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ABSTRACT

Parameter Estimation for the
Spatial Ornstein-Uhlenbeck process

with missing observations

by

Sami Cheong

The University of Wisconsin-Milwaukee, 2016
Under the Supervision of Professor Jugal Ghorai

Suppose we are collecting a set of data on a rectangular sampling grid, it is

reasonable to assume that observations (e.g. data that arise in weather forecasting,

public health and agriculture) made on each sampling site are spatially correlated.

Therefore, when building a model for this type of data, we often pair it with an un-

derlying Gaussian process that contains parameters that correspond to the spatial

dependency of the data. Here, we assume that the Gaussian process is charac-

terized by the Ornstein-Uhlenbeck covariance function, which has the property of

being both stationary and Markov under the assumption that no observations are

missing. However, in reality, the full data assumption may not be a practical one.

In this work, we consider two different scenarios where some observations are

missing: 1) a block of observations is missing from the grid and 2) missing obser-

vations occur randomly throughout the sampling grid. In each case, we propose an

approximate likelihood method to estimate the parameters for the covariance struc-

ture. We show that, either by an analytical or a numerical approach, the parameter
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estimates from the approximate method have similar properties to those obtained

under the full data likelihood function. In particular, we show that the parameter

estimators in the missing block case are strongly consistent and asymptotically

normal under certain regularity condition, and conclude our work by comparing

the results from implementing our methods with simulated data.
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Chapter 1

Introduction

1.1 A brief look at spatial statistics

In 1970, geographer Waldo Tobler [18] introduced the concept that “everything is

related to everything else, but near things are more related to distant things.” This

observation, coined the Tobler’s First Law of Geography, has taken an important

role in the development of spatial analysis, where quantifying the spatial patterns of

observations is key to statistical procedures such as experimental design, estimation

and prediction. 1 With its roots originating in the mining industry, a spatial model

is a stochastic process whose mean and covariance structure are characterized by

the distance between observations. Matheron, and later Cressie [2] were among

the first to develop the theoretical foundation of spatial statistics. Since then,

statistical tools for analyzing and modeling spatially dependant data have been
1Although awareness of spatially dependent observations can be traced back as far as the late

17th century, when English astronomer Edmond Halley attempted to map the directions of trade
winds and monsoons for voyagers. [2]
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generating more interests than ever, thanks to the rise of powerful computing and

data storage capabilities. By taking into account the underlying spatial patterns,

we can grasp a more accurate description of reality, which in turn allows us to

make better decisions using limited data or models.

Example in agriculture

In agriculture, the ability to understand soil properties in a field is an important

factor to planting strategies, such as placement of irrigation systems, seed alloca-

tions and fertilizer applications, all of which are key to managing yield and quality

control of the crops.

Figure 1.1: An example of spatial data : contour map showing water potential of
the soil within a field along with a grid of sampling sites (source of figure: usda.gov)

To understand what pertains to the properties of soil, one can use different soil

sampling schemes to analyze the chemical and physical components within a field.
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However, data collection can often be time-consuming, expensive and sometimes

not possible due to restriction by weather and landscape. Alternatively, one can

develop a regression model to predict soil attributes such as moisture content and

salinity within a field,

Y(s) = X(s)B + Z(s) (1.1)

where

• s is a sampling site of interest

• Y(·) ∈ Rn×1 is a vector of dependent variables

• X(·) ∈ Rn×p is the design matrix containing the independent variables

• B ∈ Rp×1 is a vector of parameters

• Z(·) ∈ Rn×1 is a vector of unobserved, spatially correlated errors affecting

the predictions

To address the spatial correlation, Z(·) is often modeled as a realization of a zero-

mean Gaussian process with the covariance matrix being a function of the distance

between two samples.

Example in computer experiments

This example serves as a prelude to the main interest of this paper, where lattice

data is used in the implementation of computer experiments introduced by Sacks,

Schiller and Welch [13] and Sacks, Welch, Mitchell and Wynn [14]. In their ex-

periments, a set of responses from an input grid is modeled as a realization of a

3



stochastic process. Let S = {s1, . . . sN} ⊂ Rd be the sample space of all possible

computer inputs. Let X(s) be the computer response at the input point s ∈ S.

The set of responses, {X(s)}s∈S is assumed to be a Gaussian random field with

the Ornstein-Uhlenbeck covariance function

Vq(σ2, µ, t, s) := σ2 exp
{
−

d∑
i=1

µi|ti − si|q
}

(1.2)

where

• t = (t1, . . . td)T , s = (s1, . . . sd)T ∈ S are any two sampled inputs

• σ2 > 0, µ = (µ1, . . . µd) ∈ (0,∞) are unknown parameters, and

• q ∈ (0, 2] is the fixed smoothness parameter of the process X(s)

An example of the application of this model is to predict at un-sampled points,

which requires estimation of the unknown parameters such as the mean and co-

variance function.

1.2 The Ornstein-Uhlenbeck (O-U) process

To simplify the problem in the computer experiment example, Ying [24] considered

a zero-mean process with dimension d = 2, and sampling space U = [0, 1]2. In this

model, U is partitioned into an m-by-n grid, with each set of input points being

increasing sequences {uj : j = 1, . . . ,m} and {vk : k = 1 . . . n} (see Figure 1.2).

Let X denote the set of outputs, i.e.

X := {X(ui, vj) : i = 1, . . . ,m, j = 1, . . . , n} , (1.3)
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with E [X(uj, vk)] = 0, and

Cov (X (uj, vk) , X (uj′ , vk′)) = σ2e−µ|uj−uj′|−λ|vk−vk′ |, (1.4)

where σ2 > 0, and (λ, µ) ∈ [a, b]2 ⊂ (0,∞)2. ThenX is a two-dimensional Ornstein-

Uhlenbeck process with parameters λ, µ and σ2. The O-U process was originally

derived in 1930 as a stochastic process that describes the velocity of a Brownian

motion. It is the only Gaussian process that satisfies both the Markov property and

stationarity, as shown by Doob in his 1942 paper [4]. Interestingly, the dimension

Figure 1.2: An example of a sampling space defined on a rectangular grid (lattice).

of the process plays an important role in the identifiability of the parameters for

its covariance structure. In the one-dimensional case, where we have X(u) instead

of X(u, v), the probability measure induced by σ2
1λ1 is equivalent to that induced

by σ2
2λ2 if σ2

1λ1 = σ2
2λ2. This characteristic of the one-dimensional process raises

the issue of identifiabiliy of λ and σ2, when neither of the parameters is known.

In contrast, when the O-U process is at least two-dimensional, as in (1.4), the
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parameters are all identifiable, as asserted by Ying [24]. Moreover, the Markovian

property of X provides an important advantage, in the form of dimension reduc-

tion, to derive the asymptotics for the maximum likelihood estimator (MLE) for

λ, µ and σ2.

1.2.1 Parameter estimation using maximum likelihood ap-

proach

Recall the random field defined in (1.3). Now, for j = 1, . . . ,m and k = 1, . . . , n,

define the following

• ξj = |uj − uj−1| and ζk = |vk − vk−1|

• aj = e−λξj and bk = e−µζk

• X˜j =



X(uj, v1)

X(uj, v2)
...

X(uj, vn)


, X˜ =



X˜1

X˜2
...

X˜m


In here, X˜ is the ‘stacked’ version of the random field X. As a result,

X˜ ∈ Rmn×1 ∼ N(0, σ2A(λ)⊗B(µ)),
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where

A(λ) =



1 a2 a2a3 . . . a2a3 · · · aM

a2 1 a3 . . . a3 · · · am
... . . . ...

a2a3 · · · aM a3a4 · · · aM a4 · · · aM . . . 1


(1.5)

and

B(µ) =



1 b2 b2b3 . . . b2b3 · · · bn

b2 1 b3 . . . b3 · · · bN
... . . . ...

b2b3 · · · bN b3b4 · · · bN b4 · · · bn . . . 1


. (1.6)

Notice that, the arrangement of X˜ at each sampling site (uj, vk) can be expressed

as a set of observations made on a lattice, shown in Table 1.1.
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v1 X(u1, v1) · · · X(ui, v1) · · · X(uj, v1) · · · X(um, v1)
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
vk X(u1, vk) · · · X(ui, vk) · · · X(uj, vk) · · · X(um, vk)
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
vl X(u1, vl) · · · X(ui, vl) · · · X(uj, vl) · · · X(um, vl)
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
vn X(u1, vn) · · · X(ui, vn) · · · X(uj, vn) · · · X(um, vn)

u1 · · · ui · · · uj · · · um
X˜1 · · · X˜i

· · · X˜j
· · · X˜m

Table 1.1: A tabular representation of a realization of the OU field with complete
data.

Since the covariance matrix of X˜ is a kronecker product, we have

(A(λ)⊗B(µ)) = A(λ)−1 ⊗B−1(µ).

Moreover, due to the multiplicative properties of the covariance function, A(λ)−1

and B(µ)−1 are both tridiagonal, which allows us to express the log likelihood

function explicitly in terms of the parameters λ, µ and σ2. Below we provide a

lemma from [24], which can be used to obtain the exact form of (A(λ)⊗B(µ)) .
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Lemma 1.2.1 (Ying 1993). Let θ > 0 and −∞ < s1 < · · · < sr <∞. Define the

r × r matrix

G :=



1 e−θ|s1−s2| · · · e−θ|s1−sr|

e−θ|s2−s1| 1 · e−θ|s2−sr|

... ... . . . ...

e−θ|sr−21| e−θ|sr−s2| · · · 1


,

the s× 1 vector

g(s) :=


e−θ|s−s1|

...

e−θ|s−sr|

 , where s ≤ sr,

and the rk × 1 vectors

f =


f1

...

fr

 , h =


h1

...

hr

 ,

where for i = 1, . . . , r, fi and hi are k × 1 vectors. Then for any k × k matrix H,

1. G−1g(s) =
[
0 0 . . . e−θ(s−sr)

]′

2. f ′(G⊗H)−1h = f ′1H
−1h1 +

r∑
i=2

(
fi − e−θ(si−si−1)fi−1

)′
H−1

(
hi − e−θ(si−si−1)hi−1

)′
1− e−2θ(si−si−1)

3. detG =
r∏
i=2

(
1− e−2θ(si−si−1)

)

9



The likelihood function for the complete data is:

L(λ, µ, σ2|X˜) = (2πσ2)−mn/2 [det(A(λ)⊗B(µ))]1/2 exp
{
−1
2σ2X˜′(A(λ)⊗B(µ))−1X˜

}
.

(1.7)

Let l(λ, µ, σ2|X˜) = −2 lnL(λ, µ, σ2|X˜), then the log-likelihood becomes

l(λ, µ, σ2|X˜) = mn ln(2πσ2) + ln[det(A(λ)⊗B(µ))] + 1
σ2X˜′(A(λ)⊗B(µ))−1X˜.

(1.8)

Let āij be the ijth element of A(λ)−1, and b̄ij be the ijth element of B−1(µ). Recall

that since A(λ)−1 and B(µ)−1 are tridiagonal, we have by lemma (1.2.1) :

• ā11 = 1
1− a2

2
, āmm = 1

1− a2
m

; b̄11 = 1
1− b2

2
, b̄nn = 1

1− b2
n

For j = 2, . . . ,m; k = 2, . . . , n :

• ājj = 1
1− a2

j

+ 1
1− a2

j+1
− 1, b̄kk = 1

1− b2
k

+ 1
1− b2

k+1
− 1

• ājj−1 = −aj
1− a2

j

; b̄kk−1 = −bk
1− b2

j

• āij = 0 and b̄ij = 0 if |i− j| > 1

On the other hand, since the O-U process satisfies the Markov property, we can

express the joint distribution of X˜ as

f
(
X˜
)

= f
(
X˜1

) m∏
j=2

f
(
X˜j
|X˜j−1

)
. (1.9)
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By direct calculation, we have

X˜1 ∼ Nn

(
0, σ2B(µ)

)
, and X˜j

|X˜j−1 ∼ Nn

(
e−λξjX˜j−1, σ

2(1− e−2λξj)B(µ)
)
,

(1.10)

from which we can derive a representation of (1.8) as

l(λ, µ, σ2|X˜) = mn ln(2πσ2)

+ n
m∑
j=2

ln(1− e−2λξj) +m
n∑
k=2

ln(1− e−2µηk)

+ 1
σ2

X˜ ′1B−1(µ)X˜ 1 +
m∑
j=2

(X˜ j − e−λξjX˜ j−1)′B−1(µ)(X˜ j − e−λξjX˜ j−1)
1− e−2λξj

.
(1.11)

1.2.2 Properties of the MLE given complete observations

Ying [24] has shown that the MLE’s for λ, µ and σ2 derived from (1.11) are strongly

consistent, that is, if λ0, µ0 and σ2
0 are the true parameters for the random field X,

then the MLE’s λ̂, µ̂ and σ̂2 will converge to the true values almost surely, asm,n→

∞. In particular, when the spacing of the sampling grid follows a certain regularity

condition, the MLE’s are asymptotically normal. Also, under the same regularity

assumption, we have that, asymptotically, λ̂ − λ0 and µ̂ − µ0 are uncorrelated,

which implies independece in the normal case. As a result, the vertical partition

can be arragned independently of the horizontal partition, allowing freedom in

designing the sampling scheme.

However, in the practical point of view, missing observations are often unavoid-

able due to many factors, from physical constraint to human error. Therefore, we

11



are interested in investigating the properties of the estimates under the assumption

that some observations are missing. In the rest of this paper, we will investigate

methods to estimate the parameters λ, µ and σ2 when we no longer have the com-

plete lattice assumption that was made in [24]. We begin with defining the patterns

of the missing observations. Then, we present our proposed methods to estimate

the parameters, followed by an investigation on the properties of the estimates as

well as implementation based on numerical examples using simulated data.
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Chapter 2

Parameter Estimation in the

Presence of Missing Data

We live in a time where data is ubiquitous. From personal exercise records gener-

ated from mobile devices to coffee preferences arranged by zipcodes, data availabil-

ity is a trend that continues to spread as tools for collecting, storing and visualiz-

ing data are more accessible and cost-effective than ever. Consequently, situations

where one has to deal with missing data are occuring more frequently.

A large body of litereture has been developed on statistical inference with re-

spect to missing data, with some of the most notable methods being the expectation-

maximization (EM) algorithm [3], which is an iterative approach that repeatedly

updates the parameter estimates of a model based on its conditional likelihood

given the available data, and multiple-imputation (MI), which employs many dif-

ferent modeling procedures (such as regression) to produce multiple values to fill

in the missing observations, after which the full data estimation method can be

13



applied.

The advantages of these inference methods are the ease of implementation,

and, in the case of the EM algorithm, a guarentee of convergence to the MLE.

However, convergence of the EM estimates can be extremely slow, and, on the

other hand, MI may introduce unwanted bias due to the variance from drawing

multiple simulations. In here, we focus on building parameter estimation methods

that do not rely on iterative steps or imputations, as in the EM algorithm and the

MI approach. Rather, we seek to use the available information we have and define

inference functions where parameter estimates can be derived in a similar manner

as the MLE in the full-data case.

2.1 Patterns of missing data : missing data block

and randomly missing data

There are many scenarios in which a block of observations can be absent in a

dataset. For example, suppose we want to model sea surface temperature based

on data collected in a sea area where there is an island. This island serves as an

origin of a missing block in the resulting dataset, as sea surface temperature is

clearly inacessible when the sampling site is away from water. Another example

would be data collected from air monitoring stations in a metro area. In this

case, a missing block can occur due to a power outage in a small region, which

prevents the equipments from recording the observations. On the other hand,

suppose we wish to collect income data from each house in a geographical area,

then the missing observations may follow a random pattern due to factors such as

14



non-response or human error. In either of these examples, properties of the MLE’s

for λ, µ and σ2 as defined by [24] in the complete data case may no longer be valid,

as the missing sampling sites will impose many new restrictions in computing the

likelihood function.

Figure 2.1: An illustration of a missing block in a rectangular sampling grid.

Figure 2.2: An illustration of randomly missing sampling sites in a rectangular
sampling grid.

In this chapter, assuming the data is modeled as an O-U process with covari-

15



ance parameters λ, µ and σ2. We propose, for each missing data scenario, a method

of estimating the parameters via an approximation of the likelihood function. This

idea is inspired by the work of Besag [1] and Vecchia [20], who suggested approxi-

mating the likelihood function by conditioning on a selected number of neighboring

observations. This means that, if Z ∼ N(µ(θ),Σ(θ)) is a stochastic process ob-

served on sites l = 1, . . . , K, then the full likelihood can be approximated by

l(θ) = f(Z1|θ)
K∏
l=2

f(Zl|Zl−1; θ) ≈ f(Z1|θ)
K∏
l=2

f(Zl|Z∗l−1; θ),

where Z∗l , known as the conditioning vector, is a subvector of Zl chosen to simplify

the computation of the likelihood function.

2.2 Approximated likelihood estimation for mis-

ing data block

Suppose some observations in a realization of an O-U process are missing in a

rectangular grid formed by columns {m1,m1+1, . . . ,m2−1,m2} and rows {n1, n1+

1, . . . , n2 − 1, n2}, where 1 < m1 < m2 < m and 1 < n1 < n2 < n. Then for

j = m1, . . . ,m2, we express the observation columns in three parts:

X˜j
=


X˜(1)
j

X˜(2)
j

X˜(3)
j

 ,
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with X˜(1)
j

=


X(uj, v1)

...

X(uj, vn1−1)

 ;X˜(2)
j

=


X(uj, vn1)

...

X(uj, vn2)


︸ ︷︷ ︸

missing data

;X˜(3)
j

=


X(uj, vn2+1)

...

X(uj, vn)

 .

Notice that the partition of an observation vector corresponds to the covariance

matrix for X˜j
, in particular, let M be an arbitrary matrix, and denoteM [a : b, c : d]

to be a submatrix of M formed by rows a to b and columns c to d. Let

• B11 = B [1 : n1 − 1, 1 : n1 − 1] , B22 = B[n1 : n2, n1 : n2],

B33 = B[n2 + 1 : n, n2 + 1 : n]

• B12 = B[1 : n1 − 1, n1 : n2], B13 = B[1 : n1 − 1, n2 + 1 : n]

• B23 = B[n1 : n2, n2 + 1 : n]

• B31 = B′13, B32 = B′23,

so that

B(µ) =


B11 B12 B13

B21 B22 B23

B31 B32 B33

 .

In other words, each partition Bs,s′ is expressed by Cov
(
X˜(s)
j
X˜(s′)
j

)
. Moreover,

B−1
s,s′ has a tridiagonal form if s = s′.
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u1 ·· um1−1 um1 · ·um2 um2+1 ·· um

v1 X(u1, v1) ·· X(um1−1, v1) X(um1 , v1) · ·X(um2 , v1) X(um2+1, v1) ·· X(um, v1)
· · ·· · ·· · ·· ·
· · ·· · ·· · ·· ·
· · ·· · ·· · ·· ·

vn1−1 X(u1, vn1−1) ·· X(um1−1, vn1−1) X(um1 , vn1−1) · ·X(um2 , vn1−1) X(um2+1, vn1−1) ·· X(um, vn1−1)
vn1 X(u1, vn1 ) ·· X(um1−1, vn1 ) X(um1 , vn1 ) · ·X(um2 , vn1 ) X(um2+1, vn1 ) ·· X(um, vn1 )
· · ·· · ·· · ·· ·
· · ·· · ·· · ·· ·
· · ·· · ·· · ·· ·

vn2 X(u1, vn2 ) ·· X(um1−1, vn2 ) X(um1 , vn2 ) · ·X(um2 , vn2 ) X(um2+1, vn2 ) ·· X(um, vn2 )
vn2+1 X(u1, vn2+1) ·· X(um1−1, vn2+1) X(um1 , vn2+1) · ·X(um2 , vn2+1) X(um2+1, vn2+1) ·· X(um, vn2+1)

· · ·· · ·· · ·· ·
· · ·· · ·· · ·· ·
· · ·· · ·· · ·· ·

vn X(u1, vn) ·· X(um1−1, vn) X(um1 , vn) · ·X(um2 , vn) X(um2+1, vn) ·· X(um, vn)
u1 ·· um1−1 um1 · ·um2 um2+1 ·· um

X˜1 ·· X˜m1−1 X˜m1
· ·X˜m2

X˜m2+1 ·· X˜m

Table 2.1: A tabular representation of X(o) with missing observations (indicated
in red) in a rectangular pattern.

For j = m1 − 1, . . . ,m2 + 1, define

X˜∗j =

X˜(1)
j

X˜(3)
j

 (2.1)

to be the vector of remaining observations from each column. ThenX˜∗j ∼ N(0, σ2B∗(µ)),

where

B∗(µ) =

B11 B13

B31 B33

 , (2.2)

and (B∗(µ))−1 is a tridiagonal matrix with entries in similar form as those in

B−1 (µ), except for the n1−1th row and the row immediately after that. By direct

calculation, we get X˜∗j |X˜∗j−1 ∼ N
(
e−λξjX˜∗j−1, σ

2(1− e−2λξj)B∗(µ)
)
. On the other

hand, define
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•

B̃11 B̃13

B̃31 B̃33

 =

B11 B13

B31 B33


−1

• H = B21B̃11 +B23B̃31

• J = B21B̃13 +B23B̃33

Then, for X˜j
|X˜∗j−1, where X˜j

and X˜∗j−1 are column observations bordering the

missing block, we have

E[X˜j
|X˜∗j−1] = e−λξj


B11 B13

B21 B23

B31 B33

 ·
B̃11 B̃13

B̃31 B̃33



= e−λξj


In1−1 0n1−1×n−n2

H J

0n−n2×n1−1 In−n2

 ·X˜
∗
j

= e−λξj


X˜(1)
j

HX˜(1)
j

+ JX˜(3)
j

X˜(3)
j

 , (2.3)
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and

Cov[X˜j
|X˜∗j−1] = σ2

B(µ)− e−2λξj


In1−1 0n1−1×n−n2

H J

0n−n2×n1−1 In−n2


B11 B‘

21 B‘
31

B‘
13 B‘

23 B33




= σ2

B(µ)− e−2λξj


B11 B12 B13

HB11 + JB31 HB12 + JB32 HB13 + JB33

B31 B32 B33



 .

(2.4)

From (2.4), we see that, unlike B−1(µ), the inverse matrix for Cov[X˜i
|X˜∗j ] can no

longer be expressed explicitly. As a result, we consider only conditional variables

in the form of X˜i
|X˜i−1 and X˜∗j |X˜∗j−1 when computing the approximated likelihood

function. Denote

X(o) := {X˜1, . . . , X˜m1−1, X˜∗m1
, . . . , X˜∗m2+1, X˜m2

, . . . X˜m
} (2.5)

to be the set of available observations from the O-U field. Let

• Ko = {2, 3, . . . n1 − 1, n2 + 1, . . . , n},

• Jo = {2, 3, . . . ,m1 − 1,m2 + 2, . . . ,m},

• ζ∗n2+1 = |vn2+1 − vn1−1|

• ξ∗m2+2 = |um2+2 − um1−1|

20



and define

L(λ, µ, σ2|X(o)) = f
(
X˜1

)m1−1∏
j=2

f
(
X˜j
|X˜j−1

)m2+1∏
j=m1

f
(
X˜∗j |X˜∗j−1

) m∏
j=m2+2

f
(
X˜j
|X˜j−1

)
.

Notice that

−2 ln f
(
X˜1

)
= n ln

(
2πσ2

)
+ ln det (B(µ)) + 1

σ2X˜′1B−1 (µ)X˜1,

for j = 2, . . . ,m1 − 1,m2 + 1, . . . ,m,

−2 ln f(X˜j
|X˜j−1) = n ln

(
2πσ2

)
+ ln

(
1− e−2λξj

)
+

n∑
k=2

ln
(
1− e−2µζk

)

+
(X˜j
− e−2λξjX˜j−1)′B−1 (µ)(X˜j

− e−2λξjX˜j−1)
σ2(1− e2−λξj) ,

and for j = m1,m1 + 1, . . .m2 + 1,

−2 ln f(X˜∗j |X˜∗j−1) = (n− (n2 − n1 + 1))(ln(2πσ2) + ln(1− e−2λξj))

+
∑
k∈Ko

ln(1− e−2µζk) + ln(1− e−2µζ∗n2+1)

+
(X˜j
− e−2λξjX˜j−1)′(B∗(µ))−1(X˜∗j − e−2λξjX˜∗j−1)

σ2(1− e2−λξj) .
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Then the approximated likelihood function has the form

l
(
λ, µ, σ2|X(o)

)
= −2 lnL

(
λ, µ, σ2|X(o)

)
(2.6)

= [nm− (m2 −m1 + 2)(n2 − n1 + 1)] ln
(
2πσ2

)

+ n
∑
j∈Jo

ln
(
1− e−2λξj

)
+ [n− (n2 − n1 + 1)]

m2+1∑
j=m1

ln
(
1− e−2λξj

)

+ [m− (m2 −m1 + 2)]
n∑
k=2

ln
(
1− e−2µζk

)

+ (m2 −m1 + 2)
 ∑
k∈Ko

ln
(
1− e−2µζk

)
+ ln

(
1− e−2µζ∗n2+1

)

+ 1
σ2

X˜′1B−1 (µ)X1

+
∑
j∈Jo

(
X˜j
− e−2λξjX˜j−1

)′
B−1 (µ)

(
X˜j
− e−2λξjX˜j−1

)
1− e−2λξj

+
m2+1∑
j=m1

(
X˜∗j − e−2λξjX˜∗j−1

)′
(B∗(µ))−1

(
X˜∗j − e−2λξjX˜∗j−1

)
1− e−2λξj

. (2.7)
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Consequently, the maximum likelihood estimators λ̂, µ̂, σ̂2 for L((λ, µ, σ2|X(o)) are

defined as the solution to

∂

∂λ
l(λ, µ, σ2|X(o)) = 0

∂

∂µ
l(λ, µ, σ2|X(o)) = 0

∂

∂σ2 l(λ, µ, σ
2|X(o)) = 0.

Finding the ML estimators for λ̂ and µ̂ explicitly may not be possible due to

the non-linearity of the equations. In order to study the asymptotic property of

the estimators, we rely on approximation techniques that utilize transformation

of correlated random variables to independent ones. By expressing the quadratic

forms in (2.6) using combinations of independent standard normal and chi-squared

random variables, we can draw some conclusion on the consistency of the estimator

through the behavior of

l(λ, µ, σ2|X(o))− l(λ0, µ0, σ
2
0|X(o))

as m,n→∞.
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2.2.1 Asymptotic results

In this section we present the main theorems that describe the asymptotic prop-

erties of λ̂, µ̂ and σ̂2 estimated from (2.6).

Theorem 2.2.1 (Strong Consistency). Let C ⊂ R2
+ be a compact subspace, and let

λ0, µ0 and σ2
0 denote the true parameters for the random field X with joint density

defined in (1.9) and (1.10), where (λ0, µ0) ∈ C and σ2
0 > 0. Let X(o) be as defined

in (2.5). If (m2−m1)(n2−n1) = o(mn), then (λ̂, µ̂, σ̂2), the approximated likelihood

estimator that maximizes (2.6) over C × R+, is strongly consistent, i.e.

(λ̂, µ̂, σ̂2)→ (λ0, µ0, σ
2
0) (2.8)

almost surely in C × R+.

Theorem 2.2.2 (Asymptotic Normality). Assume the same notations in theorem

2.2.1. Let ξj = |uj − uj−1|, ζk = |vk − vk−1|, and suppose the following holds:

• ξj, ζk < o(n1/2)

• (m2 −m1)(n2 − n1) ≤ O(n1−ε0), where 0 < ε0 < 1

then 
√
n(λ̂− λ0)
√
m(µ̂− µ0)

→D N (
0, Σ1

)
(2.9)

where

Σ1 =

 2λ0
2

1+λ0
0

0 2µ02

1+µ0

 .
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Furthermore, suppose n
m
→ ρ, where ρ is a positive constant, then


√
n
(
λ̂− λ0

)
√
n (µ̂− µ0)

√
n (σ̂2 − σ2

0)

→D N

0,


0 λ0

2

1+λ0

−2λ0σ2
0

2

1+λ0

µ02

1+µ0
0 −2µ0σ2

0
1+µ0

−2µ0σ2
0

1+µ0

−2λ0σ2
0

1+λ0
2σ4

0

[
1

1+λ0
+ ρ

1+µ0

]



 . (2.10)

Proofs of theorems (2.2.1) and (2.2.2) will be provided in the upcoming sections.

To this end, the main message in here is that the approximated likelihood estimator

shows similar asymptotic result as the MLE under the full data case, as long as

the size of the missing block can be controlled by O(n1−ε0), where 0 < ε0 < 1.

2.2.2 Variable transformation

In this section, we introduce a set of new variables that will be utilized in the

approximation process. This is based on the general idea that a normal random

variable is a linear combination of i.i.d. standard normal random variables. That is,

if Y = MZ, where Y ∼ N(0,Σ) and Z ∼ N(0, I), then we can study the asymptotic

properties of Y by investigating the behavior of the matrix M. Similarly, in our

case, we seek to express the quadratic forms in the likelihood function of the O-U

process as a linear combination of independent variables, which can then simplify

the analysis of the asymptotic properties of the estimators.

Lemma 2.2.3. For j = 2, . . . ,m, k = 2, . . . , n, let ξj = |uj − uj−1|, ζk = |vk − vk−1|,

and A(λ0), B(µ0) as defined in (1.5) and (1.6). Let

• ηj,k = xj,k − e−λ0ξjxj−1,k

σo
√

1− e−2λ0ξj
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• γj,k = xj,k − e−µ0ξjxj,k−1

σo
√

1− e−2µ0ζk

• wjk = ηj,k − e−µ0ζkηj,k−1√
1− e−2µ0ζk

then we have the following

1. ηj1,· is independent of xj2,· for j1 ≥ j2

2. γ·,k1 is independent of x·,k2 for k1 ≥ k2

3. ηj1,k1 is independent of γj2,k2 if either j1 ≥ j2 or k1 ≥ k2

4. For a fixed k,{ηj,k} is a sequence of i.i.d normal random variables in j, with

distribution N (0, B(µ0)). For a fixed j, {γj,k} is a sequence of i.i.d standard

normal in k, with distribution N (0, A(λ0)) , and {wj,k} is a sequence of i.i.d.

standard normal ranomd variables in both j and k.

Proof of lemma 2.2.3. To show 1 (and similarly for 2), notice that

E
[
ηj1,·X˜′j2

]
= 1
σ0
√

1− e−2λ0ξj1
E
[
X˜j1

X˜′j2 − e−λ0ξj1X˜j1−1X˜′j2
]
.

Then,

E
[
X˜j1

X˜′j2 − e−λ0ξj1X˜j1−1X˜′j2
]

=
(
e−λ0|uj1−uj2 | − e−λ0ξj1−λ0|uj1−1−uj2 |

)
B(µ0).

Now, if j1 > j2, then ξj1 + uj1−1 − uj2 = uj1 − uj2 , therefore we have E
[
ηj1,·X˜′j2

]
=

0. For 3, since γj,k is a function of xj,k and xj,k−1, and similarly, ηj,k is a function of

xj,k and xj−1,k, the result stated in part 3 follows from part 1 and 2 of the lemma.
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To show 4, first notice that for a fixed column j, we have

E [ηj,k2ηj,k2 ] =
E
(
xj,k1 − e−λ0ξjxj−1,k1

) (
xj,k2 − e−λ0ξjxj−1,k2

)
σ2

0 (1− e−2λ0ξj)

=
σ2

0

(
1− e−2λ0ξj

)
e−µ0|vk1−vk2 |

σ2
0 (1− e−2λ0ξj)

= e−µ0|vk1−vk2 |,

so ηj,· ∼ N (0, B(µ0)) for j = 2, . . . ,m.

On the other hand, without loss of generality, let k be fixed and j1 > j2,

consider

E
[
ηj1,kη

′
j2,k

]
= E [xj1,kxj2,k]− e−λ0ξj1E [xj1−1,kxj2,k]− e−λ0ξj2E [xj1,kxj2−1,k]

σ2
0

√(
1− e−2λ0ξj1

) (
1− e−2λ0ξj2

)
+ e−λ0(ξj1+ξj2 )E [xj1−1,kxj2−1,k]

σ2
0

√(
1− e−2λ0ξj1

) (
1− e−2λ0ξj2

)
= e−λ0(uj1−uj2 ) − e−λ0(uj1−uj2 ) − eλ0(uj1−uj2−2uj2 )√(

1− e−2λ0ξj1
) (

1− e−2λ0ξj2
)

+ e−λ0(uj1+uj2−2uj2−1)√(
1− e−2λ0ξj1

) (
1− e−2λ0ξj2

)
= 0,

which implies that ηj,·’s are indenpendent, and the same argument can be used for

γj,k to show that γ·,k i.i.d∼ N (0, A(λ0)) as well. Finally, for wj,k, notice that, clearly,
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E [wj,k] = 0, and E [wj1,k1wj2,k2 ] = 0, if j1 6= j2, since η′j,·s are i.i.d. in j. Now,

E
[
w2
j,k

]
=

E
[
η2
j,k

]
− 2e−µ0ζkE [ηj,kηj,k−1] + e−2µ0ζkE

[
η2
j,k−1

]
1− e−2µ0ζk

= 1,

thus wj,k’s are a sequence of i.i.d. standard normal random variables.
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Lemma 2.2.4. For j = 1, . . . ,m and k = 1, . . . , n, let ηj,k, γj,k and wj,k be the

same as previously defined. Let J,K be subsets of the indices {1, . . . ,m}, and

{1, . . . , n} respectively, with |J | and |K| denote the cardinality of J and K. Also,

assume |J |, |K| ≤ O(nq), where 0 < q < 1, and let ξj = |uj−uj−1|, ζk = |vk− vk−1|

and suppose that
∑
j∈J

ξj ≤ 1 and
∑
k∈K

ζk ≤ 1. Then we have

1.
∑
j∈J

∑
k∈K

(w2
j,k − 1) = o(mn) a.s.

2.
∑
j∈J

(η2
j,k − 1) = o(n) a.s.

3.
∑
k∈K

(γ2
j,k − 1) = o(n) a.s.

4. Furthermore, if max
j∈J

ξj = max
k∈K

ζk ≤ o(n−1/2), then each of

∑
j∈J

∑
k∈K

ξj(w2
j,k − 1),

∑
j∈J

∑
k∈K

ζk(w2
j,k − 1),

∑
j∈J

∑
k∈K

ξj(γ2
j,k − 1),

∑
j∈J

∑
k∈K

ζk(η2
j,k − 1)

is o(n) a.s., or op
(
n1/2

)
.

Proof of lemma (2.2.4). To show (1), notice that since w2
j,k is a sequence of i.i.d.

standard normal random variables,
∑
j∈J

∑
k∈K

(w2
j,k − 1) is then a centered chi-square

random variable with |J ||K| − 1 degrees of freedom. By Chebychev’s inequality

P

∑
j∈J

∑
k∈K

(
w2
j,k − 1

)
> mn

 ≤
E


∑
j∈J

∑
k∈K

(w2
j,k − 1)

2


m2n2

= 2 (|J ||K| − 1)
m2n2 ≤ O

(
n−2

)
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where 2(|J ||K| − 1) is the variance of
∑
j∈J

∑
k∈K

(w2
j,k − 1), and the last inequality is

due to the assumptions that |J ||K| = O(n2q) = O(n2−ε0), and m = O(n). This

implies that P

∑
j∈J

∑
k∈K

(
w2
j,k − 1

)
> mn

is summable, and by the Borel-Cantelli

lemma,

∑
j∈J

∑
k∈K

(w2
j,k − 1) = o(mn) a.s. .

Similarly to (1), since ηj,k is a sequence of i.i.d standard normal in j,
∑
j∈J

(η2
j,k−1) ∼

X 2(|J | − 1), and therefore

P

∑
j∈J

(η2
j,k − 1) > n

 ≤ 2 (|J | − 1)
n2 = O

(
n−2+q

)
.

Since |J | = O(nq), 0 < q < 1, P
∑
j∈J

(η2
j,k − 1) > n

 is also summable,therefore

∑
j∈J

(
η2
j,k − 1

)
= o (n) a.s..

Moreover, it can be shown that, by choosing q < 5
2 , we have

∑
j∈J

(
η2
j,k − 1

)
= op

(
n1/2

)

as well.

By the same argument, we have

∑
k∈K

(
γ2
j,k − 1

)
= o(n) a.s., or op

(
n1/2

)
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as well. To show (4), notice that since, ξj < o(n1/2),

P

∑
j∈J

∑
k∈K

ξj(w2
j,k − 1) > n

 ≤
E


∑
j∈J

∑
k∈K

ξj(w2
j,k − 1)

2


n2

≤

E


∑
j∈J

∑
k∈K

(w2
j,k − 1)

2


n3

= 2|J ||K|
n3 = O

(
n−(1+ε0)

)
,

recalling that |J ||K| = O(n2q) = O(n2−ε0), since 0 < q < 1. Therefore, this is

summable and we have

∑
j∈J

∑
k∈K

ξj
(
w2
j,k − 1

)
= o(n) a.s..

On the other hand, since
∑
k∈K

ξk
(
γ2
j,k − 1

)
= o(n), a.s., and

∑
j∈J
ξj ≤ 1,

∑
j∈J

∑
k∈K

ξj
(
γ2
j,k − 1

)
=
∑
j∈J
ξj

∑
k∈K

(γ2
j,k − 1)

 =
∑
j∈J
ξj

 o(n) = o(n) a.s..

The same arguments apply to
∑
j∈J

∑
k∈K

ζk
(
w2
j,k − 1

)
and

∑
j∈J

∑
k∈K

ζk
(
η2
j,k − 1

)
as well.

The following lemma, which is a more detailed version of lemma 3 in [24], provides

approximations for the coefficients of the linear combination of the transformed
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variables.

Lemma 2.2.5. Let 0 < δj < 1, and lim
j→∞

δj = 0. Let θ0 and θ be parameters such

that each of them is in (0, c], where c > 0 is finite. Then

1. 1− e−2θδj ≤ 2θδj

2.
∣∣∣∣∣ 1
1− e−2θδj

− 1
2θδj

− 1
2

∣∣∣∣∣ ≤Mδj

3. 1− e−2θ0δj

1− e−2θδj
= θ0

θ
+ θ0(θ − θ0)

θ
δj + o(1)

4.

(
e−θ0δj − e−θδj

) (
1− e−2θ0δj

)1/2

1− e−2θδj
= O(δj1/2)

5.

(
e−θ0δj − e−θδj

)2

1− e−2θδj
= (θ − θ0)2

2θ δj + o(1)

6. ln 1− e−2θδi

1− e−2θ0δi
= ln θ

θ0
+ (θ0 − θ)δi + o(1)

7. δje
−2θδj

1− e−2θδj
= 1

2θ −
δj
2 +O(δ2

j )

8. δje
−θδj

1− e−2θδj
= 1

2θ +O(δ2
j )
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Proof of lemma (2.2.5). For each of the following proofs, we use the fact that

ex = Tn(x) +Rn(x),

where

• Tn(x) =
n∑
k=0

xk

k! is the nth order Taylor approximation of ex

• Rn(x) = ec

(n+ 1)!x
n is its lagrange remainder, with 0 < c < x.

(1) is clear by letting 0 < c < δj and writing

1− e−2θδj = 2θδje−2θc ≤ 2θδ.

For (2), notice that

∣∣∣∣∣ 1
1− e−2θδj

− 1
2θδj

− 1
2

∣∣∣∣∣ =
∣∣∣∣∣∣
2θδj −

(
1− e−2θδj

)
− θδj

(
1− e−2θδj

)
2θδj (1− e−2θδj)

∣∣∣∣∣∣
=
∣∣∣∣∣∣
2θδj − (1 + θδj)

(
1− e−2θδj

)
(2θδ)2e−2θc1

∣∣∣∣∣∣
=
∣∣∣∣∣∣
2θδj − (1 + θδj)

(
2θδj − 2θ2δ2

j + 4
3θ

3δ2
j e
−2θc2

)
(2θδ)2e−2θc1

∣∣∣∣∣∣
=
∣∣∣∣∣∣
θδj

(
1− 2

3e
−2θc2 − 2

3θδje
−2θc2

)
e−2θc1

∣∣∣∣∣∣
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and by the triangular inequality,

∣∣∣∣∣ 1
1− e−2θδj

− 1
2θδj

− 1
2

∣∣∣∣∣ ≤ δj

∣∣∣∣∣5θ + 2θ2

2e−2θc1

∣∣∣∣∣ = Mδj.

For (3), notice that by (1) and (2), we have

∣∣∣1− e−2θ0δj
∣∣∣ ∣∣∣∣∣ 1

1− e−2θδj
− 1

2θδj
− 1

2

∣∣∣∣∣ ≤Mδ2
j ,

which implies that

∣∣∣∣∣1− e−2θ0δj

1− e−2θδj
−

2θ0δj − 2θ0
2δ2
j + 4

3θ0
3δj

3e−2θ0c1

2θδj
− 1

2(2θ0δj − 2θ0
2δ2
j + 4

3θ0
3δ3
j e
−2θ0c1)

∣∣∣∣∣︸ ︷︷ ︸
(∗)

≤Mδj
2,

but since

(∗) =
∣∣∣∣∣1− e−2θ0δj

1− e−2θδj
− θ0

θ
− θ0(θ − θ0)

θ
δj − θ0

2δj
2 + 2

3
θ3

θ
e−2θ0c1(δj2 + θδj

3)
∣∣∣∣∣

=
∣∣∣∣∣1− e−2θ0δj

1− e−2θδj
− θ0

θ
− θ0(θ − θ0)

θ
δj

∣∣∣∣∣+ o(δj),

therefore, we have

1− e−2θ0δj

1− e−2θδj
= θ0

θ
+ θ0(θ − θ0)

θ
δj + o(δj).
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To show (4), notice that

(
e−θ0δj − e−θδj

) (
1− e−2θ0δj

)1/2

1− e−2θδj
≤
√

2θδj

(
1− e−(θ0−θ)δj

)
1− e−2θδj

= δj
1/2
√

2θ(θ0 − θ)
2θ (1 + (θ0 + θ)δj + o(1))

≤ δj
1/2
√

2θ(θ0 − θ)
2θ (1 + θ0 + θ + o(1))

= O(δj1/2).

Similarly, for (5)

(e−θ0δj − e−θδj)2

1− e−2θδj
≤ (θ − θ0)δj

1− e−(θ−θ0)δj

1− e−2θδj

= (θ − θ0)2

2θ δj(1 + θ0 + θ

2θ δj + o(1))

= (θ − θ0)2

2θ δj +O(δj2)

= (θ − θ0)2

2θ δj + o(1).
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For (6), we can use (3) and second order Taylor expansion to get

ln
(

1− e−2θ0δj

1− e−2θδj

)
= ln

(
θ0

θ
+ θ0(θ − θ0)

θ
δj + o(1)δj

)

= ln θ0

θ
+ ln(1 + (θ − θ0)δj + o(1))

= ln θ0

θ
+ (θ − θ0)δj + (θ − θ0)2

2 δj
2 + o(1)

= ln θ0

θ
+ (θ − θ0)δj + o(1).

To prove (7), notice that

δje
−2θδj

1− e−2θδj
− 1

2θ + δj
2 = δje

−2θδj

(
1

1− e−2θδj
− 1

2θδje−2θδj
+ 1

2e−2θδj

)
,

and

1
1− e−2θδj

− 1
2θδje−2θδj

+ 1
2e−2θδj

=
2θδje−2θδj −

(
1− e−2θδj

)
(1− θδj)

2θδje−2θδj (1− e−2θδj)

=
2θδj

(
1− 2θδj + 2θ2δj

2e−2θc2
)
− (1− θδj)

(
2θδj − 2θ2δj

2 + 4
3θ

3δj
3e−2θc3

)
4θ2δj

2e−2θ(δj+c1)

=
δj

3(2θ3(2e−2θc2 − 1) + 4
3θ

3e−2θc3(θδj − 1))
4δj2

(
θ2e−2θ(δj+c1)

)

= O(δj),
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which implies that

δje
−2θδj

1− e−2θδj
− 1

2θ + δj
2 = 2θδje−2θcO(δj)

= O(δj2).

Similarly, for (8), we have

2θδj − (1− e−2θδj)(1− θδj)
2θδje−θδj(1− e−2θδj) =

δj
3θ3(e−θc2 + 4

3e
−2θc3)

4θ2δj
2e−θ(δj+c1)

= O(δj),

thus

δje
−θδj

1− e−2θδj
− 1

2θ = O(δj2).
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Lemma 2.2.6 (Ying [24]). Let θ > 0. For any constant ε > 0, there exists a δ > 0

such that

inf
|θ−1|≥ε

(θ − 1− ln θ) ≥ δ.

Proof of lemma (2.2.6). Let

f(θ) = θ − 1− ln θ

Then, we have f ′(θ) = 1− 1
θ
. Notice that, from its derivative we can see that f is

continuously decresing on (0, 1) and continuously increasing on θ ∈ [1,∞). As a

result, we can choose δ to be f(1 + ε).

Lemma 2.2.6 provides a lower bound for l(λ, µ, σ2) − l(λ̂, µ̂, σ̂2), which will be

useful later for showing strong consistency of the estimators.

2.2.3 Expanding and approximating the quadratic forms

The idea in here is to express the quadratic forms as a linear combination of

either chi-squared random variables, or product of two random variables that are

independent in at least one direction. Combining with previous lemmas, we can

utilize these expressions to control the magnitude of the quadratic forms, which

will be useful for the asymptotic studies in later sections.

To this end, write X˜j
− e−λξjX˜j−1 as X˜j

− e−λ0ξjX˜j−1 + (e−λ0ξj − e−λξj)X˜j−1

(and similarly for X˜∗j − e−λξjX˜∗j−1). Then, using variable tranformations, we can

rewrite the quadratic forms from (2.6) in the following way. For the columns with
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complete observations, we have

∑
j∈Jo

(
X˜j
− e−λξjX˜j−1

)′
B−1(µ)

(
X˜j
− e−λξjX˜j−1

)
1− e−2λξj

= σ2
0
∑
j∈Jo

1− e−2λ0ξj

1− e−2λξj
η′jB

−1 (µ)ηj

+ 2σo
∑
j∈Jo

(
e−λ0ξj − e−λξj

) (
1− e−2λ0ξj

)1/2

1− e−2λξj
η′jB

−1 (µ)X˜j−1

+
∑
j∈Jo

(
e−λ0ξj − e−λξj

)2

1− e−2λξj
X˜′j−1B

−1 (µ)X˜j−1

= Q1 +Q2 +Q3, (2.11)
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where

Q1 = σ2
0
∑
j∈Jo

1− e−2λ0ξj

1− e−2λξj
η2
j,1

+ σ2
0
∑
j∈Jo

1− e−2λ0ξj

1− e−2λξj

n∑
k=2

1− e−2µ0ζk

1− e−2µζk
w2
j,k

+ 2σ2
0
∑
j∈Jo

1− e−2λ0ξj

1− e−2λξj

n∑
k=2

(
e−µ0ζk − e−µζk

) (
1− e−2µζk

)1/2

1− 2−2µζk
ηj,k−1wj,k

= σ2
(
λ0

λ
+ o(1)

) ∑
j∈Jo

η2
j,1

+ λ0µ0σ
2
0

λµ

∑
j∈Jo

n∑
k=2

w2
j,k + (λ− λ0)

∑
j∈Jo

n∑
k=2

ξjw
2
j,k + (µ− µ0)

∑
j∈Jo

n∑
k=2

ζkw
2
j,k



+ λ0σ
2
0(µ− µ0)2

2λµ
∑
j∈Jo

n∑
k=2

ζkη
2
j,k−1 +

∑
j∈Jo

n∑
k=2

ξjζkη
2
j,k−1, (2.12)
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Q2 = 2σo
∑
j∈Jo

(
e−λ0ξj − e−λξj

) (
1− e−2λ0ξj

)1/2

1− ee−2λξj
X˜j−1B

−1ηj

= 2σo

∑
j∈Jo

n∑
k=2

(e−λ0ξj − e−λξj)(1− e−2λ0ξj)1/2

1− ee−2λξj

1− e−2µ0ζk

1− e−2µζk
γj−1,kwj,k

+
∑
j∈Jo

n∑
k=2

(
e−λ0ξj − e−λξj

) (
1− e−2λ0ξj

)1/2

1− ee−2λξj

(e−µ0ζk − e−µζk)2

1− e−2µζk
xj−1,k−1ηj,k−1

+
∑
j∈Jo

n∑
k=2

((
e−λ0ξj − e−λξj

) (
1− e−2λ0ξj

)1/2

1− ee−2λξj

·

(
e−µ0ζk − e−µζk

) (
1− e−2µ0ζk

)1/2

1− e−2µζk
xj−1,kwj,k

)

+
∑
j∈Jo

n∑
k=2

((
e−λ0ξj − e−λξj

) (
1− e−2λ0ξj

)1/2

1− ee−2λξj

·

(
e−µ0ζk − e−µζk

) (
1− e−2µ0ζk

)1/2

1− e−2µζk
ηj,k−1γj−1,k−1

)

= 2σ0

∑
j∈Jo

n∑
k=2

ξ
1/2
j γj−1,kwj,k +

∑
j∈Jo

n∑
k=2

ξ
1/2
j ζkxj−1,k−1ηj,k−1

+
∑
j∈Jo

n∑
k=2

ξ
1/2
j ζ

1/2
k (xj−1,k−1wj,k + ηj,k−1γj−1,k−1)

, (2.13)

41



and

Q3 =
∑
j∈Jo

(
e−λ0ξj − e−λξj

)2

1− e−2λξj
X˜′j−1B

−1 (µ)X˜j−1

=
∑
j∈Jo

(
e−λ0ξj − e−λξj

)2

1− e−2λξj

[
x2
j−1,1 +

n∑
k=2

(xj−1,k − e−µζkxj−1,k−1)2

1− e−2µζ

]

=
∑
j∈Jo

(
e−λ0ξj − e−λξj

)2

1− e−2λξj

 n∑
k=2

σ2
0

(
1− e−2µ0ζk

)
(1− e−2µζk) γ

2
j−1,k

+
n∑
k=2

(
e−µ0ζk − e−µζk

)2

1− e−2µζk
x2
j−1,k−1

+ 2
n∑
k=2

(
e−µ0ζk − e−µζk

) (
1− e−2µ0ζk

)1/2

1− e−2µζk
xj−1,k−1γj−1,k

+O(1)

= µ0σ
2
0(λ− λ0)2

2λµ
∑
j∈Jo

n∑
k=2

ξjγ
2
j−1,k

+
∑
j∈Jo

n∑
k=2

ξjζkx
2
j−1,k−1 + 2

∑
j∈Jo

n∑
k=2

ξjζ
1/2
k xj−1,k−1γj−1,k +O(1) a.s. . (2.14)
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For the columns with partial observations, notice that

X˜∗j(B∗(µ))−1X˜∗j = x2
j,1 +

n1−1∑
k=2

(
xj,k − e−µζkxj,k−1

)2

1− e−2µζk

+

(
xj,n2+1 − e−µζ

∗
n2+1xj,n1−1

)2

1− e−2µζ∗n2+1
+

n∑
k=n2+1

(
xj,k − e−µζkxj,k−1

)2

1− e−2µζk

= x2
j,1 +

∑
k∈Ko

(
xj,k − e−µζkxj,k−1

)2

1− e−2µζk
+

(
xj,n2+1 − e−µζ

∗
n2+1xj,n1−1

)2

1− e−2µζ∗n2+1
,

(2.15)

thus

m2+1∑
j=m1

(
X˜∗j − e−λξjX˜∗j−1

)′
(B∗(µ))−1

(
X˜∗j − e−λξjX˜∗j−1

)
1− e−2λξj

(2.16)

= Q∗1 +Q∗2 +Q∗3 +Q∗4. (2.17)
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Similar to the quadratic form from complete observation columns, we have

Q∗1 = σ2
(
λ0

λ
+ o(1)

)
m2+1∑
j=m1

η2
j,1

+ λ0µ0σ
2
0

λµ

m2+1∑
j=m1

∑
k∈Ko

w2
j,k + (λ− λ0)

m2+1∑
j=m1

∑
k∈Ko

ξjw
2
j,k + (µ− µ0)

m2+1∑
j=m1

∑
k∈Ko

ζkw
2
j,k



+ λ0σ
2
0(µ− µ0)2

2λµ

m2+1∑
j=m1

∑
k∈Ko

ζkη
2
j,k−1 +

m2+1∑
j=m1

∑
k∈Ko

ξjζkη
2
j,k−1, (2.18)

Q∗2 =
m2+1∑
j=m1

∑
k∈Ko

ξ
1/2
j γj−1,kwj,k +

m2+1∑
j=m1

∑
k∈Ko

ξ
1/2
j ζkxj−1,k−1ηj,k−1

+
m2+1∑
j=m1

∑
k∈Ko

ξ
1/2
j ζ

1/2
k (xj−1,k−1wj,k + ηj,k−1γj−1,k−1) , (2.19)

Q∗3 = µ0σ
2
0(λ− λ0)2

2λµ

m2+1∑
j=m1

∑
k∈Ko

ξjγ
2
j−1,k

+
m2+1∑
j=m1

∑
k∈Ko

ξjζkx
2
j−1,k−1 + 2

m2+1∑
j=m1

∑
k∈Ko

ξjζ
1/2
k xj−1,k−1γj−1,k +O(1), (2.20)
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and

Q∗4 = λ0µ0σ
2
0

λµ

m2+1∑
j=m1

w2
j,n2+1 + (λ− λ0)

m2+1∑
j=m1

ξjw
2
j,n2+1 + (µ− µ0)

m2+1∑
j=m1

ζ∗n2+1w
2
j,n2+1



+ σ2
0

(
m2+1∑
j=m1

ζ∗n2+1
1/2ηj,n1−1wj,n2+1 + λ0(µ− µ0)2

2λµ

m2+1∑
j=m1

ζ∗n2+1η
2
j,n1−1

+
m2+1∑
j=m1

ξjζ
∗
n2+1η

2
j,n1−1

)

+ 2σo
(
m2+1∑
j=m1

ξ
1/2
j γj−1,n2+1wj,n2+1 +

m2+1∑
j=m1

ξ
1/2
j ζ∗n2+1xj−1,n1−1ηj,n1−1

)

+ 2σ2
0

m2+1∑
j=m1

ξ
1/2
j ζ∗n2+1

1/2 (xj−1,n1−1wj,n2+1 + ηj,n1−1γj−1,n1−1)

+ µ0(λ− λ0)
2λµ

m2+1∑
j=m1

ξjy
2
j−1,n2+1 +

m2+1∑
j=m1

ξjζ
∗
n2+1x

2
j−1,n1−1

+ 2
m2+1∑
j=m1

ξjζ
∗
n2+1

1/2xj−1,n1−1γj−1,n2+1.
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Claim 2.2.7. Assume ξj, ζk ≤ o(n−1/2), and (m2 − m1), (n2 − n1) = O(n 1
2−ε0),

where 0 < εo <
1
2 . We have,

Q1 +Q∗1 = λ0µ0σ
2
0

λµ

(∑
j∈Jo

n∑
k=2

w2
j,k +

m2+1∑
j=m1

∑
k∈Ko

w2
j,k

)

+m

[
λ0σ

2
0

λ
+ λ0µ0σ

2
0

λµ
(µ− µ0) + λ0σ

2
0

2λµ (µ− µ0)2
]

+ n

[
λ0µ0σ

2
0

λµ
(λ− λ0)

]
+o(n) a.s., (2.21)

Q3 +Q∗3 = µ0(λ− λ0)2

2λµ n+ o(n) a.s., (2.22)

Q2 +Q∗2 = o(n) a.s., (2.23)

Q∗4 = o(n) a.s., (2.24)

and

X˜1B
−1 (µ)X˜1 = µ0σ

2
0

µ
n+ o(n) a.s.. (2.25)
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Proof of claim. (2.21) is obvious under lemma (2.2.4). In particular, notice that

for Q1 (and similarly for Q∗1),

∑
j∈Jo

n∑
k=2

ξjζkη
2
j,k−1 =

∑
j∈Jo

n∑
k=2

ξjζk
(
η2
j,k−1 − 1

)
+
∑
j∈Jo

ξj
n∑
k=2

ζk

=
∑
j∈Jo

ξj
n∑
k=2

ζk
(
η2
j,k−1 − 1

)
+
∑
j∈Jo

ξj
n∑
k=2

ζk

≤
n∑
k=2

ζk
(
η2
j,k−1 − 1

)
+ 1 = o(n)

To show (2.22), first notice that lemma (2.2.4) gives

∑
j∈Jo

n∑
k=2

ξjγ
2
j−1,k = n+ o(n),

and
m2+1∑
j=m1

∑
k∈Ko

ξjγ
2
j−1,k = (n− (n2 − n1 + 1))

m2+1∑
j=m1

ξj

+ o(n).

Now,
m2+1∑
j=m1

ξj ≤ (m2 −m1)n−1/2 < O(n−ε),

so we have
m2+1∑
j=m1

∑
k∈Ko

ξjγ
2
j−1,k = O(n1−ε) + o(n) = o(n).

On the other hand, notice that since x2
j,k is non-negative, and continuous on [0, 1]2,
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therefore sup
j,k

E[x2
j,k] is bounded, and

P

∑
j∈J

n∑
k=2

ξjζkx
2
j−1,k−1 > n1+ε0

 ≤
∑
j∈J

n∑
k=2

ξjζkE
[
x2
j−1,k−1

]
n1+ε0

≤

∑
j∈J

n∑
k=2

ξjζk

 supj,k E
[
x2
j−1,k−1

]
n1+ε0

≤ O(1)
n1+ε0

.

Thus,
∞∑
n=1

P

∑
j∈J

n∑
k=2

ξjζkx
2
j−1,k−1 > n1+ε0

 is finite, and by the Borel-Cantelli lemma

∑
j∈J

n∑
k=2

ξjζkx
2
j−1,k−1 = o(n1+ε0)

for ε0 > 0. This also holds for
m2+1∑
j=m1

∑
k∈Ko

ξjζkx
2
j−1,k−1 as well.

Now, for
∑
j∈Jo

n∑
k=2

ξjζ
1/2
k xj−1,k−1γj−1,k, we have

P

∑
j∈Jo

n∑
k=2

ξjζ
1/2
k xj−1,k−1γj−1,k > n

 ≤
E


∑
j∈Jo

n∑
k=2

ξjζ
1/2
k xj−1,k−1γj−1,k

2


n2

=
∑
j1∈Jo

∑
j2∈Jo

n∑
k1=2

∑
k2=2

ξj1ξj2ζk1ζk2

× E [xj1−1,k1−1γj1−1,k1xj2−1,k2−1γj2−1,k2 ]
n2 .
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Recalling from lemma (2.2.3) that γj1,k1 is independent of xj2,k2 for j1 6= j2 or

k1 > k2, this implies that E[xj1−1,k1−1γj1−1,k1xj2−1,k2−1γj2−1,k2 ] = 0 unless j1 = j2

and k2 = k2. Therefore

P(
∑
j∈Jo

n∑
k=2

ξjζ
1/2
k xj−1,k−1γj−1,k > n) ≤

∑
j∈Jo

n∑
k=2

ξ2
j ζkE[x2

j−1,k−1]E[γ2
j−1,k]

n2

≤ σ2

∑
j∈Jo

ξj
n∑
k=2

ζk

n2

≤ σ2

n2

is again summable, and the same argument can be applied to
m2+1∑
j=m1

∑
k∈Ko

ξjζ
1/2
k xj−1,k−1γj−1,k.
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To show (2.23), notice that we can apply similar arguments that were used to prove

(2.22) on the terms

∑
j∈Jo

n∑
k=2

ξ
1/2
j ζkxj−1,k−1ηj,k−1,

∑
j∈Jo

n∑
k=2

ξ1/2ζ
1/2
k xj−1,k−1wj,k, and

∑
j∈Jo

n∑
k=2

ξ1/2ζ
1/2
k ηj,k−1γj−1,k−1

(and similarly for the same terms summing over m1 . . .m2 + 1 and Ko). In partic-

ular, by independence we have

P(
∑
j∈Jo

n∑
k=2

ξ
1/2
j γj−1,kwj,k > n1+εo) ≤

∑
j∈Jo

ξj
n∑
k=2

E[γ2
j−1,k]E[w2

j,k]

n2(1+εo)

=

n∑
k=2

∑
j∈Jo

ξj

n2(1+εo)
, εo > 0

= 1
n1+2εo

which is summable. Applying the same procedure to
m2+1∑
j=m1

∑
k∈Ko

ξ
1/2
j γj−1,kwj,k, we

have that Q2 + Q∗2 = o(n) a.s.. For (2.24), notice that Q∗4 consists of a finite sum

of continuous functions on [0, 1]2, each of them bounded almost surely. Therefore,

assuming m2 − m1 = o(n), we have Q∗4 = o(n) as well. Finally, to show (2.25),
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notice that similar to previous arguments,

X˜1B
−1 (µ)X˜1 = x2

1,1 +
n∑
k=2

(
x1, k − e−µζkx1,k−1

)2

1− e−2µζ

= x2
1,1 + σ2

0

n∑
k=2

(
1− e−2µ0ζk

)
(1− e−2µζk) γ

2
1,k +

n∑
k=2

(
e−µζk − e−µ0ζk

)2

(1− e−2µζk) x2
1,k−1

+ 2σo
n∑
k=2

(
e−µζk − e−µ0ζk

) (
1− e−2µ0ζ

)1/2

(1− e−2µ0ζk) x1,k−1γ1,k

=
(
σ2µ0

µ
+ o(1)

)
n∑
k=2

γ2
1,k +

n∑
k=2

ζkx
2
1,k−1 +

n∑
k=2

ζ
1/2
k x1,k−1γ1,k

=
(
σ2µ0

µ
+ o(1)

)
n∑
k=2

γ2
1,k + o(n)

= σ2µ0

µ
n+ o(n), a.s. , or op

(
n1/2

)
.
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As a result from claim 2.21, we can express (2.6) as

l(λ, µ, σ2|X(o)) = [nm− (m2 −m1 + 2)(n2 − n1 + 1)] ln
(
2πσ2

)

+ n
∑
j∈Jo

ln
(
1− e−2λξj

)
+ [n− (n2 − n1 + 1)]

m2+1∑
j=m1

ln
(
1− e−2λξj

)

+ [m− (m2 −m1 + 2)]
n∑
k=2

ln
(
1− e−2µζk

)

+ (m2 −m1 + 2)
 ∑
k∈Ko

ln
(
1− e−2µζk

)
+ ln

(
1− e−2µζ∗n2+1

)

+ λ0µ0σ
2
0

λµσ2

∑
j∈Jo

n∑
k=2

w2
j,k +

m2+1∑
j=m1

∑
k∈Ko

w2
j,k



+m

[
λ0σ

2
0

λσ2 + λ0µ0σ
2
0

λµσ2 (µ− µ0) + λ0σ
2
0

2λµσ2 (µ− µ0)2
]

+ n

[
µ0σ

2
0

µσ2 + λ0µ0σ
2

λµσ2 (λ− λ0) + µ0σ
2
0

2λµσ2 (λ− λ0)2
]

+ o(n) a.s..

(2.26)

Notice that,

∑
j∈Jo

n∑
k=2

w2
j,k +

m2+1∑
j=m1

∑
k∈Ko

w2
j,k = (m− 1)(n− 1)− (n2 − n1 + 1)(m2 −m1 + 2) + o(mn) a.s.

= (m− 1)(n− 1) + o(mn) a.s. .
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On the other hand, since we assume m2 −m1 = O(n1/2−ε0) and ξj < o(n−1/2), we

can apply lemma (2.2.5) part (6) to get

[nm− (m2 −m1 + 2)(n2 − n1 + 1)] ln σ
2

σ2
0

+ n
∑
j∈Jo

ln 1− e−2λξj

1− e−2λ0ξj
+ [n− (n2 − n1 + 1)]

m2+1∑
j=m1

ln 1− e−2λξj

1− e−2λξj

+ [m− (m2 −m1 + 2)]
n∑
k=2

ln 1− e−2µζk

1− e−2µ0ζk

+ (m2 −m1 + 2)
[ ∑
k∈Ko

ln 1− e−2µζk

1− e−2µζk
+ ln 1− e−2µζ∗n2+1

1− e−2µζ∗n2+1

]

= [(m− 1)(n− 1) +m+ n− 1− (m2 −m1 + 1)(n2 − n1 + 1)] ln σ
2

σ2
0

+ [(n− 1)m− (m2 −m1 + 1)(n2 − n1 + 1)] ln µ

µ0

+ [n(m− 1)− (m2 −m1 + 1)(n2 − n1 + 1)] ln λ

λ0

+m(µ0 − µ) + n(λ0 − λ) + (n− (n2 − n1 + 1))
(
m2+1∑
j=m1

ξj

)
(λ0 − λ)

= (m− 1)(n− 1) ln λµσ2

λ0µ0σ2
0

+ (n− 1) ln µσ2

µ0σ2
0

+ (m− 1) ln λσ2

λ0σ2
0

− (m2 −m1 + 2)(n2 − n1 + 1) ln λµσ2

λ0µ0σ2
0

+ o(n), (2.27)
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Putting together the results from (2.21)− (2.25), and (2.27), we have

l
(
λ, µ, σ2|X(o)

)
− l

(
λ0, µ0, σ

2
0|X(o)

)

= (n− 1)(m− 1)
[
λ0µ0σ

2
0

λµσ2 − ln λ0µ0σ
2
0

λµσ2 − 1
]

+ (m− 1)
[
λ0σ

2
0

λσ2 − 1− ln λ0σ
2
0

λσ2 + (λ0µ0σ
2
0

λµσ2 − 1)(µ− µ0) + λ0σ
2
0(µ− µ0)2

2λµσ2

]

+ (n− 1)
[
µ0σ

2
0

µσ2 − 1− ln µ0σ
2
0

µσ2 + (λ0µ0σ
2
0

λµσ2 − 1)(λ− λ0) + µ0σ
2
0(λ− λ0)2

2λµσ2

]

+ (n2 − n1 + 1)(m2 −m1 + 2)
[
λ0µ0σ

2
0

λµσ2 − ln λ0µ0σ
2
0

λµσ2 − 1
]

+ o(n) a.s.. (2.28)

Assuming (m2 −m1)(n2 − n1) = o(mn), we have

l
(
λ, µ, σ2|X(o)

)
− l

(
λ0, µ0, σ

2
0|X(o)

)
= (m− 1)(n− 1)

(
λ0µ0σ

2
0

λµσ2 − ln λ0µ0σ
2
0

λµσ2 − 1
)

+ o(mn) a.s. (2.29)

and

l
(
λ, µ, σ2|X(o)

)
− l

(
λ0, µ0,

λµσ2

λ0µ0
|X(o)

)
= (m− 1)

[
µ

µ0
− 1− ln µ

µ0
+ (µ− µ0)2

2µ0

]

+ (n− 1)
[
λ

λ0
− 1− ln λ

λ0
+ (λ− λ0)2

2λ0

]

+ o(n) a.s.. (2.30)
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2.2.4 Proof of strong consistency

In here we prove Theorem 2.2.1 by investigating the consistency of λ̂, µ̂ and σ̂2

using results shown in previous sections. Our first goal is to show that λ̂µ̂σ̂2

converges to λ0µ0σ
2
0 as a product, and consequently we can use that result to show

λ̂→ λ0, µ̂→ µ0 and σ̂2 → σ2
0. Consider

inf
(λ,µ,σ2)∈V̄ε

(
l(λ, µ, σ2|X(o)

)
− l

(
λ0, µ0, σ

2
0|X(o)

)

where for ε > 0,

Vε =
{(
λ, µ, σ2

)
:
∣∣∣∣∣ λµσ2

λ0µ0σ2
0
− 1

∣∣∣∣∣ < ε, (λ, µ) ∈ C ⊂ R2, 0 < σ2 <∞
}
, and

V̄ε =
{

(λ, µ, σ2) :
∣∣∣∣∣ λµσ2

λ0µ0σ2
0
− 1

∣∣∣∣∣ ≥ ε, (λ, µ) ∈ C ⊂ R2, 0 < σ2 <∞
}
,

with C being a compact set in R2. Notice that, since λ̂, µ̂ and σ̂2 are the maximizers

of L(λ, µ, σ2|X(o)), we have

L
(
λ, µ, σ2|X(o)

)
L
(
λ̂, µ̂, σ̂2|X(o)

) ≤ 1. (2.31)

Now, if the maximizers are outside of Vε, then

L
(
λ0, µ0, σ

2
0|X(o)

)
sup

(λ,µ,σ)∈V̄ε
L
(
λ̂, µ̂, σ̂2|X(o)

) →∞ a.s. (2.32)
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is a contradiction to (2.31) by definition. In other words, if (2.32) holds almost

surely outside of a small neighborhood of λ0µ0σ
2
0, then the maximizers of the

approximate likelihood function must be near λ0µ0σ
2
0. Therefore, we can show that

λ̂µ̂σ̂2 → λ0µ0σ
2
0 almost surely with respect to X(ω) generated from the probability

space (Ω,A, P0), where P0 ∼ N(0, σ2
0A(λ0) ⊗ B(µ0)). In our case, it is equivalent

to showing that

inf
(λ,µ,σ2)∈V̄ε

(
l
(
λ, µ, σ2|X(o)

)
− l

(
λ0, µ0, σ

2
0|X(o)

))
→∞ a.s. (2.33)

with respect to P0.

Now, from (2.29), we have that

l
(
λ, µ, σ2|X(o)

)
− l

(
λ0, µ0, σ

2
0|X(o)

)
= (m− 1)(n− 1)

(
λ0µ0σ

2
0

λµσ2 − ln λ0µ0σ
2
0

λµσ2 − 1
)

+ o(mn) a.s. .

By lemma (2.2.6),
(
λ0µ0σ

2
0

λµσ2 − ln λ0µ0σ
2
0

λµσ2 − 1
)

is bounded below by a positive con-

stant for (λ, µ, σ2) ∈ V̄ε, and any ε > 0, therefore, (2.33) holds as m,n→∞, thus

we have

λ̂µ̂σ̂2 → λ0µ0σ
2
0 a.s. (2.34)

On the other hand, let

Uε =
{

(λ, µ) :
∣∣∣∣∣ λλ0
− 1

∣∣∣∣∣ < ε and
∣∣∣∣∣ µµ0
− 1

∣∣∣∣∣ < ε

}
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and

Ūε =
{

(λ, µ) :
∣∣∣∣∣ λλ0
− 1

∣∣∣∣∣ ≥ ε or
∣∣∣∣∣ µµ0
− 1

∣∣∣∣∣ ≥ ε

}
.

Similary, we have from (2.30)

l
(
λ, µ, σ2|X(o)

)
− l

(
λ0, µ0,

λµσ2

λ0µ0
|X(o)

)
= (m− 1)[ µ

µ0
− 1− ln µ

µ0
+ (µ− µ0)2

2µ0
]

+ (n− 1)[ λ
λ0
− 1− ln λ

λ0
+ (λ− λ0)2

2λ0
]

+ o(n) a.s..

Thus

inf
(λ,µ)∈Ūε

l(λ, µ, σ2|X(o))− l
(
λ0, µ0,

λµσ2

λ0µ0
|X(o)

)
→∞ a.s. (2.35)

with respect to P0 as m,n→∞. This implies that λ̂ → λ0 and µ̂ → µ0, together

with (2.34), we have, almost surely

λ̂→ λ0, µ̂→ µ0 and σ̂2 → σ2
0, (2.36)

this concludes the consistency of the ML estimators, with the assumption that

(m2 − m1)(n2 − n1) < o(mn), and ξj, ζk < o(n−1/2). For asymptotic normality,

we need (m2 −m1)(n2 − n1) = op(n), but this is also attainable since (m2 −m1),

and (n2 − n1) are both assumed to be O(n1/2 − ε0), which implies that we have

(m2 −m1)(n2 − n1) = O(n1−2ε) = op(n).
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2.2.5 Proof of asymptotic normality

In this section, we look at the asymptotic behavior of the distributions of λ̂µ̂σ̂2, λ̂, µ̂

and σ̂2 in order to prove Theorem 2.2.2. Since these estimators are based on obser-

vations that are correlated, we will use a generalization of Lindeberg’s central limit

theorem.(For example, see [7] and [9]. In cases with sums of i.i.d. random variables,

a major requirement in establishing asymptotic normality is the restriction on the

magnitude of abnormally large observations, which is achieved by truncation of

the random variables. In our case, instead of trying to control large elements in a

sequence of random variables, we shift our focus to looking at the information as a

martingale-difference array, and seek to control the magnitude of the expectation of

large elements based on past behavior of the sequence. The condition imposed on

the martingale difference sequence provides a version of the Lindeberg’s condition,

which is an essential characteristic of the central limit theorem.

To this end, let us look at the equations that lead to the MLE of λ, µ and σ2.

Notice that, by taking deriviatve of l(λ, µ, σ2) with respect to each parameter and

setting them to zero, we have

∂

∂σ2 l
(
λ, µ, σ2

)
= mn− (m2 −m1 + 2)(n2 − n1 + 1)σ2 − 1

σ2X˜′1B−1 (µ)X˜1

− 1
σ2

∑
j∈Jo

(
X˜j
− e−λξjX˜j−1

)′
B−1 (µ)

(
X˜j
− e−λξjX˜j−1

)
1− e−2λξj

+
m2+1∑
j=m1

(
X˜∗j − e−λξjX˜∗j−1

)′
(B∗(µ))−1

(
X˜∗j − e−λξjX˜∗j−1

)
1− e−2λξj

 (2.37)
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∂

∂λ
l
(
λ, µ, σ2

)
= 2n

∑
j∈Jo

ξje
−2λξj

1− e−2λξj
+ 2 (n− (n2 − n1 + 1))

m2+1∑
j=m1

ξje
−2λξj

1− e−2λξj

+ 2
σ2

[∑
j∈Jo

e−2λξj

1− e−2λξj
X˜′j−1B

−1 (µ)
(
X˜j
− e−λξjX˜j−1

)

+
m2+1∑
j=m1

e−2λξj

1− e−2λξj

(
X˜∗j−1

)′
(B∗(µ))−1

(
X˜∗j − e−λξjX˜

∗
j−1
) ]

− 2
σ2

[∑
j∈Jo

ξje
−2λξj

1− e−2λξj

(
X˜j
− e−λξjX˜j−1

)′
B−1 (µ)

(
X˜j
− e−λξjX˜j−1

)
1− e−2λξj

+
m2+1∑
j=m1

ξje
−2λξj

1− e−2λξj

(
X˜∗j − e−λξjX˜∗j−1

)′
(B∗(µ))−1

(
X˜∗j − e−λξjX˜∗j−1

)
1− e−2λξj

]

(2.38)

∂

∂µ
l(λ, µ, σ2) = 2m

n∑
k=2

ζke
−2µζk

1− e−2µζk
+ (m2 −m1 + 2)

n∑
k=2

[
ζke
−2µζk

1− e−2µζk
−
ζ∗n2+1e

−µζ∗n2+1

1− e−2µζ∗n2+1

]

+ 1
σ2

[
X˜′1DµB

−1 (µ)X˜1

+
∑
j∈Jo

(
X˜j
− e−λξjX˜j−1

)′
DµB

−1 (µ)
(
X˜j
− e−λξjX˜j−1

)
1− e−2λξj

+
m2+1∑
j=m1

(
X˜∗j − e−λξjX˜∗j−1

)′
Dµ(B∗(µ))−1

(
X˜∗j − e−λξjX˜∗j−1

)
1− e−2λξj

]
(2.39)
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Setting (2.37) = 0, we have an explicit expression of σ̂2 in terms of λ̂ and µ̂,

σ̂2 = 1
mn− (m2 −m1 + 2)(n2 − n1 + 1) ×

[
X˜′1B−1 (µ̂)X˜1

+
∑
j∈Jo

(
X˜j
− e−λ̂ξjX˜j−1

)′
B−1 (µ̂)

(
X˜j
− e−λ̂ξjX˜j−1

)
1− e−2λ̂ξj

+
m2+1∑
j=m1

(
X˜∗j − e−λ̂ξjX˜∗j−1

)′
(B∗(µ̂))−1

(
X˜∗j − e−λ̂ξjX˜∗j−1

)
1− e−2λ̂ξj

]
(2.40)

which also implies that

(mn− (m2 −m1 + 2)(n2 − n1 + 1))σ̂2 −X˜′1B−1 (µ̂)X˜1

=
∑
j∈Jo

(
X˜j
− e−λξjX˜j−1

)′
B−1 (µ)

(
X˜j
− e−λξjX˜j−1

)
1− e−2λξj

+
m2+1∑
j=m1

(
X˜∗j − e−λξjX˜∗j−1

)′
(B∗(µ))−1

(
X˜∗j − e−λξjX˜∗j−1

)
1− e−2λξj

. (2.41)
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From (2.40), we see that σ̂2 can be explicitly written as a function of λ̂ and µ̂.

Now, utilizing the consistency result for λ̂ and µ̂, as well as the approximations

derived from (2.21) - (2.24), we have

σ̂2 = 1
mn−m∗n∗

[
λ0µ0σ

2
0

λ̂µ̂

(∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

)(
w2
j,k − 1

)
+O(n)

]
+λ0µ0σ

2
0

λ̂µ̂

= 1
mn−m∗n∗

[
λ0µ0σ

2
0

λ̂µ̂

(∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

)(
w2
j,k − 1

)]
+λ0µ0σ

2
0

λ̂µ̂
+ op(1),

which implies that

√
mn−m∗n∗(λ̂µ̂σ̂2 − λ0µ0σ

2
0)

=
λ0µ0σ

2
0

(∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

)(
w2
j,k − 1

)
√
mn−m∗n∗

+ op(1) (2.42)

Now, since {w2
j,k − 1} is a sequence of independent and centered χ2

1 random vari-

ables, we have

Var


λ0µ0σ

2
0

∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

(w2
j,k − 1

)
√
mn−m∗n∗

 = 2(λ0µ0σ
2
0)2

Then, by the central limit theorem, we have

√
mn−m∗n∗(λ̂µ̂σ̂2 − λ0µ0σ

2
0)→D N

(
0, 2(λ0µ0σ

2
0)2
)
,
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where m∗ = (m2−m1 + 2) and n∗ = (n2−n1 + 2). On the other hand, due to their

highly nonlinear equations, we cannot express λ̂ and µ̂ in explicit forms. Thus, to

investigate the asymptotic properties of their distribution, we would need to utilize

different approximation techniques similar to those used to prove their consistency.

2.2.6 Approximating ∂
∂λl(λ, µ, σ

2) = 0

Claim 2.2.8.
∂

∂λ
l(λ, µ, σ2) = 0 can be expressed as

0 = n(m− 1)
λ̂

− n
m∑
j=2

ξj − 2(n2 − n1 + 1)
m2+1∑
j=m1

ξje
−λ̂ξj

1− e−2λ̂ξj

+ mn− (m2 −m1 + 2)(n2 − n1 + 1)
λ̂

+ µ0σ
2
0

λ̂µ̂σ̂2

n∑
k=2

γ2
1,k

+ λ0µ0σ
2
0

λ̂µ̂σ̂2

(∑
j∈Jo

n∑
k=2

ξjw
2
j,k +

m2+1∑
j=m1

∑
k∈Ko

ξjw
2
jk

)

+ µ0σ
2
0
√

2λ0

λ̂µ̂σ̂2

(∑
j∈Jo

n∑
k=2

ξj
1/2wj,kγj−1,k +

m2+1∑
j=m1

∑
k∈Ko

ξj
1/2wj,kγj−1,k

)

+ (λ̂− λ0)µ0σ
2
0

λ̂µ̂σ̂2

(∑
j∈Jo

n∑
k=2

ξjγ
2
j−1,k +

m2+1∑
j=m1

∑
k∈Ko

ξjγ
2
j−1,k

)
+op

(
n1/2

)

Proof of Claim 2.2.8. Write

∂

∂λ
l(λ, µ, σ2) = 0 = L1 −

2
σ̂2 L2 + 2

σ̂2 L3,
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where

L1 = 2n
∑
j∈Jo

ξje
−2λ̂ξj

1− e−2λ̂ξj
+ 2(n− (n2 − n1 + 1))

m2+1∑
j=m1

ξje
−2λ̂ξj

1− e−2λ̂ξj
,

L2 =
∑
j∈Jo

ξje
−2λ̂ξj

1− e−2λ̂ξj

(
X˜j
− e−λ̂ξjX˜j−1

)′
B−1 (µ̂)

(
X˜j
− e−λ̂ξjX˜j−1

)
1− e−2λ̂ξj

+
m2+1∑
j=m1

ξje
−2λ̂ξj

1− e−2λ̂ξj

(
X˜∗j − e−λ̂ξjX˜∗j−1

)′
(B∗(µ̂))−1

(
X˜∗j − e−λ̂ξjX˜∗j−1

)
1− e−2λ̂ξj

,

L3 =
∑
j∈Jo

e−2λ̂ξj

1− e−2λ̂ξj
X˜′j−1B

−1 (µ̂)
(
X˜j
− e−λ̂ξjX˜j−1

)
,

+
m2+1∑
j=m1

e−2λ̂ξj

1− e−2λ̂ξj
(X˜∗j−1)′ (B∗(µ̂))−1

(
X˜∗j − e−λ̂ξjX˜∗j−1

)
.

Utilizing the result from (2.41), the approximations from lemma (2.2.5), i.e.

ξje
−2λ̂ξj

1− e−2λ̂ξj
= 1

2λ̂
− ξj

2 +O(ξj2),

and also
ξj

1− e−2λ̂ξj
= 1

2λ̂
+ o(1),
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we have

L2 = 1
2λ̂

[
mnσ̂2 − (m2 −m1 + 2)(n2 − n1 + 1)σ̂2 −X˜′1B−1 (µ̂)X˜1

]
(2.43)

− 1
4λ̂

[∑
j∈Jo

(
X˜j
− e−λ̂ξjX˜j−1

)′
B−1 (µ̂)

(
X˜j
− e−λ̂ξjX˜j−1

)

+
m2+1∑
j=m1

(
X˜∗j − e−λ̂ξjX˜∗j−1

)′
(B∗(µ̂))−1

(
X˜∗j − e−λ̂ξjX˜∗j−1

) ]
(2.44)

+O(1)
[∑
j∈Jo

ξj
(
X˜j
− e−λ̂ξjX˜j−1

)′
B−1 (µ̂)

(
X˜j
− e−λ̂ξjX˜j−1

)

+
m2+1∑
j=m1

ξj
(
X˜∗j − e−λ̂ξjX˜∗j−1

)′
(B∗(µ̂))−1

(
X˜∗j − e−λ̂ξjX˜∗j−1

) ]
. (2.45)

Our goal in here is to find a way to approximate (2.43)− (2.45). First, let us focus

on (2.44). By repeatedly using the transformations defined in lemma (2.2.3), and

expanding the quadratic forms using lemma (1.2.1), and applying approximation

techniques to the resulting terms, we have

∑
j∈Jo

(X˜j
− e−λ̂ξjX˜j−1)′B−1 (µ̂)(X˜j

− e−λ̂ξjX˜j−1)

=
∑
j∈Jo

[
σ2

0(1− e−2λ0ξj)η′jB−1 (µ̂)ηj + (e−2λ0ξj − e−2λ̂ξj)2X˜′j−1B
−1 (µ̂)X˜j−1

+ 2σo(1− e−2λ0ξj)(e−λ0ξj − e−λξj)η′jB−1 (µ̂)X˜j−1

]

=
∑
j∈Jo

[
2λ0σ

2
0η
′
jB
−1 (µ̂)ηj +O(1)ξj2X˜′j−1B

−1 (µ̂)X˜j−1 +O(1)ξj2η′jB
−1 (µ̂)X˜j−1

]
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where

2λ0σ
2
0η
′
jB
−1 (µ̂)ηj

= 2λ0σ
2
0
∑
j∈Jo

ξj

[
η2
j,1 +

n∑
k=2

1− e−2µ0ζk

1− e−2µ̂ζk
w2
j,k +

n∑
k=2

(
e−µ0ζk − e−µ̂ζk

)2

(1− e−2µ̂ζk) η2
j,k−1

+
n∑
k=2

(
e−µ0ζk − eµ̂ζk

) (
1− e−2µ0ζk

)1/2

1− e−2µ̂ζk
wj,kηj,k−1

]

= 2λ0µ0σ
2
0

µ̂

∑
j∈Jo

n∑
k=2

ξjw
2
jk

+O(1)
∑
j∈Jo

n∑
k=2

ξjζkη
2
j,k−1 +O(1)

∑
j∈Jo

n∑
k=2

ξjζ
1/2
k +O(1)wj,kηj,k−1

= 2λ0µ0σ
2
0

µ̂

∑
j∈Jo

n∑
k=2

ξjw
2
j,k + op

(
n1/2

)
, (2.46)

since

P

∑
j∈Jo

n∑
k=2

ξjζk
1/2wj,kηj,k−1 > nε

 ≤
∑
j∈Jo

n∑
k=2

ζkξj
2E
[
w2
j,k

]
E
[
η2
j,k−1

]
n2ε

= (n− 1)(m−m2−m1 − 2)
n2ε+3/2 = O

(
n

1
2−ε0

)
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where the last equality is a result from the assumption that ξj, ζk ≤ o(n−1/2) and

the independence between wj,k. Also, the non-negativity of η2
j,k−1 implies that

P(
∑
j∈Jo

n∑
k=2

ξjζkη
2
j,k−1 > nε) ≤

∑
j∈Jo

n∑
k=2

ξjζkE
[
η2
j,k−1

]
nε

= (n− 1)(m−m2 −m1 − 2)
n1+ε = O(n1−ε),

which gives us (2.46). On the other hand, we have

∑
j∈Jo

ξj
2X˜′j−1B

−1 (µ̂)X˜j−1 = O(1)
∑
j∈Jo

ξj
2
[
x2
j−1,1 +

n∑
k=2

γ2
j−1,k

+
n∑
k=2

ζk
1/2γj−1,kxj−1,k−1 +

n∑
k=2

ζkx
2
j−1,k−1

]
,

and

∑
j∈Jo

ξj
2η′jB

−1 (µ̂)X˜j−1 = O(1)
∑
j∈Jo

ξj
2
[
n∑
k=2

w2
j,k +

n∑
k=2

ζk
1/2wj,kxj−1,k−1

+
n∑
k=2

ζk
1/2ηj,k−1γj−1,k−1 +

n∑
k=2

ζkx
2
j−1,k−1

]
.

In particular, notice that by choosing ε = 1/2, we have (and similarly for
∑
j∈Jo

n∑
k=2

ξjγ
2
j−1,k),

P

∑
j∈Jo

n∑
k=2

ξj
2w2

j,k > nε

 ≤ (n− 1)(m−m2 −m1− 2)
n1+ε = O

(
n1−ε

)
= op

(
n1/2

)
.
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Also,

P

∑
j∈Jo

n∑
k=2

ξj
2ζk

1/2wj,kxj−1,k−1 > nε

 ≤
∑
j∈Jo

n∑
k=2

ξj
4ζkE[w2

j,kE[x2
j−1,k−1]]

n2ε

= O(1)(n− 1)(m−m2 −m1 − 2)
n2ε+3

= O
(
n−1−2ε

)
< op

(
n1/2

)
,

and

P

∑
j∈Jo

n∑
k=2

ξj
2ζkx

2
j−1,k−1

 ≤
∑
j∈Jo

n∑
k=2

E
[
x2
j−1,k−1

]
nε+3/2

= O
(
n1/2−ε

)
= op

(
n1/2

)
.

The rest of the terms are approximated similarly. Therefore, we have

ξj
2X˜′j−1B

−1 (µ̂)X˜j−1 +
∑
j∈Jo

ξj
2η′jB

−1 (µ̂)X˜j−1 = op
(
n1/2

)
. (2.47)

Combing the above results from (2.46), (2.47), and applying the exact same pro-

cedue for j = m1, . . .m2 + 1, we have

(2.44) = −λ0µ0σ
2
0

2λ̂µ̂

∑
j∈Jo

n∑
k=2

ξjw
2
j,k +

m2+1∑
j=m1

∑
k∈Ko

ξjw
2
j,k

+ op
(
n1/2

)
.
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Now, for (2.45), we want to approximate

∑
j∈Jo

ξj
(
X˜j
− e−λ̂ξjX˜j−1

)′
B−1 (µ̂)

(
X˜j
− e−λ̂ξjX˜j−1

)

+
m2+1∑
j=m1

ξj
(
X˜∗j − e−λ̂ξjX˜∗j−1

)′
(B∗(µ̂))−1

(
X˜∗j − e−λ̂ξjX˜∗j−1

)
.

Similarly to previous terms, since the first and second quadratic forms are es-

sentially the same execpt with different number of coulmn and row elements, we

show only the expansion of the quadratic form from the columns with complete

observations, which is

∑
j∈Jo

ξj
(
X˜j
− e−λ̂ξjX˜j−1

)′
B−1 (µ̂)

(
X˜j
− e−λ̂ξjX˜j−1

)

= O(1)
∑
j∈Jo

[
ξj

2η′jB
−1 (µ̂)ηj + ξj

3η′jB
−1 (µ̂)X˜j−1 + ξj

3X˜j−1B
−1 (µ)X˜j−1

]
.

Using what we have already shown for (2.44), we have (2.45) = op
(
n1/2

)
as well.

Now, focusing on (2.43), notice that

X˜′1B−1 (µ)X˜1 = x2
1,1 +

n∑
k=2

(
x1,k − e−µζkx1,k−1

)2

1− e−µ̂ζk

= x2
1,1 + µ0σ

2
0

µ̂

n∑
k=2

γ2
1,k +O(1)

n∑
k=2

ζkx
2
1,k−1 +O(1)

n∑
k=2

ζk
1/2γ1,kx1,k−1,
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and since

P
(

n∑
k=2

ζkx
2
1,k−1 > nε

)
≤

n∑
k=2

ζkE
[
x2

1,k−1

]
nε

= O(1) n

n1/2+ε = O
(
n1/2−ε0

)
,

P
(

n∑
k=2

ζk
1/2γ1,kx1,k−1

)
≤

n∑
k=2

ζkE
[
γ2

1,k

]
E
[
x2

1,k−1

]
n2ε

= O(1) n

n2ε+1/2 = O
(
n1/2−ε0

)
.

Therefore,

X˜′1B−1 (µ)X˜1 = µ0σ
2
0

µ̂

n∑
k=2

γ2
1,k + op

(
n1/2

)
,

as a result,

L2 = σ̂2

2λ̂
(mn− (m2 −m1 + 2)(n2 − n1 + 1))− µ0σ

2
0

λ̂µ̂

n∑
k=2

γ2
1,k

− 2λ0µ0σ
2
0

λ̂µ̂

∑
j∈Jo

n∑
k=2

ξjw
2
j,k +

m2+1∑
j=m1

∑
k∈Ko

ξjw
2
j,k

+ op
(
n1/2

)
.
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To approximate L3, notice that

∑
j∈Jo

ξje
−λ̂ξj

1− e−2λ̂ξj
X˜′j−1B

−1 (µ̂)
(
X˜j
− e−λ̂ξjX˜j−1

)

= 1
2λ̂

∑
j∈Jo

X˜′j−1B
−1 (µ̂)

(
X˜j
− e−λ̂ξjX˜j−1

)

= σ0

2λ̂
∑
j∈Jo

(
1− e−2λ0ξj

)
X˜′j−1B

−1 (µ̂)ηj

+ 1
2λ̂

∑
j∈Jo

(
e−λ0ξj − e−λξj

)
X˜′j−1B

−1 (µ̂)X˜j−1

= σ2
0
√

2λ0

2λ̂
∑
j∈Jo

ξj
1/2X˜′j−1B

−1 (µ̂)ηj + (λ0 − λ̂)
2λ̂

∑
j∈Jo

ξjX˜′j−1B
−1 (µ̂)X˜j−1.
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Now,

∑
j∈Jo

ξj
1/2X˜′j−1B

−1 (µ̂)ηj

=
∑
j∈Jo

ξj
1/2

xj−1,1ηj,1 +
n∑
k=2

(
xj−1,k − e−µ̂ζkxj−1,k−1

) (
ηj,k − e−µ̂ζkηj,k−1

)
1− e−2µ̂ζk



=
∑
j∈Jo

ξj
1/2

σ2
0

(
1− e−2µ0ζk

)
(1− e−2µ̂ζk) wj,kγj−1,k +O(1) a.s.,

+
n∑
k=2

(
e−µ0ζk − e−µ̂ζk

)2

1− e−2µ̂ζk
xj−1,k−1ηj,k−1

+
n∑
k=2

(
1− e−2µ0ζk

)1/2 (
e−µ0ζk − e−µ̂ζk

)
1− e−2µ̂ζk

(
xj−1,k−1wj,k + γj−1,k

σ2
0
ηj,k−1

)

=
∑
j∈Jo

ξj
1/2

µ0σ
2
0

µ̂

n∑
k=2

wj,kγj−1,k +O(1)

+O(1)
n∑
k=2

ζkxj−1,k−1ηj,k−1 +O(1)
n∑
k=2

ζk
1/2 (xj−1,k−1wj,k + γj−1,kηj,k−1)



= µ0σ
2
0

µ̂

∑
j∈Jo

n∑
k=2

ξj
1/2wj,kγj−1,k + op

(
n1/2

)
,

where the last equality is due to similar arguments used in L2. Observe that, since
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xj−1,k−1 is independent of wj,k for j and k, by choosing ε0 = 1
2 + ε, we have

P(
∑
j∈Jo

n∑
k=2

ξj
1/2ζk

1/2xj−1,k−1wj,k > nε) ≤ (n− 1)(m−m2 −m1 − 2)
n2ε+1

= O(n1/2−ε0) a.s.,

= op(n1/2)

Similarly, for the second part of L3,

∑
j∈Jo

ξjX˜j−1B
−1 (µ̂)X˜j−1

=
∑
j∈Jo

ξj

[
µ0σ

2
0

µ̂

n∑
k=2

γ2
j−1,k +O(1)ζk1/2xj−1,k−1γj−1,k +O(1)

n∑
k=2

ζkx
2
j−1,k−1

]
,

= µ0σ
2
0

µ̂

∑
j∈Jo

n∑
k=2

ξjγ
2
j−1,k + op

(
n1/2

)
,

since we have
∑
j∈Jo

n∑
k=2

ξjζk
1/2xj−1,k−1γj−1,k +

∑
j∈Jo

n∑
k=2

ξjζx
2
j−1,k−1 = op

(
n1/2

)
from pre-

vious arguments that were used to show L2. Therefore applying the exact same

step to the terms involved for j = m1, . . . ,m2 + 1, we obtain

L3 = µ0σ
2
0
√

2λ0

2λ̂µ̂

∑
j∈Jo

n∑
k=2

ξj
1/2wj,kγj−1,k +

m2+1∑
j=m1

∑
k∈Ko

ξj
1/2wj,kγj−1,k



+

(
λ̂− λ0

)
µ0σ

2
0

2λ̂µ̂

∑
j∈Jo

n∑
k=2

ξjγ
2
j−1,k +

m2+1∑
j=m1

∑
k∈Ko

ξjγ
2
j−1,k

 .
Putting together L1,L2 and L3 gives us the desired result.
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So far, we show that expression from claim (2.2.8) can be written as the fol-

lowing

0 = −n
λ̂

+ (n2 − n1 + 1)
m2+1∑
j=m1

ξj − n
m∑
j=2
ξj + µ0σ

2
0

λ̂µ̂σ̂2

[
n∑
k=2

(γ2
1,k − 1)

]
+n µ0σ

2
0

λ̂µ̂σ̂2

+ λ0µ0σ
2
0

λ̂µ̂σ̂2

(∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

)
ξj(w2

j,k − 1) + (n
m∑
j=2
ξj − (n2 − n1 + 1)

m2+1∑
j=m1

)λ0µ0σ
2
0

λ̂µ̂σ̂2

+ µ0σ
2
0
√

2λ0

λ̂µ̂σ̂2

(∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

)
ξj

1/2wj,kγj−1,k

+ (λ̂− λ0)µ0σ
2
0

λ̂µ̂σ̂2

(∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

)
ξj(γ2

j−1,k − 1)

+ n
(λ̂− λ0)µ0σ

2
0

λ̂µ̂σ̂2
− (n2 − n1 + 1)(λ̂− λ0)µ0σ

2
0

λ̂µ̂σ̂2

m2+1∑
j=m1

ξj + op
(
n1/2

)
.

Notice that by lemma (2.2.4) part (4), we have the following approximations

∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

 ξj(w2
j,k − 1) = op

(
n1/2

)
, and

∑
j∈Jo

n∑
k=2

+
m2+1∑
j=m1

∑
k∈Ko

 ξj(γ2
j−1,k − 1) = op

(
n1/2

)
.

73



Therefore,

0 = n

[
µ0σ

2
0

λ̂µ̂σ̂2
− 1
λ̂

+ (λ̂− λ0)µ0σ
2
0

λ̂µ̂σ̂2

]
+ µ0σ

2
0

λ̂µ̂σ̂2

n∑
k=2

[√
2λ0

m∑
j=2
ξj

1/2wj,kγj−1,k + γ2
1,k−1

]

− µ0σ
2
0

λ̂µ̂σ̂2

m2+1∑
j=m1

n1−1∑
k=2

ξj
1/2wj,kγj−1,k − (n2 − n1 + 1) λ̂− λ0

µ0σ2
0
λ̂µ̂σ̂2

m2+1∑
j=m1

ξj + op
(
n1/2

)
(2.48)

Now, recall that (m2−m1), (n2−n1) < O
(
n1/2−ε

)
, 0 < ε < 1/2. This implies that

(m2 −m1)(n2 − n− 1) = O
(
n1−ε0

)
, 0 < ε0 < 1,

so

(n2 − n1 + 1)
m2+1∑
j=m1

ξj = O
(
n1−ε0− 1

2
)

= o
(
n1/2

)
= op

(
n1/2

)
.

Similarly,

P

m2+1∑
j=m1

n2∑
k=n1

ξj
1/2wj,kγj−1,k > nε

 ≤
m2+1∑
j=m1

n2∑
k=n1

ξjE
[
w2
j,k

]
E
[
γ2
j−1,k

]
n2ε

≤ (m2 −m1)(n2 − n1)
n2ε+ 1

2

= op
(
n1/2

)
.

Together with the consistency results of λ̂µ̂σ̂2, λ̂, µ̂, and σ̂2 from (2.34) and (2.36),
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we can express (2.48) as

0 = n

λ0

(
1 + λ0

λ0

)
+ 1
λ0

n∑
k=2

√2λ0

m∑
j=2
ξj

1/2wj,kγj−1,k + γ2
1,k−1 − 1

+ op
(
n1/2

)

which gives us

√
n(λ̂− λ0) = −λ0√

n(1 + λ0) ×
n∑
k=2

√2λ0

m∑
j=2
ξj

1/2wj,kγj−1,k + γ2
1,k−1 − 1

+ op
(
n1/2

)
,

(2.49)

interchanging the parameter and dimension, we have

√
m(µ̂− µ0) = −µ0√

m(1 + µ0) ×
m∑
j=2

[
√

2µ0

n∑
k=2

ζk
1/2wj,kηj,k−1 + η2

j−1,1 − 1
]
+op

(
n1/2

)
.

(2.50)

2.2.7 Asymptotic normality for λ̂ and µ̂

In the previous section, we have expressed the scaled difference of the parameter

estimators λ̂, µ̂ and the true values λ0, µ0 as a linear combination of wj,kγj−1,k and

wj,kηj,k−1 respectively. Our goal in here is to show that


√
n(λ̂− λ0)
√
m(µ̂− µ0)

→D N (
0, Σ1

)
(2.51)

where

Σ1 =

 0 2λ0
2

1+λ0

2µ02

1+µ0
0

 .
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To proceed with the proof of (2.51), notice that a random vector (Y1, . . . , Yd) is

normally distributed if and only if any linear combination ∑d
i=1 aiYi is a normal

random variable. Thus, for (2.51) to hold, it is sufficient to show that for t ∈ R,

√
n(λ̂− λ0) + t

√
m(µ̂− µ0)→ N

(
0, 2

(
λ0

2

1 + λ0
+ t

µ0
2

1 + µ0

))
. (2.52)

Notice that from (2.49) and (2.50) we have

− n(1 + λ0)
λ0

(
λ̂− λ0

)
− tm(1 + µ0)

µ0
(µ̂− µ0)

=
n∑
k=2

[√
2λ0

n

m∑
j=2

ξj
1/2γj−1,kwj,k +

(
γ2

1,k − 1
)

+ t

√
2µ0

m

m∑
j=2

ζk
1/2ηj,k−1wj,k

]

+ t√
m

m∑
j=2

(η2
j,1 − 1). (2.53)

Since we are dealing with functions of dependent random variables, following the

strategies used by Ying in [24], we show the asymptotic normality of (2.52) by first

viewing it as a combination of a martingale difference sequence and the sum of a

sequence of i.i.d. chi-squared random variables. To this end, let us verify that we

indeed have a martingale difference sequence in (2.52).

Definition 2.2.9. Let λ0, µ0, ξj, ζk, wj,k, ηj,k and γj,k be the same as previously

defined, and let

• Ek(m,n) =
√

2λ0

n

m∑
j=2

ξj
1/2γj−1,kwj,k + (γ2

1,k − 1) + t

√
2µ0

m

m∑
j=2

ζk
1/2ηj,k−1wj,k

• Fk = σ(x1,l, x2,l, . . . , xm,l), l ≤ k
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Claim 2.2.10. For a fixed pair of m and n, Ek(m,n)) is a martingale-difference

array with respect to the σ- filtration Fk.

Proof of claim (2.2.10). We need to show the following

(1) Ek(m,n)) is Fk-measurable.

(2) E
[∑k

l=2 El(m,n))−∑k−1
l=2 El(m,n))|Fk−1

]
= 0.

Since, γj−1,k, wj,k and ηj,k are functions of xj,k and xj,k−1, so Ek(m,n)) is Fk-

measurable by definition. Moreover, this implies that

E [γj−1,k|Fk−1] = E[γj−1,k] = E [wj,k] = E [wj,k|Fk−1] = 0

by independence, and

E [ηj,k−1|Fk−1] = ηj,k−1,

since ηj,k−1 ∈ Fk−1. Therefore, Ek(m,n)) is adapted to the filtration Fk−1. Next,

to show 2.2.10(2), notice that again by indenpendence and measurability, we have
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E
[
k∑
l=2
El(m,n))|Fk−1

]

=
√

2λ0

n

m∑
j=2

k∑
l=2

ξj
1/2E [γj−1,lwj,l|Fk−1] + 1√

n

k∑
l=2

(
E
[
γ2

1,l|Fk−1
]
− 1

)

+ t

√
2µ0

m
ζ

1/2
l

m∑
j=2

k∑
l=2

E [ηj,l−1wj,l|Fk−1]

=
√

2λ0

n

m∑
j=2

k∑
l=2

ξj
1/2E [γj−1,l|Fk−1]E [wj,l|Fk−1] + 1√

n

k∑
l=2

(
E
[
γ2

1,l|Fk−1
]
− 1

)

+ t

√
2µ0

m
ζ

1/2
l

m∑
j=2

k∑
l=2

E [ηj,l−1|Fk−1]E [wj,l|Fk−1]

=
√

2λ0

n

m∑
j=2

k−1∑
l=2

ξj
1/2E [γj−1,lwj,l|Fk−1] + 1√

n

k−1∑
l=2

(
E
[
γ2

1,l|Fk−1
]
− 1

)

+ t

√
2µ0

m
ζ

1/2
l

m∑
j=2

k−1∑
l=2

E [ηj,l−1wj,l|Fk−1]

= E
[
k−1∑
l=2
El(m,n))|Fk−1

]

=
k−1∑
l=2
El(m,n).

Since (2.53) can be expressed as the row sum of a martingale-difference array,

we can then utilize the martingale central limit theorem to show its asymptotic
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normality. Notice that, even though λ̂, µ̂ and σ̂2 are estimated based on the as-

sumption that some of the observations are missing, asymptotically they can be

viewed as the same as those estimated in the complete-data case, as long as the

magnitude restriction of the missing rows and columns are satisfied. Also, unlike

the central limit theorem for sums of i.i.d. random variables, we use a weaker

version of the Lindeberg condition for the row sums of martingle-difference arrays.

Theorem 2.2.11 (Pollard 1984). Let {Ek(m,n)} be a martingale-difference array,

and let

νm,k = E
[
E2
k (m,n)|Fk−1

]
be a sequence of conditional variances for k = 2, . . . , n. If, as m→∞,

(1)
n∑
k=2

νm,k →p ν,, where ν > 0

(2) for every δ > 0,
n∑
k=2

P
(
E2
k (m,n) {|Ek(m,n)| > δ} |Fk−1

)
→p 0

then
n∑
k=2
Ek(m,n)→D N(0, ν).

Remark 2.2.12. Using Chebychev’s inequality, theorem 2.2.11 (2) is equivalent

to
n∑
k=2

E
[
E4
k (m,n)

]
→p 0.

In order to utilize Pollard’s central limit theorem, we need to show that

n∑
k=2

E
[
E2
k (m,n)|Fk−1

]
→p 2

(
λ0

2

1 + λ0
+ t

µ0
2

1 + µ0

)
, (2.54)

and
n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
→p 0. (2.55)
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To show (2.54), we look at each of the cross terms and squared terms from E2
k (m,n).

Notice that wj,k is independent of γj′,k, for j > j′, thus

E
[
(γj−1,kwj,k)(γ2

1,k − 1)|Fk−1
]

= E
[
wj,k|Fk−1]E[γj−1,k(γ2

1,k − 1)|Fk−1
]

= 0.

Similarly, since ηj,1 is independent of γj−1,k, we have

E
[
γj1−1,kwj1,k(η2

j2,1 − 1)|Fk−1
]

= E
[
(η2
j2,1 − 1)|Fk−1

]
E [γj1−1,kwj,k|Fk−1] = 0.

Next, for j1 6= j2,

E [γj1−1,kwj1,kηj2−1,kwj2,k|Fk−1] = E [wj1,k|Fk−1]E [γj1−1,kηj2−1,kwj2,k|Fk−1] = 0,

and for j1 = j2,

E [γj−1,kwj,kηj−1,k−1wj,k] = E [γj−1,kwj,k|Fk−1]E[ηj−1,k−1wj,k|Fk−1] = 0.

Thus all the cross terms have expectation zero conditioning on Fk−1. Now, for the

squared terms, we have

E
[
γ2
j−1,kw

2
j,k|Fk−1

]
= E

[
γ2
j−1,k|Fk−1]E[w2

j,k|Fk−1
]

= 1

and

E
[
η2
j,k−1w

2
j,k

]
= η2

j,k−1E
[
w2
j,k

]
= η2

j,k−1.
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As a result, we can write

n∑
k=2

E
[
E2
k (m,n)|Fk−1

]
= 2λ0

n

n∑
k=2

m∑
j=2
ξjE

[
γ2
j−1,l

]
E
[
w2
j,k

]
+ 1
n

n∑
k=2

E
[
(γ2

1,k − 1)2
]

+ 2t2µ0

m

n∑
k=2

m∑
j=2
ζkη

2
j,k−1E

[
w2
j,k

]

= 2
n

n∑
k=2

(λ0 + 1) + 2t2µ0

m

m∑
j=2
η2
j,k

= 2
λ0 + 1 + t2µ0(1 + 1

m

n∑
k=2

m∑
j=2
ζk(η2

j,k−1 − 1))


= 2
(
λ0 + 1 + t2µ0

(
1 + op(n−1

))
,

where the last equality is due to the fact that

P(
n∑
k=2

ζk(η2
j,k−1 − 1) > nε) ≤

n∑
k=2

ζk
2E[(η2

j,k−1 − 1)2]

n2ε

≤ 2n
n2ε+1

= op(n−1).

Therefore, we have

n∑
k=2

E[E2
k (m,n)|Fk−1]→p 2(λ0 + 1 + t2µ0).
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Now, to show (2.55), first notice that by the multinomial theorem, we have

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
=

n∑
k=2

∑
|s|=4

(
4

s1, s2, s3

)√2λ0

n

m∑
j=2
ξj

1/2γj−1,kwj,k

s1

×
(
γ2

1,k − 1
√
n

)s2
t
√

2µ0

m

m∑
j=2
ζ

1/2
k ηj,k−1wj,k

s3

,

where |s| = s1 + s2 + s3.

Combination type (s1, s2, s3)

Type A

(0, 1, 3),(0, 3, 1)

(1, 0, 3),(1, 1, 2),(1, 2, 1),(1, 3, 0)

(2, 1, 1),(3, 0, 1),(3, 1, 0)

Type B (4, 0, 0), (0, 0, 4), (0, 4, 0)

Type C (2, 2, 0), (0, 2, 2), (2, 0, 2)

Table 2.2: An list of possible exponent combinations for E
[
ε4k(m,n)|Fk−1

]
.

There are 15 possible combinations for (s1, s2, s3), as organized in Table 2.2

above. To show that each of them converge to zero in probability, we will utilize

the assumptions that ζk, ξj ≤ o(n−1/2),
n∑
k=2

ζk,
m∑
j=2
ξj ≤ 1, and vairous independence

properties from lemma (2.2.4). Now, looking at each combination type, we see

that the index combination from Type A all contain a term with an exponent of

1. In particular, when s2 = 1, we can easily show that E
[
E4
k (m,n)|Fk−1

]
= 0

by factoring out E
[
(γ2

1,k − 1)|Fk−1
]
, which is equal to zero, from the rest of the
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term. On the other hand, when s2 = 3, we can factor out E [γj−1,kwj,k|Fk−1] or

E [ηj,k−1wj,k|Fk−1], in either case will again give us E
[
E4
k (m,n)|Fk−1

]
= 0. Now,

when s2 = 2, we have

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]

= 2t
√
λ0µ0

n
√
mn

n∑
k=2

E

(γ2
1,k − 1

)2 m∑
j1=2

m∑
j2=2

ξj
1/2γj1−1,kwj1,kζk

1/2ηj2,k−1wj2,k|Fk−1



= O(1)
n2

n∑
k=2

ζk
1/2E

[(
γ2

1,k − 1
)2
|Fk−1

]

×
m∑
j1=2

m∑
j2=2

ξj
1/2ηj2,k−1E [γj1−1,k|Fk−1]E

[
w2
j2,k|Fk−1

]

= 0

The rest of the cases in the Type A category can similarly expressed due to the

independence between γj−1,k, ηj,k−1, and wj,k, so they are omitted here. Now, to

investigate the cases in Type B, first, consider the case when s1 = 4 (which is

similar to the case when s3 = 4) :

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 4λ0

2

n2

n∑
k=2

4∑
j1=2

4∑
j2=2

4∑
j3=2

4∑
j4=2

√
ξj1ξj2ξj3ξj4

× E [γj1−1,kwj1,kγj2−1,kwj2,kγj3−1,kwj3,kγj4−1,kwj4,k|Fk−1] .
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Notice that if all the indices are distinct, then by independence we can factor out

any one of E[wjl,k|Fk−1], which would give us
n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 0. Therefore,

we look at the two other cases: Case 1, when all indices are the same and Case 2,

when there are two distinct pairs.

Case 1, j = j1 . . . j4 :

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 4λ0

2

n2

m∑
j=2
ξj

2
n∑
k=2

E
[
γ4
j−1,kw

4
j,k|Fk−1

]

= 4λ0
2

n2

m∑
j=2
ξj

2
n∑
k=2

E
[
γ4
j−1,k|Fk−1

]
E
[
w4
j,k|Fk−1

]

≤ O(1)
n3 (m− 1)(n− 1)→ 0.
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Case 2, j1 = j3, j2 = j4 : without loss of generality, assume j1 > j2, then

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 4λ0

2

n2

n∑
k=2

m∑
j1=2

ξj1

m∑
j2=2

ξj2E
[
(γj1−1,kwj1,k)2(γj2−1,kwj2,k)2|Fk−1

]

= 4λ0
2

n2

n∑
k=2

m∑
j1=2

ξj1

m∑
j2=2

ξj2E
[
(γj1−1,kγj2−1,k)2|Fk−1

]

× E
[
w2
j1,kFk−1

]
E
[
w2
j2,k|Fk−1

]
4λ0

2

n2

n∑
k=2

m∑
j1=2

ξj1

m∑
j2=2

ξj2E
[
(γj1−1,kγj2−1,k)2|Fk−1

]

≤ O(1)
n2 (n− 1)→ 0.

The last combination in Type B is when s2 = 4, which gives us

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
=

n∑
k=2

E

(γ2
1,k − 1
√
n

)4

|Fk−1



= 1
n2

n∑
k=2

E
[
(γ2

1,k − 1)4|Fk−1
]

= O(1)(n− 1)
n2 → 0,

thus
n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 0 for all combinations in Type B. Now, for the com-

binations in Type C, notice that when (s1, s2, s3) = (2, 2, 0) (and similarly for
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(0, 2, 2)), we have by independence,

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 2λ0

n2

n∑
k=2

E


 m∑
j=2
ξj

1/2γj−1,kwj,k

2 (
γ2

1,k − 1
)2
|Fk−1



= 2λ0

n2

n∑
k=2

m∑
j=2
ξjE

[(
γ2

1,k − 1
)2
|Fk−1

]
E
[
γ2
j−1,k|Fk−1

]
E
[
w2
j,k|Fk−1

]

= 4λ0

n2

n∑
k=2

m∑
j=2
ξjE

[
γ2
j−1,k|Fk−1

]

= O(1)
n
→ 0.

Finally, for the case (s1, s2, s3) = (2, 0, 2), we have

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 2λ0µ0

mn

×
n∑
k=2

E

 n∑
j1=2

n∑
j2=2

n∑
j3=2

n∑
j4=2

ξ
1/2
j1 ξ

1/2
j2 ζkγj1−1,kwj1,kγj2−1,kwj2,kηj3,k−1wj3,kηj4,k−1wj4,k|Fk−1

 .

Similarly to previous arguments, if all j′ls distinct, then
n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 0

by independence, since we can factor out any one of the random variables whose
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expectation is zero. On the other hand, if we have j1 = j3 and j2 = j4, then

n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
= 4µ0λ0

mn

n∑
k=2

ζk
m∑
j1=2

m∑
j2=2

E [( γj1−1,kwj1,k
)

2 (ηj2,k−1wj2,k)
2 |Fk−1

]

= 4µ0λ0

mn

n∑
k=2

ζk
m∑
j1=2

ξj1

×
m∑
j2=2

E
[
γ2
j1−1,k|Fk−1

]
E
[
w2
j1,k

]
E
[
η2
j2,k−1Fk−1

]
E
[
w2
j2,k|Fk−1

]

= O(1)m− 1
mn

→ 0.

Since in each case we have
n∑
k=2

E
[
E4
k (m,n)|Fk−1

]
→ 0, this implies that Ek(m,n)

satisfies the weak Lindeberg’s condition. Therefore, we can use Theorem (2.2.11)

to conclude that

n∑
k=2
Ek(m,n)→D N

(
0, 2

(
λ0 + 1 + t2µ0

))
.

Furthermore, since η2
j,1 − 1 is a sequence of i.i.d. centered chi-squared random

variables with mean 0 and variance 2t2, it follows that

n∑
k=2
Ek(m,n) + t√

m

m∑
j=2

(η2
j−1,1 − 1)→D N

(
0, 2

(
λ0 + 1 + t2(µ0 + 1)

))
(2.56)
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As a result, we can write


−n (1+λ0)

λ0
(λ̂− λ0)

−m (1+µ0)
µ0

(µ̂− µ0)


→D N


0,


2 (1 + λ0) 0

0 2 (1 + µ0)




(2.57)

which implies that



√
n
(
λ̂− λ0

)

√
m (µ̂− µ0)


→D N


0,



2λ0
2

(1+λ0) 0

0 2µ02

(1+µ0)




. (2.58)

Finally, to show the asymptotic normality for

 √n (λ̂− λ0
) √

n (µ̂− µ0)
√
n (σ̂2 − σ2

0)


′

,

first notice that from the consistency result, we have

√
mn−m∗n∗

(
λ̂µ̂σ̂2 − λ0µ0σ

2
0

)

= (1 + o(1))
√
mn

(
λ̂µ̂σ̂2 − λ0µ̂σ̂

2 + λ0µ̂σ̂
2 − λ0µ0σ̂

2 + λ0µ0σ̂
2 − λ0µ0σ

2
0

)

= (1 + o(1))
(√

mµ̂σ̂2√n
(
λ̂− λ0

)
+
√
nλ0σ̂

2√m (µ̂− µ0) +
√
mλ0µ0

√
n
(
σ̂2 − σ2

0

))
.

(2.59)
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Assuming n

m
→ ρ, where ρ is a positive constant, we can express (2.59) as

−
√
n
(
σ̂2 − σ2

0

)
= σ2

0
λ0

√
n
(
λ̂− λ0

)
+√ρσ

2
0
µ0

√
m (µ̂− µ0) . (2.60)

Since
√
n
(
σ̂2 − σ2

0

)
is a linear combination of two asymptotically normal random

variables, we have that
√
n
(
σ̂2 − σ2

0

)
is asymptotically normal as well. Therefore,

we only need to find its covariance structure. Notice that

Cov
(√

n
(
σ̂2 − σ2

0

)
,
√
n (µ̂− µ0)

)

= E
[(
−σ

2
0
λ0

√
n
(
λ̂− λ0

)
− ρ1/2σ

2
0
µ0

√
m (µ̂− µ0)

)(
ρ1/2√m (µ̂− µ0)

)]

= −ρσ
2
0
µ0

E
[√
m (µ̂− µ0)2

]
= −2ρσ2

0µ0

1 + µ0
. (2.61)

Similarly,

Cov
(√

n
(
σ̂2 − σ2

0

)
,
√
n
(
λ̂− λ0

))
= −2σ2

0µ0

1 + µ0
, (2.62)

and

E
[(√

n
(
σ̂2 − σ2

0

))2
]

= E

(σ2
0
√
n

λ0

(
λ̂− λ0

)
− ρ1/2σ2

0
√
m

µ0
(µ̂− µ0)

)2
= σ4

0

λ0
2E

[√
n
(
λ̂− λ0

)2
]

+ ρ
σ2

0
µ02E

[√
m (µ̂− µ0)2

]
→ 2σ2

0

[
1

1 + λ0
+ ρ

1 + µ0

]
. (2.63)
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Thus, (2.61)− (2.63) implies that



√
n
(
λ̂− λ0

)

√
n (µ̂− µ0)

√
n (σ̂2 − σ2

0)



→D N



0,



0 λ0
2

1+λ0

−2λ0σ2
0

2

1+λ0

µ02

1+µ0
0 −2µ0σ2

0
1+µ0

−2µ0σ2
0

1+µ0

−2λ0σ2
0

1+λ0
2σ4

0

[
1

1+λ0
+ ρ

1+µ0

]





. (2.64)
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2.3 Approximate likelihood estimation for ran-

domly missing data

So far, we have introduced and analyzed the approximate likelihood estimator

for the case when observations are missing in a block satisfying certain regularity

conditons. In here, we propose an alternative method to estimate λ, µ and σ2

when the sampling sites have randomly missing observations. As before, let X be

a realization of the O-U process defined throughout this paper, and X ∈ Rn×m.

Suppose each sampling site (ui, vj) has a probability of p, 0 ≤ p < 1 of being

missing. Let X(o) = {X(o)
j }mj=1 denote the set of data that is available, where each

X
(o)
j is the jth column of X(o). In this section, we define the following notations:

• nj := number of available observations for each column X
(o)
j

• Kj := set of indices for each available observation in X
(o)
j

• Σ(o)
j,j′ := E[X(o)

j , X
(o)
j′ ], an nj×nk′ covariance matrix between column X(o)

j and

column X
(o)
j′

• B
(o)
j,j′ := {e−µ|vk−vk′ |}(k,k′)∈Kj×Kj′ , such that Σ(o)

j,j′ = σ2e−λ|uj−uj′ |B
(o)
j,j′

We propose to approximate the likelihood function of (λ, µ, σ2) given X(o) based

on the Markov property of the full-observation case:

f
(
λ, µ, σ2|θ

)
= f

(
X

(o)
1

)
Πm
j=2f

(
X

(o)
j |X

(o)
j−1

)
. (2.65)

where each of the conditional variable is a multivariate normal with mean m
(o)
j|j−1
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and covariance matrix σ2B
(o)
j|j−1. Let l

(
λ, µ, σ2|X(o)

)
= −2 log

(
f(λ, µ, σ2|X(o)

)
, then

l
(
λ, µ, σ2|X(o)

)
=
 m∑
j=1

nj

 log
(
2πσ2

)
+

m∑
j=1

ln
∣∣∣B(o)

j|j−1

∣∣∣
+ 1
σ2

(
X

(o)
1

)′ (
B

(o)
11

)−1
X

(o)
1

+ 1
σ2

m∑
j=2

[(
X

(o)
j −m

(o)
j|j−1

)′ (
B

(o)
j|j−1

)−1 (
X

(o)
j −m

(o)
j|j−1

)]
(2.66)

where

m
(o)
j|j−1 =


0 j = 1

e−λ|uj−uj−1|B
(o)
j,j−1

(
B

(o)
j−1,j−1

)−1
X

(o)
j−1 j = 2 . . .m

(2.67)

B
(o)
j|j−1 =


σ2B

(o)
11 j = 1

σ2
[
B

(o)
jj − e−2λ|uj−uj−1|B

(o)
j,j−1

(
B

(o)
j−1,j−1

)−1
B

(o)
j−1,j

]
j = 2, . . .m.

(2.68)

Comparing (2.66) to the likelihood functions defined in (1.8) and (2.6), a main

difference is that the covariance matrix B(o)
j|j−1 no longer has an explicit tridiagonal

inverse. This is not necessarily infeasible in the sense of computation, especially

since today’s computers have become much more efficient in handling large matri-

ces. However, due to the missing observations, we cannot find an explicit way to

express the inverse of B(o)
j|j−1, which means that the approximation technique used

in [24] for the quadratic form may not be a good tool for the asymptotic analyses

here. One way to tackle this problem is that, instead of trying to find an explicit

form for the inverse of B(o)
j|j−1, we look at ways to approximate the matrix using a
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version of power series expansion with finitely many terms. To this end, consider

the following definition

Definition 2.3.1. Let G := {gkl}Nk,l=1 ∈ RN×N be a positive-definite tridiagonal

matrix. Define the terms of L := {lkl}Nk,l=1 by the following:

• lkk = √gkk, k = 1 or N

• lk,k−1 = gk−1,k

lk−1,k−1
and lk,k =

√
gk,k − l2k,k−1, k = 2, . . . , N − 1

Then L is a lower bidiagonal matrix and G = LL′.

To see how the bidiagonal matrices in definition (2.3.1) relate to our problem,

notice that

B
(o)
j|j−1 = B

(o)
j,j − e−2λ|uj−uj−1|B

(o)
j,j−1(B(o)

j−1,j−1)−1B
(o)
j−1,j, (2.69)

the fact that
(
B

(o)
j−1,j−1

)−1
is a tridiagonal matrix allows us to choose a lower

bidiagonal matrix Lj, as defined in (2.3.1), such that
(
B

(o)
j−1,j−1

)−1
= Lj−1L

′
j−1.

Therefore, we have

B
(o)
j|j−1 = B

(o)
j,j − e−2λ|uj−uj−1|B

(o)
j,j−1Lj−1L

′

j−1B
(o)
j−1,j

= (L−1
j )′L−1

j − e−2λ|uj−uj−1|(B(o)
j,j−1Lj−1)(B(o)

j,j−1Lj−1)′

= (L−1)′j(I − Cj|j−1C
′
j|j−1)L−1

j , (2.70)
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where

Cj|j−1 = e−λ|uj−uj−1|L′jB
(o)
j,j−1Lj−1.

As a result,

(
B

(o)
j|j−1

)−1
= Lj

(
I − Cj|j−1C

′
j|j−1

)−1
L′j. (2.71)

Notice that, using spectral decomposition, a d × d positive semi-definite matrix,

say M can be represented as ∑d
k=1 λeke

′
k , where {ek, k = 1, 2, . . . , d} is an or-

thonormal basis of the eigenspace of M . This implies that, we can represent

(I−Cj|j−1C
′
j|j−1)−1 as a convergent power series if all the eigenvalues of Cj|j−1C

′
j|j−1

are less than 1. To this end, consider two random variables Yj,j−1 and Zj,j−1, de-

fined as follow:

• Yj,j−1 := L′j

(
X

(o)
j −B

(o)
j,j−1

(
B

(o)
j−1,j−1

)−1
X

(o)
j−1

)
Lj

• Zj,j−1 := B
(o)
j,j−1

(
B

(o)
j−1,j−1

)−1
X

(o)
j−1

Then Yj,j−1 and Zj,j−1 are two multivariate normal random variables with mean 0

and covariance matrices σ2(I − Cj|j−1C
′
j|j−1) and σ2Cj|j−1C

′
j|j−1 respectively. As-

suming both random variables have a non-degenerate distribution, we have that

their covariance matrices are positive-definite, which implies that they each have

a spectral decomposition with positive eigenvalues . Let δ be an eigenvalue of

I − Cj|j−1C
′
j|j−1, then

det(I − Cj|j−1C
′
j|j−1 − δI) = 0 (2.72)

which implies that 1− δ is an eigenvalue of Cj|j−1C
′
j|j−1. By definition of positive-
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definite matrices, we have that 1 − δ > 0, which implies 0 < δ < 1. Thus, we

can approximate
(
I − Cj|j−1C

′
j|j−1

)−1
using a finite number of terms in the power

series. Let

G∗j|j−1 =
K∑
k=0

(
Cj|j−1C

′
j|j−1

)k
, (2.73)

we propose to approximate (2.66) by:

l∗
(
λ, µ, σ2|X(o)

)
=
 m∑
j=1

nj

 log
(
2πσ2

)
+

m∑
j=1

ln |B(o)
j|j−1|

+ 1
σ2

(
X

(o)
1

)′ (
B

(o)
11

)−1
X

(o)
1

+ 1
σ2

m∑
j=2

[(
X

(o)
j −m

(o)
j|j−1)′

(
LjG

∗
j|j−1L

′
j

)
(X(o)

j −m
(o)
j|j−1

)]
(2.74)

In this definition, we have replaced the inverse of Σ(o)
j|j−1 with a finite sum of terms

that does not involve inversing any matrices, which could potentially ease the

process of analysing the asymptotic properties of the estimates for λ̂, µ̂, and σ̂2,

which are solutions to

{
∂

∂λ
l∗ = 0, ∂

∂µ
l∗ = 0, ∂

∂σ2 l
∗ = 0

}
. (2.75)

Intuitively, the number of terms to use in the approximate likelihood function

would depend on the true parameter values as well as the grid size. We investigate

the effect of grid size and parameter values have on the accuracy of the power

series approximation using simulated data. In Figure (2.3) below, we see an exam-

ple of how accuracy of the power series approximation changes as the dimension
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of the sampling grid increases. Although investigating the theoretical properties
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Figure 2.3: Comparing accuracy of the power series estimation of Σ(o)
j|j−1 with

varying grid sizes (N fixed, M varies). Shown in figure is the mean entry difference

between
(
Σ(o)
j|j−1

)−1
and

M∑
j=2

G∗j|j−1.

of estimators from (2.66) would be of great value, in this thesis we devote our

attention to inspect the numerical aspect of this estimator. In particular, our goal

is to show, through numerical experiements, that estimators from (2.66) and (2.6)

behave similarly, which can hopefully be used as a basis for developing theoretical

properties in future investigations.
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Chapter 3

Implementation

In this chapter we investigate the approximated likelihood estimators through a

series of numerical experiements. The main steps involved in the implementation

includes the following: data simulation, missingness simulation, and numerical

experiments using large number of realizations. When evaluating the approximated

likliehood functions, the maxima are obtained using Newton’s method. To this end,

let X be an M×N O-U field with parameter values λ0, µ0 and σ2
0. In the following

numerical experiments, we simulate X using SZ, where

• Z ∼ NMN(0, I) is an MN × 1 vector of standard normal random variables

• S is the MN × MN cholesky decomposition (i.e. SS ′ = Cov(X)) of the

covariance matrix of the O-U field with parameters λ0, µ0 and µ0.

As an example, consider X with parameters M = 59, N = 43, λ = 3.6, µ = 2.1

and σ2 = 5.9 and the following two cases: Xeq (equally-spaced sampling sites) and

Xarb (arbitrarily-spaced sampling sites). Figures (3.1) - (3.2) illustrate two different

realizations of X with missing observations either following a block or a randomly
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distributed pattern. Figures (3.7) and (3.4) then illustrates the corresponding

likelihood functions in each spacing arrangement and missing data scienarios. As

we will see from this example, the spacing of the sampling grid does not appear

to have much effect on the behavior of the likelihood functions, as they both have

very similar shapes with a minimum close to the true parameter value.
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(a) Complete data
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(b) Randomly missing data
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(c) Missing block

Figure 3.1: A realization of Xeq with two types of data missingness
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(b) Randomly missing data
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
A realization of X with0.05 of the data missing in a block

(c) Missing block

Figure 3.2: A realization of Xarb with two types of data missingness
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(a) Estimation of λ

(b) Estimation of µ

(c) Estimation of σ2

Figure 3.3: A comparison of the approximated likelihood functions to the complete-
data likelihood for Xeq. The blue plot is the complete data likelihood, while the
red plot indicates the likelihood function for the randomly missing data case, and
the green plot is the approximated likelihood function for the missing block case.
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(a) Estimation of λ

(b) Estimation of µ

(c) Estimation of σ2

Figure 3.4: A comparison of the approximated likelihood functions to the complete-
data likelihood for Xarb. The blue plot is the complete data likelihood, while the
red plot indicates the likelihood function for the randomly missing data case, and
the green plot is the approximated likelihood function for the missing block case.
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3.1 Illustrative example with simulated data

The purpose of this example is to investigate the numerical properties of the ap-

proximated likelihood estimators with respect to a particular set of parameter

values, where

• M = 39, N = 33

• λ0 = 3.2, µ0 = 5.1 and σ2
0 = 4.18

The experiment is set up according to the following : we generate 300 equally-

spaced realizations using the parameter values above, and with each realization

we look at four different levels of missing observations : [0.01, 0.06, 0.11, 0.16].

With each missing level and each realization, we then estimate the values of λ, µ

and σ2 using the approximated likelihood estimation proposed for each of the

missing pattern. In particular, for the case when the observations are randomly

missing, we used a finite series of eight terms to approximate the matrix inverse.

We then compare the summary statistics from the resulting estimates to those

obtained using the EM algorithm, where in each iteration the missing values are

replaced with a conditional expectation drawn from the distribution based on the

current parameter estimate (See Appdendix B for a more detail description of the

implementation steps).

Notice that, in this experiment, instead of attempting to compute the asymp-

totic distributions of λ̂, µ̂ and σ̂2, we intend to assess the properties of the param-

eter estimaters under our proposed method in a smaller dimensional setting. By

doing so, we hope to provide a realistic snapshot of how our estimation scheme will

perform in practical scenarios, where the potential applications could be model-
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ing data collected from agricultural experiments, weather monitoring stations and

public health studies.
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Figure 3.5: Histograms of λ̂, µ̂ and σ̂2 obtained from the approximated likelihood
estimators, where data is missing in a single block. Notice that the spread of the
distribution is proportional to the value of λ0, µ0 and σ2

0
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Figure 3.6: Histograms of λ̂, µ̂ and σ̂2 obtained from the approximated likelihood
estimators, where data is missing randomly throughout the field. Similarly, in here
the spread of the distribution also appears to be proportional to the value of λ0, µ0
and σ2

0
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Bias

Missingness Estimation Parameter
% of missing observations

Pattern Method 1 6 11 16

Block

λ̂ 0.0083 0.0084 0.0111 0.0123

Approximated µ̂ 0.0086 0.0085 0.0110 0.0139

Likelihood σ̂2 0.0091 0.0096 0.0107 0.01584

λ̂ -0.0377 0.1299 0.2418 0.4196

Expectation µ̂ -0.0193 0.2149 0.3113 0.4399

Maximization σ̂2 0.0252 -0.0724 -0.1026 -0.1337

Random

λ̂ 0.00934 0.00838 0.0074 0.0091

Approximated µ̂ 0.0108 0.0049 0.0097 0.0106

Likelihood σ̂2 0.1204 0.1245 0.11 0.1296

λ̂ -0.0349 0.1692 0.3187 0.4786

Expectation µ̂ -0.0201 0.2876 0.4945 0.7504

Maximization σ̂2 0.0213 -0.1791 -0.3259 -0.5227

Table 3.1: Summary statistics comparing the bias of λ̂, µ̂ and σ̂2 estimated using
the approximated likelihood function versus the EM algorithm. Two scenarios
(missing block, randomly missing) are simulated with varying proportion of the
observations missing.
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Root Mean Squared Error

Missingness Estimation Parameter
% of missing observations

Pattern Method 1 6 11 16

Block

λ̂ 0.1370 00.1370 0.1418 0.1477

Approximated µ̂ 0.2311 0.2352 0.2377 0.2529

Likelihood σ̂2 0.1696 0.1696 0.1753 0.1858

λ̂ 0.4148 0.4197 0.4609 0.5607

Expectation µ̂ 0.5343 0.5630 0.6116 0.6994

Maximization σ̂2 0.5853 0.6174 0.6439 0.6745

Random

λ̂ 0.1270 0.1313 0.1434 0.1492

Approximated µ̂ 0.2158 0.2203 0.2395 0.2366

Likelihood σ̂2 0.3413 0.3310 0.3510 0.3623

λ̂ 0.4111 0.4214 0.4882 0.5908

Expectation µ̂ 0.5373 0.5859 0.7015 0.8810

Maximization σ̂2 0.5815 0.6422 0.7231 0.8531

Table 3.2: Summary statistics comparing the root mean squared error of λ̂, µ̂ and
σ̂2 estimated using the approximated likelihood function versus the EM algorithm.
Two scenarios (missing block, randomly missing) are simulated with varying pro-
portion of the observations missing.
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Standard Deviation

Missingness Estimation Parameter
% of missing observations

Pattern Method 1 6 11 16

Block

λ̂ 0.1350 0.1369 0.1418 0.1474

Approximated µ̂ 0.2314 0.2354 0.2378 0.2529

Likelihood σ̂2 0.1695 0.1696 0.1753 0.1854

λ̂ 0.4138 0.3998 0.3931 0.3726

Expectation µ̂ 0.5328 0.5212 0.5272 0.5446

Maximization σ̂2 0.5857 0.6142 0.6367 0.6623

Random

λ̂ 0.1269 0.1313 0.1434 0.1492

Approximated µ̂ 0.2159 0.2206 0.2398 0.2568

Likelihood σ̂2 0.3301 0.3409 0.3495 0.3614

λ̂ 0.3469 0.3705 0.3866 0.4103

Expectation µ̂ 0.4623 0.4983 0.5114 0.5373

Maximization σ̂2 0.5821 0.6177 0.6465 0.6754

Table 3.3: Summary statistics comparing the standard deviation of λ̂, µ̂ and σ̂2 es-
timated using the approximated likelihood function versus the EM algorithm. Two
scenarios (missing block, randomly missing) are simulated with varying proportion
of the observations missing.
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Figure 3.7: A comparison of the approximated likelihood functions to the complete-
data likelihood for Xeq. The blue plot is the complete data likelihood, while the
red plot indicates the likelihood function for the randomly missing data case, and
the green plot is the approximated likelihood function for the missing block case.
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Estimation
method

Approximate Likelihood Expectation Maximation

Missing
pattern block random block random

Computa-
tion time
(seconds
per real-
ization)

4.93 3.95 9.54 16.68

Table 3.4: A comparison of computational time for λ, µ and σ2 using each estima-
tion method

3.2 Remark

From the numerical experiments we noticed that, unlike the EM algorithm, both

approximated likelihood methods rely only on information given by the available

data and do not involve any iterative steps and imputations in the algorithm.

These features result in a speedier estimation process, as they eliminate the need

to repetitvely compute matrix inverses (see Table 3.4). Although the estimates

show an increasing level of bias as number of missing observations increase, this

is not unexpected and we see that the overall accuracy is still within a reasonable

range. This suggests that the estimators will likely provide good results even in

the presence of missing observations.
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Chapter 4

Conclusion

In this work, we proposed an approximate likelihood estimation method for the O-

U process, defined on a two-dimensional lattice with missing sampling sites under

two scenarios of data missingness. By imposing the Markov property from the full

observaion case on the approximated likelihood function, we elimated the compu-

tational burden of computing high dimensional inverse for the missing block case.

Moreover, the asymptotics for the approximate likelihood estimate in the missing

block case show simlar result compared to the MLE, as long as the size of the

missing grid is under control. While for the case with randomly missing observa-

tions, we replace the inverse of the covariance matrix with a finite matrix series

approximation and show that numerically, they yield similar results compared to

the missing block case.

Based on these preliminary results, it is reasonable to set up a conjecture

assuming similar asymptotics for the approximated likelihood estimators between

these two missing data scenarios. The main challenge in proceeding with analyzing
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the randomly missing observation case is that, due to the pattern of the missing

sampling sites, we can no longer analyze the likelihood funtion by utilizing the

tridiagonal inverse matrices that result in the full data and missing block cases.

However, we could potentially develop theoretical analysis by approximating the

inverse of the covariance matrix using a finite number of binomial expression terms

described in section 2.6, this would be an interesting direction for future work.
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Appendix A: Derivatives involved

in obtaining the MLE

First and second derivatives of B−1(µ)

Let B−1(µ) ∈ RN×N be the tridiagonal inverse matrix from the OU process. Let

b̄kl be the klth entry of B−1. For k = 1, . . . , N, define the following:

• bk = e−µζk

• b∗k = ζkb
2
k

(1−b2
k
)2

• b∗∗k = −ζkb2
k(1+b2

2)
(1−b2

k
)3

Then we have:

• ∂
∂µ
b11 = −2b∗2, ∂

2

∂µ
b11 = −4b∗∗2

• ∂
∂µ
bNN = −2b∗N , ∂

2

∂µ
bNN = −4b∗∗N

• ∂
∂µ
bkk = −2(b∗k + b∗k+1), ∂2

∂µ
bkk = −4(b∗∗k + b∗∗k+1), k = 2, . . . , N − 1

• ∂
∂µ
bk,k−1 = ζkbk(1+b2

k)
(1−b2

k
)2 , ∂

2

∂µ
bk,k−1 = ζ2

kbk
(1−b2

k
)3 [1 + 6b2

k + b4
k]

115



Partial derivatives of l(θ|X)

The MLE θ̂ is the root of the gradient of (θ|X), using the Newton’s, the update

mechanism is as follow:


λp+1

µp+1


=


λp

µp


−


hλλ hλµ

hµλ hµµ



−1 
dlλ

dlµ


(λ,µ)=(λi,µi)

(1)

where

dlλ = N
M∑
j=2

2ξje−2λξi

1− e−2λξj
+ 2
σ2

M∑
j=2

ξje
−λξjXT

·,j−1B
−1(X·,j − e−λξjX·,j−1)

1− e−2λξj

− 2
σ2

M∑
j=2

ξje
−2λξj

(1− e−2λξj)2 (X·,j − e−λξjX·,j−1)TB−1(X·,j − e−λξjX·,j−1) (2)

dlµ = M
N∑
k=2

2ζke−2µζi

1− e−2µζk
+ 1
σ2

[
XT
·,1DµB

−1X·,1

+
M∑
j=2

ξje
−2λξj

(1− e−2λξj)2 (X·,j − e−λξjX·,j−1)TDµB
−1(X·,j − e−λξjX·,j−1)

]
(3)

hλλ = N
M∑
j=2

−4e−2λξj

(1− e−2λξj)2 −
2
σ2

M∑
j=2

ξ2e−λξj
[

(1 + e−2λξj)XT
·,j−1B

−1(X·,j − e−ληjX·,j−1)
(1− e−2λξj)2

−
e−λξjXT

·,j−1B
−1X·,j−1

1− e−2λξj
+ 2e−2ληjX·,j−1B

−1(X·,j − e−ληjX·,j−1)
(1− e−2ληj)2

− 2e−ληj(1 + e−2ληj)(X·,j − e−ληjX·,j−1)TB−1(X·,j − e−ληjX·,j−1)
(1− e−2ληj)3

]
(4)
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hλµ = 2
σ2

M∑
j=2

[
ξje
−ληjXT

·,j−1DµB
−1(X1)

1− e−2ληj

− ξje
−2ληj(X·,j − e−ληjX·,j−1)TDµB

−1(X·,j − e−ληjX·,j−1)
(1− e−2ληj)2

]
(5)

hµλ = 1
σ2

M∑
j=2

2ξje−2ληj

[
XT
·,j−1DµB

−1(X·,j − e−ληjX·,j−1)
1− e−2ληj

(6)

− (X·,j − e−ληjX·,j−1)TDµB
−1(X·,j − e−ληjX·,j−1)

]

hµµ = M
N∑
k=2

−4ζ2
ke
−2µζj

(1− e−2µζj)2 + 1
σ2

[
XT
·,1D

2
µB
−1X·,1+

k = j

M

(X·,j − e−ληjX·,j−1)TD2
µB
−1(X·,j − e−ληjX·,j−1)

1− e−2ληj

]
(7)
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Appendix B: Implementation

steps for the EM algorithm

The EM algorithm is one of the most widely-used methods in model-based infer-

ences when there are unobserved or missing data, or when the likelihood function

cannot be found explicitly. Based on the idea of ‘guess, update and repeat’, it iter-

atively computes the MLE of parameters using available information and updates

its corresponding expected likelihood function. Many examples of its application

has been chronicled in multiple papers since before its formal introduction in the

1970s. While some theoretical foundation was laid by Orchard and Woodbury [8],

it was Dempster, Lair and Rubin [3] that first gave the EM algorithm its name and

wide popularity via their classic paper in 1977, where they defined a generalized

framework for the two-step method and presented theoretical details on asymptotic

convergence. Later, Wu [22] furthered investigated the convergence properties on

the sequence of EM estimates. To formally describe the algorithm, let Y be a sam-

ple space and Θ be a parameter space. Consider a set of n observations Y ∈ Y ,

we can write Y := (Yobs, Ymis), where Yjobs is the set of observed data and Ymis is

the set of unobserved or missing data. Notice that by unobserved we mean data

118



from hidden variables, while missing data refers to the case when the data could

have been observed directly. We assume Y has pdf or pmf f(Y |θ), where θ ∈ Θ

unknown. One way to estimate θ is by maximizing the incomplete data likelihood

given by Yobs, defined as :

L(θ|Yobs) :=
∫
f(Yobs, Ymis|θ)dYmis.

Then, the goal is to find θ∗ s.t.

θ∗ = argmaxθ∈ΘL(θ|Yobs),

and if L(·|Yobs) is differentiable and unimodal, we can find the MLE by solving

for ∂
∂θ

lnL(θ|Yobs) = 0. The iterative step comes in when explicit solutions are

not available, in which case, instead of solving for the maximum likelihood, we

look at the expected likelihood function given Yjobs. We define the following: for

p = 0, 1, 2, . . .

E-step : Let l(θ|Y ) = lnL(θ|Y ). Compute

Q(θ|θ(p)) := Eθ(p)(l(θ|Y )|Yobs) =
∫
l(θ|Y )f(Ymis|Yobs, θ = θ(p)).

M-step : Find θ(p+1) s.t.

Q(θ(p+1)|θ(p)) ≥ Q(θ|θ(p)) for all θ ∈ Θ.

Repeat until |θ(p+1) − θ(p)| < ε
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In our case, suppose there are a total of n(u) observations missing at random for the

realization X, and let n(o) be the number of remaining observations, so that MN =

n(o) + n(u), we can partition X into ’observed’ and ’unobserved’ compartments:

X =


X(o)

X(u)


∼ NMN




0n(o)×1

0n(u)×1


,


Σoo Σou

Σuo Σuu




, (8)

where

• Σoo ∈ Rn(o)×n(o) is the covariance matrix for the observed data,

• Σuu ∈ Rn(u)×n(u) is the covariance matrix for the unobserved data, and

• Σuo ∈ Rn(u)×n(o) is the covariance matrix for the unobserved and the observed

data, and Σou = ΣT
uo.

The E-step of the EM algorithm in our case requires the conditional distribution

of X(u)|X(o), θ(p), where θ(p) is the set of current estimates for the parameters λ, µ

and σ2. Notice that from (8), we have

f(X(u)|X(o), θ(p)) = (2π)−n
(u)
2 |S(u)|−1/2e(X(u)−m(u))′(S(u))−1(X(u)−m(u)), (9)
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where S(u) = Σuu − Σuo(Σoo)−1Σou, and m(u) = Σuo(Σoo)−1X(o). This means that

Q(θ|θ(p)) := Eθ[l(θ,X )|X (o), θ(p)] =
∫
l(θ|X )f(X(u)|X(o), θ(p))dX(u), (10)

= MN ln |Σ|+ E[X ′Σ−1X|X(o), θ(p)], (11)

= MN ln |Σ|+
MN∑
i,j=1

MN∑
i′j′=1

φijE[xijxi′j′|X(o), θ(p)],

(12)

where φij is the ij-th entry of Σ−1. In particular, the value of E[xij,xi′j′ |X
(o), θ(p)]

depends on the (un)availability of the sampling site. Thus, the E-step essentially

uses a conditional random field evaluated using S(u) and m(u) at the current param-

eter update θ(p), which implies that the likelihood function can be expressed using

equation (1.8) with respect to the conditional data. Schematically, the algorithm

can be summarized in the following steps.

1. For p = 0, 1, 2 . . . , generate a random field X (p) with ‘complete’ observation

under parameter estimates σ2(p)
, λ(p), and µ(p).

2. Define a mapping M : Θ → Θ, and choose θ(p+1) ∈ M(θ(p)). In our case,

the mapping can be expressed as

{θ ∈ Θ : E[l(θ)|X (p), θ(p)] ≤ E[l(θ)|X (p), θ(p)]}.
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In particular, each element of θ(p+1) is updated according to the following:

λ(p+1) = {λ : ∂

∂λ
E[l(θ)|X (p), θ(p)] = 0}

µ(p+1) = {µ : ∂

∂µ
E[l(θ)|X (p), θ(p)] = 0}

σ2(p+1) = (X (p))T1B−1(µ(p+1))X (p)
1

MN

+
∑M
i=2

(X (p)
i −e

−λ(p+1)X (p)
i−1)−1B−1(µ(p+1))(X (p)

i −e
−λ(p+1)X (p)

i−1)

1−e−2λ(p+1)ξi

MN

3. Repeat until convergence or maximum step number is achieved.

In other words, this is partly an imputation-based method using the neighboring

available observations of the missing sites. The motivation for this approach is

based on the assumption that observations that are closer together have higher

correlations, thus it is reasonable to estimate parameter values from the incom-

plete random field, where the missing sites are replaced with conditional means

based on information near them. The appendix lists the explicit derivatives of

the likelihood function, as well as the expressions implemented in the Newton’s

method for find the MLE.

Properties of the EM estimates

In general, the Q
(
·|θ(p)

)
is a monotone function of p, and θ(p) is guaranteed con-

vergence to at least a stationary point of l (θ|Y ).
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Theorem B.1 (Dempster, Laird and Rubin,1976). Every GEM algorithm in-

creases l(θ|Yons) at each iteration, that is

l
(
θ(p+1)|Yobs

)
≥ l

(
θ(p)|Yobs

)
.

Proof.

f(Y |θ) = f(Yobs, Ymis|θ)

= f(Yobs|θ) · f(Ymis|Yobs, θ)

thus the corresponding log-likelihood decomposition is

l(θ|Y ) = l(θ|Yobs) + ln f(Ymis|Yobs, θ).

From the same decomposition, we also have

l(θ|Yobs) = l(θ|Y )− ln f(Ymis|Yobs, θ) (13)

Now, at iteration p in the E-step, (13) is expressed as :

l(θ(p)|Yobs) = Q(θ|θ(p))−H(θ|θ(p)), (14)

where

Q(θ|θ(p)) =
∫
l(θ|Y )f(Ymis|Yobs, θ = θ(p)),
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and

H(θ|θ(p)) =
∫

[ln f(Ymis|Yobs, θ)]f(Ymis|Yobs, θ = θ(p))dYmis.

Note that since ln(·) is concave, by Jensen’s inequality

H(θ|θ(p)) ≤ H(θ(p)|θ(p))

Thus, the difference in two consecutive iterations in (14) is :

l(θ(p+1)|Yobs)− l(θ(p)|Yobs)

= [Q(θ(p+1)|θ(p))−Q(θ(p)|θ(p))]︸ ︷︷ ︸
>0 by definition of M-step

− [H(θ(p+1)|θ(p))−H(θ(p)|θ(p))]︸ ︷︷ ︸
<0 by Jensen’s inequality

.

This implies,

l(θ(p+1)|Yobs) ≥ l(θ(p)|Yobs) for all p,

with equality if and only if both

Q(θ(p+1)|θ(p)) = Q(θ(p)|θ(p)) and H(θ(p+1)|θ(p)) = H(θ(p)|θ(p)).

Thus, we can see from Theorem (B.1) that, if the likelihood function is bounded,

then l(θ(p)|Yobs) must converge to some value l∗, and if l(θ(p)|Yobs) is continuous,

then that implies θ(p) → θ∗ as well. Of course, the first question that arises is
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whether l∗ and θ∗ correspond to the MLE of the problem. To answer this question,

we look at the following theorem from Wu [22]:

Theorem B2 (Wu,1983). Let {θp} be a general EM (GEM) sequence generated

by θp+1 ∈M(θp) and suppose that

1. M is a closed point-to-set mapping over the compliment of the solution set

S, and

2. L(θp+1) > L(θp) for all θp 6∈ S (and vice versa if using negative likelihood

function).

Then all the limit points of {θp} are stationary points of Lm and L(θp) converges

monotonically to L∗ = L(θ∗) for some θ∗ ∈ S.

Furthermore, it is stated that a sufficient condition for the closeness of M is that:

Q(θ|θ(p)) is continuous in both θ and θ(p). (15)

To show that the Q function in our problem is continuous, it is enough to show

that it is continuous in both λ and µ, since σ2 can be completely derived from

them. Notice that, since

MN |Σ| = MN [log(2π) + log(σ2)] +N
M∑
i=2

log(1− e−2λξi) +M
N∑
k=2

log(1− e−2µξk)

(16)

is clearly a continuous function for λ, µ and σ2. On the other hand,

Σ−1 = σ2A(λ)−1 ⊗B(µ)−1
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with the terms of A(λ)−1 being in the form of:

• ā11 = 1
1−a2

2

• āMM = 1
1−a2

M

• āii = 1
1−a2

i
+ 1

1−a2
i+1
− 1, i = 2, . . . ,M − 1

• āi,i−1 = −ai
1−a2

i
= āi−1,i, i = 2, . . . ,M

with āij = 0 if |i− j| > 1, and ai = e−λ|ui−ui−1|. The terms of B−1(µ) are expressed

similarly. Since each of a2
i is strictly between 0 and 1, we have that the terms for

A−1(λ) are continuous for λ. This implies that the entries of Σ−1 are continuous

for both λ and µ. Since Q(θ|θ(p)) depends on the term |Σ| and Σ−1, we have that

Q(θ|θ(p)) is continuous in λ and µ as well. To show continuity in λ(p) and µ(p), note

that

E[xijxi′j′ |X (o), θ(p)] =


xijxi′j′ if both xijxi′j′ are observed

xijE[xi′j′|X (o), θ(p)] if only xij is observed, and vice versa.

(17)

Now, the terms E[xi′j′|X (o), θ(p)] and E[xijxi′j′|X (o), θ(p)] are elements of m(u)|θ=θ(p)

and S(u)|θ=θ(p) respectively. Thus, we need to show that m(u)|θ=θ(p) and S(u)|θ=θ(p)

are continuous in θ(p). Note that

S(u)|θ=θ(p) = (Σuu − (Σoo)−1Σou)|θ=θ(p) (18)

since Σuu is a sub matrix of Σ formed by deleting the rows and columns corre-
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sponding to the observed data , each element of Σuu|θ=θ(p) can be expressed as

either σ2(p) or

Cov(x, x′)|θ=θ(p) = σ2(p)
e−λ

(p)u∗−µ(p)v∗ (19)

where u∗ and v∗ are some constant strictly between 0 and 1. Thus, Suu|θθ(p) is

continuous for λ(p), µ(p) and σ2(p). Similarly, the elements of Σou|θ=θ(p) are of the

same form since it is also a sub matrix of Σ.. It remains to show continuity of

Σ−1
oo |θ=θ(p) . To this end, consider an n × n matrix A, then its determinant can be

expressed as

det(A) = Σσ(a1αa2β · · · anν) detPσ (20)

where

• each σ corresponds to a distinct permutation of (1, 2, . . . , n),

• (α, β, . . . , ν) is the set of indices with respect to that permutation, and

• Pσ is a permutation matrix whose determinant is either 1 or -1.

Using Cramer’s rule, A−1 can be expressed as

A−1 = CT

det(A) , (21)

where C is a matrix of co-factors for A, which again is a linear combination of the

products of the elements of A, but with order n− 1 instead of n. Now, the terms

of Σoo follow the form in (19), thus the elements of Σ−1
oo are therefore continuous.

Since products of continuous functions are still continuous, continuity of S(u)|θ=θ(p)
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is therefore satisfied. It follows that m(u)|θ=θ(p) = Σuo(Σoo)−1 is continuous as

Σuo = ΣT
ou.
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Appendix C: MATLAB code for

numerical experiments

This section lists the MATLAB source code that is used for all the simulation

studies in this paper

Simulation of randomly missing observations in

the random field (OU MISS.m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% OU MISS.m

%% Function to generate missing observations for OU SIM

%% Author : Sami Cheong

%% Date : 7/29/14

%% Version : 1

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function X miss= OU MISS(X,miss level)
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% INPUT:

% X = complete−observation Gaussian random field.

% miss level = % of the observations that is missing

% OUTPUT:

% X miss = X with randomly missing values according to miss level

function [X miss,miss ind]= OU MISS(X,miss level)

N=size(X,1);

M=size(X,2);

X=reshape(X,[N*M,1]);

% Create missing observations using Bernoulli distribution with

% probability defined by 'miss level':

miss ind=binornd(1,miss level,N*M,1);

% Or randomly permute the sampling sites:

% perm ind = randperm(N*M);

% Choose the % of observations missing as represented by the index:

%miss=perm ind(1:floor(miss level*(N*M)));

X miss=X;

X miss(miss ind==1)=NaN;

X miss=reshape(X miss,[N,M]);

miss ind=reshape(miss ind,[N,M]);

Simulation of missing blocks in the random field

(OU BLOCKMISS.m)

%% OU BLOCKMISS.m

%% Function to simulate a block of missing observations in a random

%% field
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%% function [Y,K1,J1] = OU BLOCKMISS1(X,missing prop)

%%

%% INPUT :

%% X = matrix of realization of a random field

%% with complete observations

%% missing prop = proportion of the observations that are missing

function [Y,K1,J1] = OU BLOCKMISS(X,missing prop)

if (missing prop <= 0 | | missing prop >=0.45)

error('missing level must be strictly between 0 and 0.45')

else

end

% get dimension:

N = size(X,1);

M = size(X,2);

% Total number of observations

% generate the block dimension according to level of missingness:

% C is the area of the missing block,

% we need to generate dimensions of the missing block

Y=X;

C=round(1/missing prop);

factor = [9 8 7 6 5 4 3 2];

i=1;

while i < length(factor)

if mod(C,factor(i))==0

C1=C/factor(i);

C2=C/C1;

i=i+1;

else

C1=floor(C/3);
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C2=floor(C/C1);

i=i+1;

end

end

N1=round(N/C1);

M1=round(M/C2);

% generate an index to start the missing block:

k1=randi([3 floor(N/4)],1);

j1=randi([3 floor(M/4)],1);

K1=k1:1:min((k1+(N1−1)),N);

J1=j1:1:min(j1+(M1−1),M);

% Assign NaN to the resulting block

Y(K1,J1)=NaN;

Conditional random field (OU COND.m)

%% Evaluate the conditonal mean and variance given incomplete X

% OU COND.m

% function [X cond,S oo,S uu,S ou,S uo]=OU COND(X,Gamma)

% INPUT:

% X = N−by−M centered Gaussian random (OU) field

% (with missing observations).

% Gamma = Covariance structure of the OU field,

% evaluated at the current parameter value.

%

% OUTPUT:

% X cond = Random field where missing observations are replaced with

% conditonal mean.
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% Cov cond = conditional covariance matrix for the unobserved samples

function [X cond,S oo,S uu,S ou,S uo]=OU COND(X,Gamma)

% reshape X into a MN−by−1 vector:

N=size(X,1);

M=size(X,2);

X= reshape(X,[N*M,1]);

% get unobserved and observed indices:

[Unobs ind] = find(isnan(X)==1);

[Obs ind]=find(isnan(X)==0);

% Partition the covariance matrix S= [S oo | S ou; S uo | S uu]:

S oo = Gamma(Obs ind,Obs ind);

S uu = Gamma(Unobs ind, Unobs ind);

S ou = Gamma(Obs ind,Unobs ind);

S uo=S ou';

X obs=X(Obs ind);

Xstar=S oo\X obs;

X unobs = S uo*Xstar ;

X cond=X;

X cond(Unobs ind)=X unobs;

X cond=reshape(X cond,[N,M]);

Inverse of the complete-data covariance matrix,

matrix square root and related derivatives

Explicit form of B−1
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%% This function computes the exact inverse of the

%%covariance matrices used in the OU process

function B inv = OU COVINV(b)

% INPUT:

% b = vector of elements that form the sq matrx.

% e.g. b(1:N)=exp(−mu.*nu(1:N));

% Assign values to border elements:

N = length(b);

B inv(1,1)=1/(1−(b(2))ˆ2);

B inv(N,N)=1/(1−(b(N))ˆ2);

for k=2:N−1

B inv(k,k) = 1/(1−(b(k+1))ˆ2)+1/(1−(b(k))ˆ2)−1 ;

end

for k=2:N

B inv(k,k−1)=−b(k)/(1−(b(k))ˆ2);

B inv(k−1,k)=−b(k)/(1−(b(k))ˆ2);

end

Bidiagonal matrix square-root of B−1

%% This function finds the lower−bidiagonal

%% matrix square−root for a symmatric tridiagonal matrix

% INPUT:

% G = symmetric tridiagonal matric

% OUTPUT:

% L = lower bidiagonal matrix such that G=L*L'

function [L]=OU SQRTM(G)

if norm(G−G') > 0
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error('G must be symmetric and tridiagonal')

else

end

K=size(G,1);

L=zeros(K,K);

L(1,1) = sqrt(G(1,1));

L(K,K) = sqrt(G(K,K));

for j=2:K

L(j,j−1)=G(j−1,j)/L(j−1,j−1);

L(j,j) =sqrt(G(j,j)−L(j,j−1)ˆ2);

end

Computing DµB
−1 and D2

µB
−1

%% This function computes the derivative of

%% the inverse of the covariance matrix Bˆ−1(\mu):

% function DB inv = OU DBINV(mu,v)

function DB inv = OU DBINV(mu,v)

% INPUT:

% mu = parameter value for B(mu)

% v = Vector for the vertical coordinate of the random field

% OUTPUT:

% DB inv = A matrix of derivatives for Bˆ−1(\mu)

% Assign values to border elements:

N = length(v);

DB inv=zeros(N,N);

% standaridze vectors into column vectors

if size(v,2)˜=1
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v=v;

else

end

nu =[0; abs(v(2:N)−v(1:N−1))];

b = exp(−mu*nu);

b sq=b.ˆ2;

DB inv(1,1) = −2*nu(2)*b sq(2)/((1−b sq(2))ˆ2);

DB inv(N,N) = −2*nu(N)*b sq(N)/((1−b sq(N))ˆ2);

for j=2:N−1

DB inv(j,j) = −2*(nu(j)*b sq(j)/((1−b sq(j)))ˆ2 ...

+nu(j+1)*b sq(j+1)/((1−b sq(j+1)))ˆ2);

end

for j=2:N

DB inv(j−1,j) = nu(j)*b(j)*(1+b sq(j))/((1−b sq(j))ˆ2);

DB inv(j,j−1) =DB inv(j−1,j);

end

%% This function computes the 2nd derivtive

%% of the inverse of the covariance matrix Bˆ−1(\mu):

% function DB2 inv = OU DBINV(mu,v)

function DB2 inv = OU D2BINV(mu,v)

% INPUT:

% mu = parameter value for B(mu)

% v = Vector for the vertical coordinate of the random field

% OUTPUT:

% DB inv = A matrix of derivatives for Bˆ−1(\mu)

% Assign values to border elements:
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N = length(v);

DB2 inv=zeros(N,N);

% standaridze vectors into column vectors

if size(v,2)˜=1

v=v;

else

end

nu =[0; abs(v(2:N)−v(1:N−1))];

b = exp(−mu.*nu);

b sq=b.ˆ2;

b star=(nu.*b sq.*(ones(N,1)+b sq))/((ones(N,1)−b sq).ˆ3);

DB2 inv(1,1) = 4*b star(2);

DB2 inv(N,N) = 4*b star(N);

for j=2:N−1

DB2 inv(j,j) = 4*(b star(j)+b star(j+1));

end

for j=2:N

DB2 inv(j−1,j) = ...

((nu(j))ˆ2*b(j)*(1+6*(b(j))ˆ2+(b(j))ˆ4))/((1−b sq(j))ˆ2);

DB2 inv(j,j−1) =DB2 inv(j−1,j);

end

%% This function finds the lower−bidiagonal

%% matrix square−root for a symmatric tridiagonal matrix

% INPUT:

% G = symmetric tridiagonal matric

% OUTPUT:

% L = lower bidiagonal matrix such that G=L*L'
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function [L]=OU SQRTM(G)

if norm(G−G') > 0

error('G must be symmetric and tridiagonal')

else

end

K=size(G,1);

L=zeros(K,K);

L(1,1) = sqrt(G(1,1));

L(K,K) = sqrt(G(K,K));

for j=2:K

L(j,j−1)=G(j−1,j)/L(j−1,j−1);

L(j,j) =sqrt(G(j,j)−L(j,j−1)ˆ2);

end

Estimation schemes, likelihood functions and re-

lated derivatives

Complete-data likelihood function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% OU LIKE.m

%% Function to evaluate the −2 log likelihood function

%% of the parameter values given an observation of

%% the OU process

%% Author : Sami Cheong

%% Date : 7/29/14

%% Version : 1
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%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function likelihood = OU LIKE(lambda,mu,sigma2,u,v,X)

function likelihood = OU LIKE(lambda,mu,sigma2,u,v,X)

N=size(X,1);

M=size(X,2);

% eta=zeros(M,1);

% nu=zeros(N,1);

% if u(1) == 0

% eta(1) = u(1);

% else

% eta(1) = 0;

% end

% if v(1) == 0

% nu(1) = v(1);

% else

% nu(1) = 0;

% end

% work with column vectors:

if size(u,2)˜=1

u=u';

end

if size(v,2)˜=1

v=v';

end

eta = [0;abs(u(2:M)−u(1:M−1))];

nu = [0;abs(v(2:N)−v(1:N−1))];

b = exp(−mu.*nu);

% define the different terms in the likelihood function
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term pi = M*N*log(2*pi);

term sigma = M*N*log(sigma2);

term lambda = N*sum(log(1−exp(−2*lambda.*eta(2:M))));

term mu = M*sum(log(1−exp(−2*mu.*nu(2:N))));

% initialize the terms for the quadratic form n

long term = zeros(M,1);

Xa = zeros(size(X));

Binv = OU COVINV(b);

Xa(:,1)= X(:,1);

for i=2:M

Xa(:,i)= X(:,i)−(exp(−lambda.*eta(i))*X(:,i−1));

long term(i)=(Xa(:,i)'*Binv*Xa(:,i))/(1−exp(−2*lambda.*eta(i)));

end

likelihood = term pi+term sigma+term lambda+term mu +...

(X(:,1)'*Binv*X(:,1)+ sum(long term(2:M)))/sigma2;

Parameter updates based on the Hessian matrix of the complete-

data likelihood function

%% function hess = OU LIKE HESS UPDATE(lambda,mu,sigma2,u,v,X)

%% function to evaluate the hessian matrix

%% of the complete data likelihood

%% generate structure :H=[h lmblmb, h lmu; h mul, h mumu]

%% Uses other functinos : OU DBINV(mu,v) , OU D2BINV(mu,v)

function [update] = OU LIKE HESS UPDATE(lambda,mu,sigma2,u,v,X)

% H=[H 11, H 12; H 21, H 22]

% define the components of the Hessian matrix:

M=size(X,2);
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N=size(X,1);

% standardize things to be column vectors :

if size(u,2)˜=1

u=u';

else

end

if size(v,2)˜=1

v=v';

end

eta=[0;abs(u(2:end)−u(1:end−1))];

zeta=[0;abs(v(2:end)−v(1:end−1))];

zeta expmu = exp(−mu.*zeta);

zeta expmu2 = ones(N,1)−(zeta expmu.ˆ2);

eta explmb = exp(−lambda.*eta);

eta explmb2 = ones(M,1)−(eta explmb.ˆ2);

% compute Bˆ−1:

B inv=OU COVINV(zeta expmu);

% initialize stuff

%X q=NaN(size(X));

for j=2:M

% define terms in H 11 = h lambdalambda

X q(:,j)=X(:,j)−eta explmb(j)*X(:,j−1);

h lmblmb 1(j) = −4*(eta(j)*eta explmb(j))ˆ2/((eta explmb2(j))ˆ2);

h lmblmb 2(j) = ((eta(j))ˆ2*eta explmb(j)*(1+(eta explmb(j))ˆ2)*...

(X(:,j−1)')*B inv*X q(:,j))/((eta explmb2(j))ˆ2);

h lmblmb 3(j) = (eta(j)*eta explmb(j))ˆ2*(X(:,j−1)')*...

B inv*X(:,j−1)/(eta explmb2(j));

h lmblmb 4(j) = 2*(eta(j)*eta explmb(j))ˆ2*(1+(eta explmb(j))ˆ2)*...

X q(:,j)'*B inv*X q(:,j)/((eta explmb2(j))ˆ3);
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h lmblmb 5(j) = 2*(eta(j)*eta explmb(j))ˆ2*eta explmb(j)*...

(X(:,j−1)')*B inv*X q(:,j)/((eta explmb2(j))ˆ2);

% split the H 12 = h lambdamu:

h lmbmu 1(j) = (eta(j)*eta explmb(j)*X(:,j−1)'*...

OU DBINV(mu,v)*X q(:,j))/(eta explmb2(j));

h lmbmu 2(j) = ((eta(j)*(eta explmb(j))ˆ2)*X q(:,j)'*...

OU DBINV(mu,v)*X q(:,j))/((eta explmb2(j))ˆ2);

h mulmb 1(j) = (eta(j)*((eta explmb(j))ˆ2)*X(:,j−1)'*...

OU DBINV(mu,v)*X q(:,j))/(eta explmb2(j));

h mulmb 2(j) = (eta(j)*((eta explmb(j))ˆ2)*X q(:,j)'*...

OU DBINV(mu,v)*X q(:,j));

% define the lambda term in h mumu:

h mumu star(j) = ...

(X q(:,j)'*OU D2BINV(mu,v)*X q(:,j))/(eta explmb2(j));

dl mu star(j) =...

(X q(:,j)'*OU DBINV(mu,v)*X q(:,j))/(eta explmb2(j));

% define the terms in the first derivative of l(theta):

dl lmb 1(j)=(2*eta(j)*(eta explmb(j))ˆ2)/(eta explmb2(j));

dl lmb 2(j)=...

(eta(j)*eta explmb(j)*X(:,j−1)'*B inv*X q(:,j))/(eta explmb2(j));

dl lmb 3(j)=...

eta(j)*(eta explmb(j)/(eta explmb2(j)))ˆ2*((X q(:,j)')*B inv*X q(:,j));

end

for k=2:N

h mumu 1(k)=−4*(zeta(k)*zeta expmu(k))ˆ2/((zeta expmu2(k))ˆ2);

dl mu 1(k)= 2*zeta(k)*(zeta expmu(k))ˆ2/(zeta expmu2(k));

end

%% Put all the terms together:

h lmblmb = sum(N*h lmblmb 1(2:M))−...
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(2/sigma2)*(sum(h lmblmb 2(2:M)−h lmblmb 3(2:M)−...

h lmblmb 4(2:M)+h lmblmb 5(2:M)));

h lmbmu=(2/sigma2)*sum(h lmbmu 1(2:M)−h lmbmu 2(2:M));

h mulmb = (2/sigma2)*(sum(h mulmb 1(2:M)−h mulmb 2(2:M)));

h mumu = sum(M*h mumu 1(2:N)) +...

(1/sigma2)*(X(:,1)'*OU D2BINV(mu,v)*X(:,1) +...

sum(h mumu star(2:M)));

% Define the Hessian matrix

H=[h lmblmb,h lmbmu; h mulmb h mumu];

% Partial derivatives:

dl lmb=sum(N*dl lmb 1(2:M)+(2/sigma2)*...

dl lmb 2(2:M)−(2/sigma2)*dl lmb 3(2:M));

dl mu = sum(M*dl mu 1(2:N))+(1/sigma2)*(X(:,1)'*...

OU DBINV(mu,v)*X(:,1)+sum(dl mu star(2:M)));

update = H\[dl lmb;dl mu];

Estimation schemes

Obtaining MLE of σ2 using existing λ̂ and µ̂

%% OU SIG LIKE.m

%% function sigma2 hat = OU SIG LIKE(lambda hat,mu hat,u,v,X)

%% This function returns the likelihood estimate of sigma2

%% evaluated with mu hat and lambda hat:

%% function sigma2 hat = OU SIG LIKE(lambda hat,mu hat,u,v,X);

%% INPUT :

%% lambda hat, mu hat : current estimate of lambda and mu.

%% u , v : horizontal and vertical strip respectively.
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%% X : random field with complete data or missing data imputed.

%% OUTPUT:

%% sigma2 hat = MLE of sigma based on input of lambda and mu

%% Date : 6/25/14 by Sami Cheong

function sigma2 hat = OU SIG LIKE(lambda hat,mu hat,u,v,X)

N=size(X,1);

M=size(X,2);

eta=zeros(M,1);

nu=zeros(N,1);

eta(1)=u(1);

nu(1) =v(1);

eta(2:M)=abs(u(2:M)−u(1:M−1));

nu(2:N)=abs(v(2:N)−v(1:N−1));

b(1)=0;

b(2:N)=exp(−mu hat.*nu(2:N));

% Define the term used for the estimate:

Xa=zeros(size(X));

long term=zeros(M,1);

Xa(:,1)=X(:,1);

Binv=OU COVINV(b);

for i=2:M

Xa(:,i)=X(:,i)−(exp(−lambda hat*eta(i))*X(:,i−1));

long term(i)=(Xa(:,i)'*Binv*Xa(:,i))/(1−exp(−2*lambda hat*eta(i)));

end

sigma2 hat=((X(:,1)'*Binv*X(:,1)+ sum(long term(2:M))))/(M*N);

Obtaining MLE of λ, µ and σ2 using the EM algorithm
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%% OU EM.m

%% Function to implement the EM algorithm.

%% Author : Sami Cheong

%% Date : 7/29/14

%% Version : 1

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% function likelihood = OU EM(lambda,mu,sigma2,u,v,X)

% INPUT :

% X miss

% = OU field with randomly missing observations.

% u

% = horizontal coordinate of input grid between [0,1]

% v

% = vertical coordinate of input grid between [0,1]

% lambdap, mup, sigma2p

% = initial parameter values for the algorithm.

% OUTPUT:

% theta new

% = EM estimation of the parameter lambda, mu, sigma2

% lmb vec,sig vec,mu vec

% = Vector of the EM estimates at each iteration.

% iter vec

% = vector of indices that keeps track of steps.

%

function [theta new,lmb vec,sig vec,mu vec,iter vec,lmn vec] =...

OU EM1(X miss,u,v,lambdap,mup,sigma2p)

% set tolerance and max number of iterations

tol=0.0001;

145



max step=100;

iter=1;

lambda int=lambdap;

mu int=mup;

%sigma int=sigma2p;

% Initial parameter values:

%theta p=[lambdap;mup;sigma2p];

theta new=zeros(3,1);

err=1000;

% Initialize:

lmb vec = NaN(max step,1);

sig vec = NaN(max step,1);

mu vec = NaN(max step,1);

lmn vec=NaN(max step,1);

err new=2000;

while abs(err new−err) > tol && iter < max step

err new=err;

% Evaluate covariance matrix wrt current parameter value:

[˜,˜,˜,Gamma]=OU SIM(u,v,lambdap,mup,sigma2p);

% Generate conditional random field:

[X cond,˜,˜,˜,˜]=OU COND1(X miss,Gamma);

theta new(1)= fminsearch(@(lambda) OU LIKE(lambda,mup,...

sigma2p,u,v,X cond),lambda int);

theta new(2)= fminsearch(@(mu) OU LIKE(lambdap,mu,...

sigma2p,u,v,X cond),mu int);

theta new(3)= OU SIG LIKE(theta new(1),theta new(2),u,v,X cond);

% Keep track of the estimates at each iteration

lmb vec(iter)=lambdap;

mu vec(iter)=mup;

146



sig vec(iter)=sigma2p;

lambdap = theta new(1);

mup = theta new(2);

sigma2p = theta new(3);

% Keep track of the value of the likelihood function:

lmn vec(iter)=OU LIKE(theta new(1),...

theta new(2),theta new(3),u,v,X cond);

theta p=[lambdap;sigma2p;mup];

% Keep track of estimation error:

err = sum(abs(theta new−theta p));

% Update iteration

iter=iter+1;

end

[˜,˜,˜,Gamma]=OU SIM(u,v,theta new(2),theta new(3),theta new(3));

% Generate conditional random field:

[X cond,˜,˜,˜,˜]=OU COND(X miss,Gamma);

theta new(3)= OU SIG LIKE(theta new(1),theta new(2),u,v,X cond);

iter vec=1:iter−1;

lmb vec=lmb vec(iter vec);

mu vec=mu vec(iter vec);

sig vec=sig vec(iter vec);

lmn vec=lmn vec(iter vec,:);

Obtaining MLE of λ, µ and σ2 using Newton’s method

%% OU LIKE NEWTON.m

% function [theta] = OU LIKE NEWTON(theta0, delta)
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%

% Function to implement Newton's method on l(X) to obtain MLE

% where X is an OU process with complete observation

% INPUT:

% lambda0,mu0,sigma20 = initial guess for the three parameter

% values

% u,v = input grid for the random field

% X = set of observations from which we wish to

% approximate the parameter

% delta = accuracy we set for the estimate,

% delta = | | theta−theta0 | | 2

function [theta] = OU LIKE NEWTON(lambda0,mu0,sigma20,u,v,X, delta)

%format long e

lambda0=OU SUB reset bound(lambda0);

mu0=OU SUB reset bound(mu0);

sigma20=OU SUB reset bound(sigma20);

% Evaluate the initial value wrt the complete data likelihood

l 0 = OU LIKE(lambda0,mu0,sigma20,u,v,X);

if abs(l 0) <= delta

%% check to see if initial guess satisfies

return; %% convergence criterion.

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% MAIN ROUTINE

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

max iter=2000;

iter=0;
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error = 1000;

while (error > delta && iter < max iter)

l 0 = OU LIKE(lambda0,mu0,sigma20,u,v,X);

% update parameters lambda and mu using Newton's method

theta update = ...

[lambda0; mu0]−OU LIKE HESS UPDATE(lambda0,mu0,sigma20,u,v,X);

lambda0 = OU SUB reset bound(theta update(1));

mu0= OU SUB reset bound(theta update(2));

% update sigma2

sigma20 = OU SIG LIKE(lambda0,mu0,u,v,X);

sigma2 update = sigma20;

% measure error in the likelihood function

error= abs(l 0 − OU LIKE(lambda0,mu0,sigma20,u,v,X));

% update iteration

iter = iter +1;

% print stuff

%fprintf('\n Newton iteration = %d, delta = %d,\n', iter,error)

%fprintf('\n lambda = %d, mu = %d, sigma2 = %d, \n', ...

% lambda0, mu0,sigma20)

%theta = [theta update(1);theta update(2);sigma2 update];

end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Sub function to make sure the estimates don't go nuts.

function theta reset = OU SUB reset bound(x)

if (x <= 1 | | x > 100)

x = 2+randi(5);

fprintf('\n Parameter values reset to default,value = %d, \n',x)

else

end
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theta reset = x;

return;

Obtaining ALE of λ, µ and σ2 based on Markov property

assumption

• With block-missing observations

%% OU APPROXLIKE.m

%% This code implements the approximate likelihood function

%% based on th Markov property assumption in partitioned data

% Author: Sami Cheong

% Version : 0

% Date : 10/27/2014

% function likelihood=OU APPROXLIKE(X miss,lambda,mu,sigmas)

% The goal is to approximate l mn with l 1 + l 2,

% where l 1 is the likelihood for complete

% column observations, and l 2 is the likelihood for incomplete

% observations

function likelihood=OU APPROXLIKE(lambda,mu,sigmas,u,v,X)

N=size(X,1);

M=size(X,2);

% Set of indices for the random field:

J=1:M;

K=1:N;

% identify columns with missing data (NaN):

Miss mat=isnan(X);

Miss col=find(any(Miss mat));
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Miss row=find(isnan(X(:,Miss col(1)))==1);

Nprime=length(Miss row);

Mprime=length(Miss col);

% J is the horizontal axis of the field

Jprime=Miss col;

J2prime=Jprime;

% Kprime is the indices that for the usable information in the

% missing block columns

if Miss row(1) > ceil((N)/2)

Kprime= 1:1:(Miss row(1)−1);

K2prime=Miss row(end)+1:1:N;

else

Kprime=(1+Miss row(end)):1:N;

K2prime=1:1:Miss row(1)−1;

end

eta=[];

nu=[];

if u(1) == 0

eta(1) = u(1);

else

eta(1) = 0;

end

if v(1) == 0

nu(1) = v(1);

else

nu(1) = 0;

end

eta(2:M) = abs(u(2:M)−u(1:M−1))

nu(2:N) = abs(v(2:N)−v(1:N−1))
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% covariance structure for the complete data:

b = exp(−mu.*nu)

Binv = OU COVINV(b)

% covariance structure for the incomplete data:

b0 = exp(−mu.*nu(Kprime))

B0inv = OU COVINV(b0);

b1=exp(−mu.*nu(K2prime));

B1inv=OU COVINV(b1);

% Define indices and dimensions for l 1 and l 2

J1=setdiff(J,Jprime);

K1=setdiff(K,Kprime);

J2=Jprime;

K2=Kprime;

J3=J2prime;

K3=K2prime;

M1=length(J1);

N1=N;

M2=length(J2);

N2=length(K2);

M3=length(J3);

N3=length(K3);

% Define quadratic term for l 1:

J11=setdiff(J1,1);

K11=setdiff(K1,1);

Q1=0;

for j = setdiff(J11,Jprime(end)+1)

Xj star=X(:,j)−exp(−lambda*eta(j))*X(:,j−1);

s1=(Xj star'*Binv*Xj star)/(1−exp(−2*lambda*eta(j)));

Q1=s1+Q1;
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end

l 1= M1*N1*log(2*pi*sigmas)...

+M1*sum(log(1−exp(−2*mu.*nu(2:N))))+...

N1*sum(log(1−exp(−2*lambda.*eta(J11))))...

+(X(:,1)'*Binv*X(:,1)+Q1)./sigmas;

% Define the usable observations:

X0 = X(K2,J2);

%Define quadratic term for l 2:

Q2=0;

for j = 2:M2;

X0j star=X0(:,j)−exp(−lambda*eta(J2(j)))*X0(:,j−1);

Q2=Q2+...

((X0j star'*B0inv*X0j star)/(1−exp(−2*lambda*eta(J2(j)))));

end

K22=setdiff(K2,1);

J22=setdiff(J2,1);

l 2= M2*N2*log(2*pi*sigmas)...

+M2*sum(log(1−exp(−2*mu*nu(K22))))+...

N2*sum(log(1−exp(−2*lambda*eta(J22))))...

+(X0(:,1)'*B0inv*X0(:,1)+Q2)./sigmas;

% Define the usable observations:

X1=X(K3,J3);

Q3=0;

for j=2:M3

X1j star=X1(:,j)−exp(−lambda*eta(J3(j)))*X1(:,j−1);

Q3=Q3+...

((X1j star'*B1inv*X1j star)/(1−exp(−2*lambda*eta(J2(j)))));

end

K33=setdiff(K3,1);
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J33=setdiff(J3,1);

l 3= M3*N3*log(2*pi*sigmas)...

+M3*sum(log(1−exp(−2*mu*nu(K33))))+...

N3*sum(log(1−exp(−2*lambda*eta(J33))))...

+(X1(:,1)'*B1inv*X1(:,1)+Q3)./sigmas;

% Sum up the likelihood functions from partitioned data

likelihood = l 1+l 2+l 3;

• With randomly-missing observations

%% OU BINAPPROX.m

%% function [approx like,approx err] =

%% OU BINAPPROX LAMBDA(X miss,u,v,A,B,mu,lambda...

% ,sigma2,num term approx)

%

% Implements the approximation likelihood function for a

% realization of an OU field with missing observations

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% INPUT:

% X miss :

% set of available observations in the

% OU field arranged in a 2D matrix

% u, v :

% horizontal and vertical input grids

% A, B :

% Covariance matrices for the horizontal

% and vertical components
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% mu,lambda,sigmas :

% parameters for the model

% num term approx :

% number of terms to use in the power series

% calc error :

% indicates whether to return the error of

% approximating the inverse of the conditional

% covariance matrix

% OUTPUT:

% approx like :

% value of the approximated likelihood based on the

% description above

% approx error :

% difference between the direct inverse and the

% approximation

% Version : 1

% Date : 7/23/15

% Author : Sami Cheong

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [approx log like,approx err] ...

= OU BINAPPROX(X miss,u,v,A,B,...

mu,lambda,sigma2,...

num term approx,calc error)

% initialize components of the log likelihood

approx err temp=0 ;

M = size(X miss,2);

N = size(X miss,1);

log like vec=NaN(M,1);
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quadratic term = NaN(M,1);

num of obs = NaN(M,1);

% get set of indices with available observations:

v1 avail ind = find(˜isnan(X miss(:,1)));

Xo 1 = X miss(v1 avail ind,1);

B11 = B(v1 avail ind,v1 avail ind);

v1 avail = v(v1 avail ind);

% standardize vectors to be column vectors

if size(v1 avail,2)˜=1

v1 avail = v1 avail';

else

end

% The first column of X miss is treated as a ...

% special case since it does not have conditional density

zeta 11 = [0;abs(v1 avail(2:end)−v1 avail(1:end−1))];

B11 inv = OU COVINV(exp(−mu.*zeta 11));

num of obs(1) = length(Xo 1);

quadratic term(1) = Xo 1'*B11 inv*Xo 1;

% assign values to the negative log−likelihood function

log like vec(1) = num of obs(1)*log(2*pi*sigma2) + ...

det(log(B11)) + quadratic term(1);

%% For the rest of the columns:

for j=2:M

% find indices of available sites:

vj avail ind = find(˜isnan(X miss(:,j)));

vj1 avail ind = find(˜isnan(X miss(:,j−1)));

% get the corresponding data:

Xo j = X miss(vj avail ind,j);

Xo j1 = X miss(vj1 avail ind,j−1);
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% covariance matrices:

B jj = B(vj avail ind,vj avail ind);

B jj1 = B(vj avail ind,vj1 avail ind);

B j1j = B jj1';

% number of available observations for column j:

num of obs(j) = length(Xo j);

% get distance between each sampling sites:

vj avail = v(vj avail ind);

vj1 avail = v(vj1 avail ind);

% standardize the vectors to be column vectors:

if size(vj avail,2)˜=1

vj avail = vj avail';

else

end

if size(vj1 avail,2)˜=1

vj1 avail = vj1 avail';

else

end

% components for the covariance function:

zeta jj = [0;abs(vj avail(2:end)−vj avail(1:end−1))];

zeta j1j1 = [0;abs(vj1 avail(2:end)−vj1 avail(1:end−1))];

% inverse of B jj and B j1j1:

B jj inv = OU COVINV(exp(−mu.*zeta jj));

B j1j1 inv = OU COVINV(exp(−mu.*zeta j1j1));

% LU decomposition of B j1j1 inv
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L j = OU SQRTM(B jj inv);

L j1= OU SQRTM(B j1j1 inv);

% Define the distance between each column

eta j =abs(u(j)−u(j−1));

% Define conditional mean:

mo j = exp(−lambda*eta j)*B jj1*B j1j1 inv*Xo j1;

% Define conditional covariance matrix So j:

So j = B jj − exp(−2*lambda*eta j)*B jj1*B j1j1 inv*B j1j;

% Define inverse of So j

So j inv =inv(So j);

% Define the terms used in the power series expansion:

T j = L j'*B jj1*L j1;

Tstar j=exp(−2*lambda*eta j)*T j*(T j');

% initialize the power sum

Tstar j terms=...

NaN(size(Tstar j,1),size(Tstar j,2),num term approx);

% The power sum depends on user input num term approx:

for k=1:num term approx

Tstar j terms(:,:,k)=Tstar jˆk;

end

Tstar j sum=sum(Tstar j terms,3);

% Identify matrix used for the power series expansion

I j=eye(num of obs(j),num of obs(j));

% So j expressed in a different form:

Ao j = ((L j')\(I j−Tstar j))/(L j);

% Approximate the inverse of the conditional variance:

Ao j inv = L j*(I j+Tstar j sum)*(L j');

% Approximated quadratic form:

quadratic term(j)=(Xo j−mo j)'*So j inv*(Xo j−mo j);
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% log likelihood for the jthe column:

log like vec(j)=...

num of obs(j)*log(2*pi*sigma2)+log(det(So j))+...

(1/sigma2)*quadratic term(j);

% keep track of error between true inverse and power series approx.

if calc error == 1

% Inverse of So j:

So j inv =inv(So j);

approx err temp=approx err temp+norm(So j inv−Ao j inv);

else

end

end

approx err=approx err temp/M;

approx log like=sum(log like vec);
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