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Figure 5.6: Average AUC for Low Frequency (3-5-time collaborations), High Fre-
quency (over 5-time collaborations), and Overall (3-10-time collaborations) data.
2-time collaborations were excluded because of the large number of 2-time collab-
orations, as seen in Figure 4, and the performance difference between the 2-time and
3-10-time collaborations, as seen in Figure 5, would skew the results; here, we want
to highlight the salient characteristics of more frequent recurrent collaborations only.
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5.5 Discussion

5.5.1 Features

The rich feature set we introduced in this paper provides useful information for recur-

rent collaboration prediction. As shown in Table 5.2 and 5.3, the models trained by

our full feature set show a significant performance advantage over the models trained

by just the baseline features: the best baseline supervised machine learning model is

the SVM trained by all three baseline features with an AUC of 0.617 while the ran-

dom forest model trained by our full feature set yielded 0.732 AUC. The performance

advantage of our full feature set over all the baseline permutations suggests that our

feature set is informative for predicting recurrent collaboration.

In particular, Research Interest Profile features were seen to be strong predictors

of recurrent collaboration. Specifically, simText and simOutcite, which indicate pub-

lication history similarity and knowledge background similarity respectively, are top

features, as also observed in the first-time collaboration prediction task in Chapter

4 (Section 4.4.5). Positive instances (co-author pairs who have published together

more than twice) in the training set tend to have larger research interest similarity,

as shown by their average simText and simOutcite AUC values of 0.508 and 0.647;

negative instances (co-author pairs who have not published together at least twice),

on the other hand, have average AUC values of only 0.398 and 0.568. This suggests

that knowing each other’s work is important for long-term collaborations. However,

the similarity of in-citing citations (simIncite) is not as informative as the rest of the

Research Interest Profile features for three possible reasons: 1) in-citing citations to

a paper indicate how much impact a paper has on the research community but is

not directly related to the ability of the authors to continue to collaborate with each

other specifically; and 2) it takes time to accumulate citations so there is a temporal

bias towards older papers (i.e., older work is more likely to be cited more extensively
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thus having more in-citing documents and allowing for a richer profile calculation).

Our study found that Geographical Location is an important predictor for recur-

rent collaboration, as well. The average value of the sameLocation feature for positive

instances in the training data is 0.784 (SD 0.412), while it is 0.585 (SD 0.493) for the

negative instances. This suggests that co-location is positively related to recurring

collaborations. On the other hand, the positive instances on average have smaller

sumOpenness scores than the negative instances (0.364 and 0.440 respectively), which

suggests that people who collaborate extensively with others in the same institution

tend to re-collaborate and is consistent with the trend suggested by the sameLoca-

tion feature. As confirmed by other studies [156], geographical proximity helps to

reduce communication costs and allows collaborators to have face-to-face meetings

more easily. The colocation-collaboration research by Harvard Medical School [132]

also showed that physical proximity of the first and last author was positively related

to the impact of the paper.

Interestingly, among the Network Connectivity features, we found the number of

common co-authors did not contribute as much as the other features, as shown in Fig-

ures 5.5 and 5.6, which is different from what we found for first-time collaborators in

Chapter 4. This could be due to the fact that two authors who do not know each other

might rely on a mutual collaborator to introduce them and facilitate their collabo-

ration; however, after two researchers have already collaborated once, the number of

mutual collaborators they had in the past is no longer a strong influence on how well

they conduct future collaborations as have already established their initial connec-

tion. Instead, the high performance of the sumCluteringCoef feature shows that the

sub-networks of each author in a co-author pair does have an influence. This might

be due to each co-author’s sub-network (i.e., the collaborators of each co-author who

are not mutual collaborators with the other co-author) representing complementary

skill-sets with the co-authors then serving as intermediaries who bridge the differing
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expertise of the collaborators in the two sub-networks.

PreferentialAttachment is a modest feature that is more informative than com-

mon co-author based features for collaborations more than two times as it yielded

compelling F1 score in both cross validation (0.638) and testing (0.633). It preforms

better with low-frequency subsets, with average ROC AUC of 0.599 for low-frequency

and 0.506 for high-frequency collaborations. It is noticeable that the LR:Pref.Attach.

baseline showed a strong performance in both validation and testing. In particular,

it has the best recall among all models. In order to validate this performance, we fur-

ther analyzed the prediction results and found that the recall of LR:Pref.Attach. was

actually an artifact of the decision threshold. Concretely, when we fixed the recall at

0.791, the precision of the LR: All Baseline model is 0.536 and the F1 is 0.639, which

is better than the LR:Pref.Attach. precision of 0.527 and F1 of 0.633. In addition,

the information gain analysis provides further evidence that PreferentialAttachment

is not as informative as the other top-ranked features such as the Research Interest

Similarity features (simText, simMeSH, simOutcite) and the Geographical Location

features (sameLocation and sumOpenness).

5.5.2 Error Analysis

We further analyzed the incorrect predictions. First, as shown in the feature analy-

sis section above, the research interest features and geographical features are major

players. Therefore, many of the error cases are also due to their mis-classification.

In order to explore the source of error, we used the probability from the LR clas-

sification to rank the false positives and false negatives. Using these ranked error

cases, we found that 90% of the top 100 author pairs with false positive predictions

were co-located (i.e., the sameLocation value of that co-author pair was 1), while

100% of the top 100 false negative author pairs were in different locations (i.e., the

sameLocation value of that co-author pair was 0); Second, we found that the 2-time
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collaboration frequency was not as informative for prediction (all the features proved

non-informative for that frequency) and 55.7% of all the false negatives were 2-time

collaborators, whose feature values are statistically similar to the feature values exhib-

ited by the negative instances (i.e., one-time collaborations). For example, the mean

of simText for 2-time collaborations was 0.459 while the mean for 3-time or higher

frequency collaborations was 0.543 ±0.007, showing a distinct change in going from

2-time collaborations to 3-time or higher collaborations. The 2-time collaborations,

in fact, were very close to the negative cases (i.e., 1-time collaborations), which had

a mean of 0.399 for simText.

A subtle error source is the incomplete publication data. First, it makes the

collaboration history incomplete. For example for the author pair of Cichon S and

Kelsoe JR, their initial collaboration is article PMID 12802785 in year 2003. However

by searching PubMed we found the two actually collaborated in 1997 with the publi-

cation PMID 9433543, which is missing in our database. Such types of instances have

been found from both training and testing set and thus some noise has been intro-

duced. Second, the incomplete publication history brought distortion to the author

research interest profile. For instance Keijzer R has no publication prior to 2000 in

our database but the author actually has publications in the 1990s (PMIDs 1360499,

7678025, 8630280 etc). The missing publications included studies on DNA, Lung,

Rats, which are also the area of Post M. The author pair was predicted negative by

our models due to the low research interest profile similarity (e.g. simText was only

0.044) but they did re-collaborate.

5.6 Conclusion

In this study, we modeled recurrent collaboration as a link prediction problem and

used supervised machine learning models to predict whether two authors will col-
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laborate again or not based on the features that are extracted by the time of their

initial collaboration. We developed novel features to model an author’s research in-

terest profile, publication productivity, geographical location, author seniority, and

the co-authorship network connectivity. Machine learning models, including logistic

regression, support vector machines, naive Bayes, and random forest, were trained by

40,000 author pairs from the co-authorship network that were created using MED-

LINE publications. The best performing model, random forest yielded a 0.720 ROC,

which outperformed the best baselines by 11%. Our analysis shows that authors

with high frequency collaboration have more distinctive characteristics compared with

one-time-only collaborations. The model has the best performance on predicting the

subset with 9-time collaboration instances as positive instances, for which it achieved

a 0.824 ROC, while the prediction on 2-time collaboration instances yielded a 0.627

ROC. Our feature analysis further shows that research interest profile similarity is

the most informative feature category and an author’s location proximity is also a

top predictor. In addition, local clustering of the author’s neighbors contributes to

the prediction, as well. An author’s publication productivity, the average number

of publications per year, is more related to high frequency collaboration. Our study

sheds light on the characteristics of recurrent collaborations from a comprehensive

yet simple analysis. Our prediction approach is highly salable and has a promising

potential to be applied to research collaboration recommendation applications.



Chapter 6

Protein–Protein Interaction

Prediction for Hypothesis Generation

6.1 Introduction

More and more biological knowledge databases have been made publicly available.

Genome and sequence databases, as well as interacting protein databases, have been

created and constantly updated since the early 1990s. Notable databases include the

database of the complete sequencing of the yeast genome [112], the Biomolecular In-

teraction Network Database (BIND) [8], the Protein Information Resource (PIR) [9],

the Munich Information Center for Protein Sequences (MIPS) [10], and the Database

of Interacting Proteins (DIP) [157]. There is also a growing trend for single knowledge

sources integrating with, or cross-referencing, other databases to make its data more

comprehensive. For example, DIP cross-references three major sequence databases:

Swiss-Prot, GeneBank, and PIR. In addition, results from high-throughput compu-

tational efforts increasingly contribute to these knowledge bases.

Protein–protein interaction (PPI) networks are important for understanding dis-

ease mechanisms [158] and determining drug targets. Interaction networks derived

93
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known interactions have unveiled PPI network structures within cells. Strikingly, PPI

networks exhibit properties that have also been discovered in other networks, such

as social networks and even the Internet; in particular, they demonstrate properties

that dictate network growth and connectivity [159], such as being scale free (with

some highly connected hubs of activity) and small world (where the nodes are highly

clustered but the minimum distance between any two random nodes is short).

While not typically hubs, disease genes and proteins cluster in the same network

neighborhoods, as shown by Goh and colleagues, who reported a 10-fold increase in

the number of physical interactions observed between gene products associated with

the same disease than would be expected by chance [160]. Chen et al. applied link

analysis approaches to PPI networks to identify disease candidate genes [161]. In

addition, genes linked to diseases with similar pathophenotypes have a higher likeli-

hood of interacting with each other than those not linked to these pathophenotypes

[162][163]. Taken together, these observations support the notion that the disease-

related components of a network are likely to comprise a sub-network, or disease

module.

Advances in supervised machine learning, an important subset of artificial intel-

ligence, have made network interaction predictions increasingly reliable. Supervised

machine learning models, such as logistic regressions and support vector machines

(SVMs), as well as unsupervised approaches such as K-means clustering, are widely

used for prediction tasks. Such analyses are supported by computational advances in

conducting resource-intensive “big data” experiments.

In this chapter, we utilize supervised machine learning approaches to generate new

hypothesis for PPIs. We define the task as a link prediction problem. Specifically, we

formalize the problem as a classification task. Given two proteins whose interaction

is unknown, we would like to determine if they can interact or not. We utilize exist-

ing knowledge bases to extract the proteins’ features to train the supervised machine
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learning models. We extract network features about the proteins, such as common

neighbors, the number of neighbors, and clustering coefficients, by looking at protein

connections within a network of existing PPIs obtained from the BioGRID database,

a curated biological database of PPIs and genetic interactions. Using MEDLINE, we

also extract text features from research articles about each of these proteins, includ-

ing literature features, such as the similarity of MeSH (Medical Subject Headings)

terms, article co-occurrence, and the number of publications. We use the network and

literature features to train four supervised machine learning models: the naive Bayes

(NB), naive Bayes multinomial (NBM), SVM, and logistic regression (LR) models.

The best-performing model was the LR model, which achieved 0.95 AUC. Our ap-

proach is independent of the details of protein functions, and analyzes the protein

network from a novel perspective. It is also efficient and highly generalizable.

6.2 Background

6.2.1 Biological Knowledge Bases

Rich resources such as genome and sequence databases, as well as interacting pro-

tein databases, have been created and constantly updated. For example, BIND is a

database that stores biomolecular interactions, complexes, and pathway information

[8]. The PIR provides a protein sequence database [9]. The MIPS in Germany hosts

repositories for genome and sequence data [10, 11, 12, 13, 14] in collaboration with

PIR. UniProt [15] integrates sequence and gene function information with information

from both literature curation and automatic classification from Swiss-Prot [16, 17],

PIR, and other resources. GeneOntology [18] provides a structured and controlled

vocabulary that describes the roles of genes and gene products. DIP is a repository

of experimentally determined interacting proteins [157][164].
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6.2.2 PPI Networks

Since the late 1990s, high-throughput computational approaches have been heavily

used to create protein interaction networks. A yeast protein network was built with

over 2,000 interactions between more than 1,000 proteins curated from the literature

[56]. STRING is a database of functional associations between proteins [57]. Bi-

oGRID is a database that incorporates physical and genetic protein interactions that

have been manually curated from primary literature [58]: As of 2013, it has archived

500,000 manually annotated interactions from more than 30 model organisms [59].

There is, in fact, a trade-off between coverage (the number of protein–protein pairs

classified as interacting) and accuracy (whether the protein–protein pair in fact in-

teracts) due to high-throughput, large-scale experiments [165]. Rual et al. [166]

used a high-throughput yeast two-hybrid (Y2H) system to create a human PPI map.

Rhodes et al. [167] employed trained probabilistic models (decision tree, naive Bayes)

on existing databases, including interaction networks, expression, and gene ontology,

to predict new interactions for human genes. Yu et al. [168] performed a quality as-

sessment of a current Y2H network system and conducted analysis that reveals new

characteristics of the Y2H network. Lim et al. [158] used Y2H screening to construct

a human PPI network for a particular disease (human inherited ataxias). Jones et al.

[169] used residue patches on the surface of protein structures to predict the location

of PPI sites. Zhong et al. [170] integrated interactive data, gene expression data,

phenotype data, and functional annotation data to model the interactions of three

organisms. Utilizing multiple data sources and a naive Bayes model, the yeast func-

tional gene network was used to construct a functional gene network [171, 172]. In

our approach, we use naive Bayes as well as more complex machine learning models

and features to predict PPI.
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6.2.3 PPI Prediction

Probabilistic predictions have been applied to proteome data to discover new rela-

tions between proteins or their functions. Jansen et al. [173] used a Bayesian network

model to predict PPIs in yeast using both experimental and genomic data. Albert

et al. [174] used topological patterns in PPI networks to train supervised machine

learning models. Specifically, they identified the number of occurrences of a particular

connection pattern for a pair and used it as their feature. Tong et al. [175] used both

computational and experimental approaches to derive two separate networks and used

their intersection for high-confidence prediction. Enright et al. [176] predicted PPI

by gene fusion events identified by gene sequence comparisons. Bader et al. [177]

explored graph-based predictors in a Y2H model and co-immunoprecipitated (Co-IP)

protein complex data with logistic regression to show that the protein complexes to

which the two proteins belong are the most important predictor. Tsuda et al. [178]

used kernel methods to predict the weight for protein–protein associations in the con-

text of five different networks, such as physical interactions and genetic interactions.

The authors subsequently combined the weights of a particular pair across the net-

works for classification. Homologous is also used for inferring interactions [179]. Bock

et al. [180] used SVMs with features extracted from protein structures. Samanta et

al. [181] used common interactors between two proteins as predictors of functional as-

sociation. If two proteins shared a significantly large number of interactors compared

to the value in the random graph, they were deemed more likely to have functional

associations.

Qi et al. [182] evaluated classification methods such as SVM, naive Bayes, and

logistic regression on different data sources for PPI prediction. They separated the

prediction task into physical interactions, co-complex relationships, and pathway co-

memberships and extracted features from multiple data sources, including DIP and

Gene Ontology. Their results show that gene expression data are the most important
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feature. Using a similar data source, Qi et al. [183] explored a random forest based

approach to compute the similarities between two proteins and applied K-nearest

neighbors for prediction. We use the physical interaction prediction approach of

these authors as our main state-of-the-art comparison and find that our approach

achieves significantly higher prediction, as detailed in the results section.

Microarray data are also used for training machine learning models to predict the

function class of a gene [184]. Work on PPI networks varies by scale and species and

by whether it is an original network or a refinement. In addition, considerable work

has been conducted in comparing and assessing different knowledge bases. The Y2H

system is an example of such an intensively studied dataset [185, 186].

Network-based approaches have been widely used for functional predictions [187].

The second-degree neighbor (the neighbor of a neighbor) feature has been found to

be an important predictor of protein functions in PPI networks [188]. In addition,

PPI networks created by predictions can be used to detect functional modules [189].

Clustering algorithms have been proposed to discover protein complexes from the

analysis of PPI networks [190]. In addition, PPI networks are used to predict the

cellular functions of proteins, utilizing, for example, distance-based predictors [191].

6.3 Methods

6.3.1 Problem Formulation

We propose using supervised machine learning methods to predict potentially inter-

acting pairs of proteins. Given a cutoff year t0, we sample interacting pairs that were

discovered before t0. Assume an interacting pair of proteins, u and v, in the training

set that is described by the tuple (u, v, ti), where ti is the time of the interaction and

ti < t0. The features of this interaction are extracted from the state of the network

prior to ti. In other words, we learn from the history of the two interacting proteins.
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Figure 6.1: An illustration of a PPI network. The solid lines represent existing
interactions between two proteins, marked by the year the interaction was discovered.
The dashed lines are negative interactions, which indicate no interactions discovered
between those two proteins up to that point in time.

Negative instances are always random protein pairs that never interacted before t0.

An illustration of a network model is shown in Figure 6.1. Therefore, given a new

pair of proteins that have never interacted before t0, we use the model to predict the

probability of interaction after t0.

6.3.2 Supervised Machine Learning Models

We predict potential protein pair interactions by ranking protein pairs according to

the probability of their interaction as determined by a classifier. In the link prediction

task, there is no absolute negative instance, since each pair for which we have not seen

an interaction so far may interact in the future. Our work is based on the assumption

that the network is sparse and most of the pairs are not going to interact at all; those

pairs with no recorded interaction up to the cutoff time are what the model will use

to learn negative instances. Given a new, possibly interacting pair of proteins, we use

the model to predict the probability of the interaction. If a pair of likely interacting

proteins in the database has a high probability (rank) of doing so, that pair is then

considered a possible interaction prediction.

We explore four widely used supervised machine learning models for this PPI pre-

diction: NB, NBM, SVM, and LR. A naive Bayes classifier is a simple probabilistic
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classifier based on applying Bayes’ theorem with the strong (naive) independence as-

sumption that the features are generated independently from each other, given the

instance label [137]. The naive Bayes multinomial model assumes the conditional

probability of the feature, given that a class (the likelihood) follows a multinomial

distribution [138, 139]. SVMs are based on the concept of maximum margin decision

planes that define generalizable decision boundaries for classification and regression.

An SVM constructs a hyperplane to maximize the margin between the data points

and the hyperplane, often after mapping the data points to a higher-dimensional space

in which they are linearly separable or close to it [140]. In particular, we explore the

linear kernel for its efficiency. Logistic regression estimates the parameters from dis-

crete or continuous values to predict discrete category values. The probabilities that

describe the possible class of a single instance are trained as a function of explanatory

variables, using a logistic function [137]. The four aforementioned classifiers are not

only the best-performing models demonstrated in a variety of classification tasks, but

also robust, fast, and easy to implement. We use the data mining software Weka [143]

for model training and testing.

6.3.3 Features

6.3.4 Literature Features

We hypothesize that there is the evidence in the literature for the interaction be-

tween two proteins. The measure simMeSH is the similarity of the MeSH terms in

the publication history of the two proteins. Our intuition is that if the two proteins

have a certain degree of similarity according to MeSH, they are likely to be function-

allly related. The measure JaccardArticleCoOccurence is based on the assumption

that the mention of both proteins in the same article suggests the two proteins are

related. The measure sumPub is an indicator of the research effort focused on the two
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proteins. This category of features can be directly extracted from our indexed MED-

LINE records. With a protein’s name and its synonyms, we can construct queries

to obtain all the abstracts that mention it. We subsequently use the MeSH terms of

these articles to calculate simMeSH and use the articles to calculate JaccardArticle-

CoOccurence and sumPub. In other words,

simMeSH(x, y) =
|M(x) ∩M(y)|
|M(x) ∪M(y)|

where M(.) is the set of MeSH terms of all articles that mention the protein and

sumPub(x, y) = |Pub(x)|+ |Pub(y)|

where Pub(.) is the set of publications that mention the protein. In addition,

jaccardArticleCoOccurence(x, y) =
|Pub(x) ∩ Pub(y)|
|Pub(x) ∪ Pub(y)|

6.3.5 Network Features

The hypothesis of this category of features is that the connectivity of a protein node

in a PPI network implies its likelihood of connecting to a new protein. We define

numCommonNeighbor as the number of common neighbors of two proteins,

numCommonNeighbor(x, y) = |Γ(x) ∩ Γ(y)|

where Γ(.) is the neighbors of the node and sumNeighbor is simply the total number

of neighbors of the two proteins,

sumNeighbor(x, y) = |Γ(x)|+ |Γ(y)|
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As described by Small (1999) [69] and Watts(1998) [62], the clustering coefficient

of the vertex v in a graph is the proportion of v’s neighbors that connect among

themselves. For example, assume v has four neighbors (i.e., six possible connections

among them, since the number of “4 choose 2” combinations) and there are three

pre-existing links. Therefore, the clustering coefficient is 0.5 (3/6). This coefficient

has been found to be an useful predictor of PPI [174]. The feature sumClusteringCoef

is the sum of the two nodes’ clustering coefficients to obtain information about the

edge between the two nodes,

sumClusteringCoef(x, y) = cluterCoef(x) + cluterCoef(y)

where the clustering coefficient clusterCoef(x) = |E′|
n(n−1)/2

and E ′ is the edges among

the neighbors of x. The Adamic, introduced by Adamic and Adar (2003) [136], is a

measurement of the similarity between two Web pages. The rationale is that two Web

pages are more similar if they share more unique items (links, text). Liben-Nowell and

Kleinberg [66] later applied the Adamic to measure node similarity in social networks

and showed it to be an effective predictor for establishing new links. In this chapter,

we apply it to measure the topological similarity of two proteins,

Adamic(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

log|Γ(z)|

The Jaccard measure is the number of common neighbors divided by the number of

total unique neighbors of the two proteins,

Jaccard(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

Both the Adamic and the Jaccard coefficient are topological measures that are effec-

tive for link prediction tasks and we therefore incorporate them here as well. The



CHAPTER 6. HYPOTHESIS GENERATION 103

Table 6.1: Feature definitions.
Category Feature Name Definition Source

Literature
Features

simMeSH |M(x)∩M(y)|
|M(x)∪M(y)| MEDLINE

sumPub |Pub(x)|+ |Pub(y)| MEDLINE
jaccardArticleCoOccurrence |Pub(x)∩Pub(y)|

|Pub(x)∪Pub(y)| MEDLINE

Network
Features

Adamic
∑

z∈Γ(x)∩Γ(y)
1

log|Γ(z)| BioGRID
numCommonNeighbor |Γ(x) ∩ Γ(y)| BioGRID

Jaccard |Γ(x)∩Γ(y)|
|Γ(x)∪Γ(y)| BioGRID

sumNeighbor |Γ(x)|+ Γ(y) BioGRID
sumClusteringCoef clustCoef(x) + clustCoef(y) BioGRID

network features described here are constructed solely from the interaction network,

which is built from the BioGRID database. Formal definitions of all our features are

shown in Table 6.1.

6.4 Data

6.4.1 BioGRID

We constructed the PPI network using the BioGRID database, a comprehensive in-

teraction repository with over 648,000 interactions from over 38,000 PubMed articles.

Our network contains 48,438 unique interactors from 45 different organisms and 26.2%

of them have only one interaction. The mean degree is 21 and the median is four,

where a node’s degree is the number of edges at that vertex; the minimum and max-

imum degrees are one and 10,095, respectively. In addition, the standard deviation

of the number of degrees of the vertices is 75. The distribution of the degree of the

nodes can be fit by either a power-law or a lognormal distribution. The β in the

logy = α− βlogx of the power-law fit is 3.76 for the range in which the node degree

(horizontal axis) is larger than 530. The node degree distribution of BioGRID pro-

teins is shown in Figure 6.2. x is the protein node degree and y is the frequency of

the proteins who have degree x.
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Figure 6.2: Node degree distribution of BioGRID proteins (double logarithmic scale).
The results for the dashed line are obtained by the linear regression.

6.4.2 MEDLINE

As described in Chapters 1 and 2, Medline is a database of biomedical literature with

over 20 million article records provided by PubMed. Each article record contains

the title, author(s), journal, year, and MeSH terms. Every article is also assigned a

unique PubMed ID.

6.4.3 Training and Testing Sets

We construct a training set named BIG by randomly selecting 16,278 (48.9%) positive

pairs and 17,011 negative pairs before the year 2011. The testing set is constructed

from the 2013 data and consists of 3,153 positive protein pairs showing interactions

before 2013 and 3,153 negative protein pairs with no known interaction before 2013.

The negative instances were randomly chosen to match the number of positive protein

pairs; 3,153 positive protein pairs were chosen because that was the number of positive

protein pairs in the dataset.
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Furthermore, we evaluate our approach with longitudinal datasets. Specifically,

we construct a training set by using data before year y and use it to predict the new

pairs in year y. We apply this approach from year 1995 to year 2012. For each year,

we randomly select 1,000 positive and 1,000 negative training instances from the data

before the year y and train the models. We then sample up to 1,000 new pairs that

were reported for the first time in y as positive test instances and select random pairs

as negatives. In total, there are 18 training sets and 18 testing sets.

Note that it is difficult to find a real negative instance from knowledge bases, since

findings about a non-interacting protein pair are much less common. However, the

density of the protein interaction network is as small as 0.00056. Therefore, given

two randomly selected proteins, the chance that they interact is small and we can use

the pair as a negative instance.

6.4.4 Evaluation Metrics

We calculate precision (TP/(TP + FP)), recall (TP/(TP + FN)), the receiver oper-

ating characteristic (ROC) curve—or ROC AUC, the area under the curve of the true

positive rate (TPR) over the false positive rate (FPR)—and accuracy ((TP+TN)/ALL),

where TP, FP, TN, FN, and ALL stand for the numbers of true positives, false

positives, true negatives, false negatives, and total instances, respectively. The F1

score is defined as the harmonic mean of recall and precision, specifically, 2*re-

call*precision/(recall+precision).

6.5 Results

6.5.1 10-Fold Cross-Validation

For the BIG training set evaluation, we use 10-fold cross-validation and the results

are shown in Table 6.2. Logistic regression achieves the best performance, with 0.856



CHAPTER 6. HYPOTHESIS GENERATION 106

Table 6.2: 10-fold cross-validation on the training set.
Model ROC AUC Precision Recall F1

All features

NB 0.832 0.787 0.697 0.668
NBM 0.738 0.639 0.618 0.607
SVM 0.765 0.771 0.766 0.765
LR 0.856 0.781 0.772 0.769

Topological
Features Only

NB 0.763 0.788 0.691 0.659
NBM 0.690 0.811 0.727 0.705
SVM 0.740 0.799 0.745 0.731
LR 0.766 0.815 0.757 0.744

Literature
Features Only

NB 0.770 0.690 0.667 0.654
NBM 0.763 0.711 0.710 0.710
SVM 0.708 0.708 0.708 0.708
LR 0.783 0.712 0.712 0.712

Common
Neighbor
Baseline

LR 0.754 0.824 0.760 0.746

Co-occurrence
Baseline

LR 0.555 0.605 0.538 0.432

AUC and 0.769 F1. The naive Bayes model is the second best, with 0.832 AUC and

0.668 F1. The naive Bayes multinomial and SVM models are less effective than the

previous two, with 0.738 AUC and 0.765 AUC, respectively.

Furthermore, we experiment on topological and literature feature subsets sepa-

rately. The best AUC for the topological subset is 0.766 and the best for the literature

subset is 0.783, both achieved with the logistic regression model. It is noticeable that

the naive Bayes multinomial has better performance for the literature subset than for

the overall feature set.

We calculate information gain to better understand the contribution of the fea-

tures. As shown in Table 6.3, the network features’ Adamic has the highest infor-

mation gain, 0.306, followed by numCommonNeighbor (0.291), Jaccard(0.287), and

sumNeighbor (0.176), which are all in this category. The simMeSH measure, with

information gain 0.122, is ranked the highest among the literature features. Next

highest is sumClusteringCoef (0.105) and at the bottom is the article co-occurrence
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Table 6.3: Information gain of the training set BIG. Neighbor-based measures Adamic,
numCommonNeighbor, Jaccard, and sumNeighbor are the four top-ranked features,
with information gain ranging from 0.178 to 0.306, which shows they are the most
informative features.

Rank Feature Information Gain
1 Adamic 0.306
2 numCommonNeighbor 0.291
3 Jaccard 0.287
4 sumNeighbor 0.176
5 sumPub 0.135
6 simMeSH 0.122
7 sumClusteringCoef 0.105
8 jaccardArticleCoOccur 0.038

feature jaccardArticleCoOccur (0.038).

6.5.2 Evaluation Using the DIP Database

Since yeast is a widely studied species, we particularly evaluate our approach to

protein interactions within this species. We use protein pairs from the data of Qi

et al. and compare our results with theirs. As described in the background, one of

the tasks is to use machine learning to predict physical interaction and the authors

developed comprehensive biological features.

We downloaded their data from the project website: They include 2,865 positives

and 237,384 negatives. During preprocessing, we mapped protein symbols to our

network, resulting in 2,704 valid positives and 122,161 negatives. We also double-

checked the protein pairs against our training set and there was no overlap between

the training and testing sets.

As shown in Tables 6.4 and 6.5, the models trained by our features outperform

the data of Qi et al. In 10-fold cross-validation, the LR model trained by all features

yields 0.887 F1, while that trained by Qi et al. results in 0.560. Similar results are

shown in the test (the LR for our feature yields 0.892 F1 and 0.547 F1 for the feature

of Qi et al.).
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Table 6.4: 10-fold cross-validation using proteins from the dataset of Qi et al.
Model ROC AUC Precision Recall F1

All Features 0.990 0.996 0.887 0.887
Literature Features 0.856 0.899 0.303 0.453
Network Feature 0.990 0.959 0.816 0.882

Qi et al. Detailed Feature 0.922 0.689 0.471 0.560

Table 6.5: Testing on protein pairs from the dataset of Qi et al.
Model ROC AUC Precision Recall F1

All Features 0.982 0.922 0.865 0.892
Literature Features 0.868 0.934 0.364 0.524
Network Features 0.989 0.959 0.821 0.885
Qi Detailed Feature 0.919 0.720 0.441 0.547

6.5.3 Predicting the Next Year

We also test our approach by predicting the next year, using the model trained by

existing interactions. As shown in Figure 6.4, the performance of the overall data is

generally consistently above 0.7 ROC, except for a drop in the year 2003 and 2004.

The predictions for the human species are also generally above 0.7 ROC, except for

a drop in 2012. In contrast, all the models trained and tested on yeast subsets have

remained below 0.7 ROC since 2002.

We further analyze the predictions for the two feature categories literature fea-

tures and network features. Specifically, we train LR models by using these two

subcategories and evaluate them by predicting the next year. As shown in Figure

6.4, network features outperform literature feature for each year’s predictions. Both

the literature and network models consistently show a significant performance drop

in the year 2003.

Furthermore, we predict the feature subsets for the human and yeast systems in

the next year. As shown in Figure 6.5, network features also consistently outperform

literature features for all years except 2012, which is similar to the results for the

overall data (Figure 6.4). However, for yeast, there is no clear winner between the
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Figure 6.3: Evaluation of all the data.
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Figure 6.4: Predicting next year by subsets of features (literature features and network
features). Network features outperform literature features for each year’s predictions.
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Figure 6.5: Evaluation on the human system.

two feature categories. Network features have better performance in 1995–2000, but

the literature features show advantages in all the years after 2000, except for 2002,

2004, and 2007.

Our approach demonstrates a performance advantage in predicting PPIs. Using

the protein pairs sampled from the DIP database, the model trained by the features

we propose outperforms the model trained by biological features. As shown in Table

6.5, our model has 0.982 ROC AUC and 0.892 F1, while the state-of-the-art results

(Qi et al.) are 0.922 ROC AUC and 0.560 F1, respectively. By further exploring the

feature set of Qi et al., we found that 37.9% of the feature values are unavailable,

suggesting that biological features are very sparse. On the other hand, our feature

set produces less sparse features. The upper bound of missing values in our feature

set for the DIP evaluation data is 31.8% (31.8% of feature values are zero).

Overall, the network features are more informative in predicting new interactions

than the literature features. As shown in the information gain analysis (Table 6.3),

the network features are all ranked higher than the literature features.
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Figure 6.6: Evaluation on the yeast system.

6.6 IBioNet.org

We implemented our system and it is available from ibionet.org. We generated 2

million new hypothesis for 415 proteins researched by the University of Massachusetts

Medical School so that we provide the researchers one more resource for identifying

potential interactors.

The system has four components: a BFS candidate collector, a feature extractor,

an interaction classifier, and a result generator.

The BFS candidate collector generates candidate interactors from the PPI net-

work. For instance, assume we want to predict new interactors for the protein retinitis

pigmentosa 2 (RP2), then we use the collector to obtain the subgraph of RP2, where

each protein is within six hops of another. We consider those proteins that have never

interacted with RP2 as candidates.

The feature extractor extracts the features of potential interacting pairs. With

the RP2 example, the extractor extracts features for each pair (for RP2 and one of

the candidates). The component is based on Hadoop framework [76].

The pairs with extracted features are then fed into the interaction classifier for
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Figure 6.7: IBioNet page providing predictions for genes researched by the University
of Massachusetts Medical School.

prediction. The probability of interaction is calculated for each input pair. This

component is also implemented as a Hadoop application.

Post-processing is carried out by the result generator. It imports the results into

a MySQL database and associates it with other protein-related information, such as

official names, synonyms, species, and related publications.

6.7 Conclusion

In this study, we propose using a machine learning approach to generate a new PPI

hypothesis. We model PPI prediction as a link prediction problem. Existing in-

teractions are considered positive training data and the features are extracted from

the protein pairs by the time of the discovery of their interaction. We use the PPI

database BioGRID, as well as MEDLINE, as our data source for creating training

data. We conduct comprehensive evaluations on BioGRID data, as well as the DIP

database, on overall species, as well as on human and yeast species only. In addi-

tion, we conduct a longitudinal evaluation by creating 18 training sets and 18 test
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sets across 18 years to evaluate our approach on each year’s new discoveries. Logis-

tic regression shows the best performance, with ROC AUC 0.856 on 10-fold cross-

validation. Our approach is generalizable, since the model trained by protein pairs

from the DIP database achieves 0.982 ROC AUC in predicting physical interactions,

which significantly outperformed the state-of-the-art system of Qi et al. We find that

network features, such as the Adamic and the number of common friends, are the

most important predictors for PPIs. We also build the hypothesis generation system

ibionet.org, which provides University of Massachusetts Medical School researchers a

new tool for identifying possible PPIs.



Chapter 7

Conclusions

In this thesis we have shown that network topological structure as well as semantic

information of the node can be leveraged to predict new links in a network when we

put network evolution into perspective. The network status, both network structure

and semantic information, by the time of the link creation can be used to learn the

patterns. Concretely we model link prediction as a classification problem, and we use

network status by the time of establishment of existing links as features and the link

as label. Therefore the classification models can be trained, and used for predicting

the probability of being connected given a new pair of nodes and their related network

status.

In research collaboration network, we derived features such as number of com-

mon collaborators, research interest similarity, research productivity. We found that,

research interest similarity, such as publication history similarity, citation similarity,

as well as number of common researchers, are most informative predictors for first

time collaboration. Future more, geographical location as well as research interest

similarity are top-ranked features for predicting recurrent research collaboration.

On the other hand, network structure features show advantages in protein-protein

interaction prediction. We also introduced literature features such as the protein

114
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pair’s number of co-occurrence in the articles. Yet, the prediction performance varies

dramatically across different settings, such as species. Literature features tend to

perform stable compared to the network features.

We also created the citation and co-authorship network for biomedical literature.

Our analysis showed that the networks pertained the characteristics, such as scale-free

and small world, that have observed in other complex networks. Our network system

provides an unique resource for studying the citation and co-authorship in biomedical

field.

7.1 Future Directions

There are several future directions. First, the group-group collaboration recommen-

dation will be very useful. In real world collaborations often initiated between two

labs in stead of two individuals, and the collaboration is often based on the purpose

of integrating the expertise from different disciplines. The collaboration prediction

task is more challenging yet extremely useful. Second, protein interactions tend to

have restrictions, for example they have to be in the same type of cell (e.g. T-cell) or

same tissue (brain). The future prediction should take these factors into account.
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