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Abstract Abstract 
Emergence and spread of Covid-19 initiated diversified researches based on spatial analysis in 
visualization, exploration, and modelling of this infection. This short communication is an attempt to 
comprehend the geographic distribution and spatial clustering of Covid-19 in year 2020. Main objective is 
to spatially analyze Covid-19 incidence rates, identification of hotspots and clusters outliers at global 
level. Monthly data of reported cases were taken from World Health Organization dashboard and situation 
reports. Incidence rate was calculated for each country for each month. Spatial autocorrelation 
techniques of Global Moran are I and Anselian Local Moran’s I were used to examine the spatial clustering 
and outlier’s detection of Covid-19 incidence in all months of the year. Hotspots and Coldspots variations 
are examined by using Getis-Ord G*. Mapping was executed in ArcGIS Pro environment. Results reveal 
significant spatial variation of Covid-19 incidence in WHO regions in different months of pandemic year 
2020. Hotspots and high clustering of the disease incidence shows a shift from Western pacific towards 
Europe and Americas from January to April. Eastern Mediterranean countries also became a part of 
disease hotspots from the month of July leaving Africa as coldspot during whole year. Highest Moran’s I 
value of 0.32 with highest z-score of 14 reflects the highly clustered pattern of this pandemic incidence in 
the month of December in contrary to least clustering of the disease with lowest Moran’s I of 0.02 and z-
score of 1.8 in June. Statistically significant variations in disease clustering pattern provides an 
opportunity for epidemiologists to further explore the disease incidence from ecological perspective. 
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1 INTRODUCTION  
 

Coronavirus disease (COVID-19) is recognized as the global biological disaster. This 
disease was reported for the first time in Wuhan, China. During its early outbreak 
intensive population movement converted the outbreak into epidemic. By the time, 
this infectious disease spread so fast not only to other parts of China but also to 
various countries of Asia, Europe, North and South America, Australia and Africa as 
well. Hence, on 11th March, 2020 the WHO declared COVID-19 as pandemic and 
global health emergency (ERS 2020). By the end of year 2020, over 80 million cases 
and over 1.7 million deaths globally occurred since the start of this pandemic (WHO 
2021).  

The COVID-19 is full of unknown facts, and many of them have a spatial 
dimension that lead to understanding the phenomenon as geographical and 
potentially map-able (Franch-Pardo et al. 2020). COVID-19 offers a wide range of 
opportunity for the researchers worldwide but “spatial spread” of the disease is 
major dimension from the perspective of medical geography and epidemiology. 
Several studies use spatial analysis through Geographical Information System (GIS) in 
ecological exploration of COVID-19 pandemic (Li et al. 2020; Rex et al. 2020). 
Application of spatial statistical techniques helps to understand the spatial 
heterogeneity in diseases transmission and identification of significant risk regions 
especially COVID-19. A number of applications of spatial statistical models are used to 
comprehend the trend and transmission of COVID-19 (Gayawan et al. 2020; Gomes et 
al. 2020; Fatima et al. 2021). Hohl et al. (2020) advocate geospatial methods of spatial 
autocorrelation, space time scan statistics, hot spot and clustering analysis in GIS 
environment  as an effective surveillance tool in spatial epidemiology and provide a 
profound way to analyze the complex geographic pattern of disease incidence and 
transmission. Significant knowledge of spatial clusters provides a baseline approach 
for health researchers to understand the spatial pattern of disease occurrence and 
beneficial for policy formulation to manage spatial spread of disease incidence 
(Murad et al. 2020). Therefore, current research is from the domain of geographical 
epidemiology, which can be define as the detection of spatial and temporal patterns 
of disease with target of formulation of hypothesis about etiological factors of that 
disease (Rezaeian et al. 2007). This study aims to provide the geospatial analysis of 
COVID-19 pandemic for a year 2020. To attain this objective, we examine the spatial 
distribution of COVID-19 crude rate on global scale through the application of global 
and local spatial autocorrelation techniques of Cluster detection and Hotspot 
analysis. Many studies use cluster and hotspot analysis for exploring this disease at 
regional, country and city level (Cavalcante et al. 2020; Lakhani 2020; Mollalo et al. 
2020; Yang et al. 2020). Shariati et al. (2020) did spatial temporal analysis of COVID-
19 at global level for two months (March-April); however this study will provide a 
global analysis of geographical distribution and spatial clustering of COVID-19 crude 
rate using spatial statistical methods in GIS. 
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2 MATERIAL AND METHODS 
 
To meet the objectives of this study, COVID-19 data was collected from WHO 
situation reports. The cumulative number of COVID-19 reported cases were collected 
at the end of each month for every country and political territories. To calculate the 
crude rate, the population estimates for each country and territory were taken from 
the Worldometer for mid-July 2020 (Worldometer 2020). Geodatabase of the study is 
created and managed in ‘world political boundaries’ feature class at projected 
coordinate system of WGS 1984 Web Mercator Auxiliary Sphere in ArcGIS Pro 2.6 for 
executing spatial analysis of COVID-19 crude rate. 

For purposeful explanation we adopt grouping of countries into WHO regions; 
African Region, Region of the Americas, South-East Asia Region, European Region, 
Eastern Mediterranean Region, and Western Pacific Region (WHO 2021). 

 
2.1 Getis-Ord G* (Hot Spot Analysis) 
 
Hot spot analysis was carried out by using Getis-Ord G* (Ord et al. 2001). It works by 
computing Getis-Ord G* statistics for every COVID-19 crude rate. Resultant z-score 
and p-value for every feature explains where cluster of high values (hot spots) and 
low values (cold spots) exists. High positive z-score determine the more intense 
clustering of high values while high negative z-score values determine the intense 
clustering of low values. Computation is done within the context of neighboring 
feature value. To be a statistically significant hot spot, a feature will have a high value 
and be surrounded by other features with high values as well. The local sum for a 
feature and its neighbors is compared proportionally to the sum of all features. To 
apply Getis-Ord G* in current research optimized hot spot analysis is run first to 
examine a threshold distance for better results. Later, hot spot analysis for every 
month was performed at fixed distance band ranging from 3414km to 4014km to gain 
significant hot and cold spots. 
 
2.2 Anselin local Moran’s I (Spatial Cluster Outlier) 

 
Spatial autocorrelation is a technique applied to examine the spatial pattern of 
COVID-19 incidence using Global Moran’s I (Moran 1950) and Anselin Local Moran’s I 
(Anselin 1995). Anselin Local Moran’s I is used in comparable to Global Moran’s I for 
visualization of clusters and outliers (Bivand et al. 2009).We applied this technique to 
identify statistically significant clusters and outliers in global distribution of COVID-19. 
Output of analysis is visualized in four major groups: Two for clusters and two for 
outliers. High-High (HH) and Low-Low (LL) clusters identify similar country features 
with high or low COVID-19 incidence respectively. High-Low (HL) and Low-High (LH) 
identifies outliers with high COVID-19 incidence surrounded by countries of low 
COVID-19 incidence and vice versa. 
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2.3 Global Moran’s I (Global Autocorrelation) 
 
Spatial autocorrelation is the significant tool of  spatial statistics in GIS environment 
to measure the correlation between nearby objects (Gangodagamage et al. 2008). 
Positive autocorrelation is reported when events closer to each other have similar 
values. Two important statistics to measure the spatial autocorrelation are Global 
Moran’s I and Geary’s I. Global Moran’s index is the most popular method applied 
currently for computing Global spatial autocorrelation of COVID-19 incidence 
between neighboring countries at a fixed distance band width of 4614 km (Li et al. 
2020; Shariati et al. 2020). The value of Moran’s index varies from –1 to +1. Positive 
Global Moran’s I value indicates a strong positive correlation in neighboring countries 
proving significant clustered pattern of COVID-19 incidence. Negative Moran’s I 
represent negative correlation between neighboring feature while value closer to or 
equal 0 indicates no clustering in distribution pattern (Cao et al. 2020; Hazbavi et al. 
2020; Li et al. 2020).  
 
 
3 RESULTS  

 
3.1 COVID-19 Crude Rate Distribution 
 
Global distribution of COVID-19 crude rate in Figure 1a and 1b shows the propagation 
of disease across countries. In late December, 2019 China was the only country with 
this epidemic but in January, 2020 COVID-19 propagate to 19 more countries, nine 
from Western Pacific, four from Southeast Asia, USA and Canada from Americas, 
three from Europe and one from Eastern Mediterranean (WHO 2020) with highest 
crude rate in China (0.5 cases per 100K). February, brings 36 more counties into list 
with South Korea showing the highest COVID-19 crude rate (6 cases/100k), rest of the 
effected countries experienced <3 cases/100k. By the end of March, 2020 COVID-19 
has spread to 146 countries globally with United States as leading country of COVID-
19 cases spreading over its 50 states and New York as main epicenter (Mollalo et al. 
2020). Hence, by the end of March, this disease affected almost 0.75 million people 
and thousands of death. Several European countries including Italy, Spain, 
Switzerland, Germany, France, Belgium, and United Kingdom experienced high 
COVID-19 crude rate. 

Through 30th April, WHO reported highest number of COVID-19 cases in 
Europe (1.4 million) and Americas (1.2 million) with a high crude rate of >100 
cases/100K. But South and Central Africa experienced lowest incidence of <4 
cases/100K. By 30th May, COVID-19 propagated towards Eastern Mediterranean 
region. Fifty-five countries of the world experienced high incidence rate of >150 
cases/100K in this month. Situation by 30th June, shows a random distribution with a 
low incidence in central Africa and Western Pacific and high incidence in Europe, 
Americas, and Eastern Mediterranean regions.  
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Figure 1a. Global COVID-19 crude rate per 100K population (January–June 2020). 
 
By 30th July, United States COVID-19 cases reached to 4.3 million cases, 

followed by 2.5 million cases in Brazil, 1.6 million in India and 0.8 million in Russia. 
However, the highest rate of (465 to 6000 cases/100K) was recorded for 43 countries 
from Americas, Europe, and Eastern Mediterranean regions. August, and September, 
showed similar trend of COVID-19 crude rate as shown in Figure 1b. High-rate 
countries in these months includes from South Americas, Eastern Mediterranean, and 
a few from Europe regions. Analysis also reveals that COVID-19 incidence in USA 
decreased from the month of August, in comparison with previous months. 
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Figure 1b. Global COVID-19 crude rate per 100K population (July–December 2020). 
 

However, in October, USA again approached in leading countries of the world 
with 2600 cases/100K. Apart from this, thirty-nine other countries mainly from South 
Americas, and Caribbean from Americas, Spain, France, Czech Republic, Belgium, 
Armenia, Andorra, Gibraltar, Luxemburg, Moldova, Montenegro, Netherlands, and 
San Marino from Europe experienced a high COVID-19 crude rate. Seventy seven 
countries of the world recorded high COVID-19 rate in November, which include 
countries from Americas, Europe, and Russia along with some from Eastern 
Mediterranean (Iraq, Jordan, Oman, UAE and Qatar). On the other hand, thirty seven 
countries from Western Pacific region and central Africa experienced as low as less 
than 1 to 44 cases/100K populations. End of December, revealed another high peak 
of COVID-19 incidence, globally affected seventy countries of the world with as high 
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rate of >2000 cases/100K population. Most of these countries belong to Americas and 
Europe with 3500 cases /100K population. At the same time, Central Africa and China 
revealed the lowest crude rate, i.e. <20 cases/100K. 

 
3.2 Hot Spot Analysis 
 
Figures 2a and 2b reveal the hot and cold spots of COVID-19 incidence from 29th 
February to 30th December 2020. On 29th February, Western Pacific was found to be 
the only major hot spot of COVID-19, China being the most significant hot spot with 
99% confidence level. Lai et al (2020) also reported highest daily cumulative index of 
COVID-19 in China during this time.   

Results of March, and April, were quite significant to compare with the findings 
of Shariati et al (2020) for hot spot detection of COVID-19 incidence. On 31st March, 
COVID-19 incidence relatively decreased in China due to strict lockdown policies (Sun 
et al. 2020) and hot spot moved towards the Europe with high positive z-scores and 
significant p-values at 95% to 99% confidence level. Similar results were found for 
April, with Europe as a major hot spot and central Africa as a major cold spot. 

In May, Europe persists to be the hot spot with 99% confidence and highest z-
score followed by USA from Americas. Pakistan, Syria and Egypt from Eastern 
Mediterranean and Algeria from Africa also identified as hot spots with 90% 
confidence. China from Western Pacific region, Namibia, Zambia, Zimbabwe, Malawi, 
Botswana, and Madagascar from South Africa were identified as cold spot with 90% 
confidence and lowest z-scores values. Central African countries including Democratic 
Republic of Congo, Chad, Nigeria and Cameron were found to be significant cold spots 
with 95 to 99% confidence. Further on, the only hot spot identified in June, was South 
America mainly Brazil and surrounding countries with highest z-scores and 99% 
confidence. A study by Gomes.et al (2020) also verified that an exponential growth of 
COVID-19 cases occurred in northeastern parts of Brazil during this time period. Hots 
pot analysis of 31st July revealed several countries from Eastern Mediterranean as 
major hotspot along with Europe at 99% confidence level. Again, Central Africa was 
the only significant cold spot identified during that time.  

By 30th August, significant hot spots were identified in South American 
countries and USA with 95 to 99% confidence level. Pakistan, Afghanistan, 
Kazakhstan, Iran, Iraq and Turkey were also identified as hot spots with 90 to 95% 
confidence level. In total 66 countries of the world were found to be significant hot 
spots and 65 countries from South central Africa and Western pacific region were 
identified as cold spots with 90 to 99% confidence level. Similar hot and cold spots 
were identified in September. However, October identifies Europe as a significant hot 
spot along with countries from Eastern Mediterranean and Americas with 90 to 99% 
confidence level. More than hundred countries from these regions were identified as 
hot spots while 73 countries from Western pacific and Africa were identified as 
significant cold spots with 90 to 99% confidence. Similar hot spot results were 
revealed during November, with 108 countries as significant hot spots and 93 
countries as significant cold spots with 90 to 99% confidence level. On 30th 
December, 64 countries mainly from Europe, a few from Eastern Mediterranean, and 
Africa, and USA from America was identified hot spot with 90 to 99% confidence 
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level, while 77 countries were identified as cold spots from Western Pacific and 
Africa.  

 

Figure 2a. Hot and cold spot detection of COVID-19 using Getis Ord G* (February–July 2020). 
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Figure 2b. Hot and cold spot detection of COVID-19 using Getis Ord G* (August–December 
2020). 

 
3.3 Spatial Clusters and Outliers Analysis 

 
Spatial clustering of COVID-19 through Anselin Local Moran’s I is displayed in Figure 
3a and 3b. China from Western Pacific was found to be the major High incidence 
cluster of COVID-19 on 29th February, while Central and South America and some 
countries from South Africa were identified as Low incidence clusters. By the end of 
March, High clusters of COVID-19 incidence shifted towards Europe. Central and 
South America, South and Central Africa, along with some countries from Western 
Pacific including China were identified as low incidence clusters of COVID-19. Low-
high outliers were discovered in Eastern Europe and Northern Africa. Iran was 
identified as the only high low outlier because of its high COVID-19 incidence 
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surrounded by low incidence countries. Similar clusters-outliers pattern was observed 
for the cumulative incidence of April, with no significant difference. However, a 
considerable change was witnessed in May. Europe, Canada from Americas, Saudi 
Arabia and Iraq from Eastern Mediterranean were identified as high incidence cluster 
of COVID-19. Pacific and South-Central Africa remained low incidence clusters. Gabon 
from Africa was the only high incidence outlier surrounded by low incidence in 
surrounding countries. Cluster analysis of June, showed South America as the only 
high incidence cluster of COVID-19. 
 

Figure 3a. Cluster and outliers of COVID-19 incidence using Anselin Local Moran’s I  
(February–July 2020). 
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Figure 3b. Cluster and outliers of COVID-19 incidence using Anselin Local Moran’s I  
(August–December 2020). 
 

Western Pacific and South Africa were analyzed as low incidence cluster except 
Gabon as High-low outlier. Spatial clusters of high incidence increased in July, along 
addition of Europe, some Eastern Mediterranean countries, Canada, Argentina, 
Bolivia, Peru and Chili. Europe was not found to be the major cluster of high COVID-
19 incidence during August and September, but South America and Eastern 
Mediterranean region were depicted in high incidence cluster group. But situation 
reverts again during October and November, making Europe as high incidence spatial 
cluster along with some Eastern Mediterranean and South American countries. It is 
interesting to note that between high clusters, some countries were also identified as 
spatial outliers with low COVID-19 incidence surrounded by high incidence countries. 
In contrary, South Africa was the only spatial outlier identified with high COVID-19 
incidence from September to December. Results of spatial clustering of December, 
revealed high incidence cluster in Europe whereas, low incidence cluster in Western 
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Pacific. However, Low-high outliers were identified in some parts of Europe, North 
Africa and Canada. 

 
3.4 Global Autocorrelation Analysis 

 
Table 1 and Figure 4 displays the results of Global Spatial Autocorrelation analysis at a 
fixed distance band width of 4614 kilometers. Global spatial autocorrelation analysis 
of COVID-19 incidence since 30th January to 30th December results a positive 
Moran’s I value greater than 0, showing significant clustered pattern. Illustrated 
results are based on Moran’s I value, and z-scores (Figure 4). Moran’s value of 0.01 
and 0.04 associated with low z-score values of 2.1 and 2.2 in January, and February, 
proves less than 1% likelihood that the clustered pattern of COVID incidence could be 
the result of random chance. A rapid rise of 0.23 to 0.24 in Moran’s I value and 
increased z-scores of 11.28 and 11.85 in March, and April, shows a significant rise in 
clustering pattern at a significant p-value of <0.01. However, the results of Global 
spatial autocorrelation in May and June lead to some spatial randomness. A decline 
can be noted for Moran’s I i.e. 0.16 and z-score i.e.7.98 in May, which further falls to 
0.02 and 1.85 in June. It clearly shows that spatial clustering of COVID-19 incidence 
falls rapidly in these two months which started to rise again in July. The second 
highest peak of COVID-19 incidence was observed through October to December. The 
increasing Moran’s I from 0.20 in October, 0.27 in November, and 0.32 in December 
strongly rejects the null hypothesis of spatial randomness with p-value <0.01. 
  
Table 1. Global spatial autocorrelation analysis of COVID-19 (January to December 2020). 
Month Moran’s Index Expected Index Variance Z-Score P-value Pattern 
January 0.016944 –0.00400 0.00009 2.123 0.033 Clustered 
February 0.040581 –0.00400 0.00037 2.289 0.022 Clustered 
March 0.233745 –0.00400 0.00044 11.28 0.000 Clustered 
April 0.244609 –0.00400 0.00044 11.85 0.000 Clustered 
May  0.160163 –0.00400 0.00047 7.498 0.000 Clustered 
June 0.024428 –0.00400 0.00023 1.854 0.063 Clustered 
July 0.164067 –0.00400 0.00049 7.567 0.000 Clustered 
August 0.158929 –0.00400 0.00046 7.599 0.000 Clustered 
September 0.179963 –0.00400 0.00049 8.289 0.000 Clustered 
October 0.202125 –0.00400 0.00051 9.054 0.000 Clustered 
November 0.276704 –0.00400 0.00053 12.18 0.000 Clustered 
December 0.328778 –0.004587 0.00056 14.05 0.000 Clustered 
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Figure 4. Global spatial autocorrelation analysis of COVID-19. 
 
  
4 DISCUSSION 

 
This study provides the initial summary of spatial distribution of COVID-19 during the 
year 2020. We presented global spatial distribution of COVID-19 from simple crude 
rates to statistically significant high and low values geographic clusters within the 
context of neighboring  countries and against all countries in the GIS data set (Stopka 
et al. 2014). Results of the study revealed strong positive spatial correlation of COVID-
19 incidence between neighboring countries. Altogether these outcomes provide 
interesting results along with the chronological changes in the pandemic.  

Cluster analysis seek to locate COVID-19 clusters either high or low or outliers, 
but hot spot analysis served as complement to indicate the countries where COVID-
19 appear different then the surrounding countries i.e. either hot spot (high 
incidence) or cold spot (low incidence). The COVID-19 has spread rapidly soon after 
its emergence in Wuhan China in late December, 2019. With the passage of time, the 
cluster of COVID-19 kept on moving to Europe and Americas respectively. Gayawan et 
al (2020) reported that Africa showed comparatively low incidence in comparison 
with Europe, Asia and Americas 

COVID-19 crude rate maps of each month provide not only the summary of 
COVID-19, spatial intensity but it also provides the global propagation trend. These 
maps showed high rate and low rate areas, which keeps on changing throughout the 
year. This changing distribution pattern was driven by various factors primarily the 
transmission rate, risk factors, capacity of each country to deal with it and control 
measures taken by affected countries. Similarly autocorrelation analysis revealed 
moving clusters and changing hot spots temporally with some clear trends. During 
early2020, it was China and other Western Pacific countries which displayed as High 
cluster and hotspot of COVID-19, afterward they started to show decreasing trend. 
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Chronologically, Europe and North Africa, Americas, and Eastern Mediterranean 
remained hotspot for most of the months in comparison with, Western Pacific, 
Central and South Africa which remained cold spot for larger period of the time. 
Therefore, the countries which get affected in the beginning like China and South 
Korea were also the countries that controlled it timely. China took some serious 
control measures including, restriction of movement from epicenter of COVID-19 i.e. 
Wuhan, restrictions on travel and mass gatherings, cancellation of events, closing of 
institutions and wearing masks (Mackenzie et al. 2020). Similarly South Korea 
adopted 3T (test, track and treat) approach to minimize its outbreak clusters and 
control of epidemic (Kim et al. 2020). In China and North Korea, massive testing 
efforts have been successfully carried out. Their testing time dropped from one week 
to a one day, hence they control transmission. Beside testing, China contain the 
epidemic through quarantine, social distancing and isolation of infected people  
(Anderson et al. 2020). After Western Pacific, Europe was found to be the main 
hotspot of COVID-19 incidence through March to May. According to European Centre 
for Disease Prevention and Control despite of the decreasing and stable trend in most 
of the European Union countries, COVID-19 transmission remained widespread 
particularly among the aged population. In addition, one third European countries 
showed an increase in hospital admission due to this infection during the pandemic 
year. USA also maintained highest number of cases of COVID-19 despite of the 
control measures and medical facilities during whole year of 2020 (Andersen et al. 
2021). Spatial Autocorrelation and hotspot analysis of COVID-19 incidence for the 
month of June, revealed least clustering pattern with South America as the only 
hotspot region and South Africa as the HL outlier. Least Moran’s I value of 0.02 and 
lowest z-score of 1.8 also reflects some sort of spatial randomness in disease 
incidence in this month.  

Almost all countries of South America recorded COVID-19 cases by the end of 
April (Kirby 2020). Uruguay and Paraguay had succeeded to control the pandemic, but 
Brazil and Peru were affected to greater extent during the first wave of COVID-19 and 
became included in high spatial clusters and hot spot region since 30th June 
(González-Bustamante 2021). High social vulnerability and absence of mobility 
restrictions are considered to be the main reasons of high COVID-19 rates in Brazil 
(Coelho et al. 2020). 

Afterwards, by the end of July 700 million population of Eastern Mediterranean 
Region also came under the influence of high Covid-19 incidence. These countries 
showed comparatively low transmission rate till April, but mass gathering specially 
pilgrimages and relaxation in lockdown during May, the Holy Month of Ramadan 
accelerated number of cases (Al-Mandhari et al. 2020). Thus, from July to November 
these countries were the part of high spatial clusters and hot spots of Covid-19 
incidence along with Europe and Americas.  

Although strict control measures, including restrictions on Umrah, gatherings in 
mosques and churches, closure of educational and other institutions and even 
restrictions on travels also helped in slowing down the spread. WHO also gave special 
attention to EMR through training, monitoring and provision of testing and personal 
equipment (Al-Mandhari et al. 2020). 
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In comparison to all high spatial clusters and hot spots, Africa remained least 
affected by COVID-19 and emerged as low spatial cluster and cold spot of COVID-19 
incidence during the whole pandemic year. Although few northern countries 
remained the part of hotspot during early months of the year and South Africa was 
identified as the only HL outlier from June to December. Makoni (2020) also reported 
immediate preventive measures like closure of the borders, confirmed case 
quarantined, and widespread curfew helped in slowing down the spread of infection 
in Africa. But later in September, this region showed a slight increase constituting 5% 
of global infection.  

Among Western Pacific regions, COVID-19 incidence rate in Australia had also 
not been as high as China. This had been made possible by swift lockdown, shutting 
down of all institutions, heavy fine for not observing social distance and wearing 
masks, and forced quarantine for travelers returning homeland (Berger et al. 2020). 
Similarly New Zealand was also one of the country with lowest cases and incidence of 
COVID-19 among high income countries because of their intense execution of 
national COVID-19 control strategies (Jefferies et al. 2020). 

Temporal analysis of COVID-19 incidence using global spatial autocorrelation 
based on Moran’s I and z-score exposed two peaks high spatial clustering of the 
pandemic in the world i.e. one for the months of March-April, and the second for 
November-December. In contrary, Moran’s I for the month of June, revealed least 
clustering of the disease reflecting a spatial randomness.  

There are some limitations to our research. We use data from the single 
source, i.e. WHO situation reports. Spatial cluster and hots pot analysis of COVID-19 
incidence were performed from the month of February as minimum 30 spatial 
features were required to run the analysis for significant results in GIS environment. 
We use cumulative COVID-19 cases for each month instead of new cases for the 
specific month; hence it may affect clustering results. There are many problems with 
the COVID-19 outbreak cases data at the international level. Examples include the 
problem of underreporting in low-income countries with insufficient testing facilities, 
the population size of asymptomatic cases in African countries with significantly 
lower national average age, and problems for medical service accessibility in 
countries with insufficient healthcare systems. Therefore, hot or cold spot analysis in 
a single or federal country with the same or similar healthcare systems can be 
significant when approached from a policy perspective. However, approaching based 
on macroscopic global statistics rather than microscopic data can significantly distort 
results due to age standardization problems and the population size problem of 
asymptomatic cases. In addition, we did not compare mortality and recovery rates 
with incidence rate of COVID-19.  

Notwithstanding these limitations, our study provides a meaningful backdated 
analysis about spatial diffusion or transmission of COVID-19 incidence during all 
months of the pandemic year 2020 at global level. Thus, study will provide a baseline 
approach for epidemiologists to examine the causes of COVID-19 transmission for 
future research. Moreover, it helps the countries to revise and enhance the 
pharmaceutical and non-pharmaceutical policies and interventions to break the chain 
of spatial clusters of COVID-19 in forthcoming year. Currently in 2021, because of the 
emergence of new variants and vaccine development and its provision, the spatial 
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pattern of COVID-19 incidence is quite different than 2020. Some of the countries like 
China, North Korea did not experience second wave, however other countries, for 
example India presently showing the high incidence as second wave. Thus, this study 
provokes new research questions and provides the base for the up forth comparative 
spatial research with the successive years and also among different regions and 
countries. 
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