
International Journal of Geospatial and Environmental Research International Journal of Geospatial and Environmental Research 

Volume 7 Number 3 Article 3 

October 2020 

Exploring the Potential of Feature Selection Methods in the Exploring the Potential of Feature Selection Methods in the 

Classification of Urban Trees Using Field Spectroscopy Data Classification of Urban Trees Using Field Spectroscopy Data 

Simbarashe Jombo 
University of the Witwatersrand, simbarashejombo@gmail.com 

Elhadi Adam 
University of the Witwatersrand, Elhadi.Adam@wits.ac.za 

Marcus J. Byrne 
University of the Witwatersrand, marcus.byrne@wits.ac.za 

Khalid Adem Ali 
College of Charleston, alika@cofc.edu 

Solomon W Newete 
University of Witwatersrand and Agricultural Research Council-Institute for Soil, Climate and Water, 
NeweteS@arc.agric.za 

Follow this and additional works at: https://dc.uwm.edu/ijger 

 Part of the Earth Sciences Commons, Environmental Sciences Commons, and the Geography 

Commons 

Recommended Citation Recommended Citation 
Jombo, Simbarashe; Adam, Elhadi; Byrne, Marcus J.; Ali, Khalid Adem; and Newete, Solomon W (2020) 
"Exploring the Potential of Feature Selection Methods in the Classification of Urban Trees Using Field 
Spectroscopy Data," International Journal of Geospatial and Environmental Research: Vol. 7 : No. 3 , 
Article 3. 
Available at: https://dc.uwm.edu/ijger/vol7/iss3/3 

This Research Article is brought to you for free and open access by UWM Digital Commons. It has been accepted 
for inclusion in International Journal of Geospatial and Environmental Research by an authorized administrator of 
UWM Digital Commons. For more information, please contact open-access@uwm.edu. 

https://dc.uwm.edu/ijger
https://dc.uwm.edu/ijger/vol7
https://dc.uwm.edu/ijger/vol7/iss3
https://dc.uwm.edu/ijger/vol7/iss3/3
https://dc.uwm.edu/ijger?utm_source=dc.uwm.edu%2Fijger%2Fvol7%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/153?utm_source=dc.uwm.edu%2Fijger%2Fvol7%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/167?utm_source=dc.uwm.edu%2Fijger%2Fvol7%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=dc.uwm.edu%2Fijger%2Fvol7%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/354?utm_source=dc.uwm.edu%2Fijger%2Fvol7%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/ijger/vol7/iss3/3?utm_source=dc.uwm.edu%2Fijger%2Fvol7%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu
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Abstract Abstract 
Mapping of vegetation at the species level using hyperspectral satellite data can be effective and 
accurate because of its high spectral and spatial resolutions that can detect detailed information of a 
target object. Its wide application, however, not only is restricted by its high cost and large data storage 
requirements, but its processing is also complicated by challenges of what is known as the Hughes 
effect. The Hughes effect is where classification accuracy decreases once the number of features or 
wavelengths passes a certain limit. This study aimed to explore the potential of feature selection 
methods in the classification of urban trees using field hyperspectral data. We identified the best feature 
selection method of key wavelengths that respond to the target urban tree species for effective and 
accurate classification. The study compared the effectiveness of Principal Component Analysis 
Discriminant Analysis (PCA-DA), Partial Least Squares Discriminant Analysis (PLS-DA) and Guided 
Regularized Random Forest (GRRF) in feature selection of the key wavelengths for classification of urban 
trees. The classification performance of Random Forest (RF) and Support Vector Machines (SVM) 
algorithms were also compared to determine the importance of the key wavelengths selected for the 
detection of the target urban trees. The feature selection methods managed to reduce the high 
dimensionality of the hyperspectral data. Both the PCA-DA and PLS-DA selected 10 wavelengths and the 
GRRF algorithm selected 13 wavelengths from the entire dataset (n = 1523). Most of the key wavelengths 
were from the short-wave infrared region (1300-2500 nm). SVM outperformed RF in classifying the key 
wavelengths selected by the feature selection methods. The SVM classifier produced overall accuracy 
values of 95.3%, 93.3% and 86% using the GRRF, PLS-DA and PCA-DA techniques, respectively, whereas 
those for the RF classifier were 88.7%, 72% and 56.8%, respectively. 

Keywords Keywords 
urban trees, field spectrometer, band selection, species classification, accuracy assessment 

Acknowledgements Acknowledgements 
We would like to thank the Wits School of Governance (WSG) at the University of the Witwatersrand for all 
the financial support of this study through the ‘Life in City” project (Grant number # 2858) led by Dr S. 
Newete 

This research article is available in International Journal of Geospatial and Environmental Research: 
https://dc.uwm.edu/ijger/vol7/iss3/3 

https://dc.uwm.edu/ijger/vol7/iss3/3


 

   

1 INTRODUCTION 
 
Urban forests provide several ecosystem services such as reducing the effects of the 
urban heat island by providing shade (Brabant et al. 2019), promoting biodiversity, 
decreasing air temperature and promoting urban aesthetic values (Aval et al. 2019). In 
this way, urban trees improve the quality of urban life and reduce stormwater runoff,  
decrease air pollution and maintain environmental health (Li et al. 2019). The 
ecosystem services provided by urban trees vary with tree type, structure, density and 
location (Pretzsch et al. 2015). Trees such as Platanus spp., Quercus spp. and Eucalyptus 
spp. are often selected as urban forest trees because of their height and broad leaves 
which can suppress noise, provide shade and act as windbreaks (Love et al. 2009). 
Proper planning, monitoring and use of sustainable management practices such as 
urban greening are crucial measures for ensuring a balance between the natural 
environment and human developments through careful use of such long-lived 
resources, caring for the inheritance of future generations (Dizdaroglu et al. 2009). An 
effective urban forest management plan requires precise and timely information on 
the patterns, distribution and conditions of the trees at both spatial and temporal 
levels, and remote sensing could be an effective tool to accomplish such mapping and 
assessment (Li et al. 2019).  

Although used for decades, traditional approaches such as field walking surveys 
have been used to collect information for urban tree inventories, the advent of 
advanced remote sensing tools have revolutionized the mapping of forest trees, 
progressively replacing the labour-intensive field tree surveys (Fassnacht et al. 2014). 
Multispectral images for instance SPOT, Landsat TM and ETM+ satellite data have been 
widely utilized because of their low cost for mapping urban trees. They are the most 
applicable for general land use and land cover (LULC) classifications, but not for 
mapping trees at the species level (Abbasi et al. 2019). This is associated with their low 
spectral resolution, making it particularly difficult for mapping individual trees in a 
highly complex and heterogeneous environment such as a forest in an urban setup, 
often resulting in spectral confusion between individual tree species and low accuracy 
levels (Ghiyamat et al. 2013; Dalponte et al. 2012). Although there has been progressive 
improvement in the spectral and spatial resolutions of some multispectral sensors 
making them relatively more suitable for mapping individual trees, hyperspectral data 
is better. Whether from airborne sources, space platforms or hyperspectral ground 
data, the system records electromagnetic energy of target objects across hundreds of 
contiguous narrow spectral bands. These can accurately classify and map urban tree 
species better than the standard multispectral bands (Jombo et al. 2020; Adam and 
Mutanga 2009). Hyperspectral data has shown great success in urban forest 
classifications (Aval et al. 2019; Brabant et al. 2019; Liu et al. 2017; Alonzo et al. 2014), 
urban land cover mapping (Bartesaghi-Koc et al. 2019) and monitoring tree biophysical 
parameters (Jarocińska et al. 2018).  

However, due to its exorbitant cost (Degerickx et al. 2019), and high data 
dimensionality because of the “Hughes effect” (Liu et al. 2017), the application of 
hyperspectral data for vegetation mapping and classification is limited. The “Hughes 
effect” occurs when the number of samples is less than the number of features in the 
dataset resulting in low accuracies when using classification algorithms designed for 
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low-dimensional data (Kiala et al. 2019). The classification of urban trees using 
hyperspectral data has often been overlooked in South Africa. Only a few studies have 
used a hand-held field spectrometer to discriminate between plant species (Mureriwa 
et al. 2016; Adam and Mutanga 2009; Mutanga et al. 2004). The high-data volume and 
data dimensionality problems of field spectroscopy can be overcome by reducing the 
number of spectral bands used whilst keeping vital information through selecting key 
wavelengths to improve classification accuracy (Serpico and Bruzzone 2001). 
Dimensionality reduction methods are grouped into feature extraction and feature 
selection (Guyon et al. 2003). Feature extraction (e.g. Principal Component Analysis 
(PCA)) and Minimum Noise Fraction (MNF), uses new features derived from a 
combination of the original bands after transforming the data into a lower dimension 
(Aval et al. 2019). Feature selection methods such as Support Vector Machines (SVM) 
wrapper, Partial Least Squares Discriminant Analysis (PLS-DA), Guided Regularized 
Random Forest (GRRF) and Genetic Algorithm (GA), however, preserve the physical 
interpretation of the data using a subset of the original bands (Aval et al. 2019; 
Gholizadeh et al. 2018; Mureriwa et al. 2016).  

The methods used to reduce the number of features by choosing the relevant 
ones and removing those with redundant information include Principal Component 
Analysis Discriminant Analysis (PCA-DA), PLS-DA and GRRF. Several researchers (Xu et 
al. 2020; Abbasi et al. 2019; Calviño-Cancela and Martín-Herrero 2016) have 
successfully used PCA-DA to produce a reduced set of features from hyperspectral data 
of vegetation and obtained high accuracies.  For instance, Abbasi et al. (2019) used PCA-
DA to identify key wavelengths with the highest sensitivity and performance to 
separate orchard tree species using a handheld Analytical Spectral Device (ASD) 
FieldSpec® 3 spectroradiometer. Peerbhay et al. (2013) successfully used the PLS-DA 
for feature selection and classification of trees in a commercial forest using AISA Eagle 
hyperspectral imagery and obtained high accuracies of 88.78%. Peerbhay et al. (2013) 
highlighted that the PLS-DA alone can neither clearly identify the key wavelengths nor 
redundant wavelengths. The PLS-DA was used with the variable importance in the 
projection (VIP) method to identify the optimal wavelengths, precisely discriminate and 
classify commercial trees. Mureriwa et al. (2016) used the GRRF method to identify key 
wavelengths that could discriminate Prosopis glandulosa from other species with a 
handheld Spectral Evolution® RS-3500 spectroradiometer bundle in the Northern 
Cape, South Africa. High overall accuracies of 88.59% were obtained using the 11 
wavelengths selected by the GRRF method. Thus, these feature selection methods have 
performed well in dimensionality reduction and classification of hyperspectral data. 
However, the superiority of one of the three feature selection methods (PCA-DA, PLS-
DA and GRRF) is yet to be established, especially in classifying urban trees. The use of 
the feature selection methods on hyperspectral data in classifying urban trees in 
Southern African urban landscapes has not been well examined. To the best of our 
knowledge, these feature selection methods have not been compared in a 
heterogeneous urban environment for the classification of trees.  

There is a general paucity in urban tree inventory data in South Africa. This 
impedes municipalities and urban forest managers to reach sustainable management 
goals in urban greening or controlling pests such as the polyphagous shot hole borer 
(Paap et al. 2018). The mapping of urban trees using pixel-based approaches or field 
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spectra provides important information for researchers, urban and municipal managers 
on the spatial distribution of trees which is vital in drafting policies for effective urban 
green management (Fassnacht et al. 2016). The mapping of urban trees in a 
heterogeneous area is affected by spectral variation which can be reduced using field 
spectroscopy data which requires feature selection of key wavelengths for high 
accuracies (Aval et al. 2019). Contradictory findings have been retrieved for different 
vegetation species in various environments and the utilization of one feature selection 
method and data dimensionality reduction technique has not produced results that are 
acceptable at operational levels (Adam and Mutanga 2009). To overcome the 
abovementioned issues, this study aims to explore the potential of feature selection 
methods in the classification of urban trees using field hyperspectral data. The 
objectives of this study were to: i) identify the optimal wavelengths (i.e. from 350 to 
2500 nm) for the common urban trees using the PCA-DA, PLS-DA and GRRF ii) compare 
the effectiveness of PCA-DA, PLS-DA and GRRF methods in identifying key wavelengths 
that precisely classify common urban trees in the study area and iii) assess the 
performance of RF and SVM algorithms in classifying the selected key wavelengths.  

 
 

2 MATERIALS AND METHODS 
 
2.1 Study Area  

 
The study was conducted in Randburg municipal area, covering 167.98 km2 in Region B 
of the City of Johannesburg (longitude 28°0´23" E, latitude 26°5´36" S) (Figure 1). The 
area is characterized by a subtropical climate, with an annual rainfall of around 750 mm 
per annum, and possible evaporation of approximately 1600 mm per annum (Tyson 
and Wilcocks 1971). The climatic conditions are characterized by warm to hot 
conditions and rain mostly falls in the summer season. The summer season runs from 
October to March with a mean daily temperature of around 21 °C (Abiye 2015).  

In the 19th century, fast-growing trees were introduced in the study area and 
these include Pepper trees, jacaranda, oaks and black wattle (Schäffler and Swilling 
2013). Most non-indigenous trees which include the fast-growing species in the study 
area were planted during the colonial period, resulting in the heterogeneity of species 
in the area (Turton et al. 2006). These urban trees form an ecological space that is fairly 
uncommon in the whole world, especially looking at space-constrained urban 
environments (Schäffler and Swilling 2013).  
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Figure 1. Map of South African provinces, Johannesburg’s regions and a basemap showing the 
Randburg municipal area located in the City of Johannesburg. a) South African provinces b) City 
of Johannesburg’s regions A to G and c) basemap showing Randburg municipal area from QGIS 
software (version 3.12.0) by QGIS Development Team (2020). 

 

2.2 Identification of Common Urban Trees 
 
In this study, stratified purposeful sampling was applied to identify areas with the 
common urban trees. We divided the whole study area into 40 stands measuring 
around 4.2 km2 each. We used the stratified purposeful sampling method because it 
enables a comparison of differences across sub-groups in an easy way (Farrugia 2019). 
The zigzag sampling procedure as described by Almeida and Tomé (2009) was used to 
sample the common urban trees. The stands with the most common urban trees were 
selected and 84 to 86 bouquets were cut from the canopy for each of the 6 common 
tree classes. The six identified common urban trees were Eucalyptus spp., Jacaranda 
mimosifolia, Platanus x acerifolia, Platanus occidentalis, Quercus spp. and Pinus spp. 
(Figure 2).  
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               a)  b) 
 

                c)          
 

 d)  
 

                e) 
 

 f) 
 

Figure 2. Tree bouquets of the common urban trees in the study area. The common urban trees 
are a) Eucalyptus spp., b) Jacaranda mimosifolia, c) Platanus x acerifolia, d) Platanus 
occidentalis, e) Pinus spp. and f) Quercus spp. 

 
Eucalyptus spp. originated from Australia, introduced in the study area mainly 

for commercial pulpwood production and they are generally evergreen with wide 
leaves and deep roots (Odebiri et al. 2020). Eucalyptus spp. use huge amounts of water 
and they are mainly found on roadsides, forest gaps and waterways (Forsyth et al. 2004; 
Henderson 2001). Jacaranda mimosifolia originated from North West Argentina and 
they are shade and ornamental trees with wide and rounded crowns. Jacaranda 
mimosifolia trees have dark green leaves that turn yellow during the autumn or winter 
season (Henderson 1990). They are deciduous or semi-deciduous and invade 
riverbanks and wooded kloofs (Henderson 2001). Platanus spp. originated from Greece 
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and Asia Minor and they are deciduous with large leaves often 10 inches in width 
(Henry and Flood 1919). Platanus spp. produce fragrant flowers in the spring season 
and are mainly located in parks and roadsides (Love et al. 2009). Quercus spp. 
originated from Britain, the Mediterranean and West Asia. They have bright green 
turning dark green leaves and mainly grown for shelter, shade and to act as windbreaks 
due to their wide canopies (Love et al. 2009). They are deciduous and mainly found in 
riverbanks, roadsides, forest margins, grassland and fynbos (Henderson 2001). Pinus 
spp. are native to Central America and have needle-shaped bright green leaves and are 
mostly found on roadsides, forest margins and gaps (Henderson 2001). They were 
planted in the study area mainly for timber and recreation shade for urbanites (van 
Wilgen 2012).    

  
2.3 Field Hyperspectral Data Measurements 

 
Field spectral measurements of the six common urban trees (Eucalyptus spp., 
Jacaranda mimosifolia, Platanus x acerifolia, Platanus occidentalis, Quercus spp. and 
Pinus spp.) were taken in the field between 10.00 and 14.00 hours (local time) from 18 
to 22 March 2019, under a clear sky and sunny conditions. The spectral measurements 

were collected using a portable ASD FieldSpec® 4 optical sensor. The ASD offers fast 

and full-spectral measurements covering the ultraviolet-visible and near infra-red (UV-
Vis-NIR) wavelengths from 350 to 2500 nm with wavelength reproducibility of 0.1 nm, 
and 2151 channels are reported (Malvern Panalytical 2019).  

In total 508 scans were taken from tree bouquets of the six tree types (Table 1). 
The tree bouquets (84 to 86) from each of the six trees were randomly arranged above 
a thick black panel. The leaf reflectance measurements were taken at a nadir-looking 
angle that was roughly 25 cm above the bouquets. Spectral measurements were 
calibrated every 10 to 15 readings using a white reference panel to reduce the effects 
of sun irradiance and changes in atmospheric conditions. The spectral curves obtained 
were reviewed and the inconsistent spectral reflectance curves were discarded and 
replaced by repeating the measurements. The total number of wavelengths in this 
study was 2050 in the spectral range starting from 350 nm to 2500 nm. A total of 1523 
wavelengths were used in the analysis as 627 wavelengths (ranging from 904 to 994 
nm, 1808 to 2027 nm and 2183 to 2500 nm) were removed. These regions of the 
electromagnetic spectrum were removed because they are noisy and the reflectance 
spectra are affected by water absorption in the atmosphere (Mureriwa et al. 2016). The 
spectral data collected from the tree bouquets were averaged to represent the spectral 
reflectance of each of the 6 tree species (Table 1). The reference data (n = 508) was 
split into 70% (training) and 30% (test) datasets. The reference data were randomly 
sampled to select training and test datasets.  
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Table 1. Spectral reflectance and images for the six urban trees examined in this study.  

Class Reflectance curve 

Eucalyptus spp. (EC) 

Total sample size = 84 
 

Jacaranda spp. (JC) 

Total sample size = 84 
 

Platanus x acerifolia (PA) 

Total sample size = 84 
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Platanus occidentalis (PO) 

Total sample size = 85 
 

Quercus spp. (QS) 

Total sample size = 86 
 

Pinus spp. (PN) 

Total sample size = 85 
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Average spectra for the 
common urban tree species 
(Eucalyptus spp. (EC), 
Jacaranda spp. (JC), Platanus 
x acerifolia (PA), Platanus 
occidentalis (PO), Quercus 
spp. (QS) and Pinus spp. 
(PN)). 

 
 
 
 
 
Total sample size = 508 

 

 
2.4 Feature Selection Methods 

 
The PCA-DA, PLS-DA and GRRF were used for feature selection and reduction of the 
high dimensionality of hyperspectral data in this study. The wavelengths were first 
standardized to have a mean value of zero and a standard deviation value of one before 
the feature selection methods were used.  
 
2.4.1 Principal Component Analysis – Discriminant Analysis (PCA-DA)  

 
The PCA was used in combination with Linear Discriminant Analysis (LDA) to select 
features of the common urban trees surveyed. The algorithm generated a set of new 
bands with non-correlated features, providing maximum visual separability to 
distinguish them (Nordin et al. 2018). The PCA algorithm provided a variance value for 
each hyperspectral band enabling selection of the useful ones for analysis of a 
covariance matrix made from the whole data distribution (Tochon et al. 2015). The LDA 
was used to extract principal components (PCs) that had eigenvalues above 1. The PCA 
algorithm is used to eliminate the correlation between features and eigenvalues above 
one were chosen as they represent the same amount of information as a single feature 
(Brabant et al. 2019). In this study, the LDA used ten principal components as predictor 
variables.  

The variable importance in projection (VIP) was used for variable selection and 
classification of data. In classifying data, the VIP shows the importance of a feature 
which is a function of its impact on the PCA embedding’s outline and its value in the 
prediction of class labels (Ginsburg et al. 2015). The PCA-DA provided scores resulting 
in the identification of important features which gave good class discrimination 
(Ginsburg et al. 2015). The features which contributed the most to the PCA embedding 
were the ones with high VIP scores.     

With consideration of the size of the sample (n = 1523), 10-fold cross-validation 
(CV) repeated for 10 times was used to assist in reducing high variance (Cocchi et al. 
2018).  
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2.4.2 Partial Least Squares-Discriminant Analysis (PLS-DA) 

 
The Partial Least Squares (PLS) algorithm was used first for regression tasks and only 
later developed into a classification technique, known as the Partial Least Squares-
Discriminant Analysis (PLS-DA) (Lee et al. 2018).  The PLS-DA is a multivariate 
supervised statistical method that models the class parameters and measured spectra 
figures to assess their relationship (Barker and Rayens 2003). Moreover, this method 
employs a training routine where variables are assigned with class membership based 
on statistical parameters that are known and projected into latent features (Chivasa et 
al. 2019). The PLS-DA method performed in this study can be represented as:  
 

 𝑋 =  𝑇𝑃ʹ +  𝐸, 
 

     (1) 

 𝑌 =  𝑈𝑄ʹ +  𝐹, 
 

     (2) 

where X stands for the matrix of the predictors (wavelengths); Y represents the matrix 
response (common urban trees); T stands for scores for X; P represents the X-loadings; 
E stands for the noise terms or residuals for X; U represents scores for Y; Q stands for 
loadings for Y and F represents the residuals for Y.  

The VIP scores were used in this study to select relevant spectral regions with a 
cut-off point of 1, i.e. important variables to the model are the ones with a value of 1 
or more (Zovko et al. 2019). The accuracies of the PLS-DA in discriminating variables 
from the selected training data sets were done using the 10-fold CV. This technique 
tests the significance of the model for each component and it is efficient and reliable 
(Chivasa et al. 2019). The 10-fold CV technique optimized the PLS-DA model parameters 
using the whole dataset (n = 1523).  

 
2.4.3 Guided Regularized Random Forest (GRRF) 

 
The GRRF algorithm put forward by Deng and Runger (2013) was also used in this study 
to select features that do not carry similar information with the ones already selected 
at every single node.  The GRRF is a feature selection method that uses a regularisation 
parameter to various types of decision tree models to select feature subsets (Jovanovic 
et al. 2019). The scores of feature importance guide the regularization in GRRF and it is 
measured using the Gini index in the traditional RF (Izquierdo-Verdiguier et al. 2017). 
The level of impurity for each variable is assessed using the Gini importance where 
amongst a small subset of variables, the optimal split at every single node is selected 
(Deng and Runger 2013). The Gini index for node z is calculated as follows: 

 
𝐺𝑖𝑛𝑖 (𝑧) =  ∑ 𝑃ℎ

𝑧

ℎ

ℎ=1

(1 −  𝑃ℎ
𝑧), 

 
(3) 

   
where 𝑃ℎ

𝑧 denotes the proportion of class h observations at node z. The Gini 
information gain (𝐾𝑖, 𝑧) is calculated as the difference between the weighted average 
of impurities for each child node of z and the impurity at the node z. The gain 
information for the feature 𝐾𝑖 at node z can be calculated as follows: 
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 𝐺𝑎𝑖𝑛 (𝐾𝑖, 𝑧) =  𝐺𝑎𝑖𝑛 (𝑧) – 𝑤𝐿  𝐺𝑖𝑛𝑖 (𝑧𝐿) − 𝑤𝑅  𝐺𝑖𝑛𝑖 (𝑧𝑅),      (4) 
   

where Gini (𝑧𝐿) and Gini (𝑧𝑅) denotes the impurities whereas 𝑤𝑅 and 𝑤𝐿  represents 
the weights for the right and left nodes, respectively.  

In GRRF, the regularization parameter is used to keep gain from the regularized 
RF and a penalty coefficient is given to the gain new features (Izquierdo-Verdiguier et 
al. 2017). The definition of the feature importance of the GRRF is as follows:  

 
 

𝐺𝑎𝑖𝑛𝐾𝑖,𝑧 =  {
𝜆𝑖 .  𝐺𝑎𝑖𝑛 (𝐾𝑖, 𝑧),     𝐾𝑖  ∉ 𝐹,

𝐺𝑎𝑖𝑛 (𝐾𝑖, 𝑧),             𝐾𝑖  ∉ 𝐹,
 

    (5) 

   
where F represents the set of indices that are utilized to split in the previous nodes 
whilst 𝜆𝑖 ∉ (0,1) denotes the coefficient for 𝐾𝑖 (i∈{1,……,P}), computed based on the 
importance score of 𝐾𝑖 from the traditional RF and it is calculated using the formula:  
 

 𝜆𝑖 =  (1 − 𝛾) +  𝛾𝐼𝑚𝑝𝑖,     (6) 
   

where 𝐼𝑚𝑝𝑖, is the importance score from the traditional RF. It should be considered 
that weight for the normalized importance is represented by 𝛾 ∈ [0, 1] and the GRRF 
lowers to the random forest technique if 𝛾 = 0. The features are chosen by the GRRF 
method in an easy procedure as stated in Equation (6). The first step is attaining the 
feature importance after training the random forest and this is followed by the 
calculation of the best weight parameter (𝛾∗) as well as the regularization 
parameter 𝜆𝑖 . The final step involves the training of a new random forest using the 
selected features (Izquierdo-Verdiguier et al. 2017).  

The algorithm guides the feature selection process of regularized random forest 
(RRF) centred on the random forest’s importance scores and it is an ensemble machine 
learning method (Jovanovic et al. 2019). The GRRF algorithm was used in this study as 
it is computationally effective, produces high accuracies and it is firm as compared to 
RRF (Deng and Runger 2013). Furthermore, the algorithm chooses the compact subsets 
(small set with features of high importance) from the variable interactions whilst 
preventing the action of analysing redundant features hence reducing the course of 
data dimensionality (Jovanovic et al. 2019).  

The PCA-DA, PLS-DA and GRRF were run using R (Version 4.0.0) on a desktop 
computer and the processor was Intel ® Core ™ i7-4790 CPU @ 3.60 GHz, installed 
ram of 8 GB, with a 64-bit system type and x64-based processor. The key wavelengths 
selected by PCA-DA, PLS-DA and GRRF algorithms were input variables in SVM and the 
traditional RF classifiers to discriminate the urban trees.  

 

2.5 Classification Techniques 

 
The features selected by the three multivariate statistical analysis methods (PCA-DA, 
PLS-DA and GRRF) were used as input variables to classify the tree species using RF and 
SVM. The performance of the two classifiers on the selected features was compared. 
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The RF and SVM were used in this study because they have been widely used in 
tree species classification and good accuracies were achieved in most of the previous 
studies (Brabant et al. 2019; Cao et al. 2018; Dalponte et al. 2012). 
 
2.5.1 Support Vector Machines (SVM)  
 
The SVM classification method developed by Vapnik (1995) is non-parametric, 
designated to search for a hyperplane which separates classes. The side on which the 
samples end up on the hyperplane is how test data is separated from the overall 
dataset (Suppers et al. 2018). Support vectors are the points that are closest to the 
hyperplane and they measure the margin (Vapnik 1995). If two classes are non-linearly 
separable, the SVM finds a suitable hyperplane that maximises the margin whilst 
reducing misclassification errors (Pal 2005). In a high dimensional space, SVM has 
kernel functions which convert nonlinear boundaries into linear ones (Marcinkowska-
Ochtyra et al. 2017). The most common SVM kernel functions are radial basis function 
(RBF), polynomial, linear and sigmoidal kernels (Brabant et al. 2019). Polynomial and 
RBF kernels using the SVM algorithm have been applied in various remote sensing 
studies and produced different results (Mountrakis et al. 2011; Zhu and Blumberg 
2002). The RBF kernel function has produced better results than the polynomial 
function in previous studies (Marcinkowska-Ochtyra et al. 2017; Foody and Mathur 
2004). Hence, the RBF kernel function was used to classify the selected wavelengths in 
this study. The RBF function has two parameters, the gamma (γ) and the cost (C) 
parameter which have to be optimized in a SVM algorithm (Sun et al. 2019). The 
optimization in this study was done using a 10-fold CV and grid search on a log scale. 
The SVM algorithm tests different pairs of γ and C and select the ones with the highest 
CV values (Zhou et al. 2019). The optimization of the RBF parameters was done using 
the e1071 library of R statistical software (Version 4.0.0).  
 
2.5.2 Random Forest (RF) 

 
The random forest (RF) classification method, developed by Breiman (2001) merges 
numerous tree predictors where each tree is dependent on a value belonging to a 
vector that is randomly chosen and equally distributed in a forest amongst all trees 
(Masetic and Subasi 2016). The RF classifier is a supervised method consisting of 
numerous decision trees where each tree is grown on a bootstrap sample from the 
overall training dataset (Deng and Runger 2013). The numerous decision trees are 
joined and each tree gives a vote to assign the most common class to the overall input 
dataset (Breiman 2001). The number of binary classification trees (ntree) in RF is built 
using numerous bootstrap samples where replacements are derived from the input 
dataset. The other parameter required in the RF classifier is the mtry, which is a random 
set of variables from the original data that are used to split at each node (Breiman 
2001). The optimization of the mtry and ntree values was done with the use of the 
randomForest package in R statistical software (Version 4.0.0). In RF modelling using 
the randomForest package, the ntree default value for the ntree is 500 and √P for mtry, 
where P represents the total number of the predictor variables (Karlson et al. 2016). 
The grid search method was applied to figure out optimal ntree and mtry parameters. 
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The parameters varied from 500 to 10000 with an interval of 1000 for ntree and the 
mtry values ranged from 2 to 10 for both the PCA-DA and PLS-DA and 2 to 13 for the 
GRRF method.    

The RF classification algorithm can be summarized as follows: i) ntrees bootstrap 
sets are drawn from the overall training data with bagging also known as replacement. 
The tree is grown using two-thirds (70%) of the overall training data, and the remaining 
one-third (30%) is utilized in performing CV which will be done in correspondence with 
the training procedure (Breiman 2001). The following step ii) involves the growing of 
an unpruned tree for each bootstrap. However, mtry values are chosen randomly in 
each node and the best split is selected and it is the one that offers the minimum Gini 
index outcome. When the tree is grown, it will stop when there won’t be any additional 
splits possible (Breiman 2001). The final step iii) is where the user can repeat the 
aforementioned steps (i and ii) until the ntrees are grown (de Santana et al. 2019).  

The RF classification has been effectively used in mapping urban trees (Brabant 
et al. 2019; Liu et al. 2017) and the classification of trees using LiDAR and hyperspectral 
data (Shi et al. 2018). The wavelengths selected for the hyperspectral data were 
analysed using the RF classification algorithm in R (Version 4.0.0).  

 
2.6 Accuracy Assessment 

 
The effectiveness of the RF and SVM classification methods in classifying the selected 
wavelengths using feature selection techniques (PCA-DA, PLS-DA and GRRF) was 
validated. A holdout dataset from the wavelengths selected by the feature selection 
techniques was randomly divided into test (30%) and training (70%) datasets before 
classification. The accuracy assessment was done using confusion matrices where the 
overall accuracy (OA), kappa statistic, user’s and the producer’s accuracy (PA) values 
were calculated (Chivasa et al. 2019). The overall accuracy (OA) represents the overall 
number of grids that were correctly classified divided by the total number of all the 
grids (Bartesaghi-Koc et al. 2019). The PA ascertains the possibility of a class being 
appropriately classified, whilst the user’s accuracy (UA) represents the possibility that 
a sample belongs to a particular class and it is correctly assigned to it by the classifier 
(Bartesaghi-Koc et al. 2019). The kappa value was also calculated in this study and it 
looks at the agreement between ground truth and classified samples, ranging from 0 
(no agreement) to 1 (perfect agreement) (Bartesaghi-Koc et al. 2019).  
 

 

3 RESULTS 
 
3.1 PCA-DA Wavelength Selection Results 

 
The PCA-DA algorithm was run on all the wavelengths (n = 1523) and the results 
indicated that the maximum variation was shown by the first principal component 
(PC1) with a cumulative proportion (CP) of 77.81% followed by PC2 (85.98%) with a 
proportion of variance (PV) of 8.18% (Table 2). The first ten PCs gave a cumulative 
proportion (CP) total of 99.80% (Table 2). The first 10 PCs were retained as the common 
urban trees’ reflectance data offering large data variance in comparison to lower-order 
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PCs. It can be noted that there is a decline in the eigenvalues from higher to lower order 
PCs (Table 2).  
 
Table 2. Principal Component Analysis (PCA) results showing the proportion of variance (PV) and 
cumulative proportion (CP) in percentage (%) and eigenvalues for the first 10 principal 
components (PCs) of reflectance values from six urban tree species. 

PC PV (%) CP (%) Eigenvalues 

1 77.81 77.81 1185.1 

2 8.18 85.98 124.6 

3 7.52 93.51 114.5 

4 3.08 96.58 46.9 

5 1.72 98.29 26.1 

6 0.59 98.89 9.0 

7 0.48 99.37 7.4 

8 0.24 99.61 3.7 

9 0.11 99.72 1.7 

10 0.08 99.80 1.2 

 
The variable of importance in the projection (VIP) was used to determine the 10 

best wavelengths with high scores. The significant wavelengths were selected from the 
10 PCs with eigenvalues greater than 1.  

The ten selected wavelengths using the PCA-DA had the highest VIP percentage 
values of 100% for both the Quercus spp. and Jacaranda mimosifolia (Figure 3). The 
lowest VIP percentage values were for Pinus spp. which ranged from 34% (1796) to 50% 
(2152) (Figure 3).  

 
3.2 PLS-DA Wavelength Selection Results 

 
The PLS-DA model was applied on all the hyperspectral wavelengths (n = 1523) to select 
the important variables for the classification of the common urban trees. The optimal 
value used for the model was component number 10 (Figure 4) which had a CV accuracy 
value of 98.6%. This value increases with the number of components where 28.5% was 
obtained for the 1st component and 98.6% for the 10th component (Figure 4). The 10 
principal components were used in developing the PLS-DA model in this study, and VIP 
scores for the individual wavelengths were calculated.   

The ten wavelengths selected by the PLS-DA algorithm had low VIP percentage 
values for Pinus spp., with the highest being 5% for the 1378 nm, 1377 nm, 1376 nm 
and 1375 nm wavelengths (Figure 5). The highest VIP values for all the common urban 
trees wavelengths using the PLS-DA algorithm were obtained on the Platanus x 
acerifolia ranging from 44% (762 nm) to 100% (1378 nm) as shown in Figure 5.  
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Figure 3. Wavelengths selected using the VIP method for the six urban trees in this study using 
PCA-DA. The trees are Eucalyptus spp. (EC), Jacaranda mimosifolia (JC), Quercus spp. (QS), 
Platanus occidentalis (PO), Platanus x acerifolia (PA) and Pinus spp. (PN). 

 
 

 
Figure 4. Discriminatory power for PLS-DA components using all hyperspectral wavelengths data 
(n = 1523). The 10-fold cross-validation resampling method was used to get cross-validation 
accuracy results for the components.  The optimal component with the highest accuracy value 
is shown in bold.  
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Figure 5. Wavelengths selected using the VIP method for the six common urban trees in this 
study using PLS-DA. The six common urban trees are Eucalyptus spp. (EC), Jacaranda mimosifolia 
(JC), Quercus spp. (QS), Platanus occidentalis (PO), Platanus x acerifolia (PA) and Pinus spp. (PN).  

 
3.3 GRRF Wavelength Selection Results 

 
The RF method was utilised to select features that are most relevant to each other from 
the overall hyperspectral data (n = 1523) collected using the ASD field spectrometer. 
The mean decrease in Gini index was used to select the most important wavelengths in 
differentiating the common urban trees. The importance scores were derived using the 
mean decrease in Gini index.  The mean decrease in Gini index values in the visible 
region (350–700 nm) ranged from 0.03 (595 nm) to 5.86 (587 nm) (Figure 6). The mean 
decrease in Gini values in the NIR region (700-1300 nm) were from 0 (885, 890, 898, 
1171, 1199, 1203, 1206, 1208 and 1259, 1281 nm) to 1.86 (713 nm). The Red edge 
region (680-750 nm) had mean decrease in Gini index values ranging from 0.12 (690 
nm) to 1.86 (713 nm). The mean decrease in index values in the SWIR (1300–2500 nm) 
ranged from 0 (1618 nm) to 5.29 (2174 nm) (2174 nm) (Figure 6).  

The GRRF was used to select the important wavelengths from the importance 
scores obtained using the traditional RF classifier. The GRRF technique selected 13 
optimal wavelengths where five wavelengths (360 nm, 409 nm, 513 nm, 562 nm, 618 
nm) were in the visible region whilst the rest were in the SWIR region (Figure 7). These 
optimal wavelengths were then utilized as input variables in distinguishing common 
urban trees using the SVM and RF classification methods. 
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Figure 6. The mean decrease in Gini index showing the variable of importance for all the 
variables (n = 1523) for the traditional RF classifier. The important variables have a high mean 
decrease in Gini index value.   

 
 

 
Figure 7. The wavelengths with the highest importance scores selected by the GRRF as 
calculated by the traditional RF for the urban trees. 
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3.4 Comparison of the Selected Wavelengths from the Three Feature Selection 
Techniques (PCA-DA, PLS-DA and GRRF) 

 
The wavelengths selected by the three feature selection techniques (PCA-DA, PLS-DA 
and GRRF are shown in Table 3. Both the PCA-DA and PLS-DA selected 10 wavelengths, 
while the GRRF selected 13 wavelengths from the total number of wavelengths (n = 
1523) used in this study (Table 3). One wavelength (1380 nm) appeared in both the PLS-
DA and GRRF, illustrating that it could potentially discriminate tree species using both 
feature selection techniques.    
 
Table 3. Wavelengths selected by the PCA-DA, PLS-DA and GRRF techniques. The wavelength 
that was able to differentiate in both PLS-DA and GRRF is highlighted in grey. 

Variable selection 
method 

Selected wavelengths (nm) Number of selected 
wavelengths 

PCA-DA 1328, 1681, 1720, 1746, 1747, 1768, 1773, 
1789, 2151, 2152 

10 

PLS-DA 762, 1372, 1373, 1374, 1375, 1376, 1377, 1378, 
1379, 1380 

10 

GRRF 360, 409, 513, 562, 618, 1362, 1380, 1382, 
1384, 1397, 1660, 1723, 2122 

13  

 
3.5 Accuracy Assessment  
 
To ensure the stability of the model, the random splitting of the selected data into 70% 
for training and 30% for accuracy assessment was randomly repeated seven times. The 
accuracies were tested, and they showed no significant differences. The optimal 
wavelengths selected by PCA-DA (n = 10), PLS-DA (n = 10) and GRRF (n = 13) were 
classified using the SVM and the traditional RF classifier. As shown in Table 4, the SVM 
classifier had the highest overall accuracy values as compared to RF for all the feature 
selection techniques (PCA-DA, PLS-DA and GRRF). The GRRF produced the highest 
overall accuracy value (95.3%) with a kappa coefficient of 94.4% compared to the PCA-
DA’s overall accuracy (86%) and kappa coefficient (83.2%) and PLS-DA’s overall 
accuracy (93.3%) and kappa coefficient (92%) using the SVM classifier (Table 4). The 
selected wavelengths using the GRRF technique also produced the highest overall 
accuracy value (88.7%) and kappa coefficient (86.4%) as compared to PCA-DA’s 
accuracy value (64%) and kappa coefficient (56.8%) and PLS-DA’s accuracy value (72%) 
using the RF classifier (Table 5).  
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Table 4. Confusion matrix obtained using SVM classifier for the selected wavelengths using PCA-
DA, PLS-DA and GRRF. The overall accuracy (OA) and kappa values are shown for the urban trees 
namely; Eucalyptus spp. (EC), Jacaranda mimosifolia (JC), Quercus spp. (QS), Platanus 
occidentalis (PO), Platanus x acerifolia (PA) and Pinus spp. (PN). 

PCA-DA 

Class EC JC QS PO PA PN Total  

EC 20 2 1 0 0 0 23 

JC 5 20 1 0 3 0 29 

QS 0 0 22 1 2 0 25 

PO 0 3 0 23 1 0 27 

PA 0 0 1 1 19 0 21 

PN 0 0 0 0 0 25 25 

Total 25 25 25 25 25 25 150 

OA = 86% 
     

Kappa = 83.2% 
     

   
PLS-DA 

Class EC JC QS PO PA PN Total 

EC 21 2 0 0 0 0 23 

JC 2 23 0 1 0 0 26 

QS 1 0 22 0 0 0 23 

PO 0 0 1 24 0 0 25 

PA 1 0 2 0 25 0 28 

PN 0 0 0 0 0 25 25 

Total 25 25 25 25 25 25 150 

OA = 93.3% 
    

Kappa = 92% 
    

 
 GRFF  

Class EC JC QS PO PA PN Total 

EC 24 0 1 0 0 0 25 

JC 0 25 0 0 0 0 25 

QS 1 0 23 0 1 0 25 

PO 0 0 0 23 1 0 24 

PA 0 0 1 2 23 0 26 

PN 0 0 0 0 0 25 25 

Total 25 25 25 25 25 25 150 

OA = 95.3% 
     

Kappa = 94.4% 
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Table 5. Confusion matrix obtained using RF classifier for the selected wavelengths using PCA-
DA, PLS-DA and GRRF. The overall accuracy (OA) and kappa values are shown for the urban trees 
namely; Eucalyptus spp. (EC), Jacaranda mimosifolia (JC), Quercus spp. (QS), Platanus 
occidentalis (PO), Platanus x acerifolia (PA) and Pinus spp. (PN). 

PCA-DA 

Class EC JC QS PO PA PN Total  

EC 13 3 0 1 3 0 20 

JC 6 13 3 0 6 0 28 

QS 2 1 16 0 2 0 21 

PO 2 5 3 17 2 0 29 

PA 2 3 3 7 12 0 27 

PN 0 0 0 0 0 25 25 

Total 25 25 25 25 25 25 150 

OA = 64% 
     

Kappa = 56.8% 
     

   
PLS-DA 

Class EC JC QS PO PA PN Total 

EC 14 1 0 0 0 0 15 

JC 3 20 2 3 6 0 34 

QS 0 0 22 4 0 0 26 

PO 4 0 0 17 2 0 23 

PA 4 4 1 1 17 0 27 

PN 0 0 0 0 0 25 25 

Total 25 25 25 25 25 25 150 

OA = 76.7% 
    

Kappa = 72% 
    

 
 GRFF  

Class EC JC QS PO PA PN Total 

EC 19 1 1 1 1 0 23 

JC 1 23 0 0 0 0 24 

QS 1 1 22 1 0 0 25 

PO 1 0 2 20 1 0 24 

PA 3 0 0 3 23 0 29 

PN 0 0 0 0 0 25 25 

Total 25 25 25 25 25 25 150 

OA = 88% 
     

Kappa = 86.4% 
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Table 6 shows the PA and UA results from the selected wavelengths after being 
classified using the traditional RF classifier.  
 
Table 6. Producer’s accuracy (PA) and user’s accuracy (UA) values for RF and SVM obtained from 
the optimal wavelengths selected using PCA-DA, PLS-DA and GRRF for the trees used in this 
study. The trees are Eucalyptus spp. (EC), Jacaranda mimosifolia (JC), Quercus spp. (QS), 
Platanus occidentalis (PO), Platanus x acerifolia (PA) and Pinus spp. (PN). 

 PCA-DA  PLS-DA  GRRF 

 RF SVM RF SVM RF SVM 

Class PA UA PA UA PA UA PA UA PA UA PA UA 

EC 52 65 80 87 56 93 84 91 84 84 96 92 

JC 52 46 80 69 80 59 92 88 88 88 100 100 

PA 48 44 76 90 68 63 100 89 84 88 92 88 

PO 68 59 92 85 68 74 96 96 84 78 92 96 

QS 64 76 88 88 88 85 88 96 92 96 92 96 

PN 100 100 100 100 100 100 100 100 100 100 100 100 

 

 

4 DISCUSSION 
 

There has been a wide use of field spectral data for discriminating and classifying trees. 
The results of this study show the ability of hyperspectral data in the classification of 
six urban trees in Randburg municipal area. This is in line with several studies: for 
example, Raczko and Zagajewski (2017) used hyperspectral data in mapping tree 
species in Poland; Cao et al. (2018) used field hyperspectral data in identifying eight 
mangrove species in Qi’ao Island of Zhuhai, China. Adam and Mutanga (2009) and 
Mureriwa et al. (2016) used hyperspectral data in the spectral discrimination and 
classification of vegetation species in South Africa. Due to the huge data volume and 
high dimensionality of hyperspectral data, the removal of redundant data and 
identification of key wavelengths is vital for the classification of urban trees (Aval et al. 
2019). Various techniques have been applied in reducing the high dimensionality of 
hyperspectral data and it is vital to minimize the loss of information. 

In this study, it was difficult to use a single feature selection method as no 
technique has been universally proven to be superior over others in selecting the 
optimal wavelengths for the classification of vegetation species (Adam and Mutanga 
2009). Hence three methods (PCA-DA, PLS-DA and GRRF) were used for feature 
selection and dimensionality reduction of field hyperspectral data. This is a key 
prerequisite for mapping urban tree species using remote sensing airborne and 
hyperspectral sensors as a small number of selected wavelengths give detailed 
information for classification purposes (Abbasi et al. 2019).   

 
4.1 Classification Using Wavelengths Selected by Multispectral Statistical 
Techniques 

 
Most of the optimal bands selected by the three feature selection techniques (PCA-DA, 
PLS-DA and GRRF) in classifying the urban trees (Eucalyptus spp., Jacaranda 
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mimosifolia, Platanus x acerifolia, Platanus occidentalis, Quercus spp. and Pinus spp.) 
were in the SWIR region. This is in line with other studies (Ferreira et al. 2015; Alonzo 
et al. 2014; Dalponte et al. 2012) which observed wavelengths in the SWIR region as 
the most suitable bands for classifying trees. The trees investigated here, are invasive 
and are of particular threat to water resources when found close or in waterways and 
riverbanks (Le Maitre et al. 2002; Henderson 2001). In the classification of tree species, 
the significance of the SWIR bands may be due to their capability in discriminating the 
subtle variations in the moisture content from one species’ type to the other 
(Cherrington 2016). Although there were no biochemical features directly assessed in 
this study, it assumed that varying lignin and the amount of cellulose available in foliar 
and plant matter that is non-photosynthetic might have driven the separability of trees 
in the SWIR region (Alonzo et al. 2014).   

None of the wavelengths was selected from the NIR region when the PCA-DA 
algorithm was applied. Only a single wavelength (762 nm) in the NIR region of the 
electromagnetic spectrum was selected by the PLS-DA algorithm. The results are in line 
with previous studies (Oldeland et al. 2017; Alonzo et al. 2014) who found the NIR 
region of less importance in discriminating tree species. Alonzo et al. (2014) used 
hyperspectral data to map 29 tree species (including the six tree species used in this 
study) in Santa Barbara, California, while Oldeland et al. (2017) classified 16 other tree 
and shrub species in central Namibia. Oldeland et al. (2017) found that the high 
variation within the classes and the reflectance might have been influenced by 
metabolites (e.g. proteins) and water resulting in the SWIR to play a critical role in 
discriminating tree species. The GRRF algorithm selected 5 significant wavelengths in 
the visible region, from 360 nm to 618 nm (Figure 7). The reflectance from the visible 
region in this study was mainly associated with the absorption traits of the trees’ leaf 
pigments (Aval et al. 2019). These results also agree with those in the literature (Abbasi 
et al. 2019; Mureriwa et al. 2016) which showed a correlation between wavelength 
absorption in the visible region and leaf chlorophyll content in the tree leaves.  

 
4.2 Comparison of the Selected Wavelengths from the Three Feature Selection 
Techniques (PCA-DA, PLS-DA and GRRF) 

 
The wavelengths selected by PCA-DA (n = 10) were all in the SWIR region and showed 
high autocorrelation. The PLS-DA selected one wavelength (762 nm) in the NIR region 
and the rest (n = 9) in the SWIR region. The 9 wavelengths were from 1372 nm to 1380 
nm showing high autocorrelation. The GRRF selected 5 wavelengths in the visible 
region, the rest (n = 8) were in the SWIR. The optimal wavelengths selected using GRRF 
achieved higher accuracies than the ones selected by PCA-DA and PLS-DA. The low 
classification accuracy from the wavelengths selected by PCA-DA and PLS-DA was due 
to high autocorrelation within the field spectral data where the prediction models’ 
performance was affected by the multicollinearity of the data due to continuous 
wavelengths  (Adam and Mutanga 2009). The results obtained using the selected 
optimal wavelengths by the GRRF showed that the classifier’s prediction accuracy is 
improved if correlated variables are removed. The GRRF achieved high classification 
accuracies due to its use of a selected subset of optimal wavelengths affirming its ability 
to choose vital wavelengths that enhance the performance of the classification models 
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(Mureriwa et al. 2016). The optimal wavelengths selected by the three feature 
selection techniques were put to comparison with wavelengths chosen in some 
previous studies (Table 7). The differences in the selected optimal wavelengths with 
previous studies can be attributed to differences in water content of leaves, differences 
in the concentration of pigments, biochemical leaf components and other 
characteristics that result in distinct interactions in the same wavelength region (Kumar 
et al. 2002).  
 
Table 7. Wavelength regions, range and number of wavelengths as defined by (Kumar et al. 
2002). 

Region name Reference Optimal wavelengths selected 
(nm) 

1. Visible (350-700 nm) Schmidt and Skidmore 
(2003) 

404, 628 

Adam and Mutanga (2009) No wavelength 

Abbasi et al. (2019) 363, 423 

This study 360, 409, 513, 562, 618 

2. Red edge (680-750 
nm) 

Schmidt and Skidmore 
(2003) 

No wavelength 

Adam and Mutanga (2009) 745, 746 

Abbasi et al. (2019) 721 

This study No wavelength 

3. Near-infrared (NIR) 
(700-1300 nm) 

Schmidt and Skidmore 
(2003) 

771 

Adam and Mutanga (2009) 892, 932, 934, 958, 961, 989 

Abbasi et al. (2019) 1064, 1388 

This study 762 

4. Short-wave infrared 
(SWIR) (1300-2500 
nm) 

Schmidt and Skidmore 
(2003) 

1398, 1803, 2183 

Adam and Mutanga (2009) No wavelength 

Abbasi et al. (2019) No wavelength 

This study 1328, 1362, 1372 to 1380, 1382, 
1384, 1397, 1660, 1681, 1720, 
1723, 1746, 1747, 1768, 1773, 
1789, 2122, 2151, 2152 

 
 

4.3 Comparison of Classification Algorithms 

 
The performance of the RF and SVM classifiers was compared on the selected 
wavelengths by the feature selection techniques (PCA-DA, PLS-DA and GRRF). In 
previous studies (e.g. Brabant et al. 2019; Fassnacht et al. 2014; Dalponte et al. 2012), 
RF and SVM classifiers have been compared and yielded different results where some 
studies noted higher accuracy results for RF over SVM classifier, and vice versa. But this 
was not always upholding, others found SVM performing better than the RF classifier 
(Brabant et al. 2019; Ballanti et al. 2016; Fassnacht et al. 2014; Dalponte et al. 2012). 
Dalponte et al. (2012) found the SVM performing better than the RF classifier in 
mapping trees in the Southern Alps, which was likely due to the RF’s inability to handle 
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small training sample size. Moreover, Brabant et al. (2019) found SVM performing 
better than RF in comparing hyperspectral techniques in the classification of urban tree 
diversity in Toulouse, France. On the other hand,  Sun et al. (2019) found the RF 
performing better than SVM and Artificial Neutral Network (ANN) in classifying high 
dimensional tropical dry forest using HyMap and Laser Vegetation Imaging Sensor 
(LVIS) in Costa Rica. In comparison to the RF classifier, SVM produced higher overall 
classification and kappa values in this study (Table 4). The performance of the SVM 
classifier in this study might have been due to its capability to classify with a small 
training dataset as the selected wavelengths for the feature selection techniques were 
13 for GRRF and 10 for both PCA-DA and PLS-DA. The SVM classifier tends to perform 
better than RF if sample sizes are small, due to its ability to construct models based on 
support vectors derived from different classes, thereby maximizing the margin 
between the optimal hyperplane and the support vectors (Li et al. 2015).  

In general, the optimal wavelengths selected by the three feature selection 
techniques (PCA-DA, PLS-DA and GRRF) concur with the band placement of several 
multispectral (e.g. Worldview-3 and Sentinel-2) and hyperspectral (e.g. Hyperion and 
Airborne Prism Experiment (APEX)) sensors (Brabant et al. 2019; Marcinkowska-
Ochtyra et al. 2017; Li et al. 2015). However, the field spectrometer acquires data with 
less noise and has contiguous spectral wavelengths in comparison to broadbands 
acquired using the popular spaceborne and airborne sensors (Asner 1998). Passive 
space-borne sensors are affected by numerous sky conditions which include changes 
in the solar zenith angle and atmospheric interferences (e.g. clouds, dust and pollution) 
(Fitzgerald 2010). The above-mentioned shortcomings impede the utilization of passive 
spaceborne sensors in mapping urban tree species because they alter the quality and 
amount of the wavelength striking the tree leaves (Fitzgerald 2010).  Further research 
is required to identify a suitable multispectral or hyperspectral image with low signal-
to-noise ratio and less atmospheric interferences for mapping tree species over a large 
areal extent in the study area. 

Overall, high accuracies achieved in this study demonstrate the potential of field 
spectral data in the classification of urban trees. The accurate classification of the urban 
trees is of paramount importance to municipalities and urban forest managers in the 
green space or urban forest management.  

 
 

5 CONCLUSION 
 
The focus of this study was to identify the key wavelengths for classifying urban trees 
(Eucalyptus spp., Jacaranda mimosifolia, Platanus x acerifolia, Platanus occidentalis, 
Quercus spp. and Pinus spp.) using feature selection methods on field hyperspectral 
data. Our main findings include: (1) The use of various feature selection techniques 
such as PCA-DA, PLS-DA and GRRF can reduce the high dimensionality associated with 
field hyperspectral data in a heterogeneous area (2) The selected wavelengths by GRRF 
produced high classification accuracies, followed by PLS-DA and lastly, PCA-DA feature 
selection methods.  The selected wavelengths were classified using RF and SVM 
classification methods. The GRRF can be regarded as the most effective and efficient 
feature selection tool compared to PCA-DA and PLS-DA in reducing the high 
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dimensionality of field hyperspectral data. The selected key wavelengths were mainly 
in the SWIR region of the electromagnetic spectrum showing that they can be used to 
classify urban trees (3) The SVM classifier proved to be more reliable as compared to 
RF in classifying the selected wavelengths of the urban trees.  

Overall, this study shows the potential of feature selection methods in reducing 
the high dimensionality and classification of urban trees using field hyperspectral data. 
Although this study was conducted using field hyperspectral data on urban trees with 
data collected using stratified purposeful sampling, the results do not show the spatial 
distribution of the species in the whole study area. The use of very high spatial 
resolution (VHSR) hyperspectral images such as Airborne Prism Experiment (APEX) and 
Hyperion or multispectral images such as Worldview and Sentinel-2 can assist in 
providing information on the spatial distribution of the urban trees in the study area 
which can be of great importance to the municipality and stakeholders involved in 
greenspace or urban tree management.    
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