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Chapter 1: Introduction 

 In this introductory chapter of thesis, an overview for the magnesium (Mg) and 

Mg alloys for the biomedical device applications, and the motivation and the objective of 

research project are provided. 

1. Magnesium (Mg) alloys for biomedical applications: overview 

 There is a myriad number of material species that can be applied to develop 

medical devices, including various types of polymers, metals, and ceramics. Depending 

on the application and required properties, some materials possess more beneficial 

properties than the others. Some factors such as biocompatibility must be critically 

considered in the selection of materials for biomedical products, because the body 

reaction against some materials can cause irreparable problems for the patient. Chemical, 

physical, and mechanical properties, and even economical advantage should be 

considered, and the one that exhibit the optimum of these properties must be elaborately 

selected. However, the biocompatibility to physiological environment must be always 

confirmed prior to the application of biomaterials. 

 Among the three representative material types, i.e., metals, ceramics, and 

polymers, the metallic materials traditionally have been widely used in many biomedical 

applications due to their strong physical and mechanical properties. In the current thesis, 

we focus on the biomaterials made of metals/alloys. These biocompatible metallic 

materials include 316L stainless steels (STS), titanium (Ti) alloys, and cobalt-chromium 

(Co-Cr) alloys, but they do not degrade in the body fluid. On the other hand, there are 

some biodegradable metallic materials such as Mg and its alloys that spontaneously 
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disappear inside the human body. One of the most important trends in biomedical device 

technology is the incorporation of degradable materials to avoid complexities such as 

long-term adverse effects and secondary surgery, etc. By controlling the 

degradation/corrosion rate, these absorbable materials can be eliminated in a desired way 

after healing of injured sites. In addition, while most of the metallic materials have high 

strength that can consequently resist against the bone growth causing adverse problems in 

orthopedic applications, Mg alloys have similar elastic modulus (E) with natural bone 

material (the average E values of Mg alloys and natural bone are is 41-45 GPa and 3-20 

GPa, respectively, which causes less damages. The density of Mg alloys (1.74-2 g/cm3) is 

also close to natural bone density, which is 1.8-2.1g/cm3 (1; 2; 3; 4). Therefore, Mg and 

Mg alloys are considered as one of the unique metals that feature the combination of 

biocompatibility, degradability, and mechanical strength for biomedical device 

applications. 

 Mg and its alloys have been used as medical device applications since the late 

19th century. In 1878, Huse used an Mg wire ligature in radial artery and varicocele to 

stop bleeding vessels (5). First vessel connector made of Mg was tested on the femoral 

artery of dog in 1900 (6). The first use of Mg-based materials as an orthopedic implant 

was in 1907. Lambotte used a plate of pure Mg with gold (Au)-plated steel nails to secure 

a fracture involving the bones of the lower leg. The fast degradation (i.e., corrosion) of 

the implant, however, caused the failure of a complete support, and a considerable 

amount of gas amassed under the skin. In another trial in 1944, nine unsuccessful 

implantations were reported out of 34 cases for an Mg alloy containing a small amount of 

cadmium (Cd). The reasons for these failures were infection and also trapping of the gas 
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caused by mounted plaster cast. It was reported that these implants maintained their 

mechanical stability for 6-8 weeks and a complete desorption occurred after 10-12 

months (4; 6; 7). 

 More recent studies on in vivo degradation of Mg alloys were performed 

comparing the corrosion tendency of different compositions. A trial by Witte et al. (8) 

investigated the impacts of AZ31 and AZ91 Mg alloys containing aluminum (Al) and 

zinc (Zn), WE43 alloys containing some rare earth (RE) elements such as neodymium 

(Nd), cerium (Ce), and dysprosium (Dy), and, also LAE442 alloys with a mixture of Ce, 

lanthanum (La), Nd, and praseodymium (Pr). The results showed a modest corrosion rate 

for alloys with RE elements. 

 One of the most important issues with Mg implants is the high rate of disruption, 

which is localized and unpredictable. It has been reported that high-purity Mg corrodes 

uniformly in vivo with an average rate of 0.1 g per 3-4 weeks. Of course, the total Mg 

corrosion depends on the exposed surface area of the material to the corrosive media. The 

type of tissue is also the important factor to determine the corrosion rate of the implanted 

material (6). In addition, the hydrogen (H2) evolution causes the formation of gas packets 

that postpone the healing and cause to necrosis the tissue layers (9). It is thought that the 

research interest in Mg alloys for biomedical device applications is shifting toward 

investigating the effect of alloying elements on the formation of corrosion protective 

barrier in the interface of the alloy and the corrosive media (10).  

2. Motivations 

 As addressed in the prior section, Mg and Mg alloys are promising candidate 

materials for medical products. This group of metals has shown reasonable mechanical 
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properties including high stiffness and strength, resistance to heat, and creeping and high 

fracture elongation, and it exhibits good vibration and shock absorption (2; 3). In general, 

another reason that makes Mg attractive is that, Mg has a high strength to weight ratio 

and high castability (2). In addition to all of these mechanical benefits, the primary 

advantage of using Mg alloys comes from that Mg+2 is a requisite ion in the human body 

system and it exists in a considerable amount in the body (Mg+2 is the fourth abundant 

cation found in the body. The human body usually contains about 35 grams Mg per 

70Kg); a human adult is recommended to take 300-400 mg of Mg daily (2; 3). Mg is 

involved in many metabolic reactions and also physiological mechanisms as an essential 

material. Further, most importantly, Mg has a high biocompatibility, which is the vital 

property for implant materials (11). The presence of Mg in the body promotes the bone 

growth, and it shows non-toxic behavior and degrades in the body fluids (12). In addition, 

the extra amount of Mg has the possibility to be expelled through the urine after 

degradation.  

 Despite all of these advantages, the main problem with Mg is the elevated rate of 

corrosion (i.e., degradation), which strongly limits the use of Mg as a biomaterial. Mg 

would corrode at pH level of 7.4-7.6 and in the presence of high chloride environment of 

physiological system. Because the degradation rate of pure Mg is high, the mechanical 

properties will decrease before the healing process completes. The in vivo studies on 

corrosion resistance of Mg as medical implant material reported that the corrosion rate of 

0.02 mm/y would be acceptable (13). However, it should be noted that the required 

degradation rate will vary depending on the location of implants. In some cases, fast 

degradation is needed while in others a modified rate of corrosion is demanded. In 
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general, the degradation rate should be coherent with the healing rate of the body tissue; 

for example, for medical devices intended to be used about 12 weeks in the physiological 

environment, the implant material must corrode after this period (11). Also, the amount 

of corrosion products released in the body should be low enough to be tolerated easily 

(14).  

 Mg is a metal that degrades very fast in biological media. The degradation rate 

must be controlled by different ways such as alloying or surface treatments, which will be 

comprehensively discussed in the next chapters. Note that, though there is a rich list of 

experimental efforts to improve the degradation rate of Mg alloys for the biomedical 

applications, theoretical understanding of the impacts of the types and contents of alloys, 

microstructures, and the degree of crystallinity on the Mg degradation behavior is still not 

clear.   

3. Objective of Research 

 The ultimate goal of the current research is as follows. 

 Understand the corrosion/degradation mechanisms of Mg and Mg alloys intended 

for biomedical applications. 

 Toward this ultimate goal, in the present thesis, we have developed an atomistic 

density-functional theory (DFT) computational model to study the impacts of alloying 

element on the corrosion behavior of Mg alloys. Computational modeling approach is 

frequently used to predict complicated physicochemical phenomena to decrease the 

expense of experimental measurements and to save the labors. Understanding of 

degradation/corrosion mechanism in the atomistic and/or molecular levels can be 
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accomplished through the development of atomistic computational model. In the current 

work, we focused majorly on the hydrolysis mechanism (i.e., one of the two primary 

degradation mechanisms of Mg materials) of Mg/Mg alloys to study the onset of the 

corrosion with various Mg alloy systems. It is expected that the obtained results can be 

used to understand and ameliorate the corrosion behavior of Mg alloys in the biological 

atmospheres.  

 The objective of the current work is, therefore, summarized as: 

 Based on DFT, develop an atomistic computational model to quantitatively 

describe the initial degradation behavior of Mg/Mg alloys including the effects of 

alloying elements. 

 Using the developed DFT model, several physicochemical aspects, such as 

surface energies, water adsorption behaviors, and dissolution potentials, are studied and 

analyzed related to the degradation/corrosion mechanisms of Mg/Mg alloys. It is thought 

that the current work is one of the first attempts to understand the hydrolysis behavior of 

Mg/Mg alloy degradation for biomedical applications by using a DFT model. In 

following chapters, we will detail the background, computer model development, and 

results and discussion of the current work. 
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Chapter 2: Background 

In this chapter, we will provide the detailed background and discuss some 

applications of Mg and Mg alloys in biomedical devices such as cardiovascular stents and 

bone replacement implants. Degradability, as the most important advantage of Mg based 

devices over permanent materials, is the main focus of this chapter. In this chapter, we 

will address the general introduction of Mg alloys, details of degradation mechanisms, 

factors to influence the degradation behavior, and recent efforts to improve degradation 

properties of Mg and/or Mg alloys.  

1. Mg Alloys for Biomedical Applications 

 Proper implantation of external material in the body will require a variety of 

relevant physical, chemical, and mechanical properties; tissue-specific environment, the 

contact with blood, and the contact with different tissue-specific cell types should be 

adequately taken into account in the study of the material applicability in biomedical 

applications (15). In Table 2.1, some in-vivo physiological conditions that metallic 

implants should tolerate have been summarized. In addition to these conditions, implant 

metals should possess non-magnetic properties so that they can be tracked by magnetic 

resonance imaging MRI or X-ray imaging (1). 

Table 2.1 Body physiological condition (1) 

Condition Parameters Consequences 

Body temperature  37º C  Effect the kinetic of the reaction  

pH (16) 

Blood 

Intercellular matrix 

 

7.15-7.35 

7.0 

Even though the body fluids are buffered solutions, 

close to the implantation site the pH can decrease to 

5.2  
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Cells 6.8  

Dissolved oxygen (17) 

Arterial blood 

Venous blood 

Intercellular matrix  

 

100 mmHg 

40mmHg 

2-40mmHg  

Corrosive environment  

Chloride ion (16) 

Serum 

Interstitial fluid  

 

113mEq/l 

117mEq/l  

Corrosive environment  

Mechanical load (18)       

Cancellous bone 

Cortical bone 

Arterial wall 

Myocardium 

Muscle(Max) 

Tendon(Max)  

 

0-4MPa 

0-40MPa 

0.2-1MPa 

0-0.02MPa 

40MPa 

400MPa  

Could lead to fracture or stress corrosion cracking  

Load repetition (18) 

Myocardial 

Contraction          

Finger joint exercise 

Ambulation  

 

5 x 106- 4 x 107 /year 

105-106 /year 

2 x 106 /year 

Could lead to fatigue, wear and fretting  

 

Mg and/or Mg alloys have been advocated for several biomedical applications including 

cardiovascular stents and various forms of bone implants. Depending on required 

properties of different applications, different compositions can be applied to the Mg 

alloys. However, one of the major issues for development of biodegradable Mg alloys is 

the control of corrosion rate and the gap in understanding the relationship between alloy 

composition and the mechano-electrochemical behavior of the materials in vivo. Another 

limitation for these materials is that, the cytotoxicity standards developed for permanent 

materials (e.g., EN ISO Standards 10993:5) that can be applied to titanium (Ti) are not 

adequately applicable to Mg-based materials. Therefore, there is no established standard 
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for Mg alloys to evaluate their in vitro and in vivo corrosion behavior (19). In the 

following sub-sections, some examples of Mg alloys biomedical applications are 

introduced. 

Table 2. 2 Application of different Mg alloys (6) 

Magnesium (alloy) Application Human/animal 

model 

year 

Pure Mg Wires as ligature Humans 1878 

High-purity Mg Tubes(intestine, vessel, nerve connector), 

plates, arrows, wire, sheets, rods 

Humans, guinea 

pigs, rabbits, dogs 

1892-1905 

Pure Mg Mg cylinders as vessels connectors Dogs 1903 

High-purity Mg Tubes, sheets and cylinder intestine 

connector 

Humans, rabbits, 

dogs 

1900-1905 

Pure Mg (99.7%) Rods, plates, screws Humans 1906-1932 

Metallic Mg Ring-plates for anastomosis Dogs 1910 

Metallic Mg Interamedullar pegs in bone Rabbits 1913 

Pure Mg mix. of eq. 

part: Mg/Al, Mg/Cd, 

Mg/Zn 

Wires, clips as ligature, anastomosis Dogs 1917 

Pure Mg (99.99%), 

distilled in vacuum 

Wires, strips, bands Rabbits 1924 

Pure Mg (99.8-99.9%) Mg arrows Humans, rats, cats 1925 

Pure Mg Mg arrows Rabbits 1928 

Dow metal: Mg-Al6-

Zn3-Mn 0.2%-wt. 

Elektron Mg-Al 8%-wt. 

Plates, bands, screws, pegs Humans, dogs, 

rats, rabbits 

1933-1937 

Mg-Mn3%-wt., Mg-Al4-

Mn 0.3%-wt. 

Sheet, plate, band, screw, peg, wire Human, dogs 1938 

Elektron (alloy not 

specified) 

Rods Rabbits 1939 

Mg-Cd Plate, screws, rod-plate Human 1948 

Mg Band, suture from woven Mg wires, Human, rabbits 1940 
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fusiform pins 

Mg-Al2%-wt. pure Mg Wires for clotting aneurysms Dogs 1951 

Ind.-grade purity: 

Domal Mg (99.9%), 

T.I.H. Mg not reported 

lab-grade purity: “zone 

fondue ” Mg, R69Mg, 

MgMn1.5%.wt, 

MgAl:GAZ8%,GAZ6%, 

GAZ3% 

Pacemaker Dogs 1975 

Mg-Al2%.wt Wires intravascular Rats 1980 

Pure Mg (99.8%) Wires for hemangioma treatment Rats, rabbits 1981 

Pure Mg (99.8%) Wires for hemangioma treatment Humans 1981 

 

1.1 Degradable stents 

 As a major medical device utilizing biodegradable materials, we introduce the 

cardiovascular stent applications in this section, as it is considered one of the most 

important medical devices due to the increased risk of cardiovascular disease in the 

modern era. The first coronary stent implantation was reported in 1985 (20). The use of 

stents has been widespread in recent years, and it has been constantly reported that the 

occurrence of some problems such as stent thrombosis (i.e., obstructing the blood vessel 

by blood clots formation on the surface of the stent) were reduced by using of 

thienopyridines an antiplatelet agent that prevents platelet activation and high pressure 

stent implantation (21). 

 Coronary stents are intended to replace complicated percutaneous coronary 

intervention (PCI) or angioplasty (i.e., non-surgical treatment for narrowed coronary 

arteries) by restricting the early and late recoil. When permanent (i.e., non-degradable) 
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stents are used, they may cause several clinical adverse effects including thrombogenicity 

(i.e., the tendency of material to produce thrombus during the contact with blood), 

permanent physical irritation, mismatches in mechanical behavior between stented and 

non-stented vessel areas, long term endothelial dysfunction (imbalance between products 

of blood vessel expansions), and chronic inflammatory local reactions. These permanent 

stents may increase the risk of injuries such as chronic inflammatory reaction or long-

term endothelial dysfunction caused by continuous interaction between the stent and the 

surrounding tissue (22). In addition, in some cases (such as Lekton Magic stent), the stent 

is radiolucent that makes it difficult to be detected after implantation. To decrease the risk 

of embolism and blockage of the blood vessel by a detached intravascular mass, some 

sleeves on the delivery balloon at either side of the crimped stent are required (23). 

 To overcome these limitations, stents made of degradable materials were 

proposed. Such degradable stents have ability to offer more effective physiological 

repair, reconstitution of local vascular compliance, and they exhibit a temporary, limited, 

longitudinal, and radial strengthening effect (1; 24). Most importantly, the patients with 

permanent stent implantation often suffer from the long-term adverse effects. Comparing 

the permanent and bioabsorbable/biodegradable stents, there is indeed a need to design a 

bioabsorbable stent that disappears after healing (25).  

  The materials used for the components of these degradable stents must possess 

some necessary properties. For example, they must have enough radial strength during 

degradation period and also produce non-toxic and absorbable components during the 

corrosion (1). The local toxicity of biomaterials depends on the local concentration of 

elements over time (25). Further Colombo et al. (26) reported that a cardiovascular stent 



12 
 

 

endures a pressure of 1.0 to 1.4 MPa during its function. This pressure causes at least 

20% deformation in the stent. Only limited types of materials meet these requirements. 

Some polymeric materials seem to be appropriate for this application, but polymeric 

materials have some issues including limited availability, and severe adaptation and/or 

deformation with radial forces. Another problem associated with these polymeric 

materials is their slow bioabsorption rate that may give rise to enhanced restenosis (25). 

For metallic materials, Fe and Mg provide degradation with a good adoption by the body 

without toxicity. 

In Table 2.3, we display two examples of bioresorbable metallic stents from 

different manufacturers (25; 27; 28). As the table shows, peripheral Fe stent produced 

from iron tubes by Goodfellow Inc. (Hundington, UK). This stent is made of Fe with less 

than 0.5% of Al, Ca, Co, and other metallic impurities, and it has a design similar to the 

Saxx stent (CR Bard, Temp, AZ, USA). There are limited data available about this group 

of stents, but Waksman et al. (28) confirmed that the biocompatibility and mechanical 

properties of pure Fe seems to be reasonable but further studies are required for 

commercial application of these stents. Table 2.3 also shows the Mg stent (Biotronik, 

Erlangen, Germany) as an example of Mg based stents. The mechanical properties of 

Biotronik stent are similar to those of stainless steel stents, which provides enough 

support after implantation. It has been addressed that Biotronik also has acceptable 

biocompatibility (29). 
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Table 2.3 Bioabsorbable stent developments (25; 27) 

Stent  Fe Based Mg Based 

Picture 

  
Composition >99.5 mass% Fe Mg Alloy/ Pimecrolimus 

Features Balloon expanding stent Balloon expanding stent 

  

It is understood that the recoil resulted from mechanical degradation (i.e., 

corrosion) is the primary cause of restenosis in applying Mg-based stents; therefore, the 

solution suggested for these problems is to increase the degradation time so that the stent 

can provide sufficient support to the vessel following intervention. The most recent 

development of these stents is in their alloying and design modifications to decrease the 

corrosion rate and to load an anti-proliferative drug on the stent surface that can slow 

down neointima formation (25). The coronary restenosis (i.e., re-narrowing of the blood 

vessel after implantation) after endovascular procedures is one of the issues in using 

stents. The neointimal hyperplasia (i.e., thickening of the neointima in the blood vessel 

during the reconstruction procedure) can be reduced to below 10% by using drug-eluting 

stents (DES) (30). 

 The stability and efficiency of the implanted stent are influenced by various 

material properties. Surface characteristics such as surface energies, surface textures, 

surface potentials, and the stability of the surface oxide layer impact the chance of 

occurring thrombosis and neointimal hyperplasia. The thrombogenicity of a material 
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surface can be increased with increasing surface energy. Experiments by Hehrlein et al. 

(31) on two different surface deposition methods, i.e., galvanization and ion implantation, 

showed higher thrombogenicity and neointimal hyperplasia for the galvanized stent, and 

the reason was explained by the existence of pores and cracks created during expansion. 

It is thought that the surface roughness of the stent is an important parameter in their 

clinical success. This should be concerned as new coatings are being developed, 

especially for drug elution, due to difference in surface texture and the bare metal (32).  

1.2 Orthopedic applications 

 Metallic bone replacements and orthopedic implants are other common types of 

applications of Mg alloys. These implants are used to provide mechanical support during 

healing and fixation of broken bones. The benefit of using metallic materials compared to 

ceramics and polymeric materials is to have high mechanical strength and fracture 

toughness simultaneously (4). In 1878, Mg alloys were suggested as biomaterial in the 

shape of load-bearing implants for the first time (19). Permanent (non-degradable) 

materials such as stainless steels and titanium alloys were mostly used for these 

applications previously. To prevent osteopenia (i.e., decrease in the bone mineral density) 

resulted from long-term stress shielding, it is recommended to remove the material after 

recovery. A second surgery increases the risks and expenses for the patient. To avoid the 

health and financial costs, degradable materials such as Mg and Mg alloys were 

recommended (33). In addition, as addressed before, the mechanical properties of Mg and 

its alloys are similar to those of natural bone tissue material, which make Mg suitable for 

orthopedic applications (34). The orthopedic implant can be in different shapes such as 

plate, rod, or screw, as shown in Fig.2. 1. 
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Fig.2. 1 Mg based orthopedic implants (35) 

 The most essential requirement for a degradable implant is to provide sufficient 

mechanical support during healing. As the healing proceeds, the thickness of implant 

decreases and the bone grows, and due to this decrease in implant thickness, the 

mechanical stability drops. Considering this, selection of the initial thickness of the 

implants is critical. Higher thickness (larger volume) of materials will be needed in a 

highly corrosive media, but depending on the site of implantation, changing the size of 

implant thickness is not always possible (33). Fig.2.2 shows an image of implanted screw 

in the body illustrating the thread of the screw located in the hip and the head in contact 

with the soft tissue. In the figure, the hydroxide layer on the head is represented by white 

arrows which is thicker than the layer with the black arrow, emphasizing that the harder 

tissue around the thread slows down the corrosion rate while the material in contact with 

soft tissue corrode faster (36).  
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Fig.2. 2 different corrosion behavior for the screw depending on the implantation site (36) 

1.3 Other applications 

 There are several other possibilities of using Mg-based materials in biomedical 

applications. Nerve guidance conduits (NGC) are another example. This device is 

effective for injuries with more than 5 mm gap to mechanically support the axonal 

spouting between nerves. Also it has been reported that during corrosion, ions such as 

Mg2+ and SO4
2- form, and they result in the formation of MgSO4, which can functions as 

a neuroprotective agent (37). 

2. Degradation Mechanisms of Mg and Mg Alloys 

 As it was mentioned before, controlling the corrosion rate after implantation in 

the body is the most important and challenging issue with applying Mg as a biomaterial. 

Corrosion of Mg generally is described by the two mechanisms, i.e., hydrolysis and 

galvanic corrosion. In the following sub-sections, different types of corrosion 

mechanisms in Mg/Mg alloys are discussed. 
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2.1 Hydrolysis 

 Previous studies show that for all Mg alloys regardless of the corrosion types and 

compositions, the corrosion attack in aqueous environment can be described by the 

reaction given in Eq.2.1 (3; 38). 

Mg + 2H2O → Mg (OH) 2 + H2                                                                                Eq.2.1 

The overall reaction consists of these partial reactions: 

Mg → Mg2+ + 2e- (anodic reaction)                                                                          Eq.2.2 

2H2O + 2e- → H2 + 2OH- (cathodic reaction)                                                           Eq.2.3 

Mg2+ + 2OH- → Mg (OH)2 (product formation)                                                       Eq.2.4 

 The overall reaction only considers the pure Mg systems (without any alloying 

elements). Song et al. (39) showed that during anodic dissolution on Mg-Al-Zn alloys, 

Mg is the main metallic element participating in the reaction, although the influence of 

alloying elements on the corrosion behavior of the alloy cannot be neglected. In general, 

therefore, the above four reactions are widely used to describe the hydrolysis corrosion 

process. However, when the thermodynamics of corrosion for Mg is considered, a 

difference between theoretical and actual standard potential values is observed, and this 

difference can be explained by the formation of a passive film consists of Mg(OH)2 or 

MgO on the surface of the material. These films may contain some chlorides. When pH is 

greater than 9, a thick film of Mg(OH)2 forms on top of the inner film and protects the 

metal from corrosion. The formation of this film can be described through Pourbaix 

diagram, the potential-pH diagram depicted in (40). This diagram shows that the region 

of immunity is much lower than the water stability region resulting in the evolution of 
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hydrogen (H2) with dissolution in neutral and low pH conditions. In addition, it is seen 

that the passivation occurs by formation of Mg (OH) 2. 

  

Fig.2. 3 Pourbaix potenial-pH diagram (40) 

 However, this diagram shown in Fig.2.3 is not complete due to lack of some other 

thermodynamic data for Mg(OH)2 and Mg+. To complement such deficiency, Perrault 

modified the diagram of Fig.2.3 and considered the formation of Mg+ and some other 

components during the corrosion. The modified potential-pH diagram by Perrault’s is 

shown in Fig.2.4 (41). Involving MgH2 and Mg+ in the mechanism, Perrault showed that 

a thermodynamic equilibrium does not occur for Mg electrode in contact with an aqueous 

solution. Fig.2.4 exhibits the potential and pH ranges where the different corrosion 

products are stable taking to account the formation of Mg+ (42). Fig.2.3 (a) shows the 

Mg-H2O system in the presence of H2. As observed in Fig.2.4 (a), the formation of Mg+ 

intermediate ion is apparent in a wide range of pH. The Immunity region is right below 
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the region of Mg+ stability. From Fig.2.3 (b), when the hydrogen over potential is equal 

to 1 V, for the pH greater than 5 (point c), an equilibrium with existence of hydride is 

expected. In this case, the formation of a cathodic film is probable in the Mg electrode 

containing Mg(OH)2 and MgH2 (41). Eq.2.5-12 show relative reactions for each part of 

these two diagrams (3).  

 

Fig.2. 4 (a) Perrault's Pourbaix diagram equilibrium in the Mg-H2O system in the presence of H2 molecules 

(b) Range of stability for components containing Mg (41) 

2H++2e-→H2, E=-0.0592 pH                                                                                   Eq.2. 5 

MgH2→Mg2++H2+2e- , E0=-2.186V (NHE) (normal hydrogen electrode)             Eq.2. 6 

MgH2+2OH-→Mg (OH) 2+H2+2e-, E0=-2.512V (NHE)                                         Eq.2. 7 

Mg2+ +2OH- → Mg (OH)2                                                                                       Eq.2. 8 

Mg+→ Mg2++ e-, E0=-2.067V (NHE)                                                                      Eq.2. 9 

Mg++2OH-→ Mg (OH) 2+e-, E0=-1.065V (NHE)                                                   Eq.2. 10 

Mg++2OH-→ Mg (OH) 2+2H++ e-, E0=-1.065V (NHE)                                         Eq.2. 11 

MgH2→ Mg++H2+e-, E0=-2.304V (NHE)                                                               Eq.2. 12                                 
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Fig.4. 9 Dissolution of pure Mg 

Taking the same path, similar equations for the estimation of the electrochemical 

potential changes can be derived for Mg alloys, as given in Eqs.4.10 and 4.11. 

                                                                              Eq.4. 10 

                                                    Eq.4. 11 

 Combining Eq.4.9 and Eq.4.11, the dissolution potential difference (i.e., 

electrochemical potential difference) between the pure Mg and Mg alloys can be obtained 

using Eq.4.12. 

                                                               Eq.4. 12 

The dissolution potential difference with reference to the pure Mg for different 

Mg alloys has been presented in Fig.4.10. The results show positive dissolution potential 

difference for Mg-Al system. The values are negative for three other alloying elements; 

the difference is negligible for Mg-Zn alloy and relatively small for Mg-Ca alloy, but the 

dissolution potential difference is considerably large (-0.45 V) for alloy containing Y 

atoms. Comparing the data from Fig4.10, adding Al to the pure Mg increases the stability 
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of the material surface and avoids dissolution. It can be interpreted that once an Al atom 

is positioned on the surface of Mg system, the chance of losing the neighbor Mg is 

smaller than other systems. On the other hand, it is predicted that, some alloying elements 

such as Y, increase the tendency for dissolution of the metal. Zn and Ca seem to be less 

effective from a dissolution behavior point of view since they do not have a significant 

difference with the pure case, though they impose a negative influence on the dissolution 

of Mg atoms. 

To have a better understanding of the dissolution process, Mg- Al system was 

used to study the dissolution process. The dissolution potential was calculated for 

different cases to test the total energy differences for different situations in atomic sites 

for Mg corrosion. The atomic positions for the vacancies are shown with cross (X) 

symbols in Fig.4.11. As represented in the figure, we first tested dissolution scenarios of 

losing Mg and Al atoms (middle column in Fig. 4.11), and we investigated the three more 

cases for losing second atoms when the Mg atom is initially removed (right-hand side 

column in Fig. 4.11). Because the system consists of two types of elements (binary 

system), the first choice for dissolution sites can be either the alloying atom or one of the 

Mg atoms. When the alloying atom dissolves, the system becomes essentially identical to 

the pure Mg case, but if the first option is the Mg atom, three different cases are possible 

in our supercell structure for the second dissolving atom as shown in Fig.4.11. When an 

Mg atom was initially removed (bottom image in the middle column in Fig. 4.11), we 

considered three different situations for the second surface atoms to dissolve during 

corrosion.  
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Fig.4. 10 Dissolution potential difference of Mg alloys with pure Mg 

 

Fig.4. 11 Dissolution sites 3x3x2 Mg-Al alloy 
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Fig.4. 12 Total energy level for different dissolution cases 

The dissolution potential for different atomic sites presented in Fig.4.11 has been 

calculated using Eq.4.12, and the results from each case are presented in Fig.4.12. In the 

results of Fig.4.12, the energy levels of the systems are given by the horizontal bar in the 

diagram. These results show that by dissolving the atoms from the surface, the total 

energy of the system increases irrespective of the dissolving position. As it can be seen in 

this diagram, the perfect system has the lowest total energy (left bottom image). The total 

energy of the system (E) increases to (Eˊ) when one atom is dissolved from the surface. 

Here, E' and E" in general represent the total energies when the first and second atoms are 

removed from the surface, respectively. From the results, it is seen that Eˊ is higher when 

the alloying atom is removed which means that the dissolution of the alloying atom (i. e., 



87 
 

 

Al atom) causes more instability compared to the dissolution of the Mg atoms. Next, 

three cases were studied to find the most probable choice for dissolution of the second 

atom. The energy of the system increases to E ̋ by removing the second atom. It was 

predicted that this energy value for E ̋ depends on the position of the second removed 

atom (the three images on the top right corner). Results show that the highest energy and 

consequently the least stable condition belong to the case when the Al atom is removed 

(Case 3 in Fig. 4. 11), which means that dissolution of Al as the second atom is not 

favorable. On the other hand, the total energies of the system show small difference 

between the case 1 and case 2 with a slightly higher chance for the case2. Later, we will 

compare these two positions in a larger system to verify their differences. The dissolution 

potential calculation results from these three cases in Fig. 4.13 show that, after the first 

Mg atom is removed, dissolution of an atom in the position similar to case 1 is easier than 

case 2, because the dissolution potential is more negative for case 1 compared to case 2. 

On the other hand, as we mentioned from the total energy point of view, it is unlikely that 

Al will dissolve in the next due to the high dissolution potential (i.e., 574.83 V) (case 3). 

Accordingly, it seems that there is a large attraction between the alloying element and the 

surrounding Mg atoms compared to the atoms that are not in direct contact with the Al 

atom. 
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Fig.4. 13 Dissolution potential of 3x3x2 Mg-Al alloy 

To verify the difference between case 1 and case 2 from the previous calculation, 

another set of DFT computations was performed for a larger system (4x4x2 systems as 

displayed in Fig4.14). As seen in the schematic images of Fig.4.14, the first, second, and 

third nearest neighbors of the Al atom were removed in separate computations. The total 

energies of these systems have been compared in Fig.4.15. The results show that 

dissolution of the first atomic neighbor of Al atom has the highest total energy, followed 

by third and then second atomic neighbors. Dissolution of the second atom is the easiest 

cases because the system is more stable after removing this atom compared with the other 

two cases. Also, the higher total energy of the system after removing the first neighbor 

indicates that the dissolution of this atom is not favorable. Comparing the dissolution 

potential of these three systems in Fig.4.16 shows that the dissolution potential difference 

for the first neighbor is highest, followed by the third neighbor and the second neighbor. 

The reason for this in thought to be the smaller size of the alloying atom. Here, the Al 

atom has a small ionic radius that can cause a distortion in the surface atoms as it is 
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schematically illustrated in Fig.4.17; the first nearest neighbors will move toward the Al 

atom, and due to this movement of atoms the first atomic neighbors have strong attraction 

with the Al atom. On the other hand, the distortion and movement of first neighbors 

produces a larger space between the first neighbors and the second neighbors, which will 

in turn results in the instability of the second neighbors. Although it is thought that the 

third neighbors will also be influenced by these larger spaces, but assuming the 

periodicity of the system, the first neighbors that are adjacent to the second nearest 

neighbors will produces a larger gap. Therefore, dissolution of the second neighbors 

would be easier compared to the third neighbors. 

 

Fig.4. 14 Dissolution sites 4x4x2 Mg-Al alloy 
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If the water molecule approaches to the surface (closer than the equilibrium distance with 

the lowest energy), due to the repulsion from the nucleus, the relative energy rises to high 

positive values resulting in instability of the system, which in turn pushes the molecule 

away. On the other hand, maintaining large distance from the surface neutralizes the 

repulsion and attraction between the surface and water, causing a zero relative energy 

(i.e., no interaction for the molecule and the surface). In between these two cases, there is 

an equilibrium distance which has the lowest possible relative energy. From the graph of 

Fig.4.18, it is considered that the equilibrium distance for the water molecule from the 

surface is about 1.33 Å. In other words, if the water molecule takes a Z position close 

enough to 1.33 Å from the Mg surface the most stable position and the highest adsorption 

tendency would be reached. For Z coordinates less than this value, for instance 0.5 Å, the 

surfaces repels the water molecule, and on the other hand, if the Z distance is large 

enough, for example about 20Å, the surface does not interact with the water molecule and 

the relative energy becomes zero which is similar to the case that the water molecule and 

the surface are in isolated condition with no effect on each other. 

Table 4.3 Initial and final position and the adsorption energy of the water molecule on the Mg surface 

Initial Z Final Z Eads (eV) 

6 5.30042132 -0.11096818 

3 2.79226747 -0.146642141 

2 1.47583231 -0.474893048 

1 1.3300611 -0.486049715 

0.5 1.3408082 -0.468500074 
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Fig.4. 19 DOS of isolated water molecule and pure Mg 

 

Fig.4. 20 DOS of the water adsorption after interaction 
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Comparison of Fig.4.19 and Fig.4.20 clarifies that after mixing water and Mg, 

high energy peaks from the isolated water molecule disappear. Interaction of the water 

molecule and the metallic surface also eliminates the peaks from electrons with high 

energies by sending those electrons to lower energy states and increasing the density of 

electrons in lower energy levels. Such changes in DOS confirm the tendency for 

adsorbing the water molecule. 

 As shown in Fig.4.20, when the molecule position gets close to the equilibrium 

position, the energy distribution of electrons exhibit the combined behavior of peaks from 

the isolated water molecule and the dry metallic surface. This graph also shows a slight 

shift for the peaks toward lower energy states for the water molecule when it is 

positioned closer to the surface. Therefore, it is thought that when the water molecule 

gets close to the surface (1.36 Å); the configuration becomes more favorable compared to 

the isolated case, as a result of number of electrons with low energies states. Presence of 

more peaks in low energy regions for the Z position of 1.39 Å compared to 2.79 Å 

supports this explanation as well. 

3.2 Water adsorption on Mg alloys 

As it was mentioned before, the vertical position of the water molecule compared 

with the metallic surface is a critical parameter to estimate the behavior of the system. 

The optimized vertical position of the water molecule was discussed in the previous 

sections. In this sub-section, we compare the horizontal movement of the water molecule 

on top of the surface and describe the influence of alloying elements in these interactions. 

Starting from the equilibrium vertical distance as constant (Z=1.33 Å), the water 

molecule was located on top of one Mg atom on the surface named as position 1 and also 
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in a site in between the alloying atom and two Mg atoms called as position 2. The 

positions of water molecule atoms, for these two cases have been presented in Table4.4 

and Fig.4.21 shows the top view for these positions.  

 

Fig.4. 21 top view for position of water molecule for an adsorption process 

 

Table 4. 4 Position of water molecule for adsorption process 

 Position 1 Position 2 

 Oxygen Hydrogen 1 Hydrogen 2 Oxygen Hydrogen 1 Hydrogen 2 

x 2.0079 1.85706 2.22174 3.72 3.5696 3.9343 

y 3.1611 2.26626 4.04182 3.045 2.1498 3.9253 

z 1.33 1.96923 1.97086 1.33 1.9692 1.9709 

 

Results presented in Fig.4.22 show that, comparing the energy for the pure Mg 

when the water molecule is in position 1 and position 2, the degrees of attraction from the 

surface for the water molecule are different. The water molecule prefers position 2 for 

adsorption rather than position 1 because the energy of the system is lower when it is 

located at position 2. For the pure Mg system, adsorption of water molecule is more 

probable when the molecule is located in the area between atoms. The reason for this may 
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be the difference in the electronegativity of Mg and the oxygen atom that is equal to 2.2. 

As a result of such large difference in the electronegativity, the water molecule may be 

adsorbed if it is close enough to the surface atoms. Comparing position 1 and 2 shows 

that when the water molecule (O atom) is located in a site similar to position 2, the O 

atom is under attraction of three atoms, while in position 1, only one surface atom is close 

to the O atom to attract it. Consequently, in position 2 there is more attraction for the 

water molecule compare to position 1. 

 When there is an alloying element on the surface of the metal, adsorption energy 

is influenced by the nature of doped atom. Comparing the trend of results for position 1 

in Fig. 4.22 with the surface energy from Fig.4.4 confirms the relationship between the 

surface energy and the water adsorption; surfaces with higher stability show less 

attraction for the water molecule and vice versa. In this condition, the surface with Y 

doping has the highest attraction for the water molecule with relative energy equal to -

0.38 eV. The surface containing Al shows relatively high attraction for the water 

molecule as well due to its instability. In contrast, the Zn and Ca atoms cause negligible 

attraction on the surface for the water molecule. As it was mentioned, the reason for this 

difference in the adsorption behavior of the alloys is related to the same valance number 

of the alloying atom with Mg and the resultant stability of the surface. Although the trend 

seems to be the same for the Mg alloy systems irrespective of the water molecule 

positions, the values of relative energy are different from case by case depending on the 

positions of the water molecule. 

As the second case, we studied a position in between the alloying atom and the 

two Mg atoms (position 2). The results are given in the bottom of Fig.4.22. The behavior 
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of alloys follows the same order as previous case (position 1), but at this time, the 

attraction has increased considerably due to the shift of energies toward more negative 

values. This means that the tendency for water molecule adsorption becomes stronger if 

we locate the molecule in between three atoms, regardless of the alloying element type. 

Therefore, it is considered that this position (position 2) is more stable location of the 

water molecule for the adsorption process. The differences in the behaviors of water 

molecule in these two positions indicate that the interaction of the water molecule and the 

surface is sensitive to the site of adsorption, and the position 2 is more favorable for the 

water molecule adsorption due to the stronger influence of three metallic atoms compared 

to one metallic atom for position 1. 
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Fig.4. 22 Adsorption energy for Mg alloys with different water molecule positions 

3.3 Water adsorption on different crystallographic planes 

As a final set of computations, we tested the impacts of crystallographic 

orientations on the water adsorption. From the surface energy computations, it was found 

that the crystallographic orientation of the surface has an important role in stability of the 

system. The slab models in this case were 3x3x2 supercells cleaved to contain basal and 

prism planes with a 30Å vacuum slab.  A water molecule was located in position 2 as 

Table4.4 (in-between the Mg and alloy atoms) to study the behavior of the surfaces in 

presence of water molecule. Fig.4.23 shows the result of these calculations. From this 

figure, it is seen that the basal plane with higher stability has lower tendency to absorb 

the water molecule, while the loosely packed prism plane more strongly attracts the water 

molecule toward itself. Thus, it is clear that the adsorption energy has a reverse 

relationship with the surface energy of the system; the basal plane has lower surface 

energy and a high stability that results in a weaker attraction for the water molecule, and 

consequently, lower hydrogen evolution and lower corrosion rate compared to the prism 
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plane. This result also has agreement with experimental work by Song et al. (128) that 

reported lower hydrogen evolution for the densely packed plane. Note that the impact of 

surface orientation on the adsorption energy is not as high as that of Y or Al, but it is 

comparable to the effect of Ca (see Fig.4.22 position 2 case). 

 

 

Fig.4. 23 Water adsorption energies from the Mg systems with different crystallographic orientations 
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Chapter 5: Summary 

 In the current thesis, we address the corrosion and/or degradation rate of 

biodegradable Mg-based medical devices in biological environment as the main 

limitation for their biomedical applications. Especially, we focused on the development 

of the atomistic DFT computational model to study the initial hydrolysis of Mg/Mg 

alloys.  It is widely recognized that the corrosion behavior of the Mg-based material is 

strongly influenced by the composition and the crystallography of the system. In this 

work, the impacts of these factors were studied using i) the surface energy, ii) the 

dissolution potential, and iii) the tendency of the surface for adsorbing the water 

molecule, since they are considered as one of the most important properties in the initial 

hydrolysis degradation behavior. 

 The surface crystallographic orientations of the Mg/Mg alloy system were chosen 

to be basal )0001( , prism )0110( , and pyramidal )1011(  planes as they represent the most 

common indices in the hexagonal structures. The model indicated a positive relationship 

between the density of atoms on the surface and the stability of the system; for example, 

the surface energy of the basal plane with the highest atomic density was found to be the 

smallest value, resulting in the highest stability for this plane. The prism and the 

pyramidal planes showed relatively lower stability due to their smaller number of atoms 

on the surface. By comparing the surface energy results from the computational model 

and the previous experimental observations, the ranges of proportionality coefficient in 

the Tafel equation were extrapolated. It was also found that the presence of alloying 

elements on the surface layer of pure Mg influences the surface energy, the dissolution 
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behavior, and also the interaction of the surface with the water molecule. Mg alloy 

systems containing Al, Zn, Ca, and Y were tested in our study as they are the most 

commonly applied alloying elements in Mg systems for biomedical applications. It was 

explained that the surface energies of these alloy systems can be dependent on the 

valency, the ionic radius, and also the surface energy of the alloying elements. It is 

thought that the atoms with different valency from the Mg ions cause instability in the 

surface of Mg, and the ionic radius of the alloying atom and their elemental surface 

energies are other parameters influencing the stability.  

 The results from water adsorption process indicated that the more stable surfaces 

have fewer tendencies to absorb the water molecule. By introducing a water molecule on 

the metal surface, the energies of the system were lowered with the order of Y, Al, Ca, 

and Zn. From the water molecule adsorption calculations, the lowest energy 

configurations of all of the alloy systems with a water molecule were identified. For all of 

the Mg-based systems examined in our work, it was observed that there is a reverse 

relationship between the surface stability and the water adsorption tendency. It seems that 

surfaces with lower stabilities approach the equilibrium by adsorbing the water molecule. 

It was explained that due to the relatively large differences between the electronegativity 

of the oxygen atom and the metallic atoms, it is likely that the stronger attraction will 

occur between the water molecule and the surface atoms. It was found that the presence 

of oxygen atom of the water molecule on top of three metallic atom on the surface 

magnifies the attracting forces and this results in stronger water adsorption compared to a 

position that has only on metallic atom close to the oxygen atom. Therefore, for position 

of the water molecule on the metal surface seems to be an important parameter. 
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It was also found that although the surface containing Al exhibits relatively higher 

surface energy compared with Ca and Y, it was calculated that the dissolution potential of 

Mg-Al systems is the highest, which means that removing the atoms from the surface of 

this alloy is more difficult compared to the other cases. The reason for this resistance may 

be the small ionic radius of Al. In other words, due to the small size of the Al atom, its 

first nearest neighbors on the surface will move toward it, and such a positive distortion 

gives rise to the displacement of atoms closer to each other that causes less tendency of 

these atoms for dissolution. From these findings, it is thought that the surface energy 

cannot solely determine the dissolution behaviors of Mg alloys. 

The developed model is only applicable for the small systems due to the general 

limitation of DFT computational technique for the size of the system. The model does not 

consider the formation of hydroxide layer, and the model only focuses on the initial 

mechanism of hydrolysis. Further, there is a need to develop a more comprehensive 

model to include the pitting and/or galvanic corrosion phenomena in addition to 

hydrolysis. As a future work, we will conduct a more advanced study on the combination 

effect of different alloying elements and also the effect of combining the alloying 

elements with crystallographic orientation. It is expected that the theory that includes the 

interaction of the water molecule and the proteins present in the body along with the 

hydroxide layer formation on the surface of the metal also can lead to better 

understanding of the corrosion behavior of Mg alloys and to find the optimized 

composition for the Mg alloy. Finally, we also plan to develop a larger scale model (i.e., 

meso-scale model) or multi-scale model to integrate the two major mechanisms of Mg 

degradation, hydrolysis and galvanic corrosion. 
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 The findings, limitations, and future work of the current thesis are summarized as 

follows. 

Findings 

1. Surface energy and Mg corrosion/dissolution 

- The basal plane shows the lowest surface energy in Mg systems. 

- The proportionality coefficient in the Tafel expression is in the range of 0.007 and 

0.049. 

- The Mg alloy systems containing Al and Y show higher surface energies than 

pure Mg materials, and the Mg alloys incorporating Zn show lower surface 

energy. 

- When the contents of alloying element is sufficiently low (i.e., less than 5 at.%) 

and the proportionality coefficient in the Tafel expression is assumed as a 

constant, the impact of surface orientation on the dissolution behavior is higher 

than that of alloying element. 

2. Dissolution potential and Mg corrosion/dissolution 

- Mg-Al alloy shows the highest dissolution potential difference compared to the 

pure Mg while this difference for Mg-Y system is the lowest; addition of Ca and 

Zn do not cause considerable changes on dissolution potential from the pure Mg 

system. 

- In the Mg alloy system containing Al, dissolution of Mg atoms is much easier 

compared to that of the alloying atom (Al). 
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- In the Mg-Al system, the first nearest neighbors of the alloying atom are the most 

difficult atoms to remove, followed by the third and then the second nearest 

neighbors on the alloy surface. 

3. Water adsorption and Mg corrosion/dissolution 

- The trend of water adsorption behavior is consistent with the surface energy 

changes in the Mg-alloy systems. The lowest water adsorption energy was 

expected in the system (i.e., Mg-Y system) with the highest surface energy, and 

vice versa.  

- There is an equilibrium height for the water molecule from the metallic surface 

equal to 1.33Å (when the in-plane position of water molecule is fixed as the 

center of the surface Mg atom) that results in the lowest energy of -0.48 eV for 

the system considered in our work. 

- If the water molecule is located in a height more than 20 Å from the surface the 

water molecule and the metallic surface show no interaction with each other. 

- There is a lower tendency of water adsorption when the water molecule is 

positioned on the top of surface Mg atom compared with the center of three 

surface atoms. 

- The basal plane adsorbs the water molecule less than the prism plane. 

Limitations 

- The model is limited to small systems due to the general nature of DFT 

calculations.  

- The model does not address the effects of multi-element alloying. 

- The formation of hydroxides has not been considered in the computations. 
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- The model is not useful to describe more complicated forms of corrosion 

mechanisms such as pitting and galvanic corrosion  

Future work 

- Develop a model to study the combination effect of multi-element alloying and 

also the combination effect of crystallographic orientation and alloying elements. 

- Study the behavior of the Mg surface after the formation of the various types of 

hydroxide layer. 

- Develop a multi-scale model that considers the effect of both hydrolysis and 

galvanic corrosion mechanisms. 

- Study the interaction of the surface with more complicated proteins (i.e., protein 

adsorption) existing in the adequate physiological environment. 
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