and (ii) as with

all attractors all trajectories converge on the attractor but two nearby

trajectories do not stay close to each other but they very soon diverge and

follow totally different paths in the attractor. That means that the evolution

of the system from two slightly different initial conditions will be completely

different. The above is very effectively demonstrated in Figure 4a and b. The

dot in Figure 4a represents 10,000 initial conditions that are so close to each

other in the attractor that they are indistinguishable. They may be viewed as

10,000 initial situations that differ only slightly from each other. If we allow

these initial conditions to evolve according to the rules (equations) that

describe the system, we see (Fig. 4b) that after some time the 10,000 dots can

be anywhere in the attractor. In other words, the state of our system after some

time can be anything despite the fact that the initial conditions were very close

to each other. Apparently, the evolution of the system is very sensitive to

initial conditions. In this case we say that our system has generated

randomness. We then see that there exist systems which, even though described

by sinple deterministic rules, can generate randomness. Randomness generated

this way has been termed chaos. These systems are called chaotic dynamical

systems and their attractors are called strange or chaotic attractors. These

attractors are not topological submanifolds of the total available space

(Mandelbrot, 1983; Tsonis and Tsonis, 1987; Tsonis and Eisner, 1988).
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A. B.

Fig. 4 (a) An example of a strange attractor. This structure in the state space represents the attractor of a fluid flow
which travels over a heated surface. All trajectories (which will represent the evolution of that system for different
initial conditions) will eventually converge and remain on that structure. However, any two initially nearby trajectories
in the attractor do not remain nearby but they diverge. (b) The effect of the divergence of initially nearby
trajectories in the attractor. The dot in (a) represents 10,000 measurements (initial conditions) which are so very close
to each other that they are practically indistinguishable. If we allow each one of these states to evolve according to the
rules, because their trajectories diverge irregularly, after a while their states can be practically anywhere. (Figures
courtesy of Dr. James Crutchfield.)



A SIMPLE EXAMPLE

I now proceed in presenting an example of a biological system with a variety

of periodic and chaotic solutions. The system is described by the following

'logistic1 difference equation which is used to model population dynamics (May,

1976):

Xt+1 = aXt (1 - Xt), 0 < X < 1, (1 < a < 4)

This equation relates the population of a given generation X. to the

population of the next generation Xfc+1. The parameter a is called the

nonlinearity parameter and it represents a growth rate which may be related to

the food supply to fertility, etc. The philosophy behind this equation is that

it represents a function which increases when the population is small, reduces

growth at intermediate values and decreases as the population becomes large. By

iterating (repeating) the above equation one can obtain the population's

evolution from some initial value for a given choice of the parameter a. The

dynamics of the logistic equation have been studied extensively by May (1976) who

discovered an amazing variety of possible evolutions as the parameter a was

varied. For a value of a < 3.0 the population settles into a steady state (no

change) . As the parameter a is varied slightly > 3.0 something surprising

happens. The population now settles into a period-two (repeating every other

generation) oscillation. A further increase of a and the evolution becomes a

period-four oscillation (repeating every four generations). The 'magic1

continues as the nonlinearity parameter increases by giving rise to periods

increasing in powers of 2(23, 24, 2 ...). And then this period doubling comes to

an end when for a value of a > 3.5700 the evolution becomes chaotic (or strictly

speaking periodic with a period 2°°).

This means that the evolution even though deterministic is for all practical

purposes nonperiodic. The system is said in this case to oscillate with no

recognizable frequency (chaotic evolution). As was the case with the Lorenz

system, in this case as well, small uncertainties in the initial conditions can

drive the system to completely different evolutions (see Figure 5 for an

illustration of the above).
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(a)

(c)

TIME

Fig. 5. Based on the equation Xt + ^ = aXt(l - Xt) this figure shows the

population evolution from some initial condition XQ and for different choices of

the parameter a: (a) for X = 0.2 and a = 2.707 the population finally reaches a

steady state of no change; (b) for X =0.2 and a = 3.35 the population becomes

periodic of period two (i.e. it repeats every two generations); (c) for XQ = 0.2

and a = 3.5 the population becomes periodic of period four; (d) for a = 3.829 the

evolution becomes chaotic with no distinct periodicity. The solid line shows the

evolution from an initial value of X =0.1 and the broken line from an initial
o

value X =0.101. After some time the two evolutions are completely different.
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(b)

(d)

TIME

This demonstrates the very inportant characteristic of chaotic dynamics referred

to as the divergence of initially .nearby trajectories. Dae to the underlying

chaotic dynamics the initially close trajectories diverge irregularly. Such

divergence cannot be observed for the periodic cases which are not sensitive to

fluctuations in the initial conditions. The above results can be obtained by

pressing a button in the programmable calculator. Type in f(x) = ax(l - x)

choose your (a) and enter your first value (initial condition). Press the

button. The number X will then appear on the display. Press the button again.

The number X will appear and so on.
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ODNCEDSICN

The implications of chaos are profound. If one knows exactly the initial

conditions, one can follow the trajectory that corresponds to the evolution of

the system from those initial conditions and basically predict the evolution

forever. The problem, however, is that, because of the always present minute

random fluctuations, any initial condition is only approximately known. In such

a case, even if we completely know the physical laws that govern our system, due

to the action of the underlying attractor, the state of the system at a later

time can be totally different than it would have been if we knew exactly the

initial condition. Simply, due to the nature of the system, initial microscopic

errors are amplified to a macroscopic scale. In this case we say that the

prediction power of the system is very limited. Therefore, we see that the

existence of a strange or chaotic attractor, coupled with the fact that we can

only know approximately an initial situation, naturally imposes prediction

limits to the system. However, the macroscopic randomness is confined in a very

well-defined region of the total available state (the attractor) and, thus, in

chaos there is some underlying order. This, together with the fact that a

chaotic trajectory is quite deterministic, suggests that processes that look

completely random may be in fact chaotic and thus more predictable and

describable than they were thought to be.

Chaos has opened new horizons in science and it is already considered by

many the third most important discovery in the twentieth century, after

relativity and quantum mechanics. Philosophically speaking, chaos has brought

some pessimism since it imposes limits on prediction. At the same time, however,

it has offered a new forum for the understanding and description of irregularity,

complexity and unpredictability in Nature.
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