








 A single variable linear regression between PM2.5 and MODIS-AOD yields a 

goodness of fit R2 = 0.1562, whereas the goodness of fit for the multivariate model 

increases to R2 = 0.7644 (Fig. 6.1). Clearly, in this case there is considerable improvement 

when including Lagrangian AOD in the regressions. However, we need to assess if this 

improvement over the single variable model is statistically significant.

  
Figure 6.1 Scatter plots of observed vs. predicted PM2.5 mass concentration 
for single (a) and multivariate (b) linear regression for Milwaukee, Wisconsin 
with the location of the Lagrangian AOD determined by the trajectories 
arriving at 500 m agl for the combined winters of 2003-2007. Red line 
indicates perfect fit between observed and predicted PM2.5.

6.2 Statistical significance of  the regression models

Just as the analysis of variance (ANOVA) can be used to test the null hypothesis that μ1 = μ2 

= ... = μp when looking at the means (μ) of several groups, it can also be used to assess the 

statistical significance of a regression. In the case of group means, the null hypothesis   

states that knowing the group membership provides no additional information. In the case 

of a regression, the corresponding null hypothesis would be that knowing the predictor X 

56



provides no additional information about the response Y. If we were to guess the same Y 

value for every X, that would mean that the regression line had no slope (β1 = 0 in Equation 

6.1). Therefore, the null hypothesis for the ANOVA for a single predictor regression is H0: 

β1 = 0 and the alternate hypothesis is HA: β1 ≠ 0.

 The Extra Sum of Squares Principle allows us to compare two models for the same 

response where the full model (multivariate model) contains all the predictors in the reduced 

model (single variable model) and more. For example, the reduced model might contain m 

predictors while the full model contains p predictors, where p is greater than m and all the m 

predictors in the reduced model are among the p predictors of  the full model, that is,

 reduced:                       Y = β0 + β1 ⋅ X1 ++ βm ⋅ Xm + ε                                       (6.3)

 full:                    
 Y = β0 + β1 ⋅ X1 ++ βm ⋅ Xm+ β p ⋅ Xp + ε .                             (6.4)

 The extra sum of squares principle allows us to determine whether there is 

statistically significant predictive capability in the set of additional variables. The specific null 

hypothesis test is

 H0 :βm+1 =… = β p = 0 .                                        (6.5)

 The method works by estimating the reduction in the residual sum of squares (or 

equivalently the increase in regression sum of squares) when the set of additional variables is 

added to the model. This change is divided by the difference in the number of degrees of 

freedom for the additional variables to produce a mean square. This mean square is 

compared to the residual mean square from the full model and the following F* statistic can 

be generated:
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F* =

SSE R( ) − SSE F( )
dfR − dfF

⎛
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⎞
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SSE F( )
dfF

⎛
⎝⎜

⎞
⎠⎟

,                                       (6.6)

where SSE(R) and SSE(F) are the residual sums of squares for the reduced and full models 

respectively and dfR and dfF are their respective degrees of freedom. Both SSE(R) and      

SSE(F) provide independent estimates of the sum of squares of the error (SSE(R))

associated with a regression model. If the addition of one or more variables does not 

substantially decrease the SSE, then SSE(R) and SSE(F) are essentially equal and the above 

ratio will be small, near zero. Alternatively, if the addition of one or more variables 

substantially decrease the SSE, then that ratio will be large (Kleinbaum et al., 1998). In the 

case of a single independent variable SSE(R) = SST, SSE(F) = SSE, dfR = n-1 and dfF = n-2, 

where SST is the total sum of  squares and n is the number of  observations.

 The p-value is the probability of obtaining a test statistic at least as extreme as the one 

that was actually observed, assuming that the null hypothesis is true. A high probability 

indicates the result is random, i.e., could be have been determined purely by chance. Thus, it 

is desirable to obtain p-values less than 0.05.

 In the case of the sample regressions for Milwaukee, Wisconsin (Table 6.1) with the 

location of the Lagrangian AOD determined by the trajectories arriving at 500 m agl for the 

winters of 2003-2007, the extra sum of squares ANOVA yields a p-value of 0.0619. This 

means that even though the multivariate regression explains almost five times as much of the 

variance than the single model, the results are not statistically significant, i.e., the additional 

variables (Table 6.2) do not have significant predictive value at a 95% confidence level. The 

p-value  is directly related to the variability within a given data set and indirectly related to the 

degrees of freedom, however. The fact that the sample multivariate regression failed the 
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statistical significance test may not be due to the explanatory capabilities of the additional 

independent variables but rather to the amount of degrees of freedom. This will be 

addressed in further detail later in this Chapter.

 We now show results for single and multivariate regressions for each of the study 

sites for yearly (Table 6.3) and seasonal (Table 6.4) data aggregates. These regressions include 

Lagrangian variables with upwind locations determined by trajectories arriving at each of the 

four arrival elevations. Goodness of fit (R2) for both single (Equation 6.1) and multivariate 

(Equation 6.2) linear regressions are shown in these tables, along with the test statistic F* for 

the extra sum of squares (Equation 6.6), the F value at a 5% significance [ F-1(p|dFnumerator, 

dFdenominator)] and the p-value estimated for an F-distribution considering the degrees of 

freedom for Equation 6.6. The null hypothesis (Equation 6.5) that the additional regression 

coefficients are equal to zero can be rejected at a 95% confidence level when F* > F or 

when p-value < 0.05.

 To better understand the performance of the results presented in Tables 6.3 and 6.4 

we show the distribution of R2 for combined yearly (Table 6.3) and seasonal (Table 6.4) 

single and multivariate regressions using box plots (Fig. 6.2). We also include the distribution 

of R2 for the regressions of a “control” data aggregate for each regression which has the 

same sample size as each multivariate data aggregate. These control runs have the same in 

situ AOD value as the single and multivariate regressions. However, the upwind values have 

been replaced by AOD values randomly selected from the entire population of daily-

averaged AOD fields (as described in Chapter 5) for the period 2003-2007. These pseudo-

random data aggregates will help us assess the predictive value of the trajectories in 

determining upwind AOD.
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Table 6.3 Goodness of fit and statistical significance test for yearly regressions for the 
period 2003-2007. (Bold p-values indicate values less than 0.05.)

Sites Elev.

(m agl) Year

R2R2 F* F p-value N

Single Multiple (α = 0.05) (< 0.05)

Nogales, 500 2003
Arizona (OLS) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

Boulder, 500 2003
 Colorado (WBU) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

0.1341 0.2339 0.44 2.81 0.8124 24
0.1352 0.2637 0.80 2.64 0.5590 30
0.0261 0.1395 0.84 2.51 0.5292 39
0.1604 0.1808 0.18 2.47 0.9665 44
0.0279 0.1241 0.72 2.50 0.6100 40
0.0826 0.4318 1.72 2.96 0.1946 21
0.1252 0.1991 0.46 2.60 0.8012 32
0.0271 0.0456 0.12 2.52 0.9868 38
0.1108 0.2470 1.19 2.50 0.3333 40
0.0337 0.1034 0.48 2.52 0.7868 38
0.1005 0.5527 2.22 3.20 0.1251 18
0.1252 0.1583 0.20 2.60 0.9611 32
0.0062 0.0566 0.33 2.52 0.8905 38
0.1143 0.2786 1.32 2.55 0.2831 36
0.0416 0.2353 1.47 2.55 0.2302 36
0.1005 0.3708 0.95 3.20 0.4898 18
0.1252 0.2198 0.61 2.60 0.6961 32
0.0025 0.1023 0.64 2.55 0.6677 36
0.1423 0.3705 2.10 2.55 0.0936 36
0.0480 0.2429 1.49 2.55 0.2227 36
0.1348 0.3176 2.68 2.40 0.0320 57
0.0029 0.0915 1.39 2.34 0.2403 78
0.0092 0.0545 0.68 2.34 0.6392 78
0.1846 0.2275 0.82 2.34 0.5383 81
0.1508 0.2407 1.80 2.33 0.1231 83
0.0995 0.1992 1.22 2.40 0.3137 56
0.0029 0.1124 1.63 2.35 0.1644 73
0.0076 0.2450 4.65 2.34 0.0010 81
0.1775 0.2190 0.80 2.34 0.5542 82
0.1337 0.2294 1.84 2.34 0.1159 81
0.1329 0.2709 1.93 2.40 0.1053 58
0.0070 0.0685 0.87 2.35 0.5056 73
0.0106 0.0570 0.69 2.35 0.6338 77
0.1982 0.2313 0.59 2.35 0.7043 76
0.0768 0.1746 1.75 2.34 0.1333 81
0.1530 0.2058 0.69 2.39 0.6321 59
0.0013 0.0423 0.51 2.37 0.7646 67
0.0366 0.0602 0.34 2.35 0.8856 75
0.3017 0.3680 1.41 2.35 0.2336 74
0.0698 0.1970 2.31 2.34 0.0524 80
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Table 6.3, continued.Table 6.3, continued.

Concord, 500 2003
California (CCR) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

Miami, 500 2003
Florida (MIA) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

0.0296 0.1236 2.66 2.29 0.0255 131
0.0092 0.0536 1.26 2.28 0.2868 141
0.0141 0.1026 2.88 2.28 0.0165 153
9.2E-06 0.0132 0.40 2.28 0.8515 155
0.0180 0.0587 1.49 2.27 0.1968 179
0.0266 0.0411 0.36 2.29 0.8725 127
0.0112 0.0801 1.81 2.29 0.1155 128
0.0124 0.0562 1.27 2.28 0.2794 144
0.0038 0.0862 2.36 2.28 0.0433 138
0.0165 0.0365 0.65 2.27 0.6595 164
0.0109 0.0337 0.46 2.31 0.8029 105
0.0117 0.0778 1.43 2.31 0.2193 107
0.0095 0.0613 1.28 2.29 0.2768 123
0.0088 0.0622 1.24 2.30 0.2952 116
0.0138 0.0356 0.58 2.29 0.7159 135
0.0067 0.1019 1.70 2.33 0.1449 87
0.0029 0.0387 0.66 2.32 0.6579 95
0.0004 0.0310 0.64 2.30 0.6671 109
0.0269 0.0979 1.37 2.32 0.2432 94
0.0146 0.0413 0.59 2.30 0.7071 113
0.0348 0.0569 1.09 2.25 0.3661 240
0.0298 0.1142 5.67 2.24 0.0001 305
0.1058 0.1451 2.36 2.25 0.0404 264
0.1850 0.1886 0.27 2.24 0.9285 307
0.4212 0.4585 3.96 2.25 0.0017 294
0.0344 0.0586 1.20 2.25 0.3101 240
0.0297 0.1243 6.48 2.24 9.7E-06 307
0.0932 0.1349 2.51 2.25 0.0303 268
0.1880 0.1935 0.42 2.24 0.8371 310
0.4223 0.4691 5.07 2.25 0.0002 295
0.0375 0.0708 1.74 2.25 0.1259 250
0.0292 0.0868 3.76 2.24 0.0026 305
0.1020 0.1330 1.78 2.25 0.1165 257
0.1676 0.1788 0.82 2.24 0.5331 309
0.4300 0.4592 3.02 2.25 0.0114 287
0.0333 0.0566 1.16 2.25 0.3275 243
0.0328 0.1019 4.52 2.24 0.0006 301
0.0736 0.0963 1.27 2.25 0.2767 260
0.1734 0.1844 0.84 2.24 0.5210 317
0.4302 0.4696 4.18 2.25 0.0011 288
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Table 6.3, continued.Table 6.3, continued.

North Little Rock, 500 2003
Arkansas (LIT) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

Milwaukee, 500 2003
Wisconsin (MKE) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

0.2401 0.2862 2.13 2.27 0.0641 172
0.1055 0.1381 1.83 2.25 0.1071 249
0.2790 0.3717 7.14 2.25 3.0E-06 249
0.1394 0.2174 4.82 2.25 0.0003 249
0.0788 0.1078 1.58 2.25 0.1672 250
0.2143 0.2601 2.13 2.27 0.0641 179
0.1158 0.1389 1.29 2.25 0.2704 247
0.2773 0.3722 7.29 2.25 2E-06 248
0.1442 0.2021 3.54 2.25 0.0041 251
0.0850 0.0965 0.63 2.25 0.6807 253
0.2259 0.2603 1.65 2.27 0.1502 184
0.1190 0.1500 1.69 2.25 0.1367 239
0.2942 0.3834 7.00 2.25 4.0E-06 249
0.1423 0.1792 2.30 2.25 0.0458 263
0.1055 0.1289 1.36 2.25 0.2412 260
0.2140 0.2456 1.44 2.27 0.2115 179
0.1389 0.1548 0.85 2.25 0.5149 232
0.3005 0.3666 4.95 2.25 0.0003 244
0.1409 0.1848 2.73 2.25 0.0203 260
0.0981 0.1280 1.73 2.25 0.1280 259
0.0133 0.2518 2.68 2.44 0.0345 49
0.2243 0.3190 1.47 2.39 0.2136 60
0.3377 0.4761 2.64 2.40 0.0340 57
0.0557 0.1814 1.72 2.38 0.1449 63
0.2344 0.3751 2.57 2.38 0.0365 64
0.0260 0.2873 3.01 2.44 0.0211 48
0.2616 0.3891 2.05 2.40 0.0886 56
0.2773 0.3968 1.94 2.40 0.1045 56
0.0283 0.1617 2.00 2.36 0.0901 70
0.1736 0.2564 1.31 2.37 0.2708 66
0.0202 0.3017 3.31 2.44 0.0134 48
0.2865 0.3441 1.02 2.37 0.4156 65
0.2053 0.4035 3.46 2.39 0.0090 59
0.0295 0.1102 1.11 2.37 0.3663 68
0.1656 0.3015 2.37 2.37 0.0493 68
0.0254 0.2198 2.04 2.44 0.0925 48
0.2975 0.3485 0.84 2.39 0.5246 61
0.3105 0.4249 2.07 2.39 0.0842 59
0.0095 0.0965 1.12 2.37 0.3616 65
0.2197 0.3948 3.47 2.37 0.0080 67
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Table 6.3, continued.Table 6.3, continued.

Bismark, 500 2003
North Dakota (BIS) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

Seattle, 500 2003
Washington (SEA) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

0.2411 0.2760 0.39 2.45 0.8557 47
0.0476 0.2156 2.44 2.38 0.0450 64
0.1286 0.2240 1.28 2.39 0.2876 59
0.0510 0.1997 1.97 2.39 0.0983 60
0.0369 0.2017 2.35 2.38 0.0520 64
0.2479 0.2683 0.21 2.46 0.9553 45
0.0587 0.1523 1.13 2.40 0.3583 58
0.0737 0.2492 2.43 2.39 0.0469 59
0.1062 0.4593 6.79 2.39 0.0001 59
0.0382 0.2500 2.88 2.40 0.0229 58
0.2268 0.3001 0.77 2.47 0.5746 44
0.0919 0.1036 0.12 2.41 0.9868 54
0.0749 0.1503 0.92 2.39 0.4740 59
0.0530 0.2035 2.04 2.39 0.0875 61
0.0452 0.3362 4.65 2.39 0.0014 60
0.2541 0.3251 0.67 2.51 0.6464 39
0.0631 0.0979 0.35 2.42 0.8815 52
0.0774 0.1328 0.69 2.39 0.6333 61
0.0439 0.1200 0.87 2.40 0.5109 57
0.0338 0.1485 1.35 2.40 0.2601 57
0.0283 0.0621 1.18 2.27 0.3236 170
0.0281 0.0813 2.44 2.26 0.0354 218
0.0398 0.0820 2.06 2.25 0.0714 231
0.0301 0.1722 1.92 2.38 0.1051 63
0.0043 0.0508 1.91 2.26 0.0946 202
0.0238 0.0638 1.34 2.27 0.2502 164
0.0355 0.1042 3.01 2.26 0.0123 203
0.0486 0.1324 4.15 2.26 0.0013 222
0.0279 0.1074 0.93 2.39 0.4715 59
0.0005 0.0793 3.16 2.26 0.0092 192
0.0350 0.0924 1.62 2.29 0.1593 135
0.0374 0.0808 1.57 2.27 0.1699 174
0.0512 0.1015 2.07 2.26 0.0711 192
0.0001 0.1962 1.81 2.47 0.1357 44
0.0001 0.1560 5.84 2.27 0.0001 165
0.0537 0.1166 1.41 2.31 0.2276 106
0.0462 0.1803 5.14 2.27 0.0002 164
0.0550 0.1105 1.80 2.28 0.1171 151
0.0001 0.1228 0.90 2.51 0.4959 39
0.0052 0.1161 3.31 2.28 0.0075 139
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Table 6.3, continued.Table 6.3, continued.

Nashville, 500 2003
Tennessee (BNA) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

Logan, 500 2003
Utah (LGU) 2004

2005
2006
2007

1000 2003
2004
2005
2006
2007

1500 2003
2004
2005
2006
2007

2000 2003
2004
2005
2006
2007

0.2409 0.3209 2.83 2.29 0.0190 127
0.2128 0.2207 0.44 2.26 0.8216 224
0.2813 0.3573 4.80 2.26 0.0004 210
0.1538 0.3749 17.05 2.25 2.0E-14 248
0.4442 0.4876 4.16 2.25 0.0012 252
0.2278 0.3040 2.43 2.30 0.0394 118
0.1873 0.2106 1.29 2.26 0.2702 225
0.3179 0.3463 1.78 2.26 0.1185 212
0.3043 0.3522 3.41 2.25 0.0054 238
0.4546 0.4993 4.29 2.25 0.0009 247
0.2571 0.3028 1.52 2.29 0.1889 123
0.2283 0.2358 0.41 2.26 0.8407 216
0.3224 0.3537 1.97 2.26 0.0853 210
0.3416 0.3581 1.20 2.25 0.3115 241
0.4560 0.5138 5.96 2.25 3.1E-05 258
0.2820 0.3065 0.84 2.29 0.5243 126
0.2143 0.2260 0.62 2.26 0.6833 212
0.3458 0.3682 1.44 2.26 0.2106 210
0.3148 0.3578 3.14 2.25 0.0091 242
0.4508 0.5037 5.20 2.25 0.0001 251
0.0080 0.0435 1.30 2.27 0.2662 182
0.0546 0.0958 2.19 2.25 0.0564 247
0.0589 0.0769 0.66 2.27 0.6533 177
0.0257 0.0580 0.96 2.28 0.4444 147
0.0638 0.0781 0.69 2.25 0.6305 230
0.0075 0.0361 1.00 2.27 0.4209 175
0.0551 0.1161 3.16 2.25 0.0089 236
0.0607 0.1021 1.56 2.27 0.1740 176
0.0319 0.1018 2.12 2.28 0.0668 143
0.0615 0.0631 0.08 2.26 0.9956 227
0.0075 0.0422 1.17 2.27 0.3286 168
0.0537 0.0919 1.88 2.25 0.0986 231
0.0905 0.1603 2.65 2.27 0.0250 166
0.0306 0.1489 3.73 2.28 0.0034 141
0.0706 0.0743 0.17 2.26 0.9747 212
0.0086 0.0614 1.73 2.27 0.1300 161
0.0473 0.0844 1.70 2.26 0.1350 217
0.0974 0.1893 3.40 2.27 0.0061 157
0.0361 0.1080 1.98 2.29 0.0855 130
0.0809 0.0873 0.26 2.26 0.9345 192
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Table 6.4 Goodness of fit and statistical significance test for seasonal regressions for the 
period 2003-2007. (Bold p-values indicate values less than 0.05.)

Sites Elev.
(m agl) Season

R2R2 F* F p-value N

Single Multi (α = 0.05) (< 0.05)

Nogales, 500 Spring
Arizona (OLS) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

Boulder, 500 Spring
 Colorado (WBU) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

Concord, 500 Spring
California (CCR) Summer

Fall
Winter

0.0066 0.1766 1.32 2.51 0.2801 39
0.0051 0.0554 0.41 2.46 0.8421 45
0.0020 0.0892 0.82 2.43 0.5401 50
0.1253 0.1456 0.17 2.48 0.9716 43
0.0042 0.3142 2.80 2.52 0.0335 38
0.0098 0.0458 0.29 2.46 0.9175 45
0.0027 0.0661 0.57 2.44 0.7217 49
0.1045 0.2005 0.72 2.53 0.6133 37
0.0116 0.4308 4.27 2.55 0.0049 36
0.0026 0.1277 1.06 2.47 0.3970 44
0.0004 0.0383 0.30 2.46 0.9097 45
0.1235 0.2520 0.96 2.56 0.4572 35
0.0136 0.2805 2.23 2.53 0.0776 37
0.0019 0.1122 0.94 2.46 0.4638 45
0.0024 0.0419 0.31 2.46 0.9016 45
0.1344 0.1899 0.33 2.62 0.8906 31
0.0677 0.0922 0.55 2.30 0.7417 108
0.0506 0.1432 2.53 2.29 0.0327 124
0.1101 0.1528 1.06 2.30 0.3872 112
0.1547 0.2856 0.95 2.59 0.4643 33
0.0616 0.1156 1.25 2.30 0.2933 109
0.0539 0.1611 2.99 2.29 0.0141 124
0.1129 0.1482 0.81 2.31 0.5433 105
0.1121 0.4288 3.10 2.56 0.0236 35
0.0754 0.1364 1.38 2.31 0.2368 105
0.0517 0.1454 2.61 2.29 0.0281 126
0.0983 0.1709 1.77 2.30 0.1256 108
0.1920 0.3424 0.87 2.74 0.5199 26
0.1236 0.1631 0.89 2.31 0.4932 101
0.0532 0.1207 1.83 2.29 0.1125 126
0.1032 0.1792 1.80 2.31 0.1207 104
0.0629 0.3572 1.56 2.81 0.2253 24
0.0086 0.0869 2.45 2.28 0.0363 150
0.0484 0.1298 1.33 2.34 0.2621 78
0.0106 0.0304 1.01 2.25 0.4123 254
0.0226 0.0385 0.89 2.25 0.4889 277
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Table 6.4, continued.Table 6.4, continued.

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

Miami, 500 Spring
Florida (MIA) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

North Little Rock, 500 Spring
Arkansas (LIT) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

0.0128 0.0877 2.10 2.29 0.0693 135
0.0380 0.0783 0.63 2.34 0.6782 79
0.0094 0.0225 0.63 2.25 0.6790 240
0.0189 0.0460 1.36 2.25 0.2394 247
0.0104 0.1666 4.08 2.30 0.0019 116
0.0286 0.0570 0.37 2.36 0.8646 69
0.0116 0.0334 0.85 2.26 0.5150 196
0.0194 0.0440 1.02 2.26 0.4072 205
0.0153 0.1557 2.83 2.32 0.0208 92
0.0379 0.0503 0.14 2.38 0.9812 62
0.0046 0.0448 1.34 2.27 0.2509 166
0.0617 0.0758 0.52 2.27 0.7607 178
0.3010 0.3641 7.84 2.24 4.7E-07 402
0.1143 0.2605 14.08 2.24 1.4E-12 363
0.0404 0.0693 1.92 2.24 0.0913 315
0.0061 0.0416 2.39 2.24 0.0375 330
0.2953 0.3514 6.79 2.24 4.3E-06 400
0.1166 0.2416 11.81 2.24 1.4E-10 365
0.0425 0.0872 3.05 2.24 0.0104 319
0.0050 0.0600 3.85 2.24 0.0021 336
0.2899 0.3287 4.53 2.24 0.0005 399
0.1114 0.2304 11.01 2.24 7.2E-10 363
0.0425 0.0752 2.22 2.24 0.0526 320
0.0047 0.0525 3.22 2.24 0.0075 326
0.2927 0.3182 2.88 2.24 0.0144 393
0.1184 0.2301 10.42 2.24 2.4E-09 366
0.0298 0.0630 2.22 2.24 0.0526 320
0.0077 0.0512 2.96 2.24 0.0125 330
0.1174 0.1431 1.86 2.24 0.1013 317
0.1975 0.2802 8.45 2.24 1.4E-07 375
0.2027 0.2503 3.77 2.24 0.0025 304
0.0205 0.0597 1.39 2.27 0.2323 173
0.1168 0.1428 1.96 2.24 0.0844 331
0.1919 0.2692 7.71 2.24 6.7E-07 371
0.2089 0.2570 3.81 2.24 0.0023 301
0.0231 0.0431 0.70 2.27 0.6220 175
0.1117 0.1426 2.35 2.24 0.0411 333
0.2008 0.2705 7.05 2.24 2.6E-06 376
0.2292 0.2664 3.16 2.24 0.0084 319
0.0402 0.0682 0.96 2.27 0.4434 167
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Table 6.4, continued.Table 6.4, continued.

2000 Spring
Summer

Fall
Winter

Milwaukee, 500 Spring
Wisconsin (MKE) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

Bismark, 500 Spring
North Dakota (BIS) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

Seattle, 500 Spring
Washington (SEA) Summer

Fall
Winter

0.1197 0.1650 3.49 2.24 0.0043 329
0.2086 0.2712 6.36 2.24 1.1E-05 377
0.2157 0.2459 2.45 2.24 0.0340 312
0.0315 0.0741 1.37 2.27 0.2377 156
0.2374 0.3037 1.18 2.36 0.3289 69
0.1400 0.2512 3.44 2.29 0.0061 123
0.2676 0.5202 8.42 2.33 2.0E-06 87
0.1562 0.7644 3.61 3.97 0.0619 14
0.2147 0.2389 0.39 2.36 0.8513 69
0.1409 0.2350 2.76 2.30 0.0219 119
0.2454 0.4970 8.60 2.32 1.2E-06 93
0.0792 0.2236 0.30 3.69 0.9011 15
0.2342 0.2547 0.36 2.36 0.8755 72
0.1451 0.2233 2.30 2.29 0.0497 121
0.2502 0.5090 9.49 2.32 2.7E-07 97
0.0615 0.4931 1.87 3.20 0.1791 18
0.2118 0.2662 0.98 2.35 0.4374 73
0.1487 0.2503 3.01 2.30 0.0139 118
0.2443 0.4952 8.45 2.32 1.6E-06 92
0.0299 0.7183 4.89 3.33 0.0160 17
0.0255 0.1291 1.79 2.34 0.1261 82
0.0734 0.2478 5.38 2.29 0.0002 123
0.2195 0.3275 2.31 2.34 0.0524 79
0.3056 0.6507 0.59 9.01 0.7160 10
0.0130 0.1385 2.16 2.34 0.0682 81
0.0818 0.2194 3.99 2.29 0.0023 120
0.2036 0.2767 1.21 2.37 0.3136 67
0.6007 0.6903 0.23 6.26 0.9300 11
0.0154 0.1163 1.64 2.34 0.1592 79
0.0884 0.1827 2.63 2.29 0.0273 121
0.2084 0.3057 1.77 2.36 0.1328 70
0.1373 0.9448 2.92 230.16 0.4159 9
0.0227 0.0404 0.25 2.35 0.9361 76
0.0797 0.1690 2.36 2.30 0.0444 117
0.2043 0.3739 3.25 2.37 0.0116 67
0.4992 1.0000 - - - 9
0.0017 0.0222 0.98 2.25 0.4318 240
0.0133 0.0500 2.06 2.25 0.0705 274
0.0024 0.0476 2.43 2.25 0.0357 263
0.0298 0.0812 1.12 2.31 0.3548 107
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Table 6.4, continued.Table 6.4, continued.

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

Nashville, 500 Spring
Tennessee (BNA) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

Logan, 500 Spring
Utah (LGU) Summer

Fall
Winter

1000 Spring
Summer

Fall
Winter

1500 Spring
Summer

Fall
Winter

2000 Spring
Summer

Fall
Winter

0.0014 0.0313 1.29 2.26 0.2678 217
0.0146 0.0575 2.41 2.25 0.0372 271
0.0038 0.0422 1.91 2.25 0.0937 245
0.0222 0.1804 3.86 2.31 0.0031 107
0.0012 0.0214 0.72 2.27 0.6103 181
0.0142 0.0518 1.94 2.25 0.0891 251
0.0072 0.0545 1.88 2.26 0.1000 195
0.0024 0.2349 4.62 2.33 0.0010 83
0.0002 0.0108 0.34 2.27 0.8880 166
0.0123 0.0404 1.21 2.26 0.3076 213
0.0092 0.0505 1.29 2.28 0.2718 155
0.0167 0.2570 3.75 2.37 0.0052 65
0.0945 0.2278 8.97 2.25 7.0E-08 267
0.3228 0.3732 5.37 2.24 0.0001 341
0.3858 0.4151 2.98 2.24 0.0122 305
1.0E-06 0.0919 2.85 2.28 0.0174 148
0.1906 0.2228 2.13 2.25 0.0625 264
0.3225 0.3789 6.08 2.24 2.1E-05 342
0.3618 0.3944 3.04 2.25 0.0109 289
0.0001 0.0544 1.59 2.28 0.1677 145
0.2406 0.2427 0.15 2.25 0.9801 272
0.3227 0.3756 5.69 2.24 4.7E-05 343
0.3786 0.4079 2.82 2.25 0.0167 292
0.0012 0.0092 0.22 2.28 0.9544 141
0.2537 0.2568 0.22 2.25 0.9548 268
0.3116 0.3633 5.40 2.24 0.0001 340
0.3770 0.4097 3.14 2.25 0.0089 291
0.0045 0.0448 1.14 2.28 0.3432 142
0.0049 0.0098 0.26 2.25 0.9362 269
0.3340 0.3641 2.99 2.24 0.0119 323
0.0092 0.0196 0.60 2.25 0.6994 291
0.0382 0.0637 0.51 2.31 0.7705 100
0.0055 0.0172 0.60 2.25 0.6991 259
0.3383 0.3650 2.65 2.24 0.0229 323
0.0102 0.0352 1.38 2.25 0.2329 273
0.0170 0.0582 0.83 2.31 0.5317 102
0.0047 0.0299 1.28 2.25 0.2736 253
0.3217 0.3479 2.52 2.24 0.0293 321
0.0152 0.0504 1.86 2.25 0.1027 257
0.0489 0.1204 1.30 2.33 0.2717 87
0.0039 0.0462 1.93 2.26 0.0899 225
0.3078 0.3412 3.10 2.24 0.0096 313
0.0219 0.0490 1.36 2.25 0.2420 245
0.0099 0.0821 1.05 2.35 0.3936 74
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 On each box, the central mark is the median of the R2 distribution, the edges of the 

box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points 

not considered outliers, and outliers are plotted individually. The whisker length corresponds 

to approximately ±2.7σ and 99.3% coverage if  the data were normally distributed.

Figure 6.2 Comparison of the distribution of R2 for yearly (a) and 
seasonal (b) data aggregates for each site for the period 2003-2007. 
Single, multivariate and control regressions are shown. Only cases 
that exhibit statistically significant improvement over the single 
regression model were considered in the distributions.

 Two medians are significantly different at the 5% significance level if their intervals 

do not overlap. Interval endpoints are the extremes of the notches on the box plots (Fig. 

6.2). The extremes correspond to

q2 ±
1.57 q3 − q1( )

n
 ,                                         (6.7)
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where q2 is the median (50th percentile), q1 and q3 are the 25th and 75th percentiles, 

respectively, and n is the number of  observations (McGill et al., 1978).

 In Fig. 6.2 it  can be observed that the multivariate regressions exhibit improvement 

over the single variable regressions when considering the distribution of R2 solely, as their 

respective medians are different at a 95% confidence level. Thus, the multivariate model 

performs better than the single regression model in both seasonal and yearly linear 

regressions. Nevertheless, of the 200 yearly multivariate regressions (Fig. 6.2a) only 29% 

exhibit statistically significant improvement over the single variable regressions when 

applying the extra sum of squares principle. Furthermore, of the 160 seasonal regressions 

(Fig. 6.2b), 41% exhibit improvement that is statistically significant. This suggests a seasonal 

variability in the performance of  the multivariate regression models.

 It can also be observed in Fig. 6.2 that the control regressions exhibit a better 

performance than the single variable regressions. This is due to the fact that in the control 

runs we replaced the upwind predictors with randomly selected values of AOD, however, 

the PM2.5 and in situ AOD pairs are the same as in the single and multivariate regressions. 

Adding additional predictors to a regression equation improves the performance somewhat, 

even if those additional predictors are uncorrelated to the response (Kleinbaum et al., 1998). 

Nevertheless, the multivariate model (in both the yearly and seasonal data aggregates) has a 

better performance than the single and the control models. The median R2 for the 

multivariate model (Fig. 6.2a and Fig. 6.2b) is significantly higher at a 95% confidence level 

than the single and control median R2. This indicates that Lagrangian AOD truly has 

predictive capabilities and that the increment in R2 is not merely an artifact of an increased 

amount of  explanatory variables.

 Having demonstrated that the overall performance of the multivariate regressions is 

better than that exhibited by the single regressions we now  seek to further understand the 
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performance of yearly and seasonal regressions. We begin by grouping the yearly linear 

regressions for each site and trajectory arrival elevation into years (Fig. 6.3).

Figure 6.3 Goodness of fit distribution of yearly linear regressions 
for individual sites for the period 2003-2007. Only cases that exhibit 
statistically significant improvement over the single regression model 
were considered in the distributions.

 It can be observed that the median R2 of the multivariate regressions is significantly 

different from their respective single variable regressions at a 95% confidence level for all 

years except 2005. The multivariate regressions exhibit the highest median values of R2 on 

are 2003 and 2007. The median R2 for the control models is lower when compared to the 

multivariate models, however, none of the medians are different at a 95% confidence level 

when comparing the control and the multivariate regressions. A significant difference cannot 

be discerned between regressions in different years.
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 On the other hand, when the single, multivariate and control linear regressions are 

grouped into seasons (Fig. 6.4) a significant difference can be observed. The median R2 for 

the summer multivariate regressions is higher than the other seasons and is also the only one 

different from the control at a 95% confidence level. These results are consistent with the 

findings of Wang et al. (2003) and Schaap et al. (2008), who found a strong seasonal 

signature in the estimation of PM2.5 inferred by MODIS-AOD. Furthermore, Wang et al. 

(2003) found the largest correlations between monthly mean PM2.5 and MODIS-AOD 

during the summer months.

Figure 6.4 Goodness of fit distribution of seasonal linear 
regressions for individual sites for the period 2003-2007. Only cases 
that exhibit statistically significant improvement over the single 
regression model were considered in the distributions.

 Winter regressions exhibit a broader distribution of R2 than any other season. This 

can be attributed to a reduced sample size in the winter, which also explains the increased 
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outlier values of R2 in the winter. The multivariate model performs better than the single 

variable model considering that their medians are significantly different at a 95% confidence 

level regardless of  grouping (seasonal or yearly).

 We now present the distributions of R2 for multivariate linear regressions grouped 

into arrival elevations of the trajectories used to determine the upwind locations of 

Lagrangian AOD (Fig. 6.5). It can be observed that the R2 distributions are similar regardless 

of arrival elevation. The median R2 of the multivariate regressions is different (at a 95% 

confidence level) than the median R2 of the single variable regressions for all trajectory 

arrival elevations.

 As has been discussed, a modeled trajectory is an estimate of the movement of a 

single air parcel through the atmosphere. It has been demonstrated that transport has a 

direct effect on the optical properties of the atmosphere (Rozwadowska et al., 2010). We 

speculate that air parcels keep some of their optical properties as they are transported and 

therefore the AOD of parcels upwind is correlated to the AOD of air parcels downwind. 

With this in mind, any air parcel advected into a site of interest, regardless of arrival 

elevation, contributes to the optical properties of the atmospheric column over the site of 

interest for which AOD is being measured.

 Other researchers have investigated how the atmospheric concentration profile is 

related to the estimates of PM2.5 using AOD (Hutchison et al. 2008; Hu et al., 2009). In 

future work we’ll investigate the vertical component of the trajectories and how it is related 

to downwind estimates of  PM2.5 using AOD.
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Figure 6.5 Goodness of fit distribution for yearly linear regressions 
grouped into arrival elevations for the period 2003-2007. Only cases 
that exhibit statistically significant improvement over the single 
regression model were considered in the distributions.

6.3 Multicollinearity

At this point we have demonstrated that Lagrangian AOD has value as a predictor of 

ground-level PM2.5 concentration. Furthermore, we have demonstrated that Lagrangian 

AOD explains some of the variance of ground-level PM2.5 regardless of trajectory arrival 

elevation. However, we have yet to address the variability of the goodness of fit of the 

regression models with respect to seasons, the sensitivity of the statistical tests used to 

validate the models to the degrees of freedom, and the low percentage of cases that exhibit 

statistically significant improvement over the single variable model.
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 It is relevant to understand how the explanatory variables are related to each other. 

We analyze the correlation of the upwind AOD with respect to the in situ AOD for the 

entire data set (Fig. 6.6). The correlation between in situ AOD and AOD at 3 and 6 hours 

upwind is high (r > 0.8). If we assume a moderate value of wind speed of 30 km hr-1 at the 

trajectory arrival elevations (Thuillier and Lappe, 1964; Wilson and Flesch, 2004; Buligon et 

al., 2010) then air parcels will have traveled roughly 90, 180, 540, 720 and 1440 km after 3, 6, 

18, 24 and 48 hours respectively. Since the radius of influence in the determination of the 

upwind AOD was set to r = 150 km, we expect at least the first two upwind predictors to be 

similar in value to the in situ AOD.

Figure 6.6 Correlation of upwind AOD to in situ AOD (AOD0) as a 
function of  upwind time.

 The results shown in Fig. 6.6 have important implications in linear regression theory. 

Multicollinearity is the statistical phenomenon in which two or more predictor variables in a 

75



multiple regression model are highly correlated. It does not affect the properties of the 

ordinary least squares estimators: these estimators remain unbiased and efficient. However, 

when multicollinearity is present in the data, the least squares are imprecisely estimated. If 

the goal is simply to estimate a response variable from a set of explanatory variables, then 

multicollinearity is not a problem. The estimates will still be accurate and the overall R2 

quantifies how well the model predicts the response values. However, if the goal is to 

understand how individual predictors affect the variability of the response, then 

multicollinearity is a problem (Farrar and Glauber, 1967; Silvey, 1969; Hawking and 

Pendleton, 1983).

 To further explore the multicollinearity condition we calculate the correlation of 

Lagrangian AOD at the upwind times of interest for the complete data set (Table 6.2). It can 

be observed that AOD values spaced within 6 hours of transport (i.e. 0 and 3, 0 and 6, 3 and 

6, 18 and 24 hours) are highly correlated (r > 0.8). Generally multicollinearity increases the 

standard errors.

Table 6.2 Correlation matrix of Lagrangian AOD predictors. AOD subscripts refer to the 
number of  hours upwind.

AOD0 AOD3 AOD6 AOD18 AOD24 AOD48

AOD0 1 0.9316 0.8271 0.4836 0.4695 0.2840

AOD3 0.9316 1 0.9175 0.4877 0.4734 0.2856

AOD6 0.8271 0.9175 1 0.4764 0.4691 0.2875

AOD18 0.4836 0.4877 0.4764 1 0.8445 0.3531

AOD24 0.4695 0.4734 0.4691 0.8445 1 0.3763

AOD48 0.2840 0.2856 0.2875 0.3531 0.3763 1

 Large standard errors can be caused by things besides multicollinearity, however 

(Farrar and Glauber, 1967; Silvey, 1969; Hawking and Pendleton, 1983). Thus, coefficients 
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will have to be larger in order to be statistically significant when multicollinearity is present. 

In future work will seek to quantify and nullify any adverse effects that multicollinearity may 

have in our regression models.

6.4 Sample size and seasonal variability

So far we have seen that multivariate models explain more of the variance in the observed 

PM2.5 than the single variable models. We have also shown that the improvement over the 

single variable models when including Lagrangian AOD as predictors is statistically 

significant. Nevertheless, only a small percentage of the regressions show improvement over 

the single variable model that is statistically significant. We have to assess the possibility that 

some of the cases may have failed the extra sum of squares ANOVA test due to the reduced 

sample size.

 As has been discussed, the p-value is directly related to the variability within a given 

data set and indirectly related to the number of observations. In order to analyze the 

sensitivity of the p-value to the degrees of freedom of the sample we introduce a set of 

additional variables: binary categorical variables. These new binary categorical variables 

CATspring, CATsummer and CATfall are a function of the season in which the response (i.e. 

PM2.5) was observed. For example, if PM2.5 was measured on a spring day, according to the 

meteorological definition of a season, then CATspring = 1 and CATsummer = CATfall = 0. This 

new set of variables will help us address the problem of reduced sample size, as well as the 

seasonal variability of  the regression models.

 There is no binary categorical variable for winter. During winter, therefore, CATspring 

= CATsummer = CATfall = 0. This choice was arbitrary and we would not expect different 
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results if the missing categorical variable was set for any other season. The new  extended 

model with seasonal categorical variables is

PM 2.5[ ]predicted
multivariate+seasons = β1 ⋅ AOD0 + β2 ⋅ AOD3 + β3 ⋅ AOD6 + β4 ⋅ AOD18 + β5 ⋅ AOD24

+ β6 ⋅ AOD48 + β7CATspring + β8CATsummer + β9CATfall + β10
.  (6.8)

 Equation 6.8 allows us to increase the degrees of freedom of the numerator in the 

F* statistic (Equation 6.6) and also to account for the variability of the regressions model 

performance across seasons. The benefit of including the seasonal categorical variables is 

shown in Fig. 6.7. The results are for yearly regressions for individual sites for the period 

2003-2007 and for each arrival elevation (N = 200). Only cases that exhibit statistically 

significant improvement over the single regression model at a 95% confidence level were 

considered in the distributions.

 When the ANOVA was performed for the PM2.5 - Lagrangian AOD regressions 

using the extra sum of squares principle we found that only 29% of the 200 cases exhibited 

statistically significant improvement over the single model at a 95% confidence level (Fig. 

6.2a and Fig. 6.7b). However, when we include the seasonal categorical variables (Fig. 6.7a), 

71% of the 200 cases exhibited statistically significant improvement over the single variable 

model. Furthermore, the median R2 for the multivariate+seasons model is statistically higher 

than the median R2 of the multivariate model at a 95% confidence level. This indicates an 

overall improvement from the original multivariate model (Equation 6.2) to the new 

extended model (Equation 6.8).

 The improvement shown by the addition of seasonal categorical variables indicate 

that seasons explain part of the variance of ground-level PM2.5. We now compare the 
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influence of seasonality (as shown by the seasonal categorical variables) with that of 

transport (as shown by the Lagrangian AOD variables).

Figure 6.7 Improvement over single regressions of PM2.5 - 
Lagrangian AOD - Seasonal Categorical Variables (multivariate
+seasons) (a) and yearly multivariate regressions of PM2.5 - 
Lagrangian AOD (multivariate) (b) for individual study sites at each 
of the four trajectory arrival elevations for the period 2003-2007. 
Only cases that exhibit statistically significant improvement over the 
single regression model were considered in the distributions.

 To this end, we performed yearly linear regressions in which we excluded upwind 

AOD and only used in situ AOD and the seasonal categorical variables. Of these regressions, 

61% exhibited statistically significant improvement over the single variable model (Equation 

6.1). Labeled as “single+seasons” in Fig. 6.8, this model, which can be described as

PM 2.5[ ]predicted
single+seasons = β1 ⋅ AOD0 + β2CATspring + β3CATsummer + β4CATfall + β5 ,        (6.9)
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has a higher median R2 than the original multivariate model (Equation 6.2) that only 

considers in situ and upwind AOD as predictors.

Figure 6.8 Goodness of fit distribution for four types of yearly 
linear regressions for the period 2003-2007 (individual sites and 
elevations). Multivariate regression with control sample AOD 
predictors is shown as a control. All cases considered regardless of 
statistical significance of  improvement over the single model.

 Thus, the seasonal effects have a strong signature that cannot be neglected. The 

multivariate model (Equation 6.2) has a more extended interquartile range and fourth 

quartile when compared to the “single+seasons” model (Equation 6.8), however. It is 

difficult to determine whether a model outperforms the other solely by comparing their 

medians. Nevertheless, transport (as indicated by Lagrangian AOD), contributes important 

information to the variability of ground-level aerosol concentrations. The complete model, 
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i.e., “multivariate+seasons”, exhibits the highest values of R2 and also the largest percentage 

of statistically significant cases (70.5%) at a 95% confidence level (Fig. 6.8). It can be 

observed in Fig. 6.8 that the control has a median R2 that is significantly higher (at a 95% 

confidence level) than the median R2 for the single model. As previously mention, the 

additional predictors improve the performance to some extent, even if those additional 

predictors are uncorrelated to the response. Nevertheless, the median R2 for the multivariate 

models (“multivariate”, “single+seasons” and “multivariate+seasons” as seen in Fig. 6.8) is 

significantly higher (at a 95% confidence level) than the control median R2.

 Now that the contribution of both transport and seasons to the variance of PM2.5 

has been investigated we seek to understand the effect that a reduced amount of predictors 

would have on the goodness of fit of the regressions. In Fig. 6.9 we explore the effect of 

different amounts of upwind AOD predictors in the regressions. The box plots show the 

distribution of R2 for yearly linear regressions for each site and arrival elevation using the 

seasonal categorical variables. The first box is equivalent to the regressions of Equation 6.9, 

“single+seasons” in Fig. 6.8. The sixth box is equivalent to the “multi.+seasons” regressions 

in Fig. 6.8. It can be observed that even though the median R2 of some models are 

significantly different (at a 95% confidence level) the overall performance of the regressions 

is very similar. This result suggests that the “multi.+seasons” model (Equation 6.8) can be 

used even when some of  the variables are missing. This is discussed further in Section 6.5.

 When the number of predictors is increased (Fig. 6.9) the amount of cases that 

exhibit statistically significant improvement over the single regression model without 

seasonal effects also increases. This is a result of having increased the amount of degrees of 

freedom of the full model. The percentage of statistically significant cases increases from 

64% to 71%.
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Figure 6.9 R2 distribution of the yearly PM2.5 - Lagrangian AOD - Seasonal 
Categorical Variable linear regression for the period 2003-2007 as a function 
of number of AOD predictors. Only cases that exhibit statistically significant 
improvement over the single regression model were considered in the 
distributions. Percentage of statistically significant cases with respect to single 
variable regression without seasonal variables also shown (solid black line, 
axis on the right).

 So far we have analyzed the distribution of R2 for various models for yearly and 

seasonal data aggregates for each site and arrival elevation of the trajectories used to 

determine the upwind location of Lagrangian AOD. However, we have yet to analyze the 

performance of the models at the different sites. When the R2 results of the “multivariate

+seasons” model (Equation 6.8 and Fig. 6.8 box “multi.+seasons”) are grouped by sites (Fig. 

6.10) we can get an idea of  the performance of  the regression models at individual sites.

 The percentage of statistically significant cases with respect to the single variable 

regression model is also shown (solid black line, axis on the right). The sites are arranged 

from left to right in increasing order of percentage of statistically significant cases. The 
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distribution of R2 and also the amount of statistically significant cases varies greatly from 

site to site. Even though Nogales, Arizona (OLS) exhibits the highest R2 values (R2>0.6) it 

also exhibits the lowest percentage of statistically significant improvement over the single 

variable model (15%). On the other hand, Milwaukee, Wisconsin (MKE), which exhibits the 

highest median R2, and Nashville, Tennessee (BNA), appear to have a good balance between 

high R2 and amount of  statistically significant cases (70% and 90% respectively).

Figure 6.10 R2 distribution of the yearly PM2.5 - Lagrangian AOD - Seasonal 
Categorical Variable linear regression for the period 2003-2007 grouped into 
individual sites. Only cases that exhibit statistically significant improvement 
over the single regression model were considered in the distributions. 
Percentage of statistically significant cases with respect to single variable 
regression without seasonal variables also shown (solid black line, axis on the 
right).

 To better understand the behavior of the goodness of fit for the different sites we 

compare the median goodness of fit [m(R2)] and the percentage of significant cases (%SF) 

for each site to their respective climatological properties in Table 6.6. In the last two rows of 
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Table 6.6 we show the correlation of the different site properties to percentage of 

statistically significant cases and to median R2.

 The correlation of median R2 to the properties of the sites is low (|r|<0.5). The 

same can be said for the correlation between percentage of significant cases and site 

properties. However, there is negative correlation between median R2 and %SF (r = -0.61). 

This negative correlation can be explained. As we only consider statistically significant cases, 

we neglect the values of certain regressions when we calculate the median R2, thus increasing 

the value of the median. The more cases are excluded, the higher the median R2 will tend to 

be. This supports our previous observation of Milwaukee, Wisconsin (MKE) and Nashville, 

Tennessee (BNA) having a good balance between high R2 and percentage of statistically 

significant cases.

Table 6.6 Comparison of the percentage of statistically significant “multivariate+seasons” 
regressions with respect to single model and median R2 to the properties of  the study sites.

Name Climate Pop. Clear DaysTemp. (°C) Precip. (mm) %SF m( R2 )
Nogales, AZ BWh 20017 193 20.4 309 15 0.5186
Boulder, CO H 100160 115 10.1 402 45 0.3377

Bismarck, ND Dfb 61217 93 5.7 428 50 0.3834
N. Little Rock, AR Cfa 60140 119 17.1 1257 60 0.2612

Milwaukee, WI Dfa 605013 90 8.6 884 70 0.5149
Seattle, WA Cfb 616627 51 11.6 972 80 0.2239

Nashville, TN Cfa 605473 102 14.9 1222 90 0.3925
Logan, UT BSk 49549 125 11.1 419 95 0.3031

Concord, CA Csb 122224 160 14.6 511 100 0.2473
Miami, FL Af 433136 74 24.8 1487 100 0.2282
r (SF%) - 0.44 -0.43 0.10 0.48 1 -0.61

r (m(R2)) - 0.01 0.37 -0.23 -0.37 -0.61 1

 To complete our analysis of multivariate models, we develop one last model that 

includes relative humidity, a meteorological variable that has been used by previous authors 
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in the prediction of PM2.5 using AOD. This model, labeled as “multivariate+seasons

+rh” (Fig 6.11), has an overall performance that is better than the “multivariate+seasons 

model (Equation 6.8). However, the percentage of significant cases that exhibit statistically 

significant improvement over the single regression model is 63% as opposed to the 

percentage exhibited by the “multivariate+seasons” model 71%.

Figure 6.11 Goodness of fit distribution for three types of yearly linear 
regressions for the period 2003-2007 (individual sites and elevations). 
Multivariate, multivariate+seasons and a full model including relative 
humidity. Only cases that exhibit statistically significant improvement over 
the single regression model were considered in the distributions.

 Relative humidity affects the optical properties of PM2.5. Some of these particles can 

be either hygroscopic or hydrophobic. They may also react and change their composition in 

the presence of atmospheric moisture, thus having an effect on AOD. The size of water-

soluble or any hydrophilic aerosol particle increases with growing relative humidity. This 
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changes the mass density of the particles towards the density of water even if the aerosol 

number density is constant. Due to the chemical difference in the aerosol types, their 

hygroscopic properties differ as well (Day and Malm, 2001).

 Cobourn (2010) explored the relationship between PM2.5 and meteorological 

variables. It was found that there is a strong relationship between PM2.5 and daily maximum 

temperature. The interaction between PM2.5 vs. relative humidity was also explored but was 

not statistically significant. Nevertheless, the contribution of relative humidity to the 

explanation of the variance of PM2.5 was statistically significant in their multiple non-linear 

regression models, and added about 2% to the fraction of variation explained by the 

regression (R2). As shown in Fig. 6.11, our results confirm those of Cobourn (2010) in that  

relative humidity explains some of  the variance of  PM2.5.

6.5 Estimates of  PM2.5 in cases of  missing in situ AOD

We have shown in previous sections that the “multivariate+seasons” model may be used 

even when some of the variables are missing. In this section we’ll test cases in which in situ 

AOD is missing. This test is relevant given that AOD values are occasionally missing due to 

cloud cover in locations where estimates of PM2.5 are needed. We’ll estimate PM2.5 for two 

sample days in Milwaukee, Wisconsin (Table 6.7). On the first test day, August 7, 2007, all of 

the predictors (in situ AOD and Lagrangian AOD) are available. This complete test day will 

be used as a control. The predicted values for this day (columns 12 and 13 of Table 6.7) 

were calculated by entering the data in Table 6.7 (columns 3 through 11) for this given day 

into Equation 6.8 using the regression coefficients (βj) shown in Table 6.8. The regression 

coefficients in Table 6.8 were obtained by a yearly single linear regression of PM2.5 and in situ 

AOD, and a yearly multivariate linear regression of PM2.5 and in situ and Lagrangian AOD 
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with locations determined by trajectories arriving at 500 m agl for Milwaukee, Wisconsin for 

2007. Only the days in 2007 that had all of the predictors available (i.e. in situ and Lagrangian 

AOD) were used in the estimation of the regression coefficients, however. The seasonal 

categorical variables were also included in the multivariate linear regression.

 The second test day, August 19, 2007, is missing AOD in situ and at 3 and 6 hours 

upwind. In order to estimate ground-level PM2.5 concentrations for this day, the missing 

values were replaced with zeros and then entered into Equation 6.8 along with the rest of 

the available predictors. The same coefficients (Table 6.8) obtained from the yearly 

regression of the Milwaukee, Wisconsin data aggregate for 2007 with upwind locations of 

Lagrangian AOD estimated with trajectories arriving at 500 m agl are used in Equation 6.8 to 

obtain an estimate of  PM2.5.

Table 6.7 Sample test data for Milwaukee, Wisconsin on August 7 and 19, 2007 and August 
7, 2007. The data corresponds to Lagrangian AOD determined by trajectories arriving at 500 
m agl.

Day
PM2.5 

(μg m-3)

AOD
hours upwind

AOD
hours upwind

AOD
hours upwind

AOD
hours upwind

AOD
hours upwind

AOD
hours upwind

CategoricalCategoricalCategorical
Estimated 

PM2.5 (μg m-3)
Estimated 

PM2.5 (μg m-3)
errorerror

Day
PM2.5 

(μg m-3)
0 3 6 18 24 48 spring summer fall Single Multi. Single Multi.

Aug 7 7.60 0.122 0.119 0.093 0.198 0.068 0.091 0 1 0 12.61 8.68 5.01 1.08

Aug 7* 7.60 - 0.119 0.093 0.198 0.068 0.091 0 1 0 11.10 6.7 3.50 -0.90

Aug 19 10.70 - - - 0.742 0.711 0.171 0 1 0 11.10 10.04 0.40 -0.66

*In situ AOD was synthetically removed.

Table 6.8 Regression coefficients for single and multivariate+seasons linear models for 
Milwaukee, Wisconsin with Lagrangian AOD determined by trajectories arriving at 500 m 
agl for 2007.

Model β1 β2 β3 β4 β5 β6 β7 β8 β9 β10

Single 12.39 11.10

Multivariate 16.18 -4.76 17.87 5.29 2.58 -1.30 -14.43 -11.00 -5.40 15.50
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 The error of the PM2.5 estimate obtained for the incomplete test day, August 19, 

2007, (-.66) is lower in value the error of the PM2.5 estimate for the control day (1.08) where 

in situ AOD was available. Furthermore, we show a case in which in situ AOD is synthetically 

removed (August 7, 2007). When we compare the control day (August 7, 2007) with its 

synthetically incomplete counterpart in Table 6.7, we observe that the errors have actually 

decreased. The errors decreased from 5.01 to 3.50 and from 1.08 to -0.90 for the single and 

multivariate model respectively. We do not suggest that an estimate of PM2.5 that has been 

obtained from an incomplete set of predictors is better than estimates from a complete 

predictor set, but rather that the errors are comparable in magnitude, and that the model can 

be used even in instances of  missing in situ AOD.

 These examples demonstrate that upwind AOD has predictive capabilities, even in 

cases when in situ AOD may be missing due to cloud cover. Nevertheless, the reconstruction 

of incomplete AOD fields is relevant to the production of more robust regression models. 

With this in mind, when an estimate of PM2.5 is necessary but in situ AOD is missing due to 

cloud cover, we should be able to use the multivariate models obtained for the year 

corresponding to the day for which an estimate is needed, regardless of the missing in situ 

AOD value.

6.6 Summary

Previous authors have improved the estimates of PM2.5 through MODIS-AOD by including 

meteorological variables relevant to the physicochemical properties of this pollutant. In this 

work we improved estimates of PM2.5 over the single variable models by using Lagrangian 

AOD as predictors in multivariate empirical models. The performance of these multivariate 

empirical models, and their statistical validity was also assessed.
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 Even when the R2 for the multivariate regressions was consistently higher compared 

to the single regressions, not all of the results were statistically better when tested using the 

extra sum of squares principle. This is due both to the variability of the predictors and to 

the degrees of freedom of the data set. Furthermore, we found that the goodness of fit of 

the models is different according to seasons: summer regressions exhibited the highest 

median R2. The seasonal variability in model performance was addressed by including a set 

of categorical seasonal variables. These variables increased the degrees of freedom of the 

data set and also helped us account for the seasonal variability. The models that included the 

seasonal variables performed better than the models that didn’t.

 Multicollinearity was found to exist between AOD predictors spaced within 6 hours 

of transport, i.e., 0 and 3, 0 and 6, 3 and 6, 18 and 24 hours. Given that the goal of this 

project was to improve the estimates of PM2.5 from a set of explanatory variables (i.e. 

Lagrangian AOD), multicollinearity was not a problem. In future work we’ll seek to 

understand how the various predictors impact the response.

 It was found that the goodness of fit of the regressions varies greatly from site to 

site. The site properties did not support any explanation of the variability of the percentage 

of statistically significant cases nor of the variability median R2. An area of interest for 

future work is to understand why the performance of the regression models varies from site 

to site.

 The multivariate regression models that were generated have the capability of 

estimating PM2.5 even when in situ AOD retrievals are missing. This has relevant implications 

for PM2.5 estimation in regions of cloud cover where MODIS-AOD is unavailable or in sites 

below the 30ºN latitude where MODIS scans are scarce.
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7. Summary, Conclusions and Future Work

Accurate estimates of ground level PM2.5 concentrations are relevant in the analysis of air 

quality, epidemiology, cloud microphysics and climate forcing of anthropogenic aerosols. 

Exposure to suspended particulate matter with aerodynamic diameters less than 2.5 μm 

(PM2.5)  has negative effects on human health. Suspended particular matter also plays an 

important role in the climate system by altering the Earth’s energy budget. Any changes in 

the atmospheric aerosol load can result in global climate changes.

 The limited spatial coverage of ground-based monitoring stations restricts the study 

of PM2.5 and its effect on human health and the environment. Satellite remote sensing has 

been used to aid the prediction of ground-level PM2.5 concentrations. The Moderate 

Resolution Imaging Spectroradiometer (MODIS) instruments provide a convenient method 

for aerosol remote sensing.

 Aerosol optical depth (AOD) retrieved by MODIS has been used as a predictor in 

empirical models to estimate ground-level concentrations of PM2.5 . These estimates usually 

have large uncertainties and errors, however. Previous authors have improved the estimates 

of PM2.5 by including meteorological variables relevant to the properties of this pollutant 

along with AOD. In this work we generated empirical models that included in situ AOD and 

AOD at various upwind locations. The main result of this work is the determination that 

estimates of  PM2.5 can be improved by using Lagrangian MODIS-AOD as predictors.

 The upwind locations of the Lagrangian AOD were estimated using backward air 

trajectories arriving at four different elevations. Trajectory model users have to input a 

starting elevation into the trajectory models to specify the effective pollutant source height 

(forward trajectory) or an arrival elevation (backward trajectory). The starting elevation of 
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backward trajectory calculations are typically specified to be well above the surface, as 

surface winds do not necessarily represent the movement of contaminants. Given that 

MODIS measures AOD for the complete integrated atmospheric column, there is not a 

unique arrival elevation that can be specified, thus making the problem of choosing a 

starting elevation more pronounced. As a result, more than one starting elevation was used 

in the calculation of  backward trajectories.

 We explored the sensitivity of trajectory models to starting elevation using daily 

trajectories arriving at four different starting elevations (500, 1000, 1500 and 2000 m agl) at 

ten different sites for an eight year period. Trajectory model calculations were found to be 

strongly sensitive to starting elevation. With a 500 m difference in starting elevation, the 48-

hr all-site annual mean horizontal separation of trajectory endpoints was 326 km. When the 

difference in starting elevation was doubled to 1000 m, the all-site annual mean horizontal 

separation of trajectory endpoints nearly doubled to 627 km. With a further increase in 

starting elevation difference (1500 m), the horizontal separation increased to 886 km. A 

seasonal dependence of this sensitivity to starting elevation was also found, with the smallest 

mean horizontal separation occurring during the summer months, the largest during winter 

and intermediate values during  the fall and spring.

 The effect of model and data set choice on trajectory model sensitivity to starting 

elevation may be an area of interest for further research. Another suggestion for further 

research would be to assess the effect of starting elevation on the vertical component of 

trajectory model calculations; this aspect of  model sensitivity was not addressed here.

 The trajectory information was used to determine AOD values at different locations. 

Since the spatiotemporal distribution of unprocessed AOD granules is irregular, we decided 

to generate uniform daily distance-weighted averaged AOD fields. As part of the production 

of daily average AOD fields we analyzed the spatial autocorrelation of unprocessed AOD 
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pixels. A general trend was found in which the correlation between AOD pixels drops below 

0.5 beyond a 100 km separation. Thus we decided to set the influence radius for the distance 

weighted averaging procedure to 100 km.

 Our daily average product was able to capture the features and structures of the 

original unprocessed AOD field. Furthermore, values of AOD were generated in locations 

where large gaps in the unprocessed field were previously present. This artificial spatial 

expansion of sparse Level 2 data is also observed in ‘Level 3 - Atmosphere’ MODIS data; 

which was not used in this work. Even though the reconstruction of missing data was not 

the main purpose of generating average grids it is advantageous since this can help us 

increase our sample size in a robust manner. An aspect for future research is to analyze the 

performance of our distance weighted AOD product vs. the performance of the NASA 

‘Level 3 - Atmosphere’ averaged products.

 Another area for further research is the reconstruction of missing MODIS-AOD 

data. In satellite data analysis, such as the determination of PM2.5 concentrations from 

MODIS-retrieved AOD, missing data is a common problem that affects the quality of the 

empirical models. Data may be missing due to cloud cover, errors in the retrieval algorithms 

or even malfunctions of the instruments. Often these data gaps extend over large areas due 

synoptic-scale meteorological features.

 Beckers et al. (2003) used an iterative method for the calculation of the empirical 

orthogonal functions (EOFs) of incomplete spatiotemporal oceanographic data using 

standard singular value decomposition to fill the missing data. They reconstructed the data 

fields by selecting the optimal amount of EOFs until convergence. The procedure was 

tested with a synthetic incomplete data field and an actual field with missing data yielding 

satisfactory results. One of the advantages of this technique is that, unlike interpolation, 

EOF reconstruction does not need “future” points to determine missing data in a time 
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series. We speculate that these techniques can be applied to incomplete AOD data fields to 

fill the missing data in a robust manner. These reconstructed AOD fields will provide 

valuable information in anthropogenic aerosol epidemiological studies and climate forcing 

studies. However, simpler methods, such as nearest neighbor or bilinear interpolation, may 

prove also useful and their potential in the reconstruction of missing MODIS-AOD data is 

an area of  interest for future work.

 Multivariate regression models that included AOD in situ and upwind as predictors 

of PM2.5 were generated by linear regressions using the least squares method. The statistical 

significance of the improvement of the multivariate models models over the single models 

was tested using the extra sum of  squares principle.

 We found that in many cases, even when the R2 was high for the multivariate models, 

the results were not statistically better that the single regression models. The empirical 

models were sensitive to seasonal variations. We addressed this by including a set of 

categorical seasonal variables. The models with these variables performed better than the 

models that didn’t account for seasonal variability.

 Multicollinearity was found to exist between AOD predictors spaced within 6 hours 

of transport, i.e., 0 and 3, 0 and 6, 3 and 6, 18 and 24 hours. The goal of this project was to 

improve the estimates of a response variable (PM2.5) from a set of explanatory variables 

(Lagrangian AOD), therefore multicollinearity is not a relevant problem. In future work we 

will seek to understand how the different explanatory variables are related to the response.

 We found that the goodness of fit of the regressions varies greatly from site to site. 

We did not find any correlation between the site properties to the percentage of statistically 

significant cases nor to median R2.  Another area for future work is to fully understand why is 

there  is such a variability of  the regression models with location.
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 It was found that the multivariate regression models have the capability of estimating  

PM2.5 even when in situ AOD retrievals are missing. This finding has important implications 

for PM2.5 estimations in regions of cloud cover where in situ MODIS-AOD is unavailable or 

in sites between latitudes 30ºN-30ºS where MODIS scans are scarce. Nevertheless, the 

reconstruction of missing AOD data, another aspect for future work, is relevant in the 

production of  more robust and significant regressions.

 As has been discussed, in situ meteorological variables such as relative humidity, 

temperature, wind speed and mixing layer height are correlated to PM2.5 concentrations. We 

speculate that just as we were able to use Lagrangian AOD as a predictor, other Lagrangian 

variables, such as upwind PM2.5, relative humidity and mixing layer height can improve the 

models further. We also speculate that upwind MODIS-AOD may be correlated with in situ 

PM2.5 and that synthetic  PM2.5 concentrations estimated with Gaussian plume or Gaussian 

puff  models may also be correlated with in situ PM2.5.
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