








Figure 48: Images of RULA image collection in process. There is significant mobility with little set up and
no camera calibration required in the field.

6.2 RULA Results

6.2.1 RULA Data Collection Efficiency

One RULA was calculated with the Nexus 6 out of 18 sets total: Subject #1 at low (36”) meter nut height

(Figure 46), second set, motion 1. The low count of RULA analyses is attributed to:

1. Insufficient wrist markers in the neutral pose position. The images were not taken from the correct

angle (not anterior enough) to effectively detect the wrist marker. A stricter protocol and real-time

processing would all be effective methods in obtaining the wrist marker. Real-time processing would

alert the operator if there are not enough markers in the collection of images.

2. The outdated build of the MPT software on the Nexus 6 is less robust at detecting markers and
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calculating 6-DOF pose data. An update to the source could would remedy this issue. However, the

current software is sufficient to achieve demonstration, as a software upgrade would require an extensive

effort.

6.2.2 RULA Results

The Cardan angles for Subject #1, low meter nut height, second set, motion 1 are calculated and shown in

Table 7.

Axis of Rotation
Segment Rotation X-Axis Y-Axis Z-Axis

Upper Arm Rotation (btbuT ) -41.7014°* -13.9910° -0.6597°
Lower Arm Rotation (bubl T ) 0.9475° -8.7144° -1.4733°

Wrist Rotation (bebwT ) 10.1340° 3.0979° -9.8731°
Head Rotation (btbhT ) -18.3969° -1.9872° -2.2952°
Torso Rotation (brbtT ) -4.79° 90.4606° -1.9245°

*Note: Due to neutral pose having a 90° shoulder flexion (Figure 39), 90° is added
to X-Axis upper arm rotation in RULA worksheet.

Table 7: Cardan angles of the homogeneous transforms in body coordinates with the numbers in bold used
in the RULA.

The values shown in bold are used for RULA. Additionally, the lower arm rotation is given by the

angulation between the Y-Axis of torso body coordinates and the Z-axis of lower arm body coordinates

given by:

θl = cos−1
(〈

uZ̄, tȲ
〉)

(7)

Applying the worksheet in Figure 4, Table 8 uses the angles to calculate the RULA score with Step 2

calculated from Equation 7:

The final score of 6 indicates the motion should be investigated and changes to the motion are required

soon.

6.2.3 Comparing RULA Analyses

Three observed RULAs are completed by trained personnel with each giving a total RULA score of four

for the same motion - less than the 6 calculated by MPT. The angles observed, compared with the MPT

calculation, are shown in Table 9. Some of the steps in RULA do not use an actual angular range but MPT

angles are used to determine that step’s score in Table 8. For example, Step 2a requires a +1 if the arm

is working across midline of the body - which can be seen as a Y-Axis upper arm rotation. These are not

included in Table 9 as the angle estimated by the RULA observer is unknown. All non-angular variables are

relatively consistent between all analyses.
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Section Step Step Description Value Angle Step Table
Score Score Score

A

Step 1 Locate Upper Arm
Position

-41.7° + 90° =
48.3°

+3 3

4Step 2 Locate Lower Arm
Position

50.7° +2 3

Step 2a Location of Arm -14.0° +1

Step 3 Wrist (X-Axis Rotation) 10.1°
Downwards

+2 3

Wrist Midline (Y-Axis
Rotation)

3.1° +1

Step 4 Wrist Twist -9.8° +1 1
Step 5 Table Score from

Section A
4

Step 6 Add Muscle Use Score Action repeated
4 / min

+1 1

Step 7 Add Force / Load Score 2kg to 10kg
(inter.)

+1 1

Step 8 Add Step 5, Step 6, Step
7

6

B
Step 9 Neck Position 18.4° (Flexion) +2 2

2Step 10 Trunk Position 4.8° (Flexion) +1 1
Step 11 Supported / Balanced

Legs
Yes +1 1

Step 12 Table Score from
Section B

2

Step 13 Add Muscle Use Score Action repeated
4 / min

+1 1

Step 14 Add Force/Load Score 2 kg to 10kg
(inter.)

+1 1

Step 15 Find Column in Table C 4
Final Score 6

Table 8: Actual RULA results of Subject #1, low gas meter nut height, Second Set, Motion 1. The final
score of a 6 indicates there should be an investigation and changes to the motion soon.

Angle Under
Observation

MPT Observer 1 Observer 2 Observer 3
Angle Angle Angle Angle

Upper Arm
(Shoulder) Rotation 48.3° 15 - 45° 15 - 45° 15 - 45°

Lower Arm (Elbow)
Angulation to Torso 50.7° 60 - 100° 60 - 100° 60 - 100°

Wrist Rotation 10.1°
Downwards

0° to 15°
Downwards

0° to 15°
Downwards

0° to 15°
Upwards

Neck Rotation 18.4° Flexion 10° to 20°
Flexion

0° to 10° Flexion 0° to 10° Flexion

Torso Rotation 4.8° Forward 0° - 20° Forward 0° (Erect) 0° (Erect)

Table 9: RULA angle comparison with three observed RULAs on the same motion. All of the angles are
comparable.

All of the angles are reasonably similar. Most angles are within 15° of each other.
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6.3 RULA Data Results Conclusion

The RULA angles calculated by MPT for certain steps are quantitative as opposed to observational. For

example, the Torso Rotation in Table 9 has a small angle that is normally rounded to 0° by two of the

observers performing RULA.

Although the MPT RULA score is higher than the observed RULA scores, the majority of angles between

the RULA results are comparable which is relevant to this thesis.

The pilot study results show a more experienced operator and a newer MPT build produces a high level

of success.
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7 Main Lessons Learned

A successful RULA measurement is captured in this thesis via mobile 3D motion tracking. It can be seen in

Figure 48 that since the data capturing source can be mobile, this 3D motion tracking technology is suited

for field use and does not need significant control of its environment. A framework for 3D motion tracking

on a Nexus device has been constructed and its application demonstrated.

7.1 Nexus Camera

Camera calibration efforts with several mobile devices resulted in the knowledge of camera control require-

ments for MPT. Manual focus and exposure control is absolutely necessary for MPT and ideally the settings

are repeatable with a very high accuracy.

An image request is sent to the camera controller with post-processing turned off and a callback is

executed when image data becomes available. The Y channel, or luma channel, of the YUV data is passed

across the JNI within SaveBMPWrapper(). This saves the pixel data into a format that is MPT friendly

(gray scale uncompressed Bitmap).

7.2 Processing Effort

When a bitmap is retrieved and the pixels are loaded into memory in the Java domain from the flash memory,

the pixel data is transferred across the JNI through RGRWrapper() where the main MPT functions are called.

MPT requires a substantial amount of memory and processing effort by the device. For the current MPT

code on the Nexus 6, which has not been optimized for the 32-bit multicore platform, a single image of 13

megapixels by the Nexus 6 takes approximately 45 seconds to process and uses 238MB of heap memory.

Although mobile devices are advancing, it is still a non-negligible load on the mobile device’s resources. The

standard pthread stack size is insufficient and an increase in the stack is required for the process.

Care must also be taken in declaring variables. For example, the long data type disparities on an Intel

versus an ARM processor caused errors during the porting of MPT to the Nexus devices.

MATLAB coder builds MPT into C++ and thus the Native Development Kit (NDK) is required although

the standard Android API is in Java (SDK). This is not necessarily a problem as the architecture of C++

is better suited for intense processing than Java (direct memory management, for example). This does,

however, add for complexity as a scheme for the Java-Native Interface must be designed.
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7.3 Camera Calibration

Control over the camera allows for an appropriate setting for focus distance required for RULA. Exposure

control reduces motion blur and marker saturation. The Nexus 10 motion blur during the calibration

attempts were visible to the eye, but increasing the exposure speed with the Camera2 API in the Nexus 6

eliminated the motion blur.

The radial distortion polynomial had non-negligible high-order components due to the wide angle lens.

The quality of calibration increased when the higher order components were added to the radial distortion

compensation.

7.3.1 Rolling Shutter Effects

Focus and exposure control alone is still insufficient to perform standard calibration - that is, calibrate from

a moving calibration tool. The rolling shutter prevents consistent calibration results from the Nexus devices.

Thus, a method to keep the calibration tool and Nexus device stable eliminates rolling shutter distortion

artifacts allowing for consistent calibrations.

7.4 Application to RULA

Field data collection for RULA has been demonstrated. The location of data collection did not require major

modifications to the environment and subjects were not required to remove jewelry or any other reflective

objects. A stricter protocol and real time processing will certainly improve data collection efficiency. The

pilot study showed that an experienced operator and new build of software will also improve data collection

effectiveness.

7.5 Thesis Impact

No optical 3D system that is well adapted to field data collections exists today. So taking a robust 3D

motion tracking system (MPT) that inherently needs little control of its environment which is then ported

to a mobile device demonstrating a quick and easy 3D measurement proves its worth. Future research of

this technology will certainly improve accuracy and speed of the system.

7.6 Future Investigations

Turning a mobile device into a 3D motion tracking system has unearthed areas where improvements of

performance of MPT on the Nexus device can be achieved.
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7.6.1 RAW Data Format and Post-Processing

Android devices perform behind-the-scene image post-processing by default but nearly full control over the

image pipeline is possible. Similar to requesting the YUV image type for a CaptureRequest, the RAW data

format can also be requested which is the raw image sensor data, and is a Bayer pattern encoded image. This

data is free of all behind-the-scenes signal processing. An assumption in this thesis is that all post-processing

is turned off (see Section 3.2.2), but due to limited information, this is not guaranteed.

Performing MPT processing in the RAW data format can also pose a challenge. First and foremost, the

raw image is color data - where MPT analyzes gray scale.

7.6.2 Rolling Shutter Compensation

As discussed in [21], rolling shutter compensation methods do exist. Care had to be taken during camera

calibration that the Nexus device and the calibration tool were motionless. If a method is devised to

compensate the rolling shutter effects, the system would increase robustness and require less control of the

environment during field measurements.

7.6.3 Mobile Device Resources Scheme

A goal of this thesis is to demonstrate 3D motion tracking on a mobile device. MPT is implemented such

that it works on a mobile device but it has not been optimized specifically for the Nexus 6.

A more intimate knowledge of the Nexus hardware will allow an optimized processing scheme to be

developed. This would allow real-time processing to occur and MPT App would not be required to finish

image collection before image processing begins. For example, real time processing would allow MPT App

to alert the operator if insufficient markers are detected during a RULA analysis.

7.6.4 K1 through K5 Image Processing

Camera calibration returned radial distortion all the way to the fifth term in the polynomial in Equation 1

due to the wide-angle nature of the lens. However, the MPT build for the Nexus 6 uses only K1, K2, and

K3, or three terms, causing inaccuracies at the edge of the imager (greater than about 2000 pixels from the

image center).

In a future MPT build for a mobile device, MPT with radial distortion compensation capabilities out to

K5 will provide more accurate 6-DOF pose calculations.
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8 Conclusion

3D motion tracking on a mobile device in the field has been demonstrated. The technology is significant

given the other 3D motion tracking systems that exist today. This lays the foundation for future research

to improve upon accuracy, speed, and robustness of MPT on a mobile device. Much of the ground work

has been established, with the basic challenges solved in this thesis such as processing, camera control, and

camera calibration. Tracking motion in 3D space on a device that can fit in a pocket truly is a paradigm

shift.
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