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Figure 6.5: The normalized x-components of the electric field at the source and image
lines on the surface of the modulated graphene (x = 1 nm).

Figure 6.6: Normalized x-component of the electric field above the modulated graphene
surface (left) and a homogenous graphene surface (right).

conductivity σ = −j23.5µS. This shows quite strikingly how the canalization occuring

on the modulated graphene can avoid the usual diffraction expected on a homogeneous

layer. Figs. S.3-S.5 in the appendix section show consistent results for the hard-boundary

case.

It is easy to show that (6.5) and (6.6) cannot be exactly satisfied if the conductivity

includes loss (i.e., the real part of σ). Therefore as loss increases, the phase velocities

will differ among various spatial components and, as a result, one would expect to see a

blurred image, and eventually no image, as loss further increases. To investigate this dete-

rioration effect, we decrease the canalization length to 200 nm= 1.5λSPP and increase the
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Figure 6.7: The effect of loss on the image canalization for hard- and soft-boundary bias
modulations.

separation between sources to 50 nm= 0.4λSPP (which we found necessary to maintain

accuracy in the simulation). The geometry is then simulated for soft- and hard-boundary

cases (with and without loss for each case) and the x- components of the electric field at

x = 10 nm are shown in Fig. 6.7. The curves are calculated in the image line at a distance

1 nm above the graphene surface.

Comparison between the four curves in Fig. 6.7 shows that the lossless hard- and

soft-boundary examples yield similar results, as expected since their effective surface

conductivity satisfies (6.3) exactly. In fact, as long as the period is small compared to the

wavelength, any modulation which has half-wave symmetry will satisfy (6.3), leading to

perfect canalization.

However, adding loss causes the effective surface conductivities to have non-vanishing

real parts, and therefore (6.3) cannot be exactly satisfied. In the lossy case, the modulation

scheme is important, since it affects how closely (6.3) can be satisfied. For example,

Fig. 6.7 shows that the idealistic hard-boundary model exhibits better resolution than the

realistic soft-boundary model.

Image degradation due to loss can be lessened by working at higher frequencies. In

fact, the maximum of the ratio Im(σ)/Re(σ) may be increased by adjusting the chemical

potential at higher frequencies. In the appendix section the ratio Im(σ)/Re(σ) is plotted
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as a function of chemical potential and frequency, and its optimal value for three different

frequencies is used to simulate to the same geometry. The simulation results confirm the

improvement of canalization as frequency increases.

Our results show that a triangular ridged ground plane to bias the graphene monolayer

indeed allows canalization and hyperlensing, since its effective conductivities given by

(6.5) and (6.6) satisfy (6.3). However, there are many possible σ (z) functions that, after

inserting them into (6.5) and (6.6), will satisfy (6.3). As an example, the sinusoidal con-

ductivity of Fig. 6.3 can also be implemented using a rectangular ridged ground plane

(details are shown in the appendix section).

6.4 Summary

We have analyzed the possibility to produce in-plane canalization of SPPs on a 2D sur-

face, with particular emphasis on its realization in a realistically modulated graphene

monolayer, resulting in a planarized 2D hyperlens on graphene. We envision the use

of this effect on a ridged ground plane for sub-wavelength imaging of THz sources and

to arbitrarily tailor the front wave of an SPP by suitably designing the boundary of the

canalization region.

6.5 Appendix

6.5.1 On the modeling of graphene layer by a thin dielectric

Modeling graphene as a 2D surface having an appropriate value of surface conductivity σ

is an accurate approach for a semiclassical analysis (e.g., the Drude model for intraband

contributions has been verified experimentally [105; 106; 107], and the interband model

and the visible-spectrum response have also been verified [107]). However, often it is

convenient to model graphene as a thin dielectric layer, which is easily implemented in
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typical electromagnetic simulation codes. It is common to consider an equivalent dielec-

tric slab with the thickness of d and a 3D conductivity of σ3D = σ/d. The corresponding

bulk (3D) relative permittivity is [72]

ε3D = 1 +
σ

jωε0d
, (6.7)

where ω is the angular frequency. However, for calculations in which the geometry is

discretized (e.g., in the finite-element method), fine features in the geometry such as

an electrically-thin slab demand finer discretization, which in turn requires more com-

putational costs. Thus, whereas sub 1 nm thickness values may seem more physically-

appropriate, numerical considerations often lead to the use of a thicker material. As an

example, in Ref. [72] the thickness of the dielectric slab is assumed to be 1 nm.

However, the accuracy of the dielectric model degrades as the thickness of the slab

increases. Since this model is widely adopted, yet a detailed consideration of this effect

has not been previously presented, we briefly consider this topic below.

Consider a transverse magnetic SPP on an infinite graphene layer. The SPP wave-

length using the 2D conductivity is [67]

λSPP = λ0

(
1−

(
2

η0σ

)2
)−0.5

, (6.8)

where λ0 is the wavelength in free space. On the other hand, in Ref. [108] it is shown

that a dielectric slab with negative permittivity ambient in a medium with positive permit-

tivity can support two sets of dielectric modes (even and odd). The odd modes have the

wavelength (assuming vacuum as the ambient medium)

λodd = 2π

(
−2

d
coth−1ε3D

)−1

, (6.9)

where ε3D and d are the dielectric slab permittivity and thickness, respectively. It is shown

in Ref. [108] that the odd modes can exist only if
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ε3D < −1. (6.10)

It can also be noticed that the modal field distribution outside of the slab is similar to that

of a SPP on graphene. It is easy to show that in the limit of d → 0 and using (6.7), the

dielectric-slab odd mode becomes the graphene SPP mode λodd → λSPP. It can be shown

that (6.9) is a good approximation for λSPP only if three conditions are satisfied as [see

the next sub-section]

d

λSPP

� 1, (6.11)

|σ| � 2

η0

, (6.12)

∣∣∣σ
d

∣∣∣ > 2ωε0. (6.13)

Equation (6.13) is in fact the direct insertion of (6.7) into (6.10). Based on (6.13),

as the σ/d ratio increases, the dielectric slab becomes a better approximation (as long as

(6.12) is not violated). To consider this, Fig. 6.8 shows the frequency independent error

(%) of using the dielectric slab model for graphene as a function of the normalized d and

σ (assuming σ is imaginary-valued),

error(%) =
λodd − λSPP

λSPP

× 100. (6.14)

As a numerical example (using equations (3) and (4) in Ref. [67]), for d = 2 nm,

the scattering rate Γ = 0.215 meV, and chemical potential µc = 0.03 eV at f = 10 THz

and very low temperature (T = 3 K), the normalized thickness and conductivity will be

d/λ0 = 66.7× 10−6 and σ = 1.1− j23µS which leads to an error of 4.9%. This is set as

the maximum error that is allowed in the rest of this work.
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Figure 6.8: The error (6.14) as a function of the normalized dielectric thickness and con-
ductivity of graphene. The graph is frequency independent.

6.5.2 Proof of (6.13)

From (6.9),

coth

(
d |βodd|

2

)
=

σi

ωε0d
− 1 (6.15)

where βodd = 2π/λodd and σ = −jσi.

Assuming d/λodd � 1, (6.15) leads to

2

d |βodd|
+
d |βodd|

6
− ... =

σi

ωε0d
− 1. (6.16)

After keeping only the first term of the series in (6.16) and using the assumption d/λodd �

1 ,

|λodd|
λ0

=
σiη0

2
. (6.17)

Comparing (6.17) and (6.8), λodd is a good approximation of λSPP only if

∣∣σi∣∣� 2

η0

. (6.18)
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6.5.3 Proof of (6.2)

For the anisotropic region of Fig. 6.1, consider a general magnetic field in the Fourier

transform domain as

H = e−jkyy−jkzz× (6.19)
(
H+
x x̂ +H+

y ŷ +H+
z ẑ
)
e−
√
k2y+k2z−k20x x > 0(

H−x x̂ +H−y ŷ +H−z ẑ
)
e
√
k2y+k2z−k20x x < 0

where H+,−
x,y,z are constants. Equation (6.19) is chosen so that it satisfies the Helmholtz

equation and has the form of a plasmonic wave.

Using Ampere’s law to find the electric field in each region and satisfying the bound-

ary conditions

H+
y −H−y = σzEz, (6.20)

H+
z −H−z = −σyEy, (6.21)

H+
x = H−x , (6.22)

it is straightforward to show that

H−y = −H+
y , (6.23)

H−z = −H+
z , (6.24)
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σzjky Y 0

jkzσy 0 Z

jkx jωε0ky jωε0kz



H+
x

H+
y

H+
z

 = 0, (6.25)

where Y = −2jωε0 − σzkx, and Z = −2jωε0 − kxσy. Setting the determinant of the

above matrix to zero leads to (6.2).

It is easy to show that in the isotropic limit (σy = σz = σ0), (6.2) simplifies to the

well-known dispersion equations [62; 67] kx = − 2jk0
η0σ0

, and kx = − jk0η0σ0
2

, for transverse

magnetic (TM) and transverse electric (TE) surface waves, respectively. The solution of

(6.2) will lead to a solution for the SPP with the magnetic field

H = e−kxx−jkyy−jkzz× (6.26)(
x̂ +

jσzky
2jωε0 + kxσz

ŷ +
jσykz

2jωε0 + kxσy
ẑ

)
.

In the canalization regime, the SPP given by (6.26) is a TM mode with respect to the

canalization direction (z-direction in our notation) and its magnetic field has a peculiar

circular polarization,

H = (x̂ + jŷ) e−ky(x+jy)−jk0z. (6.27)

It is also interesting that the confinement in the x-direction of each SPP harmonic is

proportional to ky.

6.5.4 Proof of (6.5) and (6.6)

Assume a sheet of graphene with a periodic isotropic conductivity in the z-direction

(σ (z) = σ (z + T )) as shown in Fig. 6.9. Enforcing a constant, uniform, and z-directed

surface current (Jz) on the graphene induces an electric field on the graphene as
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Figure 6.9: An infinite graphene layer with isotropic periodic conductivity of σ(z).

E (z) =
Jz
σ (z)

. (6.28)

Defining average parameters leads to

Eav =
Jz
σav,z

=
1

L

∫
〈L〉

Jz
σ (z)

dz, (6.29)

1

σav,z

=
1

L

∫
〈L〉

1

σ (z)
dz. (6.30)

Enforcing a constant, uniform and y-directed electric field (Ey) induces a surface

current on the graphene as

Jy (z) = σ (z)Ey (6.31)

which is (6.5).

Defining average parameters leads to

Jy,av (z) = σav,yEy =
1

L

∫
〈L〉

σ (z)Eydz, (6.32)

σav,y =
1

L

∫
〈L〉

σ (z) dz, (6.33)
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which is (6.6).

6.5.5 Idealized graphene nanoribbons with hard-boundaries

An idealization of the modulation scheme discussed in the text would consist of alternat-

ing positive and negative imaginary conductivities, with each strip terminating in a sharp

transition between positive and negative values (see Fig. 6.13). We assume that all of the

strips have the same width W = 4 nm and conductivity modulus |σ| = 23.5µS, which

is the conductivity of a graphene layer for f = 10 THz, T = 3 K, Γ = 0.215 meV and

µc = 0.022 eV or µc = 0.03 eV (for positive and negative Im (σ), respectively). The

chemical potential is chosen to minimize the loss at the given frequency. In fact, the ratio

Im (σ) /Re (σ) is maximized at this frequency (the ratio is 7 for µc = 0.022eV). Since the

effect of loss was discussed in the text, here we assume an imaginary-valued conductivity

σ = ±j23.5µS.

We refer to this idealized conductivity profile as the hard-boundary case, because of

the step discontinuity (sharp transition) of the conductivity between neighboring strips.

This resembles the geometry in Ref. [104] for canalization of 3D waves in which there

are also hard-boundaries between dielectric slabs with positive and negative permittivites.

As a simulation example of the hard-boundary case, two point sources are placed in

front of the source line in Fig. 6.1 exciting two SPPs on the graphene layer. The point

sources are separated by 20 nm= 0.15λSPP where λSPP = 133 nm using (6.8), and the

canalization area (the region between the source and the image lines) has length 2λSPP =

250 nm and width of 100 nm (which is large compared to the separation between sources).

Figure 6.10 shows the normalized x-component of the electric field |Ex| at the source line

and image line (at the end of the modulated region). Fig. 6.11 shows the normalized

x-component of the electric field above the surface of the graphene (x = 5 nm). Note that

the region −1 < x < 1 nm represents the graphene (since we have used a dielectric slab

model for graphene with the thickness of 2 nm).
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Figure 6.10: The normalized x-component of the electric field at the source (left) and
image (right) planes of the hard-boundary example. Source and image lines are separated
by 2λSPP (the region −1 < x < 1 is the dielectric slab model of graphene).

Figure 6.11: Normalized x-component of the electric field above the graphene surface.

Canalization is evident from Figs. 6.10 and 6.11. Figure 6.12 shows the normalized

field intensities at the source and image lines just above the graphene surface (x = 1 nm).

6.5.6 Simulation setup for the hard- and the soft-boundary examples

Full-wave simulations have been done using CST Microwave Studio

CST. In this section we consider the dielectric model of graphene. Figure 6.13 shows

the simulation setup of the hard-boundary example. The simulation results are given

in Figs. 6.10-6.12. The graphene strips can be modeled with dielectric slabs having
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Figure 6.12: The normalized x-components of the electric field at the source and image
lines on the surface of the graphene (taken at the height x = 1 nm) for the hard-boundary
example.

Figure 6.13: The dielectric model of the hard-boundary graphene strip example.

thickness d = 2 nm and, using (6.7), permittivities of ε− = −20 and ε+ = 22. However,

as shown in the insert of Fig. 6.13, the permittivity ε+ = 17 is used rather than ε+ = 22

because numerical experiments show that that value leads to better canalization. The

difference with our analytically-predicted value for best canalization is seemingly because

in our analytical model we have disregarded radiation, reflections from discontinuities,

and similar effects.
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Figure 6.14: The dielectric model for the soft-boundary example - constant permitivies
and smoothly-varying thickness model graphene’s sinusoidal chemical potential.

For the soft-boundary example, the conductivity of the strips varies smoothly with

position. So, applying the dielectric slab model, we could use a dielectric slab with a

fixed thickness (e.g., d = 2 nm) and a position dependent permittivity given by (6.7) as

ε3D (z) = 1 +
σ (z)

jωε0d
. (6.34)

However, an alternative method which is easier to implement for simulation is to con-

sider a dielectric slab with fixed permittivity (or permittivities) and a position dependent

thickness as

d (z) =
σ (z)

(ε3D − 1) jωε0

. (6.35)

Obviously, two different ε3D values should be chosen for different signs of σ (z) so

that d (z) remains positive. This has been done for the conductivity of Fig. 3, and the

resulting dielectric slab model is shown in Fig. 6.14. Comparison between Fig. 6.13 and

Fig. 6.14 clearly shows the difference between the hard- and the soft-boundary examples.

6.5.7 The improvement of canalization by increasing the frequency

Figure 6.15 shows the ratio Im(σ)/Re(σ) versus chemical potential at three different fre-

quencies, showing that, as frequency increases, loss becomes less important. Note also

that the value of chemical potential that maximizes the conductivity ratio is considerably
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Figure 6.15: The ratio Im (σ) /Re (σ) as a function of chemical potential for three differ-
ent frequencies.

frequency dependent. In Fig. 6.16 the effect of decreasing loss as a result of the frequency

increase is invesigated. To do so, the peak ratio Im(σ)/Re(σ) of the three curves in Fig.

6.15 are chosen associated with frequencies 10, 20, and 30 THz. These ratios are assigned

to a same geometry (and holding frequency constant) and the x-component of the electric

fields are shown in Fig. 6.16 (the scalings are the same). In this way, all of the electrical

lengths (such as the electrical length of the nanoribbons, canalization region, etc.) remain

the same and only the effect of loss is incorporated. From Fig. 6.16, it is obvious that the

increase of frequency improves the canalization. However, since the dimensions become

smaller, fabrication becomes more difficult.

6.5.8 Modulated graphene conductivity using a rectangular ridged

ground plane

The sinusoidal conductivity of Fig. 3 can be implemented using a rectangular ridged

ground plane, as shown in Fig. 6.17. The conductivity distribution of the geometry

in Fig. 6.17 is shown in Fig. 6.18 and is almost identical to Fig. 3, although their

ground plane geometries are different. Obviously, the ideal canalization behavior of the

two geometries is very similar. Interestingly, the rectangular ridged ground plane has to
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Figure 6.16: The normalized x-component of the electric field above the graphene surface
(x = 2 nm) for the peak value of Im(σ)/Re(σ) at 10 THz (top-left), 20 THz (top-right),
and 30 THz (bottom).

be non-symmetric (the ratio of groove to ridge is 3) to produce the same conductivity

function as the symmetrical triangular ridged ground plane.

Figure 6.17: An alternative geometry with rectangular ridged ground plane to realize the
soft-boundary example.
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Figure 6.18: The conductivity distribution in the geometry of Fig. 6.17.
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Chapter 7

Summary, future work and outlook

A new integro-differential equation was proposed for solving scattering problems involv-

ing wire media, allowing for the first treatment of three-dimensional wire medium objects.

The integro-differential equation was shown to be efficient and accurate via comparisons

with other results, known analytical results, and measurement for 1d, 2d, and 3d cases

(both isotropic and anisotropic for 3d). In the 1d isotropic case the integro-differential

equation led to an analytical solution. For 3d objects, the effect of wire period and di-

ameter was investigated experimentally in a range of parameters that demonstrated the

expected breakdown of homogenization for large wire period. In order to have a valid

homogenized model for the uniaxial wire medium geometries studied, wire size should

be larger than the Debye length, the wire diameter to period ratio should be less than

0.25, and the period should be such the plasma frequency is higher than the operating

frequency.

Then, using wire medium as an ENZ material, sum and difference patterns were gen-

erated using a simple and novel structure and its radiation pattern, input impedance and

directivity were investigated using full-wave simulations. The structure is useful for radar

applications and tracking systems.

Focusing on ENZ materials, the “space-domain” nonlocal permittivity ε (r− r′) has

been obtained and a new characteristic screening length introduced for spatially dispersive

materials, including artificial wire media. Unlike the Debye length, the new characteris-

tic length relates polarization to the total electric field inside the material, and so it can

be used to study the electric displacement distribution in relation to the ENZ condition.

Using some typical values semiconductor and wire medium metamaterials, it was shown



109

that the new characteristic length is very small for semiconductors and therefore an ENZ

condition can be easily obtained. However, for wire media the ENZ condition cannot

be identically obtained except in some special cases, and often only the perpendicular

displacement field can vanish.

In the last section, as a different example of homogenization, we have analyzed the

possibility to produce in-plane canalization of SPPs on a 2D surface, with particular em-

phasis on its realization in a realistically modulated graphene monolayer, resulting in a

planarized 2D hyperlens on graphene. We envision the use of this effect on a ridged

ground plane for sub-wavelength imaging of THz sources and to arbitrarily tailor the

front wave of an SPP by suitably designing the boundary of the canalization region.



110

Publications from this thesis in refereed journals

• Ebrahim Forati, George W. Hanson, Alexander B. Yakovlev, and, Andrea Alu “A

planar hyperlens based on a modulated graphene monolayer,” arXiv:1311.4791.

• Ebrahim Forati and George Hanson, “A transport model for homogenized uniaxial

wire media: three dimensional scattering problems and homogenized model lim-

its,” Physical Review B, Vol. 88, No. 12, Sep. 2013.

• Ebrahim Forati and George Hanson, “On the epsilon near zero condition for spa-

tially dispersive materials,” New J. Phys. 15, 123027 (2013).

• Ebrahim Forati and George Hanson, “Scattering from isotropic connected wire

medium metamaterials: three-, two- and one-dimensional cases,” IEEE Trans. On

Antennas and Propagation, Vol. 61, No. 7, July 2013.

• George W. Hanson, Ebrahim Forati, and Mrio G. Silveirinha, “Modeling of spatially-

dispersive wire media: transport representation, comparison with natural materials,

and additional boundary conditions,” IEEE Trans. On Antennas and Propagation.

Vol. 60, No. 9, pp.4219-4239, Sep. 2012.



111

BIBLIOGRAPHY

[1] G. Hanson, E. Forati, and M. Silveirinha, “Modeling of spatially-dispersive wire

media: transport representation, comparison with natural materials, and additional

boundary conditions,” IEEE Trans. Antennas and Prop., vol. 60, pp. 4219–4239,

2012.

[2] E. Forati and G. Hanson, “Scattering from isotropic connected wire medium meta-

materials: three-, two- and one-dimensional cases,” IEEE Trans. Antennas and

Prop., vol. 61, pp. 3564–3574, 2013.

[3] E. Forati and G. Hanson, “A transport model for homogenized uni-axial wire me-

dia: three dimensional scattering problems and homogenized model limits,” Phys.

Rev. B, vol. 88, p. 125125, 2013.

[4] E. Forati and G. Hanson, “A novel epsilon-near-zero total internal reflection an-

tenna to form radar sum and difference patterns,” in IEEE AP-S International Sym-

posium on Antennas and Prop., 2013.

[5] E. Forati and G. Hanson, “On the epsilon near zero condition for spatially disper-

sive materials,” New J. Phys., vol. 15, p. 123027, 2013.

[6] E. Forati, G. Hanson, A. Yakovlev, and A. Alu, “A planar hyperlens based on a

modulated graphene monolayer,” arXiv:1311.4791, 2013.

[7] T. Shen and T. Wong, “Response of elementary semiconducting structures to a

terahertz electric field,” in IEEE APS-URSI, pp. 1613–1616, 2011.

[8] M. Silveirinha, “Artificial plasma formed by connected metallic wires at infrared

frequencies,” Phys. Rev. B, vol. 79, pp. 035118 (1–15), 2009.



112

[9] A. Sihvola, Electromagnetic mixing formulas and applications. IEE press, 1999.

[10] R. Ruppin, “Evaluation of extended maxwell-garnet theories,” Optics communica-

tion, pp. 273–279, 2000.

[11] C. Bohren, “Applicability of effective-medium theories to problems of scattering

and absorption by nonhomogeneous atmospheric particles,” Journal of the Atmo-

spheric Sciences, vol. 43, pp. 468–475, 1986.

[12] T. Jones, Electromechanics of Particles. Cambridge University Press, 2005.

[13] T. A. N. Morgado, Tailoring the near- and far-fields with wire media. PhD thesis,

University of Coimbra, 2011.

[14] W. Lu and S. Sridhar, “Superlens imaging theory for anisotropic nanostructured

metamaterials with broadband all-angle negative refraction,” Phys. Rev. B, vol. 77,

p. 33101, 2008.

[15] P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a

transmission device formed by a periodic layered metal-dielectric structure operat-

ing in the canalization regime,” Phys. Rev. B, vol. 73, p. 113110, 2006.

[16] M. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy,

and field confinement in narrow channels and tight bends using epsilon-near-zero

metamaterials,” Phys. Rev. B, vol. 76, p. 245109, 2007.

[17] M. Silveirinha, P. Belov, and C. Simovski, “Subwavelength imaging at infrared

frequencies using an array of metallic nanorods,” Phys. Rev. B, vol. 75, pp. 035108

(1–12), 2007.

[18] C. S. R. Kaipa, A. B. Yakovlev, S. I. Maslovski, and M. G. Silveirinha, “Near-field

imaging with a loaded wire medium,” Phys. Rev. B, vol. 86, pp. 155103 (1–10),

2012.



113

[19] A. V. I.S. Nefedov, D. Chicherin, “Infrared cloaking based on wire media,” in Proc.

of SPIE, vol. 6987, p. 698728, 2008.

[20] S. C. G. Lovat, P. Burghignoli, “Shielding properties of a wire-medium screen,”

IEEE Trans. Electromag. Comp., vol. 50, pp. 80–88, 2008.

[21] S. Hrabar, Metamaterials and Plasmonics: Fundamentals, Modelling, Applica-

tions, ch. Application of Wire Media in Antenna Technology, pp. 139–151. NATO

Science for Peace and Security Series B: Physics and Biophysics, 2009.

[22] P. Burghignoli, G. Lovat, F. Capolino, D. Jackson, and D. Wilton, “Directive leaky-

wave radiation from a dipole source in a wire-medium slab,” IEEE Trans. Antennas

and Prop., vol. 56, pp. 1329–1338, 2008.

[23] W. Rotman, “Plasma simulation by artificial dielectrics and parallel-plate media,”

IRE Transactions on Antennas and Propagation, vol. 10, pp. 82–95, 1962.

[24] J. Brown, Progress in Dielectrics, ch. Artificial dielectrics, p. 193225. Wiley, 1960.

[25] J. M. Pitarke, F. Garcia-Vidal, and J. Pendry, “Effective medium response of a

system of metallic cylinders,” Phys. Rev. B, vol. 57, pp. 15261–15288, 1998.

[26] P. Belov, R. Marques, S. Maslovski, I. Nefedov, M. Silveirinha, C. Simovski, and

S. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength

limit,” Phys. Rev. B, vol. 67, p. 113103, 2003.

[27] M. Silveirinha and C. Fernandes, “Homogenization of 3-d-connected and non-

connected wire metamaterials,” IEEE Trans. Microw. Theory Tech., vol. 53,

p. 14181430, 2005.

[28] M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of -

negative rods,” Phys. Rev. E, vol. 73, p. 046612, 2006.



114

[29] C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles.

John Wiley and Sons, 1983.

[30] G. Hanson, M. Silveirinha, P. Burghignoli, and A. Yakovlev, “Nonlocal suscepti-

bility of the wire medium in the spatial domain considering material boundaries,”

New Journal of Physics, 2013.

[31] A. D. Yaghjian, “Electric dyadic green’s functions in the source region,” Proc.

IEEE, vol. 68, pp. 248–263, 1980.

[32] W. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1995.

[33] G. Hanson, “Drift-diffusion: A model for teaching spatial dispersion concepts and

the importance of screening in nanoscale structures,” IEEE Antennas and Propa-

gation Magazine, vol. 52, pp. 198–207, 2012.

[34] J. Volakis and K. Sertel, Integral equation methods for electromagnetics. Scitech,

2012.

[35] C. David and F. J. G. de Abajo, “Spatial nonlocality in the optical response of metal

nanoparticles,” Physical Chemistry C, pp. 19470–75, 2011.

[36] R. Newton, “Optical theorem and beyond,” Am. J. Physics, vol. 44, pp. 639–642,

1976.

[37] FDTD, Lumerical Solutions. Inc.

[38] QWED, URL: www.qwed.com.pl. Warsaw, Poland.

[39] SPI, Flash-Dry Silver Paint. Structure Probe Inc.

[40] B. Wang and K.-M. Huang, “Shaping the radiation pattern with mu and epsilon-

near-zero metamaterials,” Progress In Electromagnetics Research, vol. 106,

pp. 107–119, 2010.



115

[41] R. Zhou, H. Zhang, and H. Xin, “Metallic wire array as low-effective index of

refraction medium for directive antenna application,” IEEE Trans. Antennas and

Prop., vol. 58, no. 1, pp. 79–87, 2010.

[42] M. I. Skolnik, Introduction to Radar Systems. Radar Handbook, 1962.

[43] FEKO, ”Software & Systems SA,(Pty) Ltd, 32 Techno Lane.” Technopark. Stellen-

bosch 7600, EM.

[44] A. Alu, N. Engheta, A. Erentok, and R. Ziolkowski, “Single-negative, double-

negative and low-index metamaterials and their electromagnetic applications,”

IEEE Antennas and Prop. Magazine, vol. 49, pp. 23–36, 2007.

[45] J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proc.

Inst. Elect. Eng., vol. 100IV, p. 51, Jan. 1953.

[46] M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through

subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett.,

vol. 97, p. 157403, 2006.

[47] A. Alu, M. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero meta-

materials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys.

Rev. B, vol. 75, p. 155410, 2007.

[48] N. Engheta, “Circuits with light at nanoscales: Optical nanocircuits inspired by

metamaterials,” Science, vol. 317, no. 5845, pp. 1698–1702, 2007.

[49] F. Bilotti, S. Tricarico, and L. Vegni, “Electromagnetic cloaking devices for te and

tm polarizations,” New J. of Phys., vol. 10, p. 115035, 2008.

[50] F. Bilotti, S. Tricarico, and L. Vegni, “Plasmonic metamaterial cloaking at optical

frequencies,” IEEE Trans. on Nanotechnology, vol. 9, no. 1, pp. 55–61, 2010.



116

[51] M. Navarro-Cia, M. Beruete, M. Sorolla, and N. Engheta, “Lens concept using

epsilon near-zero (enz) metamaterials,” in IEEE AP-S International Symposium on

Antennas and Prop, 2011.

[52] M. Navarro-Ca, M. Beruete, I. Campillo, and M. Sorolla, “Enhanced lens by ep-

silon and mu near-zero metamaterial boosted by extraordinary optical transmis-

sion,” Phys. Rev. B, vol. 83, p. 115112, 2011.

[53] E. Forati and G. W. Hanson, “Soft-boundary graphene nanoribbon formed by a

graphene sheet above a perturbed ground plane: Conductivity profile and spp

modal current¡p¿distribution,” J. Opt., vol. 15, pp. 114006–114006, 2013.

[54] A. M. Portis, Electromagnetic fields: sources and media. New York: Wiley, 1978.

[55] CST, Microwave Studio. http://www.cst.com.

[56] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,

I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon

films,” Science, vol. 306, pp. 666–669, 2004.

[57] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,

“The electronic properties of graphene.,” Rev. Mod. Phys., vol. 81, pp. 109–162,

2009.

[58] X. Luo, T. Qiu, W. Lu, and Z. Ni, “Plasmons in graphene: Recent progress and

applications,” Materials Science and Engineering: R, vol. 74, pp. 351–376, 2013.

[59] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the

quantum hall effect and berry’s phase in graphene,” Nature, vol. 438, pp. 201–204,

2005.

[60] L. A. Falkovsky and A. A. Varlamov, “Space-time dispersion of graphene conduc-

tivity,” Eur. Phys. J. B, vol. 56, pp. 281–284, 2007.



117

[61] L. A. Falkovsky and S. S. Pershoguba, “Optical far-infrared properties of a

graphene monolayer and multilayer,” Phys. Rev. B, vol. 76, pp. 153410–153410,

2007.

[62] S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys.

Rev. Lett., vol. 99, pp. 016803–016803, 2007.

[63] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response

of dirac quasiparticles in graphene,” Phys. Rev. Lett., vol. 96, pp. 256802–256802,

2006.

[64] V. P. Gusynin and S. G. Sharapov, “Transport of dirac quasiparticles in graphene:

Hall and optical conductivities,” Phys. Rev. B, vol. 73, pp. 245411–245411, 2006.

[65] N. M. R. Peres, A. C. Neto, and F. Guinea, “Conductance quantization in meso-

scopic graphene,” Phys. Rev. B, vol. 73, pp. 195411–195411, 2006.

[66] G. W. Hanson, “Dyadic green’s functions for an anisotropic, non-local model of

biased graphene,” IEEE Trans. Antennas Propagat., vol. 56, pp. 747–757, 2008.

[67] G. W. Hanson, “Dyadic greens functions and guided surface waves for a surface

conductivity model of graphene,” J. Appl. Phys., vol. 103, pp. 064302–064302,

2008.

[68] N. M. R. Peres, F. Guinea, and A. C. Neto, “Electronic properties of disordered

two-dimensional carbon,” Phys. Rev. B, vol. 73, pp. 125411–125411, 2006.

[69] K. Ziegler, “Minimal conductivity of graphene: Nonuniversal values from the kubo

formula,” Phys. Rev. B, vol. 75, pp. 233407–233407, 2007.

[70] N. Ashcroft and N. Mermin, Solid State Physics. Saunders College, 1976.

[71] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Magneto-optical conductivity

in graphene,” J. Phys.: Condens. Matter, vol. 19.2, pp. 026222–026222, 2007.



118

[72] A. Vakil and N. Engheta, “Transformation optics using graphene,” Science,

vol. 332.6035, pp. 1291–1294, 2011.

[73] J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. L. Koppens, and F. J. G.

de Abajo, “Graphene plasmon waveguiding and hybridization in individual and

paired nanoribbons,” ACS Nano, vol. 6, pp. 431–440, 2011.

[74] G. W. Hanson, E. Forati, W. Linz, and A. B. Yakovlev, “Excitation of thz sur-

face plasmons on graphene surfaces by an elementary dipole and quantum emit-

ter: Strong electrodynamic effect of dielectric support,” Phys. Rev. B, vol. 86,

pp. 235440 (1–9)–9), 2012.

[75] A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Edge

and waveguide thz surface plasmon modes in graphene micro-ribbons,” arXiv,

vol. 1107.5787, pp. –, 2011.

[76] D. L. Sounas and C. Caloz, “Edge surface modes in magnetically biased chemically

doped graphene strips,” Appl. Phys. Lett., vol. 98, pp. 021911–021911, 2011.

[77] W. Wang, P. Apell, and J. Kinaret, “Edge plasmons in graphene nanostructures,”

Phys. Rev. B, vol. 84, pp. 085423–085423, 2011.

[78] E. Forati and G. W. Hanson, “Surface plasmon polaritons on soft-boundary

graphene nanoribbons and their application in switching/demultiplexing,” Appl.

Phys. Lett., vol. 103, pp. 133104–133104, 2013.

[79] H. Raether, Surface Plasmons. Berlin: Springer, 1988.

[80] A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Fields radiated

by a nanoemitter in a graphene sheet,” Phy. Rev. B, vol. 84, pp. 195446–195446,

2011.



119

[81] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, and

A. N. Marchenkov, “Electronic confinement and coherence in patterned epitaxial

graphene,” Science, vol. 312, pp. 1191–1196, 2006.

[82] T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, “Role of contacts in

graphene transistors: A scanning photocurrent study,” Phys. Rev. B, vol. 79,

pp. 245430–245430, 2009.

[83] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber,

N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual trans-

parency of graphene,” Science, vol. 320, pp. 1308–1308, 2008.

[84] F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and op-

toelectronics,” Nat. Photon., vol. 4, pp. 611–622, 2010.

[85] F. N. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast

graphene photodetector,” Nat. Nanotechnol., vol. 4, pp. 839–843, 2009.

[86] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz,

“Measurement of the optical conductivity of graphene,” Phys. Rev. Lett., vol. 101,

pp. 196405–196405, 2008.

[87] T. Otsuji, S. B. Tombet, A. Satou, H. Fukidome, M. Suemitsu, E. Sano, V. Popov,

M. Ryzhii, and V. Ryzhii, “Graphene-based devices in terahertz science and tech-

nology,” J. Phys. D: Appl. Phys., vol. 45, pp. 303001–303001, 2012.

[88] C. Docherty and M. Johnston, “Terahertz properties of graphene,” J. Infrared Mil-

lim. Terahertz Waves, vol. 33, pp. 797–815, 2012.

[89] J. S. Gomez-Diaz, M. Esquius-Morote, and J. Perruisseau-Carrier, “Plane wave

excitation-detection of non-resonant plasmons along finite-width graphene strips,”

Optics Express, vol. 21, pp. 24856–24872, 2013.



120

[90] J. S. Gomez-Diaz and J. Perruisseau-Carrier, “Graphene-based plasmonic switches

at near infrared frequencies,” Optics Express, vol. 21, pp. 15490–15504, 2013.

[91] Y. Jiang, W. Lu, H. Xu, Z. Dong, and T. Cui, “A planar electromagnetic “black

hole” based on graphene,” Phy. Lett. A, vol. 376, pp. 1468–1471, 2012.

[92] P. Y. Chen and A. Al, “Atomically thin surface cloak using graphene monolayers,”

ACS Nano, vol. 5, pp. 5855–5863, 2011.

[93] Y. Liu, X. Dong, and P. Chen, “Biological and chemical sensors based on graphene

materials,” Chem. Soc. Rev., vol. 41, pp. 2283–2307, 2012.

[94] S. Szunerits, N. Maalouli, E. Wijaya, J. Vilcot, and R. Boukherroub, “Recent ad-

vances in the development of graphene-based surface plasmon resonance (spr) in-

terfaces,” Anal. Bioanal. Chem., vol. 405, pp. 1435–1443, 2013.

[95] J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85,

pp. 3966–3966, 2000.

[96] V. Veselago, “The electrodynamics of substances with simultanously negative val-

ues of and,” Sov. Phys. Usp., vol. 10, pp. 509–514, 1968.

[97] P. Ikonen, P. A. Belov, C. R. Simovski, and S. I. Maslovski, “Experimental demon-

stration of subwavelength field channeling at microwave frequencies using a ca-

pacitively loaded wire medium,” Phys. Rev. B, vol. 73, pp. 073102–073102, 2006.

[98] E. E. Narimanov and V. M. Shalaev, “Optics: Beyond diffraction,” Nature,

vol. 447.7142, pp. 266–267, 2007.

[99] A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using

metamaterial crystals: Theory and simulations,” Phys. Rev. B, vol. 74, pp. 075103–

075103, 2006.



121

[100] P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images

by electromagnetic crystals,” Phys. Rev. B, vol. 71, p. 193105, 2005.

[101] P. Belov and M. Silveirinha, “Resolution of subwavelength transmission devices

formed by a wire medium,” Phys. Rev. E, vol. 73, p. 056607, 2006.

[102] G. W. Hanson, A. B. Yakovlev, and A. Mafi, “Excitation of discrete and continuous

spectrum for a surface conductivity model of graphene,” J. Appl. Phys., vol. 110,

pp. 114305–114305, 2011.

[103] P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, and

S. Tretyakov, “Transmission of images with subwavelength resolution to distances

of several wavelengths in the microwave range,” Phy. Rev. B, vol. 77, p. 193108,

2008.

[104] S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewartar, “Imaging

the near field,” J. Mod. Opt., vol. 50, pp. 1419–1430, 2003.

[105] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer,

and D. N. Basov, “Dirac charge dynamics in graphene by infrared spectroscopy,”

Nat. Phys., vol. 4, pp. 532–535, 2008.

[106] C. Lee, J. Y. Kim, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Optical re-

sponse of large scale single layer graphene,” Appl. Phys. Lett., vol. 98, pp. 071905–

071905, 2011.

[107] J. Y. Kim, C. Lee, S. Bae, K. S. Kim, B. H. Hong, and E. J. Choi, “Far-infrared

study of substrate-effect on large scale graphene,” Appl. Phys. Lett., vol. 98,

pp. 201907–201907, 2011.

[108] A. Alu and N. Engheta, “Optical nanotransmission lines: Synthesis of planar

left-handed metamaterials in the infrared and visible regimes,” JOSA B, vol. 23,

pp. 571–583, 2006.



122

CURRICULUM VITAE

Ebrahim Forati
University of Wisconsin-Milwaukee
Department of Electrica Engineering

3200 North Cramer Street
Milwaukee, WI 53211 USA

Phone: (414) 306-3767
email: forati@ieee.org

Education:

• Doctor of Philosophy in Engineering,
University of Wisconsin-Milwaukee, May 2014.

Thesis title: A novel transport based model for wire media and its application to
scattering problems.

Advisor: George W. Hanson.

• Master of Science in Electrical Engineering,
Iran University of Science and Technology, July 2009.

• Bachelor of Science in Electrical Engineering,
Iran University of Science and Technology, September 2006.

Research Interests:

• Electromagnetics, Metamaterials, Graphene, Antenna.

Publications in refereed journals:

• Ebrahim Forati, George Hanson, Alexander Yakovlev, and Andrea Alu, “A planar
hyperlens based on a modulated graphene monolayer” submitted, arXiv:1311.4791

• Ebrahim Forati and George Hanson,“Surface plosmon polaritons on soft-boundary
graphene nanoribbons and their applications as voltage controlled plosmonic
switches and frequency demultiplexers” Applied Physics Letters, Vol. 103, pp.
133104, 2013. DOI: 10.1063/1.4822044

• Ebrahim Forati and George Hanson,“Soft-boundary graphene nanoribbon formed
by a graphene sheet above a perturbed ground plane: conductivity profile and
SPP modal current distribution” Journal of optics, Vol. 15, pp. 114006, 2013.
DOI: 10.1088/2040-8978/15/11/114006



123

• Ebrahim Forati and George Hanson,“ On the epsilon near zero condition in spa-
tially dispersive materials” New Journal of Physics , Vol. 15, pp. 123027, 2013

• Ebrahim Forati and George Hanson,“A transport model for homogenized uni-
axial wire media: three dimensional scattering problems and homogenized
model limits” Physical Review B, Vol. 88, No. 12, Sep. 2013, DOI: 10.1103/Phys-
RevB.88.125125

• Ebrahim Forati and George Hanson, “Scattering from isotropic connected wire
medium metamaterials: three-, two- and one-dimensional cases,” IEEE Trans.
On Antennas and Propagation, DOI:10.1109/TAP.2013.2254455

• George W. Hanson, Ebrahim Forati, Whitney Linz, and Alexander B. Yakovlev,
“Excitation of THz surface plasmons on graphene surfaces by an elemen-
tary dipole and quantum emitter: Strong electrodynamic effect ofdie lectric
support,” Physical Review B, Vol. 86, No. 23, Dec. 2012, DOI: 10.1103/Phys-
RevB.86.235440

• D. Li, Y. S. Jung, H. K. Kim, J. Chen, D. A. Geller, M. V. Shuba, S. A. Maksimenko
, L. Li, S. Patch, E. Forati, and G. W. Hanson,“The effect of sample holder geom-
etry on electromagnetic heating on nanoparticle and NaCl solutions at 13.56
MHz,” IEEE Trans. On Biomedical Engineering, Vol. 59, No. 12, Dec. 2012,
DOI:10.1109/TBME.2012.2219049

• George W. Hanson, Ebrahim Forati, and Mrio G. Silveirinha,“Modeling of spatially-
dispersive wire media: transport representation, comparison with natural ma-
terials, and additional boundary conditions,” IEEE Trans. On Antennas and
Propagation. Vol. 60, No. 9, pp.4219-4239, Sep. 2012,
DOI:10.1109/TAP.2012.2207078

• E. Forati, A. D. Mueller, P. Gandomkar, G. Hanson,“A New Formulation of Pock-
lingtons Equation for Thin Wires Using the Exact Kernel,” IEEE Trans. On
Antennas and Propagation. Vol. 59, No. 11, pp.4355-4360, Nov. 2011,
DOI:10.1109/TAP.2011.2164211

• H. Oraizi and E. Forati,“Novel Circuit Topologies for Active Distributed Fre-
quency Multiplexers and De-multiplexers,” International Journal of RF andMi-
crowave Computer-Aided Engineering, vol. 21, Issue 1, pp. 67-76, Jan 2011, DOI:
10.1002/mmce.20488

• H. Oraizi and E. Forati,“Novel Wideband Active Microstrip Antennas Using
Active Distributed Frequency Multiplexers or De-multiplexers,” International



124

Journal of RF and Microwave Computer-Aided Engineering, vol. 20, Issue 4, pp.
408-415, July 2010, DOI: 10.1002/mmce.20445

Conferences and meetings presentations:

• (Submitted) Ebrahim Forati, George W. Hanson, and Stephen Hughes, “Graphene
as a tunable reservoir for shaping the incoherent spectrum of a quantum dot
via plasmonic effects,” Conference on Lasers and Electro-Optics (CLEO), San
Jose, CA, June 2014

• (Oral, E. Forati) E. Forati, G. W. Hanson, Alexander Yakovlev, Andrea Alu, “Canal-
ization of surface plasmon polaritons on a graphene sheet with a perturbed
ground plane,” USNC/URSI National Radio Science Meeting, Boulder, CO, Jan-
uary 2014

• (Oral, E. Forati) Ebrahim Forati and George Hanson, “A novel epsilon-near-zero
total internal reflection antenna to form radar sum and difference patterns,”
IEEE AP-S International Symposium and USNC/URSI National Radio Science Meet-
ing, Orlando, FL, July 2013

• (Oral, E. Forati) Ebrahim Forati and George Hanson, “Three dimensional scatter-
ing problems involving uniaxial and isotropic wire medium objects:spherical
and cubical examples,” IEEE AP-S International Symposium and USNC/URSI Na-
tional Radio Science Meeting, Orlando, FL, July 2013

• (Poster) G. W. Hanson, E. Forati A. B. Yakovlev, “Excitation amplitude of THz
surface plasmons on graphene surfaces by an elementary dipole and quantum
emitter,” Graphene Nanophotonics 2013, Benasque (Spain), March 4-8, 2013

• (Keynote talk., A. B. Yakovlev) A. B. Yakovlev, S. I Maslovski, M. G. Silveir-
inha, C. S. R. Kaipa, G. W. Hanson, P. A. Belov, O. Luukkonen, I. S. Nefedov, C.
R. Simovski, S. A. Tretyakov, Y. R. Padooru and E. Forati, “Homogenization of
Wire Media for the Efficient Analysis of Practical Metamaterial Structures at
Microwave and Terahertz Frequencies,” META13, the 4th International Confer-
ence on Metamaterials, Photonic Crystals and Plasmonics, Sharjah-UAE, March
2013

• (Oral, E. Forati) E. Forati, G. W. Hanson, “The interaction of electromagnetic
waves and three-dimensional non-isotropic (uniaxial) wire medium metamate-
rials based on a transport model,” USNC/URSI National Radio Science Meeting,
Boulder, CO, January 2013



125

• (Poster) E. Forati, G. W. Hanson, “Scattering Problems Involving Three Dimen-
sional Non-Local Wire Metamaterials Based on a Transport Model,” IEEE
AP-S International Symposium and USNC/URSI National Radio Science Meeting,
Chicago, IL, July 2012

• (Oral, E. Forati) E. Forati, G. W. Hanson, T. Shen and T. Wong, “Drift-diffusion
and transport models for the analysis of non-local plasmas and metamateri-
als,” USNC/URSI National Radio Science Meeting, Boulder, CO, January 2012

• (Oral, H. Oraizi) H. Oraizi, and E. Forati, “Adjustment of resonant frequency
of rectangular patch antenna by placing metallic walls or vias adjacent to its
edge,” 10th Mediterranean Microwave Symposium (MMS’2010), Cyprus, August,
2010, pp. 431-435

• (Oral, E. Forati) H. Oraizi, and E. Forati, “A Novel design of Multiplexers and De-
multiplexers,” 17th Iranian Conference on Electrical Engineering (ICEE), Tehran,
Iran, May.2009

• (Oral, H. Oraizi) H. Oraizi, E. Forati and M. S. Esfahlan, “A Novel Topology
For The Implementation of Active Distributed Multiplexers,” 19th European
Conference of Circuit Theory and Design (ECCTD), Antalya, Turkey, 2009, pp.
383-386

• (Oral, M. S. Esfahlan) H. Oraizi, M. S. Esfahlan, and E.Forati, “Design of Stepped-
Impedance Low Pass Filters with Impedance Matching by Particle Swarm Op-
timization and Conjugate Gradient Method,” 19th European Conference of Cir-
cuit Theory and Design (ECCTD), Antalya, Turkey, 2009, pp. 639-642

Awards:

• USNC-URSI travel fellowship award (two times in years 2012 and 2013) to support
the participation to the National Radio Science meeting in Boulder, CO, USA

• UWM Chancellor’s award (Five times between 2010 and 2014)

Membership:

• Student member of IEEE (2009-present)

• IEEE Antennas and propagation society (2012-present)



126

• Student member of American Physical Society (2013-present)

Technical software skills:

• Skilled in:
MATLAB/HFSS/ COMSOL /ADS/FEKO/MathCAD/Lumerical/CST

• Familiar with:
SONNET/Ansoft Designer/Protel /Microwave office/Orcad/Pascal

Teaching experience at UWM:

• Fall 2013: Instructor of EE150, Electronic Technology in the World Around us,
Teaching Assistan of EE305, Electrical Circuits II

• Summer 2013: Instructor of EE305, Electrical Circuits II

• Spring 2013: Teaching Assistant of EE101, Fundamentals of Electrical Engineering

• Fall 2012: Instructor of EE150

• Summer 2012: Instructor of EE335, Electronics II

• Spring 2012: Instructor of EE150

• Fall 2011: Teaching Assistant of EE299 (Later changed to EE101) Fundamentals
of Electrical Engineering

Technical Reviewer:

• American Math Society

• IEEE Transactions on Antennas and propagation

• American Physical Society

• Journal of Optics

• iCBEB conference


