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ABSTRACT

Optimal reinsurance strategy with

bivariate Pareto risks

by

Evelyn Susanne Gaus

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Wei Wei

In an insurance, one is often concerned with risks and extreme events which can

cause large losses. The Pareto distribution is often used in actuarial sciences for

modeling large losses. This thesis extends the study of Cai and Wei (2011) by

considering a two-line business model with positive dependence through stochastic

ordering (PDS) risks, where the risks are bivariate Pareto distributed. Cai and

Wei (2011) showed that in individual reinsurance treaties the excess-of-loss treaty

is the optimal reinsurance form for an insurer with PDS risks. We derive explicit

expressions for the optimal retention levels in the excess-of-loss treaty by considering

several risk functions including the criteria of minimizing the variance, minimizing

moments of higher order and minimizing moments of fractional order of the total

retained loss of the insurer. This will be followed by a comparison of retentions for

different choices of the parameters of the bivariate Pareto distribution.
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Chapter 1

Introduction

Reinsurance is a special sector in the insurance business. An insurer transfers risks

to a reinsurance company to protect itself against large losses. Therefore, the in-

surer has a greater security for its solvency and equity. Furthermore, the insurance

company can decrease its required risk capital or can increase its underwriting ca-

pacity in both number and size of risks. Reinsurance is divided into proportional

reinsurance and non-proportional reinsurance. In proportional reinsurance the rein-

surer receive a predetermined share or portion of the premium the insurer charges

in its insurance contracts. In compensation the reinsurer indemnifies the insurer

against losses in the same portion or share in the covered insurance contracts. Non-

proportional reinsurance consists of the excess-of-loss treaty and the stop-loss treaty.

In the excess-of-loss treaty the reinsurer indemnifies the insurer against losses that

exceed a specified amount, known as the insurer’s retention or deductible. In the

stop-loss treaty the reinsurer indemnifies the insurer against losses up to a treaty

limit.

1.1 Literature review

This thesis is based on the paper ”Optimal reinsurance with positive dependent

risks” by Jun Cai and Wei Wei. In this paper Cai and Wei considered positively

dependent through stochastic ordering (PDS) risks in the individual risk model.
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They proved that in individualized reinsurance treaties the excess-of-loss treaty is

the optimal reinsurance form for an insurer with PDS dependent risks. Previously

Denuit and Vermandele (1998) had considered the problem of the optimal reinsur-

ance strategy in the individual risk model. They showed that the excess-of-loss

reinsurance with equal retentions for each line of business is the optimal reinsur-

ance strategy if the risks are exchangeable random variables. Cai and Wei (2011)

extended the study of Denuit and Vermandele (2011) on individualized reinsurance

treaties to dependent risks. After defining the notion of several positive dependent

risks, Cai and Wei (2011) proved that convolution preservation of the convex order

for PDS random variables holds. They showed that the optimal reinsurance in the

individual risk model with PDS risks is the excess-of-loss treaty. Moreover, Cai and

Wei (2011) derived explicit expressions for the optimal retention in the excess-of-loss

treaty in an insurance business model with two lines of business under the criteria

of minimizing the variance of the total retained loss of the insurer and maximizing

the expected exponential utility for insurer.

1.2 Model introduction

Assume the insurer has n = 2 lines of business. Let the random variable Xi denote

the loss in line i, with i = 1, 2. Furthermore, we consider the individual risk model,

where the total loss of the insurer is given by S2 = X1 + X2, that is the total loss

modeled as the sum of the individual losses. The individual risk model is especially

used in life and health insurance. The insurer applies a reinsurance strategy I(x)

to transfer risks of big losses to the reinsurer. Let Ii(x) be increasing for x ≥ 0

and satisfying 0 ≤ Ii(x) ≤ x for i = 1, 2. Ii(x) is called the reinsurance strat-

egy of line i. Therefore, the insurer retains the total loss SI2 = I1(X1) + I2(X2) and

the reinsurer covers the remaining loss S2−SI2 with reinsurance strategy I = (I1, I2).

The premium the insurer has to pay the reinsurer for taking on parts of the risks

is calculated by the expected value principle, as in Denuit and Vermandele (1998).
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The expected value principle is given by (1 + θR)E(S2−SI2) and equal to a constant

P , where θR > 0 denotes the security loading of the reinsurer.

(1 + θR)E(S2 − SI2) = P

This is equivalent to assuming that the expected total retained loss E(SI2) is fixed

and equal to p > 0. Solving this equation for p, we get

E(SI2) = p = E(S2)− P

1 + θR
.

We will define in Chapter 2.2 that the range of p is given by
[
θ1 + θ2,

α(θ1+θ2)
α−1

)
.

As in Cai and Wei (2011) for each p > 0 we define the class

Dp
2 =

{
I = (I1, I2)

∣∣Ii(x) is increasing in x ≥ 0 with 0 ≤ Ii(x) ≤ x

for i = 1, 2 and E(SI2) = p
}

of admissible reinsurance strategies. For a given positive convex function u on

(0,∞) we wish to minimize E(u(SI2)) over Dp
2. The function u is called risk func-

tion. The reinsurance strategy in the excess-of-loss treaty with two lines of business

is given by Ii(x) = x ∧ di for i = 1, 2 with the retention vector (d1, d2).

Assume that (X1, X2) are positive dependent risks, particularly PDS risks. In

the individual risk model with individualized reinsurance treaties one is often con-

cerned with positively dependent risks. This means that if we consider an insurance

business with two lines of business it is very probable that if a loss in one line oc-

curs, then a loss in the other line occurs as well. For example, consider an insurance

with two lines of business, Health/Life and Property/Casualty. An event such as

Hurricane Katrina can cause extremely large losses in both lines. It’s reasonable

to assume that the property losses and the number of dead or injured people are

positively dependent.
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Based on Cai and Wei (2011) we derive explicit expressions for the optimal re-

tention vector (d∗1, d
∗
2) in the bivariate Pareto case such that

E[u(X1 ∧ d∗1 +X2 ∧ d∗2)] = inf
(d1,d2)∈L

E[u(X1 ∧ d1 +X2 ∧ d2)] (1.1)

where for p > 0

L =

{
(d1, d2) ∈ [0,∞)2

∣∣∣∣ ∫ d1

0

F̄1(x)dx+

∫ d2

0

F̄2(x)dx = p

}
.

and u is convex.

In this thesis we will focus on risks that are bivariate Pareto distributed and

work with three different risk functions. In Chapter 2 we will recall the definitions

of several Pareto distributions and examine some characteristics of the Pareto dis-

tribution. Furthermore, we will recall notions of positive dependence. In Chapter 3,

we derive optimal retention levels for three different risk functions. In the first case,

where we minimize the variance, we will use Theorem 4.4 of Cai and Wei (2011). In

the other two cases, where we minimize moments of higher order and of fractional

order, we derive explicit expressions for the optimal retentions (d∗1, d
∗
2) such that

(1.1) holds. Finally, in Chapter 4 we analyze the optimal retentions for different

choices of the parameter of the bivariate Pareto distribution.
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Chapter 2

Preliminaries

In this chapter we will review the properties of several Pareto distributions and

notions of positive dependence. Furthermore, we will derive important results for

further calculations in Chapter 3 such as the linear transformation between ParetoII

and the Lomax distribution and the conditional distribution of bivariate Pareto

distributed random variables. Afterwards, we derive an explicit expression of d2 in

terms of d1 such that (1.1) holds.

2.1 Pareto Distribution

The Pareto distribution belongs to the class of heavy-tailed distributions and is of-

ten used in insurance for modeling large losses that exceed a specific threshold. A

heavy-tailed distribution means, roughly speaking, that there is a relatively large

probability for the occurrence of events that cause large losses. Furthermore, the

future worst case is expected to be much worse than the current worst case. To con-

tinue the previous example, Hurricane Katrina is a good example for heavy-tailed

losses. Hurricane Andrew (1992) was the hurricane that caused the largest losses so

far in the American history until Hurricane Katrina occurred. Hurricane Katrina

caused insured losses in the amount of $62,200 in comparison to $17,000, the insured

loss Hurricane Andrew caused1.

1Original Values of Munich Re 2012 in Mio. US$, Geo Risks Research, NatCatSERVICE,
August 2012
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In the literature many different types of the Pareto distribution are discussed. In

this thesis we consider the Pareto distribution of Type 1 (ParetoI), Pareto distribu-

tion of Type 2 (ParetoII), Lomax distribution (Lomax) and the bivariate Pareto

distribution of Type 1.

The distribution function of X ∼ ParetoI(α, σ) is defined as

F (x) = 1−
(σ
x

)α
,

with density function

f(x) =
ασα

xα+1
,

where x > θ > 0 and α > 0.

For X ∼ ParetoII(α, σ, µ) the distribution function is defined as

F (x) =

(
1 +

x− µ
σ

)−α
, x > µ, µ ∈ R, σ > 0, α > 0.

If µ = 0, the ParetoII distribution is known as the Lomax distribution. Mardia

(1962) defined the density function of the bivariate Pareto distribution of Type 1

for a vector of random variables (X1, X2) as

f(x1, x2) =

{
α(α + 1)(θ1θ2)α+1(θ2x1 + θ1x2 − θ1θ2)−(α+2) , xi > θi > 0, i = 1, 2

0 , otherwise

where α > 0. The random variablesXi have the marginal distribution ParetoI(α, θi)

with parameters α > 0 and θi > 0 for i = 1, 2.

The Pareto distribution can be used to model losses whose values exceed a spe-

cific threshold. The parameter θ is the minimal possible value of the risk X and

therefore a lower bound for X. The shape parameter α is the tail index. The tail

index measures how fast the survival function decays to 0. For a heavy-tailed dis-

tribution, the survival function decays slowly to 0.
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A helpful result for further calculations is the linear transformation between

a Lomax and a ParetoII distributed random variable. Let X ∼ Lomax(α, σ)

with α > 0 and σ > 0. Then it holds for the linear transformation X + µ, that

X + µ ∼ ParetoII(α, σ, µ) with parameters α > 0, σ > 0, µ ∈ R and x > µ. This is

true, since P(X + µ > x) = P(X > x− µ) =
(
1 + x−µ

σ

)−α
.

Furthermore, an important result for further calculations is the following condi-

tional distribution of bivariate Pareto distributed random variables.

Lemma 2.1.1. Let (X1, X2) be bivariate Pareto distributed with parameters θ1 >

0, θ2 > 0 and α > 0. The conditional distribution of X2 given X1 > d1 is ParetoII(α, σ2, µ2)

with µ2 = θ2 and σ2 = d1θ2
θ1

and the conditional distribution of X1 given X2 > d2 is

ParetoII(α, σ1, µ1) with µ1 = θ1 and σ1 = d2θ1
θ2

.

Proof. It holds that

P(X2 > s|X1 > d1) =

(
1 +

s− θ2

d1θ2
θ1

)−α
.

Thus, X2 given X1 > d1 has ParetoII(α, σ2, µ2), with µ2 = θ2 and σ2 = d1θ2
θ1

.

Analogeous, it follows X1 given X2 > d2 has ParetoII(α, σ1, µ1) with

µ1 = θ1 and σ1 = d2θ1
θ2

. For the detailed calculations see Apendix.

The distribution of a linear shifted ParetoII distributed random variable is

still ParetoII. Let X ∼ ParetoII(α, σ, µ), then X + d ∼ ParetoII(α, σ, µ′) with

µ′ = µ+ d for a constant d ∈ R. This is true since P(X + d > x) = P(X > x− d) =(
1 + x−(µ+d)

σ

)−α
.

The notions of stochastically increasing (SI) and positively dependent through

stochastic ordering (PDS) are given by the following definition. Recall, the sup-

port of a random variable Y , denoted by S(Y ), is a Borel set of R such that

P{Y ∈ S(Y )} = 1.
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Definition 2.1.2. A random vector (X1, . . . , Xn) is said to be stochastically increas-

ing (SI) in the random variable Y , denoted as (X1, . . . , Xn) ↑SI Y , if

E[u(X1, . . . , Xn)|Y = y] is increasing in y ∈ S(Y ) for any increasing function

u : Rn → R such that the conditional expectation exists.

Furthermore, the random vector (X1, . . . , Xn) is said to be positively dependent

through the stochastic ordering (PDS) if (X1, . . . , Xi−1, Xi+1, . . . , Xn) ↑SI Xi for

any i = 1, . . . , n.

Using this definition, we can show that a bivariate Pareto distributed random

vector is PDS.

Lemma 2.1.3. If (X1, X2) is bivariate Pareto distributed with parameters θ1, θ2 and

α > 0, where x1 > θ1 > 0 and x2 > θ1 > 0, then (X1, X2) is PDS.

Proof. It holds that (X1, X2) is PDS if X1 ↑SI X2 and X2 ↑SI X1.

If for any x1 ∈ R : P(X1 > x1|X2 = x2) is increasing in x2 ∈ S(X2), then X1 ↑SI X2.

Analogous, X2 ↑SI X1 if for any x2 ∈ R : P(X2 > x2|X1 = x1) is increasing in

x1 ∈ S(X1).

Therefore, to prove X2 ↑SI X1 we have to show that P(X2 > x2|X1 = x1) is

increasing in x1 ∈ S(x1) for all x2 ∈ R. In the following we will just go over the

steps, for the detailed calculations see the appendix.

The conditional probability of X2 given X1 = x1 is given by

P(X2 > x2|X1 = x1) = (θ2x1)α+1(θ2x1 + θ1x2 − θ1θ2)−(α+1).

The increasing property holds, since for s, t ∈ S(x1) with s ≤ t, x2 ∈ R : P(X2 >

x2|X1 = s) ≤ P(X2 > x2|X1 = t) is increasing in x1 ∈ S(x1). With analogous

calculations, it follows that X1 ↑SI X2. Therefore, (X1, X2) is PDS.

Notice, that throughout this thesis the survival function is F̄ (x) = 1−F (x) > 0.
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2.2 Explicit expression for d2

In this section we want to derive a mapping from d1 to d2 to have an expression for

d2 in terms of d1. Recall, the set L for p > 0 is given by

L =

{
(d1, d2) ∈ [0,∞)2

∣∣∣∣ ∫ d1

0

F̄1(x)dx+

∫ d2

0

F̄2(x)dx = p > 0

}
.

For p > 0, we consider the equation∫ d1

0

F̄1(x)dx+

∫ d2

0

F̄2(x)dx = p

Note that we have a symmetric structure here and can solve this equation for d1

or d2. This symmetric structure is very interesting for further considerations of

three lines of business or more. In this thesis we solve this equation for d2. Since∫ d1
0
F̄1(x)dx+

∫ d2
0
F̄2(x)dx < E(X1) + E(X2), the range of p is bounded from above

by p < E(X1) +E(X2). Otherwise, in terms of the set L, if p = E(X1) +E(X2) then

L = {(∞,−∞)}. If p > E(X1) + E(X2) then there exists no solution for (d1, d2),

thus L = ∅. Moreover, we assume that p ≥ θ1 +θ2 because θ1 and θ2 are the minimal

values for the losses X1 and X2. Thus, p has the range p ∈
[
θ1 + θ2,

α(θ1+θ2)
α−1

)
. We

also need following Lemma of Cai and Wei (2011).

Lemma 2.2.1. On the set L, the mapping from d1 to d2 is one-to-one. Denote

the mapping as d2 = L(d1). Then, L(d1) is continuous, differentiable and strictly

decreasing in d1, with ∂d2
∂d1

= − F̄1(d1)

F̄2(d2)
.

The proof of this Lemma can be found in Lemma 4.1 in Cai and Wei (2011).

Theorem 2.2.2. If (X1, X2) is bivariate Pareto distributed, with parameters θ1, θ2

and α, where x1 > θ1 > 0, x2 > θ2 > 0 and α > 1 then

L(d1) = d2 =

(
α(θ1 + θ2)− θα1 d1−α

1 + p(1− α)

θα2

) 1
1−α

with domain (d1,∞), where d1 =
(
α(θ1+θ2)+p(1−α)

θα1

) 1
1−α

.
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Proof. The survival function of X1 is given by F̄1(x1) =
(
θ1
x1

)α
for θ1 < x1. There-

fore, ∫ d1

0

F̄1(x)dx = θ1 +

∫ d1

θ1

θα1 x
−αdx =

θ1d
1−α
1 − αθ1

1− α

Analogous, the survival function for X2 is given through F̄2(x2) =
(
θ2
x2

)α
for

θ2 < x2 and it follows: ∫ d2

0

F̄2(x)dx =
θ2d

1−α
2 − αθ2

1− α
,

Thus, we get the following equation∫ d1

0

F̄1(x)dx+

∫ d2

0

F̄2(x)dx = p

θ1d
1−α
1 − αθ1

1− α
+
θ2d

1−α
2 − αθ2

1− α
= p

θα1 d
1−α
1 − αθ1 + θα2 d

1−α
2 − αθ2 = p(1− α)

Solving this equation for d2 results in

d2 =

(
α(θ1 + θ2)− θα1 d1−α

1 + p(1− α)

θα2

) 1
1−α

Therefore, the function L(d1) is defined through L(d1) := d2 with domain (d1,∞)

and is continuous, differentiable and strictly decreasing. The lower limit of the

domain is given through

d1 = lim
d2→∞

L−1(d2)

= lim
d2→∞

(
α(θ1 + θ2)− θα2 d1−α

2 + p(1− α)

θα1

) 1
1−α

=

(
α(θ1 + θ2) + p(1− α)

θα1

) 1
1−α

.
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Example 2.2.3. For the parameter choices θ1 = 10, θ2 = 20, α = 3 and p = 38, the

function L(d1) has following representation:

Figure 2.1: L(d1) for θ1 = 10, θ2 = 20, α = 3 and p = 38

The function L(d1) is continous, differentiable and strictly decreasing in d1.
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Chapter 3

Optimal retention levels

In this chapter we want to derive the optimal retention levels in the excess-of-

loss treaty for three different risk functions. Afterwards we compare the optimal

retentions for different choices of the parameters of the bivariate Pareto distribution.

Recall, that we want to derive explicit expressions for the optimal retention vector

(d∗1, d
∗
2) in the bivariate Pareto case such that

E[u(X1 ∧ d∗1 +X2 ∧ d∗2)] = inf
(d1,d2)∈L

E[u(X1 ∧ d1 +X2 ∧ d2)]

where for p > 0

L =

{
(d1, d2) ∈ [0,∞)2

∣∣∣∣ ∫ d1

0

F̄1(x)dx+

∫ d2

0

F̄2(x)dx = p

}
.

for different risk functions u(x).

Consider the objective function

M(d1, d2) = E[u(X1 ∧ d1 +X2 ∧ d2)].

Note that d2 = L(d1), but we write in terms of d2 to keep a symmetric structure.

With Lemma 4.2 in Cai and Wei (2011), it follows that for u continuous and mono-

tonic, such that E(|u(X1 + X2)|) < ∞, M(d1, d2) is continous in d1 ∈ (d1,∞).

Furthermore we need following Lemma in Cai and Wei (2011)
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Lemma 3.0.4. Assume u(x) ∈ C1(R), i.e. u′(x) is continuous on R. Then
∂+

∂d1
M(d1, d2) is right continuous in d1 ∈ (d1,∞) and

∂+

∂d1

M(d1, d2) = F̄1(d1) (E[u′(X1 ∧ d1 +X2 ∧ d2)|X1 > d1]

− E[u′(X1 ∧ d1 +X2 ∧ d2)|X2 > d2])

The proof of this Lemma can be found in Lemma 4.3 in Cai and Wei (2011).

So, for any risk function u(x) with E(|u(X1 +X2)|) <∞ and u(x) ∈ C1(R), we

define

Cu(d1) = E[u′(X1 ∧ d1 +X2 ∧ d2)|X1 > d1]− E[u′(X1 ∧ d1 +X2 ∧ d2)|X2 > d2]

= E[u′(d1 + (X2 ∧ d2)|X1 > d1]− E[u′(X1 ∧ d1) + d2|X2 > d2].

We get the optimal retentions (d∗1, d
∗
2) if we solve Cu(d1) = 0. In the following, we

derive for several risk functions u(x) the function Cu(d1). Notice, that the condition

Cu(d1) = 0 is only a necessary condition. We will check for every risk function that

M(d1, d2) indeed attains its minimum at (d∗1, d
∗
2).

3.1 Minimizing variance

Cai and Wei (2011) derived the following general explicit expression for the reten-

tions in the optimal excess-of-loss-treaty in the bivariate case with risk function

u(x) = x2. Here we minimize the variance, since the expectation is fixed.

Theorem 3.1.1. Assume (X1, X2) is PDS and E[(X1 +X2)2] <∞.

For d1 ∈ (d1,∞), define

C1(d1) = E[(X2 − L(d1)) ∧ 0|X1 > d1]− E[(X1 − d1) ∧ 0|X2 > L(d1)]. (3.1)

Denote r1 = sup{d1|C1(d1) < 0} and r2 = inf{d1|C1(d1) > 0}.
Then d1 < r1 ≤ r2 <∞ and for any d∗1 ∈ [r1, r2], the retention vector (d∗1, L(d∗1)) is

a solution to 1.1.
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The proof of this Theorem can be found in Theorem 4.4 of Cai and Wei (2011).

To apply Theorem 3.1.1, we have to check the assumptions of this Theorem in the

case that the random variable vector (X1, X2) is bivariate Pareto distributed. Af-

terwards, we derive an explicit expression for the function C1(d1). Recall, that with

Lemma 2.1.3 follows that (X1, X2) is PDS. An important assumption of Theorem

3.1.1 is that E[(X1 +X2)2] exists. However, this is just true for α > 2.

Lemma 3.1.2. If (X1, X2) is bivariate Pareto distributed,with parameters θ1, θ2 and

α > 0, where x1 > θ1 > 0 and x2 > θ1 > 0, then E((X1 +X2)2) <∞ for α > 2.

Proof. With the Minkowski Inequality follows E((X1 + X2)2) ≤ E(X2
1 ) + E(X2

2 ).

Since Xi ∼ ParetoI(α, θi) for i = 1, 2 it holds that

E(X2
i ) =

αθ2
i

α− 2
, for i = 1, 2

Therefore, it follows E((X1 +X2)2) <∞ if α > 2.

Thus, throughout this section we will assume α > 2. Based on Lemma 2.1.2

the conditional distribution of X2 − d2 given X1 > d1 is ParetoII(α, σ2, µ2), where

µ2 = θ2 − d2 and σ2 = d1θ2
θ1

. Moreover, the conditional distribution of X1 − d1

given X2 > d2 has ParetoII(α, σ1, µ1) distribution, with µ1 = θ1 − d1 and σ1 =
d2θ1
θ2

. Through applying the linear transformation between Lomax and ParetoII

distribution and we can transform X2 − d2 given X1 > d1, respectively X1 − d1

given X2 > d2 in random variables with Lomax distribution. To get an explicit

representation of C1(d1) we can apply

E(X ∧ x) =
σ

α− 1

(
1−

(
σ

x+ σ

)α−1
)
, (3.2)

with x ≥ 0, α 6= 1 for X ∼ Lomax(α, µ).

Consider the first expectation E[(X2 − d2) ∧ 0|X1 > d1] of C1(d1).

For d2 > θ2, σ2 = d1θ2
θ1

and µ2 = θ2 − d2 we get through applying the linear
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transformation and formula (3.2):

E[(X2 − d2) ∧ 0|X1 > d1]

= E[((X2 − d2)− (θ2 − d2)) ∧ (d2 − θ2))|X1 > d1] + E[θ2 − d2|X1 > d1]

=
σ2

α− 1

(
1−

(
σ2

(d2 − θ2) + σ2

)α−1
)

+ θ2 − d2

=
d1θ2

θ1(α− 1)
− (d1θ2)α(θ1d2 + θ2d1 − θ1θ2)1−α

θ1(α− 1)
+ θ2 − d2.

For the second expectation of C1(d1) we get through analogous calculations with

d1 > θ1, σ1 = d2θ1
θ2

and µ1 = θ1 − d1

E[(X1 − d1)) ∧ 0|X2 > d2] =
d2θ1

θ2(α− 1)
− (d2θ1)α(θ2d1 + θ1L(d1)− θ1θ2)1−α

θ2(α− 1)
+ θ1 − d1.

Altogether, the representation of C1(d1) is

C1(d1) = E[(X2 − d2) ∧ 0|X1 > d1]− E[(X1 − d1) ∧ 0|X2 > d2]

=
d1θ2

θ1(α− 1)
− (d1θ2)α(θ1d2 + θ2d1 − θ1θ2)1−α

θ1(α− 1)
+ θ2 − d2

− d2θ1

θ2(α− 1)
+

(d2θ1)α(θ2d1 + θ1d2 − θ1θ2)1−α

θ2(α− 1)
− θ1 + d1

with

d2 =

(
α(θ1 + θ2)− θα1 d1−α

1 + p(1− α)

θα2

) 1
1−α
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In following example we see the plot of the C1(d1) for a specific parameter choice.

The optimal retention is at d1 = d∗1, where C1(d1) = 0.

Example 3.1.3. For the parameter choices θ1 = 10, θ2 = 20, α = 3.5 and p = 38,

the function C1(d1) has following representation:

Figure 3.1: C1(d1) for θ1 = 10, θ2 = 20, α = 3 and p = 38

M(d1, d2) attains indeed its minimum at d∗1 = d1 since for any d1 < d∗1 : C1(d1) <

0 and d1 > d∗1 : C1(d1) > 0.

3.2 Minimizing moments of higher order

In this section we are interested in solving the optimization problem (1.1) under

the aspect of minimizing moments of higher order. We consider the risk function

u(x) = x3 and derive a explicit expression for Cu(d1). Recall, that Cu(d1) is given
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by

Cu(d1) = E[u′(d1 + (X2 ∧ d2)|X1 > d1]− E[u′(X1 ∧ d1) + d2|X2 > d2].

The risk function u(x) = x3 is in C1(R) and convex. Moreover, for α > 3, it follows

directly with the Minkowski Inequality that E((X1 +X2)3) <∞, since E(X3
i ) <∞

for α > 3 and i = 1, 2.

Throughout this section we will assume α > 3. We define,

C2(d1) = E[u′(d1 + (X2 ∧ d2))|X1 > d1]− E[u′((X1 ∧ d1) + d2)|X2 > d2]

= E[(d1 + (X2 ∧ d2))2|X1 > d1]− E[((X1 ∧ d1) + d2)2|X2 > d2]

= E[((X2 + d1) ∧ (d1 + d2))2|X1 > d1]− E[((X1 + d2) ∧ (d1 + d2))2|X2 > d2].

In contrast to the previous section, we won’t use the linear transformation between

ParetoII and Lomax distribution here. In the following, we derive a general formula

for E((X ∧ c)2) for X ∼ ParetoII(α, µ, σ) and use this formula to get an explicit

expression of C2(d1).

Theorem 3.2.1. If X ∼ ParetoII(α, σ, µ), with x > µ, µ ∈ R, σ > 0 and α > 3

then

E((X ∧ c)2) = ασα
(

(c+ σ − µ)−α(2µαc+ 4µσ − 2ασc− (α− 1)αc2 − 2µ2 − 2σ2)

(α− 2)(α− 1)α

− σ−α(3µ2α + 2µ2 − 2ασµ− α2µ2 − 2σ2)

(α− 2)(α− 1)α
+
c2(c+ σ − µ)−α

α

)
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Proof.

E((X ∧ c)2) =

∫ ∞
−∞

(X ∧ c)2f(x)dx

=

∫ c

µ

x2 ασα

(x+ σ − µ)α+1
dx+

∫ ∞
c

c2 ασα

(x+ σ − µ)α+1
dx

Consider the first integral. By integration by parts twice we see∫ c

µ

x2 ασα

(x+ σ − µ)α+1

= ασα

(
(x+ σ − µ)−α(2µαx+ 4µσ − 2ασx− (α− 1)αx2 − 2µ2 − 2σ2)

α(α− 1)(α− 2)

∣∣∣∣c
x=µ

)
.

Thus, we get

E((X ∧ c)2) = ασα

(
(x+ σ − µ)−α(2µαx+ 4µσ − 2ασx− (α− 1)αx2 − 2µ2 − 2σ2)

α(α− 1)(α− 2)

∣∣∣∣c
x=µ

+
c2(x+ σ − µ)−α

−α

∣∣∣∣∞
x=c

)

= ασα
(

(c+ σ − µ)−α(2µαc+ 4µσ − 2ασc− (α− 1)αc2 − 2µ2 − 2σ2)

(α− 2)(α− 1)α

− σ−α(3µ2α + 2µ2 − 2ασµ− α2µ2 − 2σ2)

(α− 2)(α− 1)α
+
c2(c+ σ − µ)−α

α

)
.
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Recall, with Lemma 2.1.2 follows, that the conditional distribution of X2 + d1

given X1 > d1 is ParetoII(α, σ2, µ2), where µ2 = θ2 + d1 and σ2 = d1θ2
θ1

and the

conditional distribution X1 +d2 given X2 > d2 has ParetoII(α, σ1, µ1) distribution,

with µ1 = θ1 + d2, σ1 = d2θ1
θ2

and α > 3. By applying Theorem 3.2.1 we get for

C2(d1)following representation:

C2(d1) = E[((X2 + d1) ∧ (d1 + d2))2|X1 > d1]− E[((X1 + d2) ∧ (d1 + d2))2|X2 > d2]

= ασα2

(
(c+ σ2 − µ2)−α(2µ2αc+ 4µ2σ2 − 2ασ2c− (α− 1)αc2 − 2µ2

2 − 2σ2
2)

(α− 2)(α− 1)α

− σ−α2 (3µ2
2α + 2µ2

2 − 2ασ2µ2 − α2µ2
2 − 2σ2

2)

(α− 2)(α− 1)α
+
c2(c+ σ2 − µ2)−α

α

)

− ασα1
(

(c+ σ1 − µ1)−α(2µ1αc+ 4µ1σ1 − 2ασ1c− (α− 1)αc2 − 2µ2
1 − 2σ2

1)

(α− 2)(α− 1)α

− σ−α1 (3µ2
1α + 2µ2

1 − 2ασ1µ1 − α2µ2
1 − 2σ2

1)

(α− 2)(α− 1)α
+
c2(c+ σ1 − µ1)−α

α

)
.

To get the optimal retention vector (d∗1, d
∗
2), we solve C2(d1) = 0.

Example 3.2.2. For the parameter choices θ1 = 10, θ2 = 20, α = 3.5 and p = 38,

the function C2(d1) has following plot:
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Figure 3.2: C2(d1) for θ1 = 10, θ2 = 20, α = 3 and p = 38

Since for any d1 < d∗1 : C1(d1) < 0 and d1 > d∗1 : C1(d1) > 0, the objective

function attains its minimum at d∗1 = d1.

3.3 Minimizing moments of fractional order

Another interesting aspect is solving the optimization problem under the criteria of

minimizing moments of fractional order. We consider the risk function u(x) = x1.5

for α = 2.5 and α = 3.5. The general form of the C-function is given by

Cu(d1) = E[u′(d1 + (X2 ∧ d2)|X1 > d1]− E[u′(X1 ∧ d1) + d2|X2 > d2].

The risk function u(x) = x1.5 is convex and in C1(R). We define

C3(d1) = E[u′(d1 + (X2 ∧ d2))|X1 > d1]− E[u′((X1 ∧ d1) + d2)|X2 > d2]

= E[(d1 + (X2 ∧ d2))0.5|X1 > d1]− E[((X1 ∧ d1) + d2)0.5|X2 > d2]
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= E[((X2 + d1) ∧ (d1 + d2))0.5|X1 > d1]− E[((X1 + d2) ∧ (d1 + d2))0.5|X2 > d2].

Since (X1, X2) is bivariate Pareto distributed with parameters θ1 > 0, θ2 > 0 and

α, where x1 > θ1 > 0 and x2 > θ2 > 0 it holds with Minkowski Inequality that

E(|(X1 +X2)1.5|) <∞ for α > 1.5.

First we are interested in the case with α = 2.5. Similar to Section 3.2 we derive

a general formula for E((X∧c)0.5) if X ∼ ParetoII(α, µ, σ) and α = 2.5 to calculate

C3(d1).

Theorem 3.3.1. If X ∼ ParetoII(α, µ, σ), with x > µ, µ ∈ R, σ > 0 and α = 2.5,

then

E((X ∧ c)0.5) = 2.5σ2.5

[ 4
15
c1.5(c+ 5

2
(σ − µ))

(σ − µ)2(σ − µ+ c)2.5
−

4
15
µ1.5(σ − 3

2
µ)

(σ − µ)2σ2.5
+

2
5
c0.5

(c+ σ − µ)2.5

]

Proof.

E((X ∧ c)0.5) =

∫ ∞
−∞

(X ∧ c)0.5f(x)dx

=

∫ c

µ

x0.5 2.5σ2.5

(x+ σ − µ)3.5
dx+

∫ ∞
c

c0.5 2.5σ2.5

(x+ σ − µ)3.5
dx

= 2.5σ2.5

([
4
15
x1.5(x+ 5

2
(σ − µ))

(σ − µ)2(σ − µ+ x)2.5

∣∣∣∣c
x=µ

]
−
[ 2

5
c0.5

(x+ σ − µ)2.5

∣∣∣∣∞
x=c

])

= 2.5σ2.5

[ 4
15
c1.5(c+ 5

2
(σ − µ))

(σ − µ)2(σ − µ+ c)2.5
−

4
15
µ1.5(σ − 3

2
µ)

(σ − µ)2σ2.5
+

2
5
c0.5

(c+ σ − µ)2.5

]

Recall that the conditional distribution ofX1+d2 givenX2 > d2 is ParetoII(α, σ1, µ1)

with µ1 = d2+θ1, σ1 = d2θ1
θ2

and the conditional distribution of X2+d1 given X1 > d1
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is ParetoII(α, σ2, µ2) with µ2 = d1+θ2, σ2 = d1θ2
θ1

. Thus, through applying Theorem

3.3.1 we get for α = 2.5 following formula for C3(d1):

C3(d1) = E[((X2 + d1) ∧ (d1 + d2))0.5|X1 > d1]− E[((X1 + d2) ∧ (d1 + d2))0.5|X2 > d2]

= 2.5σ2.5
2

[ 4
15

(d1 + d2)1.5(d1 + d2 + 5
2
(σ2 − µ2))

(σ2 − µ2)2(σ2 − µ2 + d1 + d2)2.5
−

4
15
µ1.5

2 (σ2 − 3
2
µ2)

(σ2 − µ2)2σ2.5

+
2
5
(d1 + d2)0.5

(d1 + d2 + σ2 − µ2)2.5

]
− 2.5σ2.5

1

[ 4
15

(d1 + d2)1.5(d1 + d2 + 5
2
(σ1 − µ1))

(σ1 − µ1)2(σ1 − µ1 + d1 + d2)2.5

−
4
15
µ1.5

1 (σ1 − 3
2
µ1)

(σ1 − µ1)2σ2.5
+

2
5
(d1 + d2)0.5

(d1 + d2 + σ1 − µ1)2.5

]
.

Now we consider the case α = 3.5. A general formula for E((X ∧ c)0.5) if

X ∼ ParetoII(α, µ, σ), with α = 3.5 is given by following Theorem.

Theorem 3.3.2. If X ∼ ParetoII(α, µ, σ), with x > µ, µ ∈ R, σ > 0 and α = 3.5,

then

E((X ∧ c)0.5) = 3.5σ3.5

[ 2
3
c1.5((σ − µ)2 + 0.8(σ − µ)c+ 8

35
c2)

(σ − µ)3(σ − µ+ c)3.5

−
2
3
µ1.5((σ − µ)2 + 0.8µ(σ − µ) + 8

35
µ2))

(σ − µ)3σ3.5
+

2
7
c0.5

(c+ σ − µ)3.5

]
Proof.

E((X ∧ c)0.5) =

∫ ∞
−∞

(X ∧ c)0.5f(x)dx

=

∫ c

µ

x0.5 3.5σ3.5

(x+ σ − µ)4.5
dx+

∫ ∞
c

c0.5 3.5σ3.5

(x+ σ − µ)4.5
dx

= 3.5 · σ3.5

([
2
3
x1.5((σ − µ)2 + 0.8(σ − µ)x+ 8

35
x2)

(σ − µ)3(σ − µ+ x)3.5

∣∣∣∣c
x=µ

]
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−
[ 2

7
c0.5

(x+ σ − µ)3.5

∣∣∣∣∞
x=c

])

= 3.5σ3.5

[ 2
3
c1.5((σ − µ)2 + 0.8(σ − µ)c+ 8

35
c2)

(σ − µ)3(σ − µ+ c)3.5

−
2
3
µ1.5((σ − µ)2 + 0.8µ(σ − µ) + 8

35
µ2))

(σ − µ)3σ3.5
+

2
7
c0.5

(c+ σ − µ)3.5

]

Through applying Theorem 3.3.2 we get for α = 3.5

C3(d1) = E[((X2 + d1) ∧ (d1 + d2))0.5|X1 > d1]− E[((X1 + d2) ∧ (d1 + d2))0.5|X2 > d2]

= 3.5σ3.5
2

[ 2
3
(d1 + L(d1))1.5((σ2 − µ2)2 + 0.8(σ2 − µ2)(d1 + L(d1)) + 8

35
(d1 + L(d1))2)

(σ2 − µ2)3(σ2 − µ2 + (d1 + L(d1)))3.5

−
2
3
µ1.5

2 ((σ2 − µ2)2 + 0.8µ2(σ2 − µ2) + 8
35
µ2

2))

(σ2 − µ2)3σ3.5
2

+
2
7
(d1 + L(d1))0.5

((d1 + L(d1)) + σ2 − µ2)3.5

]

− 3.5σ3.5
1

[ 2
3
(d1 + L(d1)1.5((σ1 − µ1)2 + 0.8(σ1 − µ1)(d1 + L(d1) + 8

35
(d1 + L(d1)2)

(σ1 − µ1)3(σ1 − µ1 + (d1 + L(d1))3.5

−
2
3
µ1.5

1 ((σ1 − µ1)2 + 0.8µ1(σ1 − µ1) + 8
35
µ2

1))

(σ1 − µ1)3σ3.5
1

+
2
7
(d1 + L(d1)0.5

((d1 + L(d1) + σ1 − µ1)3.5

]
,

Example 3.3.3. For the parameter choices θ1 = 10, θ2 = 20, α = 2.5 and p = 38,

the function C3(d1) has following representation:
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Figure 3.3: C3(d1) for θ1 = 10, θ2 = 20, α = 2.5 and p = 38

M(d1, d2) attains its minimum at d∗1 = d1 since for any d1 < d∗1 : C3(d1) < 0

and d1 > d∗1 : C3(d1) > 0 for α = 2.5. Moreover, for any d1 < d∗1 : C3(d1) < 0 and

d1 > d∗1 : C3(d1) > 0 for α = 3.5.

3.4 Sensitivity Analysis

In this section we analyze the optimal retentions (d∗1, d
∗
2) for different choices of the

parameters of the bivariate Pareto distribution. For this we use the previous derived

formulas of Cu(d1) of the different risk functions and calculate the values d1 = d∗1

where Cu(d1) = 0.

Let (X1, X2) be bivariate Pareto distributed with parameters θ1 > 0, θ2 > 0 and

α > 0. We fix θ1 = 10 and θ2 = 20. Thus, the minimal possible value for risk X1 is
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10 and for risk X2 is 20. Since we are considering a Pareto distribution we expect

for risk X2 a larger expected claim if a claim occurs. Intuitively, the deductible for

risk X2 should be larger than for risk X1. Furthermore, we consider two different

fixed values of p. Recall that p ∈
[
θ1 + θ2,

α(θ1+θ2)
α−1

)
. In Table 3.1 we see the possible

values for p for different choices of the parameter.

θ1 θ2 α Interval of p

10 20 2.5 [30,50)
10 20 3 [30,45)
10 20 3.5 [30,42)
10 20 4 [30,40)
10 20 4.5 [30, 38.57)

Table 3.1: Interval of p

We will fix the value of p equal to 35 and 38.

First, we consider the case, where we minimize the variance with risk function

u(x) = x2. Recall, that α > 2 in this case. We analyze the values for the optimal

retention vector (d∗1, d
∗
2) if α increases in 0.5-steps from 2.5 on.

θ1 θ2 α p d1 d2

10 20 2.5 35 12.652 23.732
10 20 3 35 12.833 23.966
10 20 3.5 35 13.050 24.246
10 20 4 35 13.317 24.586
10 20 4.5 35 13.654 25.016

Table 3.2: Retentions (d1, d2) for p = 35, u(x) = x2, shifting α
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θ1 θ2 α p d1 d2

10 20 2.5 38 15.119 27.185
10 20 3 38 15.906 28.217
10 20 3.5 38 17.109 29.787
10 20 4 38 19.295 32.624
10 20 4.5 38 25.719 40.913

Table 3.3: Retentions (d1, d2) for p = 38, u(x) = x2, shifting α

Consider the risk function u(x) = x3. In Table 3.4 and 3.4 we see the values for

the optimal retention vector (d∗1, d
∗
2) if α increases from 3.5 on in 0.5-steps till 4.5.

Recall, that in this case α > 3 and again we fix p equal to 35 and 38.

θ1 θ2 α p d1 d2

10 20 3.5 35 13.039 24.254
10 20 4 35 13.303 24.596
10 20 4.5 35 13.638 25.027

Table 3.4: Retentions (d1, d2) for p = 35, u(x) = x3, shifting α

θ1 θ2 α p d1 d2

10 20 3.5 38 17.055 29.821
10 20 4 38 19.208 32.669
10 20 4.5 38 25.511 40.989

Table 3.5: Retentions (d1, d2) for p = 38, u(x) = x3, shifting α

For the risk function u(x) = x1.5 it holds that α > 2. Again, we fix θ1 = 10,

θ2 = 20 and p equal to 35 and 38. We derived the formulas of C2(d1) for α = 2.5

and α = 3.5. In table 3.9 we see the explicit values for the optimal retentions (d1, d2).
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θ1 θ2 α p d1 d2

10 20 2.5 35 12.656 23.728
10 20 3.5 35 13.056 24.241

10 20 2.5 38 15.134 27.174
10 20 3.5 38 17.136 29.770

Table 3.6: Retentions (d1, d2) for p = 35 and p = 38, u(x) = x1.5, shifting α

We see that for increasing α, the deductibles (d1, d2) are increasing for all three

risk functions. The shape parameter α indicates how fast the tail of the distribution

goes to 0. If α is getting larger the survival function is steeper and decays faster

to 0. The probability that a loss occurs is higher for larger values of α. It is more

probable that a loss exceed a specific threshold for α larger. Therefore, the optimal

retentions for the insurer are larger if α increases for fixed parameters.

For p = 38 the retentions have, in general, higher values. This makes sense

because p is equal to E(SI2), the expected total retained loss of the insurer. For a

larger p the insurer retains a larger value and the reinsurer covers less of the loss,

therefore the retentions is higher for larger p. Furthermore, we can observe that

values for the retentions are minimally smaller for the risk function u(x) = x3 than

for the risk function u(x) = x2 and u(x) = x1.5. For the risk function u(x) = x1.5

the optimal deductibles have the largest values.

We also consider what happens if we change the parameters θ1 and θ2 for the

different risk functions. We fix p = 38 for all risk functions. The parameter α is

fixed equal to 2.5 for the risk function u(x) = x2 . For the risk function u(x) = x3

we fix α = 3.5.
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θ1 θ2 α p d1 d2

10 20 2.5 38 15.119 27.185
15 20 2.5 38 16.562 21.802
15 15 2.5 38 21.086 21.086

Table 3.7: Retentions (d1, d2), u(x) = x2, shifting θ1, θ2

θ1 θ2 α p d1 d2

10 20 3.5 38 17.057 29.821
15 20 3.5 38 16.648 21.899
15 15 3.5 38 23.277 23.277

Table 3.8: Retentions (d1, d2), u(x) = x3, shifting θ1, θ2

θ1 θ2 α p d1 d2

10 20 2.5 38 15.134 27.174
15 20 2.5 38 16.563 21.802
15 15 2.5 38 21.086 21.086

Table 3.9: Retentions (d1, d2) for α = 2.5, u(x) = x1.5, shifting θ1, θ2

θ1 θ2 α p d1 d2

10 20 3.5 38 17.136 29.770
15 20 3.5 38 16.648 21.899
15 15 3.5 38 23.278 23.278

Table 3.10: Retentions (d1, d2) for α = 3.5, u(x) = x1.5

We see that for the same choice of the parameter θ1 and θ2, the retentions are

equal in all risk functions u. For α = 2.5 the optimal retentions for the risk functions

u(x) = x2 and u(x) = x1.5 just differ minimally. The same observation can be made

for the other two risk functions, where α = 3.5. If the values of θ1 and θ2 are closer

together, the optimal retentions are minimally higher than θ1 and θ2.
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Chapter 4

Summary

Based on the study of Cai and Wei (2011) we developed the optimal retentions

(d∗1, d
∗
2) for an insurance with two lines of business and where the risk variables are

bivariate Pareto distributed and positive dependent through stochastic ordering.

We minimized the objective function M(d1, d2) under the aspects of minimizing

the variance, minimizing moments of higher order and of fractional order. Espe-

cially the consideration of the risk function u(x) = x3 and u(x) = x1.5, where we

minimized moments of higher order and of fractional order are new contributions

to the existing literature. The shifting of the shape parameter α of the bivariate

Pareto distribution has been analyzed under specific assumptions and for different

risk functions. We observed that the optimal retentions just differ minimally for the

different risk functions in this case. Furthermore, the changes in the values of the

optimal retentions if we shift the parameter α has shown what we expected from a

heavy-tailed distribution like the Pareto distribution.

An interesting topic for future researches is to consider this optimization problem

in an business with three lines or more. It could be possible to find optimal reten-

tions for adequate risk functions by using Lagrange multiplier. Another approach

for this optimization problem would be to consider other distributions of regular

variation. Since in an insurance one is often concerned about risks that exceed a

specific threshold and also about positive dependence between risks, other possible
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distributions for this kind of research would, besides of the Pareto distribution, be

the Burr distribution or the Log-Gamma distribution, for example.
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APPENDIX

Proof of Lemma 2.1.1

Proof.

P(X2 > s|X1 > d1) = P(X2 > d1|X1 > d1)

=
1

P(X1 > d1)

∫ ∞
s

∫ ∞
d1

α(α + 1)(θ1θ2)α+1

(θ2x1 + θ1x2 − θ1θ2)(α+2)
dx1dx2

=

(
d1

θ1

)α
α(α + 1)(θ1θ2)α+1

∫ ∞
s

(θ2d1 + θ1x2 − θ1θ2)−(α+1)

(α + 1)θ2

dx2

= (d1θ2)ααθ1

(
(θ2d1 + θ1x2 − θ1θ2)−α

αθ1

∣∣∣∣∞
x2=s

)

=

(
θ2d1 + θ1s− θ1θ2

d1θ2

)−α

=

(
1 +

s− θ2

d1θ2
θ1

)−α

Thus, X2|X1 > d1 ∼ ParetoII(α, σ2, µ2), with µ2 = θ2 and σ2 = d1θ2
θ1

.

Analogeous, it follows X1|X2 > d2 ∼ ParetoII(α, σ1, µ1) with

µ1 = θ1 and σ1 = d2θ1
θ2

.
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Proof of Lemma 2.1.3

Proof. Thus, we first calculate the conditional probability X2 > x2|X1 = x1.

Since x2 > θ2 and x1 > θ1,

P(X2 > x2|X1 = x1) =

∫ ∞
x2

f(s|x1)ds

=

∫ ∞
x2

f(s, x1)

f(x1)
ds

=

∫ ∞
x2

(α + 1)α(θ1θ2)α+1(θ2x1 + θ1s− θ1θ2)−(α+2)

αθα1 x
−(α+1)
1

ds

=

∫ ∞
x2

(α + 1)θ1θ
α+1
2 xα+1

1 (θ2x1 + θ1s− θ1θ2)−(α+2)ds.

With substitution t = θ2x1 + θ1s− θ1θ2 it follows

P(X2 > x2|X1 = x1) =

∫ ∞
θ2x1+θ1x2−θ1θ2

(α + 1)θα+1
2 xα+1

1 t−(α+2)

= −θα+1
2 xα+1

1 t−(α+1)

∣∣∣∣∞
t=θ2x1+θ1x2−θ1θ2

= (θ2x1)α+1(θ2x1 + θ1x2 − θ1θ2)−(α+1).

Now, we can prove the increasing property. It holds that P(X2 > x2|X1 = x1) is

increasing in x1 ∈ S(x1), if for s, t ∈ S(x1) with s ≤ t, x2 ∈ R:

P(X2 > x2|X1 = s) ≤ P(X2 > x2|X1 = t).

P(X2 > x2|X1 = s) ≤ P(X2 > x2|X1 = t)

⇔ θα+1
2 sα+1(θ2s+ θ1x2 − θ1θ2)−(α+1) ≤ θα+1

2 tα+1(θ2t+ θ1x2 − θ1θ2)−(α+1)



34

⇔ (θ2st+ θ1x2s− θ1θ2s)
(α+1) ≤ (θ2st+ θ1x2t− θ1θ2t)

(α+1)

⇔ θ2st+ θ1x2s− θ1θ2s ≤ θ2ts+ θ1x2t− θ1θ2t

⇔ s(θ1x2 − θ1θ2) ≤ t(θ1x2 − θ1θ2)

⇔ s ≤ t

With analogeous calculations, it follows that X1 ↑SI X2. Therefore, (X1, X2) is

PDS.
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