May 2017

Shifting Ground: Rethinking Concepts of Continuity and Change in Late Iron Age and Early Roman Landscapes of Southern England

Lara Ghisleni

University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Archaeological Anthropology Commons

Recommended Citation

https://dc.uwm.edu/etd/1474

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.
SHIFTING GROUND: RETHINKING CONCEPTS OF CONTINUITY AND CHANGE IN LATE IRON AGE AND EARLY ROMAN LANDSCAPES OF SOUTHERN ENGLAND

by

Lara Ghisleni

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Anthropology

at

The University of Wisconsin–Milwaukee

May 2017
ABSTRACT

SHIFTING GROUND: RETHINKING CONCEPTS OF CONTINUITY AND CHANGE IN LATE IRON AGE AND EARLY ROMAN LANDSCAPES OF SOUTHERN ENGLAND

by

Lara Ghisleni

The University of Wisconsin–Milwaukee, 2017
Under the Supervision of Professor Bettina Arnold

What kinds of landscapes does the segmentation of space and time by the Late Iron Age/Early Roman transition create, include, and exclude? What continues, changes, and co-exists, and how is the landscape interconnected in the context of these negotiations? This thesis re-conceptualizes continuity and change during the Late Iron Age (100 BCE–CE 43) and Early Roman period (CE 43–CE 150/200) in southern England, exploring how relationships with place and landscape generate the contexts for community formation and transformation. Despite the deconstruction of the traditional acculturation paradigm—Romanization—it has proven difficult to circumvent binary categories of identity and process that relegate continuity to a static and undifferentiated pre-baseline temporal moment and equate transformation to Roman imposition. Tracing how the place biographies of seven case study sites in Dorset (southwest) and the Middle Thames Valley (southeast) interconnect with regional settlement patterns, including urban and rural dynamics, the project evaluates the variability of the case study sites in relation to documented post-conquest trends in terms of structure shape, construction materials, pottery, herd structure, and crop composition. It is argued that the dynamics of practice cannot be contained by a past and present divided by the conquest baseline, and consequently, that continuity and change cannot be confined to spaces and materials originating on one or the other side of that temporal moment—
continuity and change are dynamic and interactive rather than ontologically separate outcomes of imperial occupation.

An approach is suggested that removes the traditional change–continuity axis as the primary context of interpretation, re-articulating how time, place, and material culture are linked to process and identity. Relationships with place point to deep, multi-temporal landscape histories incorporating Neolithic and Bronze Age monuments, crosscutting the Iron Age context as a bounded past prior to the imperial transition. GIS spatial analysis of settlement concentration and cycles of activity in Dorset (79 sites) and the Middle Thames Valley (78 sites) suggest more plural landscapes than can be explained by a single trend toward urban centralization. Shifting patterns of inhabitation, working within long-term yet dynamic settings for interaction, may have worked to maintain and renegotiate a context of communities interconnected across a heterogeneous landscape. The analysis is framed by an approach to structuring inquiry that emphasizes possibilities—the multiple tendencies of the past and present. The conceptual framework engages with the multidirectional processes and simultaneous differences of persistence and transformation, dynamics often excluded by the hegemonic temporality and territory of the traditional Romanization-as-acculturation paradigm.
TABLE OF CONTENTS

List of Figures

List of Tables

List of Abbreviations

Acknowledgments

1. Introduction: Continuity and Change in the Transition Paradigm
 • Research questions, purpose, outline, and contributions 6
 • Structure of the argument 9

2. Beyond Transition as Rupture: Empire and Landscape 12
 • Narratives of Inevitability 15
 • Prehistory/history 15
 • Acculturation 16
 • Romanization 18
 • Landscape 30
 • Re-evaluating the transition through a concept of landscape 34

3. Archaeologies of Possibilities 38
 • Approach and underlying concepts 42
 • The past, time, and space 43
 • The archaeological context 51
 • Concluding remarks: archaeologies of possibilities in short 54

4. The Case Study Regions and Sites—Historical Context and Sources of Evidence for Dorset and the Middle Thames Valley 57
 • Iron Age 57
 • Roman imperial occupation 60
 • The landscape of Dorset in the southwest 64
 • The landscape of the Middle Thames Valley in the southeast 70
 • Study area selection 74
 • Sources of data and fieldwork 75
 • Case study sites 78
 • Dorset site histories 81
 • Alington Avenue 81
 • Flagstones 82
 • Fordington Bottom 83
 • Gussage All Saints 85
 • Maiden Castle Road 87
 • Poundbury 89
 • Rope Lake Hole 93
 • Middle Thames Valley sites histories 97
5. **Continuity and Change in Landscapes of Persistence and Possibility**
- Continuity | Change to Continuity <-> Change
 - Continuity, change, and contingence: practice theory and archaeologies of possibilities
 - Continuity and change in comparative archaeologies of colonialisms
- The invasion baseline
- Continuity and change in Britain during the Roman Empire
- Approach
- Round vs. rectangular structures
 - Trends
 - Variation
- Stone and ceramic building material
 - Trends
 - Variation
- Pottery and vessel glass
 - Trends
 - Variation
- Animals
 - Trends
 - Variation
- Cereals
 - Trends
 - Variation
- The structure of inquiry
- Concluding remarks

6. **Archaeological Language: Typologies and Periods to Practices and Places**
- Introduction
- Archaeological language
 - Time and typology
 - The category
 - Time and period division
- Re-situated typologies and period divisions
 - Time, context, and typologies: categories beyond types
 - Time, context, and period divisions: time and space in place
and landscape biographies

- Concluding Remarks 250

7. Landscape Interconnectivity: Communities, Movements, and Interactions 252
 - Settlement interconnectivity 252
 - Settlement pattern: community formation, activity/occupation cycles, and movements 264
 - Site clusters 268
 - Activity and occupation cycles 273
 - Limitations and future research 299
 - Concluding remarks 304

8. Concluding Remarks 306

References Cited 313

Appendix A – Distribution sites 341

Appendix B – Case study site locations in relation to modern maps 361

Appendix C – Relational Database Schema 363

Appendix D – Parameters for Kernel Density Estimation 372

Appendix E – HER search terms 374
<table>
<thead>
<tr>
<th>Figure Reference</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Late Iron Age/Early Roman transition archaeological prologue</td>
<td>1</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Traditional view of Late Iron Age social groupings</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Locations of major towns in Britain during the Roman imperial occupation</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>The location of Dorset and the Middle Thames Valley</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Natural England’s national character areas: Dorset</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>The counties of the Middle Thames Valley study area</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Natural England’s national character areas: Middle Thames Valley</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Location of Dorset case study sites in relation to Dorchester</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Plan of Fordington Bottom: Periods 4A and 4B</td>
<td>84</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Plan of Gussage All Saints, Phase 3</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Archaeological features at Maiden Castle Road</td>
<td>87</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Plan of Maiden Castle Road Square enclosure</td>
<td>88</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Aerial view of Poundbury</td>
<td>89</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Poundbury earthworks</td>
<td>90</td>
</tr>
<tr>
<td>Figure 4.14</td>
<td>Plan of Poundbury: Late Iron Age Phases</td>
<td>91</td>
</tr>
<tr>
<td>Figure 4.15</td>
<td>Plan of Poundbury: Early Roman Phase</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.16</td>
<td>Rope Lake Hole, Period and Period 3 (Late Iron Age)</td>
<td>95</td>
</tr>
<tr>
<td>Figure 4.17</td>
<td>Rope Lake Hole, Period 4 (Roman)</td>
<td>96</td>
</tr>
<tr>
<td>Figure 4.18</td>
<td>Location of Middle Thames Valley case study sites in relation to Staines</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.19</td>
<td>Plan of mid- to Late Iron Age features at Ashford Prison</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.20</td>
<td>Plan of Late Iron Age features at Ashford Prison</td>
<td>98</td>
</tr>
<tr>
<td>Figure 4.21</td>
<td>Roman-period land division ditches, Ashford Prison</td>
<td>99</td>
</tr>
<tr>
<td>Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Figure 4.22</td>
<td>Plan of Hengrove Farm</td>
<td>101</td>
</tr>
<tr>
<td>Figure 4.23</td>
<td>Iron Age and Romano-British features at Imperial College Sports Ground and RMC Land</td>
<td>103</td>
</tr>
<tr>
<td>Figure 4.24</td>
<td>Late Iron Age/Early Roman and Early/Mid-Roman features at Perry Oaks/HT5</td>
<td>105</td>
</tr>
<tr>
<td>Figure 4.25</td>
<td>Phase plans of Thorpe Lea Nurseries</td>
<td>108</td>
</tr>
<tr>
<td>Figure 4.26</td>
<td>Wood Lane enclosure</td>
<td>109</td>
</tr>
<tr>
<td>Figure 4.27</td>
<td>Location of all distribution sites (79) within Dorset</td>
<td>115</td>
</tr>
<tr>
<td>Figure 4.28</td>
<td>Location of all distribution sites (78) within the Middle Thames Valley</td>
<td>116</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Traditional picture of continuity and change in Late Iron Age and Roman landscapes</td>
<td>119</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Plans of the first and second excavation complexes at Woodhouse Hill, Studland</td>
<td>144</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Alington Avenue: Late Iron Age enclosure system</td>
<td>145</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Alington Avenue: Roman features</td>
<td>145</td>
</tr>
<tr>
<td>Figure 6.1</td>
<td>The language and structure of inquiry of the transition paradigm</td>
<td>209</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>A mortarium</td>
<td>224</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Samian bowl</td>
<td>227</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Dressel 2–4 amphora</td>
<td>227</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Black Burnished Ware (BB1) (coarseware)</td>
<td>228</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Alice Holt/Farnham Grey Ware (coarseware)</td>
<td>228</td>
</tr>
<tr>
<td>Figure 6.7</td>
<td>Distribution of mortaria in relation to the larger pottery assemblage, Heathrow T5, Late Iron Age/Early Roman settlement</td>
<td>232</td>
</tr>
<tr>
<td>Figure 6.8</td>
<td>Distribution of mortaria in relation to the larger pottery assemblage, Heathrow T5, Early Roman and Early/mid-Roman settlement</td>
<td>233</td>
</tr>
<tr>
<td>Figure 6.9</td>
<td>Iron Age features and Neolithic monument at Ashford Prison</td>
<td>238</td>
</tr>
</tbody>
</table>
Figure 6.10. Late Iron Age and Early Roman phase plans of Alington Avenue
Figure 6.11. Superimposition of Late Iron Age and Early Roman phase plans
Figure 6.12. Maumbury Rings, Dorchester, Dorset
Figure 6.13. Field network and ditch divisions at Imperial College Sports Ground
Figure 6.14. Enclosure G.383 at Imperial College Sports Ground
Figure 6.15. Superimposition of Middle Iron Age, Late Iron Age, Early Roman, and Early/mid-Roman settlement and landscape features, set within the Bronze Age field system and Neolithic cursus earthworks at Heathrow T5
Figure 6.16. Penannular Gully 8, interpreted as a roundhouse, incorporated by Enclosure 3
Figure 6.17. The 4th century CE ritual complex at Maiden Castle, Dorset
Figure 7.1. Gussage and Gussage II, possible paired enclosures
Figure 7.2. Gussage and Gussage II and surrounding landscape
Figure 7.3. Possible interconnected hillforts of Poundbury and Maiden Castle
Figure 7.4. Possible interconnected hillforts of Hambledon Hill and Hod Hill
Figure 7.5a. The Iron Age land divisions at Ashford Prison compared to Hengrove Farm
Figure 7.5b. The Roman-period land divisions at Ashford Prison compared to Hengrove Farm
Figure 7.6. Possible paired structures IA5 and IA10, Poundbury, LIA phase IIG
Figure 7.7. Conjoined circular structures 6 and 7 at Ashford Prison
Figure 7.8. Possible paired structures R18 and R21 from Early Roman Phase III at Poundbury
Figure 7.9. Locations of sites surrounding Dorchester
Figure 7.10. Trackway and land division features at Imperial College Sports Ground, Iron Age and Roman period
Figure 7.11 Enclosure and field network at Lea Farm, Phase 2 (Iron Age) and Phase 3 (Roman-period)
Figure 7.12. Plan of Wood Lane, Phase 8A
267

Figure 7.13. Plan of Wood Lane, Phase 8B
267

Figure 7.14. Concentration of Dorset sites dating to the Late Iron Age (100 BCE–43 CE)
271

Figure 7.15. Concentration of Dorset sites dating to the Early Roman period (43–200 CE)
272

Figure 7.16. Concentration of Middle Thames Valley sites dating to the Late Iron Age (100 BCE–43 CE)
272

Figure 7.17. Concentration of Middle Thames Valley sites dating to the Early Roman period (43–200 CE)
273

Figure 7.18. Concentration of Dorset sites dating to the interval 100 to 49 BCE
277

Figure 7.19. Concentration of Dorset sites dating to the interval 50 BCE to 1
277

Figure 7.20. Concentration of Dorset sites dating to the interval 1 to 49 CE
278

Figure 7.21. Concentration of Dorset sites dating to the interval 50 to 99 CE
278

Figure 7.22. Concentration of Dorset sites dating to the interval 100 to 149 CE
279

Figure 7.23. Concentration of Dorset sites dating to the interval 150 to 200 CE
279

Figure 7.24. Concentration of Middle Thames Valley sites dating to interval 100 to 49 BCE
280

Figure 7.25. Concentration of Middle Thames Valley sites dating to interval 50 BCE to 1
280

Figure 7.26. Concentration of Middle Thames Valley sites dating to interval 1 to 49 CE
281

Figure 7.27. Concentration of Middle Thames Valley sites dating to interval 50 to 99 CE
281

Figure 7.28. Concentration of Middle Thames Valley sites dating to interval 100 to 149 CE
282

Figure 7.29. Concentration of Middle Thames Valley sites dating to interval 150 to 200 CE
282
Figure 7.30. Dorset activity cycles, 100–49 BCE 289
Figure 7.31. Dorset activity cycles, 50 BCE–1 289
Figure 7.32. Dorset activity cycles, 1–49 CE 290
Figure 7.33. Dorset activity cycles, 50–99 CE 290
Figure 7.34. Dorset activity cycles, 100–149 CE 291
Figure 7.35. Dorset activity cycles, 150–200 CE 291
Figure 7.36. MTV activity cycles, 100–49 BCE 292
Figure 7.37. MTV activity cycles, 50 BCE–1 292
Figure 7.38. MTV activity cycles, 1–49 CE 293
Figure 7.39. MTV activity cycles, 50–99 CE 293
Figure 7.40. MTV activity cycles, 100–149 CE 294
Figure 7.41. MTV activity cycles, 150–200 CE 294
Figure 7.42. Features at Flagstones, Late Iron Age, overlying Neolithic enclosure 298
Figure 7.43. Location of hillforts and possible hillforts in Dorset in relation to 500 m buffers surrounding Roman-period roads 301
Figure 7.44. Location of hillforts, possible hillforts, and oppida (Silchester, Verulamium) in the MTV and environs in relation to 500 m buffers surrounding Roman-period roads 301
LIST OF TABLES

Table 4.1. Iron Age and Roman-period chronology and accompanying period designation terms 57

Table 4.2. Case study sites 80

Table 5.1. Traditional view of changes at the Late Iron Age/Roman transition in southern England 146

Table 5.2. Structures (excluding ovens or furnaces) at the case study sites, detailing shape by time period and construction materials 151

Table 5.3. Presence of ceramic building material (brick, tile) at the case study sites 158

Table 5.4. Presence of amphorae, mortaria, samian, vessel glass, and other imported or British-manufactured fineware at the case study sites 164

Table 5.5. Presence of Black Burnished Ware and other coarseware and regional types at the case study sites 171

Table 5.6. Presence of major domesticates at the case study sites 184

Table 5.7. Presence of domestic fowl, fish, wild mammal, marine shell, and cat at the case study sites 188

Table 5.8. Presence of grain at the case study sites 199

Table 6.1. Waterholes at Perry Oaks/HT5 by phase 236

Table 7.1. Results of nearest neighbor analysis for the 50-year intervals 270

Table 7.2. Activity cycles of Dorset and Middle Thames Valley sites over time 283
LIST OF ABBREVIATIONS

ADS – Archaeology Data Service
BA – Bronze Age
BGS – British Geological Survey
BL – British Library
Bucks – Buckinghamshire
EIA – Early Iron Age
HE – Historic England
HER – Historic Environment Record
HT5 – Heathrow Terminal 5 (archaeological site)
ICSG – Imperial College Sports Ground (archaeological site)
LIA – Late Iron Age
LR – Late Roman (period)
MIA – Middle Iron Age
MR – Mid-Roman (period)
MTV – Middle Thames Valley
PPG 16 – Planning Policy Guidance 16
NE – Natural England
NMP – National Mapping Programme
OS – Ordnance Survey
R – Roman (period)
RC – Romano-Celtic
RIB – Roman Inscriptions of Britain
RSRB – Rural Settlement of Roman Britain (project & database)
SCAU – Surrey County Archaeological Unit
ACKNOWLEDGMENTS

Let me first acknowledge my committee members for their encouragement, guidance, and patience over my many years at UWM: Bettina Arnold, Derek Counts, Elisabetta Cova, Jean Hudson, and Thomas Malaby. I thank them for their keen insight, sharp comments, and challenges to persist and improve. Laura Villamil’s and Christine Hamlin’s roles in the development of this research helped its trajectories take shape. I would not have had the tools to follow those paths were it not for the mentorship I received from the faculty in the Anthropology Department at UWM. It is impossible for me to adequately address the contributions of my advisor, Bettina. I can truly say that without her support and dedication the completion of this project would never have been possible.

I am deeply grateful to the institutions and organizations who made the funding for this research possible, including the UWM Anthropology Department, the Chancellor’s Golda Meir Library Scholars program (2014–15), the Wenner-Gren Foundation (2014–15, Dissertation Fieldwork Grant no. 8948), and the Integrative Graduate Humanities Education and Research Training (IGHERT) fellowship (2014–16), funded by the Andrew W. Mellon Foundation at UWM’s Center for 21st Century Studies. The analysis and approach owe an enormous debt to the numerous intellectual conversations with the community of scholars brought together by the IGHERT program, both fellow PhD students and faculty mentors, over four meetings held across the world.

I must also offer my sincere gratitude to the institutions and archaeologists working in England, who generously and openly shared with me their expertise during my fieldwork stay in the winter and spring of 2015. I am thankful for the diligence and dedication of the Historic Environment Record officers I worked with in Dorchester (Dorset), London (Greater London),
Reading (Berkshire), Hertford (Hertfordshire), Woking (Surrey), Newbury (West Berkshire), and Aylesbury (Buckinghamshire), and those I corresponded with in Hampshire. The staff at Historic England (Swindon) and the British Library (London) helped me navigate the task of sifting through numerous photographs and periodicals. I am grateful for the intellectual generosity of Miles Russell and Paul Cheetham, directors of the Durotriges Project at Bournemouth University, who shared with me information from the excavations as well as their expertise on all matters Dorset. I also thank Rebecca Redfern at the Museum of London and Timothy Darvill at Bournemouth as well as Alex Smith, Michael Fulford, and Martyn Allen from the Roman Rural Settlement Project research team at Reading University for their willingness to meet with me and for their generosity in sharing their knowledge while I was in England.

I also must acknowledge the encouragement, support, stimulating conversations, and editorial comments over the years from my colleagues and friends: Alexis Jordan, Shaheen Christie, Rick Edwards, Adrienne Frie, Kevin Garstki, and Shannon Freire. Rick Edwards deserves special acknowledgment for his unwavering support in all matters GIS. Recognition must go to Dan Jonke for his help with the SQL relational database as well as for other technological assistance.

Despite the impossibility of this project without these collaborative efforts, I am of course responsible for any errors or flaws in thinking. I dedicate the work to KCG, RP, and DJ.
CHAPTER ONE. INTRODUCTION:
CONTINUITY AND CHANGE IN THE TRANSITION PARADIGM

Archaeological subject: Late Iron Age/Early Roman transition in Britain
[transformation]

Figure 1.1. Late Iron Age/Early Roman transition archaeological prologue.

An archaeological language of transition applied to the relationship between Roman
imperialism and Britain as a colonized landscape divides and constructs time, space, and
identities according to particular principles: times, spaces, and identities become structural
outcomes of an either/or cultural context—static, univocal, homogeneous, and complete or
essential in their representation. Identities must match to times, spaces, or items of material
culture that can only exist on one or the other side of the dividing line, the moment of rupture at
the conquest baseline. Co-existence and simultaneous multiplicity are elided by relegating the
past—the Iron Age—to the spatially marginal or the temporally distant, the past as already
happened, the past as only being able to refer to itself prior to rupture. The past, then, cannot be
brought forward to the present, and continuity must refer to a past prior to discontinuity—
continuity and change represent, in this paradigm, decidedly separate outcomes. The question
generated within a paradigm of transition becomes: what impact did the Roman occupation have
on the inhabitants of Britain? The language of this question is anchored by an underlying if and a
whether—it is a question of if things change (or not), and to what degree do they change?
This is an either/or language of rupture that bifurcates Iron Age and Roman, past and present, continuity and change. The structure of inquiry already configures the landscape of possible interpretive outcomes in a particular way and directs how archaeological material becomes visible and gets sorted into categories—chronological period divisions, cultural identities, and Roman or native places and items of material culture, such as villas vs. roundhouses or (Roman) samian ware vs. (Iron Age) saucepan pots. The segregation of the past from the present and continuity from change tends to prioritize and privilege transformation, with transformation allocated to the presence of “new” spaces or material culture attributed to the Roman colonizers after the transition baseline. Transformation, in this paradigm, demands an accounting. Continuity—the reproduction of the pre-conquest, already happened past—requires no explanation.

I argue that, even when more critical approaches that recognize the polyvalence of space, time, material culture, and identity are adopted, the orientation of research inquiry and narrative ontology as an if-based question implicitly ruptures continuity from change, inhibiting the understanding of long-term community histories, the working of the past in the present, the multiscalar contexts of meaning and memory, and the multiple and potentially incommensurable ways of being and belonging in any present. This dissertation attempts to formulate an approach to identity, process, and archaeological inquiry that confronts the contingency of persistence as well as the continuity in change (Ferris 2009; Sahlins 1993).

Continuity and change—and the relationship between continuity, change, and community identity—have long been central domains of inquiry in anthropological and archaeological contexts, including narratives of Roman imperial expansion. Romanization (e.g., Haverfield 1923 [1912]), an acculturation model of interregional interaction (see Cusick 1998), framed
transformation as a question of conformity or resistance to a monolithic package, assigning identities to a native:Roman binary, reducing material culture to univocal representations of cultural affiliation, and bifurcating social processes to an either/or trajectory of tradition or transformation. Influenced by broader developments in postcolonial critiques and practice theory (Gardner 2013; Pitts 2007; van Dommelen 2014), scholars in Roman studies currently seek to: 1) challenge the hegemony of Romano-centric, unilinear perspectives on culture change; and 2) uproot the confinement of identity dynamics from static taxonomies, embracing more multidimensional approaches to agency and material culture.

To challenge the legacies of the transition (acculturation) paradigm, I engage with archaeological and anthropological conversations on intercultural interaction and colonialism, continuity and change, and the intersubjectivity of social process (e.g., Cusick 1998; Fowler 2004; Ferris et al. 2014; Harris 2014; Gosden 2004; Liebmann and Rizvi 2008; Lydon and Rizvi 2010; Stein 2005b; Watts 2013) by exploring how the configuration of the landscape mediates conditions for social creation and transformation. The focus is on practice, movement, and landscape interconnectivity during the conventionally termed Late Iron Age (100 BCE–CE 43) and Early Roman (CE 43–CE 200) periods in Dorset, southwest England, and the Middle Thames Valley, southeast England, examining the implications for intersettlement connectivity at multiple scales, from the local to the regional and pan-regional. Attempting to move beyond normative categories to emergent processes, I explore how this interconnectivity of relations across the landscape generates social networks in multilinear ways.

To re-evaluate:

Subject: “Late Iron Age/Early Roman transition in Britain”
The archaeological subject is a prologue, the legacy of research—in terms of the material assembled and concepts generated—with which this conversation must engage.

The research intervention becomes:

Archaeological dialogue: Co-existence, negotiation, and translation in multiscalar contexts

[continuity ↔ transformation]

Argument approach: Beyond considering the landscape as a combination of continuities and changes, I explore how continuity and change are dialectically linked, how to understand the negotiations of persistence and transformation beyond the conquest baseline as a fixed reference point, and how to interrogate the meaning of practices in multiscalar ways that do not always have to look to a particular past for the significance of tradition or community continuity and that recognize the potential for change in moments of reproduction of the familiar. These questions are contextualized within an approach to the landscape as conditions of possibility and narrated within a multilinear framework—an archaeology of these conditions of possibility—that recreates the contingency and potential in any context for interaction. I argue that these multiple possibilities, which are not necessarily actualized in the material record, help constitute the reality and meaning of the present, engaging with pasts not only as what happened but also what could have been, and how those could have been are worked into the dynamic possibilities—as well as continuities—of the present and future.

The **archaeological language** seeks to articulate:

Time & The Past | Space | Practice | Continuity ↔ Change

In terms of
Contingency & Potential

Explored through

The Archaeological Context as Contexts for Interaction
In later chapters (see especially Two, Five, and Six), I will argue that the language of transition as rupture, as change to, still permeates the categories and consequently interpretations of the Roman occupation of Britain. I attempt to articulate a language of possibility that can respond to the contingency of persistence and transformation and that can break down the normative construction of either/or categories, identities, and temporal trajectories. Here I seek to challenge a typological language that pins meaning to a point of origin in space and time and that presents time, space, and material as known and coherent, exploring a language of emergence rather than a language of always, already and only (see Silliman 2010b, 40; Chapter Six). I re-evaluate patterns of spatial organization and activity as contextualized within the interconnections of time–place biographies rather than already adhering (or not) to trends or trajectories conceived a priori as average and unitary conditions of change (or continuity) (Chapters Five & Six).

Conceptual Framework: In this context, I advance an approach to archaeologies of possibilities (Chapter Three), which seek to re-imagine the past in its simultaneous multiplicity rather than winnow it down to the narrative presupposed by the object under investigation. At the heart of the approach is: 1) a rethinking of the role of the past in relation to historical ontology, explanation, and mode of representation, disentangling differences, possibilities, and narratives from their containment by universalist paradigms and normative categories (Chakrabarty 2000; Guha 2002); and 2) a reorientation of the relationship between the past, continuity, and change, exploring continuity and change as ontologically interactive rather than as either/or trajectories (e.g., Ferris 2009; Fowler 2013; Sahlins 1985, 2004; Silliman 2009, 2014). The framework is mobilized archaeologically through a multilineal concept of temporality and a relational concept of the landscape.
In recognizing the assemblages—material and ideational—of prior research interventions, I try to integrate theory and historiography with archaeological material to address my argument that often conceptual problems are deconstructed at the theoretical level while the basic vocabulary of archaeology—the typologies that sort empirical data—do not get integrated into the new perspective, thereby reproducing assumptions of traditional paradigms.

RESEARCH QUESTIONS, PURPOSE, OUTLINE, AND CONTRIBUTIONS

Research Questions

Initially, the goal of this dissertation was to investigate landscape interconnection and mobility at the Late Iron Age/Early Roman transition, exploring how movement through the landscape generated the contexts for social and economic negotiation during the Roman occupation. Questions relating to this goal were designed to confront the multiscalar articulation of social life, settlement, and landscape in the context of imperial occupation:

Question 1: How was the landscape configured in Dorset and the Middle Thames Valley—i.e., what evidence is there for land demarcation, mobility, and production, as manifested in:

Inter-site or broad scale: settlement type and location, enclosures, field systems, trackways, road networks;

Intra-site or small scale: spatial layout, durability of structures, artifacts, fauna, and flora?

Question 2: What implications do landscape configurations, productive activities, and mobility patterns have for inter- or intra-settlement interaction, land tenure, and socio-economic organization?

Question 3: What are the long-term patterns of contexts for interaction across the landscape at multiple scales? Do these patterns differ between Dorset and the Middle Thames Valley?

During data gathering and analysis, it became evident that the material evidence interrupted the way that a transition narrative classifies time, space, and material culture; the kinds of questions that can be asked; and the kinds of explanations expected. An analysis of landscape interconnectivity could not proceed without first reconfiguring the basic concepts of
the past and time that constitute the conceptual infrastructure of the Romanization paradigm: an implicit sorting of evidence into binary trajectories of continuity and change, with how time, space, and material culture map to identity already understood. The questions that the dissertation became centered around are:

- What constitutes continuity and change under the Roman occupation?
- How does the Romanization paradigm circumscribe how time, space, and material culture map to identity through a narrative of continuity and change?
- What kind of structure of inquiry can counter the hegemonic assumptions of the Romanization paradigm with respect to pinning time, space, and material culture to one or the other side of a transition?

These questions were addressed by asking:

- What constitutes the contexts for interaction in the landscape at the Late Iron Age/Early Roman transition?
- How can essentialist approaches to time, space, and material culture on either side of a dividing line be reconfigured?

These questions were situated within broader conversations on continuity and change in anthropology and related disciplines as well as comparative archaeologies of colonialisms.

Addressing these questions entailed a multiscalar analysis of place and material culture at 14 case study settlements in two regions of southern England, foregrounding practice and interconnection rather than static categories in terms of: 1) built space, construction materials, pottery usage, and animal and crop husbandry; and 2) community connection across the landscape. I proposed archaeologies of possibilities as a structure of inquiry for asking questions that do not a priori direct evidence into binary trajectories of continuity or change.
Purpose

The dissertation subject is continuity and change in the landscape, including connections between place biographies and material culture, in Dorset and the Middle Thames Valley, southern England. The dissertation goal is to interrogate how the configuration of the landscape and the use of material culture created the contexts for interaction that mediated practice and community, problematizing the binary categories of the acculturation paradigm as manifested in Romanization and its essentialist circumscription of time and landscape. The broader archaeological and anthropological goals are to: 1) rethink the relationship between the past, continuity, and change, reorienting the articulation of category, contingency, and narrative; and 2) outline a structure of inquiry that foregrounds conditions of possibilities rather than isolating identity or items of material culture to continuity and change as either/or directionalities.

Research Outline

This dissertation focuses on a multiscalar analysis of place and landscape interconnectivity in Dorset, southwest England, and the Middle Thames Valley, southeast England. These two regions act as comparisons, with the east traditionally identified as the locus of greater Roman influence and the west a locus of continuity (Reece 1995). This includes: 1) a detailed, intra-site, local scale focus on case study settlements, including evidence for structures, construction materials, features, artifacts such as pottery, faunal remains, and floral remains; and 2) a regional scale analysis of the distribution of sites across the landscape using Geographic Information Systems (GIS) spatial analysis. The analysis focused on the period of time from 100 BCE to CE 200. The case study settlements center on sites both surrounding and distant from towns founded in each region—Dorchester (Roman Durnovaria) in Dorset and Staines (Roman Pontibus) in the Middle Thames Valley—in order to evaluate diverse landscape contexts in both
urban and rural communities. The case study settlements in Dorset are: Alington Avenue, Flagstones, Fordington Bottom, Gussage All Saints, Maiden Castle Road, Poundbury, and Rope Lake Hole. For the Middle Thames Valley, the case study sites are: Ashford Prison, Hengrove Farm, Imperial College Sports Ground, Lea Farm, Perry Oaks/Heathrow Terminal 5, Thorpe Lea Nurseries, and Wood Lane. The primary body of evidence was drawn from published and unpublished (“grey literature”) site reports and digital geospatial data. These data were collected primarily from the following authorities’ archives during a research stay in England from February–June 2015: County Historic Environment Records (reports, GIS data); Historic England Archives in Swindon, Wiltshire (reports, GIS data); and the British Library in London (published articles). Further GIS data—including basemaps, Digital Terrain Models (elevation), and other environmental information—were downloaded from the Ordnance Survey (England’s National Mapping Agency), the British Geological Survey, and Natural England.

Research Contributions

This research aims to contribute to anthropological and archaeological conversations on continuity and change in comparative imperial and colonial contexts, engaging with a multitemporal approach. The research is oriented around problematizing the ontological singularity of the Romanization paradigm through an exploration of the contexts for interaction that formed the basis for continuity, change, and community interconnections. The dissertation attempts to percolate the categories of the Romanization paradigm through the multilayered contexts of a past comprised not only of experiences, but also of “possibilities” (Sassaman 2012, 253). In doing so, it advances a relational approach to archaeologies of possibilities that confronts the past in its simultaneous heterogeneity and possibility.

STRUCTURE OF THE ARGUMENT
Having situated the research subject and goals in this chapter, Chapter Two offers a historiography of Romanization and approaches to landscape. This consists of a literature review and critical evaluation of scholarship connected to critiques of the acculturation paradigm as it relates to the question, how does the metanarrative of Romanization populate landscapes through time, charting interdisciplinary conversations in landscape archaeology on space, place, practice, and meaning. In order to animate inhabited landscapes, Chapter Three presents the conceptual approach to archaeological archaeologies of possibilities, with the concept of contexts for interaction acting as the interpretive lens for opening the borders of the past and confronting its co-extensive heterogeneity and multilinear possibilities. To set the context for confronting these imperatives, Chapter Four provides the environmental and archaeological background to the Dorset and Middle Thames Valley case study regions and sites, including the archival fieldwork undertaken, sources of evidence, and methodological scope, while methods particular to the themes addressed are outlined in more detail in the subsequent analytical chapters.

The next three chapters outline the arguments in thematic sections. I argue that the assumptions of the Romanization paradigm are perpetuated through a conceptual apparatus dependent on a dichotomy between continuity and change that circumscribes how time, space, and material culture are categorized and related to identity. Chapter Five presents the core argument that continuity and change do not represent separate outcomes of imperial occupation, but are ontologically interactive in the dynamics of practice at multiple scales. I argue that a structure of inquiry oriented around a language of whether or if continuity or change can be detected reproduces the hegemonic identities and temporalities embedded within the Romanization paradigm. Evidence from the case study sites complicates traditionally defined Roman-period trends, pointing to more varied and heterogeneous landscapes. The chapter
concludes with a framework of questioning that foregrounds multidirectional conditions of possibilities rather than either/or trajectories. Also drawing on the case study sites, Chapter Six explores how archaeological language in the form of artifact typologies and periodized time—Late Iron Age versus Roman—can confront multiplicity and contradictory temporalities in the use of material culture and the inhabiting of place. Pinning the meaning of material culture to its context of origin rather than use and restricting period division to a serial chronology cannot encapsulate the potential dynamics of experience. Chapter Seven integrates these arguments into a dynamic approach to the wider landscapes, exploring how movements in terms of community interdependence and cycles of occupation challenge period-based views of settlement aggregation. The dynamics of occupation cycles crosscut the traditional groupings of the southwest (Dorset) as a locus of continuity and the southeast (the Middle Thames Valley) as a locus of change.

Chapter Eight sums up the major points of the argument, outlining a different approach to the structure of inquiry that explores the multiple tendencies of pasts and presents rather than winnowing down the historical narrative only to the contexts relevant to explain the origin and developmental trajectory of an already defined category. The goal is to confront the multiplicity of contexts for interaction rather than distilling times and places to either/or domains in imperial situations, with potential broader applications, removing the continuity–change axis as the dominant framework.
CHAPTER TWO. BEYOND TRANSITION AS RUPTURE: EMPIRE AND LANDSCAPE

How do landscapes at the transition between Late Iron Age and Roman Britain become populated, and what kinds of communities do these categories and segmentations of time and space create, include, and exclude? What belongs and does not belong in these landscapes, and where? How do communities coexist and interact?

Richard Hingley’s work (2000) on contextualizing the historical development of Roman studies demonstrates how social, economic, and political influences of the times not only shaped interpretations and paradigms of knowledge about the Roman past, but also helped create the body of evidence that constituted that past, consequently bringing into being certain kinds of communities, landscapes, and temporalities, and excluding others:

There has been a clear bias in the accounts of Roman Britain, with an emphasis on “Roman” attributes of the province and a relative disregard of the native attributes. Attention is lavished on the wealthy with little effort directed at the poor. The quality of attention focused on the excavation of villas, walled towns and forts and the relative absence of the detailed study of non-villa settlements and unwalled small towns demonstrates the bias. … [Military sites and major towns reflect the administrative structure of the province, while major towns and villas reflect the 'romanization' of its native inhabitants. Excavations on villas/major towns/military sites, therefore, provide direct evidence for the research interests of past and present generations of academics. (Hingley 1991, 93–94)]

The imperial context within which the discipline of Roman archaeology developed focused attention on the visibility of certain dimensions of identity and interaction—namely, material evidence of “Roman” elements, distilling landscapes into distinctly Roman communities in military installations, urban settings, stations along the road network, and elite residences in the countryside (villas) that could be differentiated and segregated from Iron Age communities in hillforts, oppida, and roundhouses (see also Mattingly 2006, 356–58; Smith et al. 2016, 4–7). The “pre-” of this past, in prehistoric and pre-Roman time, also distilled and homogenized the “Iron Age” as a single condition against which post–Roman conquest change could be measured.
The sorting process that relegated material to either side of the invasion moment created spaces and temporalities as homogeneous, locating transformation in a unitary trajectory that indexed a process of change complete throughout. In other words, the villa as a category represented a known kind of economic and social structure, and its presence in the landscape signified the transformation of this landscape, its disruption and discontinuity from the prehistoric; the sphere of the Roman category only had room for one kind of identity and one temporal dimension.

Thus, the landscapes and intercommunity connections in Late Iron Age and Roman Britain have long been contained and limited by an underlying narrative of inevitability within the paradigm of Romanization—a progressivist, teleological realization of a reified Roman totality that absorbed the cultural trajectories of colonized populations. This narrative and temporality of inevitability drew its foundation from an epistemology of rupture that disconnected pasts from presents and continuities from changes, oriented around a transition to being Roman (or not). Such an academic framework, centered on the administration and cultural integration of colonized landscapes into Rome’s imperial formation, articulated with “origin stories” (Hingley 2011) of Rome as the ancestor of European civilization. Scholarship on the expansion of the Roman Empire since Hingley’s 1991 critique of Roman studies quoted above has done much to depose what McNiven and Russell (2005) term a “progressivist ontology”—the civilizational narrative of the West—that populated a Roman landscape with towns, forts, and villas. A greater degree of reflexivity has been achieved in the realms of more critical theoretical approaches as well as more inclusive fieldwork programs, articulating with postcolonial dialogues (Hingley 2005, 14–49; Gardner 2013) and excavations of a broader variety of inhabited places, bringing rural landscapes beyond the solely urban, military, or elite
country estate into view (Allen et al. 2015; Chadwick 2004; Fulford and Holbrook 2011; Hingley 1989; Taylor 2007).

However, I would argue that the underlying vocabulary of the archaeological language—in the form, for example, of classificatory typologies that sort and name time, place, and material—persists in reproducing assumptions of the Romanization paradigm. The way material has been placed into categories—e.g., towns, villas, and forts— influences how identity and social continuity and transformation are understood. Despite an amplified emphasis on the heterogeneous, multiscalar, and dynamic identities and contexts for interaction at stake during Roman occupation, categories such as (Roman) villas or (Iron Age) roundhouses still implicitly present material as already aligning with one identity or another—native or Roman; one time or another—Iron Age or Roman; and one place or another—e.g., Iron Age hillfort or Roman town. These are lines that continue to divide landscapes into one side or another side of a fixed point of rupture, the transition between Iron Age or Roman. This has brought certain kinds of identities and communities into visibility while eliding others—e.g., the prioritization of a post-conquest “Roman” landscape of towns, villas, forts, and roads—and has traditionally worked to obfuscate coexistence, the working of the past in the present, and the negotiations entailed in both persistence and transformation.

The inevitability narrative in Roman studies—Romanization—connects to wider practices and paradigms in the archaeological discipline, including the division between prehistory and history and an acculturation model of social change, deployed in a wide variety of cross-cultural contact scenarios and colonial entanglements. These divisions—compounded by the separation of prehistoric, historical, and classical archaeology into distinct disciplines—affect understandings of tradition and transformation, in part by fixing the meaning of space and
material culture to their point of origin rather than exploring their uses in lived experience. In this chapter, to break away from the past as rupture in a model of transition, I first frame the Romanization paradigm within the broader context of the inevitability narrative in anthropology and archaeology at the prehistory/history divide. To counter the dividing line and (in)visibilities created by a paradigm of change as transition, I build on work reformulating how time, the past, and continuity and change are related, grounding processes through relational, inhabited landscapes.

NARRATIVES OF INEVITABILITY

Prehistory/History

The view of prehistoric pasts as primordial and unchanging is underwritten by colonialist tropes of progress and inevitability (McNiven and Russell 2005)—that of staged development from barbarism to civilization propelled by advancements in subsistence and technology, exemplified in the 19th century paradigm of Lewis Henry Morgan (1963 [1877]). The temporality of arrival ushering in progress relegates the colonized to the temporally anterior, the timeless pre- (Fabian 1983). These underlying tropes of prehistory and progress, serving to legitimize European colonizations, have a long legacy, reaching back to the “pejorative ranking of cultures” (McNiven and Russell 2005, 23) and civilizational narratives in Greek and Roman contexts.

The progressivist rupturing of time into distinct periods that do not overlap underlies the dividing line between prehistory and history, an epistemological and disciplinary boundary that inhibits the study of long-term cultural change and indigenous persistence beyond contact or colonial baselines (Lightfoot 1995; Schmidt and Mrozowski 2013). Prehistoric and historic archaeologists as practitioners of distinct subfields asked different kinds of theoretical questions,
employed different methodological tools, and studied different community histories. Prehistory became synonymous with native settlements up until contact, and history with European colonists. This divide, combined with an expectation that spaces and material culture primarily derived meanings from their points of origin on one or the other side of this line, meant that indigenous presence in the landscape was written out of narratives of colonial periods, with tradition too often confined to a static authenticity (Cipolla 2013; Gould 2013).

Acculturation

The segregation of the past at the heart of the prehistory/history divide articulates with the acculturation paradigm of intercultural interaction and cultural transformation, a model that has often been applied in anthropological archaeology to interpret situations of cross-cultural contact and colonialism. Acculturation (e.g., Orser 2002; Redfield et al. 1936; see Cusick 1998 for assessment and critique) is founded on a logic of cultures as separate, bounded, and homogeneous systems that can be represented by internally consistent suites of traits. The process of interaction entails advanced “donor” cultures—Western, modern, active—and passive “recipient” cultures—non-Western, traditional, static—who adopted traits of the colonizer, by force or choice. The ratio of representative traits from each cultural context is used to measure the degree of change resultant from interaction, such that transformation is documented by the presence/absence of material categories that are already assumed to align with one culture or another. The contact or conquest moment serves as the baseline for dividing the timeless, static, authentic past from the march of civilization. In this sense, change is framed as a structural outcome of power relations, where the retention of pre-contact or pre-colonial traits equates to continuity and the adoption of foreign material culture equates to change. The adoption of
foreign elements, in accordance with a narrative of progress, is seen to precipitate the decline or disappearance of the cultural strength of colonized groups (Schwartz and Green 2013).

The acculturation approach locates all agency in the category of the colonizer and rests on simplistic binary oppositions between colonized/colonizer, past/present, and continuity/change to understand social process, a social process that defines the options as accommodation or resistance to a dominant, monolithic package. The concept of change is thus systemic, directed, deterministic, and transitional—the assumption is that change necessitates change to something other, and that without exogenous stimuli, there is no change (Ferris 2009, 11). The corresponding view of identity and category is structural, normative, and essentialist.

In a movement away from core-dominant models, the “trait-list” or “inventory” approach to interaction and transformation have been extensively critiqued in a wide variety of geographic and temporal contexts (Cusick 1998; Ferris 2009, 10–11; Lightfoot 1995, 206–7; Rubertone 1994, 35–37; Stein 2005a, 16–17). Identity categories cannot so easily be reduced to the colonized/colonizer binary (Russell 2005; Stoler 1989), nor can cultures be neatly delimited into bounded, homogeneous systems set apart from interconnected processes and relational phenomena (Wolf 1982). Other problems with acculturation models as employed in archaeology include: 1) the concept of material culture as a representation of a totalized cultural identity; 2) the assumption that changing assemblages of material culture automatically index changes in identity; 3) the unidirectional framing of transformation; and 4) the asymmetric focus on the agency and categories of the colonizer and the elite arena. Beyond a binary model of assimilation or resistance, researchers have attempted to engage with more multidimensional concepts of power relations and ambivalent responses (Schwartz and Green 2013).
A growing number of archaeological works on colonial entanglements seek to confront the heterogeneous and multiscalar dynamics of interaction, the plurality and contingency of outcomes, the ambiguous adaptations of material culture, and epistemological divides in the discipline over the nature of time and subjectivity (Cipolla and Hayes 2015; Ferris et al. 2014; Given 2004; Gosden 2004; Liebmann and Rizvi 2008; Lydon and Rizvi 2010; Lyons and Papadopoulos 2002; Russell 2001; Stein 2005b; Torrence and Clark 2000). A critical goal of this more recent literature on comparative colonialisms has been to displace the centrality of the transitional moment, exploring the ongoing effects of colonialism in the contemporary world as well as long-term indigenous histories (Cipolla and Hayes 2015; Oland et al. 2012; Scheiber and Mitchell 2010; Schmidt and Mrozowski 2013; Torrence and Clark 2000).

While classical archaeologists working on Greece and Rome and prehistoric and historic archaeologists researching interregional interaction and colonialism in other times and places have not always been in conversation with each other (but see, e.g., Cipolla and Hayes 2015; Stein 2005b), the models of “Hellenization” and “Romanization” in Greek and Roman scholarship have followed the conceptual basis of the acculturation paradigm, the civilizational narrative, and the prehistory (Iron Age)/history (Greek/Roman) divide. Below I explore the persistent legacies of the acculturation framework in Roman studies as well as its consequences for the kinds of landscapes that emerge into view, and what it means to be present in a landscape. This serves to contextualize ways of approaching time, the past, and continuity and change that challenge both the taxonomic languages and temporalities that rupture pasts from presents.

Romanization

The Roman Empire was the civilized world; the safety of Rome was the safety of all civilization. Outside roared the wild chaos of barbarism. … Had Rome failed to civilize, had the civilized life found no period in which to grow firm and tenacious, civilization
would have perished utterly. The culture of the old world would not have lived on, to
form the groundwork of the best culture of to-day. (Haverfield 1923, 11)

The Romanization paradigm emerged in the late nineteenth and early twentieth centuries
in the context of European imperialist enterprise and teleologies of civilization (Hingley 1991,
Romanization came to describe the acculturation process whereby colonized communities
assumed a Roman identity through the adoption of cultural markers—the towns, villas, military
installations, and roads of a Roman landscape—from the imperial center. The proliferation of
this "package" served as an index by which the extent and success of the process could be
measured. In a directional, Romano-centric, elite-oriented narrative, Romans were seen as the
agents of culture change and the purveyors of social progress.

The archaeology of Roman Britain has been defined by the study of Romanization (Hill
2001, 15). So much so that, decades after initial challenges to the paradigm (Barrett 1989; Brandt
and Slofstra 1983; Millett 1990), “Roman archaeology has struggled to find a coherent identity
of its own since the collapse of ‘Romanisation’” (Gardner 2013, 1). Historian and archaeologist
Francis Haverfield’s *The Romanization of Roman Britain* (1923 [1912]) established a framework
for the study of Romanization that remained largely unquestioned until the 1950s (Freeman
Paul Vinogradoff’s “veneer” theory (see Grahame 1998, 2) of Roman hegemony, which posited
that Roman material culture constituted a superficial layer over a native core, which resurged
largely unchanged from pre-Roman practices after the withdrawal of imperial military forces in
410 CE. Haverfield’s paradigm drew from the work of German historian Theodor Mommsen
(1817–1903), who implicated Roman imperial expansion in the construction of modern identity
by envisioning the Roman unification of Italy as a model for the unification of Germany (Freeman 1997, 30; Hingley 2005, 31–33). Mommsen laid the foundations for Haverfield’s work on Roman Britain, which closely followed Mommsen’s theme of unity across the Empire (Freeman 1997, 43). Roman imperialism at the time was seen as a metaphor for British imperialism, with attention focusing on Rome’s strategy for incorporating diverse peoples into the imperial administration (Hingley 1991, 91–92; 1997, 82–86; 2005, 33–35). The body of evidence available for study has been shaped by the intellectual interests of these early scholars: interpretations and excavation tended to emphasize Rome’s military character, imperial institutions, and the elite, which in turn were reified by a built landscape of forts, administrative buildings, roads, and elite housing (Hingley 1991, 93–95; 1997, 85). Given the perceived link between Roman and modern imperialism, Romanization was seen as a progressive, gradual process along a unilinear path to civilization (Barrett 1989, 235–36; Hingley 1991, 92; 1997, 82–86; 2005, 37–40). The paradigm followed a process of military intervention, territorial annexation, and acculturation (Barrett 1989, 235–36), where material similarities could be used as indices or “standards by which the penetration and accomplishments of Roman civilization could be measured” (Freeman 1997, 31). A top-down, elite-oriented understanding of Romanization echoes an oft-quoted passage by the Roman historian Tacitus, writing c. CE 98 about the campaigns and governorship of his father-in-law, Gnaeus Julius Agricola, from c. CE 77 to 84, outlining an active policy of acculturation propagated by the encouragement and adoption of Roman institutions. Tacitus’ account presupposes the desirability of Roman material culture and couches adoption within an assimilation narrative of cultural decline and servitude:

His object was to accustom them to a life of peace and quiet by the provision of amenities. He therefore gave private encouragement and official assistance to the building of temples, public squares, and good houses. He praised the energetic and scolded the slack; and competition for honour proved as effective as compulsion.
Furthermore, he educated the sons of the chiefs in the liberal arts, and expressed a preference for British ability as compared with the trained skills of the Gauls. The result was that instead of loathing the Latin language they became eager to speak it effectively. In the same way, our national dress came into favour and the toga was everywhere to be seen. And so the population was gradually led into the demoralizing temptations of arcades, baths, and sumptuous banquets. The unsuspecting Britons spoke of such novelties as “civilization,” when in fact they were only a feature of their enslavement. (Tacitus, *Agricola* XXI)

Postcolonial theory (Ashcroft et al. 1998; Spivak 1988; Young 2003), which critically interrogates the cultural effects of colonialism, has worked to destabilize the grand narratives and monopolies on universalism claimed by the theoretical authority of Western history (see Chakrabarty 2000). Pointing to Said’s (1978) Orientalism as a foundational text, scholars have challenged the epistemological privilege of imperial knowledge, deconstructing the essentialism and binarism that legitimated colonial relations of dominance. In archaeology, Homi Bhabha’s (1990, 1994) concepts of hybridity (e.g., Card 2013) and Third Space—a transcultural “in-between” enabling the emergence of new cultural discourses—has underpinned much of this critique. Bhabha’s formulation foregrounds the potential ambivalence and incommensurability of cultural confrontation, where new contexts for negotiation open up possibilities for new (dis)articulations and positionings. Since subjects are continually undergoing this process of coming into being, cultural meanings are reworked and unfinished as opposed to prior and essential.

The hybridity concept has been critiqued for its tendency to de-historicize particular cultural contexts (Ashcroft et al. 1998, 119–21). More generally, postcolonial theory has been criticized for homogenizing the colonial experience and neglecting the material realities of colonization (Liebmann 2008, 10–13; Patterson 2008, 29–33). While not without criticism, postcolonial perspectives have influenced archaeological engagement with ancient colonizations and contact scenarios (Gosden 2004; Liebmann and Rizvi 2008; Lydon and Rizvi 2010),

A seminal antidote to the Romano-centric hegemony of earlier accounts, Martin Millett’s (1990) *The Romanization of Britain: An Essay in Archaeological Interpretation* focused on the agency of native elites in their strategic appropriation of Roman cultural symbols, allowing them to preserve or enhance their status within changing frameworks of dominance. Despite the shift in perspective, the narrative continued to essentialize cultural forms as either Roman or native (Freeman 1993). Millett questioned the validity of the Haverfield model yet used categories of analysis developed from the Romanization paradigm. Attempts to address resistance to Roman imperialism have similarly been criticized for framing conformity and resistance along an either/or axis (Dench 2005, 83–85; Laurence 2001a, 95–98; Mattingly 2011, 29; Pitts 2008, 501; Webster 2001, 213; Woolf 1997, 340–41; 1998, 19–20). Power relations and cultural reproduction remained reduced to an elite arena, with the dynamics of acculturation reversed rather than displaced. Progressivist notions continued to underlie assumptions about power, locating the trappings of authority in Roman elements of material culture.

In the 1990s, historian Greg Woolf’s (1997, 1998) work on Gaul was particularly influential in reorienting the basis of the Romanization paradigm. Rather than envisioning the incorporation of a homogeneous society into a unifying imperial program, Woolf argues that diverse groups participated in the genesis of an imperial order, transforming Roman structures of
difference and power in the process. Roman Gaul did not already exist prior to the conquest as an entity to be accepted or rejected:

We are dealing with the emergence of a new, highly differentiated social formation incorporating a new cultural logic and a new configuration of power. This complex grew up from within, first, Roman and, then, Italian society, and expanded by drawing in more and more groups, individuals and resources. The process might be compared to the growth of an organism that metabolizes other matter and is itself transformed by what it feeds on. Eventually all participants acquired new places in the imperial system of differences because that system itself had been transformed. (Woolf 1997, 347)

Recent approaches to Roman imperialism have rejected the parameters of the acculturation paradigm, specifically the problematic dichotomization of Roman and native as static, bounded, and homogeneous cultural systems; the reduction of material culture to univocal representations of cultural identity; the unidirectional concept of cultural transformation; and the underlying progressivist ontology that links the use of Roman material culture to a desire to be Roman and interprets Roman-influenced change as improvement and degradation of cultural strength (Alcock 1993; Barrett et al. 1989; Blagg and Millett 2002 [1990]; Brandt and Slofstra 1983; Creighton 2006; Freeman 1993; Gardner 2013; Hingley 2005; Hoff and Rotroff 1997; James and Millett 2001; Keay and Terrenato 2001; Merryweather and Prag 2002; Mattingly 1997, 2006, 2011; Terrenato 1998; van Dommelen and Terrenato 2007; Versluys 2014; Webster 1997, 2001; Webster and Cooper 1996; Woolf 1997, 1998). Rather than identifying culture change through the vocabulary of Roman institutions, theories of practice, agency, and identity have been deployed to conceptualize the dynamics of interaction (Chadwick 2004; Creighton 2006; Gardner 2007; Mattingly 2002, 2004, 2011; Pitts 2007). Recent work attempts to situate identity and material culture in a field of heterogeneous relations, broadening scope to non-elites, rural contexts, and everyday life activities (Allen et al. 2015; Chadwick 2004; Taylor 2007; see also Hingley 1989), with a more critical approach to the meaning of material culture in relation
Mattingly’s (1997, 2004, 2006, 2011) concepts of “discrepant experiences” or “discrepant identities”—foregrounding social differences, contextual analysis, and variations in material culture use—have served as influential critiques of the emphasis on conformity in Romanization. Mattingly stresses the possible range of responses without assuming the axis of superiority or inferiority implied by the progress narrative. For example, in his study of images of power on elite family tombs at the site of Ghirza (Libya) (2011, 246–68), he indicates that much work on Roman art in the provinces has operated under the assumption that native communities attempted to imitate the style and standards of the imperial center—Rome served as the locus of value in a model of provincial emulation. Assessments of the art, whether positive or negative, judged the depictions relative to their conformity or deviation from artistic standards emanating from the Roman core. The adoption of some elements attributed to Roman culture within the architecture and iconography of the Ghirza monuments has provoked various scholarly reactions, from praise for their emblematic Romanization to condemnation for the otherness of their local interpretations. However, considering the tombs within their regional context, Mattingly argues that the visual repertoire of the tombs drew on the language of Roman power to mobilize internally driven agendas affirming legitimacy of leadership. The question of emulating Roman art—i.e., whether the tombs can be assimilated to an already recognized standard or discourse—is not necessarily the most relevant axis from which to understand this evidence.

Despite these changes in emphasis, rural and quotidian spheres continue to warrant greater analytical consideration (Gardner 2013), while binary and normative categorizations as
well as undimensional approaches to change, identity, and material culture have proven difficult to destabilize (Pitts 2007; Rogers 2015; Versluys 2014). The emphasis on the transition as the pivotal moment has tended to assimilate new theoretical positions to a narrative structure reliant on binary oppositions between identity categories, the past and the present, and continuity and change (Laurence 2001a). Scholars such as Gardner (2013, 3) claim that the discipline of Roman archaeology remains undertheorized.

I argue that these normative assumptions do not only continue to derail academic literature; Romanization persists as a generalized paradigm that informs and shapes public expectations and receptions of the past, a narrative that prioritizes a progressive legacy of Rome as the foundation of Western civilization (Hingley 2015). A “Roman” landscape or “Roman” sites continue to be depicted as those of exogenous origin linked to the unifying trappings of civilization. For example, the following label copy associated with a display from the Museum of London on post-conquest transformations in Roman Britain emphasizes the unity of cultural markers of Roman-ness throughout the Empire, while the term “Romanization” continues to be employed: “Roman ways of dress, public bathing, entertainments and the taste for foreign foods were part of the Romanisation process, uniting peoples of many cultures” (Museum of London).

The uniformity of categories is emphasized at the expense of potentially contested interpretations, glossing over any indication of discrepant experiences and identities (see Mattingly 2006, 2011).

Mattingly (2011, Figure 1.5) provides another example of the positive reception of the Roman Empire displayed in public contexts: a modern monument at Wallsend (near Newcastle upon Tyne) naming Roman soldiers involved in erecting Hadrian’s Wall. In
Mattingly’s words: “This celebration of imperial overlordship is a striking example of a
tendency in Britain to regard the Roman Empire with uncritical adulation” (2011, 21).

Similarly, a book accompanying the British television series Time Team—a program
that enlists a group of specialists to excavate and interpret archaeological sites—presents a
Roman landscape that looks very similar to the academic creations in Roman Studies
critiqued by Richard Hingley two decades ago:

Time Team has dug at over 20 Roman sites, including Hadrian’s Wall, Arbeia Roman
Fort [and] large villa sites. … We have searched for remnants of Roman roads, temples
and forts and have been lucky enough to find many beautiful objects, including rings
and high-status pottery. (Taylor 2006, 112, cited in Hingley 2015, 169)

In addition to the emphasis placed on eye-catching items of material culture, the built spaces
of civilization contrast with the portrayal of living in the Iron Age landscape, with a sense of
improvement and comfort underwriting the description of the different inhabitation styles:

The dark peat floors inside the [Iron Age] roundhouse in which we found bone tools
and pottery are in marked contrast to the mosaic pavements and concrete floors found
on Roman sites. The technological advances that accompanied the Roman invasion
have been emphasized by our reconstructions. (Taylor 2006, 112, cited in Hingley 2015, 169)

While the language here is less triumphalist than accounts from the early twentieth
century,¹ and the adoption of foreign ways lack overt charges of decadence or degradation of
cultural strength, the underlying assumptions that segregate culture into a homogeneous system,
pin the meaning of material culture to its origin, and prioritize a landscape populated with unified
markers of “Roman-ness”—i.e., the imperial, civilized past—continue to be deployed.

Progressivist perceptions not only continue to permeate representations of the Roman
past in the public spheres, but also remain as the conceptual infrastructure for making inferences
about social process in archaeological practice. Included here is the genre of specialist reports

¹ But see Mattingly (2011, 3–42) for examples of positive assessment in more recent academic scholarship.
resulting from archaeological excavation, in which experts assess and analyze data and finds—e.g., pottery, animal bone, environmental samples. Casual use of the term Romanization as a shorthand for interaction and transformation in specialist report summaries continues to propagate assumptions that subsume identity and process into directional trends. This is evident even in recent site reports from excavations with a theoretically focused program.

For example, the research design for the excavations in advance of Heathrow’s Terminal 5 (HT5) incorporated an explicitly theoretical approach to on-site fieldwork practice in order to develop a narrative of human interaction with the landscape as biographies of people and place, as the material conditions of humanity-making and presencing (Andrew et al. 2000; Lewis et al. 2010). The technological setup—including new recording systems and an integrated site database—at the excavation allowed knowledge to be built from the “ground up,” facilitating ongoing interpretation by site excavators. The specialist reports, published in 2011, however, continue to use the term and concept of Romanization and being Romanized in rather traditional ways:

Generally, the more Romanised a site became, the fewer sheep bones and the more pig bones are found in the assemblages. … This is especially seen in bone assemblages from the highly Romanised Southeast. …

The low proportion of pig in the Terminal 5 assemblage might be due rather to the poor preservative conditions that would affect young bones more, than lead to the conclusion that the site was less Romanised than average. (Knight and Grimm 2011, 32)

Unfortunately poor preservation of the bone meant that it was difficult to detect any changes affecting livestock as a result of intensification or ‘Romanisation’. (Carruthers 2011b, 39)

Other Roman farmsteads in the area have produced similarly limited evidence for a ‘Romanised’ diet, with just the occasional imported, exotic species to hint at the much wider range of fruits, nuts and spices available in the towns. (Carruthers 2011b, 43)

A total of 68 [pottery] fabric types were identified, although many of these are general ware categories, such as romanised sandy greywares... (Jones and Brown 2011, 2)
Like the example above, excavation and specialist reports frequently use “‘Romanized’” or “Romanizing” as a measure of difference in pottery typologies (e.g., Jones and Poulton 2010, 11; Manning and Moore 2000, 16, 19; Perring 2015, 22–23; Powell et al. 2015, 163, 164, 166), while other archaeological excavation reports also resort to Romanization as a matter of degree:

In general less Romanised sites tend to have a low frequency of pig bones. (Imperial College Sports Ground Report, Powell et al. 2015, 237)

It has long been recognised that the relative frequency of the major domesticates (cattle, caprines and pig) vary according to settlement type and the degree of “romanization.” (Hengrove Farm Report, Poulton 2007a, 21)

Amongst the glass finds are a few beads and some fragments of fine glass vessels from early contexts indicative of a Romanised standard of living, and complementing the early imported pottery, especially the samian. (County Sports Report, Staines, Surrey, Poulton 2010, 219)

Additional uses of “Romanized” in recent publications demonstrate that the concept continues to frame identity and status in archaeological syntheses:

The earlier structure represented in the pit need not have been any less 'romanized' than the later, probably 2nd century, building(s), however, since some of the tiles are of mammatae-type and others from box-flues. (Jones and Poulton 2010, 16, describing a late first century CE pit at the Johnson and Clarks site, Staines, Surrey)

Imported ceramic tableware and wine amphorae were also found at late Iron Age Silchester. This implies that there was an elite in the oppidum of Silchester which enjoyed luxury imports or a group with a Romanised identity. (Robinson 2015, 171)

This kind of casual use of Romanization reflects its entrenchment in the language that is employed to account for and explain identity, process, and change, indicating that alternative ways of understanding and writing about transformation have yet to circulate beyond the debate in academic scholarship or fully penetrate beyond the level of theoretical discourse. By casual use of Romanization I am not only referring to the employment of the term, although I follow scholars who reject its usage (e.g., Barrett 1997; Freeman 1997; Hingley 2014; Mattingly 2011, 40; Webster 2001; Woolf 1997, 2014), but to how the assumptions underlying the concept
continue to affect inferences on continuity, change, and identity. Despite the rejection of the acculturation paradigm as well as the call to jettison Romanization in the theoretical literature, the assumptions persist that Romanization can be measured as a matter of degree (“degree of 'romanization’”; “less Romanised sites”; “need not have been any less ‘romanized’”); that Romanization can be indexed by aggregate assemblages and directional trends (“the more Romanised a site became”); and that Romanization reaches a homogeneous, complete form as a standard for understanding change and continuity (the idea of being more or less “Romanised than average”; “a Romanised standard of living”; “a Romanised identity”; “obviously a high-status, Romanised site”). With this critique I do not mean to be accusatory—indeed I do not exempt myself from reproducing these assumptions and have no doubt been unable to avoid them completely in the present work—but rather to encourage the application of critical perspectives to the empirical infrastructure employed to make inferences about the past in the context of the Roman Empire, perspectives that can outline an archaeological language capable of responding to the agendas of theoretical debates.

While these forays into representations of the Roman past in public contexts and in the language of site reports might seem peripheral to the mainstream historiography of Romanization, I argue that it is just such a split between theoretically oriented academic scholarship and “bread-and-butter descriptive categories of empirical data” (Gardner 2013, 19) that maintains a linkage between static typologies, binary identity categories, and either/or understandings of tradition and transformation. The separation of theoretician and fieldworker often insulates data collection and description from the labor of interpretation (Andrews et al. 2000). Mobilizing theoretical critiques requires integrating theory at multiple levels and putting
the various aspects of practice—methods of excavation and recording, creating typologies, forming interpretations—into conversation with one another.

This dissertation addresses the persistence of the legacies of the acculturation paradigm, even if sometimes subtle and implicit. In particular I consider the way that tradition and transformation are conceived and linked to claims about the identity of communities using items of material culture or living in the landscape.

LANDSCAPE

Space is “social relations ‘stretched out.’”

Doreen Massey (1994, 2)

Re-articulating landscape beyond a prehistory/history transition, underwritten by a temporality of “vacant moment(s) of rupture” (Foucault 1972, 166), entails thinking about the people and relations that constitute landscapes, and how landscapes in turn engage those relations. Rather than vacant moments divorced from spatial histories, the landscape is lived in through relatedness and the connections that are forged with other people and communities. The landscape is relational and temporal. Keith Basso (1996), for example, working among a community of Western Apache in east central Arizona, recounts how place names form spatial stories that situate cultural knowledge in relation to one’s own life history. Knowing where one is and where to go next entails more than navigating between coordinates or transporting oneself from location to destination; it involves relating one’s movements to the narratives of past and future journeys.

Since the crystallization of landscape archaeology as an identifiable concept in the 1970s (e.g., Aston and Rowley 1974), focus has expanded from landscapes as neutral environmental backdrops to landscapes as dynamic participants in social, economic, and political processes (Bender 1993, 2002; Bender and Winer 2001; Bradley 2000; Brück 2001; Darvill and Gojda
This re-conceptualization of landscape has emerged in multiple disciplines, articulating fields such as anthropology and humanistic geography (Cosgrove and Daniels 1988; Gregory and Urry 1985; Hirsch and O'Hanlon 1995; Massey 2005; Tuan 1977; Ucko and Layton 1999). Concepts of space as passive, flat, and inert have been displaced by explorations of the social, temporal, and relational contours of spatial practices (e.g., Ingold 2000, 2011; Lefebvre 1991; Massey 1994, 2005; Soja 1985), with an understanding of space as both medium and outcome of social practices (Lefebvre 1991; Soja 1985)—as “social relations ‘stretched out’” (Massey 1994, 2). These processes are localized not so much in boundaries as through articulations (Massey 1994). Embracing a “multitude of intersections” (Lefebvre 1991, 33), space poses the challenge of “coexisting heterogeneity” (Massey 2005, 12)—a multiplicity of histories, movements, and trajectories. In other words, the emphasis has shifted from static boundaries and containers to the movements that create, re-enact, and contest paths along heterogeneous social trajectories (Ingold 2011). Space is thus multiscalar and temporal. Any enactment or intersection of activities is embedded within relationships that connect beyond the immediate context (Giddens 1984; Massey 2005), implicating multiple histories and scales of life experiences. Such ensembles of activities connect with past contexts and constitute future opportunities (Bender 2002; Ingold 1993). Places are not only about what they contain, but also about the connections they facilitate, acting as positions along pathways. Landscape refers to the multiscalar relations and pathways linking and forming places, enacted or challenged through movements. In short, a view of space as a neutral container has given way to a relational understanding of spatial production as intertwined with social practices, including relations of power and domination.
For example, scholars such as Robert Rotenberg and Michel de Certeau stress the role of moving through places in forming knowledge and identity. In *Landscape and Power in Vienna* (1995), Rotenberg explores the social messages communicated by Viennese parks and gardens. The forms and designs of the city’s green spaces enact the ideologies of groups in power, whose possibilities are activated and reworked through lived experiences. Michel de Certeau (1984) contrasts the detached, panoramic “concept city” with the daily practices that entangle people in identity claims. The geometry of the former, the domain of a cartographer or planner, immobilizes the stories it claims to theorize. Rather, the city emerges through the intersections of “footsteps” (de Certeau 1984, 97). Walking and bodily engagement create the possibilities for narrative articulation and dislocation. Such poetics of everyday movement “enunciate,” appropriate, and transgress spatial order in the gaps of the panoptic eye. Spatial boundaries, the official injunctions, are thus porous—a “sieve-order” (de Certeau 1984, 107).

Within archaeology, this interest in relational and contextual landscapes connects to wider disciplinary engagement with the emergence of people, things, and ideas through ongoing relations (e.g., Alberti et al. 2013; Hutson 2010). In order to facilitate a more dynamic concept of place, landscape interconnection, and liminality, movement is emerging as a principal target of analysis in archaeological investigation (Beaudry and Parno 2013; Nelson et al. 2011; see Kirby 2009a for anthropology), which has ranged from explorations of monumental landscapes and processional ways (Parker Pearson et al. 2006; Thomas 1990; Tilley 1994, 2008); paths, trails, and roads (Kantner 1997; Snead et al. 2009); the everyday and seasonal rhythms of pastoral and agricultural practices (Aldred 2012; Chadwick 2007); mobility and community organization (Schachner 2012); phenomenological approaches (Bender 2002); to attempts to integrate GIS with concepts of place derived from social theory (Llobera 1996, 2012; Lock 2000; Van Hove
2004) or to model movement using GIS (Polla and Verhagen 2014). While diverse in focus, many of these movement studies center on the contextual and transformational aspects of moving through landscapes. Engagement in daily practices sets people in relation to other people, animals, objects, and places, shaping them as social subjects. Through coordinating the possibilities for social interaction, movement through landscapes creates the contexts in which social relationships are generated and transformed.

Critical here is that, while the world and the various entities that come into being are always moving (Ingold 2006), they are not always moving in harmony or in tandem. Inhabiting landscapes and creating modalities of the social and of belonging—being recognized and recognizing a world with others—is not only a matter of convergence and interconnectivity, but also of divergence and potential dislocation or disorientation. Landscapes of inclusion and interconnection are interrupted by and productive of landscapes of exclusion and separation. While much of the language of relationality appropriates flux and fluidity as the metaphoric currents for the dynamism of social association, we must take care not to replace a “romance of bounded place” with a “romance of free flow” (Massey 2005, 175). Mobilities—the abilities to move or not move, and to where and when—are differentiated and subject to ideological impositions and power-laden enactments (Cresswell 2006, 2010; Massey 2005). While the Roman Empire may have been “hyperconnected” and networked, facilitating the conduits for “objects in motion” along broad scales (Versluys 2014), we must also not forget the differentiations that may have followed from this very integration, and the effect that “flows” and their tempos, scales, and locations—and even new ways of producing locations—may have had on local practices of place and community making. As boundaries become bypassed, new boundaries and separations can also be created. A location—a person, object, or place—is
continually reconstituted through these relations and movements, affirming and transforming the contexts and conditions from which to draw socially recognizable knowledge, conditions that are not always harmonizing ensembles, but sometimes discordant and disorienting.

Orienting questions around landscape interrelations, multiscalar settlement patterns, and the movements that connect them over long-term histories is one way to displace the primacy of the transitional moment for understanding the persistence and interactions of communities (Jordan 2010; King et al. 2016; Lightfoot 1995). Foregrounding how places facilitate interaction rather than privileging what they essentially contain allows for more multifaceted insights on continuity, change, and identity. For example, mobility through the landscape, connecting present practices to past places of significance, can act as a strategy to maintain autonomy and identity in the context of colonialism (Kulishek 2010, 175–6). The processes of site abandonment do not necessarily indicate the inevitability of disappearance; movement and reoccupation can constitute persisting modes of living rather than rupture or decline (Kulishek 2010, 190).

Re-evaluating the Transition through a Concept of Landscape

Key here is Ingold’s “wayfaring” metaphor, the idea that one learns from prior journeys and future expectations, changed or renewed—affected in some way—by the dynamics of moving. Wayfaring contrasts with the concept of transport, a logic of inversion that transforms the “pathways along which life is lived” to boundaries that enclose life (Ingold 2011, 145). In a model of transport, the journeyer, or the product being moved, is carried across surfaces to end points, unchanged by the process or context of moving. But moving is more than a linear and detached departure——transit——arrival,
rather entailing navigating, and sometimes challenging, a web of meaningful relationships, or multilinear life pathways. Key here is location, but not as point—or the proverbial archaeological “dot on a map”—but how location contributes meaning to relations through the merging of practice and memory.

I argue that, conceptually, the Romanization paradigm is built on a model of transport rather than wayfaring. The explanatory axis of Romanization—the analytical choice between stasis and transformation, with the latter attributed to Roman influence—locates continuity in the transportation of the LIA past into the Roman present, as something contained and static, as something that does not change as it passes through successive contexts, as something that must remain the same in order to refer to the past and serve as the basis for maintenance of community identity. Likewise, in the Romanization framework, change resides in the Roman identity dimension, implanted onto the landscape as something contained and static, as something that is already different in defined ways, as something that creates a new present and future from a discrete starting point, the transition. This isolates the past, present, and future as distinct temporal spheres that do not interact, marginalizing continuity and past to a “temporality of anachronism” (Chakrabarty 2000). Such a “change–continuity dichotomy” (Silliman 2009) essentializes a transition as a static baseline delineating the border between the past and change, where, in order to be considered “past” or “continuity,” something must adhere to pre-baseline forms. A more multi-layered perspective on movement and the entanglement of material and practice is not to deny imperial imposition, containment, or exclusion, but to acknowledge that there may have been multiple ways of moving within, beyond, in between, challenging, and seeing or sensing a traditionally conceived “Roman” landscape of towns, villas, forts, and roads.
Common themes that emerge from recent scholarship on Romanization and landscape include a rejection of essentializing categories, a reliance on practice-based approaches to identity, and an engagement with intersubjective conceptions of social process. I draw on all of these concepts in forming a holistic, multiscalar approach to landscapes, exploring how navigating through various contexts for interaction articulates and calls into being social activities and identities. I approach relations and negotiation as emergent through movements and interactions. Beyond identifying the presence of Roman institutions, infrastructure, or forms—such as urbanism, roads, and rectangular houses—I explore how such configurations generated paths and possibilities for movement and (non)human interaction, as such mobilities, and the relational contexts they activated, would have been intimately tied to the formation of socially recognizable places, knowledges, and identities. Since narratives are emergent and continually renewed, spatial orders, as “sieve-orders” (de Certeau 1984, 107), can thus be challenged by heterogeneous ways of being. Identities, then, entwine places through the movements that connect them. Changing relations emerge through the reorientation of movement between places and temporalities of inhabitation.

Persistence and Possibilities Beyond the Transition—How Are Landscapes Populated?

What constitutes a landscape in the Late Iron Age and the Early Roman periods? Rather than privileging period boundaries and “sites in history,” the issue here is also “history in sites” (Hantman 2013)—looking contextually at lived in places, and the movements and connections between those places. The challenge is to engage with movements and relations as constituting place, temporality, and community biographies rather than happening in an empty time, or a space that can be inscribed anew or implanted upon apart from its history. This means that “Iron Age” and “Roman” landscapes cannot be understood by rendering the pre-anachronistic,
winnowing the lines of inquiry to the development of the proto-, or totalizing the post- as a wholly exogenous implantation—something can be multiple things at the same time, and multiple things can be in the same place.

The question thus revolves around people and relations in inhabited landscapes—how the landscape and relationships are mobilized and negotiated as opposed to the typological presence and absence of an already known vocabulary (Gould 2013, 254–55). The landscape was lived, challenged; there were multiple ways for communities to connect pasts and presents, and continue through changes; memories and relationships entwined with places beyond the borders of cultural periods; the landscape could have been other than it was; many potential stories resonate within it. The hope is to reframe the dividing lines of transition and inevitability to the dynamics of living and moving in landscapes of persistence and possibility.
It is the site’s story in the sense that the story emerges from the site. But this is not to say that some specific story lurks within the soil and artifacts waiting to be freed by the archaeologist. On the contrary. The site contains many potential stories, but every one is a product of the archeological imagination that pulls together historical and archaeological facts into an interpretation that is more than the sum of the parts of which it is made and more than its excavator can document in the usual way.

Adrian Praetzellis (1998, 1, emphasis added)

Archaeologies of possibilities seek to confront “many potential stories” through engaging with the past as contingent conditions of emergence rather than a unitary actuality fossilized in the material evidence. I attempt to explore the multiple scales of continuity and change in Late Iron Age and Early Roman landscapes of southern England not only through an account of diverse landscapes and polyvalent processes, but through an exploration of how continuity, change, and conditions for emergence could have been otherwise (Chapter Five).

An emphasis on contingency helps draw into focus how people worked to intervene in heterogeneous futures, and how contradictions and multiple dimensions of process co-existed, sometimes in tension with one another. Alice Yao’s (2017) analysis of time and politics in Han China demonstrates the entanglement and tensions of local time experiences—in the form of funerary practices—with imperial framings of time. Yao outlines how funerary rituals at Bronze Age cemeteries in southwest China intersected with political and intergenerational temporalities. The cemeteries were positioned in relation to large centers of occupation, while the mourners interred community members in clusters of mounds, continuously maintained through sequential phases of use, creating the “conditions for social and political regeneration” (2017, 93). After the Han conquest in 109 BCE, imperial administrators relocated settlement centers, which would have intervened in the temporal coordination of funerary events and rendered revisiting the Bronze Age cemeteries increasingly difficult. Examining cycles of activity, a decline in use of...
the Bronze Age cemeteries is apparent before the conquest, with the pace of this abandonment accelerating in the imperial period, although cemetery sites continued in use into the first century CE. Yao argues that the cycle of returns to places of “impending abandonment” “represents efforts to manage the process of decline by enacting the temporality of generational ties,” in which local people attempted to “both contend with decline as imperfect and provisional and articulate their own relationship to imperial temporal frames” (2017, 96).

Continuity in Yao’s analysis assumes a role beyond a vestige. The contexts of the past were available as dynamic and potent options for grappling with contingent conditions that were constrained by imperial politics, but not inevitably inscribed: funerals “were occasions for negotiating tensions of social reproduction and for comprehending prospective futures amid experiences of decline” (Yao 2017, 98, emphasis added), occasions that could anticipate “actions in alternative, heterogeneous time frames” (Yao 2017, 100). Considering “prospective futures” or alternative outcomes in “histories of use and disuse” (Yao 2017, 88) can help make visible the contexts of possibilities in which people found themselves, and how they navigated these circumstances, which may have aligned with heterogeneous or conflictual narratives, in attempts to forge and negotiate particular futures. As Silliman argues, “considering alternative explanations…is crucial because these alternatives not only circumscribe…interpretation but also once served as actual alternatives—actions and choices—for individuals in the past” (2001, 202). Alternative options are not simply a byproduct of the winnowing process when selecting an explanation for the material evidence; some of these alternatives may have constituted part of the context of possibilities that brought something to bear on the decisions, actions, and interventions of people in the past. The materialized outcome of the future may have been different from what was anticipated (Mrozowski et al. 2015, 131).
Thus, this “otherwise” referred to above speaks to the multiple tendencies that are always present and possible in actions and situations. This chapter explores in more depth some of the theoretical underpinnings that underwrite and can mobilize an exploration of possibilities, co-existences, and contradictions. *Archaeologies of possibilities* hold that the present consists of diverse ways of being and belonging, and an understanding of reality is mediated not only by what is there—i.e., what appears left to us in archaeological contexts—but what is not there, what else could have been there, or what was excluded from being there—the *realm of the possible*.

I argue that this possible is not external to a coherent summation of how things really were. The material evidence, beyond stating what happened, might also claim “interventions” against other happenings (Sassaman 2012), as well as other tendencies that intertwine with and challenge dominant tellings—potentials that exist in tension with a particular narrative, that cannot be contained by the delineation of an origin and subsequent coherent development, but that nevertheless help generate the contexts and settings for interaction and how they were mobilized in socially potent ways.

Exploring the *what was*, then, is not simply isolating the character of the subject and community, but about exploring the conditions of possibility for subjects and communities to emerge. This emphasis on the multiple potentials and multiply voiced constitution of the past—and its (re)telling—is not to eschew commitment to the material evidence, nor to dismiss structures of power or other constraining elements that regulated the kinds of possibilities that could come into existence. It is an attempt to explore some of the implications when we are met with the discontinuous, the fragmentary, and the conflictual (Foucault 1972), rather than excising the seemingly contradictory or incongruous from a “sum of the parts” expected to compel an
immanent meaning from the evidence, a summation that can subsume potentialities into a narrative closure. The critical issue is to preserve a sense of this multiplicity, contingency, and contradiction in the context of evaluation.

Central to this process of rethinking, redoing, and retelling is re-articulating the concept of the past itself and its relationship to time and mode of representation in practice and discourse. This entails a reorientation of the kind of expectations placed on archaeological narratives. Expectations about what a narrative should entail presuppose certain conditions about time, space, scale, context, and process (White 1975). In this dissertation I therefore foreground the ontology of two processes critical to archaeological and anthropological inquiry more broadly as well as studies of Roman imperialism and provincial expansion more specifically—continuity and change (Chapter Five), interrogating their scale, tempo, and interactive relationship. In the re-articulation of the entities and concepts that I present here, I seek to engage with the provisional rather than only the delimited, opening up the contexts of the past to their fragmentation, incompleteness, and simultaneous differences and contradictions.

While highlighting different aspects and drawing from a somewhat different literature, it should be noted that the approach advanced here bears affinities with relational trends current in archaeology (e.g., Alberti et al. 2013; Watts 2013), which relocate explanations of the social from an a priori domain that can be extracted from its context to the ongoing relational configurations among heterogeneous entities, consisting of humans and nonhumans, out of which the social emerges (e.g., DeLanda 2006). The emphasis is placed on interaction rather than essentialized entities already given. This questioning of the ontology of the entity and concept articulates with recent archaeological inquiries into the ontology of the archaeological object and “record” itself (Barrett 2006; Fowler 2013; Lucas 2012), including how material evidence
becomes transformed through archaeological interventions and thus mobilized as knowledge practices in both material and discursive registers. Such approaches have sought to integrate the imperatives of theory with the nature of the evidence and evaluative standards of disciplinary discourses. In the process researchers have problematized and extended the boundaries of the archaeological past, questioning the axes of past/present, human/nonhuman, and the archaeological record as given/constructed.

In this context, the goal of *archaeologies of possibilities* is not to close down or confine the past to a trend toward consensus; rather, the conceptual approach constitutes a stage in the structure of inquiry that seeks to incite different kinds of questions, suggest future paths to follow, and nudge some of the methodological interstices that often frustrate the suture of theory and evidence in archaeology (Lucas 2012). Key to my approach is an emphasis on contexts as *contexts for interaction* rather than sets of associations, mobilized in the evidence through a relational concept of the landscape as inhabited. These two concepts act as the interpretive lenses for engaging with the borders of the past and exploring its co-extensive heterogeneity and multilineal possibilities.

APPROACH AND UNDERLYING CONCEPTS

Rather than awaiting the arrival of an already written future inscribed as the inevitable changes of an “archaeology of anticipation” (Ferris 2006, 102, cited in Jordan 2010, 80), *archaeologies of possibilities* foreground relations and open-ended contexts for interaction, exploring the conditions of possibility in the multiple, and potentially contradictory or incommensurable, tendencies of the past and present. The approach is anchored by the following concepts:
1) A multilineal perspective of temporality that confronts the past in its dynamic multiplicity and potential to be otherwise, blurring the discrete trifurcation of past, present, and future, and inflecting the singularity of narrative teleology. This is accessed through an understanding of archaeological contexts as contexts for interaction.

2) A relational approach to identity and community formation, emphasizing the emergent and co-constitutive processes of subjectivity. I explore entities relationally through a concept of the landscape as brought to life by movement.

The goals are to revitalize imaginings of the archaeological past with a sense of the improvisational contingency of the present; to see the past’s heterogeneous possibilities rather than to arrive at a narrative that appears given in the material record; and to set up contradictions as analytical foci rather than problems to be reduced to a unitary narrative.

The approach: I argue that a multilineal concept of time and process requires an approach to the role of the past and the relationship between continuity and change that does not oppose the processes as one or the other, but rather engages with their dialogic ontology. Continuities condition the range of possible futures and orient approaches to contingency. Transformation, rather than external to continuity, is immanent in the (re)assembling of persistence (Clifford 2013; Ferris 2009; Silliman 2009). Archaeologies of possibilities thus explore the ongoing, creative processes of not only change, but also continuity (Chapter Five), engaging with flexible categories of analysis (Chapter Six) that allow for internal dynamics and tensions as well as confronting the representation of contradiction and entangled histories at multiple scales. Central here is a rethinking of the basic animating concepts of the past and context, and the relationship between them.

THE PAST, TIME, AND SPACE
Approaching the past in this way requires a more dynamic view of how multiple temporalities connect. The inevitability narrative cordons off a past constructed as an authentic reality of what happened, seeking to explain this *what was*. This *what was* traces what seems relevant for an assumed end point—e.g., the Roman province of *Britannia*—and elides or distances that which does not speak to the development of the a priori end point. This kind of directional process presupposes itself by constructing an otherwise as anachronistic or marginal, as not of the same time or space. However, development is not necessarily immanent in the origin, nor imminent in arrival. Seeing the past as it was can also be about seeing the past as it could have been—the ways in which hoped for inevitabilities did not materialize, or could have intervened against alternative happenings (Sassaman 2012).

In other words, for the people living it or experiencing it, there may have been different pasts or futures from what is now recognized, from the standpoint of the researcher, as critical moments, developmental trends, or inevitable outcomes (Carr 2001; Silliman 2009, 2012). Historian David Carr argues that one must take into account this “interplay of points of view between historian and historical agent, between real and intended consequences, between the reality of the historian and that of the agent (2001, 165):

Seeking to "locate" an action in the real world, with respect to time, the historian inevitably situates it in relation to the events that really followed. For the agent, however, the act was not so situated, and the genuine understanding of the action seems to require taking seriously the agent's point of view. But this means that the very attempt to represent the reality of an action requires that it be located in a time whose future reality was very different from what really happened. … The temporal setting of an action includes much more than its intended consequences. … And the past of the action, for the agent, like its future, is not limited to its immediate antecedents. (Carr 2001, 158–60)

Historical explanation locates the agent and action within the settings that actualized, but the agent and action were not situated with respect to this. A disjunction is created because the future
of the setting of the agent was not necessarily what we see as having happened, and it is the latter
to which we try to relate the agent’s past, action, and reality. The reality and explanation must
consider the possibilities of different futures from the trajectory that ended up happening, or
different pasts from what seem like the antecedents of the action to the researcher. The temporal
moment of the Late Iron Age, for example, might not contain the whole spectrum of pasts
relevant for understanding the Roman imperial occupation (Chapter Six).

The place and time of action are thus not external to the social phenomena being
investigated, but in fact are part of the phenomena to be explained. Spaces, beyond serving as
external parameters for action, pose the challenge of a “plurality of trajectories” among
“coexisting heterogeneity” (Massey 2005, 12). This means that what materializes as the
archaeological record does not encapsulate the range of expectations and understandings of the
past, present, and future for the people and communities at the time. The relevant pasts and
contexts for those pasts in identity and memory making can shift in time (Silliman 2009). The
reality is not only what happened—what appears actualized in the material record—but also
about potential happenings in a contingent context of relationships. These potential happenings
may have been critical in the context of the agent, however the intended and unintended
consequences unfolded. A result is “itself only the contested outcome of many contradictory
relationships. … It is conceivable that things might have been different” (Wolf 1982, 6). The past
might hold different futures from what we think we see. An assumption of inevitability, of
already, obscures and excludes other ways of being and other times, and relating to time.

To develop a structure of inquiry that confronts a multilineal approach to time, space, and
the past, I draw insight from the challenges posed by Dipesh Chakrabarty’s (2000)
Provincializing Europe and Ranajit Guha’s (2002) _History at the Limit of World-History_, which
destabilize historical ontology and explanation from their containment in the European modernist and colonialist paradigm. Both works problematize categories—e.g., capitalism (Chakrabarty) and the state (Guha)—that presuppose their own narrative telos, wherein a universal historical logic reduces the past to the relevance for its future. This narrative annihilates other futures in the past while creating the past as precondition. While Chakrabarty’s and Guha’s analyses are situated in the context of political modernity, such that the categories they challenge as well as the exclusions created by those categories cannot be uncritically extrapolated to understandings of Roman imperialism, the teleology of the Romanization paradigm and its discursive relationship to narratives of European civilization (Chapter Two; Hingley 2005, 14–49) share conceptual ground with the kind of universal historical logics that Chakrabarty and Guha critique. I have found their approaches useful for animating archaeological categories with a sense of the contingent, provisional, and co-extensive, potentially opening up a comparative bridge toward reconfiguring approaches to the Roman context. I explore below the inflection of the universal with the potential, confronting the simultaneity of multiplicity rather than the standard of the normative, including the implications for concepts of the past and context in archaeology.

I focus on the way that narrative structures and expectations underwrite relations with time, space, and ontology. Narrative time and experience are co-constitutive (Guha 2002; Giddens 1984). In Imagined Communities, Benedict Anderson (1991, 187–206) charts the biography of national origin stories, where the nation concept rests on the relegation of history to the past as ruptured with the present at the same time that this history needs to be assimilated as the presupposition of the nation’s genealogy—as “serial continuity” (1991, 195). Rather than containing historical trajectory in the assumptions and pasts relevant for an already actualized
category, Chakrabarty and Guha engage with a sense of time and the past that exist in tension with and pose challenges to those categories. For example, the universalizing narratives of capital (Chakrabarty) and Hegelian World-History (Guha) claim to speak for historical ontology, excluding ways and times of being counter to the fulfillment of their teleological imperatives—i.e., pasts that do not orient toward the present and future of the narrative. Rather, Chakrabarty and Guha offer a different understanding of history and time that confronts contingency, highlighting diverse ways of being and the concreteness of lived lives in a fragmentary present.

Useful here is Chakrabarty’s distinction between History 1 and History 2s and Guha’s concept of historicality. The narrative of History 1, capital’s telos, constructs a past that presupposes its own development, confining difference to anachronism. But, Chakrabarty argues, the totality of this history is always confronted by History 2s, other possibilities and tendencies that do not guarantee the actualization of capital’s narrative. History 2s are not subordinated to History 1, nor are they an alternative external to the latter’s universal claims; rather, they refract ontological totality into heterogeneous temporalities of being and belonging, incommensurable with assertions of teleological privilege. The abstract category (capital) is a history of interruption and translation rather than transition.

Guha’s historicality also engages with these other tendencies, thinking beyond “development as actualization” to exploring experiences as “something yet to be” (Guha 2002, 78). Historical narrative is not only about the development of a phenomenon from an origin point, teasing out the trajectories relevant for its actualization, but about the contingency of other tendencies that are not yet actual in their “incipience of sheer possibility” (Guha 2002, 78). Guha counters the World-Historical paradigm’s selectivist relationship to the past and time, exploring
a history that engages with the creativity of being, and becoming intelligible to others, in the everyday of the world.

Drawing from these insights on the past, time, and space, archaeologies of possibilities encounter relations and entities “on the verge of the actual” (Ingold 2006, 12) or as the “tendency of the possible” (Guha 2002, 79). There are multiple possible futures for a past. The past is not only “past experience, but past possibilities” (Sassaman 2012, 253). The past is not something that is “done with,” something that cannot move forward in time, or that can move forward in time only as a holdover or remnant (Gould 2013). There are heterogeneous ways of being and belonging in presents, other tendencies, that cannot be relegated to a temporality of anachronism claimed by the teleological narratives of civilization and modernity (Chakrabarty 2000). The past can unfold in the present rather than remaining always behind.

How does this reformulate what constitutes an explanation? I mean that we should not let the “could have been” become extinguished by the trajectory that ended up happening. We should not look at only the significance for what ended up materializing—“what (really) came afterwards” (Carr 2001, 161). The goal is to move beyond isolating the subject, the origin point, and the evolutionary narrative explanatory for the trajectory of the subject; such a narrative expectation monologizes and essentializes the subject’s properties and development (Foucault 1972). As Eric Wolf writes of the genealogy of the West,

neither ancient Greece, Rome, Christian Europe, the Renaissance, the Enlightenment, the industrial revolution, democracy, nor even the United States was ever a thing propelled toward its unfolding goal by some immanent driving spring, but rather a temporally and spatially changing and changeable set of relationships, or relationships among sets of relationships. (1982, 6)
Other tendencies emerge and inflect singular narratives, and *archaeologies of possibilities* do not dismiss these other tendencies as external to the explanation, but confront them as relevant for constituting reality at the time—the relational field that orients understanding and possibility.

I argue that thinking needs to move in multiple directions rather than align linearly. In *A Thousand Years of Nonlinear History* (1997), philosopher Manuel DeLanda outlines a non-teleological history of the West as a narrative of “contingencies, not necessities” (1997, 99), countering the arrival of modernity as the optimal outcome that ends history. Transitions cannot be neatly delimited as stages that completely replace antecedents: “each successive layer does not form a new world closed in on itself but, on the contrary, results in coexistences and interactions of different kinds” (1997, 21). Emergent relations are not necessarily coterminous at a single, society-wide scale (1997, 48).

Michel Foucault makes a similar point in *The Archaeology of Knowledge* (1972), arguing against the tyranny of the subject, origin, and teleology in constituting historical analysis. His approach to history does not reify the historical period as a unified discourse, but rather foregrounds the relations that constitute historical conditions and the possibilities for certain positions to emerge. An archaeological analysis, the term for Foucault’s methodology, probes such “rules of formation” and conditions of possibility rather than seeking a transcendence that exists outside of the specifics of discursive practices. In other words, archaeology works against isolating the unity of the subject as the object of analysis and then tracing the subject’s origin and development in a continuous sequence as a coherent consciousness. Archaeology seeks the “discontinuity” that an a priori teleology cannot “reduce” and “map[s] it in a dispersion that no pre-established horizon would embrace” (1972, 203). The object of analysis is not rupture and transition but emergence and transformations, which do not occur at only one level or along a
uniform temporality: “What [archaeology] suspends is the theme that succession is an absolute…
that there is in discourse only one form and only one level of succession” (1972, 169). Rather,
contradiction is not an error to be reduced but to be examined (1972, 152, 171).

A critical issue here is simultaneous differences—tensions and multiplicities that co-exist
in any present, rather than being relegated to one temporal or spatial dimension or another. To
frame this in the language of the Romanization debate, the landscape in Roman Britain was not
constituted in reference to an already given standard of continuity and change, where difference
from this developmental process can be relegated to the anachronistic, homogenized Iron Age
past.

Thus, the approach engages with the interaction and conflict of tendencies, and not just
the tendency that appears materialized in the archaeological record. This means thinking about
the site’s or the past’s “many potential stories” rather than assuming that one “specific story”
(Praetzellis 1998, 1) will be compelled by the evidence. Central to confronting the multivocality
of the past is engaging with continuity as contingent and immanently transformative (Chapter
Five): “The whole enunciative field is both regular and altered: it never sleeps” (Foucault 1972,
146). Thus:

This refra mes the question: Rather than setting up an either/or dichotomy within
questions themselves—e.g., do things change (which implies an or not)—inquiry explores
the contexts for interaction and processes of regulation and dispersion, tendencies that could
have been otherwise. This otherwise is not an anachronism or externality to a dominant
trajectory of development. It is a range of possibilities that constitutes the dynamics of
experience and the intersection of multiple temporalities.
This also reframes the expectation: Rather than a series charted by a singular chronology and prefaced by a prototype already actual in its destination, historical order is relative to contingent conditions (Foucault 1972, 142). Archaeologically, the goal is to not only isolate the archaeological evidence and explain what appears responsible for those material residues as a coherent narrative free from contradiction, but to recoup a sense of conditions of possibilities that may have been conflictual. Therefore, rather than pairing the development of a sequence along a uniform temporal trajectory that homogenizes the evidence, the analysis seeks the diverse conditions of place-making that are debatable, multiple, and themselves constitutive of temporalities (Barrett 2004). Considering these appeals to contingency, possibility, and relationality, to seeing the multiplicity of the present in the past, I consider change in the context of (re)articulating spheres of interaction rather than as a rupture or lack of disturbance of a default pastness. The approach is to keep in mind that experience confronts a multiplicity of potentially actualizing futures.

THE ARCHAEOLOGICAL CONTEXT

Rather than treating context as framing meaning we are perhaps better thinking of context participating in the recombination or reproduction of meaning.
Andrew Jones (2007, 82)

Archaeologically, this approach to possibilities attempts to avoid excising or exteriorizing that which cannot be accounted for by pre-arranged sorting into artifact typologies, the boundaries of period chronologies, and developmental trends. How does this fit into a picture of the archaeological record and a concept of context?

Papaconstantinou (2006) documents the various ways that the concept of context has been understood in archaeology (see also Gardner 2007, 49–51). The term context has assumed diverse definitions, as different paradigms and archaeological traditions have given weight to
different aspects of the concept—for example, “spatio-temporal distributions of finds” versus other factors such as “associations among artifacts” (Papaconstantinou 2006, 16)—depending on theoretical models, methodologies, or research goals and strategies. Contexts also span multiple scales, such as the distribution of sites within a landscape, individual sites, structures, features, or artifacts and their typologies (Gardner 2007, 49). Contexts have been variably valued or defined as chronology (evolutionary and cultural–historical approaches of the early and mid-twentieth century), as depositional processes (the New Archaeology of the 1960s and 1970s), as culturally specific meaning (the post-processual or interpretive archaeology of the 1980s), and as constructs transformed by archaeological interventions affected by present socio-political conditions (hermeneutical and ontological approaches in the 1990s and 2000s) (Papaconstantinou 2006). Examining fieldwork practices and the writing of site reports reveals how concepts of context intersect with selections made about retrieving and recording data, configuring the nature of the archaeological assemblage and its possibilities for interpretation (Fowler 2013; Lucas 2012; Papaconstantinou 2006). Papaconstantinou (2006) contends that context constitutes a foundational concept in archaeology and that concepts of context intersect at all levels of disciplinary practices, in theory and in the field. Examining context as a foundational concept can “produce effects…in the providing of alternative narratives, different temporal scales and accounts, and in the reassessment of assemblage studies, research strategies, and interpretations” (2006, 16).

I attempt to access alternative narratives and different understandings of spatial configurations and temporalities through theorizing a concept of context as contexts for interaction. I do not mean to prioritize only one aspect or kind of context, or to neglect how notions of context are applied during fieldwork or writing reports (see Lucas 2012;
Papaconstantinou 2006). For the purposes of responding to the theoretical approach, I focus on the following questions: what is it that assemblages of material remains reveal, in terms of relationship to time, space, practice, and process, and how do they connect to meaning? The emphasis is on how a recursive understanding of archaeological contexts as revealing contexts for interaction rather than remnants of associations can help access the multiplicities of time, space, and practice.

The view of context that I am referring to as part of *archaeologies of possibilities* connects to recent reformulations of the ontology of the archaeological record itself as well as with the relationship between the record and how time, event, and process intersect and where they are located (see Lucas 2012 for a discussion). Key here is an idea of the archaeological record “not as a *record of* past events and processes but as *evidence for* particular social practices” (Barrett 1988, 6). Barrett (1987, 2001, 2004, 2006, 2014) counters an understanding of the record as residues *representative of* past realities, interpreting archaeological contexts in terms of “the forces and conditions that enabled history to be created” (Barrett 2006, 201). The past in this formulation is not just the *what was*, but acts as “that which structured history” (Barrett 2006, 201), foregrounding how forces and conditions were “activated at particular locations and times” (Barrett 2006, 201).

In this way, rather than representations of events whose meanings cohere in uniform processes or become objectified as trends and rules, the material assemblages of the past presence the conditions for social creation and transformation, articulating the contexts of possibilities through which those conditions of living were enacted, challenged, and transformed (Andrews et al. 2000; Barrett 2006). The context is the “inhabited conditions” (Barrett 2001, 156)— the “structural conditions of possibility” (Barrett 2004, 23). A concept of material
conditions as recursive does not excise the material conditions from process as generalized trends. Rather, material conditions encapsulate multiple trajectories and biographies. Thus, contexts are not just sets of static, background arrangements that provide the conditions for assessing the significance of an object or activity but intersect with the practices that produce them, “participating in the recombination or reproduction of meaning” (Jones 2007, 82).

Viewing the record as evidence for versus record of (Barrett 1988, above) calls for a delinearization of the context as something that has reached a complete or normative form (see Laguens 2013). Objects or places are not totalities passing through successive frames for action, but rather effects of ongoing acts of production. In this way, the context, assemblage, or object is not an actuality guaranteed by its incipient tendencies, but rather unfolds entwined with and challenged by other possibilities. Contexts for interaction highlight the multiple tendencies of the past and engage with these tendencies rather than essentializing an entity as typology and working back only to the past, temporal trajectory, or spatial setting explanatory for its emergence and actualization.

Thus, I attempt to approach the archaeological record not as the fragments representative of a prior unity, but as the conditions or positionalities for becoming intelligible in a world with others. The approach engages with a context that is not only about actuality but also possibility—not just the what was, but also the what could have happened. Archaeologies of possibilities therefore go beyond stitching together a continuous narrative that explains the material output represented in the archaeological record; rather, the approach explores the realm of the possible—the contexts for interaction that were emphasized, excluded, and allowed to co-exist or were contested in their co-existence.

CONCLUDING REMARKS: ARCHAEOLOGIES OF POSSIBILITIES IN SHORT
How is this approach implemented in subsequent chapters?

Goal: The goal is to refrain from isolating a subject as a unity traceable through a sequential continuity and then exploring the context that is only relevant for that. The goal is to explore the conditions of possibilities, accomplished through concepts of:

Archaeological contexts for interaction (see Chapter Five): Contexts for interaction are about *possibilities* that teeter on the determinate through ongoing emergences and transformations. Boundaries articulate as ranges rather than limits. In this framework, the archaeological context is not only the *what was*—an entity that prefaces a particular narrative assumed to be already actual in its antecedents—but emerges as the *what might have been*, the conditions of possibilities with multiple potential futures for the past. Contexts for interaction are thus these conditions of possibilities. Continuity and change in this framework are dynamic and interactive. →

Archaeological categories (see Chapter Six): *Archaeologies of possibilities* thus attempt to recoup a sense of contingency. The meanings of typologies are oriented around contexts that accommodate contradiction, the intersection of multiple temporalities, and transformation immanent in reproduction and persistence rather than fixed to a point of rupture—i.e., the transition narrative. →

Landscape, movement, community (see Chapter Seven): I explore these multiple tendencies through a relational approach to place and landscape. Here the *landscape* is defined as the multiscalar connections of locales and pathways that articulate social relations in space and time, enacted and challenged in movements. Communities are understood as “assemblages of people, places, animals, and things, bound together at times by co-presence, but always by particular kinds of practice and the affective fields these generated” (Harris 2014, 92).
Movements are the processes of entangling and disentangling that underwrite contexts for interaction.

The conceptual framework presented above is not meant to stabilize a particular vision of space, time, or the social in all periods and places; nor is this an injunction to universalize a specific kind of relationality as the default ontological explanation of social process (see Alberti and Bray 2009, 341). This recognition of multitemporality is not to make all periods equivalent in how time and the past are constituted and related to social and political situations, but to explore the contextually specific ways in which the ontology of time and the past are mobilized and contested in different settings. *Archaeologies of possibilities* serve as one kind of approach, aiming to open up our understandings of the past to heterogeneous ways of being and belonging that cannot be distilled into preconditions for a singular trajectory. It is a framework for posing questions and considering possibilities, exploratory rather than determinative.
Chapter Four frames the contexts for analysis, introducing the Dorset and Middle Thames Valley landscapes. The chapter reviews the traditional narrative of the Iron Age and Roman periods, situting the two regions and case study sites within this framework, briefly providing the relevant background to which the critique on continuity and change responds. Following from this discussion of the regional landscapes and case study sites, the fieldwork process, sources of evidence, and site databases are reviewed, with the analysis process expanded upon in the subsequent thematic chapters (Chapters Five, Six & Seven).

IRON AGE

<table>
<thead>
<tr>
<th>Chronology</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Iron Age</td>
<td>800/700–400 BCE</td>
</tr>
<tr>
<td>Middle Iron Age</td>
<td>400–100 BCE</td>
</tr>
<tr>
<td>Late Iron Age</td>
<td>100 BCE–CE 43</td>
</tr>
<tr>
<td>Roman/Romano-British/Roman Iron Age</td>
<td>43–410 CE</td>
</tr>
<tr>
<td>Early Roman</td>
<td>43–150/200 CE</td>
</tr>
<tr>
<td>Mid-Roman</td>
<td>150/200–250/300 CE</td>
</tr>
<tr>
<td>Late Roman</td>
<td>250/300–410 CE</td>
</tr>
</tbody>
</table>

The Iron Age in Britain is traditionally divided into Early (ca.800/700–400 BCE), Middle (ca.400–100 BCE), and Late (ca.100 BC–CE 43) phases, with the Late Iron Age ending in CE 43, the date of the Roman invasion (Table 4.1). The period is named for the widespread adoption of iron technology. Other technological introductions such as the fast potter’s wheel, pole lathe,
and rotary quern accompanied the transformations in metalworking (Cunliffe 1995, 115). Contact with the European Continent, having decreased during the Middle Iron Age, seems to have increased again in the later part of the period, quite possibly due to Julius Caesar’s military campaigns in Gaul in the mid-first century BCE, which expanded the penetration of the imperial economy (Haselgrove 1999, 131–32; Hill 1995b, 78–89). The entrepôt at Hengistbury Head in Dorset, overlooking Christchurch Harbor, constituted a major conduit of trade until the mid-first century BCE, when Continental routes shifted to the southeast (Cunliffe 2005, 179–83). Common imports included pottery—fineware as well as vessels containing wine—with tin, copper, lead, salt, and grain exported to the Continent.

A mixed economy of cereals and animal domesticates characterized subsistence practices (Hill 1995b, 60–62). Principal livestock included sheep and cattle, with pig, dog, horse, and domestic fowl also present, while wheat and barley constituted the main crops (Haselgrove 1999, 115–16). Seasonal movements to summer pastures may have been a part of the pastoral cycle. By ca. 1 BCE/CE, a population size of between two and five million people has been estimated (Hill 1995b, 61).

The settlement pattern in southern England during the Late Iron Age generally consisted of dispersed farmsteads, either open or enclosed by ditch and bank earthworks, often situated within complexes of fields and populated by one or more circular structures known as roundhouses. These structures were usually constructed of timber and daub and roofed with thatch. Common settlement features included pits, some used for storing grain; four- to six-post structures, interpreted as drying racks or granaries; curvilinear gullies, some of which may mark the presence of roundhouses; stretches of ditches and banks, some defining enclosures and networks of fields or paddocks; and waterholes or wells. Hillforts—hilltop sites enclosed by
earthworks—proliferated throughout southern England, also occupied by roundhouses, pits, and post-built structures (Cunliffe 2005, 238–53; Gale 2003, 95–133). Interpretations of hillforts range from economic and political centers, residences of elites, storage spaces for grain, or refuges for herds or people in times of conflict (Collis 1975, 1996; Cunliffe 1983). Their form and function varied throughout time and space, with a considerable amount of regional diversity in their use (Hill 1995a, 1996). This is also the case with sites traditionally termed *oppida* (sg. *oppidum*) (Collis 1984; Cunliffe and Rowley 1976)—extensive complexes of earthwork enclosures or nucleated settlement often integrated with river valleys, marshes, or woodland—a type of settlement emerging during the Late Iron Age often interpreted as political centers, with industrial and coin-minting functions (Creighton 2000; Haselgrove 1999, 120–22; Hill 1995b, 67–72; McOmish 2011). It is probable, however, that not all sites classed as *oppida* should be grouped together under a single category, and the term is considered outdated by many. Some of these complexes—e.g., Silchester/Calleva Atrebatum (Hampshire), St. Albans/Verulamium (Hertfordshire), and Colchester/Camulodunum (Essex)—served as the focus of towns during the Roman occupation.

The names and territories of communities in accounts of Late Iron Age social organization are founded on a 2nd century CE map by the geographer Ptolemy, which has been projected back into the pre-Roman invasion context (Figure 4.1). These names have been allied to coin distributions to define group boundaries (Cunliffe 2005; Sellwood 1984; see Papworth 2008, 31–32; Moore 2011, 335–39). The social models derived from Ptolemy’s map combined with texts such as Julius Caesar’s *De Bello Gallico* and the historian Tacitus’ *Agricola* and *Annals* provide a picture of large, static polities focused on a capital settlement, hierarchically organized around a small group of ruling elites. However, recent examination of Late Iron Age
socio-political geographies has challenged identifying social entities named in Roman sources as rigidly hierarchical homogeneous groups that commanded large, well-defined territories centered on single capitals, rather calling attention to the diversity of community organization (Hill 2006, 2011; Rogers 2015, 63–71; Smith et al. 2016) as well as dynamic processes of alliance building and consolidation of power (Creighton 2000; Moore 2011).

![Map of Roman Imperial Occupation](image)

Figure 4.1. Traditional view of Late Iron Age social groupings (adapted from Cunliffe 2005, Figure 8.1).

ROMAN IMPERIAL OCCUPATION

The Roman Empire invaded Britain in CE 43 under the Emperor Claudius, with an army of roughly 40,000 soldiers commanded by the general and first governor of the province, Aulus
Plautius (on the invasion and for syntheses of Britain during the Roman Empire, see Creighton 2006; Mattingly 2006; Millett 1990; Rogers 2015; for a recent historiography of research on the countryside in Roman Britain, see Smith et al. 2016, 4–8; for a recent synthesis of rural settlement in the South of Britain, encompassing Dorset and the Middle Thames Valley, see Smith et al. 2016, 75–140). Key textual sources of information on provincial administration by the Roman state derive from the politician, orator, and lawyer Cicero, from his accounts of his own governorship of Cilicia from 51–50 BCE as well as his prosecution of Gaius Verres, governor of Sicily from 73–70 BCE, on charges of corruption (a not uncommon accusation leveled at governors). In the early imperial period, an account of the military campaigns and governorship of Gnaeus Julius Agricola, governor of Britain from CE 77–84, is detailed in the *Agricola* (c. CE 98), written by his son-in-law, the Roman historian Tacitus (Richardson 1984, 27–58). Snippets of inscriptions and documents provide other evidence for imperial administration, although direct evidence for specific contexts in Britain is often lacking, with the result that information is frequently based on analogies with other provinces.

Appointed by the Emperor or Senate, the governor would have been in command of the provincial army and charged with legal and financial administration (Creighton 2006, 97–102; Mattingly 2006, 255–56, 275). The governor’s staff, perhaps totaling around 200 officials, could include procurators, who handled financial proceedings, as well as various other officers and assistants. Imperial freedmen and slaves likely undertook much of the administrative work in financial management (Mattingly 2006, 294–95). Towns in the provinces would have likely had their own forms of local government, although this would have varied among the provinces and been dependent on the particular circumstances of the towns in question.
In the mid- and later first century CE, major towns and small towns—some established from forts (for auxiliary troops), fortresses (for legions of Roman citizens), pre-invasion centers, or seemingly new sites—were founded, connected by an extensive road network (Figure 4.2) (Mattingly 2006, 255–91; Millett 1990, Table 4.4; see Fulford and Holbrook 2015 for recent syntheses on towns). Legal statuses were accorded to towns in relation to citizenship rights.

Figure 4.2. Locations of major towns in Britain during the Roman imperial occupation (Mattingly 2006, Figure 10).

The Roman state instituted civitates (sg. civitas) as administrative districts and economic centers, whose boundaries and populations were originally thought to accord with the territories of Late Iron Age polities (Mattingly 2006, 261; Millett 1990, 65–7; Wacher 1995, 15–16; but see below; Laurence 2001b; Rogers 2015, 51–54). Verulamium (St. Albans) was assigned the status of
municipium, a chartered town subject to Roman laws in which some residents, usually ex-magistrates, received Roman citizenship, while Camulodunum (Colchester) and later Lincoln, Gloucester, and York were accorded status as coloniae (sg. colonia), chartered towns populated by Roman citizens, often military veterans, and also subject to the Roman legal system. The citizenship distinctions became less pronounced after CE 212, when Caracalla instituted citizenship for most inhabitants of the Empire. By the end of the first century CE, the provincial governor seems to have taken up residence in London (Londinium) (Mattingly 2006, 265), which was established c. CE 48 perhaps as a community of merchants, although recent work suggests a role as a troop deployment center during the conquest (Perring 2015, 23).

Lands could be confiscated by the Empire and sold, co-opted as state land (ager publicus) or imperial estates for rent, appropriated for colonists (usually veterans), or placed under the jurisdiction of urban governments (see Mattingly 2006, 353–63; 2011, 125–45). Taxation, tribute, and labor would have been extracted from communities throughout Britain, with figures for land rents, tax/tribute payments, and forced labor and army conscription assessed through the institution of surveys and a census. Regularly levied taxes included the annona (grain tax), tributum soli (land tax), and tributum capitis (poll tax). The degree to which lands may have been returned or the type and amount of taxes levied varied from case to case, with Rome often enacting harsher penalties upon communities viewed as disloyal to the state. Such burdens were often steep and exploitative, sometimes provoking armed resistance. Disputes regarding taxation apparently constituted one of the reasons for the rebellion led by Boudicca in CE 60–61 (Mattingly 2006, 293; 2011, 137), which resulted in the burning of administrative buildings at Colchester, St. Albans, and London (Mattingly 2006, Table 2, 333).
The total population is estimated at around 2 million (Mattingly 2006, 293), with the majority living in the countryside. Farmsteads, networks of fields and paddocks with trackways and droveways, nucleated settlements, villages, roadside settlements, and villas constituted the rural communities (Mattingly 2006, 379–427; Putnam 2007, 78–83; Smith et al. 2016; for rural settlement, see also Allen et al. 2015; Taylor 2007), with settlement types varying across the countryside, major and minor towns, and garrisons (Mattingly 2006) and exhibiting a considerable amount of regional diversity (Smith et al. 2016). In the South, enclosed sites represent the most common farmstead type (Smith et al. 2016, 84). From the Late Iron Age to the Late Roman period, the proportion of enclosed farmsteads decreases at the same time that complex farmsteads—sites exhibiting extensive spatial differentiation—rise in number, while the proportion of open farmsteads decreases over time (Smith et al. 2016, 84). The presence of enclosed farmsteads is more consistent on the chalk downland, with complex and open farmsteads clustering around the Thames, Colne, and Kennet river systems (Smith et al. 2016, 85). Villas are not common in Dorset or the Middle Thames Valley, although they are comparatively better represented on the Upper Chalk of East Berkshire and in Surrey (Booth et al. 2007, 60, 66). Roundhouses or circular structures continued to be built, with rectangular structures—sometimes with tiled roofs and painted, plastered walls—also present in increasing numbers (Mattingly 2006, 353–78). Some crops were introduced or cultivation was intensified, such as rye, oats, vetch and flax. Although cattle consumption seems to have proportionally increased throughout the period, cattle, sheep and pigs remained the animal mainstays (Esmonde Cleary 1999, 171).

THE LANDSCAPE OF DORSET IN THE SOUTHWEST
The county of Dorset is located along the coast in southwest England (Figure 4.3). Dorset’s geological zones consist of sweeping Cretaceous chalk downlands in the central area, fostering lighter soils, with Jurassic limestones, sandstones, and clays bordering the chalk to the south and west, forming the Blackmoor and Marshwood vales. Tertiary sandstones, clays, and gravels constitute the eastern area. The heathlands east of the chalk extend into the Poole, New Forest, and Hampshire basins (Figure 4.4). Three major river systems—the Avon in the east, the Stour in the center, and the Frome in the south and west—run through the county. The waterways would have been navigable and likely constituted communication and trade routes. The rivers and tributary networks primarily drain into Poole Bay (Gale 2003, 16–18). See Papworth (2008, 2011) for syntheses of Dorset during the Iron Age, and Putnam (2007) for the Roman occupation.

During the Late Iron Age, Dorset is thought to have represented the territorial zone of the Durotriges, a social grouping traditionally characterized by distinctive Black Burnished Ware pottery, coinage, metalwork, farmsteads, hillforts, and burials, the name identified through Roman historical documents and two stone inscriptions from Hadrian’s Wall, a fortification in northern Britain constructed in the 120s CE to mark and regulate the imperial frontier (Brailsford 1957; Brown 1997; Papworth 2008, 25–29, 73–95; 2011, 24–29, 50–60; Putnam 2007, 13–20; Whimster 1981, 37–59). The production of Black Burnished Ware pottery centered on the Wareham/Poole Harbour region of Dorset, and was exported throughout the county. Production of Black Burnished Ware (BB1) intensified during the Roman occupation, with the military acting as a major market for the coarseware vessels.
Figure 4.3. Top: The location of Dorset (outlined) and the Middle Thames Valley (shaded) in relation to the course of the Thames River. Bottom: Key towns in the Dorset environs. Contains OS data © Crown copyright and database right 2014, 2016.
Prominent hillfort sites in the Dorset environs, often overlooking the river networks, include Maiden Castle in the Dorchester area, Hod Hill and Hambledon Hill in Central Dorset, and South Cadbury in neighboring South Somerset (Papworth 2008, 2011). All of these hillforts show signs of intensive occupation of the interior. Other hillforts, such as Poundbury, were more sparsely occupied, perhaps serving as enclosed grazing areas for livestock (Sparey Green 1987). While some of the forts, such as Pilsdon Pen (Gelling 1977) or Poundbury, appear to have been in use during the Late Iron Age, settlement increasingly moved into farmsteads in valley bottoms, with enclosures and field systems demarcating the surrounding landscape (Sharples 1991).
Burial rites that have been traditionally attributed to the Durotriges clustered along the coast in South Dorset, characterized by crouched (flexed) inhumations in flat earth- or chalk-cut graves, with stone-lined cists sometimes represented. Burials sometimes included offerings, with common grave goods comprising pottery vessels and joints of meat. Graves were placed in defined areas or cemeteries, although inhumations or cremations on settlements are also documented (Hamlin 2007, 63–64; Whimster 1981, 37–59).

Articulating with recent re-evaluations of Iron Age social organization (Hill 2006, 2011; Moore 2011), reconsideration of the Dorset evidence suggests that the people of this area should be understood as a loose association of social groups who may have shared some economic or political affiliations—suggested by the widespread pottery and coinage networks—rather than as a spatially bounded homogeneous collective (Gale 2003, 124; Papworth 2008, 2011, 59–60, 174–80). The distinctive coinage and Black Burnished Ware pottery show uneven concentrations across Dorset and south Somerset, with widespread distribution only emerging in the latest Iron Age. The differential distributions of material culture, both geographically and temporally, combined with the diversity of settlement organization across Dorset could indicate fluid formations of social boundaries and shifting economic or political alliances (Papworth 2008, 2011). The social and political organization of the region is not yet well understood, with little indication of powerful elites (Cheetham et al. 2013, 40–41); however, it is possible that wealth and power may have been constituted through control of livestock, horses, or grain (Papworth 2008, 17, 19; 2011, 20). A burial with a sword at Whitcombe (Aitken and Aitken 1991), a burial with a bronze mirror at Portesham (Fitzpatrick 1997), and the differences in size of roundhouses and enclosures within Hod Hill (Papworth 2008, 215) are sometimes cited as evidence for social differentiation.
Commanded by the future Emperor Vespasian, the Legio II Augusta was charged with subduing the Dorset area, the effects of the military campaign evidenced by traces of violence at some of the hillforts (Papworth 2008, 72–73; Putnam 2007, 25–26). At Hod Hill, for example, Roman ballista bolts, evidence for burning, and the erection of a military fort inside the hillfort’s earthworks indicate armed conflict. While the continued military campaigns on the island into the 70s CE, the establishment of garrisons, and the movement of people from hillforts and other settlements to towns is unlikely to have proceeded without resistance and coercion, the degree of violent resistance in Dorset after the invasion is unclear.

Around CE 65–70, the town of Durnovaria, modern-day Dorchester, was established, perhaps as the civitas center for the area (Papworth 2011, 26; Putnam 2007, 34–35). Dorchester lies in a shallow basin near the confluence of the Rivers Frome and South Winterborne, with higher hilltops and slopes straddling the site to the north, west, and south (Smith et al. 1997, 1). The town was laid out with a street grid, forum (town center), basilica (public hall), bath complex, amphitheater, and aqueduct, connected by the road network to Badbury Rings to the east, Ilchester to the north, and Exeter to the west. Analogies with documented practices of administration in other imperial provinces suggest that the town was placed under the leadership of an ordo (county council) consisting of leading members of the surrounding community, with the town inhabited by local community members and some residents or laborers from other regions of Britain and the Empire (Mattingly 2006, 293; Papworth 2008, 27, 29; 2011, 24, 26–27; Putnam 2007, 38–39).

Due to the size and seeming prominence of the town, Durnovaria is usually identified as the civitas capital (Papworth 2011, 26). However, it should be noted that the stone inscriptions from Hadrian’s Wall identify Lindinis, modern-day Ilchester in Somerset, as the Durotriges’
civitas center (Papworth 2008, 27–28; 2011, 26–27). It is possible that *Durnovaria* never acted as the *civitas* capital, that this function later shifted to *Lindinis*, or that *Durnovaria* and *Lindinis* served as dual administrative centers. This variability warns against a static and uniform model of territorial division equating one *civitas* to a single group of people, administering and bounding a large area (Smith et al. 2016, 402–3); the political geography was perhaps more fragmented (Laurence 2001b). While only a few inscriptions from *Durnovaria* survive, a funerary inscription describes a man named Carinus as a citizen of the Dumnonii (*Carino/ civi [D]om[nonio]*) (Collingwood and Wright 1965, RIB 188), the name attributed to the social group whose lands extended west of Dorset to Land’s End in Cornwall. This suggests that people from various regions were not contained in bounded territories equated to a single identity.

THE LANDSCAPE OF THE MIDDLE THAMES VALLEY IN THE SOUTHEAST

The Thames Valley, especially the Upper Thames, constitutes one of the most intensively studied areas archaeologically in England, in part due to gravel extraction and dredging activity (Benson and Miles 1974; Bird and Bird 1987; Booth et al. 2007; Fenner and Dyer 1994; Gates 1975; Harding 1972; Hingley and Miles 1984; Lambrick and Robinson 2009). The Upper Thames Valley spans the river’s source southwest of Cirencester to the Goring Gap, while the Middle Thames flows from the Goring Gap to Teddington Lock, the start of the tidal zone. The Middle Thames Valley crosses the counties of Berkshire, Buckinghamshire, Greater London, Hertfordshire, and Surrey (Figure 4.5). Gravel terraces flank the Upper and Middle Thames
The counties of the Middle Thames Valley study area, including the location of Staines and key surrounding centers. Contains OS data © Crown copyright and database right 2015, 2016 environments—the first terrace or floodplain (Shepperton gravel in the Middle Thames), the second terrace (Taplow gravel in the Middle Thames), the third terrace (Lynch Hill gravel in the Middle Thames), and the fourth terrace (Boyn Hill gravel in the Middle Thames) (Booth et al. 2007, 6–7).

From the Goring Gap the Thames flows into the London Basin, characterized by London Clay. The soils of the London Clay are more acidic than the Oxford Clay soils of the Upper Thames Valley. To the north of the London Basin lies the Chilterns chalk escarpment, which the River Colne drains into the Thames, while the North Downs rise to the south (Figure 4.6).
The Kennet river joins the Thames at Reading, running alongside the Berkshire Downs chalk escarpment. From Reading the course of the Thames continues east to London. See Lambrick and Robinson (2009), Booth et al. (2007), and Lewis et al. (2010) for recent syntheses of long-term landscape histories in the Thames Valley.

Rural settlements proliferated on the Thames gravels in the Late Iron Age, with trends toward demarcating settlement space by enclosure ditches (Booth et al. 2007, 33–36). This pattern is less pronounced in the Middle Thames, with both open and enclosed sites and sparser settlement, including a pattern of small open sites on the flood plain (Booth et al. 2007, 33–36; Smith et al. 2016, 129). The large complexes of linear earthworks termed *oppida* are not situated
directly next to the Thames, but Silchester and St. Albans to the south and north of the Valley likely influenced settlement and social organization in the region. The traditional narrative of social groupings locates the Thames Valley within the territories of the Atrebates in the south, centered on Silchester; the Catuvellauni in the east, centered on St. Albans; and the Dobunni in the west, with a center at Cirencester, these sites later serving as administrative towns during the Roman occupation (Booth et al. 2007, 37). The Thames is thought to have acted as a boundary between these territories. Unlike Dorset, the coins in the southeast from the mid-first century BCE depict and name individuals. Creighton (2000, 2006, 14–45) argues that leaders were consolidating power into two main dynasties, the Southern Kingdom of the Atrebates and the Eastern Kingdom of the Catuvellauni, in the context of client ruler entanglements with the Roman state, perhaps set in motion after Julius Caesar’s campaigns in Britain from 55–54 BCE. Other archaeological evidence includes elite burials at Folly Lane near St. Albans and the Lexden tumulus near Colchester, where an individual was buried bearing a silver medallion of the Emperor Augustus.

While Roman military forts have been located at Dorchester-on-Thames, Cirencester, and possibly Staines, it appears that the Thames Valley did not constitute a major route of advance for the army during the invasion; key sites were located at river crossing points linked to the road network (Booth et al. 2007, 36–38). The small town of Staines (Surrey) was established c. CE 65–70 along the road from London to Silchester (Booth et al. 2007, 38–41; Jones and Poulton 2010). Situated on a gravel island, the town’s name Pontibus, meaning “at the bridges,” attests to the significance of its position at a crossing point of the Thames and Colne rivers. Settlement developed on the island on either side of the road, which ran through the center. The town likely served as a local market, craft, transport, and possibly administrative center, with its economy
intertwined with London to the east. Activity at Staines was especially intensive during the second century CE, after which occupation appears to have declined, possibly related to third century flooding.

The majority of the population in the Thames Valley would have lived on rural settlements, which show variety in spatial organization and agricultural practices (Booth et al. 2007, 42–69). Continuity of activity from the Late Iron Age into the Roman period is evident, with some hiatuses in occupation or dislocation also detectable (Booth et al. 2007, 42–69; Smith et al. 2016, 83, 89). The first century CE may have been a period of reorganization in the Middle Thames Valley, with a decline in open settlement and rise in complex farmsteads in conjunction with increasing evidence for enclosure complexes and co-axial field systems (Smith et al. 2016, 129–35, 139). An expansion of field boundaries, for example, can be seen at Hengrove Farm. An intensification of livestock husbandry in the Roman period, perhaps related to Staines’ economy, seems indicated by the increase in waterholes, trackways, and droveways (Smith et al. 2016, 135, 139). Pastoral activities likely predominated in the Middle Thames region, with pastures and meadowland providing opportunities for livestock grazing (Smith et al. 2016, 133–34).

STUDY AREA SELECTION

Scholarship on landscapes in Britain during the Roman occupation has often resulted in a bias toward a focus on settlements “rather than on settlements and their articulation with the landscape” (Fulford and Holbrook 2011, 341). Through highlighting multiscalar connections, this dissertation explores how settlements articulate across the landscape, in space and in time. Dorset and the Middle Thames Valley were chosen because they geographically align with traditional concepts of continuity and change as applied to the Roman imperial occupation of Britain—separate axes of continuity and change. The southwest (Dorset), where there is less
political contact documented with Rome prior to the invasion and occupation, is traditionally characterized as a locus of continuity (Russell and Laycock 2010)—a rural landscape with roundhouses punctured by the presence of towns, some rectangular buildings, and the adoption of some items of Roman material culture. The southeast is generally represented as the locus of greater Roman influence, due to the evidence for contact and intervention by Rome prior to the invasion (Creighton 2006; Reece 1995). Here the landscape is built up with a more intensive urban infrastructure as well as villas and material culture seen as belonging to a Roman landscape.

SOURCES OF DATA AND FIELDWORK

Data Sources

Responding to the research goals required information on artifacts, fauna, and flora as well as structures, features, and the spatial layout of the case study sites (source: finds and plans as detailed in site reports); secure dating information for distribution sites (source: database records, site reports); and digital geospatial data for carrying out spatial analysis in a GIS (source: digital datasets from various agencies). The sources of data consulted consisted of published and unpublished—“grey literature”—reports on the case study and distribution sites, including finds (artifacts, fauna, flora) and site plans; digital geospatial data compatible with Esri’s ArcGIS software; and aerial photographs. The main institutional authorities providing access to the data were: county Historic Environment Records or HERs (database records, published and unpublished reports, GIS files); Historic England (HE) Archives (GIS files, aerial photographs); the British Library (published reports in monographs and periodicals); the Archaeology Data Service (ADS), which hosts select grey literature reports from various contractors as well as published periodicals; and the Rural Settlement of Roman Britain (RSRB)
online database (Reading University, Cotswold Archaeology, Leverhulme Trust, Historic England).

The November 1990 Planning Policy Guidance Note 16: Archaeology and Planning (PPG 16)\(^1\) mandated that developers fund archaeological interventions associated with development work in cases where planning permission was required (Fulford and Holbrook 2011, 323), prompting a significant number of commercial investigations. The results of many of these archaeological investigations were deposited as unpublished grey literature reports in local HERs with limited circulation (Fulford and Holbrook 2011, 324). The RSRB project (Allen et al. 2015; Smith et al. 2016), hosted by the ADS, sought to integrate reports on Roman rural settlement generated from developer-funded investigations with academic sources and national syntheses (Fulford and Holbrook 2011). The RSRB database provides freely accessible records on settlements from the Late Iron Age through the Roman period, including downloadable grey literature, published reports, and plans for all sites where this information was available.

Data Gathering and Fieldwork Process

I carried out on-site fieldwork over a 15-week period from February 15–June 3, 2015, with a brief follow-up visit from September 6–10, 2015, at county Historic Environment Records, Historic England, and the British Library.\(^2\)

Historic Environment Records, or HERs, are local publically accessible records of archaeological and architectural history, held by county or unitary authorities in the United Kingdom. Many HERs hold this information in a database with a digital mapping component and include the location, period, description, and sources for a record. I consulted the records

1. In March 2010, PPG 16 was replaced by Planning Policy Statement 5: Planning for the Historic Environment (Fulford and Holbrook 2011, 323), now enshrined in the National Planning Policy Framework since 2012 (Allen et al. 2016, 1).
2. This research was supported by a Wenner-Gren Foundation Dissertation Fieldwork Grant (Grant No. 8948).
offices and libraries of the following HERs: Dorset (Dorchester); Middle Thames Valley: Greater London (London), Berkshire (Reading), West Berkshire (Newbury), Surrey (Woking), Buckinghamshire (Aylesbury), and Hertfordshire (Hertford). Database records and GIS files from the Hampshire HER (Winchester) were collected remotely. While on the fringes of the core study region, Hertfordshire and Hampshire provide context for Verulamium (St. Albans) and Calleva Atrebata (Silchester) respectively, two important centers for the development of the Middle Thames landscape over this period. I spent three weeks in residence in Dorchester, one and a half weeks in Reading, and around twelve weeks in London (including the follow-up visit), commuting from Reading to Newbury and from London to Woking, Aylesbury, Hertford, and Swindon (EH Archives). Access to the HER offices and HE Archives was by appointment; I could consult the BL Monday through Saturday after I obtained a Reader Card. The September follow-up visit allowed me to examine the results of my last aerial photograph search at HE Archives, which was not ready by the time of my departure in June due to a significant backlog and consequent delay in response time. I also used this time to further consult published articles at the BL and to visit the Spelthorne Museum in Staines, Surrey. While the focus of fieldwork was on sources not available remotely, the extensive collections of local journals at the BL allowed me to efficiently consult sources at a single location.

The fieldwork process entailed submitting enquiry forms detailing the nature of my research and the information that I required to each HER office as well as HE Archives. The HER officer at each location then sent me PDFs of records for relevant site categories (derived from the HE Thesaurus, http://thesaurus.historicengland.org.uk) for the LIA/ER time periods, including: settlement; enclosure; hillfort; and villa (Appendix E). Depending on the structure of the database, sometimes other terms not encompassed under the broad category "settlement"
were included, such as: occupation site, hillfort, and villa. I then selected records that had or appeared to have sufficient dating information to include as distribution sites. To determine if site occupations could be securely dated, I sometimes needed to consult additional or original documents—monographs, reports, or articles—for the sites. In cases where the main source for a site was unpublished, I first determined if the sources could be obtained remotely through online databases such as the ADS, the RSRB, or directly on the contractor's website. I consulted reports not obtainable through online databases at the HER offices, scanning or making copies where applicable. I also submitted aerial photograph enquiries (for Gussage All Saints, Dorchester, London, and Staines) to the staff at HE (their database is not searchable online). I then visited the Public Search Room in Swindon to examine the photographs. However, due to the scope of the project, I ended up omitting an examination of aerial photographs from the analysis, focusing instead on dateable material. Future analyses using digitally mapped aerial photographs from the National Mapping Programme, for example, could provide insight on the integration of settlements and field systems in landscape complexes.

The HER officers exported GIS data as Esri shapefiles and sent these to me electronically. HE Archives exported shapefiles of Roman roads as well as results from the National Mapping Programme (NMP) (AutoCAD drawings of landscape features such as settlements and fields) for the Dorchester region. Due to the scope of the project, I omitted the NMP drawings from analysis and did not request files for the Thames Valley. I also obtained digital datasets from the Ordnance Survey’s (OS) free Open Data program for the GIS spatial analysis. I downloaded datasets on landscape character areas from Natural England (NE) and geology from the British Geological Survey (BGS).

CASE STUDY SITES
After assessing the site reports available, the case study sites for each region were finalized (Table 4.2). To explore urban/rural dynamics, the seven case study sites chosen for each region included five sites in the environs of a town and two sites farther afield. In Dorset, Alington Avenue, Flagstones, Fordington Bottom, Poundbury, Maiden Castle Road, and Poundbury surround Dorchester (within a few kilometers), while Gussage All Saints and Rope Lake Hole are located at some distance (36 and 27 km, respectively) (Figure 4.7, see Dorset Site Histories; Appendix B, Figure 1). In the Middle Thames Valley, Ashford Prison, Hengrove Farm, Imperial College Sports Ground, Perry Oaks/Heathrow Terminal 5, and Thorpe Lea Nurseries surround Staines (all within 8 km), and Lea Farm and Wood Lane are located farther west (about 25 km) and north (about 12 km) (Figure 4.18, see Middle Thames Valley site histories; Appendix B, Figure 2). The sites were chosen for their geographic variety, the occupation duration during the time periods under question, and the presence of information available in published or unpublished reports regarding finds, structures, and features.

Below I provide a brief site history for each of the case studies chosen. Case study site histories describe the occupational evidence up to the Roman period but indicate where post-Roman, medieval, or modern activity is also evident. Note that plans used in other chapters are not reproduced here.
Table 4.2. Case study sites.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>RSRB ID</th>
<th>County</th>
<th>Km from D* or S**</th>
<th>Start Date</th>
<th>End Date</th>
<th>RSRB Site Type(s)***</th>
<th>Primary Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alington Avenue, Fordington</td>
<td>20087</td>
<td>Dorset</td>
<td>0.75</td>
<td>1</td>
<td>400</td>
<td>farm, funerary site, field system</td>
<td>Davies et al. 2002</td>
</tr>
<tr>
<td>Flagstones, Alington Avenue</td>
<td>20021</td>
<td>Dorset</td>
<td>1.4</td>
<td>-50</td>
<td>100</td>
<td>field system, farm, funerary site</td>
<td>Smith et al. 1997</td>
</tr>
<tr>
<td>Fordington Bottom, A37 Western Link Road</td>
<td>20023</td>
<td>Dorset</td>
<td>2.2</td>
<td>1</td>
<td>410</td>
<td>funerary site, farm</td>
<td>Smith et al. 1997</td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td>20018</td>
<td>Dorset</td>
<td>36</td>
<td>-100</td>
<td>100</td>
<td>farm, iron production</td>
<td>Wainwright 1979</td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>20022</td>
<td>Dorset</td>
<td>1.6</td>
<td>50</td>
<td>410</td>
<td>farm, funerary site, quarry</td>
<td>Smith et al. 1997</td>
</tr>
<tr>
<td>Poundbury</td>
<td>20060</td>
<td>Dorset</td>
<td>0.75</td>
<td>-100</td>
<td>700</td>
<td>funerary site, RC temple, roadside settlement, road, hillfort, village</td>
<td>Sparey Green 1987</td>
</tr>
<tr>
<td>Rope Lake Hole, Corfe Castle</td>
<td>20017</td>
<td>Dorset</td>
<td>27</td>
<td>-100</td>
<td>300</td>
<td>other industry</td>
<td>Woodward 1987</td>
</tr>
<tr>
<td>Ashford Prison, Spelthorne</td>
<td>10024</td>
<td>MTV, Surrey</td>
<td>1.8</td>
<td>-100</td>
<td>250</td>
<td>farm, field system</td>
<td>Carew et al. 2006</td>
</tr>
<tr>
<td>Hengrove Farm, Staines</td>
<td>10059</td>
<td>MTV, Surrey</td>
<td>1.8</td>
<td>-100</td>
<td>400</td>
<td>farm, field system</td>
<td>Poulton 2007a, b</td>
</tr>
<tr>
<td>Imperial College Sports Ground, Harlington</td>
<td>8053</td>
<td>MTV, Greater London</td>
<td>7.8</td>
<td>-50</td>
<td>400</td>
<td>farm, quarry</td>
<td>Powell et al. 2015</td>
</tr>
<tr>
<td>Lea Farm, Hurst</td>
<td>12024</td>
<td>MTV, Berkshire</td>
<td>25</td>
<td>1</td>
<td>300</td>
<td>farm</td>
<td>Manning and Moore 2000</td>
</tr>
<tr>
<td>Perry Oaks/Heathrow Terminal 5, Hillingdon</td>
<td>8026</td>
<td>MTV, Greater London</td>
<td>4.7</td>
<td>-100</td>
<td>400</td>
<td>farm, field system</td>
<td>Lewis et al. 2010; archive from Framework Archaeology 2011; Lewis et al. 2006</td>
</tr>
<tr>
<td>Thorpe Lea Nurseries, Egham</td>
<td>10042</td>
<td>MTV, Surrey</td>
<td>2.4</td>
<td>-100</td>
<td>400</td>
<td>farm, other industry, field system</td>
<td>Hayman 1992; Jones 1990; Poulton et al. 1993</td>
</tr>
<tr>
<td>Wood Lane, Slough</td>
<td>12018</td>
<td>MTV, Berkshire</td>
<td>12.3</td>
<td>-100</td>
<td>250</td>
<td>farm, field system</td>
<td>Ford et al. 2003</td>
</tr>
</tbody>
</table>

* Dorchester in Dorset; ** Staines in the MTV. *** See Smith et al. (2016, Table 1.1, 17–43) for site type classification. Data: RSRB database, HERs.
Alington Avenue, Fordington, Dorchester

Alington Avenue lies approximately 0.75 km southeast of Durnovaria’s town wall (Davies et al. 2002, 3). The road from the town southeast to Purbeck/Poole Harbour ran just north of the site. Investigation was undertaken in advance of housing development (Davies et al. 2002, 1). The areas of excavation included Alington Avenue and smaller-scale intervention at Trumpet Major I and II, adjacent sites to the north (Davies et al. 2002, 1). These areas abut a south/southeast facing slope of an east/west Upper Chalk ridge, bordered by the floodplain of the River Rome to the north and the South Winterborne Valley to the south (Davies et al. 2002, 9).
The site was inhabited from the Neolithic to the medieval period, with little evidence for Early or Middle Iron Age activity. After the Early/Middle Iron Age hiatus, Late Iron Age activity is evidenced by two pit burials within a Bronze Age–date double-ring ditch as well as a ditched field system (Davies et al. 2002, 34–40). Trumpet Major II yielded evidence of Late Iron Age activity of first century BCE/CE date, consisting of a shallow scoop, accompanying post holes, and possible pits.

A D-shaped enclosure was laid out in the Early Roman period (Davies et al. 2002, xiii, 57–76). Three stone-footed buildings stood within the bounds of the enclosure, contemporary with the enclosure’s multiple remodeling phases, while several ovens/grain driers (one of Early Roman date), pits, wells, and burials were dispersed throughout the area. Two of the stone-footed buildings (459 and 2126) appear to be contemporary with each other and of Early Roman date. The other structures, including a semi-cellaried building, appear to be of later Roman date. It is possible that the main habitation focus lay off site, while these features represent a farming unit. Over one hundred inhumation burials were excavated (Davies et al. 2002, xiii, 122–58). These are represented mainly by the crouched south Dorset tradition in the Early Roman period, c.CE 50–125, with the late Roman practice of extended inhumation, often in wooden coffins, appearing at approximately CE 175, 69 of which comprised what appears to have been the primary cemetery. For plans of Alington Avenue, see Figures 5.3 and 5.4.

Flagstones, Dorchester

The Flagstones site is situated on the upper slopes of the Alington Chalk Ridge east of Dorchester (Smith et al. 1997, 27; Woodward and Smith 1988, 81), approximately 1.5 km distant from the town. Excavations were carried out at the site preceding and during the construction of the A35 Southern By-pass and the A37 Western Link Road, by-passing the town of Dorchester.
Flagstones is one of three sites (along with Fordington Bottom and Maiden Castle Road) included in this study that were excavated along the 8.1 km total route, with Alington Avenue in close proximity. The Flagstones site yielded evidence for activity in the Neolithic, Bronze Age, Late Iron Age, and medieval periods, with some Roman and post-medieval finds (Smith et al. 1997, 27–48). The Late Iron Age (Period 3) phase consisted of a ditched rectangular enclosure, storage pits, burials, and a ditched field system, dating to the first century BCE (Smith et al. 1997, 42–44). No evidence of Roman-period structures or sub-soil features surfaced at the site (Smith et al. 1997, 44). A plan of Flagstones is provided in Figure 7.50.

Fordington Bottom, Bradford Peverell

Excavation was undertaken at Fordington Bottom (Figure 4.8) as part of the A37 Western Link road project (Chowne 1988; Smith et al. 1997, 1, 203). Fordington Bottom lies in a dry valley (combe) roughly 2.2 km northwest of Dorchester. Archaeological material was concentrated on the combe floor and hillside. The site yielded Bronze Age (consisting of several structures and ditches), Late Iron Age/Roman-period, and medieval/post-medieval material (Smith et al. 1997, 203–23). The Late Iron Age/Early Roman period spans Periods 4A and 4B in the report, established in the first century CE, with intermittent activity into the second century CE. Period 4A activity consisted of an enclosure ditch, an inhumation cemetery of 24 graves with “Durotrigian” burials accompanied by a structure, with a working area between these features. Two sunken-featured buildings and two ovens were recorded within the working area. Period 4B is characterized by the continuing use of the cemetery and associated structure with the addition of five graves in the cemetery area as well as six other graves. A series of pits and gully features accompany this phase. A possible robbed out foundation trench for a
Figure 4.8. Plan of Fordington Bottom: Periods 4A and 4B (Smith et al. 1997, Figures 90, 91).
Late Iron Age/Early Roman or Early Roman-period rectangular building was noted in the combe floor. Additionally, a series of partially excavated features on the upper terrace produced large quantities of artifacts, potentially indicating domestic occupation.

Gussage All Saints, Gussage All Saints (Cranborne Chase)

The archaeological site of Gussage All Saints (Figure 4.9) is located on the eastern slope of a ridge 100 m tall, overlooking the villages of Gussage St. Michael and Gussage All Saints, situated in a valley to the north (Wainwright 1979, viii). Approximately 700 m west of the site, a Roman-period road runs north to south across the ridge. Aerial photographs have revealed the presence of fields surrounding the west, south, and north. A brook running down through the valley in the north constitutes the nearest water source.

The site, totally excavated in 1972, consists of a circular enclosure of approximately three acres. The enclosure has an eastern-facing entrance flanked by two antennae ditches. Three phases of activity were defined, spanning the Iron Age (Wainwright 1979, 184–86). The Early Iron Age Phase I settlement consisted of a three-acre area surrounded by a ditch with an external bank. The main entrance lay in the east, defended by a timber gateway and flanked by the antennae ditches. Pits and working hollows were concentrated around four-post structures in the interior. During the Middle Iron Age Phase II occupation, the enclosure ditch was enlarged and the entrance modified. Pits, four-post structures, a single circular structure or roundhouse, and traces of a possible second roundhouse occupied the interior. The Late Iron Age Phase III occupation witnessed the digging of many new pits as well as the construction of three subsidiary enclosures within the main enclosure. The two most substantial are an east-facing trapezoidal feature that may have been a stock-enclosure and a ring-ditch with an accompanying timber gateway oriented toward the entrance of the main enclosure. These modifications
probably took place in the first century BCE/CE, with the settlement possibly continuing for a short time after the Roman invasion in CE 43 (Wainwright 1979, 25). Human burials were also found in pits and ditches dating to Phase 3.

![Figure 4.9. Plan of Gussage All Saints, Phase 3 (Wainwright 1979, Figure 19).](image)

Gussage All Saints yielded substantial evidence for metalworking (Wainwright 1979, 125–49). The base of an iron-smelting furnace, dated to Phase 3, was recovered in a hollow near the east entrance. Pit 231 yielded an unrivaled amount of metallurgical debris, in terms of quantity and variety. This assemblage included charcoal, wood ash, tuyère and fired hearth material fragments, lumps of prepared clay, iron slag, iron and bronze scrap, hammer scale, a tin bronze billet, almost 600 crucible fragments, thousands of fragments of fired clay investment molds used in the lost wax casting technique, fine bone tools for modeling mold patterns, and over 7,000 mold fragments. Based on the molds, it seems that the smiths at Gussage were casting pieces for chariots and fittings for harnesses. Although the pit was assigned to Phase 2, the assemblage likely dates to the first century BCE. Bronze and iron working are evidenced
throughout all three phases of occupation. Examination of the manufacturing and raw material demands that the production of the objects at Gussage would have exacted on the economy of the settlement led to the interpretation that metalworking constituted a regular activity of the inhabitants (Wainwright 1979, 125–49).

Maiden Castle Road, Winterbourne St. Martin

![Site Map](image)

Figure 4.10. Archaeological features at Maiden Castle Road (Smith et al. 1997, Figure 42).
The Maiden Castle Road archaeological site (Figure 4.10 & Figure 4.11) lies just north of the road of the same name (Smith et al. 1997, 56), roughly 1.6 km southwest of Dorchester.

![Maiden Castle Road Plan](image)

Figure 4.11. Plan of Maiden Castle Road Square enclosure (Smith et al. 1997, Figure 45).

The excavation at the site was undertaken as part of the A35 Southern By-pass and A37 Western Link Road project surrounding the town. Activity is documented for the Neolithic, Bronze Age, Roman, and medieval periods (Smith et al. 1997, 56–70). Neolithic and Bronze Age features may represent quarrying for flint or chalk extraction. During the Early Roman period, designated Periods 4A and 4B in the report (Smith et al. 1997, 58–62; Woodward and Smith 1988, 87–88), the site exhibited an east-west aligned ditched trackway parallel to the northern slope, dated to the first century CE. Activity during the first and second centuries CE is attested by quarrying
features and pits, a square ditched enclosure with a centrally placed grave, and a semi-cellared rectangular structure, which exhibited several finds of pottery. Three curvilinear ditches may have surrounded the semi-cellared building, although this is difficult to confirm with the stratigraphic evidence and finds data. An inhumation cemetery was established during the late Roman period.

Poundbury, Dorchester

![Aerial view of Poundbury.](image)

The Poundbury Hillfort (Figure 4.12, Figure 4.13, Figure 4.14 & Figure 4.15) is situated on the Upper Chalk just northwest of modern-day Dorchester, roughly 0.75 km distant from the town (Sparey Green 1987, 16, 19). The hillfort thus would have surrounded *Durnovaria*. The hilltop looks out over the Frome river valley, leveling into a combe below. Excavations in the
1960s were undertaken in advance of industrial development (Sparey Green 1987, 17).

Archaeological activity at the site stretches through the Neolithic, Bronze Age, Iron Age, Roman, Saxon, medieval, post-medieval, and modern periods (Sparey Green 1987, 14–15).

Phases IIE, IIF, and IIG constitute the Late Iron Age occupation, and Phase III the Early Roman. It is suspected that construction of Rampart 1 and the univallate (a single bank and ditch) hillfort began in the Late Bronze Age. During the Late Iron Age, the hillfort was remodeled as a multivallate complex, Rampart 2 was added, and an open settlement with structures terraced into the slope situated on the hilltop east of the enclosed area. The eastern entrance may have been elaborated at this time, with the establishment of a hornwork. There is some indication that the southeastern corner of Rampart 2 was never completed; however, a dyke constructed farther east may indicate construction of a larger network of defenses linking Poundbury to the earthworks of the Maiden Castle hillfort.

![Figure 4.13. Poundbury earthworks, view looking northwest. © Photo by author, 2015](image)

The extramural open Iron Age settlement underwent remodeling and rebuilding during Poundbury’s history. During Phase IIE, huts IA2 and IA9 replaced two Middle Iron Age huts.
Figure 4.14. Plan of Poundbury: Late Iron Age Phases (Sparey Green 1987, Figure 4).
Figure 4.15. Plan of Poundbury: Early Roman Phase (Sparey Green 1987, Figure 4).
Three new storage pits accompany the IIE structures. Hut IA9 underwent rebuilding once, and hut IA2 was remodeled twice. Phase IIF witnessed the establishment of structure IA4, five storage pits, and a nearby hollow (E470). In the final phase of the Late Iron Age occupation (Phase IIG), IA4 was replaced by the double-ring structure IA5, and a smaller hut (IA10) was constructed over IA2. One storage pit accompanies this last series of building episodes. East of this settlement in the combe, a boundary ditch may have been associated with another area of settlement, evidenced by the presence of circular structure IA1. Between these two settlements lay a cemetery filled with flexed (crouched) inhumations, likely founded before the Roman invasion. It is unclear if this cemetery continued to be used into the Roman period.

During the Early Roman period (Phase III), it seems that two or three timber and drystone buildings (R18 and R21) replaced Late Iron Age huts IA5 and IA10, which may have been abandoned for a brief period before Roman-period activity. Small pits, scoops, and an oven (E181) were contemporary with these structures. The boundary ditch in the combe was replaced by another one further to the east. The building of the aqueduct for Durnovaria, c.CE 50–150 (Putnam 2007, Figure 37) brought changes to the hillfort structure. The construction destroyed the outer rampart and eastern entrance and also led to the infilling of the hillfort ditches. Poundbury was the site of a large late Roman cemetery established for Durnovaria.

Rope Lake Hole, Corfe Castle

Rope Lake Hole (Figure 4.16 & Figure 4.17) is situated on a south-facing slope along a cliff edge (Woodward 1987, 125) on the Isle of Purbeck in southern Dorset. Trail excavations were carried out from 1975–76, and a 30x10 m excavation trench was set up at a right angle to the cliff edge in 1979. Occupation at the site spans the Iron Age and Roman period, with some post-Roman and medieval activity, including field terracing that may account for the lack of
visible Iron Age or Roman-period field systems (Woodward 1987, 125, 128–31). Early Iron Age activity (Period 1) is represented by circular stone structures and shale and flint waste, with stone revetment or structure walls and accumulated occupation debris constituting the Middle Iron Age phase (Period 2).

Period 3 represents Late Iron Age activity, beginning with pits, a burial (177) cairn (216), and a structure (238) cutting into robbed out Middle Iron Age structures (structural phase IVA). After the accumulation of occupational soils (structural phase IVB), two circular stone structures (322, 236) were erected (structural phase V), with pits cutting through the phase IVB soils (structural phases VIB and VIC). Period 4, the Romano-British period at the site, spans the second and third centuries, beginning with occupation debris (yard 135) and structure 319 (phase VIA) after what appears to be a hiatus, with a further yard (84) and structure (117) constituting the next phase (VIIA). A gully (85) and pit (97) cut across yard 84 in the final phase (VIIB). Agricultural activity during the medieval period distributed occupation debris (structural phase VIIC) across structural phases VIIB and V.

The briquetage (ceramic vessels used as evaporation containers to extract salt from seawater) and shale and flint waste point to the significance of the salt and shale industries at Rope Lake Hole (Woodward 1987, 145–6, 158–9, 165–77). An increased use of shale and briquetage is evident during the Late Iron Age with the introduction of the lathe. By the late second century CE, shale turning appears to have been the main site activity. At least during phase VII in Period 4, the standardized flint lathe tools and the quantity of shale waste-cores suggests production beyond the domestic level. Shale armlets were the primary product of the phase VII industries.
Figure 4.16. Rope Lake Hole, Period and Period 3 (Late Iron Age) (Woodward 1987, Figure 73).
Figure 4.17. Rope Lake Hole, Period 4 (Roman) (Woodward 1987, Figure 75).
Figure 4.18. Location of Middle Thames Valley case study sites in relation to Staines. Contains OS data © Crown copyright and database right 2015, 2016.

Ashford Prison, Spelthorne (Surrey)

The Ashford Prison archaeological site (Figure 4.19, Figure 4.20 & Figure 4.21) lies approximately 1.8 km from the town of Staines and is situated in an area considered part of London’s suburbs. Lying just north of the Ash River, the site is located in the low-lying west London gravel terraces, whose brickearth and gravel soils influenced the settlement pattern in the Iron Age and Roman periods (Carew et al. 2006, 3–7). Excavation in three main areas—A, B, and C—was undertaken by Pre-Construct Archaeology in 2001 and 2002 in advance of redevelopment of the Ashford Prison site (Carew et al. 2006, 1–3). The investigation included 26 25x2m trial trenches and an open area excavation. Evidence for activity and occupation spans the Upper Paleolithic, Mesolithic, Neolithic, middle and later Iron Age, Roman period, Saxon
Figure 4.19. Plan of mid- to Late Iron Age features at Ashford Prison (Carew et al. 2006, Figure 36).

Figure 4.20. Plan of Late Iron Age features at Ashford Prison (Carew et al. 2006, Figure 47).
period, and 19th and 20th centuries, when the site was used as a school, a youth centre, and then a prison.

Figure 4.21. Roman-period land division ditches, Ashford Prison (Carew et al. 2006, Figure 63).
There is evidence for flintworking in the area prior to the Neolithic. In addition to continued flintworking activity and some pit digging (Carew et al. 2006, 8–16), a ring-ditch monument was constructed in the fourth millennium BCE, modified over time by further ditches and upright posts (Carew et al. 2006, 17–22). A co-axial field system was established across the west London gravel terraces during the middle or later Bronze Age, apparently for managing livestock (Carew et al. 2006, 31–3). The ditches of this field system paralleled the alignment of the ditches in association with the Neolithic monument. After a hiatus in activity, Middle and Later Iron Age occupation is attested by several probable roundhouses, pits, and four-post structures (Carew et al. 2006, 40–56). Circular Structure 9 and modification to Circular Structure 3 can be dated to the Late Iron Age. After the Roman invasion, a series of ditches appears to mark land divisions, forming an enclosure and linear ditch, probably connected to wider land use networks on the terraces involving other sites such as Hengrove Farm (Carew et al. 2006, 84–6).

Hengrove Farm, Staines (Surrey)

Hengrove Farm (Figure 4.22) lies close to the Ashford Prison site, situated about 1.8 km from Staines. Archaeological work at Hengrove Farm was undertaken by the Surrey County Archaeological Unit from 1997–2006 in advance of mineral extraction (Poulton 2007a). The site yielded evidence for Mesolithic, Neolithic, Bronze Age, Iron Age, Romano-British, Saxon, and medieval activity (Poulton 2007a, 1–3). Several flint artifacts attest to use of the landscape in the Mesolithic. Pits, waterholes, and flint artifact spreads characterize the Neolithic and Early Bronze Age phases of activity. A co-axial field system was laid out across the site in the Middle Bronze Age, seemingly linked to ditches at Ashford Prison. Waterholes, postholes, and pits characterize the Late Bronze Age to Late Iron Age landscapes, with the establishment of “a more concentrated area of settlement” (Poulton 2007a, 2) in the mid- to Late Iron Age, contemporary
Figure 4.22. Plan of Hengrove Farm (Poulton 2007a).
with the circular structures at Ashford Prison. The settlement at Hengrove Farm lies within the field system originally laid out in the Middle Bronze Age. Several four-post structures and curvilinear gullies crossed the area. In the Late Iron Age/Early Roman period, paddocks were established in the location of the mid- to Late Iron Age settlement; pits, postholes, and a possible aisled barn accompanied the paddocks. These land division activities precede the establishment of the town at Staines. It is possible that the Roman-period field boundaries articulated with some of the boundaries of the Middle Bronze Age system. Activity at the site appears to continue through the mid-fourth century CE.

Imperial College Sports Ground, Harlington (Greater London)

The Imperial College Sports Ground (ICSG) archaeological site (Figure 4.23) lies just north of Heathrow Airport in the London Borough of Hillingdon approximately 7.8 km from Staines, midway between the River Colne in the west and the River Crane in the east, two tributaries of the Thames (Powell et al. 2015, 1, 4). The site is situated on the Taplow Gravel terrace with overlying brickearth soils, and the basal geology consists of London Clay (Powell et al. 2015, 4). Wessex Archaeology undertook excavations—areas A through E—at Imperial College Sports Ground and nearby lands (referred to as RMC Land and Land East of Wall Garden Farm) from 1996–2009 in advance of mineral extraction (Powell et al. 2015, 1). The quarry area was fully excavated between 1996 and 2001. Excavation revealed evidence for activity from the Lower and Middle Paleolithic, Neolithic, Bronze Age, Iron Age, Romano-British, Saxon, medieval, post-medieval, and modern periods.

Hand-axes and flint flakes attest to Paleolithic activity in the area (Powell et al. 2015, 6, 16). Several monuments date to the Early and Middle Neolithic, including a rectangular enclosure, several ring ditches, a double ring ditch, and a penannular ditched monument,
accompanied by several pit groups (Powell et al. 2015, 20–46). One pit dates to the Late Neolithic (Powell et al. 2015, 47). Evidence for Early Bronze Age occupation is limited, with several features possibly relating to mortuary activity (Powell et al. 2015, 47–50). The Middle/Late Bronze Age and Early Iron Age landscape is characterized by an extensive rectilinear field system, consisting of ditches, enclosures, and a possible trackway, with evidence for a Middle Bronze Age cremation cemetery and several Late Bronze Age/Early Iron Age burials (Powell et al. 2015, 53–67, 78). A circular structure suggests Middle Bronze Age settlement, with several features pointing to Late Bronze Age/Early Iron Age settlement, with a
probable shift in focus from the previous period (Powell et al. 2015, 61, 67–78). The Bronze Age field networks appear to have been abandoned in the Iron Age, with a rectilinear Middle Iron Age enclosure emerging on a new alignment (Powell et al. 2015, 83–88). Middle and Late Iron Age activity is attested by the enclosure, ring gullies of possible roundhouses, ditch lengths, and pits. Six phases of Romano-British activity are defined (Powell et al. 2015, 88–95). The square enclosure was incorporated into the layout of the Roman-period enclosure complex and trackway. It is possible that the ditches of the trackway materialized a previously traversed path of movement.

Lea Farm, Hurst (Berkshire)

Lea Farm is situated on a gravel terrace east of Reading, about 3.5 km upstream of the confluence of the Thames and the River Lodden (Manning and Moore 2000, 1–2). The confluence of the Thames and the River Kennet runs about three km northwest of the site. Lea Farm sits approximately 25 km from Staines. Due to gravel extraction, Wessex Archaeology excavated a 2.46 ha area in 1998. Excavation yielded evidence for activity spanning the Later Bronze Age to the Roman period (Manning and Moore 2000, 4–9).

Fifteen pits and postholes characterize the Late Bronze Age phase (Phase 1). A couple of pits and sherds suggest some pre-enclosure activity, the defining feature of Phase 2. During Phase 2, the Late Iron Age, a rectilinear ditched enclosure (20) was laid out, with activity also focusing on an area southwest of this feature. Two ditch terminals flanked the enclosure’s southeast entrance. Occupation is suggested by five circular structures, three inside the enclosure (291, 293, 294) and two in the area to the southwest (292, 793). The enclosure produced limited evidence for other features, with a group of pits lying northwest of circular structure 293. Pits and postholes surround structures 292 and 793, while two four-post structures (518, 685) appear
to have been associated with structure 292. In the Early Romano-British period (Phase 3), an extensive co-axial field and enclosure system was laid out, along with a trackway (parallel ditches 543, 1056, and 1182). Features include a fragment of a possible kiln, a possible stock pen (gully 625), and a hearth (111). The field system incorporated the area enclosed by enclosure 20, and the trackway crossed the enclosure’s southwestern edge. Waterholes (447, 1170) and possibly four-post structure 915 were associated with a complex of double ditched enclosures or paddocks, stretching from the trackway to the southwest. Several other ditches indicate possible sub-divisions. Domestic structures were seemingly absent, although a concentration of material near the locations of Phase 2 structures 291 and 292 could indicate settlement. A cremation in a pit feature (72) was found in the western part of the site. Third to fourth century CE activity is suggested by scattered material. For a plan of Lea Farm, see Figure 7.11.

Perry Oaks/Heathrow Terminal (HT) 5, Hillingdon (Greater London)

Figure 4.24. Late Iron Age/Early Roman and Early/Mid-Roman features at Perry Oaks/HT5, in the context of the Middle Iron Age settlement (data: Framework Archaeology 2011).
An area of approximately 75 ha was investigated from 1996–2007 in advance of construction of Terminal 5 at Heathrow airport (Figure 4.24) in the London Borough of Hillingdon (Lewis et al. 2010, 2–6), 4.7 km from Staines. Framework Archaeology (a joint project between Oxford Archaeology and Wessex Archaeology) undertook excavations between 2002 and 2007, expanding on 1999–2000 excavations at Perry Oaks sludge works. The Museum of London Archaeology Service excavated about 4 ha of sludge stockpile in 1996. The Heathrow Terminal (HT) 5 volume (Lewis et al. 2010) and dataset supersedes and includes the Perry Oaks excavations, and constituted the main source consulted for Perry Oaks and HT 5. Terminal 5 lies east of the floodplain of the River Colne, with brickearth capping an underlying geology of Taplow Gravel (Lewis et al. 2010, 6–7). The research design for the Heathrow excavations was developed by archaeologists Gill Andrews and John Barrett, with the aim of integrating theory and practice to produce a historical narrative of human inhabitation of the landscape (e.g., Andrews et al. 2000; Lewis et al. 2010, 12–19). The Heathrow Terminal 5 excavation archive—including specialist reports, finds data, and GIS files of site features—is available for download from the ADS (Framework Archaeology 2011).

The site was occupied from possibly the Paleolithic to the medieval and modern periods (summarized in Lewis et al. 2010, 11–12, 19–28). Use of the landscape during the Paleolithic is suggested by the presence of several flint artifacts, including a hand-axe, although none was found in situ. Flint artifacts and pits with burnt flint suggest activity dating to the Mesolithic. Evidence for Neolithic activity includes two complexes of postholes as well as further postholes, pits, and two gullies that could indicate occupation. In the 3600–3300 BCE range, four cursus—linear earthworks—monuments, including the C1 Stanwell cursus, superseded these complexes. Three sub-circular or “horseshoe”-shaped enclosures spanned the 4th to the early 2nd millennia
BCE. In the 2nd and 1st millennia BCE (Bronze Age), a landscape of at least seven settlements surrounded by enclosures and fields emerged, connected by trackways flanked by hedgerows. Pits, wells, and waterholes were dispersed throughout the site. These farmsteads appear to have been abandoned at the end of the Bronze Age (Lewis et al. 2010, 210).

With limited evidence for occupation during the Early Iron Age, a Middle Iron Age settlement of circular structures, four-post structures, and enclosures for livestock developed. These roundhouses and stock enclosures were superseded in the Late Iron Age/Early Roman period by a nucleated arrangement of enclosures and field boundaries, including the establishment of an eastern field system, with domestic structures apparently absent. In the Early to mid-Roman period, the enclosure complexes continued to be modified in a piecemeal fashion, including the establishment of trackways and four to five rectangular buildings. Some enclosures and buildings continued into the late Roman period, while new structure types and radical alterations of the eastern field system are evident. In the 3rd and 4th centuries CE, two possible structures were erected while the eastern field systems were further refurbished, resulting in a “ladder”-like enclosure complex around a central droveway. This ladder system maintained a similar alignment with previous fields (Lewis et al. 2010, 307).

Thorpe Lea Nurseries, Egham (Surrey)

Thorpe Lea Nurseries (Figure 4.25), approximately 2.4 km from Staines, is situated on a gravel terrace along the River Redbourne, a tributary of the Thames (Allen et al. 2015, ID: 10042). Surrey County Archaeological Unit excavated the site in advance of gravel extraction in 1993–94 after recommendations from a 1992 evaluation (Poulton et al. 1993, 1–2). The site yielded Bronze Age, Iron Age, Roman-period, and post-Roman (modern) activity (Poulton et al. 1993, 3–7). Struck flint and a pottery sherd may indicate Neolithic activity at the site (Phase 1).
The Bronze Age phase (Phase 2) consisted of ditches, a v-shaped feature, and pits or postholes. Iron Age (Phase 3) activity is indicated by pits, postholes, ditches, gullies, a waterhole, and at least three four-post structures, with two curvilinear gully lengths possibly indicating circular structures. Dateable material suggests that much of this activity occurred in the Late Iron Age or Late Iron Age/Early Roman period. Pits, postholes, ditches, gullies, an inhumation, and possible wells or waterholes constitute the Roman phase (Phase 4), with most of the features residing in a large enclosure. Activity appears to have continued into the late 4th century CE.

Figure 4.25. Phase plans of Thorpe Lea Nurseries (Booth et al. 2007, Figure 3.15).
Wood Lane, Slough (Berkshire)

Figure 4.26. Wood Lane enclosure (Ford et al. 2003, Figure 3.17).
The Wood Lane excavations (Figure 4.26) formed part of archaeological investigations undertaken in advance of housing development on the Cippenham Sector, farmland southwest of Slough (Ford et al. 2003, 1). Excavation proceeded at several separate sites. The Cippenham sites are situated about 2 km south of the Thames, approximately 12.3 km from Staines. The sites span the floodplain, alluvium, and Taplow terrace, with the gravel overlain by brickearth. The main trench at Wood Lane (Trench C), approximately 21000 sq. m, was excavated from 1996–97, forming an extension to a previously excavated area (Ford et al. 2003, 37). Several other trenches were also investigated. Neolithic, Bronze Age, Iron Age, Roman-period, medieval, and post-medieval activity is represented at the site (Ford et al. 2003, 37–67).

An irregular feature, pottery, and struck flints indicate Neolithic activity (Phases 1 & 2). Two pits date to the Early Bronze Age (Phase 3). Several features and a cremation cemetery constitute the Middle Bronze Age phase (Phase 4), while residual or unstratified sherds suggest some Late Bronze Age/Early Iron Age use (Phase 5). The construction and modification of a trapezoidal enclosure constitutes the focus of activity from the Middle Iron Age to the Early Roman period. The establishment of the enclosure along with several pits and postholes within the interior indicate Middle Iron Age (Phase 6) activity, with modifications to the enclosure entrance in the north as well as several other pits dating to the Middle/Late Iron Age (Phase 7). Intensive activity characterizes the Late Iron Age/Early Roman phases. During Late Iron Age/Early Roman Phase 8A, pits and postholes occupied the enclosure interior, with the enclosure modified again at this time, while several field ditches were laid out, including a rectilinear area east of the enclosure. The enclosure was extensively modified during first century CE Phase 8B, with several lengths of field ditches constructed, the 8A rectilinear enclosed area falling out of use. A hearth also dates to this phase. The enclosure was extended during second
century CE Phase 8C, and two sunken-floored structures (227 & 335), three hearths (435, 211 & 137), and more than 60 pits and postholes were also constructed. There is limited evidence for activity in the third century CE (Phase 9).

CASE STUDY SITES: SQL RELATIONAL DATABASE

A relational database was used to store, manage, and query intra-site data from the case study sites (see Appendix C for database schema). A relational database model sets up data as a series of tables of records (rows) of objects and corresponding fields of attributes (columns), with defined relationships between tables. Patterns in disparate sources can be identified by quickly and dynamically reorganizing the data from existing relations to create new tables comparing the desired relationships. Structured Query Language (SQL) links the tables and queries the database. The software utilized was MySQL Community 5.1, an opensource program available for download from the internet.

The database was structured by first classifying the data set using objects that related to each other in defined ways. This operated on two levels—by the site as a whole and by individual structures at the site. For the 14 case study sites, a site object was defined that had attached to it between 0 and infinity structure objects. Tables with objects that could attach to the site and structure tables were also created for “artifacts,” “elements,” and “features” in order to encompass all data types from the sites.

The table “artifacts” refers to any finds, including ceramic, metal, stone, bone, and organic material. Artifacts, for example, could include pottery, ceramic building material, loomweights, quernstones, worked bone objects, weights, knives, chisels, awls, axes, tweezers, armlets, combs, brooches, beads, animal bones, and carbonized or waterlogged plant material. “Elements” refers to structures at the site, including structures considered houses as well as those
whose function could not be defined, also encompassing four- and six-post structures, ovens, and hearths. “Features” refers to items such as pits, postholes not identifiably parts of structures, waterholes and wells, ditches, gullies, banks, enclosures, field systems, and roads. Human burials, where present, were considered features as well. Artifacts, elements, and features all included free form data options in a comments and references field. Attribute information— including type of object, time period, location within site, material, and possible function—were defined for artifact, element, and feature tables. Quantitative metrics—such as number of objects found, weight, length, width, diameter, or depth—were recorded where relevant to the object.

A set of criteria was defined to enter information in order to account for the nature of the research questions, multi-phase occupations, and the different schemes and varying levels of detail in the site reports used to present, organize, and quantify data. Entry into the database was limited to artifacts, elements, and features confined to the temporal periods—Late Iron Age and Early Roman—under investigation. Items securely dated to broader Iron Age and Roman-period time frames were included to provide context where relevant. Securely dated contexts were selected whenever possible, such that potential Late Iron Age or Early Roman artifacts, elements, or features without secure associations were often excluded. However, where separate periods were difficult to distinguish at a particular site (e.g., LIA/ER Phase 4A and 4B at Fordington Bottom, LIA/ER at Perry Oaks/HT5) and where prior or later activity appeared to relate to occupational evidence for the Late Iron Age and Early Roman periods, evidence from the Early or especially Middle Iron Age or the mid-Roman period was included. Sometimes, certain artifact categories were not separated by phase. It was noted in the time period and comments fields when entries referred to combined-phase assemblages. One of the outcomes of the analysis is the recognition that discrete periods cannot so easily be distinguished at each site, and different
temporalities emerge through relationships with place. Evidence for other occupational activity is provided in the site descriptions in this chapter, and interpretations of these multiple temporalities are the subject of Chapter Six and Chapter Seven.

The above criteria applied to the presence and absence of items as well as to counts and other metric data. The count field only included items found during the Late Iron Age and Early Roman periods even if more objects were present at the site as a whole. The reports varied in the level of detail specified. Where possible, quantitative comparisons were conducted using the number of artifacts found at different sites. Some reports, however, would only specify that a large or small assemblage of an artifact category had been recovered, but did not provide counts of the total number of items found, either by period or for the settlement as a whole. In these cases, qualitative comparisons were made based on the descriptions of the finds assemblages.

Find contexts were noted in a location field. This was done at the level of the assemblage. For example, if mortaria were found in ditches and pits, mortaria constituted a single entry with “ditches” and “pits” in the location field rather than separating out each sherd or vessel by find spot. An exception was made for artifacts found within structures (Elements in the database), which occupied their own entry attached to the building in the elements table in addition to their inclusion in the wider site assemblage. This allowed sites with varying amounts of structural evidence to be compared by site. Location was entered in this manner since reports described the finds as a whole and because the primary relevance for the project lies in describing assemblages. In some reports the finds were described without reference to context. In this situation the location was not recorded in the database.

Due to the adjustments in project scope (Chapter One), I did not undertake a detailed intra-site spatial analysis using all of the evidence entered on artifacts, elements, and features,
but referred to the evidence from the relational database to address the arguments concerning continuity and change (Chapter Five). Therefore, not every record ended up featuring in the analysis. The critical components were structures and construction material, ceramic building material, pottery, fauna, and flora (Chapter Five). These components were chosen because they relate to transformational trends that have often been attributed to Roman influence, which this project re-evaluated. Various other artifacts, elements, or features from the case study sites were incorporated into the analysis where relevant to the subject (Chapters Six & Seven).

DISTRIBUTION SITES: GIS GEODATABASE

I situated the case study sites within their regional context, considering them in relation to the settlement pattern of distribution sites—i.e., all sites within Dorset and the Middle Thames Valley dating from the Late Iron Age to the Early Roman period, 100 BCE to CE 200. I undertook spatial analysis of distribution sites within a Geographic Information System (GIS), using Esri’s ArcGIS 10.5 software. This includes ArcMap, the central application for displaying, querying, generating, and editing GIS datasets; ArcCatalog, an application for organizing and managing GIS datasets; and ArcToolbox, the window for executing geoprocessing tools.

To select the distribution sites: I used the RSRB database as the main source from which to create a site sample, due to the comprehensive and standardized nature of the database as well as its recent compilation; the database records also contain Late Iron Age sites as context for Roman-period rural settlement. The results of queries can be exported and downloaded as a CSV file. I compared the RSRB sample to the results of the HER searches for Dorset and the Middle Thames Valley counties, adding several sites relevant to the project but not included in the RSRB database.
Data collection for both regions selected from a wider area than could be incorporated into the analysis. To select the parameters for the spatial analysis, I used the modern county boundaries of Dorset, including the unitary authorities of Bournemouth and Poole. To define a bounded area for the Middle Thames Valley, I began with Natural England’s Thames Valley National Character Area shapefile downloaded from Natural England’s website. To provide a more comparable sample of sites with Dorset and to account for the likelihood of fluid boundaries in the past, I selected sites located within a 3 km buffer zone of the National Character Area Thames Valley boundary. This resulted in 79 total distribution sites in Dorset, and 78 for the Middle Thames Valley (Figures 4.27 & 4.28). Appendix A contains a complete list of sites, which notes the additions to the RSRB search.

Figure 4.27. Location of all distribution sites (79) within Dorset. Dorchester is indicated by the purple square. Contains OS data © Crown copyright and database right 2015, 2016.
The distribution sites were stored in a Geodatabase. A Geodatabase is a flexible object-oriented data model that represents geospatial data as objects—classes (Zeiler 1999). A geodatabase can contain many types of object classes and stores geometries and attribute data of objects in one system. A feature class (e.g., distribution sites) is a group of like objects stored as vector data—points, lines, and polygons—and a feature dataset contains multiple related feature classes. A raster dataset represents continuous data—such as a surface, imaged map, or photograph—as gridded cells that each contain a value corresponding to information (e.g., elevation). Geospatial data received and downloaded from the various agencies were imported into the project geodatabase as feature classes and raster datasets.

The geodatabase consists of: a distribution_sites feature class (data: RSRB database, 2016; HERs, 2015); a RomanRoads feature class (data: HE, 2015); a water feature dataset (OS
OpenData Open Rivers, 2016); an environment feature dataset, consisting of national character areas (data: NE, 2013) and geology (data: BGS, 2013); a maps of Britain feature dataset, including outline as well as county and unitary authority boundary maps of England (OS OpenData Boundary-Line, 2016); an elevation raster dataset (OS OpenData Terrain 50, 2015); and the results of the project analysis.

ANALYSIS APPROACH

This dissertation attempts to re-conceptualize continuity and change, asking how Iron Age and Roman-period landscapes were populated and interconnected based on archaeological evidence for the presence and intensity of human activity at various spatial and temporal scales. Analysis of continuity, change, and interconnectivity in the landscape was undertaken at an intra-site and inter-site scale, using qualitative and quantitative examinations of structures, artifacts, fauna, and flora—in terms of presence, assemblage composition, and relative abundance—at the case study sites (Chapters Five and Six) and based on quantitative evaluations through GIS spatial analysis (Chapter Seven). Continuity and change were evaluated by comparing patterns and variability across the case study sites in relation to documented transformational post-invasion trends, challenging the traditional directionality of those trends (Chapter Five). Chapter Six explores a more categorically flexible and multitemporal view by considering how material objects change with context and how Iron Age and Roman-period features articulate with elements of the landscape often seen as belonging to other times (Chapter Six). Interconnectivity across the landscape was evaluated through a qualitative analysis of case study site plans in their landscape contexts as well as a quantitative assessment of site clustering and cycles of settlement occupation at the regional scale. At both the intra-site and inter-site level, comparisons were made in terms of urban/rural and southwest/southeast dynamics. Due to the thematic
arrangement of the analysis across the next three chapters, methods are discussed in more detail in each of the chapters that follow.
CHAPTER FIVE. CONTINUITY AND CHANGE IN LANDSCAPES OF PERSISTENCE AND POSSIBILITY

What if change and continuity—as we often think about in archaeology—are thought of as the same process?

Stephen Silliman (2005, 66)

Figure 5.1. Traditional picture of continuity and change in Late Iron Age and Roman landscapes. Left column, Iron Age. Top: Maiden Castle hillfort, Dorchester, Dorset © Google Earth Getmapping plc 2016. Bottom: Reconstruction of an Iron Age roundhouse at Westhay © Wessex Archaeology. Right Column, Roman. Top to bottom: Reconstruction of forum and basilica at Dorchester, Dorset (John Hodgson, Russell and Laycock 2010, Figure 55); Reconstruction of Yewden Villa, Bucks. © Buckinghamshire County Council & Oxford Archaeology; Housesteads Fort, Hadrian’s Wall © Google Earth Getmapping plc 2016; road network (De la Bédoyère 1999, Figure 85).
The landscapes as sorted in the figure above illustrate the dividing lines and contours of the Romanization paradigm, schematically represented in Figure 1.1. On the left, in a separate time and place, we have two prevalent settlement forms traditionally characteristic of the Iron Age of southern Britain—a hillfort (here Maiden Castle, Dorset) and a rural farmstead populated by roundhouses of timber and thatch (represented by a reconstruction of an Iron Age roundhouse at Westhay). On the right, the type of time and place being transitioned to, we see rectangular buildings with new construction materials, such as roof tiles; an orthogonal street grid in towns (here a depiction of Durnovaria) and military forts; new kinds of elite housing (villas); and the development of a networked road system. The dividing line indicates what belongs and does not belong in a landscape positioned on either side of the invasion baseline, classifying the past and the present, continuity and change, and identity according to a linear temporality—i.e., that a Roman landscape post-conquest is constituted by distinctly Roman elements that originated in another place and that are introduced to the landscape in another time (Hingley 1991, 2015). This produces very separate landscapes, where tradition is only to be found in the pre-baseline Iron Age. A singular, homogeneous historicity reduces Late Iron Age continuities to the temporality of anachronism. The Iron Age becomes a holdover or remnant when it appears together with Roman elements. However, as has long been acknowledged in Roman studies, the landscape in Britain during the Roman period was not constituted as an anachronism relative to the temporality of Roman civilization. When deconstructing and challenging the Romanization narrative, it is critical to not reduce continuities to a pre-Roman context.

I argue that this continuity–change dichotomy serves as a corollary to the opposition between Roman and native as homogeneous and static categories of identity. While the problems associated with the latter dichotomy have long been recognized (Woolf 1997), framing
transformation in terms of Roman and native as the primary question and axis of identity has continued to be a source of contestation in recent literature (Pitts 2007; Rogers 2015; Versluys 2014). This chapter interrogates the underlying structures of inquiry that continue to reproduce both dichotomies, despite recognition at the theoretical level that processes operate in ways that cross-cut these traditionally defined boundaries.

Chapter subject: Approaches to understanding continuity and change in imperial and colonial contexts; an exploration of the dynamics of tradition and transformation through an engagement with the spatial and temporal variability of the case study sites in Dorset and the Middle Thames Valley.

Chapter argument: My argument is that pinning the critical context for continuity to what is available in the archaeological record pre-conquest, no matter how nuanced the concepts of process and identity may be, will continue to reduce the persistence of communities to a temporality of anachronism and therefore will continue to reproduce an understanding of categories of identity and processes of transformation as unitary, essentialist, and unidirectional—as only being able to be one thing at a time or only able to exist in one time or place. I argue that, in order to reconfigure the legacy of binary identity categories, it is necessary to break down the dichotomy between continuity and change; continuity and change are ontologically interactive rather than separate processes or outcomes. What constitutes continuity and change—and how they are intertwined with identity, material culture, space, and time—must be interrogated rather than assumed.

Chapter goal: To demonstrate that continuity and change cannot easily be separated analytically, assigned a priori to items of material culture, nor isolated in particular contexts; to
outline a conceptual argument that reframes the question, laying the basis for new structures of inquiry and archaeological languages that offer different readings (Chapters Six & Seven).

So what if, while not neutralizing the imperial and colonial context mobilized by conquest, occupation, and administrative incorporation into the Roman Empire, we think about the ongoing and interactive constitution of continuity and change in ways that reconfigure the past and present and continuity of communities on either side of the invasion baseline? What if we allow different parameters and constellations of belonging for people facing the challenges of living in these conditions? What if we do not a priori decide what was significant with respect to the past, memories, and continuities, but attempt to let the temporalities, places, and items of material culture critical for persistence and change emerge from contextual analysis?

In effect, what insights about life, practice, and identity can we draw if we start from a point where continuity and change might be approached as the “same process”? (Silliman 2005, 66)

CONTINUITY | CHANGE TO CONTINUITY ↔ CHANGE

Continuity demands an explanation.

Timothy R. Pauketat (2001a, 5)

What do I mean by referring to continuity and change as the same process? I mean to “show how the continuous is formed in accordance with the same conditions and the same rules as dispersion; and how it enters—neither more nor less than differences, inventions, innovations or deviations—the field of discursive practice” (Foucault 1972, 174–75). This is because “The field of statements is not a group of inert areas broken up by fecund moments; it is active throughout” (Foucault 1972, 145). Continuity is not a “switch that momentarily gets flipped on and then off,” but a “continual process operating at different levels within a community, and along different scales of time” (Ferris 2009, 172). Process does not halt at a “vacant moment”
(Foucault 1972, 166) without history; regularities are not already actual, but subject to the contingencies of practice (Sahlins 1981). In other words: Not only change, but also continuity, demands an explanation.

Articulating with the progressivist concept of the past as something that cannot move forward in time, continuity and change have problematically been opposed as ontologically separate trajectories in approaches to interaction and transformation in contact and colonial scenarios. This posits tradition and transformation as binary outcomes of colonial processes, with the trajectory of continuity—only what is recognizable in the prehistoric past—already known beforehand. Ann Stahl (2012, 159) observes how the narrative of world prehistory foregrounds the dimension of change (see also Lightfoot 2015). Because something can only be either continuity or change, acculturation implicitly assumes that change necessitates transformation to something other, and that without external influence, there is no change. In acculturation paradigms, agency and innovation are confined to the domain of the colonizer, such that whether and what kind of changes occur post-transition have often been the focus of analysis. Any transformation post-transition becomes absorbed by a directional narrative, and the pre-colonial baseline serves as the only critical context for what it looks like to continue or persist. Continuity is seen as a less interesting and more static default state of retention.

However, continuity—a particular form of continuity—is not guaranteed to proceed in a particular way or to maintain the same form (Sahlins 2004). Continuity is a production that cannot be extracted as the opposite of transformation—change does not equate to innovation, nor do reproduction and the regular equate to stasis (Foucault 1972; Moore 1975).

Continuity, Change, and Contingence: Practice Theory and Archaeologies of Possibilities
Archaeologies of possibilities (Chapter Three) attempt to recoup a sense of the contingent in contexts for interaction, of the multiple tendencies of the past and present. A sense of contingent possibilities—and how a concept of contingency has been mobilized in theories of practice—can disrupt an oppositional categorization of continuity and change.

How to understand social continuity and change has long been a central issue in anthropology and related disciplines. Prior to the 1970s and 1980s, attempts to explain reproduction and transformation tended to rest on a model of social process that assumed an opposition between structure and human agency. Anthropological theories were often biased toward structural explanations. For example, A. R. Radcliffe-Brown’s (1952) structure-functionalism posited social totalities bounded by functional unity, where human action strived to perpetuate the whole, much like the physiology of a living organism. Radcliffe-Brown (1952, 190) argued that abstract concepts such as culture are not observable and thus cannot act as the prime movers toward societal maintenance or change, while his concept of history is descriptive rather than assertive (Radcliffe-Brown 1952, 1–3). The structure-functionalist approach lacked an explanation for social transformation. Despite Radcliffe-Brown’s (1952, 193) admission of the subject of change, how different social structures come into being is difficult to disentangle from his emphasis on the maintenance of functional unity. He separates continuity and change, structure and history, the past and the present.

Countering oppositional views of structure and history and structure and agency, theories of practice emergent in the 1970s and 1980s contended that “society is a system, that the system is powerfully constraining, and yet that the system can be made and unmade through human action and interaction” (Ortner 1984, 159). Agency and structure are not opposed to each other but co-constituted through the dynamics of practice: “A theory of practice is not an abstract
methodological debate about the relative weight of free will versus determinism, or structure versus agency” but is “rather a theory of how people’s actions reproduce or change a world that is never free of, and often centrally organized around, inequalities and power differentials” (Ortner 2001, 272). The work of Pierre Bourdieu on habitus, Anthony Giddens on structuration, and Marshall Sahlins on culture and history have been especially influential.

Bourdieu’s concept of habitus may be understood as:

systems of durable, transposable dispositions, structured structures predisposed to function as structuring structures, that is, as principles of the generation and structuring of practices and representations which can be objectively “regulated” and “regular” without in any way being the product of obedience to rules, objectively adapted to their goals without presupposing a conscious aiming at ends or an express mastery of the operations necessary to attain them and, being all this, collectively orchestrated without being the product of the orchestrating action of a conductor. (Bourdieu 1977, 72)

The habitus is a generative logic that regulates what actions are possible, but does not determine them. The body, seeking to accomplish goals practically, produces and reproduces its dispositions in space and in time. The habitus, this logic and disposition of the body, acts as a resource for action in new situations. Patterned action is thus emergent from history, but not subordinated to rules. It is not the abstractions that regulate the action, but rather the dispositions embedded in the body itself (Bourdieu 1977, 15). The “order,” the symbolic representations, owe their coherence to their generation in practical action (Bourdieu 1977, 109).

Anthony Giddens (1984), in concert with Bourdieu, argues against human actors as automatic, as mechanistic executions of a model. The constitution and management of the body allows people to acquire the knowledge of how to go about their everyday lives. This “knowledgeability” (Giddens 1984, 21) that actors possess and draw upon in day-to-day interactions is in large part practical—theory and meaning enter after the fact, out of the fraught
confrontation of bodies in open-ended moments. Also like Bourdieu, he argues that the rules constitutive of the social structure are generative rather than determinative (Giddens 1984, 21); they operate on the level of “deeply embedded practices” which lend the structure its “systemic form” (Giddens 1984, 17). Action is understood as a flow, which provides the grounds and conditions for future acts. Giddens’ concept of the “duality of structure” articulates the mutual constitution of structure and agency in practice, re-positioning structures as “both medium and outcome of the practices they recursively organize” (1984, 25). History shapes the context for actions, while actions can have unintended consequences as they confront contingent circumstances.

Change thus operates as “a mode of [culture’s] reproduction” (Sahlins 1985, 138). Since cultural categories are subjected to risk intrinsic to confrontation with the material world, change is immanent to the system.\(^1\) In *Apologies to Thucydides*, Marshall Sahlins (2004) explores the constitution of the historical subject, the relationship between structural and individual agency, and the consequences for historical change. Eschewing oppositions between structure and individuals on the one hand and culture and history on the other, Sahlins locates individuals in a community of relations and social groups in the context of their historical interactions. His historiography juxtaposes the Peloponnesian War between Athens and Sparta (431–404 BCE) and the Polynesian War (1843–1855), a conflict waged between the kingdoms of Bau and Rewa in the Fijian Islands, with both cases demonstrating how “cultural relevance” (2004, 2) brings historical agency to effect.

The lens of cultural relevance, Sahlins argues, draws out the dialectical processes through which Athens and Sparta mediated their differences. For example, the “Spartan mirage”—the

\(^1\) I focus here on the general thrust of the practice and structurationist traditions in order to contextualize challenges to the change–continuity dichotomy. For some critiques of the nuances of Bourdieu, Giddens, and Sahlins, see, e.g., Dornan (2002); Gardner (2004, 2008); Ortner (1984); Sewell (1992).
distinctive Spartan proclivity for “austerity, autarky, and xenophobia” (Sahlins 2004, 48)—was long believed to have far-reaching roots in antiquity. Research on the mirage, however, suggests a comparatively late development for these particularities of temperament, emergent during the 5th century BCE (Sahlins 2004, 49). This picture of Spartan austerity and conservatism would have served as an effective counterbalance to the contemporary status of Athens as revolutionary and enterprising. This does not mean that the Spartan mirage was somehow false or unreal—its “invention” does not neutralize its consequence. Rather, identity claims—and the longevity and continuity of the past they reference—emerge in relation to rather than separate from processes of differentiation.

To understand how actors make history at the same time that they are constrained by it, Sahlins focuses on the relationships and institutions, rather than a set of structural determinants, that render culturally motivated actions—and the contingencies they confront—intelligible and resonant. For example, the kinship structure and relations in place between the kingdoms of Bau and Rewa anticipated the Bau chief’s sons’—Ratu Cakobau’s and Ratu Raivalita’s—fratricidal plots (Sahlins 2004, 195–292). While the structural conditions set the stage for the conflict, these same conditions could not predict that Ratu Raivalita ended up dead. The death of Ratu Cakobau, or both of the brothers, would have set in motion different relational configurations, historical players, and possibilities for historical agency. Culture, then, acts as an arbiter of relevance, orienting not only what is, but also what is possible and sensible: “No history, then, without culture. And vice versa, insofar as in the event, the culture is neither what it was before nor what it could have been” (Sahlins 2004, 292, emphasis added).

I want to focus on this salience of contingency and possibility in relation to structure and narrative. The authority of Sahlins’ narrative appeals to an organized possible. It is not only
about what was and what must have been, but also what could have happened. While Sahlins posits a coherent order of meaning, this structural relevance does not reduce identity to essentialism, mask the multiplicity of the possible, nor locate meaning in ineluctability. The insight of Sahlins’ narrative lies not in a summative truth, nor in an immanence prefigured by a teleological imperative resident in cultural logic. The key is exploring the infrastructure of possibilities in which actions made sense and in which interactions came to have socially potent effects. In other words, the coherence and plausibility of the claim are ultimately derived not from containing an entity in a category or compelling a necessary story from structural conditions, but drawing out intelligibility from a dynamic and contingent context of interaction.

Continuities as cultural relevance are generative of the contexts that alter their import at the same time that actions and events are shaped by the historical circumstances. Continuity is not simply a lack, nor a negation, of change; tradition and transformation are contingent and dialectically emergent. The narrative does not close down the multiple, but traces the relationships and contingencies that configure the realm of the possible:

The structural coherence of a contingent outcome gives the strong impression of cultural continuity, or even cultural determinism—as if the system were impervious to the event. But one need not be thus misled. The cultural continuity at issue was not the only one possible, and it was anything but prescribed. If the culture in this way reproduces itself, it reproduces itself in an altered state. It knows a different future, even as a system, than what might have been. (Sahlins 2004, 291, emphasis added)

Continuity does not equal the reproduction of a bounded normative; structural possibilities unfold within constrained but also contingent and open-ended contexts. Processes of regularization also give rise to the potential to be otherwise, as continuities—through knowledge-, community-, and self-making practices and negotiations—act as the context for their own transformation.

Continuity and Change in Comparative Archaeologies of Colonialisms
Continuities do not function in an unchanged world.
Norman Yoffee (2005, 158)

Theories of practice—especially as put forth by Bourdieu and Giddens—have been influential for the re-conceptualization of agency in social archaeology (Dobres and Robb 2000, 2005; Dornan 2002; Gardner 2004, 2008). In addition to developing a more practice-based concept of agency, incorporation of practice approaches has stimulated conversations on how things change, and how change can be linked to context and material in archaeology (Joyce and Lopiparo 2005; Pauketat and Alt 2005). Pauketat (2001b) draws on practice approaches to articulate a paradigm of historical processualism, which reorients the location of change and, concomitantly, the expectations for what counts as historical explanation. Countering long-held views in archaeology of cultural processes as “abstract, law-like principles of why something occurred” (Pauketat 2001b, 74), Pauketat locates change in practices, practices that “are the processes, not just consequences of processes” (Pauketat 2001b, 74). In this sense, explanation must be traced to the “genealogy of practices or the tradition of negotiations,” (Pauketat 2001b, 80), prompting a dynamic and multiscalar approach to what constitutes tradition in lived lives and how traditions are mobilized in the creation of social orders (Pauketat 2001c).

In comparative archaeologies of colonialisms, working across the great divides (Scheiber and Mitchell 2010; Oland et al. 2012) of prehistory and history (Schmidt and Mrozowski 2013) has brought the dialectical relationship between continuity and change into the foreground, with a growing number of challenges to the “trap” of the “change–continuity dichotomy” (Silliman 2009, 213; see Cipolla and Hayes 2015; Ferris 2009; Ferris et al. 2014; Gould 2013; Stahl 2012; Oland et al. 2012; Panich 2013; Richard 2012; Scheiber and Mitchell 2010; Schwartz and Green 2013; Silliman 2005, 65–8, 2014). Despite the recognition of ambivalence and polyvalence in intercultural and colonial contexts, archaeological categories are often inscribed in the material
evidence as already indexing continuity or change rather than following the more dynamic contours of constitution in practice (Silliman 2009, 213–215, 2010b; Voss 2008).

To evade the essentialism of the change–continuity dichotomy in colonial contexts, Neal Ferris (2009) develops the concept of “changed continuities,” foregrounding the “complex internal process of identity maintenance and revision… reconstituted within local actions and beliefs” (2009, 26). Rather than posing change as a response to contact, he explores the continuing and multiscalar processes of change in long-term community histories, where continuity and change register at the same time. Change need not be read as a “futurist progression toward an imagined ideal” (2009, 70), but can operate in tandem with continuity as a “historically informed flexibility to accommodate contingencies” (2009, 29). Changes that allow for revision to historically constituted lifeways do not necessarily index a changed condition; discontinuity and historically informed revisions must be evaluated in context. Ferris finds that Ojibwa, Delaware, and Iroquois communities in southwestern Ontario during the eighteenth and nineteenth centuries navigated colonial contexts through an “existing habitus as a constant, dynamic revision to historically understood lived experience” (2009, 173).

This is where the could have been of the past comes in. It is not just that the past could have been other than it was: The future, or continuity of the past, could have been something else. Continuities can change. There is not only one way that continuity can look, or one place or time in which it can be found. In the process of persistence, continuity and change are immanent and concurrent in navigating and negotiating emerging contexts of possibilities. Persisting in a landscape, as a community, does not require reference to a past confined to a period before a static baseline, to a timeless “pre-”. The problem with pinning continuity to the archaeological record prior to the invasion—and then mandating that this past always serve as the context for
defining continuity—obsures understanding long-term community histories that cannot be confined by the pasts and presents sorted by a fixed temporal baseline. It also mandates that communities must appear or act a certain way in order to be recognized as persisting. But there are multiple ways to persist, and multiple forms that practices or materials of persistence might take. Furthermore, long term is not always the same long term—the baseline critical for persistence and memories can shift in time (Panich 2013; Silliman 2009). Continuities are worked into the present and can be translated and transformed as they continue to unfold. In other words, continuity is not an abstract unity that can be extracted from the contexts of its production.

Continuity does not always or only have to be rooted to a roundhouse, for example, nor does a rectangular house always or only point to a total condition of change. The continuity of the roundhouse beyond the border of conquest should not be neutralized as default. Each utterance of the roundhouse emerges in a new context, and its significance in relation to the past, and to past versions of its discursive comments must be evaluated as part of, and not just in, the changing and heterogeneous fields of possibilities—“Continuities do not function in an unchanged world” (Yoffee 2005, 158). In other words, the regularity of the roundhouse should not be contained within an abstract, period-scale continuity narrative that masks the nuance and complexity of daily lived lives and the potential struggles and tensions in the persistence of spatial and social orders. The potential future for continuity is not reducible to its “unbroken retention” (Panich 2013, 115) from a fixed point in time. Fixing a baseline takes continuity out of time, out of the reworkings of lived lives that persist and connect pasts and presents beyond the moment of transition.
This challenges the problematic legacies of the prehistory/history tropes and of the acculturation logic that position continuity and change as cultural strength versus weakness (Mrozowski et al. 2015; Schwartz and Green 2013). Critiquing the concept of cultural hybridity as it has been applied archaeologically, Silliman writes:

Archaeologists are quick to talk about hybridity when Native Americans adopted cattle into their lifestyles, or worked a piece of window glass, or built a traditional wooden structure with glass window panes and nails. Yet, what about those European colonists who adopted corn from the indigenous people of the Americas, or the Italians who added New World tomatoes to their cuisine, or the various colonists across the Americas who used Chinese porcelain in their everyday lives?... To many with European cultural heritages, I talians became more Italian with the addition of tomatoes, Irish became more Irish with potatoes, and Americans became more (or finally?) American with the new materialities they encountered and even with the old British aspects that they retained. As for the indigenous people in the same overarching contexts, to this same audience they became less Native American as they adopted new things. (2015, 289)

The strength/weakness dichotomy acts as an iteration of the charge that only colonizers can change while remaining the same (Sahlins 2002, 4, cited in Gould 2013, 247). The presence of something that appears exogenous does not necessarily index change external to continuity (Harrison 2014; Mrozowski et al. 2015). Gould, for example, demonstrates how the Mohegan Congregational Church (Uncasville, CT), the Mashpee Old Indian Meeting House (Mashpee, MA), and the Narragansett Indian Church (Charleston, RI) were integral to the identities and ongoing histories of those communities, but are “not places outsiders…would normally look to for understanding native history and culture” (2013, 264). Sometimes persistence can be facilitated through exogenous-style objects and spaces, again pointing to how classification pinned to origin may mask other ways of configuring identity and history that do not confine communities to particular pasts (Harrison 2014; Mrozowski et al. 2015). One trajectory of change cannot subsume all the possibilities for transforming and remaining the same. Revising the past does not necessarily equate to decline, decadence, or disappearance; communities are
not contained by what can only be seen in the archaeological past (Cipolla 2013; Gould 2013, 242–44; Jordan 2010). Continuity can be part of the contemporary, multiple, and contradictory.

Thus, change does not mandate transition to something other—change during colonial occupations does not automatically align to being or becoming other (Cornell 2015; Mrozowski et al. 2015). As Ferris (2014, 381) observes of long-term Iroquoian histories, “Clearly, material and social realignments occurred, some past pre-conditions were forgotten, and novel strategies of residence adopted, but these were not changes to something other, but rather changed continuities from within Iroquoian/Iroquois world views: entanglements, interactions, and consequential changes all the preconditions for the next iteration of still becoming.”

From this perspective, persistence is not a contained context, nor separate from the transformative, but emerges through a dynamic and interactive process. What continues and what changes are mutually constitutive rather than insular trajectories. Tradition and transformation are not already actual in archaeological categories, but must be understood in relation to continually emerging contexts for interaction. Therefore, it is not only change, but also persistence that must be subject to explanation: “the same, the repetitive, and the uninterrupted are no less problematic than the ruptures” (Foucault 1972, 174). Emergences and transformations do not coalesce and disperse uniformly—in an atemporal moment of absolute replacement at a transition between broad periods—but at different registers, levels, and tempos (see Dietler 2010).

Examining the current state of ethnogenesis research, Voss cautions that present emphasis on persistence in archaeologies of colonialisms should not obscure evidence for disruption and transformation, and how ethnic identities may be “deployed in the exercise of power” (2015, 655). The approach here has emphasized continuity because continuity has often
been sidelined as a trajectory separate from transformation, a peripheral focus of inquiry due to its perceived status as a default (Pauketat 2001a, 5; Stahl 2012, 159). However, this emphasis is not meant to negate the possibility of traditions that drew their significance from deep time scales, nor is it meant to downplay transformations that would have occurred under the conditions of differences and inequalities in the Roman imperial context. A concept of continuity as dynamic is not meant to rebrand all instances of transformation, but to detach continuity from being pinned to a fixed point and from assessing continuity and change as a threshold of difference beyond a suite of characteristics bounded by that point. How material categories relate to identity and long-term histories are “contextual questions to be answered rather than elements to be assumed” (Silliman 2012, 127). Set within a framework of archaeologies of possibilities, the goal is to pose questions and to develop a different kind of structure of inquiry that remove the necessity of delineating either/or domains and trajectories (see also Stahl 2012).

What perpetuates these problematic assumptions in engagement with the archaeological evidence? I argue that a major issue is fixing the baseline (Panich 2013; Silliman 2009) against which continuity and change are to be measured. Fixing the baseline and then charting all patterns and transformations in reference to that baseline subsumes transformation into homogeneous, unidirectional trends that are then exteriorized as average conditions of change to which variability must answer. The task, then, will be, when sorting archaeological material, not to assume that the critical moment or categories of material for defining community persistence or transformation never changes.

THE INVASION BASELINE

We seek a transition … because we classify and compartmentalise the past in order to make it intelligible. In doing so we use and apply labels too easily to people and things, classifying individuals as “Roman” or “British”, even “military” or “civilian.” Identity is far more complex than that.
When history is written it is the iconic dates such as AD 43 which get remembered, as if it was then that society was transformed, when of course society is always being reinvented in a continuous process of negotiation.

John Creighton (2006, 69, 157)

Problems with the CE 43 Claudian invasion as the critical reference point from which to gauge all interaction and change have long been recognized in studies of Roman Britain (Haselgrove 1984, 1999; Rogers 2015, 8–9). However, despite rejection of the Romanization paradigm, the structure of inquiry has often continued to be oriented around an invasion narrative, assimilating evidence and interpretation to its imperatives (Laurence 2001a). Creighton suggests a more drawn-out and complex process of imperial incorporation than can be encapsulated by the conquest moment, arguing that Caesar’s expeditions to Britain in 55 and 54 BCE set in motion a sequence of political and military interventions between leaders in Britain and Rome, forming part of the context in which the Southern and Eastern Kingdoms developed during the latter part of the Late Iron Age (2000, 55–74; 2006, 19–31). He argues that major political alterations were taking place in line with the client kingship relationships explicitly mentioned in texts for Hellenistic kingdoms, citing profound changes in the representation of leaders and the trappings of power on coinage. Texts record leaders from Britain in Rome pre-Claudius (Creighton 2006, 25–31), while the emperors Augustus and Caligula appeared to have had designs on invading the island (Creighton 2006, 52–53).

Rogers (2015, 178–86) furthermore cautions against segregating a “late Roman period” as its own particular subfield, which implicitly divides a more “complete” Roman province from the conquest era. However, throughout imperial occupation, the province of Britannia was subject to administrative re-orderings as well as rebellions and uprisings. By 213 CE, Britannia was divided into Superior and Inferior, re-divided again into Britannia Prima, Maxima...
Caesarensis, Britannia Secunda, and Flavia Caesarensis by 312 CE until the end of the occupation (Mattingly 2006, 126, 227–29, Figure 9; Smith et al. 2016, 404). Beyond the canonized Boudiccan revolt in the first century CE, Russell and Laycock (2010, 130–52) document periods of unrest and rebellions of the army in Britain well into the imperial occupation in the latter part of the second century and during the third and fourth. The campaign process was often piecemeal and could take decades, even centuries, in other provinces as well. For example, it took almost 200 years of continuous campaigning and warfare to bring what became the province of Hispania under imperial orbit, from 206 BCE when the Romans expelled Carthage from Spain during the Second Punic War (after Scipio Africanus’ defeat of Hasdrubal Gisgo at Ilipa) to 19 BCE, when Agrippa subdued the final major rebellion in the Cantabrian Wars under Augustus (29–19 BCE) (Keay 1988, 25–46).

By following the military campaigns I do not mean to reduce acts of resistance to the arena of overt rebellion or violent uprising or to reproduce a focus on Roman-induced change in a model of military intervention, but simply to argue against subsuming identity negotiation in a clearly delimited conquest era. I am making the point that Britannia does not arrive to a finished state; it did not transition to a complete form post-conquest. There is not one monolithic apparatus of imperial domination that Rome deployed in all societies and all times; the imperial process was dynamic and ongoing (Mattingly 2011, 3–42). The shifting nature of and challenges to that imperialism throughout the Roman occupation of Britain cannot be encapsulated by confining the imperial imposition to a transitional moment.

Too often today we still use the phrase “Roman Britain” without seeing the UnRoman aspects hidden by this useful shorthand for “Britain under Roman control.”

Miles Russell and Stuart Laycock (2010, 230)

CONTINUITY AND CHANGE IN BRITAIN DURING THE ROMAN EMPIRE
Continuity and change have long been a focus of inquiry in studies of “Britain under Roman control.” The priorities of the Romanization-as-acculturation paradigm highlighted Roman-induced transformation—whether things changed or not—as the primary question, and to what degree native populations played a role in that change. These research priorities created a dichotomy between a dynamic Iron Age, where the identities and leadership institutions of the various social groups were in flux prior to the invasion (e.g., Creighton 2000; Moore 2011), versus the Roman period, where continuity is measured by the persistence of pre-Roman forms. However, tracing continuity as an unbroken trajectory that must originate in longer-term pasts denies the very agency and dynamism accorded to groups in the Iron Age once they are under imperial rule. The interplay of change in continuity and continuity in change—the ongoing production of reproduction—becomes homogenized and isolated into a singular continuity trajectory.

Rather than privileging the seemingly exogenous aspects of the landscape concentrated in the military, urban, and elite spheres, a growing literature addresses rural communities, including non-elite contexts, as well as continuity of forms of architecture and lifeways often overlooked (Allen et al. 2015; Chadwick 2004; Fulford and Holbrook 2011; Gardner 2007; Hingley 1989; Mattingly 2006, 375–78; Rogers 2015; Russell and Laycock 2010; Taylor 2007). While this brings a more diverse landscape into view, it is still often assumed what continuity and change look like across the transition, and how these processes map to identity, material culture, space, and time. For example, analyzing the Roman period in Dorset, Papworth writes “The subtle indoctrination of Roman culture into the Durotrigian communities is revealed in the archaeological record by the decrease in distinctive Iron Age traits” (2008, 376). Material here is still segregated temporally with continuity located in an Iron Age “pre-”. The communities of
Britain after the conquest, in the traditional narrative, are mainly defined by absence—absence of towns, villas, and forts—and become subsumed by a trajectory of Rome as the context for all transformation.

Thus, while narratives of process have become more multifaceted and complex, continuity and change tend to remain opposites, the material categories that link to continuity are assumed to always originate in longer-term pasts before the invasion baseline, and the landscape is presented as a “mix” of continuities and changes rather than interrogating ongoing revisions of what it means or looks like to change and continue (but see Gardner 2007). For example, Rogers’ exploration of Trethurgy Round, Cornwall, attempts to contextualize continuities in relationship to changing contexts of interaction, focusing on the “complex mix of sensory experiences blending the new and the old which would have constituted the settlement” (2015, 125). Some items of material culture introduced in the Roman period, such as window glass, may have provided the opportunity for new sensory experiences, while the “main form of the structures [drew] on Iron Age traditions” (2015, 127). However, it may not always be clear-cut what constitutes something that is old or new, or for how long or in what contexts the “Iron Age” provided a significant temporal arbiter of identity or tradition. Can we be sure that “Iron Age roundhouses” (e.g., Mattingly 2006, 287) during the imperial occupation signaled the Iron Age, or could the significance of the past and the temporal overlays that constituted those pasts have shifted depending on context? Two hundred years into the imperial occupation, for example, pre-baseline traditions might not have been the only context for defining what is old or long term. Memories and identity discourses that speak to continuities do not always have to be located in the same long term.
A sense of continuity and change rather than the potential for continuity in change is represented by Mattingly’s description of roundhouses and villas:

Until the florescence of villa building in the third to fourth centuries, much of Britain remained dominated by native forms of rural settlement, with a thin veneer of new types of building and structural forms. The persistence of pre-Roman building forms for domestic use was even more common and consistent in the north and west of Britain.

However, it would be wrong to imply that building forms were unchanging. The construction of stone buildings marked a major departure in many parts of the countryside … . A major change during the Roman period was the widespread addition of rectangular buildings to the traditional curvilinear forms. Many of the new structures utilized timber and daub just like the roundhouses, but some adopted more complex carpentry techniques… and some buildings incorporated tile or slate roofs. The latter are significant markers of change as the technology and tolerances of supporting a heavy solid roof are very different from those for a thatch construction. (Mattingly 2006, 376)

Mattingly gives attention to both continuity and change, recognizing the diversity of architectural types in a “Roman-period” landscape, and the differential or discrepant adoption of new structural forms and techniques as well as the maintenance of long-term patterns (see 2006, 379–427). Mattingly presents a landscape in process, negotiated in its own context, not a landscape that either achieves or fails to become a standard version of Romanitas. However, the analysis already assumes what continuity and change are and how they are in evidence in the material categories. The landscape portrayed is a combination of continuity and change as already understood and delimited but does not capture the immanence of change in continuity—the potential for change in continuity or continuity in change. Continuity appears self-explanatory in the reproduction of curvilinear forms, while rectilinear structures index change. This neutralizes continuity as a resistive default that needs no explanation beyond “inherent” or “innate conservatism” (e.g., Lewis et al. 2010, 275; Mattingly 2006, 367). However, a change in structure shape does not necessarily point to a change in practice, experience, or identity. Differences in structure shape, specifically round and rectangular forms, certainly can act as
political variables in colonial situations (e.g., Lyons 1996). However, Herbich and Dietler’s (2009) work demonstrates that a change in house shape from round to rectangular in a colonial context does not mandate a change in practice, experience, or identity. It is possible for a shift in structural form to pass without comment on its cultural import, while other aspects of the domestic process, such as the building materials used and community rituals surrounding the construction and maintenance of houses, may be more significant in constituting social relationships and identities.

Thus, the round shape as a pre-conquest trend cannot necessarily totalize experience as a singular condition. A priori delimiting the material boundaries of continuity homogenizes the round shape as the arbiter of experience, as the anchor of a category that all variation gets sorted into and subsequently subsumed into “tradition.” For example, describing rural settlement patterns during the Roman period in Wales, Mattingly writes, “Mynydd Bychan was an Iron Age settlement with timber roundhouses, which were subsequently rebuilt in stone, reflecting a simple updating of a traditional building form” (2006, 414, emphasis added). Similarly, when considering the pre-conquest origins and continuity of form of religious structures at Hayling Island (Hampshire) and Lancet Down (West Sussex), Russell and Laycock argue that “Romanisation of native belief systems therefore probably meant little more than the deliberate reshaping of the primary shrine using more permanent building materials” (2010, 76, emphasis added).

However, as demonstrated above, there is not necessarily anything simple about new construction materials added to a round form. This is a view of change as additive, as addition that does not pass a certain threshold of change (compare to Silliman 2014, 61, 69) and therefore counts as a “simple updating” or “little more than” the replacement of construction materials. A
change in construction material (which Mattingly [2006, 376] recognizes in the passage quoted above) might, whatever the shape, be a more significant condition for the maintenance or transformation of community practice. Timber or stone would have required different sources, been subject to different temporalities of repair, and could have thus involved very different kinds of community connections and intra-/inter-group obligations. The shape appears critical from the standpoint of the researcher asking if things changed after a fixed point in time, extrapolating a pattern of roundhouses as a category at a particular scale. However, shape may not have been an aspect of experience that linked together any meaningful kind of category.

Attempting to identify if lifeways changed post-conquest has thus been embedded in the interpretive program, whether this question has been oriented around Roman changes or native continuity. The continuity–change dichotomy runs into similar conceptual problems to the native–Roman binary. Even if Roman-ness is now viewed as a heterogeneous, contextual, and dynamic process that is emergent, contested, and manifested differently across space and time, the linguistic emphasis on the Roman side of interaction—“being” and “becoming Roman” (e.g., Gosden and Locke 2003; Mattingly 1997, 2004, 2011, 204; Woolf 1998; Versluys 2014)—implicitly allies post-conquest change with the constitution of Roman-ness. Equating change with Roman-ness creates an either/or landscape, where only one kind of thing can be visible at the same time, in the same space, or in the same process, and pins identity to the authenticity of origin.

We have seen how, at least on a theoretical level, scholars now reject the assumption of a monolithic suite of Romanitas that is either accepted or rejected. One of the problems with the concept of Roman-ness as static and homogeneous is not only the way it obscures fluidity, intersectionality, and negotiation in ongoing processes of identity construction. A key issue is the
way it directs the research inquiry and the mode of understanding heterogeneity, and the underlying narrative that variability then becomes subsumed by—i.e., the reference point from which to understand variability. Put simply, Romanization (like Chakrabarty’s history; see Chapter Three) as the narrative benchmark subsumes all variability into itself because it assimilates evidence to its structure and dismisses or ranks that which does not speak to its development. Even if we do not impute the success–failure framework to the evidence and interpretation, variability is still assessed in terms of whether it accords or not with the pattern of Romanization. No matter how critical and nuanced our frameworks on identity become, automatically identifying continuity as *that which does not change* does not escape this narrative.

→ Thus, similar to reifying Roman material culture as a monolithic standard, there is also a danger in understanding continuity and change with reference to post-conquest trends as *an average condition* of continuity or change. Such an orientation of the problem reproduces, if subtly, the idea that identities and processes of transformation reach a coherent and complete form, co-opting the narrative by assessing variability—that which deviates from the trend—with reference to this average condition. The “average condition” of continuity or change then becomes exteriorized from the context as an expected outcome or standard against which variability must be explained. But this formulation potentially misses the heterogeneity in local contexts—with neither continuity nor change representing unitary categories—that do not necessarily speak to these trends, i.e., for which these trends are not necessarily explanatory (see below).

APPROACH

The problem to counteract: Charting post-conquest changes at locales can present the impression of change as *additive* and *directional*. Continuity and change should not be pinned to
particular material categories, nor isolated as opposite outcomes that can be balanced against each other; we need to explore the interconnecting—and diverging—contexts of interaction at multiple scales of experience. The continuity–change axis, like the Roman–native axis, might not be the most suitable frame of reference in every situation.

Speaking from a North American context, Jordan (2010) counters the narrative of inevitability that tends to narrow perspective when change is measured as “additions” over time at individual sites. This “additive” approach to change among scholarship on post-1500 Native American communities contributes to “tropes of indigenous decline and disappearance” (2010, 80) that see particular kinds of changes as already “realized” and “imminent” (2010, 81). To illustrate this issue of change as additive and directional, as change to, let us follow the biographies of two sites in Dorset, identifying the CE 43 conquest moment as the traditional critical reference point:

At the site of Woodhouse Hill, Studland, in Dorset (Field 1966), occupants during the Late Iron Age built two circular structures. In the middle of the first century CE, one of these structures was partially replaced and adapted to a rectangular form. This appears to have gone out of use in the CE 80s. The first century structures were overlain by two rectangular buildings of third to fourth century CE date. In a second excavated area at the site, first century CE circular structures were overlain by a rectangular building that appeared to date from c.CE 80 through the second century. Originally a one-room structure, a room was added later in the building’s history. Two other rectangular buildings may have been contemporary with the third to fourth century CE structures at the first excavation complex (Figure 5.2). At the site of Alington Avenue, Dorchester, in Dorset (Davies et al. 2002), land use in the Late Iron Age is attested by a ditched field system, while the excavators documented three stone-footed rectangular buildings
as well as ovens, pits, and wells scattered throughout the area in the Roman period (Figure 5.3 and Figure 5.4).

Figure 5.2. Plans of the first and second excavation complexes at Woodhouse Hill, Studland (Field 1966, Figures 1c and 2).
Figure 5.3. Alington Avenue: Late Iron Age enclosure system (Davies et al. 2002, Figure 14).

Figure 5.4. Alington Avenue: Roman features (Davies et al. 2002, Figure 27).
Clearly, changes occurred at Woodhouse Hill and Alington Avenue over time. The material make-up of the sites pre- and post- the Claudian invasion is a different one, connecting to broader documented trends: rectangular structures succeed circular ones; the use of stone as a construction material at Alington Avenue aligns with a trend toward increasing instances of stone building material; more clearly identifiable buildings appear over time (Table 5.1).

Table 5.1. Traditional view of changes at the Late Iron Age/Roman transition in southern England.

<table>
<thead>
<tr>
<th></th>
<th>Late Iron Age</th>
<th>Roman</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(100 BCE–CE 43)</td>
<td>(CE 43–410)</td>
</tr>
<tr>
<td>Round buildings</td>
<td>Rectangular buildings</td>
<td></td>
</tr>
<tr>
<td>Timber, wattle & daub, thatch</td>
<td>Stone, ceramic tile</td>
<td></td>
</tr>
<tr>
<td>Handmade pottery</td>
<td>Amphorae, mortaria, samian, vessel glass; wheel thrown pottery</td>
<td></td>
</tr>
<tr>
<td>Predominance of sheep</td>
<td>Predominance of cattle; greater emphasis on secondary products</td>
<td></td>
</tr>
<tr>
<td>Emmer and spelt wheat</td>
<td>Increasing dominance of spelt; increasing presence of rye, oats & greater range of foods</td>
<td></td>
</tr>
<tr>
<td>Farmsteads & hillforts</td>
<td>Villas & towns</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Continuity</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural</td>
<td></td>
<td>Urban</td>
</tr>
<tr>
<td>Southwest</td>
<td></td>
<td>Southeast</td>
</tr>
</tbody>
</table>

However, indexing change through broad-scale, binary trends at the period and regional level homogenizes the nuance and variability of activity in the landscape. Rather, the approach attempts to:

→ *Keep in mind that continuities could have been otherwise from the past as delimited by the invasion baseline.*
Be able to talk about post-conquest changes without automatically aligning them with being or becoming Roman.

Using the 14 Dorset and Middle Thames Valley case study sites, below I chart traditionally recognized trajectories of continuities and changes across the conquest baseline in several areas—structure shape, construction materials, ceramic assemblages and the presence of vessel glass, animal husbandry, and cereal assemblage composition—demonstrating that, while trends appear to emerge in the evidence, the on-the-ground picture is far more diverse, heterogeneous, and contingent than can be accommodated by the abstracted trends. Tables 5.2 through 5.8 chart the Iron Age/Roman dividing line against the assemblages from each site, demonstrating that the broad period division does not capture the variability of the evidence. More nuanced distinctions particular to the assemblages at each site are provided where applicable. In order to draw out some of these distinctions, the phasing particular to each site is included in parentheses, where available or relevant, after the period designation. Due to the broad scope of the project across multiple material categories as well as the difficulties of creating comparable samples between sites—in terms of dateable contexts and controlling for site area excavated—quantitative metrics (e.g., sherd count) are included in the Tables, but I have not undertaken independent statistical analyses. A more detailed statistical consideration could be applied to each category in future analyses.

ROUND VS. RECTANGULAR STRUCTURES

During the Iron Age in southern England, people tended to live and work in circular structures known as roundhouses made of wood and organic material, while rectilinear buildings predominated on the European Continent. Although exceptions to this pattern have been acknowledged for some time—for example, areas of France and Spain exhibit round dwellings,
while rectangular buildings are documented in Britain (Harding 2009, 14–26)—a switch from round to rectangular houses in Britain during the Roman Empire has traditionally been interpreted as indicative of a transition to a Roman landscape (Mattingly 2006, 375).

Trends

Round structures are more numerous during the Iron Age, while the rectangular or rectilinear form figures more prominently during the Roman occupation (refer to Table 5.2 for structures; see also Smith et al. 2016, Figure 4.33, for the South region as a whole). Aside from the four-post structures often interpreted as granaries, most structural evidence from the Iron Age points to curvilinear buildings. For example, at Poundbury, the Iron Age witnesses a sequence of circular buildings during the Late Iron Age (IA9 and IA2, IA4, and IA5 and IA10), while two rectangular buildings (Structures R18 and R21) are dated to the Early Roman period. Curvilinear structures built during the Late Iron Age at Rope Lake Hole (Structures 236, 322, and possible Structure 266) give way to a rectilinear structure during the Roman occupation (Structure 117). Hengrove Farm exhibits a number of ring or partial ring (curvilinear) gullies during the Late Iron Age occupation (17), some of which may point to structures (perhaps evidenced by postholes associated with Ring Ditch 1308 and Ring Gully 1322). Curvilinear gullies are less numerous during the Roman occupation (Gully 1538, perhaps partial Ring Gully 998), while a rectilinear structure is constructed at that time (Structure 1062). At Perry Oaks/HT5, a circular building appears to go out of use at around the mid-first century CE (Penannular Gully 126155) while a rectangular building is established at around the same time (Building 1), and three rectilinear buildings characterize the period of Early/Mid-Roman activity (Buildings 2–4). Where activity only spanned the Iron Age or Roman period or structures are only present during part of the occupation, structures are generally circular during the Iron Age (as at Ashford Prison, Thorpe
Lea Nurseries, Imperial College Sports Ground, and Lea Farm) and rectilinear during the Roman period (as at Alington Avenue, Fordington Bottom, Maiden Castle Road, and Wood Lane).

Variation

The round to rectangular trend is not absolute, nor rooted to the transitional moment—the use of round versus rectangular structures cannot be defined by a single temporal point. For example, rectilinear structures 929, 394, and 420 at Fordington Bottom date to Period 4A at the site (Smith et al. 1997, 211, 213), which includes possible Late Iron Age material. Circular structure IA1 at Poundbury (Sparey Green 1987, 43–45) is undated, and thus cannot be definitively slotted into Iron Age or Roman use of the site. While, as indicated above, curvilinear gullies at Hengrove Farm are more numerous during the Late Iron Age, one curving gully (Gully 1538) dates to the latter part of the 1st century CE, and a partial Ring Gully (998) could date to the Roman period (Poulton 2007a). Ring Gully G711 at Imperial College Sports Ground might have continued in use into the Early Roman period (Powell et al. 2015, 87), while it is also possible that Penannular Gully 126155 and (rectilinear) Building 1 at Perry Oaks/HT5 included use across the transition, with Gully 126155 perhaps continuing briefly into the mid-first century CE and Building 1 possibly erected prior to the Early Roman period (Lewis et al. 2006, 211; Lewis et al. 2010, 276). Circular Hut Structure 293 at Lea Farm might have also continued for a brief period after the conquest, while circular Hut structures 292 and 793 did not yield datable material, and could have included both Iron Age and Roman phases of use (Manning and Moore 2000, 5–6). The assemblages in the hut structures at Lea Farm contain pottery datable to both the Late Iron Age and Early Roman period, and it is unlikely that use of one or the other shape was strictly divided by the conquest baseline.
In the wider landscape, the presence of round structures is now recognized across Britain throughout the Roman period (Fulford and Holbrook 2011, 337; Mattingly 2006, 375–427; Rogers 2015, 69–71). These round structures are furthermore not only confined to the margins of a traditionally conceived Roman landscape—i.e., on “Iron Age”-type farmsteads versus Roman villas, or in the “peripheral” west versus the “Romanized Southeast” core. They also occur on villa sites and within towns (for villa examples, see Mattingly 2006, 367; for town examples, see Mattingly 2006, 285, 288–89). Rectangular buildings also occur on the case study sites not surrounding the towns (e.g., Rope Lake Hole, Wood Lane), indicating a heterogeneous pattern rather than a single trend emanating out from areas central to the imperial administration.

Further complexity is introduced if we consider shape in other categories. While round structures may have been common during the Iron Age, a rectilinear shape could be used for other kinds of features, such as enclosures. The Late Iron Age (Period 3) enclosure at Flagstones (Smith et al. 1997, 42–43) is rectangular, as are Enclosure G383 (Powell et al. 2015, 85–87) and the Phase 1 enclosure (Powell et al. 2015, 91–93) at Imperial College Sports Ground, which were first constructed during the Late Bronze Age and Late Iron Age, respectively. Four-post (rectilinear) structures are present during both the Iron Age (e.g., Ashford Prison, Hengrove Farm, Thorpe Lea Nurseries, Lea Farm) and the Roman period (e.g., possibly Hengrove Farm, Lea Farm). Four- to six-post structures on Iron Age sites are often interpreted as granaries, while round structures are thought to represent dwellings. However, it is possible that various activities related to cooking, eating, sleeping, grain storage and processing, or animal husbandry were not discretely divided by separate structures (Chapter Six, 218–20). If cooking, eating, and sleeping activities were distributed in different ways across structures and open space at places of habitation, then capturing the transition in a shift from round to rectangular *houses* may miss
other possible understandings of dwelling space that cannot be contained in a balancing of categories primarily defined by external form. Roundhouses “that continued to be occupied or built in the Roman period should … be interpreted and understood within the new social context rather than making assumptions about the nature of the continuity from the Iron Age” (Rogers 2015, 103).

Table 5.2. Structures (excluding ovens or furnaces) at the case study sites, detailing shape by time period and construction materials. Data sources: site reports for case study sites.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Shape</th>
<th>Evidence for construction materials?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>R</td>
</tr>
<tr>
<td>Alington Avenue (6 flat limestone/Purbeck Marble slabs—floor slabs?; window glass present on site)**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Building 459 [Dwelling? Outbuilding?]</td>
<td>Rectilinear ER</td>
<td>late 1st/2nd C</td>
</tr>
<tr>
<td>Building 2126 [Semi-subterranean]</td>
<td>Rectilinear ER</td>
<td>(c. 1st/2nd to mid-3rd C)</td>
</tr>
<tr>
<td>Forbington Bottom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cemetery structure 929</td>
<td>Rectilinear</td>
<td>LIA/ER (4A, up to 2nd C)</td>
</tr>
<tr>
<td>Structure 394 [Semi-subterranean; function?]</td>
<td>Rectilinear</td>
<td>LIA/ER (4A, up to 2nd C)</td>
</tr>
<tr>
<td>Structure 420 [Semi-subterranean; domestic?]</td>
<td>Rectilinear</td>
<td>LIA/ER (4A)</td>
</tr>
<tr>
<td>Flagstones (Gullies present across site)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maiden Castle Road (RB window glass present)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structure 02310 [Semi-subterranean]</td>
<td>Rectilinear ER</td>
<td></td>
</tr>
<tr>
<td>Poundbury</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IA9</td>
<td>Circular</td>
<td>LIA(IIE)</td>
</tr>
<tr>
<td>IA2</td>
<td>Circular</td>
<td>LIA(IIE)</td>
</tr>
<tr>
<td>IA4</td>
<td>Circular</td>
<td>LIA(IIF)</td>
</tr>
<tr>
<td>IA5</td>
<td>Circular</td>
<td></td>
</tr>
<tr>
<td>Site/Structure</td>
<td>Type</td>
<td>Materials/Features</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>IA10</td>
<td>Circular</td>
<td>Postholes; wattle; cob</td>
</tr>
<tr>
<td>IA1</td>
<td>Circular</td>
<td>Postholes</td>
</tr>
<tr>
<td>Structure R18</td>
<td>Rectilinear</td>
<td>Timber; cob; daub; mortar; flint; tile; chalk floor; window glass</td>
</tr>
<tr>
<td>Structure R21</td>
<td>Rectilinear</td>
<td>Timber (sleeper beams?); drystone flint wall; chalk floors</td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td>(Gullies present across site; cob)</td>
<td></td>
</tr>
<tr>
<td>Structure 238</td>
<td>Rectilinear</td>
<td>Stone</td>
</tr>
<tr>
<td>Structure 236</td>
<td>Circular structure?</td>
<td>Stone</td>
</tr>
<tr>
<td>Structure 322</td>
<td>Circular structure?</td>
<td>Stone</td>
</tr>
<tr>
<td>Structure ? 266</td>
<td>Curved northern wall of 236 (or 322)?</td>
<td>Stone</td>
</tr>
<tr>
<td>Structure 319</td>
<td>Series of vertical stones</td>
<td>Stone (limestone)</td>
</tr>
<tr>
<td>Structure 117</td>
<td>Rectilinear</td>
<td>Stone (limestone); loam; timber?</td>
</tr>
<tr>
<td>Ashford Prison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Circular structure 4</td>
<td>Circular</td>
<td>Postholes; sleeper beams?; daub</td>
</tr>
<tr>
<td>Circular structure 5</td>
<td>Mostly but “not quite circular”</td>
<td>Timber (sleeper beams)?</td>
</tr>
<tr>
<td>Circular structure 6</td>
<td></td>
<td>Timber (sleeper beams?); daub</td>
</tr>
<tr>
<td>Circular structure 7</td>
<td></td>
<td>Postholes; sleeper beams?</td>
</tr>
<tr>
<td>Structure</td>
<td>Shape</td>
<td>Timeframe</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Circular structure 8</td>
<td>Circular, irregular</td>
<td>M/LIA</td>
</tr>
<tr>
<td>Four-post structure 6</td>
<td>Rectilinear</td>
<td>M/LIA</td>
</tr>
<tr>
<td>Four-post structure 7</td>
<td>Rectilinear</td>
<td>M/LIA</td>
</tr>
<tr>
<td>Four-post structure 8</td>
<td>Rectilinear</td>
<td>M/LIA</td>
</tr>
<tr>
<td>Circular structure 9</td>
<td>Circular</td>
<td>LIA</td>
</tr>
<tr>
<td>Circular structure 3</td>
<td>Circular</td>
<td>M/LIA</td>
</tr>
<tr>
<td>Four-post structure 9</td>
<td>Rectilinear</td>
<td>LIA</td>
</tr>
<tr>
<td>Hengrove Farm (a number of curvilinear and partial ring gullies that could point to structures, esp. LIA; daub/ wattle found on site)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curvilinear, penannular, or ring gullies/ditches (17)— (1351, 1398–99, 1421, 1841, 1939, 1244, 1308, 1322–23, 1352, 1385, 1391, 1418, 1547, 1730, 1850) Curvilinear ditches/ gullies that could indicate some structures</td>
<td>Circular/ curvilinear</td>
<td>LIA</td>
</tr>
<tr>
<td>Four-post structure 1849</td>
<td>Rectilinear</td>
<td>LIA/ER</td>
</tr>
<tr>
<td>Gully 1538</td>
<td>Curving?</td>
<td>ER(1st C)</td>
</tr>
<tr>
<td>Structure 1062</td>
<td>Rectilinear</td>
<td>ER(2nd C)</td>
</tr>
<tr>
<td>Partial ring gully 998</td>
<td>Curvilinear</td>
<td>RB?</td>
</tr>
<tr>
<td>Thorpe Lea Nurseries (Daub present on site; RB woodworm beetle: possible presence of timber buildings)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four-post structures</td>
<td>Rectilinear</td>
<td></td>
</tr>
<tr>
<td>Structure</td>
<td>Type</td>
<td>Date</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>(3)</td>
<td>Granaries?</td>
<td>IA</td>
</tr>
<tr>
<td>Round structures (3)?</td>
<td>Domestic? Short, curving gully lengths</td>
<td>Circular</td>
</tr>
<tr>
<td>Imperial College Sports Ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring gully G796</td>
<td>Domestic/roundhouse?</td>
<td>Circular</td>
</tr>
<tr>
<td>Ring gully G368</td>
<td>Domestic/roundhouse?</td>
<td>Circular</td>
</tr>
<tr>
<td>Ring gully G711</td>
<td>Domestic/roundhouse?</td>
<td>Circular</td>
</tr>
<tr>
<td>Perry Oaks/HT5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penannular gully 126155</td>
<td>Domestic/roundhouse?</td>
<td>Circular</td>
</tr>
<tr>
<td>Building 1 (B1)</td>
<td>Agricultural?; barn?</td>
<td>Rectilinear</td>
</tr>
<tr>
<td>Building 2 (B2)</td>
<td></td>
<td>Rectilinear</td>
</tr>
<tr>
<td>Building 3 (B3)</td>
<td></td>
<td>Rectilinear</td>
</tr>
<tr>
<td>Building 4 (B4)</td>
<td></td>
<td>Rectilinear</td>
</tr>
<tr>
<td>Wood Lane</td>
<td>Daub recovered from LIA/ER pit 116 and possibly pit 141</td>
<td>Rectilinear</td>
</tr>
<tr>
<td>Structure 227</td>
<td>Semi-subterranean/ sunken-floored; workshop?; barn?; dairy products?; threshing floor?</td>
<td>Rectilinear</td>
</tr>
<tr>
<td>Structure 335</td>
<td>Semi-subterranean/ sunken-floored; workshop?; barn?; dairy products?; threshing floor?</td>
<td>Rectilinear</td>
</tr>
<tr>
<td>Lea Farm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hut structure 291</td>
<td>Domestic/roundhouse?; craft?</td>
<td>Circular</td>
</tr>
<tr>
<td>Hut structure 294</td>
<td>Domestic/roundhouse?; food processing?; craft?</td>
<td>Circular</td>
</tr>
<tr>
<td>Hut structure 293</td>
<td></td>
<td>Circular</td>
</tr>
<tr>
<td>Hut structure 292</td>
<td>Circular</td>
<td>LIA(2)/ER? [?] Material not dateable</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Hut structure 793</td>
<td>Circular</td>
<td>LIA(2)/ER? [?] Material not dateable</td>
</tr>
<tr>
<td>Four-post structure 518</td>
<td>Rectilinear</td>
<td>LIA</td>
</tr>
<tr>
<td>Four-post structure 685</td>
<td>Rectilinear</td>
<td>LIA</td>
</tr>
<tr>
<td>Four-post structure 915</td>
<td>Rectilinear</td>
<td>RB/LR?</td>
</tr>
</tbody>
</table>

STONE AND CERAMIC BUILDING MATERIAL

Changes in the use of construction material have been attributed to Roman influence as well. Roundhouses built with timber, wattle, and daub are typically considered native-style, while rectangular buildings yielding stone, ceramic building material (brick and tile), window glass, or tesserae, have traditionally been considered Roman-style (Mattingly 2006, 373).

Trends

Not much direct evidence for structural material survives at the case study sites in either region (see Table 5.2 for construction materials; see also Smith et al. 2016, 104–10, for the South region as a whole). Post- or stakeholes survive in some cases for structures during the Iron Age (as at Poundbury, Ashford Prison, Hengrove Farm, Thorpe Lea Nurseries, and Lea Farm), with circular structures often outlined by ditches or gullies (e.g., Ashford Prison, possibly Hengrove Farm). The absence of post- or stakeholes in some of the curvilinear gullies at Ashford Prison prompted the excavators to suggest that the structures had been built with sleeper beams (Carew...
et al. 2006, 76). Structures at Poundbury, Gussage All Saints, Ashford Prison, Hengrove Farm, and Wood Lane exhibit evidence for wattle or cob, while daub is present at Ashford Prison, Hengrove Farm, Thorpe Lea Nurseries, Perry Oaks/HT5, and Wood Lane. It would appear that forms of construction utilizing timber posts, wattle, and daub were widespread practices.

The Roman occupation witnesses an increase in the use of stone and ceramic building material (Table 5.3) as well as a diversification of structural materials. Stone-footed buildings can be found at Alington Avenue in the first and second centuries CE—Building 459 and Building 2126—with some mortar and plaster traces at Building 2126. Maiden Castle Road yielded evidence of window glass during the Roman occupation. Mortar, tile, and window glass fragments at Poundbury’s Early Roman Structure R18 indicate a departure from the post-constructed circular buildings during the Iron Age. Early Roman Structure R21, also at Poundbury, exhibits a drystone flint wall. Ceramic building material is more frequently present and in greater quantities during the Roman period (Table 5.3). When brick and tile are present on sites, the latter phases of occupation usually generate more material. For example, most of the ceramic building material at Imperial College Sports Ground dates to the Late Roman period, while significantly more material was recovered from Period 4C (Roman) as opposed to 4A and 4B (Late Iron Age/Early Roman) at Fordington Bottom (6.15 kg for Periods 4A and 4B, 19.85 kg for Period C).

Variation

Stone building material during the Iron Age was by no means rare. Limestone footings and slabs are frequently found on sites where stone is readily available, such as in southern Purbeck in Dorset (Papworth 2008, 104–6), evidenced by the stone buildings (Structures 236, 322, 266, and 117) and other structures (a linear wall [Structure 238] and potential platform
[Structure 319]) during both the Iron Age and Roman phases of occupation at Rope Lake Hole, for example. Furthermore, stone building material in Iron Age structures is not only confined to coastal sites in Purbeck where stone can be readily quarried. For example, circular structure F48 at Manor Farm, Portesham, in Dorset (Valentin 2004, 47), exhibits the use of stone prior to the conquest.

Likewise, timber, wattle, cob, and daub persist as significant structural materials into the period of Roman occupation. Post- or stakeholes are associated with Late Iron Age/Early Roman Cemetery structure 929 at Fordington Bottom, Early Roman Structure 1062 at Hengrove Farm, and Early Roman Structures 227 and 335 at Wood Lane, while Roman-period stone-footed Building 459 at Alington Avenue, Structures R18 and R21 at Poundbury, Structure 117 at Rope Lake Hole, and Buildings 1–4 at Perry Oaks/HT5 appear to have also been constructed of timber or have had significant timber components. Wattle (Structure 227, Wood Lane) and cob (Building 459, Alington Avenue; Structure R21, Poundbury) continued to be used for several structures, Buildings 1–4 at Perry Oaks/HT5 may have been constructed of timber, thatch, and daub, and daub fragments were found in association with Structure R18 (Poundbury).

Thus, stone is not exclusively used as structural material in the Roman period, but can also be found in Iron Age structures (Cunliffe 2005, 279), while timber, wattle, and daub—the constructional mainstays in the Iron Age—continue to be widely employed after the conquest. Furthermore, differences in material do not necessarily correspond to differences in structural variation (Cunliffe 2005, 274), nor is timber confined to farms outside urban areas. The amphitheaters at Silchester (Fulford 1989) and Roman London (Creighton 2006, 105; Mattingly 2006, 265; Perring 2015, 30) were originally built as timber monuments. Timber remained the dominant construction material within towns until the second century CE (Mattingly 2006, 284).
For example, at Greyhound Yard within Dorchester, stone buildings did not replace timber structures until the late second century (Sparey Green 1987, 303).

Table 5.3. Presence of ceramic building material (brick, tile) at the case study sites. Number refers to pieces/fragments. Data sources: site reports of case study sites and RSRB database.

<table>
<thead>
<tr>
<th>Sites & Notes</th>
<th>Ceramic Building Material (Brick & Tile)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>Alington Avenue</td>
<td>RB? Brick, tile (tegula, imbrex)</td>
</tr>
<tr>
<td></td>
<td>2427</td>
</tr>
<tr>
<td></td>
<td>186 kg</td>
</tr>
<tr>
<td>Flagstones</td>
<td>RB</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>0.28 kg</td>
</tr>
<tr>
<td>Fordington Bottom</td>
<td>LIA/ER(4A[17, 1.37kg]+4B[98, 4.78])</td>
</tr>
<tr>
<td></td>
<td>Brick, tile (tegula, imbrex, fired clay, opus sig., misc. brick, misc. tile)</td>
</tr>
<tr>
<td></td>
<td>115 (4C, total 207)</td>
</tr>
<tr>
<td></td>
<td>6.15 kg (4C, total 26 kg)</td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>RB</td>
</tr>
<tr>
<td></td>
<td>Tile (tegula, imbrex)</td>
</tr>
<tr>
<td></td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>11 kg</td>
</tr>
<tr>
<td>Poundbury</td>
<td>RB</td>
</tr>
<tr>
<td></td>
<td>Fragments (brick, tile, tesserae)</td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td>Some undated brick, tile fragments</td>
</tr>
<tr>
<td>Rope Lake Hole</td>
<td></td>
</tr>
<tr>
<td>Ashford Prison</td>
<td></td>
</tr>
<tr>
<td>Hengrove Farm</td>
<td>RB</td>
</tr>
<tr>
<td></td>
<td>Brick, tile (tegula [76%], imbrex, floor tile, spica)</td>
</tr>
<tr>
<td></td>
<td>1188</td>
</tr>
<tr>
<td>Thorpe Lea Nurseries</td>
<td>RB</td>
</tr>
<tr>
<td></td>
<td>Brick, tile</td>
</tr>
<tr>
<td></td>
<td>137.6 kg</td>
</tr>
<tr>
<td>Imperial College Sports Ground</td>
<td>RB, mostly LR</td>
</tr>
<tr>
<td></td>
<td>Brick, tile (tegula, imbrex, box-flue) [manuring debris?]</td>
</tr>
<tr>
<td></td>
<td>132 (E/MR, 3)</td>
</tr>
<tr>
<td></td>
<td>10.93 kg</td>
</tr>
<tr>
<td>Perry Oaks/HT5</td>
<td>RB</td>
</tr>
<tr>
<td></td>
<td>Brick, tile (tegula, imbrex, plain tile)</td>
</tr>
</tbody>
</table>

158
POTTERY AND VESSEL GLASS

The Roman period is typically seen as ushering in changes in pottery assemblages—in terms of new vessel and ware types as well as the volume of exchange—often attributed to incorporation within the imperial economy. In particular, the pottery demonstrates contact with communities in central, southern, and eastern Gaul (e.g., samian ware), the Rhineland (Germany), southern Spain (e.g., Dressel 20 olive oil amphorae), and northern Italy (Arretine ware), with vessels originating from other regions as well, such as North Africa (e.g., North African red slip). New vessel and ware types as well as an increasing range of materials—including imported and British-manufactured fineware, such as samian, and vessel glass—are evident (Mattingly 2006, 515). In particular, mortaria—“bowl-shaped vessels with a prominent hooked flange or vertical ‘wall-sided’ rim” (Tyers 1996, 116), used for grinding or mixing—are traditionally recognized as belonging to “‘Romanized’ ceramic assemblages” (Tyers 1996, 116). Amphorae, samian, mortaria, and vessel glass tend to show differential distribution patterns along urban/military/rural lines, with these vessels and materials clustering within urban centers, garrison communities, and their immediate environs rather than on farms (Mattingly 2006, 473). In addition to these changes in ware and vessel types, wheel-thrown as opposed to hand-made pottery becomes more common during the Roman occupation (Mattingly 2006, 517).

Trends
Amphorae, mortaria, and samian generally figure more prominently during the Roman period and at sites close to towns (Table 5.4; see also Smith et al. 2016, 121–22, for the South region as a whole), for example, at Alington Avenue and especially Poundbury. Mortaria in particular tend to concentrate in post-conquest contexts. Flagstones, a site surrounding Dorchester, only produced 1 amphora sherd and 12 sherds of samian; however, activity at this site predominantly dates to the Late Iron Age. Wood Lane and Lea Farm, the two Middle Thames Valley sites farthest from Staines, yielded scant evidence for these types (only several sherds of samian and mortaria), nor do Rope Lake Hole and Gussage All Saints, the sites farthest from Dorchester in Dorset, exhibit large quantities. While major settlement activity appears to have ceased at Gussage All Saints sometime during the mid-first century CE, Rope Lake Hole, Wood Lane, and Lea Farm continue in use throughout the Roman period. Other types of imported fineware (such as Terra Nigra and Pompeian red ware) or British-manufactured fineware (such as Corfe Mullen, New Forest, and Oxfordshire) also concentrate in the later Roman period, with New Forest and Oxfordshire types dating to the mid- and late periods of the occupation. Fineware, imported or British-manufactured, is also scarce at Wood Lane, Lea Farm, Gussage All Saints, and Rope Lake Hole.

Vessel glass is not present during the Iron Age in the study area, but appears during the Roman period, for example, at Hengrove Farm (Poulton 2007a, 19) and Wood Lane (Ford et al. 2003, 88) in the Middle Thames Valley, and at Alington Avenue (Davies et al. 2002, 91–92), Fordington Bottom (Smith et al. 1997, 244), Poundbury (Sparey Green 1987, 109), and Rope Lake Hole (Woodward 1987, 162) in Dorset. The vessel glass assemblages at Alington Avenue and Fordington Bottom appear to be larger during the mid-/later part of the period. Many of the vessels represent common Roman-period types in the late first and second centuries CE as well
as a blue/green glass found throughout the Roman period—with types including bottles, bowls, cups, and jugs—corresponding to the largely post-conquest appearance and increase in presence after the Early Roman transition.

Variation

The distribution of amphorae, mortaria, and samian cannot be discretely mapped onto Roman versus Late Iron Age or urban versus rural contexts. Gussage All Saints exhibits amphorae sherds from Late Iron Age (Phase 3) assemblages, as do Flagstones and Poundbury, with several sherds of samian and other imported fine ware present at Flagstones. The mortaria, samian, and imported fine ware assemblages at Alington Avenue include some 1st century CE examples. While mortaria tend to cluster at sites surrounding Dorchester and Staines, mortaria sherds are scarce at Ashford Prison during the Roman period, despite proximity to Staines. Mortaria numbers are similarly very low at Imperial College Sports Ground.

While vessel glass tends to first appear during the Roman period and is present at fewer sites than amphorae, samian, and mortaria, the distribution is not restricted to urban contexts or sites surrounding towns, indicated by the fragments found at Rope Lake Hole and Wood Lane. The Alington Avenue assemblage constitutes an “interesting early example of glass available to rural site inhabitants” (Davies et al. 2002, 93). While Alington Avenue surrounds Dorchester, the presence of glass here suggests that by the Early Roman period this material was used outside of the towns in some instances.

Evidence for technique also varies from a general trend of hand-made to wheel-thrown vessels, indicating variability and overlap rather than replacement. At Hengrove Farm, hand-made fabrics continue into the Early Roman period (Poulton 2007a, 4). The same is true of Thorpe Lea Nurseries (Poulton et al. 1993, 11), and the pottery assemblages at Perry Oaks/HT5
demonstrate Late Iron Age/Early Roman temporal overlap (Jones and Brown 2011, 2–3). Lea Farm sees the continuous modification of a practice of grog-tempering originating in the Late Iron Age (1st century BCE) (Manning and Moore 2000, 19).

In the wider landscape, while amphorae appear in greater abundance post-conquest and closer to towns, their density is not uniformly distributed. Amphorae indicating consumption of olive oil, wine, or fish sauce are not as common at urban centers as they are in military communities, with a lower prevalence relative to sites in the Mediterranean (Mattingly 2006, 322–23). Furthermore, the intensity of imports fluctuates throughout the Roman period (Mattingly 2006, 500–2), with olive oil and fish sauce imports declining toward the latter centuries of the occupation, trends appearing to favor “closer sources of supply” (Mattingly 2006, 514). Pottery industries such as Black Burnished Ware production witnessed expansion and modification rather than replacement or simply addition after the conquest. Furthermore, coarsewares such as Black Burnished Ware represent the vast majority of sherds at all sites in both time periods (Table 5.5). In addition to fluctuations of proportion and distribution, it should also be noted that items traditionally grouped into a Roman identity category were not always imported. Mortaria, for example, were also manufactured at workshops in Britain (Cramp et al. 2011, 1339–40; Tyers 1996, 116–17). Such variation cannot be accommodated by a picture of cumulative trends that point to becoming Roman, or being incorporated into a Roman economy, but rather involve more diverse terms and contexts of use (see also Mattingly 2006, 515).

Having to sort all material into the trajectory of continuity or change as well as orienting questions around the presence of amphora, mortaria, and samian imports or locally manufactured examples continues to reproduce the priorities of the acculturation paradigm, while it is possible that interactions and negotiations operated under different terms. Those terms are difficult to
capture if an either/or model serves as the underlying conceptual apparatus through which material is grouped.
Table 5.4. Presence of amphorae, mortaria, samian, vessel glass, and other imported or British-manufactured fineware at the case study sites. Totals for site (left column) refer to pottery assemblages and do not include vessel glass. Data sources: site reports for case study sites and RSRB database. Numbers tabulated by sherd count or vessel glass fragments, unless otherwise specified.

<table>
<thead>
<tr>
<th>Sites & Notes</th>
<th>Amphorae</th>
<th>Mortaria</th>
<th>Samian/Terra Sigillata</th>
<th>Other Imported Fineware</th>
<th>Other British-manufactured Fineware</th>
<th>Vessel Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>R</td>
<td>IA</td>
<td>R</td>
<td>IA</td>
<td>IA</td>
</tr>
<tr>
<td>Alington Avenue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Total IA/RB sherd count: 11277 Total wt.: 167.712 kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB Dressel 20; Pélichet 47/Gauloise 4; Carrot; Rhodian 162</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIA/RB [1st-3rd c CE] 34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIA/RB [1st c CE-late 2nd/early 3rd] 239</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIA/RB Terra Nigra (Gallo-Belgic); Pompeian red ware 55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RB Corfe Mullen [3rd quarter of 1st c CE]; New Forest (M/LR); Oxfordshire (M/LR) 236</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ER Blue/green glass present; Cups; RB bottles, drinking vessels, table ware; Other glass objects present on site (e.g., beads, window glass) 3 (no. of vessels; total RB = 47 fragment s, min. 9 vessels)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flagstones</td>
<td>LIA</td>
<td>LIA</td>
<td>LIA</td>
<td>LIA/RB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>-----</td>
<td>------------</td>
<td>-----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Total IA/RB sherd count:</td>
<td>1</td>
<td>12</td>
<td>Imported</td>
<td>New Forest; Oxfordsh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3120]</td>
<td></td>
<td></td>
<td>+ British;</td>
<td>ire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total wt.: 43 kg. Lack of</td>
<td></td>
<td></td>
<td>Terra Nigra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fineware</td>
<td></td>
<td></td>
<td>(Gallo-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Belgic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fordington Bottom</td>
<td>ER/RB</td>
<td>ER/RB</td>
<td>ER/RB</td>
<td>ER/RB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Total sherd count, all</td>
<td>Dressel 20; Pélichet</td>
<td>4A (10) & 4B (14):</td>
<td>4A (5) & (9) 4B:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phases: 13511; Period 4A:</td>
<td>Dressel 47/ Gauloise 4</td>
<td>South Gaulish;</td>
<td>Corfe Mullen; New</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>414, wt. 5.347 kg; 4B: 1237,</td>
<td>(4C</td>
<td>Central Gaulish</td>
<td>Forest; Oxfordshire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wt. 16.9 kg; 4C: 2986, wt.</td>
<td>Dressel 2-4)</td>
<td>24 (4A–C, 55; total for</td>
<td>(red + white colour-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.986 kg]</td>
<td>4A (1) & 4B (7): does</td>
<td>site: 141 + East</td>
<td>coat)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not appear to be</td>
<td>Gaulish)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>much of an increase in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>olive oil/wine use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 (4A–C, 11; total for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>site: 30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4B 2 (4B–C, 3; total for</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>site: 10)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4A (10) & 4B (14):</td>
<td>Rhenish (4C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>South Gaulish; Central</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gaulish 24 (4A–C, 55;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total for site: 141 +</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>East Gaulish)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>RB 13</td>
<td>RB 40</td>
<td>RB 18</td>
<td>RB 13 (no. of vessels)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Total IA/RB sherd count: 3298; Total wt. 33.99 kg]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RB 16</td>
<td>RB</td>
<td>RB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RB/ LR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New Forest; Oxfordshire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poundbury</td>
<td>LIA Dressel</td>
<td>ER/RB Dressel</td>
<td>ER/RB Sources: LIA/ER</td>
<td>ER/RB Beakers,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Few pre-IA 1 (vessel)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RB Terra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RB Corfe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>Phase</td>
<td>Ceramic Types</td>
<td>Glass</td>
<td>Other Finds</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---</td>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gussage All Saints
[Total sherd count, all phases: 76602]</td>
<td></td>
<td>LIA (ER)
Dressel 1; Spanish Globular
13</td>
<td>LIA (ER)
South Gaulish; Arretine ware (1)
7</td>
<td>Mullen; London Ware; New Forest; Oxfordshire
Bottles, bowls, cups, jars, jugs, plates; Blue/green glass present; types common in W provinces; other glass present, incl. glass beads of 1st c BCE/CE date (5) + window glass
57 (106, whole RB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rope Lake Hole
[Total sherd]</td>
<td>ER/RB</td>
<td>2</td>
<td>ER/RB
Central Gaulish (66%);</td>
<td>RB/LR
Small amounts; New
ER/RB
Bottles; blue/green glass</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Site | Total RB sherd count | Total RB wt. | ER/Dressel 20 | ER/Verulanium region buff sandy ware; Orange sandy ware (upper Colne?) | RB Central Gaulish; South Gaulish | About 1% of total | ER/Belgic fine grog-tempered | ER/Belgic whiteware | RB London; Nene Valley; Oxfordshire | RB Bottles; blue/green glass present |,
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ashford Prison</td>
<td>50</td>
<td>1 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ER/Belgic</td>
<td>Forest; Oxfordshire</td>
<td></td>
</tr>
<tr>
<td>Hengrove Farm</td>
<td>7617</td>
<td>99.55 kg</td>
<td>ER/Dressel 20</td>
<td>ER/Verulanium region buff sandy ware; Orange sandy ware (upper Colne?)</td>
<td>RB Central Gaulish; South Gaulish</td>
<td>About 1% of total</td>
<td></td>
<td>ER/Belgic</td>
<td>RB Bottles; blue/green glass present</td>
<td></td>
</tr>
<tr>
<td>Exceptional size & diversity</td>
<td>Thorpe Lea Nurseries</td>
<td>Imperial College Sports Ground</td>
<td>Perry Oaks/HT5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ER South Spanish</td>
<td>ER White-slippered; Imported</td>
<td>RB South</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(Baetican) 115</td>
<td>absent 1</td>
<td>Spanish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ER Verulanium region</td>
<td>ER Central Gaulish; South</td>
<td>RB Central</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | off-white; Orange | Gaulish 2 | Central Gaulish;
<p>| | sandy ware 82 | | later: |
| | | | |
| | | ER/EB 1st/2nd C Argonne color coated ware 2 | ER/EB London (8) |
| | | | RB/LB 3rd/4th Oxfordshire; Nene Valley |
| | | | |
| Total RB sherd count: 10895 | | | |
| Some pre-Flavian sherds of | | | |
| types not found at Staines | | | |</p>
<table>
<thead>
<tr>
<th>Location</th>
<th>LIA/RB sherds</th>
<th>Eastern Gaulish</th>
<th>Southern Gaulish</th>
<th>Wood Lane</th>
<th>Lea Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Baetica n); Low compare d to Staines 3</td>
<td>122 (1.6%, Staines: 1%)</td>
<td>99 (1.3% (Staines: 3%))</td>
<td>ER Central Gaulish; South Gaulish</td>
<td>ER Central Gaulish; South Gaulish</td>
</tr>
<tr>
<td></td>
<td>(Total LIA/RB (1561)/RB (7488) sherd count: 9049; Total wt.: 113.7 kg) Imports scarce; Fineware scarce</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Lane</td>
<td>[Total IA/RB wt.: 115 kg] Verulanium products present; Imported fineware scarce</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lea Farm</td>
<td>? ER/RB Oxfordshire colour-coated 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Total RB count: 853, wt. 12.75 kg
Samian, amphorae, mortaria, and fineware scarce
Table 5.5. Presence of Black Burnished Ware and other coarseware and regional types at the case study sites. Bold and underlined X refers to dominant component of total assemblage; bold refers to dominant type within category. Data sources: site reports for case study sites and RSRB database. Numbers tabulated by sherd count, unless otherwise specified. See Table 5.4 for total sherd counts/weight for each site.

<table>
<thead>
<tr>
<th>Site</th>
<th>Black Burnished Ware</th>
<th>Other Coarseware & Regional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>R</td>
</tr>
<tr>
<td>Aldington Avenue</td>
<td>LIA/RB</td>
<td>BB1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BB1 X (91 % by no.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10365</td>
</tr>
<tr>
<td>Flagstones</td>
<td>LIA</td>
<td>BB1 X (99 % by no.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3092</td>
</tr>
<tr>
<td>Fordington Bottom</td>
<td>RB: 4A</td>
<td>BB1 X (97% of 4A&4B assemblage)</td>
</tr>
<tr>
<td></td>
<td>(398) & 4B (1202)</td>
<td>(4A–C, 2861)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>RB</td>
<td>BB1 X (96 % by no.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3160</td>
</tr>
<tr>
<td>Poundbury</td>
<td>IA/RB</td>
<td>BB1 X (96% of whole assemblage)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td>LIA(ER)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rope Lake Hole</td>
<td>M/LIA</td>
<td>BB1 X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashford Prison</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hengrove Farm</td>
<td>RB</td>
<td>Early/Mid 2nd C “Significant minority”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site: Thorpe Lea Nurseries</td>
<td>Earthenware: ER</td>
<td>LIA</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------------</td>
<td>-----</td>
</tr>
<tr>
<td>Imperial College Sports Ground</td>
<td>Mid 2nd Century</td>
<td>LIA</td>
</tr>
<tr>
<td>Perry Oaks/HT5</td>
<td>Early/Mid 2nd Century</td>
<td>LIA</td>
</tr>
<tr>
<td>Wood Lane</td>
<td>Earthenware: ER</td>
<td>M/LIA</td>
</tr>
<tr>
<td>Lea Farm</td>
<td>RB, From 2nd Century</td>
<td>LIA/ER</td>
</tr>
</tbody>
</table>
ANIMALS

The Iron Age in southern Britain has been designated the “Sheep Age” (Albarella 2007) due to the widespread predominance of sheep in animal husbandry at this time. The major domesticates include sheep/goat, cattle, horse, dog, and pig. Pig representation is generally low in the Iron Age. During the Roman period, several changes in animal husbandry emerge: cattle gradually replace sheep as the dominant animal encountered in faunal assemblages; domestic fowl and marine resources, with low representation in the Iron Age, become more prevalent; the presence of horse declines; the presence of pig increases; and animals tend to be slaughtered at a later stage in the lifecycle, perhaps indicating an increasing reliance on secondary products such as milk and wool. Increasing use of cattle (and potentially horses) for traction is also posited to correlate with an intensification and expansion of agricultural production in the Roman period, especially in the Thames Valley (Booth et al. 2007, 26; Thomas and Stallibrass 2008, 10). These patterns, typically more visible in urban rather than rural areas, have been documented by King (1978) (see also Grant 1989; Mattingly 2006, 322, 504–5 for an example of these trends in review accounts).

The exploration of the evidence below is not a detailed quantitative comparison. Excavation reports followed different methods and quantified the material in different ways (i.e., NISP versus MNI), and the acidic brick earth soils of the Middle Thames resulted in limited bone preservation, often with high levels of fragmentation, further inhibiting intersite comparison. These adverse soil conditions will have resulted in a bias toward the survival of larger and more...
durable skeletal elements. Lea Farm, in particular, produced only 30 fragments of animal bone dating to the Late Iron Age and Roman periods, preventing interpretation beyond confirming the presence of cattle, sheep, and horse in the Iron Age and cattle, sheep, horse, and pig during the Roman period. Environmental and floral evidence suggest that pastoral rather than agricultural activities predominated at Lea Farm during the Late Iron Age and Roman periods (Manning and Moore 2000, 26–27), indicating that the acidity of the soils rather than site function are likely responsible for the limited faunal profile. Furthermore, the bone condition prevented detailed consideration of butchery practices at many of the Middle Thames sites (e.g., Hengrove Farm, Wood Lane), although cut marks do preserve on some bones. Differences in disposal practices by species type and phase also complicate assessments of relative species abundance and their significance as components of the assemblage (see Maltby 1985). Bones that could provide age and size data also were differentially represented. With these caveats in mind, a relative comparison reveals certain patterns as well as variation from those trends. Because I did not undertake independent quantitative analyses, I relied on the interpretations provided by the excavators and faunal specialists in the case study site reports for information on relative species abundance and animal husbandry practices (see Table 4.2 for references).

Trends

Most sites exhibit evidence for the major domesticates, sheep/goat, cattle, horse, dog, and pig. Sheep/goat dominate in Iron Age faunal assemblages, for example, at Flagstones, Fordington Bottom, and Poundbury (see Tables 5.6 & 5.7 for fauna; see also Smith et al. 2016, 125–27, for the South region as a whole). Cattle representation appears to increase during the Roman period at Alington Avenue. Early culling of sheep in the Iron Age is documented at Flagstones (Smith et al. 1997, 192), Period 4A at Fordington Bottom (Smith et al. 1997, 273),
and Poundbury (Sparey Green 1987, 130). Pig representation is generally low, as at Alington Avenue (Davies et al. 2002, 114), Flagstones (Smith et al. 1997, 195), Fordington Bottom (Smith et al. 1997, 272–73), Maiden Castle Road (Smith et al. 1997, 195), Rope Lake Hole (Woodward 1987, 177) and Thorpe Lea Nurseries (Poulton et al. 1993, 37).

Cattle or horse might have been used for draught purposes in both the Late Iron Age and Early Roman periods at some sites, as at Alington Avenue (Davies et al. 2002, 116), Poundbury (Sparey Green 1987, 130), Gussage All Saints (Wainwright 1979, 158–59), and Wood Lane (Ford et al. 2003, 92). Horses tend to be represented by adult animals. Neonatal or juvenile individuals are absent at, for example, Alington Avenue (Davies et al. 2002, 115), Flagstones (Smith et al. 1997, 195), Fordington Bottom (Smith et al. 1997, 273), Poundbury (Sparey Green 1987, 131), Gussage All Saints (Wainwright 1979, 153), and Wood Lane (Ford et al. 2003, 92). Rope Lake Hole only exhibits one incisor from a one- to two-year-old horse; otherwise, remains indicate animals ranging from eight to sixteen years (Woodward 1987, 179). The age at death of two horses at Ashford Prison could be estimated, one ten to eleven years, and the other seven to nine years (Carew et al. 2006, 87–88). All the horse bones from Imperial College Sports Ground derive from adult individuals (Powell et al. 2015, 238).

Animals in the Roman period tend to be culled later in the faunal remains from the study sample. At Poundbury, a greater proportion of adult sheep figure in the Roman-period assemblages (Sparey Green 1987, 130). At Fordington Bottom, sheep are culled earlier in period 4A (Late Iron Age/Early Roman) than 4B (first–second century CE) (Smith et al. 1997, 273). Period 4 (Roman) indicates a bias toward older sheep at Rope Lake Hole, although this might be due to the differential preservation of phase deposits affected by ploughing (Woodward 1987, 179).
Pig proportions increase and the presence of pig becomes more widespread in the Roman period, while horses exhibit the inverse pattern—horse bones decline in number in the Roman period. In the 4B assemblage at Fordington Bottom, pigs are on the rise while horse proportionally decreases (Smith et al. 1997, 273). The trend toward increasing presence of pig and declining abundance of horse is particularly pronounced along an urban/rural axis. Pigs do not exhibit as much of an increase in representation as at the Greyhound Yard site within Dorchester, however, suggesting an urban/rural dichotomy in the preference for pig (Smith et al. 1997, 198). In fact, at the urban former County Hospital Site, pig representation is twice as high as at the contemporary but more rural County Hall site, but comparable to the Greyhound Yard assemblage (Grimm 2008, 3). Also around Dorchester, the proportional decline in horse is more pronounced in the urban assemblages (Smith et al. 1997, 198). Excavations within Staines indicate that pig is proportionally better represented in the town than at farmsteads (Smith et al. 2016, 134).

The distribution of domestic fowl remains also demonstrates a bias towards the Roman period, with some variation along an urban/rural axis. The presence of domestic fowl clusters around sites within a few kilometers of Dorchester and is more prevalent in the Roman period—Alington Avenue, Fordington Bottom, Maiden Castle Road, and Poundbury. Domestic fowl does not appear until the mid-Roman period at Alington Avenue or until Period 4B at Fordington Bottom (Smith et al. 1997, 270). Domestic fowl remains are quite scarce at the Middle Thames sites, represented by one bone fragment from the middle/late Roman period at Hengrove Farm, with the few other bone fragments belonging to unidentified species (Hengrove Farm, Imperial College Sports Ground) and one wetland wild specimen (Early Roman Wood Lane). Bird bones appear to be absent from Late Iron Age/Early Roman contexts at Ashford Prison, Thorpe Lea
Nurseries, Perry Oaks/HT5, and Lea Farm, although, as noted, the adverse preservation conditions on the Middle Thames sites is biased toward larger animals (Knight and Grimm 2011, 4).

Fish remains and other marine resources are scarce in the rural case study sites, with slightly greater representation during the Roman period in urban contexts. Close to Dorchester, Alington Avenue, Maiden Castle Road, and Poundbury exhibit fish remains during the Roman period, with just one example in the Middle Thames Valley at Hengrove Farm, also during the Roman period. Fish remains in any quantity tend to be confined to urban contexts (e.g., the former County Hospital site within Dorchester [Trevarthen 2008, 18–19], where 600–700 fish bones were recovered from oven 470). Marine shell is absent at Alington Avenue and Wood Lane during the Iron Age but makes an appearance during the Roman occupation, while the diversity of the assemblage at Rope Lake is expanded by the presence of oysters (in addition to winkle and limpet) in the mid-Roman period.

Changing butchery methods also demonstrate an urban/rural dimension, with the introduction of new techniques centered around the towns and rural sites in their vicinities. The butchery methods recorded at Roman-period Alington Avenue, close to Dorchester, accord with urban techniques but differ from those at most rural sites (Davies et al. 2002, 115). Within the town, the standard butchery procedures suggest the presence of professional butchers (Grimm 2008, 12). New cattle butchery practices are introduced at Poundbury, also within Dorchester’s immediate vicinity, during the Roman period (Sparey Green 1987, 131–32). Cleaver butchery marks, generally characteristic of urban and military contexts, are evident among the cattle assemblages at Staines; similar marks on sheep/goat and pig as well as horse butchery point to a specialized and organized livestock marketing within the town (Smith et al. 2016, 134–35). At
Imperial College Sports Ground, 7.8 km from Staines, one cattle scapula bears marks comparable to filleting marks seen on cured shoulder cuts of beef, a “typically Roman” specialist butchery technique, although found at a variety of site types (Powell et al. 2015, 238). Although not prevalent, some marks of “typical ‘Roman’ butchery” methods were observed at Thorpe Lea Nurseries, 2.4 km from Staines (Poulton et al. 1993, 37).

The evidence from Dorset in the Roman period suggests changes in herd composition, butchery practices, and animal consumption, which differed along an urban/rural axis. Dorchester witnessed an increasing presence of pig, domestic fowl, and fish, while the presence of horse declined. Horse remained more prevalent in rural communities, however, while pig was better represented in urban assemblages (Smith et al. 1997, 198). The evidence from the Middle Thames Valley speaks to some of these trends, including the increasing presence of domestic fowl and fish in the Roman period (but not necessarily within the Staines environs).

Variation

Exceptions to these patterns are evident, however. Sheep are culled later at Gussage All Saints than other Iron Age sites, perhaps indicating an importance placed on milk and wool products (Wainwright 1979, 158). The dominance of older animals among cattle and sheep assemblages at Imperial College Sports Ground in both the Late Iron Age and Roman periods suggests that husbandry strategies oriented around secondary products were also critical to some Iron Age economies (Powell et al. 2015, 237). Wood Lane also parallels this pattern, where mainly adult cattle and sheep (pigs being young) are represented during the Middle/Late Iron Age occupations (Phases 6 & 7), with some “quite elderly” individuals (Ford et al. 2003, 91). Juvenile/immature individuals were present during these phases (Ford et al. 2003, 91), however,
and the preservation bias toward older animals on Middle Thames sites should be kept in mind when considering proportions.

Cattle along with sheep dominate the Alington Avenue Iron Age faunal assemblages (Davies et al. 2002, 114). While sheep bones make up a greater proportion of bone fragments at Rope Lake Hole during the Late Iron Age, it is estimated that cattle would have provided the main meat source (Woodward 1987, 177). Furthermore, the evidence indicates a potential trend toward increasing sheep importance over time rather than the reverse, although this pattern could be an artifact of the influence of disposal practices on species ratios in later periods (Woodward 1987, 179). Overall, "The figures for the relative balance of meat-bearing and non-meat-bearing bones for the three major species [cattle, sheep, and pig] appear to be roughly equal in all periods for all three species" (Woodward 1987, 179), suggesting no major directional trends with regard to the consumption of each of the major domesticates at Rope Lake Hole.

Further introducing heterogeneity to the faunal landscape, the trend from sheep to cattle dominance over the Roman period is not evident at a number of the Middle Thames Valley case study sites, while sheep remain quite prominent at the Dorset case study sites (e.g., Fordington Bottom, Maiden Castle Road, Poundbury). Possibly comparable to Rope Lake Hole in Dorset, Hengrove Farm exhibits a shift in emphasis from cattle to sheep from the Iron Age to the Roman period (Poulton 2007a, 21). At Perry Oaks/HT5, cattle and horse dominate sheep and pig representation in all phases at the site (excepting the modern contexts) (Knight and Grimm 2011, 3). In the Middle/Late Iron Age assemblages at Ashford Prison, cattle already predominated, followed by pig. Sheep and goat were not well represented, and horse appeared to be a very important component of the economy (Carew et al. 2006, 76). Cattle were the most common domesticate during the Late Iron Age/Roman period at Imperial College Sports Ground, if only
“marginally so relative to sheep/goat” (Powell et al. 2015, 237). Cattle and sheep/goat dominated all the phase assemblages at Wood Lane (Ford et al. 2003, 90–92). While the abundance of cattle with respect to sheep fluctuates and appears most pronounced in the Early Roman period (Phases 8B & 8C), cattle are already present along with sheep at greater or relatively equal frequencies in Middle/Late Iron Age assemblages (quantified by number of bone fragments), and it is probable that sheep/goat are overrepresented in Late Iron Age/Early Roman Phase 8A, as most of the bones from these species derive from one context (Ford et al. 2003, 91). Cattle appear to predominate at Thorpe Lea Nurseries before the Roman period as well (Table 5.6).

The trends of increasing pig presence and declining horse presence over time, with the patterns particularly pronounced in urban contexts, also exhibit exceptions. Maltby (2015, 179) notes that urban assemblages exhibit considerable diversity and do not always accord with the diachronic trends observed as general conditions of changing interaction with animals. While pig representation is generally low in the Iron Age, pig proportions demonstrate heterogeneity across the landscape. Pig constitute a minor component of the assemblage at Rope Lake Hole during the Iron Age, paralleling the representation at sites such as nearby Eldon’s Seat; the south Somerset farmstead at Berwick Down, Tollard Royal; and sites on the Hampshire chalklands; but contrasting with the relatively higher proportions of pig at some Iron Age sites in Wessex, for example, Cleavel Point, Ower, in Dorset (Woodward 1987, 179). It is possible that environmental conditions more conducive to pig rearing may have been at play in the latter cases. Pig representation is lower than expected in Early and Mid-Roman assemblages at Perry Oaks/HT5, although again a poor preservation environment may be the culprit (Knight and Grimm 2011, 20), while, as noted above, the pig component appears significant at Ashford Prison during the Middle/Late Iron Age (Carew et al. 2006, 76). Roman-period assemblages at
Thorpe Lea Nurseries, in the vicinity of Staines (2.4 km away), exhibit a relatively high frequency of horse and low proportion of pig (Poulton et al. 1993, 37–38), the opposite of the pattern seen in urban centers or rural sites in their vicinity. Furthermore, while horse proportions often decline after the conquest, the Middle Thames Valley sites yield a strong presence of horse into the Roman period, even at sites close to Staines. Representation of horse remains high at Ashford Prison (Carew et al. 2006, 76), Hengrove Farm (Poulton 2007b, 15), Thorpe Lea Nurseries (Poulton et al. 1993, 37–38), and Perry Oaks/HT5 (Knight and Grimm 2011, 3). In fact, at Perry Oaks/HT5, horse predominates over sheep in both the Late Iron Age/Early Roman and Early/Mid-Roman periods.

Dog remains are also particularly prevalent at Hengrove Farm in the Roman period, in greater numbers than pig (Poulton 2007b, 15). The presence of cat is too limited to isolate general patterns. The only site to yield cat in significant quantities is Poundbury, where cat bones date to both the Late Iron Age and Roman periods (Table 5.7). Cat does not appear at Thorpe Lea Nurseries until the Roman period (Poulton et al. 1993, 37), but Late Iron Age Gussage All Saints produced a bone fragment (Wainwright 1979, 150), and the presence of cat at Gussage and at the site of Whitcombe Farm in Dorset suggest the introduction of domesticated cats prior to the Roman period (Aitken and Aitken 1991, 88). The patterning of domestic fowl and marine species also varies from the trends discussed above. One domestic fowl bone fragment occurs at Late Iron Age Poundbury. While Poundbury surrounds the future Durnovaria, Rope Lake Hole yielded a few bones of domestic fowl that may have dated to the Late Iron Age (remains of fowl were unphased) (Woodward 1987, 177), with a fragment also present at Gussage All Saints (Wainwright 1979, 155). Although marine species, such as fish and mollusks (mostly limpets and periwinkles), occur in greater concentrations in
urban assemblages during the Roman period, Rope Lake Hole produced evidence for mollusks (limpets, periwinkles) during the Late Iron Age (Woodward 1987, 178), while marine shell is present in Late Iron Age/Early Roman contexts at Fordington Bottom (Table 5.7). Rope Lake Hole’s location near the coast may explain some of the marine species presence, suggesting that geographic variability and ease of access may disrupt outcomes predicted by the trends. Furthermore, isotope analysis of dietary patterns at several sites in Dorset in the Iron Age and Roman period suggests that an increased availability of marine foods did not necessarily translate into increased consumption (Redfern et al. 2010).

The trends—focused on assessing changes in production, particularly regarding the influence of Empire on economic intensity and exploitation—also tend to obscure the variability of non-domesticated species within the assemblages. Most of the sites produced some wild mammal remains, even if in small quantities, with a more significant presence at Poundbury. Changing proportions of, for example, red and roe deer or hare relative to the major domesticates could yield information about the social and economic practices surrounding human/animal relationships within the context of imperial occupation. Furthermore, it should be noted that some of the assemblages have a high proportion of unidentified bone (e.g., Ashford Prison, Hengrove Farm, and Imperial College Sports Ground), which could affect the picture of species ratios and relative predominance, especially in the Middle Thames Valley where preservation is poor.

In summary, there does not appear to be a single homogeneous mode of animal husbandry confined to either period, the trends cannot be taken as a coherent package that always travels as an assemblage, and the patterning also cross-cuts traditional geographic groupings of continuity in the southwest and change in the southeast. While the Dorset region exhibits
variability in animal husbandry during the Roman occupation, the documented trends are somewhat discernible—for example, the prominence of sheep in the Iron Age and the declining importance of horse in the Roman period. However, these patterns are not so evident in the Middle Thames Valley. Here, cattle appear to have been the predominant species in most of the animal assemblages at the case study sites during the Iron Age, and several sites seem to indicate a reversal of the generalized post-conquest transformation—a switch from cattle to sheep dominance. Furthermore, horse presence continues to be important into the Roman period in the Middle Thames Valley. In this case, some of the trends pointing to change are more clearly distinguishable in the southwest rather than the southeast. The variation in animal husbandry practices before and after the conquest indicates a diversity of community organization that might be speaking to different histories and possibilities from the documented post-conquest trends and geographic confinement of continuity and change to core and peripheral areas.
Table 5.6. Presence of major domesticates at the case study sites. Most predominant species is indicated by a “1,” with the second most predominant indicated by a “2,” with “3” identified on a case-by-case basis. “X” indicates presence. Low = poor representation, and high = well represented; this information was included on a case-by-case basis depending on report detail. Sheep/goat are included together due to the difficulty of differentiating sheep and goat bones. Count = NISP unless otherwise specified. ABGs = Articulated or associated bone groups. Data sources: site reports for case study sites and RSRB database.

<table>
<thead>
<tr>
<th>Sites & Notes</th>
<th>Sheep/Goat</th>
<th>Cattle</th>
<th>Horse</th>
<th>Dog</th>
<th>Pig</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IA</td>
<td>R</td>
<td>IA</td>
<td>R</td>
<td>IA</td>
</tr>
<tr>
<td>Alington Avenue [LIA remains scarce]</td>
<td>1?</td>
<td>LIA</td>
<td>1?</td>
<td>R</td>
<td>1?</td>
</tr>
<tr>
<td>Total bone fragments: 3570; total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>for MR: 2759]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>364(MR)</td>
<td></td>
<td>471</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>458(MR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flagstones [Total bone fragments:</td>
<td>1</td>
<td>LIA(ER)</td>
<td>2/3</td>
<td>LIA(ER)</td>
<td>LIA(ER)</td>
</tr>
<tr>
<td>4142]</td>
<td></td>
<td>Culled young</td>
<td>Adults</td>
<td></td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>952</td>
<td></td>
<td>471</td>
<td></td>
<td>223</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>458(MR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fordington Bottom [Total bone</td>
<td>1</td>
<td>LIA/ER</td>
<td>2</td>
<td>LIA/ER</td>
<td>X</td>
</tr>
<tr>
<td>fragments: 2648; total for LIA/ER:</td>
<td></td>
<td>Most bone fragments</td>
<td>2/1</td>
<td>LIA/ER</td>
<td>LIA/ER</td>
</tr>
<tr>
<td>1170; total for ER: 476]</td>
<td>77</td>
<td></td>
<td>6</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>1</td>
<td>R</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>R</td>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Location</td>
<td>Total Bone Fragments</td>
<td>LIA</td>
<td>ER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Poundbury</td>
<td>1160</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIA</td>
<td>ER</td>
<td>LIA</td>
<td>ER</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Culled young</td>
<td>Increase in adult animals</td>
<td>Milk yields increase from IA on 432</td>
<td>Adults</td>
</tr>
<tr>
<td></td>
<td></td>
<td>186</td>
<td>65</td>
<td>12</td>
<td>239</td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td>12876; total for LIA: 2849; total for ER: 5807</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIA(ER)</td>
<td>Use for milk & wool</td>
<td>LIA(ER)</td>
<td>Most mature; main meat source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115 (?3 goat; MNI)</td>
<td>115 (73 goat; MNI)</td>
<td>115 (73 goat; MNI)</td>
<td>115 (73 goat; MNI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>615</td>
<td>994</td>
<td>402</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIA/ER</td>
<td>Most bone fragments; Increased importance</td>
<td>LIA/ER</td>
<td>Main meat source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>616</td>
<td>994</td>
<td>402</td>
<td>330</td>
</tr>
<tr>
<td>Rope Lake Hole</td>
<td>5333; Only sheep/goat, cattle, and pig phased</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2/1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LIA/ER</td>
<td>Most bone fragments</td>
<td>LIA/ER</td>
<td>Most bone fragments</td>
</tr>
<tr>
<td></td>
<td></td>
<td>616</td>
<td>994</td>
<td>402</td>
<td>330</td>
</tr>
<tr>
<td>Ashford Prison</td>
<td>822; Total for M/LIA (only un’id’d mammal)</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M/LIA</td>
<td>Low</td>
<td>M/LIA</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>36</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Site</td>
<td>LIA/ER</td>
<td>ER</td>
<td>LIA/R</td>
<td>LIA/R</td>
<td>LIA/R</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
<td>----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Hengrove Farm</td>
<td>2?</td>
<td>1</td>
<td>1?</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[Total bone fragments: 3158;</td>
<td>ER</td>
<td></td>
<td>LIA/ER</td>
<td>M/LR</td>
<td>M/LR</td>
</tr>
<tr>
<td>Total for LIA/ER: 217; Total for M/LR: 2941; Total for IA: 2013 Awaiting full analysis]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>231</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>(IA: 69)</td>
<td></td>
<td>(IA: 174)</td>
<td>(IA: 87)</td>
<td>(IA: 2)</td>
</tr>
<tr>
<td>Thorpe Lea Nurseries</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[Total bone fragments: 2549;</td>
<td>LIA</td>
<td>LIA</td>
<td>R</td>
<td>LIA</td>
<td>LIA</td>
</tr>
<tr>
<td>Total for LIA: 437; Total for ER: 419]</td>
<td>61</td>
<td>34</td>
<td>96</td>
<td>113</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
<td>193</td>
<td>16</td>
</tr>
<tr>
<td>Imperial College Sports Ground</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>[LIA/RB not separated by phase; 9001 total bone fragments analyzed; total for LIA/RB: 168]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>168</td>
<td>193</td>
<td>23</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>Perry Oaks/T5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>LIA/ER</td>
<td>E/MR</td>
<td>LIA/ER</td>
<td>LIA/ER</td>
<td>LIA/ER</td>
</tr>
<tr>
<td></td>
<td>[LIA/ER not separated by phase]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Lane</td>
<td>1/2</td>
<td>2</td>
<td>1/2</td>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>M/LIA/ER</td>
<td>ER</td>
<td>M/LIA/ER</td>
<td>ER</td>
<td>M/LIA/ER</td>
</tr>
<tr>
<td></td>
<td>Mainly adult; meat & secondary products</td>
<td>Mainly adult; meat & secondary products</td>
<td>Mainly adult; meat & secondary products</td>
<td>Adult</td>
<td>Adult</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>22</td>
<td>22</td>
<td>72</td>
<td>10</td>
</tr>
<tr>
<td>Lea Farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X?</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>LIA</td>
<td>RB</td>
<td>LIA</td>
<td>RB</td>
<td>LIA</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1?</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Very poor preservation, 30 bone fragments total; total for LIA: 13; total for RB: 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: LIA: Level of Identification, ER: Excavation Record, M: Male, F: Female, P: Partial, AD: Adult, J: Juvenile, CH: Child, M/L: Male/Less, F/L: Female/Less, M/F: Male/Female.
Table 5.7. Presence of domestic fowl, fish, wild mammal, marine shell, and cat at the case study sites. “X” indicates presence. Data sources: site reports for case study sites and RSRB database. Numbers tabulated by NISP unless otherwise specified. ABGs = Articulated or associated bone groups.

<table>
<thead>
<tr>
<th>Sites & Notes</th>
<th>Domestic & Wild Fowl/Birds (domestic if unspecified)</th>
<th>Fish</th>
<th>Wild Mammal (incl. red & roe deer, hare, un’ID’d wild mammal)</th>
<th>Marine Shell</th>
<th>Cat</th>
<th>ABGs in NISP?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alington Avenue</td>
<td>X LIA 1 (un’ID’d bird)</td>
<td>X MR 3 (+ 4 wetland/wild fowl)</td>
<td>X LIA/R 1</td>
<td>X MR 2</td>
<td>X R Mainly oyster</td>
<td>N</td>
</tr>
<tr>
<td>Flagstones</td>
<td>X LIA 1 (wild/wetland)</td>
<td>X LIA 9</td>
<td>X LIA/R 4</td>
<td>X ER 1</td>
<td>X ER Esp. winkle & oyster</td>
<td>Y</td>
</tr>
<tr>
<td>Fordington Bottom</td>
<td>X LIA/ER 1 (wild)</td>
<td>X ER 1</td>
<td>X LIA/ER 4 (Esp. winkle & oyster)</td>
<td>X ER 1</td>
<td>X ER Esp. winkle & oyster</td>
<td>N</td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>X R 38 (+ 25 wild)</td>
<td>X R 6</td>
<td>X R 23 (all hare)</td>
<td>X R</td>
<td>X LIA 93</td>
<td>Y</td>
</tr>
<tr>
<td>Poundbury</td>
<td>X LIA 1 (+ 7 wetland/wild)</td>
<td>X LIA/ER 3</td>
<td>X LIA/ER 90</td>
<td>X ER 243</td>
<td>X LIA 93</td>
<td>Y</td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td>X LIA(ER) (domestic + wild present)</td>
<td>X LIA(ER) (incl. 7 MNI red & roe)</td>
<td>X LIA(ER) Proba bly</td>
<td>X LIA(ER)</td>
<td>X LIA 93</td>
<td>N</td>
</tr>
<tr>
<td>Site</td>
<td>LIA/R 1 (+ 13 wetland/ wild)</td>
<td>LIA/R 2</td>
<td>LIA/R 11 (incl. baleen whale)</td>
<td>LIA/ER 2170</td>
<td>LIA/ER (unphased) 3</td>
<td>MR 1377</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Rope Lake Hole [Total shells on site: 3685; Fowl, fish, wild mammals unphased, total for site]</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashford Prison</td>
<td>X</td>
<td></td>
<td>X M/LIA un’ID’d mammal bones present</td>
<td>X R un’ID’d mammal bones present</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hengrove Farm</td>
<td>X M/LR 1 (+ 1 un’ID’d bird)</td>
<td>X IA 3</td>
<td>X IA 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorpe Lea Nurseries</td>
<td>X LIA 2</td>
<td>X ER 3</td>
<td>X R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial College Sports Ground [Wild mammals & birds largely absent]</td>
<td>X LIA/R 2 (un’ID’d bird)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>LIA/ER Present</td>
<td>E/MR Present</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Lane</td>
<td>X ER 1 (wetland wild)</td>
<td>X R 1 (Oyster)</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lea Farm</td>
<td></td>
<td></td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CEREALS

Incorporation as a province into the imperial economy is also traditionally seen to have amplified changes in crop husbandry and storage strategies. During the Iron Age, emmer (Triticum dicoccum) and spelt wheat (Triticum spelta)—which took precedence over emmer by the end of the period—constituted the principal cereal crops, with oats (Avena sativa) and hulled six-row and sometimes two-row barley (Hordeum vulgare) present, possibly used primarily as fodder. Imperial demands and exploitation—including the consumption requirements of the garrison and urban populations and the collection of surplus, tribute, and taxes on land productivity in accordance with administrative practices in other provinces—as well as expanded exchange networks through urban and military markets are thought to have intensified agricultural production (Lewis et al. 2010, 378; Mattingly 2006, 161–62; Powell et al. 2015, 237). Esmonde Cleary (1999, 171) suggests that the principal crops remained largely unchanged from the Iron Age through the Roman period. However, some documented trends in crop composition over the course of the Roman period include an increase in free-threshing or bread wheat (Triticum aestivum), the continuing importance of spelt over emmer, and the more common presence of rye and legumes as well as a greater range of foods, including imports such as grapes, figs, and coriander (Mattingly 2006, 366, 499). Rye, tolerant of poor and acidic conditions, is often associated with the expansion of agricultural production to more marginal soils. These changes vary along an urban/rural axis, with free threshing wheat, rye, and Continental imports more evident at urban centers and their environs. Considerable continuity in crops grown is also observed, however.

Intersite comparison among the case studies was again inhibited by the nature of the samples. Not all sites produced carbonized or waterlogged plant remains—which were largely
absent at Wood Lane, Lea Farm, and Hengrove Farm, and found in relatively low quantities at Thorpe Lea Nurseries in the Middle Thames as well as absent at Rope Lake Hole in Dorset—perhaps indicating differences in site use. The samples differ in quantity and quality, while representation is sure to be affected by differential disposal practices at the various sites (pits, enclosure ditches, etc.), also biased by the extent of excavation undertaken. Differences in sampling methodology as well as the funding and techniques available at the time of excavation introduce further biases. Nevertheless, the evidence allows some observations about crop husbandry and plant use.

Trends

From the Middle Iron Age on, the landscape was very much open, due to woodland and scrubland clearance (as at Perry Oaks/HT5 [Carruthers 2011b; Peglar et al. 2011, 30]). Some woodland remained; at least, woodland resources appear to have been available. The picture at many sites is that of an open grassland landscape with disturbed ground due to arable and pastoral activities (e.g., Imperial College Sports Ground [Powell et al. 2015, 268]). The Middle Thames sites would have had to cope with periodic flooding, which may have been severe at times (as at Perry Oaks/HT5 [Carruthers 2011a, 78–79] and Staines [Jones and Poulton 2010, 9]). Most sites yield evidence of the major cereals—spelt and emmer wheat and barley, with free threshing wheat, oats, and rye also cultivated (Table 5.8; see also Smith et al. 2016, 127–29, for the South region as a whole).

Spelt appears to predominate among Roman-period plant assemblages across the South region (Smith et al. 2016, 127). Spelt wheat emerges as the primary cereal in Late Iron Age assemblages at Perry Oaks/HT5 (Carruthers 2011a, 69; 2011b, 35), continuing its dominance into the Early/Mid-Roman period (Carruthers 2011a, 81; 2011b, 42). Spelt wheat was the
primary cereal in Roman samples at Imperial College Sports Ground, while emmer constitutes a minor component (Powell et al. 2015, 105). Late Iron Age Flagstones yielded spelt wheat grains, while the presence of emmer is possible (Smith et al. 1997, 188, Table 39). Wheat was more common than barley at Maiden Castle Road, where both spelt and emmer are present, with spelt more dominant (Smith et al. 1997, 188, Table 39). Late Roman–period wheat samples at Fordington Bottom are dominated by spelt, with emmer and bread wheat also present (Smith et al. 1997, 267). At Poundbury, while emmer appears to be represented “in small numbers” in Iron Age samples, the wheat was likely spelt, with spelt also the main wheat during the Roman period (Sparey Green 1987, 133–34). Wheat was more significant than barley, in terms of percentage presence and dominance of the samples, in both the Iron Age and Early Roman periods at Poundbury, with a similar level of precedence across the time span. The consistent “high incidence of wheats” suggests a similar subsistence economy in the Early Roman and Iron Age periods, although “the site may have been less of a primary agricultural nature” during Early Roman times, given the less abundant cereal crop waste but higher incidence of cereals (Sparey Green 1987, 134). The results from Poundbury are consistent with a number of other Wessex sites during the Roman period, although patterns contrast with Colliton Park, a fourth to early fifth century CE Dorchester townhouse, where wheat constituted the principal cereal but was dominated by emmer and free threshing wheat.

Evidence for free threshing wheat is scarce, with its distribution skewing toward the Roman period at sites closer to towns. Grains of free threshing wheat have been identified in Roman assemblages at Perry Oaks/HT5 (Carruthers 2011a, 73, 85, 94) and Imperial College Sports Ground in the Middle Thames Valley (Powell et al. 2015, 258), although the evidence is scarce at both sites. Roman-period assemblages at Alington Avenue (Davies et al. 2002, 119,
Table 22a), Period 4C at Fordington Bottom (Smith et al. 1997, 267), and Maiden Castle Road (Smith et al. 1997, Table 39) in Dorset also yielded free threshing wheat grains.

Barley is evident at most sites during the time periods occupied in quantities subordinate to wheat. Barley was likely used for fodder at Perry Oaks/HT5 (Carruthers 2011a, 82). The low occurrence of barley at nearby Imperial College Sports Ground might also indicate its use as a fodder crop in the Roman period (Powell et al. 2015, 258). Oats may have also been used for fodder during the Roman period, due to their consistent presence but in small amounts (Carruthers 2011b, 42). Oats perhaps took over for barley as the dominant fodder crop in the Late Iron Age, with barley’s importance resuming in the Early/Mid-Roman period (Carruthers 2011a, 82). Oats often constitute a minor presence (e.g., Flagstones, Fordington Bottom, Gussage All Saints, Poundbury, Thorpe Lea Nurseries, Perry Oaks/HT5 in the LIA/ER periods), with a relatively abundant yield at Maiden Castle Road (Smith et al. 1997, 188). Potentially cultivated oats can be found in Roman-period assemblages at Imperial College Sports Ground (Powell et al. 2015, 258), with wild versus cultivated not always distinguishable in the absence of floret bases, as at Alington Avenue (Davies et al. 2002, 118), Fordington Bottom (Smith et al. 1997, 268), Maiden Castle Road (Smith et al. 1997, 188), and Poundbury (Sparey Green 1987, 134).

Rye is not well documented and is only found in Iron Age contexts at Poundbury as a possible weed (Sparey Green 1987, 134). Where it does appear, it is not usually found until the later Roman period—e.g., Alington Avenue (Davies et al. 2002, Table 22b) and Imperial College Sports Ground, where rye identified from Well 1087 suggests cultivation from cal CE 240–510 (Powell et al. 2015, 258)—although it figures in mid-Roman assemblages at Perry Oaks/HT5 (Carruthers 2011b, 42). The dominance of spelt wheat and increasing use of bread wheat may
indicate increasing cultivation of heavy and damp clay soils in the Mid-/Late Roman periods (Carruthers 2011a, 94), with rye pointing to the use of poor and acidic soils (Carruthers 2011b, 42).

Agricultural intensification and expanding production is evident at several sites. In the Middle Thames Valley, Perry Oaks/HT5 witnessed a gradual increase in arable cultivation from the Later Iron Age to the Late Roman period (Carruthers 2011b, 40–41). Cereal crops appear to have occupied an increasingly significant economic role from the Late Iron Age on. Drainage and manuring (evidenced by field ditch modification and extension) may have been associated with this increasing production. It is possible that the new eastern field system during the Late Iron Age/Early Roman period related to the arable expansion (Lewis et al. 2010, 286). The expansion of the enclosure system (increased size and number) could also point to a Roman-period intensifying of stock management, a pattern paralleled at Imperial College Sports Ground (Lewis et al. 2010, 286). Some nearby sites also conform to a general pattern of agricultural intensification in the first and second centuries CE, for example, at Hengrove Farm (indicated by an intensification of ditch modification in the later first century), Holloway Lane, Wall Garden Farm, Mayfield Farm, and Wey Manor Farm, although land use intensity varied in this region of the Middle Thames; a settlement at Brooklands, Weybridge, for example, demonstrates less interruption (Lewis et al. 2010, 298–99). The building of or increase in ovens and driers, perhaps for cereal processing, at Alington Avenue, Maiden Castle Road, Poundbury, and Fordington Bottom in the Dorchester area could indicate an intensification of agricultural production in the third and fourth centuries CE (Davies et al. 2002, 198–99).

Variation
While spelt is dominant in Late Iron Age assemblages, this is not a universal trend. For example, emmer almost disappears at sites such as Danebury on the Wessex chalkland, but remains an important component of the agricultural regime at Perry Oaks/HT5 during the Late Iron Age (Carruthers 2011a, 81; Lewis et al. 2010, 286). Emmer is more prevalent here than at nearby Imperial College Sports Ground during the Roman period, where emmer is exceedingly scarce (Powell et al. 2015, 258), indicating variability in crop husbandry strategies even at neighboring locations.

Evidence for free threshing wheat is not confined to the Roman period, with Late Iron Age presence at Gussage All Sites (Wainwright 1979, 172) and possibly at Flagstones (Smith et al. 1997, 188) and Perry Oaks/HT5 (Carruthers 2011a, 67, 69). The presence of free threshing wheat is minor overall and does not appear to have constituted a significant component of crop husbandry strategies in either the Iron Age or during the Roman occupation. The same is true for rye. While the presence of rye skews toward the Roman period at sites close to the towns, presence is scarce overall. Oats appear in both Iron Age and Roman phases of occupation, while it often could not be determined if the oats were wild or cultivated in the later assemblages. Furthermore, a greater diversity of foods is not always apparent in the Roman period. Few changes occur in crops grown at Perry Oaks/HT5 during the course of imperial occupation (Carruthers 2011a, 83), with no beans, peas, flax present here in Mid-/Late Roman samples (Carruthers 2011a, 93). Nor were any legumes confirmed at nearby Imperial College Sports Ground (Powell et al. 2015, 258). Perry Oaks/HT5 lacks evidence for “imported fruits and spices,” with a single grape pip (although possibly a contaminant) indicating consumption of an expanded range of foods (Carruthers 2011a, 86).
Not all of the sites exhibit evidence for expanded production or arable cultivation in proximity to the excavated area, with the people living or working there perhaps importing grains. Many of the Middle Thames Valley sites indicate a pastoral emphasis (see Smith et al. 2016, 129–35). This is the case, for example, at Ashford Prison, where the wheat and barley during the Middle/Late Iron Age might have been locally grown but could have also been traded, as there is not much evidence for arable cultivation in Ashford Prison’s vicinity during the Late Iron Age (Carew et al. 2006, 83). The site may have been inhabited seasonally as part of a pastoral cycle. However, the site at Brentford, Greater London, during the 1st century CE, where a field system facilitated the cropping of spelt, barley, and possibly oats could indicate expansion to marginal soils, although it is not certain for how long the poor soils and increasing encroachment of marshland could have supported arable cultivation. It is possible that this model could fit the Ashford Prison site (Carew et al. 2006, 75).

The paucity of charred cereal remains during the Late Iron Age and Roman periods at Lea Farm, Thorpe Lea Nurseries, and Wood Lane are notable given the evidence for intensive activity and occupation. The evidence of domestic occupation at Lea Farm—circular structures, pottery, loomweights, and querns—would suggest that inhabitants consumed cereals (Manning and Moore 2000, 29). Pastoral, rather than agricultural, activities seem to have predominated at Lea Farm, with the site lacking evidence for intensified cereal cultivation during the Iron Age or Roman period (Manning and Moore 2000, 25–27). Cereals may have been brought into Lea Farm, while cereal processing may have been undertaken in other locations, with more of a focus on pastoral activities (Manning and Moore 2000, 29). At Thorpe Lea Nurseries it seems that subsistence agriculture may not have been a primary focus, with other specialized activities taking precedence. Another possibility is that the site was not intensively occupied (Poulton et al.
The production and storage of grain was likely not a main activity at Wood Lane, with the site lacking carbonized plant remains or evidence for identifiable above- or below-ground storage facilities (Ford et al. 2003, 159). Charred grain was identified at Hengrove Farm (Poulton 2007a, 24), but not much information is provided about the nature of the samples in the assessment report. Rope Lake Hole and nearby Eldon’s Seat might also be another example of this kind of interdependence (Woodward 1987, 146–49; Chapter Seven, 257). Even where expanded agricultural production is evident, this is not necessarily a post-conquest trend, as at Perry Oaks/HT5 (Lewis et al. 2010, 286). Thus, in order to understand the social forces in play, the documented variation of crop presence might be better interpreted in terms of how communities were connected (Chapter Seven) rather than conformity or non-conformity to an average condition of Roman influence.
Table 5.8. Presence of grain at the case study sites. “X” indicates presence; bold and underlined indicates predominant or abundant presence, where data on relative abundance are available. Data sources: site reports for case study sites and RSRB database (where presence was classified as “minor,” “moderate,” or “abundant”).

<table>
<thead>
<tr>
<th>Sites & Notes</th>
<th>Spelt wheat ((Triticum spelta))</th>
<th>Emmer wheat ((Triticum dicoccum))</th>
<th>Free threshing (bread) wheat ((Triticum aestivum))</th>
<th>Barley ((Hordeum vulgare))</th>
<th>Oats ((Avena sativa))</th>
<th>Rye ((Secale cereale))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alington Avenue</td>
<td>X Scarce wheat remains; not identifiable to species</td>
<td>X Scarce wheat remains; not identifiable to species</td>
<td>X</td>
<td>X LR</td>
<td>X Cultivated? Wild?</td>
<td>X ? LR</td>
</tr>
<tr>
<td>Flagstones</td>
<td>X LIA</td>
<td>X LIA</td>
<td>X LIA; Crop or minor contaminant of spelt?</td>
<td>X LIA; Hulled six-row; twisted</td>
<td>X LIA; Single floret base; wild oat</td>
<td></td>
</tr>
<tr>
<td>Fordington Bottom</td>
<td>X LR</td>
<td>X LR</td>
<td>X LR</td>
<td>X LR; Hulled six-row; two-row?</td>
<td>X LR; Not abundant; Cultivated? Wild?</td>
<td></td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X ER; Hulled six-row; two-row?</td>
<td>X ER; Number of oats high; Cultivated? Wild?</td>
<td></td>
</tr>
<tr>
<td>Poundbury</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X Hulled six-row</td>
<td>X Hulled six-row</td>
<td>X Minor; weed</td>
</tr>
<tr>
<td>Location</td>
<td>Status/Date</td>
<td>Cereals/Processing</td>
<td>Row</td>
<td>Status?</td>
<td>Cultivated?</td>
<td>Status?</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-----</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td></td>
<td>X LIA(ER)</td>
<td>X</td>
<td>X LIA(ER); minor</td>
<td>X LIA(ER); moderate</td>
<td>X LIA(ER); minor</td>
</tr>
<tr>
<td>Rope Lake Hole</td>
<td>Charcoal remains; no data on cereals/grains</td>
<td>X? LIA; wheat</td>
<td>X</td>
<td>X LIA; wheat</td>
<td>X LIA; hulled</td>
<td>X LIA(R); hulled</td>
</tr>
<tr>
<td>Ashford Prison</td>
<td></td>
<td>X ? LIA; ER/R</td>
<td>X</td>
<td>X LIA; hulled</td>
<td>X LIA; ER/R; hulled</td>
<td>X LIA; ER/R; hulled</td>
</tr>
<tr>
<td>Hengrove Farm</td>
<td>Grains found in Roman features; “Botanical remains require further analysis” (RSRB).</td>
<td>X Hulled six-row</td>
<td>X</td>
<td>X Hulled six-row; abundant</td>
<td>X Hulled six-row; abundant</td>
<td>X Hulled six-row; abundant</td>
</tr>
<tr>
<td>Thorpe Lea Nurseries</td>
<td>[Low quantities of cereal/charr ed plant remains; little cereal processing waste]</td>
<td>X 50–400 CE moderate</td>
<td>X</td>
<td>X RB–few remains vs. LBA/EIA</td>
<td>X Scarce presence</td>
<td>X Scarce presence</td>
</tr>
<tr>
<td>Imperial College Sports Ground</td>
<td>[“Post-excavation analysis in progress” (RSRB)]</td>
<td>X</td>
<td>X</td>
<td>X RB–few remains vs. LBA/EIA</td>
<td>X Hulled six-row; minor</td>
<td>X Hulled six-row; minor</td>
</tr>
<tr>
<td>Perry Oaks/HT5</td>
<td></td>
<td>X LIA</td>
<td>X</td>
<td>X LIA; still</td>
<td>X ER; LIA; ER</td>
<td>X LIA; ER; LIA</td>
</tr>
</tbody>
</table>

200
“Occasional fragmentary cereal grains were observed” (Ford et al. 2003, 90); one grain of spelt identified.
THE STRUCTURE OF INQUIRY

I argue that the archaeological evidence has demonstrated the following:

Continuity should not be reduced to the reproduction of trends—the construction of roundhouses; the use of timber, wattle, and daub; the production of Late Iron Age ceramic forms; the predominance of sheep, the reproduction of crop husbandry regimes—as innate conservatism, nor should change be reduced to additions after the conquest—rectangular buildings; stone masonry, wall plaster, ceramic tiles; mortaria, amphorae, vessel glass; a greater reliance on cattle; the addition of free-threshing wheat. Nor should these patterns be isolated from one another as separate outcomes.

Therefore, it is not just an issue of heterogeneous mosaics of continuities and changes in a multilayered landscape, or that variability interrupts documented trends and points to more uneven structural conditions. “Reproductions” and “additions” should be interpreted in context as part of an ongoing active field that does not insulate tradition from transformation and does not essentialize identities and communities as either/or. The context within a framework of archaeologies of possibilities does not simply serve as a static background arranged as trends, but explores the multiple tendencies present in sets of relations. It is also a matter of questioning what constitutes continuity and change to begin with, and why did things continue in a particular way. The form and social import of continuity as well the temporal location and material reservoirs relevant for the construction of continuity are continually negotiated and can shift in time. Innovation is not simply external transformation; continuity becomes continuity, and it could have become something else. There are multiple possible futures for a past, multiple possible continuities.
Concepts of or claims to continuity and change—and how they map to identity, material culture, time, and space—may have been critical to discourses of how communities persisted and transformed in the past. However, we should not already decide how those claims must have been formulated, nor assume that continuity and change even constituted the terms through which to articulate the dynamics of experience. What was significant in the landscape might have operated under different terms altogether, terms that are obscured by requiring variability to answer to questions of what and how things continued and changed. I intend to push the structure of inquiry toward questions that do not presuppose sorting time, space, and material culture into one or another, into continuity or change, but that examine the conditions of possibilities animating and excluding certain claims to identity and dynamics of interconnection. Just as the Roman–native axis of identity cannot always serve as the dominant dimension of experience or explanation for process, neither can an axis of continuity or change account for the complexities of patterns and interactions. Also at issue are simultaneous differences in spheres of interaction on the landscape and the simultaneous presence of histories that do not necessarily speak to the post-transition trend as the dominant axis of significance.

Formulating the question: Key to producing alternative histories and materialities is reformulating the questions asked, bringing different kinds of spheres and scales of experience and temporalities into the frame of inquiry (Richard 2012). The if-based inquiry—if continuities or changes are present—needs to be reformulated by questioning what it means or looks like to continue and change related to the wider context at multiple spatial and temporal scales. Looking at how sites relate in the landscape challenges the additive and directional impression that sorting to either side of the transition provides; identity, persistence, and transformation can be negotiated through strategies of intercommunity connection in ways that cannot be captured by
measuring the presence and absence of material categories or homogenizing process and practice into trends as average conditions of continuity or change. The if-based structure of inquiry—the whether or not—elides the complexity of continuity and change as dialectic, subsuming the nuances and contradictions of their interactions in a threshold approach to transformation. Even if researchers adopt more nuanced and complex concepts of identity and process, formulating the question on this if-basis already excludes the contingency of persistence and the continuity in change. If additions do not cross a certain threshold of change, they are neutralized in a broad-scale, period-bounded (Chapter Six) narrative of continuity; if additions cross the threshold, they mask the potential potency of continuity, of connections to the past, for persisting in change, or the ambiguity and contestation of contradiction and simultaneous multiplicity. Continuity and change operate in tandem throughout spheres and scales of experience.

If I am proposing a different kind of structure of inquiry that does not presuppose binary trajectories from a fixed point of transition, one may wonder why I chose to frame the archaeological evidence in this chapter around trends and variations, continuities and changes. Why did I chart patterns from a baseline? Why did I isolate the trends traditionally attributed to the Roman dimension? As I argued in Chapter Two and will argue in Chapter Six, the Romanization paradigm has shaped the sorting of material and the division of time, and deploying the typologies grouped under this paradigm implicitly reproduces its assumptions. The Romanization model also oriented questions toward particular priorities, and the deployment of this structure of inquiry—the if things change or not—also reproduces the assumptions of the paradigm. This continued reliance on the narrative of transition (see Laurence 2001a) to formulate questions has the effect of writing binaries into the evidence and interpretation, even when critiques are accepted at the theoretical level. It is not only that the axis of Roman and
native—even if negotiated, dynamic, and contextual—might not serve as the most prominent dimension in each interaction, shuffling evidence into continuity or change—no matter how negotiated, dynamic, and contextual—might also mask or exclude other terms of interaction. Rather than producing a new narrative for the evidence, my goal here was to outline the structure of inquiry oriented around the transition in order to foreground the conceptual problems and to point to other analytical possibilities. Continuity can be dynamic, but the dynamics of continuity and change should not replace a Roman–native axis as the frame of reference from which all questions are posed and all variability is assessed. Subsequent chapters will develop a framework of questioning that highlights these other possibilities:

Rather than subsuming trends within broad-based, period-scale narratives of continuity or change—the if-based question (Chapter Six)—inquiry should be oriented around the connections that made communities possible: What were the relationships between people and places and how did communities persist and transform? What were the intersecting and fragmenting contexts for interaction that underwrote actions and processes (Chapters Six & Seven)?

New forms of questioning come with their own assumptions, and produce different kinds of exclusions. This approach does not claim that all possibilities are equally in play when considering what constitutes continuity and change. This is to suggest that shifts from round to rectangular, the use of different construction materials, and changes in ceramic use as well as animal and crop husbandry are not exclusive trends, nor trends that can be evaluated as an additive Roman-ness or an average condition of change relevant in all contexts; change and continuity are not impermeable and complete everywhere or always. Such trends cannot be automatically aligned with transformation to Roman-ness, as the trajectory of continuity cannot
be seen as a pre-conquest default; *continuity could have been otherwise*. I mean to “un-locate” continuity and change from fixed conceptual territory.

In short, the point is not that macro-scale trends and processes or regularities of practices are not significant. Rather, the point is to not concretize an identified trend as a background condition of continuity or change that can then be applied to all pre- and post-conquest contexts with equal relevance. Trends exteriorized from a fixed temporal baseline should not be reified as the standard from which all questions are to be posed and all variation is to be explained. This naturalizes the potential to the actual, reproducing a unilinear and totalizing model of transformation and eliding contingencies, heterogeneity, and contradictions. The critique of a “cumulative analysis” (Barrett 2001, 143) that ushers patterning into regularities and general processes bears resemblance to those archaeologists calling for a re-conceptualization of the relationship between event and process in the context of theories of practice (e.g., Barrett 2001, 2004; Lucas 2012; Pauketat 2001b; Chapter Three). Theories of practice in archaeology deconstruct the concept of a single level or domain—such as society—as the locus of values and possibilities that actors execute. This formulation of rules and inscription recapitulates dualities of structure/agency, process/material outcome that totalize and compress practice. More specifically, in an imperial context, the point is not to usher variation into regularities or deviations where groups are coherent patterns that are then totalized as being one kind of dimension, identity, or power relation. The problem is not recognizing certain trends, but fixing the temporalities, scales, categories, and identities from which experiences can be defined.

CONCLUDING REMARKS

To return to the landscapes presented at the beginning of this chapter: I began tracing the landscape at the Late Iron Age/Roman transition (Chapter Two) with what is traditionally built
up as a Roman landscape, charting the problematic interpretations that result when research prioritizes populating a landscape with only one kind of thing. Recent work has indeed done much to focus attention on rural landscapes of the Roman period as well as aspects of continuity in settlement rather than primarily on transformation (e.g., Allen et al. 2015; Hingley 1989; Russell and Laycock 2010; Smith et al. 2016; Taylor 2007). But it is not simply a matter of combining continuities and changes, nor of adding a focus on the rural as something that is segregated from the urban. The Iron Age should not be essentialized as only of the past when it is brought forth into the Roman period. The process of reworking the past in the present does not reproduce the past as impervious to change but renegotiates it. This does not mean that long-term traditions stemming from pre-Roman contexts were not significant; a conscious adherence to these long time scales may have been critical for identity negotiation as well as community persistence. The key, however, is not to a priori decide what the past was, and how that past was constituted in relation to material categories and identity. It is not simply a matter of also, of adding focus to an Iron Age or rural landscape that is seen as essentially of the past or of the margins; this view still segregates the past and present, continuity and change, as already total and authentic, and does not break the transition paradigm where continuity is not allowed in change, and change is not allowed in continuity.

To not exclude different terms, exploring the dynamics of imperial occupation entails an understanding of continuity as something that can be dynamic. An interrogation of continuity and change in Iron Age and Roman landscapes must wrestle with coexistence and coevality in times and spaces.

To tell a different story, archaeological typology must be disrupted from this logic of transition—there must be different ways of sorting time, space, and material that are more
responsive to context. Developing this archaeological language within the context of the conceptual framework set out in Chapter Three—responding to the multiscalar aspects of practices, relations, and memories—is the subject of Chapter Six.
How can we move from a language of the segmented *also* (Chapter Five, 207) to a language that recoups the simultaneity of differences in “the incipience of sheer possibility” (Guha 2002, 78)?

INTRODUCTION

The preceding chapters have outlined what I argue to be the major weak points of the transition paradigm, specifically as articulated through Romanization. In this chapter I present an “ideal typical” version of the archaeological typologies shaped by this paradigm, suggesting ways of translating new approaches into a language that archaeology can speak. In doing so I do not mean to criticize Roman archaeologists who have adopted reflexive approaches to identity and material culture (e.g., Mattingly 2011; Rogers 2015, among others). Heterogeneity within the category “Roman” has long been acknowledged (Freeman 1993; Keay and Terrenato 2001; Terrenato 1998). Rather, by isolating the basic underlying premises of the Romanization paradigm, I hope to show how they have shaped the orientation of inquiry, and how they continue to constrain the nature of evidence and interpretive possibilities (Figure 6.1).

The language of the transition paradigm can be summarized in the following way:

<table>
<thead>
<tr>
<th>A language of</th>
</tr>
</thead>
<tbody>
<tr>
<td>already, always, and only</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model of</th>
</tr>
</thead>
<tbody>
<tr>
<td>change to and additive</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question of</th>
</tr>
</thead>
<tbody>
<tr>
<td>if</td>
</tr>
</tbody>
</table>

Figure 6.1. The language and structure of inquiry of the transition paradigm (see also Jordan 2010; Silliman 2010b).
Plugged into an ideal-typical archaeological account of Romanization: Typological language classifies a mortarium as already, always, and only Roman. The model of transformation identifies change externally by the addition of anything—such as said mortarium—that did not exist before the conquest baseline, thus implying change to something other, to being Roman or adopting Roman ways. And the question that anchors the narrative structure is oriented around determining if changes in form or additions of items like mortaria can be documented.

Things are not just distilled, however, but co-exist. They meet and may conflict; they overlap and entangle (Hodder 2012). Similar to the persistence of unidirectional concepts of continuity and change (Chapter Five), while the nature of the archaeological data exerts its own constraints on meaning making, in this chapter I argue that reductive approaches to material culture persist in part because Roman-period archaeological typologies are underwritten by a framework that condenses contingencies and possibilities into one thing and one place at a time. Rather than the static language of these typologies and period divisions, I attempt to move analysis to the times and landscapes emergent in place biographies connected by multiscalar practices.

ARCHAEOLOGICAL LANGUAGE

Time and Typology

It is the sorting that makes the times, not the times that make the sorting.

Bruno Latour (1993, 76)

Things are always interacting and relating; there are no empty times or spaces (Foucault 1972; Massey 2005). However, archaeological sorting and labeling sometimes make empty times and spaces that erase, homogenize, or freeze landscapes, people, and identities. These categories do not neutrally arise from objective sorting criteria, but are mutually constituted along with the
paradigms that define the parameters for their emergence (Boozer 2015; Sørensen 2015; Stahl 2012). If the ways in which these methodological tools are sorted, named, and interrelated remain unchanged, then their deployment will likely continue to reproduce the assumptions of the conditions under which they were developed—distilling the Roman presence to what is distinctly Roman, and relegating the Iron Age to the absent, marginal, or past.

Citing the lack of recent critical engagement with typology, one of archaeology’s most basic operating concepts, Sørensen calls for renewed effort on theorizing how typological constructs communicate linkages to past materialities, particularly with respect to the “relationship between objects, form, and time” (2015, 92). Sørensen argues that the material turn in archaeology (Alberti et al. 2013; Hodder 2012) has not reinvigorated typological debates, emphasizing the need to re-evaluate what typologies refer to and, especially, how and why objects change in the dynamic interactions and intersections among people and other objects.

The Pompeian atrium house model constitutes a classic example of typological problems in Roman archaeology (Mau 1982[1902], 245–79; reviewed in Allison 2001). Penelope Allison has charted the trajectory of such scholarship. Early scholars working on the remains of domestic architecture in Pompeii tended to divorce decoration and material culture from architectural contexts. Early excavators rarely recorded the provenance of movable artifacts, focusing instead on creating typological catalogues (Allison 2004, 6). The practice of assigning text-derived labels to rooms as soon as they were excavated and subsequently using those labels in scholarship reified the labels as inherent parts of the material data (Allison 1993, 2; 1994, 86; 2001, 186). Allison’s own work (e.g., 2004) relied on processual analysis that considered movable finds in their architectural contexts rather than extracting artifactual and architectural typologies from their interrelationships.
Boozer (2015) confronts a similar issue, re-examining how house plans and artifacts from the site of Karanis have circulated in the literature as illustrations of standard domestic practice in Roman Egypt. Boozer argues that select plans and images, serving a similar illustrative role to the Pompeian *atrium* house model, have become unmoored from the specific materiality of the evidence, which is messier and more ambiguous than usually acknowledged. Boozer points to several complicating factors: uncertain phasing, the lack of publication of the architectural layout of the majority of houses, and the analysis of material geared toward classification into categories rather than contextual use in individual houses. The typologies from Karanis tend to pre-sort examinations of the data into the already accepted schemes. Advocating for an acceptance of ambiguity in typological constructs, Boozer suggests that subjecting types to a “range of interpretations” and “spectrum of options” (2015, 105, 106) can help explore the complexities of the evidence while retaining typological schemes (see Gero 2007).

Typological Invisibilities and Silences

Typological schemes derived from the nineteenth and early twentieth centuries (Sørensen 2015) continue to underwrite the classification of objects, presupposing particular relationships between form, time, and identity. This issue is particularly acute in imperial and colonial contexts, where difference and inequality are articulated through differences of time (Chakrabarty 2000; Fabian 1983) in potent and exclusionary ways. The fixed temporal position that segregates pasts from presents and one identity from another renders coexistence and interaction difficult to confront beyond period divisions in colonial contexts (Lightfoot 1995). These divisions find their way into the archaeologist’s “most basic methodological tools” (Hantman 2013, 213)—artifact typologies and cultural period division—inhibiting the development of a conceptual infrastructure and vocabulary for understanding interaction in
practice, process, and change. Hantman (2013), for example, argues that the delineation of artifact typologies by a contact chronology has created a pre-colonial/colonial border that denies the agency and persistence of Native American communities in archaeological narratives of the colonial-era Chesapeake region.

Despite extensive critique of the prehistory/history boundary (McNiven and Russell 2005; Schmidt and Mrozowski 2013; Chapter Two), the typological language of archaeology has not necessarily precipitated the fall of a static colonial baseline as the critical criterion for sorting material and spaces. Continuing dependence on the pre/history rupture as the origin story elides ongoing dynamism within and long-term interconnections between groups on either side of the boundary (Stahl 2012; Wolf 1982). Similar to the invasion baseline problem in accounting for continuity and change (Chapter Five), a key issue with the (in)visibility of certain meanings of material culture and ways of inhabiting the landscape is the classification of material and space based on origin rather than consumption or use, and the pinning of meaning to origin, in time and cultural context, as total and most authentic. The assumption here is that the “newness” of post-conquest items of material culture in relation to the past cultural context automatically aligns them along the Roman identity dimension. Accordingly, an item originating within a Roman context is viewed as always and only Roman.

For example, Gosden and Locke make a similar assumption about the primacy of the Roman axis of identity in considering how identity maps to the material environment:

Rather than Romans living in the Maddle Farm villa-house and subjugating natives in Knighton Bushes, we might see the inhabitants of Knighton Bushes choosing to become Roman in the third century by building a villa-house at Maddle Farm, whereas previously they were unwilling or unable to do so. (2003, 77)

In this case, Gosden and Locke attempt to move away from a static notion of Roman identity to one that is negotiated over time and in practice. However, their analysis continues to frame the
conversation around whether people are becoming Roman or not, naturalizing the Roman–native axis as the primary signifying factor and aligning post-conquest additions with being or becoming Roman. Post-baseline items of material culture or spatial categories, however, are not necessarily already, always and only (see Silliman 2010b, 40, below) Roman. If they are continually pinned to a classification scheme bound to these assumptions, then the vocabulary they offer will continue to produce a narrative that defines the primary conversation in these terms.

Silliman (2010b), for example, demonstrates how this prioritization of origin rather than meaning in practice and labor relations fails to capture the polyvalent or ambiguous resonance of material culture and space, silencing coexistence and simultaneous multiplicity in colonial contexts. The question is not only about where items of material culture or spatial categories originated, but who used them and worked or lived within them. For example, creamware ceramics manufactured in England during the late eighteenth and early nineteenth centuries are ubiquitous items at eastern North American colonial sites. These are considered “always already a British, EuroAmerican, or even a more broadly European item” (2010b, 40, emphasis added), even when they are found in Native American households or in British/EuroAmerican households that had Native American employees or slaves. While it is possible that these items did not resonate with or were in other ways resisted by Native American users, the priority accorded to EuroAmerican origin prevents thinking about alternative or ambiguous ways that the objects could have been conceived. The issue is that identity and process—continuity or change—are seen as already “present or not in material remains,” where “discontinuities in material culture signaled change, and therefore dynamism, with the corollary that continuities implied stability or stasis” (Stahl 2012, 159).
While it can be difficult to confront polyvalence and ambiguity in deep pasts, the dynamics of coexistence, struggles of living, and multiply registered identities in practice will remain silenced and outside of view if categories of material culture and space are only and always divided by a point of origin. What is needed is a different way of thinking and writing about temporalities and chronologies, and their relationship to communities and identities. It should be noted that this argument is not intended to displace origin as a significant factor in an object’s meaning. As King et al. argue in their exploration of the use and circulation of European objects among Indigenous communities in the lower Potomac River Valley in Maryland during the 17th century, “an object’s origin often did matter to its users” (2016, 9). While Indigenous people incorporated both native-made and European-made objects into the reproduction of their practices, at the same time the resonance of an object’s European origin could be deployed to facilitate specific kinds of relations. Just as an exogenous meaning does not always remain primary, the incorporation of other meanings does not necessarily exclude the multiple resonances or contradictions of that origin in the context of use. Origin is one dimension of meaning among many that may shift in significance as objects circulate and change hands: “Narratives of movement and mobility… can provide important information about the meanings objects take in circulation and how those meanings shape social understanding or knowledge” (King et al. 2016, 11). How do categories of objects and spaces circulate?

The Category

Cumulative analysis depends for its efficacy upon accepting that material categories, such as artifact or monument types, maintain the same value where they are encountered; the material is tediously repetitive, another type A brooch here, another type B brooch there, and so the patterns coalesce. But what do these patterns represent? John Barrett (2001, 143)
A more flexible approach to the category will be needed in order to accommodate heterogeneity, variation, and simultaneous multiplicity. As David Mattingly has argued, there is a tendency to present the rural landscape in Britain during the Roman Empire in terms of “common denominators” that “generalize” variation into “villas, road networks, and small towns” (2006, 358). He suggests that encountering discrepant identities and the dynamism of social process will require re-evaluation of artifact typologies (2011, 273). Some archaeologists of Britain in the Roman Empire are also calling for or have begun to undertake such work (Millett 2001; Pitts and Perring 2006; Rogers 2015).

Below, I discuss two categories that have been integral to the construction of Iron Age and Roman landscapes, the villa and the roundhouse, thinking through the theoretical approach presented in this chapter—exploring the multiple tendencies of the present rather than assuming the end point and tracing what is relevant for it, or what precedes it in a unidirectional narrative.

The Villa(s) and the Roundhouse(s)

Earlier periods of scholarship on Roman studies focused on villas and towns at the expense of roundhouses, rural areas, and other settlement heterogeneity. Currently, the villa category is not often chosen as a body of evidence for the theoretically oriented work outside of the Romanization tradition. Under the unidirectional and progressivist framework of the Romanization paradigm, “there has been a tendency to see every rural site as a potential villa, that required only improvement of farming practices, new markets and the slow accumulation of capital resources by an eager peasantry to be achieved” (Mattingly 2006, 366, emphasis added). This frames the villa in the temporality of already, locating the development of the category as already actual in its antecedents rather than considering the complexity and contingency of the process of its becoming. The villa is assumed to represent the natural progression of rural
settlement development, with the narrative of “villa” reified as the measuring point of what is significant and relevant to the history of the site.

However, settlements classed as “villas” in the South of England, including the area encompassed by Dorset and the Middle Thames Valley, exhibit considerable regional diversity, with a significant amount of third and fourth century villa sites on the chalk downland demonstrating long-term, dynamic histories prior to villa establishment (Smith et al. 2016, 90–97). The pattern of villa establishment and expansion differs among landscape zones in the South, indicating multiple cycles of use rather than a single trajectory of development. Not only is the villa category variable, but it is also questionable whether sites currently grouped as villas represent part of the same phenomenon. The presence of a masonry building has often been assumed to indicate a villa; however, stone architecture is not exclusive to villa buildings (Smith et al. 2016, 106–8; Chapter Five). Furthermore, this variation is not just a feature of the imperial periphery. Villas in Italy also constitute a heterogeneous category (Terrenato 2001).

Thus, what do patterns of types defined by form represent (Barrett 2001, 143)? How might we see practices that crosscut those boundaries and may in fact subvert the priority given to certain factors or developmental trends by archaeologists?

The historical significance of the material is … not represented by its form (the same categories of material do not have the same meaning wherever they are encountered) but lies in the diverse contexts of the social practices in which it was situated. (Barrett 2001, 156)

What a villa or a roundhouse means in different times and places is a question to be investigated rather than assumed. This is not just an issue of how a villa or roundhouse might have been perceived differently, but what a villa or roundhouse is or could have been.

Contrasting the villa/non-villa dichotomy of the stereotypical view of the Romano-British countryside, Mattingly argues that “Traditional British roundhouses have often been dismissively
referred to as ‘circular huts,’ subconsciously emphasizing their difference from elite villa houses’’ (2006, 375). Mattingly’s contention echoes the progressivist assumptions about improvement and living standards underlying the television program *Time Team*’s distinction between the “dark peat floors” of Iron Age roundhouses and the “mosaic pavements and concrete floors found on Roman sites” quoted by Hingley (2015, 169; Chapter Two). However, I would argue that the term “roundhouse” is also problematic because it presumes to know something about the mode of habitation in these structures—that the structure acted as the context for activities often understood to correspond with the category of “home” in modern Western society, such as preparing food, eating, and sleeping. However, subsuming circular structures into “roundhouses” obscures the various ways that living and working might have taken place within and around them. Ring or drip gullies surround many such structures, presumably for drainage. Consequently, curvilinear or “ring” gullies are often termed “roundhouses” in excavation reports or in settlement pattern syntheses. However, in many of these cases—especially unexcavated examples identified from aerial photographs or geophysical surveys—there is not much evidence to indicate that they were indeed “houses” in the sense that they functioned as settings for eating and sleeping activities (see Harding 2009, 27–52). This is not always clear even in excavated examples; often few artifacts or features are recovered to indicate the nature of residential use. Hearths, for example, are not found within any of the structures in the case study sites in either Dorset or the Middle Thames Valley. There are only eight excavated hearths at these sites, all in the Middle Thames Valley dating to the Early Roman period: four at Wood Lane (221 within the enclosure, 445 and 211 east of hollow 230, and hearth 337 south of structure 227), one at Lea Farm (hearth 111 north of ditch 76), and a hearth (1965) and two potential hearths or cooking pits (1377 & 1378) at Hengrove Farm.
It is true that not all of the case study sites produced evidence for habitation or buildings; however, the absence of a correlation between “roundhouses” and hearths is not due to the absence of circular structures at these sites. No circular buildings appear to have been present at Wood Lane, but Lea Farm exhibits at least five round structures (291, 292, 293, 294 & 793) dating to the Late Iron Age. A number of curving and ring or partial ring gullies/ditches at Hengrove Farm (17) could indicate circular structures, with post- or stake-holes within ring gully 1322 (post-holes 1601–5) and ring ditch 1308 (stake-/post-holes 1620–36, 1667–74) supporting the view that buildings once existed here. This distribution of hearths outside of structures—round or rectangular, Late Iron Age or Roman period—suggests different kinds of social relationships and residential organization from the modern Western “home” that isolates food preparation and sleeping-related functions, and associated features and artifacts, under a single roof.

Clarke’s (1972) classic study of the Glastonbury Lake Village (Somerset) with its unusual degree of organic preservation indicates that not all circular structures on sites appear to have been for residential use. Even if some of them served these functions, this does not exclude changes in use throughout their lifecycle, and there is no reason that these other uses should be given less visibility in categorical terminology or groupings. Automatically adding the extension “house” to curvilinear structures reproduces a particular understanding of domestic social organization that might not have obtained in the past. I would agree that “hut” conveys a pejorative assessment, but I would also object to its use because “hut” continues to evoke an understanding of a single structure that can be equated with “home.” I would argue that the use of “circular structure” (e.g., Carew et al. 2006) is not to demean the kind of inhabitation that takes place in these structures, but to resist homogenizing each circular building as a particular
mode of habitation before their uses are investigated. The “house” terminology should not exclude the diverse uses of these structures or the different ways that communities were integrated.

In this effort, it is not only the singular narrative that I am seeking to inflect, but also the normative category, the categories of analysis that we think we know. Therefore, I suggest unbinding categories into component parts—in the case of the house, for example, shape, construction materials, spatial organization, internal finds—charting how these factors vary interdependently over time and in relation to each other as well as wider contexts (Herbich and Dietler 2009). Rather than a succession of already given types, this approach attempts to engage with the contingencies of practice, and within-category variability and ambiguity (Gero 2007).

Time and Period Division

Archaeologists’ desire to produce coherent, synchronous times has its correlate in the eviction of communities that live in or beside ancient monuments, whose time is regarded as out of sync with that of the archaeological remains.

Alfredo González-Ruibal (2016, 148)

A sense of place rests upon, and reconstructs, a history of social engagement with the landscape, and is thus inextricably bound up with remembrance, and with time; its construction is tied into networks of associations and memories.

Ruth M. Van Dyke and Susan E. Alcock (2003, 5)

How should the typological boundaries be moved beyond the transition or origin point, to people and places?

Normative assumptions in archaeological period syntheses have tended to relegate certain monuments to their time and place of origin or floruit; what they essentially or most significantly mean is bound to this temporal phase. This problem is confounded by the dating of sites on morphological grounds. Because absolute dating techniques are not always employed during archaeological interventions—e.g., aerial photography, geophysical survey, evaluations in
advance of planning applications—it is possible that occupation at some sites classed as Iron Age on morphological grounds may have continued into the Roman period, or that sites categorized as Roman may have been founded prior to the mid-first century CE (Fulford and Holbrook 2011, 326). Morphological attribution that defines certain features as characteristic of particular periods may miss continuity of occupation or use beyond period boundaries. This might be the case even when excavation has taken place, if dating evidence is unreliable and prior typologies bias interpretation toward the established narrative (see, e.g., Creighton 2006, 52–53, on Fishbourne fort).

Rogers (2015, 152–57) upends traditional period divisions with his discussion of Avebury and Silbury Hill (Wiltshire), prominent earthworks constructed during the Neolithic. Monumental landscapes with origins during the Neolithic, such as the Avebury Complex, are rarely considered in syntheses of the Roman period, occupying a dimension “out of sync” (González-Ruibal 2016, 148) with the temporality of the imperial occupation. However, Rogers demonstrates continued activity in the landscape around Avebury, including the construction of a road near Silbury Hill as well as material suggesting settlement during the Roman period. Rogers also points to wells dating to the imperial occupation that potentially served as ritual shafts, recalling long-term practices surrounding structured deposition. Rogers’ inclusion of the Avebury complex in a synthesis of the archaeology of Britain during the Roman period is significant, defying the boundaries that traditional period divisions impose on long-term or multiscalar use lives, practices, and memories. Considering Avebury as part of the Roman-period landscape beyond a role as remnant or locale of stray or residual activity forces a rethinking of time, the past, and the investment of meaning in the landscape along more varied and heterogeneous axes.
Period names have often “become proxies for cultural processes” that abstract artifacts, places, and people from the constitution of those processes (Silliman 2010a, 263). However, meanings and resonances are not confined to the materials and places deemed to accord with the boundaries of a consistent period, but in “generational choices” (Mrozowksi et al. 2015, 121) of old and new practices, forming lived, reworked memories that connect the past to the present. A sense of place “is tied into networks of associations and memories” (Van Dyke and Alcock 2003, 5; see also Feld and Basso 1996). Following Mitchell and Scheiber (2010), I attempt to inflect calendrical time not with sharp and distinct period divisions, but with attention to how people “lived their own pasts” (Silliman 2010a, 270) along a temporal continuum. This is not a complete discarding of these periods and the typologies produced to accord with them; reformulating the lexicon in this way is beyond the scope of this work. Connecting to the theoretical approach to the space/time parameters of archaeological contexts as contexts for interaction, as “inhabited conditions” (Barrett 2001, 156) that cannot be separated from a neutral sequential temporality, this is an attempt at contextualization of lived-in places, to explore the multiple ways the past could have been lived rather than to assume its scales beforehand.

RE-SITUATED TYPOLOGIES AND PERIOD DIVISIONS

Below is a consideration of how relations and connections across assemblages and the landscape generate social resonance and time/space experience rather than layering a typology or abstract period division as an external background context—time and experience are situated in relationships with assemblages and place.

Time, Context, and Typologies: Categories beyond Types

Exploring how the material evidence crosscuts the divisions inherited from an archaeological language based on sorting material culture along a prehistory/history boundary
will take “devising ways to talk about artifacts that tell history rather than those that just tell time” (Silliman 2010a, 263, emphasis added). In other words, artifacts are part of the contexts productive of the temporalities that condition and are conditioned by historical experiences. These times may be different in different places across the landscape. Labels—of artifact categories or periodized time—cannot do all the interpretive work.

It will be recalled from Chapter Five that mortaria—mixing bowls introduced to Britain during the first century CE and increasingly common after CE 43 as both imports and local products (Cramp et al. 2011, 1339)—make their appearance during the Early Roman period and are primarily found at sites surrounding Dorchester and Staines rather than in non-urban areas, exhibiting a more restricted range and quantity than samian ware or amphorae. Mortaria (Figure 6.2) are often seen as indices of changing food preparation techniques aligned with the axis of transformation or Roman lifeways. However, residue analysis comparing the contents of Iron Age and Roman cooking pots with mortaria suggests that, while mortaria imply different types of preparation techniques from vessels used in the Iron Age, dietary composition was not significantly altered (Cramp et al. 2011). As mortaria circulated through different hands and uses in diverse contexts and as they began to be produced in Britain, mortaria-as-introductions may not have always acted as a primary axis of signification. The category of mortarium should not be glossed as always Roman or already and only a new object (see also Silliman 2010b, 40–43).

How do we talk about artifacts in ways that do not already decide what they mean and how they are related to time and identity? What constitutes a category of archaeological analysis that can negotiate the dynamics of the imperial boundary? Is a mortarium a Roman mortarium, and when and where?
Addressing these questions entails thinking about what archaeological artifact typologies are really saying. It is hardly radical to state the axiom that pots do not equal people, that the meaning of material culture is fluid and dependent on context, and that items cannot \textit{a priori} be equated to signifiers at the level of cultural affiliation. Yet, these assumptions have been difficult to disentangle from material evidence grouped into types according to those assumptions (see Cruz’s 2011 critique). Cruz (2011), for example, counters long-held colonial constructs of identity in the Banda area of west-central Ghana that reduced the meaning of ceramics produced in this region to a homogeneous ethnic emblem, foregrounding the fluidity of meaning in context in relation to the complex nature of social transformation and identity politics. There is still a need to argue for “case-specific examples” (Payne 2012, 71). Typologies can inform about certain factors, for example, chronology or centers of production, but the groupings that can talk about those issues cannot necessarily be the same groupings that inform about social significance.
(Voss 2012). Voss’ (2012) examination of requisitions and invoices from two presidio settlements in the Spanish colonial Americas suggests that the key factors defining ceramic typologies devised by archaeologists—such as ware type or decorative tradition—do not necessarily correspond with the factors emphasized by the military supply officers in the documents, challenging any general linking of ceramic type to status. Majolica ceramics, often used as indices of high status, varied across time in distribution and cost. Beyond fluidity and diverse meanings, in different contexts for interaction artifact types may become other things—i.e., may be better interpreted as the same kind of item traditionally separated into a different type sorted by different criteria.

Furthermore, object types traditionally delineated as import versus local or high-status versus low-status do not necessarily differ along those lines in terms of value, function, or spatial context of use. Meritxell Ferrer (2016) argues that scholarship on eighth–sixth centuries BCE Sicilian acropoleis—communal ritual spaces—emphasizes the exceptionality of imported objects and drinking paraphernalia, obscuring the visibility and potential significance of other artifacts that are also present in those spaces, especially those associated with domestic contexts. Her analysis of these undervalued objects—including the recurring presence of cooking wares used for solid and semisolid foods in both domestic contexts and acropoleis—offers new understandings of the relationship between food preparation, ritual and domestic spheres, and gender.

How might we then understand typologies in relation to each other? At Perry Oaks/HT5, for example, many pottery traditions in use during the Late Iron Age persisted into the early second century CE, such as sandy wares as well as grog and shell tempering, rendering the analytical division between the Late Iron Age and Roman-period assemblages “arbitrary” (Jones
and Brown 2011, 2–3). The pottery assemblages from nearby Imperial College Sports Ground exhibit a similar temporal irreducibility (Powell et al. 2015, 161). Rather than deciding that objects should fit into these separate temporal domains, circumscribing how time and identity link to material culture, what relations of difference emerge if we trace the temporalities suggested by the material? How might circulation through various contexts for interaction change not only how a type is interpreted and used, but what it becomes and in relation to what?

As noted in Chapter Five, mortaria, samian ware (Figure 6.3), and amphorae (Figure 6.4) are singled out as critical indicators of participation in wider economic markets, as status indices, and as markers of transformation. When they are present, however, amphorae, mortaria, and samian ware constitute minor components of the overall assemblages, which are primarily made up of coarseware at all sites throughout the study time frame (Table 5.5). At the Dorset sites, Black Burnished Ware (Figure 6.5) constitutes the vast majority—over 90%—of sherds present at all the sites where this could be quantified. Coarseware (Figure 6.6) also dominates the Middle Thames Valley assemblages. Frequency of occurrence does not necessarily correspond to value or degree of importance. However, framing the narrative around the temporality of the artifact typologies predetermines what is important—additions after the conquest—even when these items of material culture might not have served as primary points of reference in everyday living at these places or as critical sites of difference along a cultural or status dimension. Other kinds of patterns, dynamics, and shifts are masked by isolating the presence of amphorae, samian ware, or mortaria and extracting them from assemblages as special occurrences.
Figure 6.3. Samian bowl. Greyhound Yard, Dorchester, Dorset, 1st century CE. © Wessex Archaeology

Figure 6.4. Dressel 2–4 amphora (olive oil), produced in Baetica (Spain), 1st to 3rd centuries CE. Tyers http://potsherds.net/atlas/Ware/DR20.
While mortaria are generally better represented in urban contexts, they are actually slightly more numerous at Perry Oaks/HT5 than they are at the nearby small town of Staines, constituting 1.6% of the total Roman-period assemblage at the former, and 1% at the latter (Jones and Brown 2011, 6). This is the reverse of the pattern of samian prevalence, where samian
sherds comprise 1.3% of the total Roman-period assemblage at Perry Oaks/HT5, and 3% at Staines (Jones and Brown 2011, 13). This also differs from the general pattern at the other case study sites, where samian sherds are present at more sites than mortaria (as are amphorae) and usually in greater quantities (Table 5.5) (Thorpe Lea Nurseries being another exception). The pottery assemblage at Perry Oaks/HT5 has not yielded traditional markers of high status and is described as “typically rural” (Jones and Brown 2011, 12), with the samian proportion “comparable to other low-status rural assemblages” (Jones and Brown 2011, 13). While the relatively high number of mortaria is unusual, the finds at the Heathrow settlement are described as indicating “nothing more than relatively subtle changes in lifestyle, with little indication of any elevated status. There may have been a low-level shift to more Roman styles of dress (hobnailed shoes), culinary methods (use of mortaria) and aesthetics (use of Romanised pottery forms), but this probably reflects little more than the ready availability of certain types of goods rather than a conscious desire to emulate a Roman way of life” (Lewis et al. 2010, 301).

However, alternatives and multiple directions of change were possible, indicated by the range of contexts and objects available, as well as the differential assemblages at the sites. Availability is not explanation enough for consumption habits. The increasing presence of imports in the Early and mid-Roman periods at the Heathrow settlement, such as samian and mortaria, is described as “expected, given the site’s location so close to Staines” (Lewis et al. 2010, 301). However, a greater variety of new items is not evident as a uniform pattern. Although traditionally termed Roman-style imports increased from previous periods (Lewis et al. 2010, 301), overall, samian constitutes the only example of imported fineware at Perry Oaks/HT5 during the Early Roman period (Jones and Brown 2011, 5), with finewares in general “poorly represented” (Jones and Brown 2011, 5), while imported wares and finewares were also
scarce at nearby Imperial College Sports Ground (Powell et al. 2015, 162, 166). The Early Roman period finewares at Heathrow consist of 26 sherds of mica-dusted wares, a small assemblage, while these fabrics are prevalent at Staines (Jones and Brown 2011, 5). Ashford Prison and Hengrove Farm also are located within the vicinity of Staines, but the proportions of amphorae, mortaria, and samian differ in comparison to Perry Oaks/HT5 (Table 5.5), with Ashford Prison exhibiting very little in the way of pottery at all, perhaps lying on the peripheries of domestic activity (Carew et al. 2006, 72, 88).

Furthermore, new food types described as “luxury foods” (Carruthers 2011a, 86)—e.g., coriander, celery, dill, grape—are scarce at Perry Oaks/HT5 despite their availability to inhabitants of settlements in the Staines environs, evidenced by a single grape pip at the site (Carruthers 2011a, 86) and a coriander seed at Thorpe Lea Nurseries, also close to the town (Lewis et al. 2010, 297). Due to the large number of samples of waterlogged and charred plant remains recovered at Heathrow, it is likely that foods consumed as part of the daily diet accumulated as domestic waste in the sampled deposits. As other foodstuffs have been preserved like this, the lack of these new food types is likely due to their absence at the site rather than preservation issues (Carruthers 2011a, 86).

In the case of Perry Oaks/HT5, it is possible that mortaria or other wares such as samian traditionally typed as high status are not just anomalies or contradictions punctuating an otherwise modest assemblage at a low-status farm site, explained by the availability of a range of items at a nearby small town. Pottery types and foodstuffs were incorporated differentially—the inhabitants at the site did not use everything that was available at Staines. It is possible that status associated with the Roman cultural dimension may not have been the primary signifying factor of mortaria, or it may not have been in all contexts. The symbolic resonance of these vessels as
one or another type of object might not have been tied to identity or status but activated in practices as they came into relationships with other people and things. The Roman-period coarseware sherds comprise 95.2% of the overall assemblage at Heathrow (Jones and Brown 2011, 3), with storage vessels a dominant category in the Late Iron Age/Early Roman phase (Jones and Brown 2011, 4). The spatial distribution of mortaria dating to the Late Iron Age/Early Roman and Early/mid-Roman settlements appear to accord with the general pottery distributions of those phases (Figure 6.7 & Figure 6.8) — deposited in ditches, waterholes, gullies, and pits—suggesting that mortaria did not warrant separate disposal practices. As food preparation techniques involving mortaria often incorporated familiar foods, these vessels might not have been mortaria as a discursive object but could have articulated functionally to the other vessels being used in daily consumption practices. A more detailed study of the contexts of pottery and associated finds as well as vessel contents is needed to explore these possibilities.

Amphorae, mortaria, and samian thus might not have meant or been the same thing in these different places, or could have become other things. They should not always be emphasized as the exceptional or extracted from the rest of the assemblage as general indicators of status or value. The typed artifact is not always the whole artifact and cannot necessarily be equated to one signifying dimension. The question we must ask is how amphorae, mortaria, and samian related as part of other assemblages, not whether they add up to pass a certain threshold of change defined as emulating or not emulating Roman lifeways. Viewing mortaria or other objects as already and only a “Romanised” type implicitly defines the conversation along the parameter of Roman emulation, pinning analysis to these objects as discursive wholes and obscuring how relationships with people and other objects might change what they mean and

1 The pottery assemblages at nearby Imperial College Sports Ground are dominated by kitchen wares, with storage vessels also abundant (Powell et al. 2015, 168).
what they do. Other possibilities and dynamics of experience that might not speak to the question of Roman emulation—or becoming Roman, even when this identity dimension is considered diverse and dynamic—are rendered invisible.

Figure 6.7. Distribution of mortaria in relation to the larger pottery assemblage, Heathrow T5, Late Iron Age/Early Roman settlement. (Data: Framework Archaeology 2011)
I do not mean to suggest that all previous typologies must be discarded before interpretation can commence. I do mean that analysis will have to be sensitive to how artifacts classed by chronology, ware type, decorative tradition, or production center relate to other types in context, which potentially transforms not just the perception of a particular type, but what the type is and what aspects of it articulate with other parts of the assemblages. The mortaria typology has all of the examples from multiple points in history at its disposal, and imposes this
scheme of meanings onto the past. But mortaria could have been something else. Understanding how they were used entails considering them as they “could be” (see Chapter Three).

Time, Context, and Period Divisions: Time and Space in Place and Landscape Biographies

Maps tend to produce an image of space at a frozen moment in time. Time is excluded and the existence of multiple elements from different periods of history is likewise excluded.

Andrew Jones (2007, 193)

Time segmented by the history/prehistory divide does not capture the reciprocal relationships between people and places that can themselves be productive of times and histories (Aguilar and Preucel 2013 provide an example; González-Ruibal 2016). Places are nodes in the unfolding of a past that entangles time, space, and memory in ongoing dialogues and relations; a consideration of time entails thinking about “movement” and “where” rather than simply a “when” in a segmented chronological framework (Aguilar and Preucel 2013). Hantman’s (2013) distinction between “sites in history” and “history in sites” speaks to this place–time perspective beyond the period boundary. The concept of sites in history represents the traditional archaeological approach of dating sites by absolute or relative methods, usually artifact typologies, and placing them in linear temporal sequences. History in sites confronts temporalities that transcend the ruptures of period boundaries, recognizing how places “embody and create history” (2013, 203). The power of place cannot necessarily be accounted for by the type or density of material found there, but might reside in the biography of relations that connect people, past, and present—that connects place and time. The eye of the period map excludes nonlinear temporalities, or “immobilizes the stories it claims to theorize” (Chapter Two, 32; de Certeau 1984).

Neolithic, Bronze Age, Iron Age, Roman Landscapes?
If we allow entities or assemblages to define themselves, we may find that they cross-cut conventional chronological divides and classifications. We may find the Neolithic in supermodernity.

Alfredo González-Ruibal (2016, 146)

Objects, assemblages of objects, and places pushed back against a temporal framework that directed sorting into a Late Iron Age versus an Early Roman period. Not all case study sites yielded assemblages where separate phases could be distinguished, presenting challenges for the delineation of discrete, comparable units across space. What times and places emerge if we follow the contours of the entities and assemblages themselves?

The waterholes at Perry Oaks/HT5, for example, underwent modifications over a long time period, dating from the MIA to Early/mid-Roman period in some cases (Table 6.1). Of the 26 waterholes in use at some point during the 100 BCE to CE 200 time frame, only one could be isolated to a single phase (LIA waterhole 642004). Notable here is the concentration of waterholes dating to the Late Iron Age and Early Roman phases, blurring the delineation of separate periods or a replacement of one temporal domain by another. Dividing “Iron Age” and “Roman” by the conquest and parsing the changes in the intensity of waterhole use by period as a whole homogenizes cycles of activity, that may have operated as ebbs and flows at more local-scale temporalities, as “generational choices” (Mrozowski et al. 2015, 121). Activity rhythms will not necessarily accord with one scale or direction of transformation. We are not just dealing with a Roman period based on shared characteristics or exemplified by a dominant process, but with variable and punctuated tempos.
Table 6.1. Waterholes at Perry Oaks/HT5 by phase.

<table>
<thead>
<tr>
<th>MIA</th>
<th>LIA</th>
<th>ER</th>
<th>MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>waterhole 521069/521098/521096</td>
<td></td>
<td></td>
<td>></td>
</tr>
<tr>
<td>waterhole 593207/593190</td>
<td></td>
<td></td>
<td>></td>
</tr>
<tr>
<td>waterhole 12048</td>
<td></td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 642004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>waterhole or sump 593219/593173</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 129112</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 649010</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 646018</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 653026</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 634013</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 311010</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 627042</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 641098</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 668026</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 119380</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 151132</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 583118</td>
<td></td>
<td>></td>
</tr>
<tr>
<td>waterhole 658134</td>
<td></td>
<td></td>
<td>(MR?)></td>
</tr>
<tr>
<td>waterhole 523315</td>
<td></td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 527374/527341/27388</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 133198</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 174024/174019</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 651045</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>pit/waterhole 617178</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 644006</td>
<td></td>
<td>></td>
</tr>
<tr>
<td></td>
<td>waterhole 174069</td>
<td></td>
<td>(+LR)></td>
</tr>
</tbody>
</table>
A strictly linear temporality that only populates a landscape with artifacts and places whose origin can be found within a period’s borders obscures understanding the ongoing becoming of communities. This means that reconstructing an “Iron Age landscape” with only sites whose origins date to within the accepted period range—800 BCE to 42 CE—would miss a lot of what is significant about this landscape, potentially minimizing focal points that continued to orient action and interaction beyond a role as remnant. For example, the arrangement of features constructed during the Iron Age at Ashford Prison in the Middle Thames Valley suggests that Neolithic earthworks at the site were still visible at the time (Carew et al. 2006, 52; Figure 6.9). Middle to Late Iron Age four-post structure 8 was erected inside the monument (Carew et al. 2006, 54). The earthworks appear to have been respected by the configuration of Iron Age circular structures (Carew et al. 2006, 76), perhaps indicating continued incorporation within domestic or ritual routines. The excavators suggest that “the layout of the Iron Age settlement strongly indicates that physical traces, or ancestral knowledge, of the earthworks of the Neolithic monument persisted” (Carew et al. 2006, 76). Interestingly, the Roman-period enclosure at Ashford Prison encircles the Neolithic monument, while it cuts through the features of the Iron Age settlement (Carew et al. 2006, 108).

At Alington Avenue in Dorset, a Bronze Age double-ring ditch remained visible during the Late Iron Age and Early Roman uses of the site (Figure 6.10); two pit burials lie within the eastern end of the earthwork (Davies et al. 2002, 34–35). The layout of ditches during the Iron Age and the later D-shaped enclosure in the Early Roman period appear to have respected the presence of the earlier earthworks. A superimposition of the Late Iron Age and Early Roman phase plans shows the episodes of activity, which cut across some previous features while still being influenced by these material conditions (Figure 6.11). Davies et al. (2002, 189, Figure 89)
Figure 6.9. Iron Age features and Neolithic monument at Ashford Prison, Surrey (Carew et al. 2006, Figure 30).

suggest that a Neolithic long barrow at Alington Avenue may have acted as a symbolic alignment in the landscape, orienting a processional pathway that connected an enclosure at nearby Flagstones, perhaps directing a circular route starting from the bank barrow at Maiden Castle and moving north along the alignment of the Lanceborough barrow to the ridge at Bridport Road, circling east toward Maumbury Rings and then following the Alington alignment to the Flagstones enclosure. The Alington Avenue and Flagstones landscapes appear to have been interconnected during the Iron Age as well by a system of field ditches and banks (Davies et al. 2002, 40), while Maumbury Rings, an earthwork monument originally constructed as a henge during the Neolithic, was re-used as an amphitheater after the founding of Dorchester.
(Figure 6.12). Such re-use in the case of temples and amphitheatres could suggest “a desire to associate religious centers and ritual performances with ancient places in the landscape” (Williams 1998, 73).

Figure 6.10. Late Iron Age and Early Roman phase plans of Alington Avenue, Dorset (Davies et al. 2002, Figure 95). Note the Bronze Age earthwork in the lower left in both phases that appears to have been respected by the later ditch and D-shaped enclosure construction episodes.
Figure 6.11. Superimposition of Late Iron Age and Early Roman phase plans, c. 100 BCE – CE 150, at Alington Avenue (adapted from Davies et al. 2002, Figure 95).

Figure 6.12. Maumbury Rings, Dorchester, Dorset. An earthwork constructed during the Neolithic and used as an amphitheater after the founding of Dorchester. © Photo by author, 2015

As at Alington Avenue and Flagstones in Dorset, evidence is emerging for networked Neolithic landscapes, consisting of earthworks and scatters of pits, surrounding the Heathrow
area and Middle Thames Valley (Lewis et al. 2010; Powell et al. 2015, 303). Community histories suggest long-term interactions, as centuries later patchworks of fields lay across the area. The living of the past in these landscapes might have incorporated earlier monuments beyond a role as relic, but as negotiable presences that generated contexts for interaction and movement, pulsing through the visual field circumscribed by traditional chronological frameworks.

In addition to orientation around Neolithic earthworks, settlement and land division features at Ashford Prison (Middle Thames Valley) dating to the Middle and Late Iron Age occupied areas of a field system originating in the Bronze Age, while the Roman-period field divisions respected the Bronze Age alignments (Carew et al. 2006, 88; Lewis et al. 2010, 284). This was also the case at Hengrove Farm (Lewis et al. 2010, 284). Furthermore, the ditch segments at Hengrove Farm are difficult to isolate as “Bronze Age,” “Iron Age,” or “Roman.” Many of the ditches were continually recut and modified, such that activity from multiple periods might be represented in a single length of ditch (see context listing in Poulton 2007a). At Thorpe Lea Nurseries, ditches dug during the Bronze Age continued to be used and maintained during the Iron Age and Roman periods of activity (Lewis et al. 2010, 284). Inhabitants at Imperial College Sports Ground incorporated previous features into land enclosure configurations (Figure 6.13; Powell et al. 2015, 303). Field structures were re-used and modified into emerging systems of land demarcation and management. Enclosure G383, possibly originating in the Late Bronze Age–Early Iron Age, was integrated within the ditches of the Roman-period Phase 1 enclosure and trackway, potentially accessed from the trackway (Figure 6.14; Powell et al. 2015, 87, 93).
Figure 6.13. Field network and ditch divisions at Imperial College Sports Ground (Powell et al. 2015, Figure 1.3).
Parts of the Bronze Age field system persisted into later periods at Perry Oaks/HT5 as well, perhaps continuing to define boundaries or demarcate pasture (Figure 6.15) (Lewis et al. 2010, 284). Most of the Iron Age and Roman-period enclosures are multiphase, set within the Bronze Age network of ditches, while separate Late Iron Age and Early Roman phases were difficult to distinguish at the site. Enclosure 3 and Enclosure 7, for example, have periods of use ranging from the Late Iron Age/Early Roman to the mid-Roman periods, while Late Iron
Figure 6.15. Superimposition of Middle Iron Age, Late Iron Age, Early Roman, and Early/mid-Roman settlement and landscape features, set within the Bronze Age field system and Neolithic cursus earthworks at Heathrow T5. The red ERB outlines indicate ERB features within the LIA/ERB landscape. Enclosures are numbered. (Data: Framework Archaeology 2011)

Age/Early Roman Enclosure 4 was modified and expanded into Enclosure 5 in the Early/mid-Roman landscape. Three waterholes, which had served as important sources of water dating back to at least the Middle Iron Age, defined the location of the southern edge of Enclosure 4 (Lewis et al. 2010, 276). The first phase ditch (593234) cut these waterholes (521069, 593207/593190, 312048), while the second phase (593231) terminated at waterhole 312048. Recut 617182 also
terminated in a waterhole (593129/593173) (Lewis et al. 2010, 276–77, see Figure 4.44).

Recutting and modification occurred in ditches, enclosures, and features across the transitional period. Penannular Gully 8, interpreted as a roundhouse, was modified in two phases during the Middle Iron Age occupation (Lewis et al. 2010, 247) and recut during the Late Iron Age/Early Roman–period as well (Figure 6.16). Enclosure 3, laid out in the Late Iron Age/Early Roman landscape, incorporated the gully, perhaps using it as a stockade (Lewis et al. 2010, 276). Enclosure 3 appeared to continue to act as a main site of domestic activity into the Early/mid-Roman period (Lewis et al. 2010, 289–90).

Figure 6.16. Penannular Gully 8, interpreted as a roundhouse, incorporated by Enclosure 3. Note multiple phases and recuts. (Data: Framework Archaeology 2011)
Other instances of integrating Neolithic or Bronze Age earthworks into fields or systems of land division can be found beyond the case study sites. In Dorset, for example, Papworth (2008, 286–87) describes a Bronze Age linear earthwork (Shapwick 35/a89) that meets with two parallel ditches from a later Iron Age ovoid enclosure, while a causeway crosses the earthwork at the Crab Farm (Shapwick) settlement, incorporating it into the enclosure system and linking Crab Farm to the site of Badbury. Hillforts such as Badbury sometimes incorporate or lie near earthworks from earlier periods. More than 120 Bronze Age round barrows occupy the chalk spurs near Badbury, with a concentration of Bronze Age linear boundaries around the site (Papworth 2008, 284–87). The area around Hambledon Hill, a hillfort during the Iron Age, was demarcated by a causewayed enclosure complex during the Neolithic and was the site of an Early Bronze Age barrow group (five in the hillfort interior and one within the causewayed enclosure on the central part of the summit) (Papworth 2008, 201–4, Figure 115). Burial mounds also often reside, seemingly undisturbed, inside hillforts, including the Iron Age occupations of Pilsdon Pen, Hambledon Hill, Hod Hill, Poundbury, and Maiden Castle (Papworth 2008, 346).

Similar to Neolithic and Bronze Age monuments, hillforts are generally viewed as essentially belonging in Bronze Age or Iron Age landscapes due to their origin in these periods, even though activity—occupational and ritual—occurs at some throughout the imperial occupation, and not only at sites of Roman-period towns (such as Silchester and Colchester). Settlement activity continues into the Early Roman period at Poundbury, which also served as the site of a late Roman cemetery. Shipton Hill (Dorset) yielded occupation evidence through the Roman occupation (Papworth 2008, 145). A chalk floor dated to the late Roman period lies within Badbury (Papworth 2008, 306, 333). While no extensive work has been carried out at the Bury in south Wiltshire, numerous Roman-period items have been found at the hillfort while no
objects dating to the Iron Age have been recorded (Papworth 2008, 358–59). Military forts were erected at some of the hillforts, such as Hod Hill (on Hod Hill, see Papworth 2008, 208–18). Some hillforts, including Badbury Rings, lie close to the road network, suggesting that they may still have been critical loci of the political geography into the Roman period (see Figures 7.43 & 7.44). Ritual complexes situated at Badbury, Maiden Castle, and possibly South Cadbury demonstrate that these locales were still significant points on the landscape, even if their functions and relationships to surrounding settlement may have changed (Figure 6.17) (Papworth 2008, 183–84, 313–14, 367).

![Figure 6.17. The 4th century CE ritual complex at Maiden Castle, Dorset. © Photo by author, 2015](image)

While some scholars have noted that the occupational continuity in hillforts on the eve of the invasion in Dorset is unusual (Papworth 2008, e.g., 94, 347), Dorset is not the only region where continued activity is in evidence. Many hillforts in Wales continued to be used (Russell and Laycock 2010, 121–22). Uffington Castle on the Berkshire Downs has produced evidence of
activity into the Roman period (Gosden and Locke 2003). Whatever the resonance of these earlier monuments—whether relating to continued ritual significance, sites of imperial struggle, or some other meaning—some of these complexes and landscapes were being incorporated into the social and political contexts of the Roman period.

Despite this referencing of earlier monuments in settlement features and field systems during both the Iron Age and Roman period, variability is evident in the incorporation of Neolithic monuments and Bronze Age ditches and the tempos of modification and realignment, whether piecemeal or abrupt. In the Middle Thames Valley, the Heathrow area is characterized by piecemeal modifications to the landscape over time (Lewis et al. 2010, 284). Enclosures at Perry Oaks/HT5 incorporate or respect former ditches across the transition, although the Late Iron Age/Early Roman double enclosure arrangement—Enclosures 4 and 7—undergoes substantial remodeling during the Early/mid-Roman phase, such as the expansion of Enclosure 4 into Enclosure 5 (Lewis et al. 2010, 290). At Imperial College Sports Ground, some maintenance of pre-existing ditches is evident, while realignments also cut across previous features (Powell et al. 2015, 303). The centuries-long Iron Age settlement at Ashford Prison, however, appears to have been abandoned, with an enclosure and field system laid out at the site in the late first century CE; this may also have been the case at Hengrove Farm (Carew et al. 2006, 106). At Rope Lake Hole in Dorset, buildings and pits dated to the Late Iron Age may have been abandoned and plowed before the construction of Early Roman–period buildings, indicating a reorientation of the field systems and associated habitation (Woodward 1987, 146). Closer to Dorchester, the connections integrating Flagstones and Alington Avenue may have been realigned, as Flagstones appears to have gone out of use in the mid-first century CE, while the ditch network at Maiden Castle Road was laid out also in the mid-first century.
Barbara Bender (2002, S108–S109) describes a landscape of settlements, fields, and stone monuments from roughly 4,000 years ago on Bodmin Moor, southwest England, investigated by a team of anthropologists and archaeologists. A Bronze Age landscape, in archaeological terms. Speaking with people at the exhibition for art installations created as part of the project, the team saw “how peculiar our myopic concentration on the Bronze Age landscape appeared to most local people, who saw stone row, medieval field systems, 17th-century granite working and 19th-century peat-cutting either as layered palimpsest or, more simply, as history” (2002, S108–S109).

To return to one of the main questions of this dissertation: what populates an Iron Age and Roman landscape? The point here is not simply that Neolithic monuments and Bronze Age earthworks and field features persisted into the Iron Age and Roman periods, nor that disruptions or realignments should be downplayed. The argument is that, when looking for an Iron Age or Roman landscape, or considering transformation under Roman occupation in terms of the landscape, multiple and potentially incommensurable temporalities may cohere and conflict in one period. In other words, to understand the Iron Age as the context of the Roman invasion, the Iron Age may not be enough. The past may “overflow its limits” (González-Ruibal 2016, 146; see also Fowler 2013), as time and the movement of time do not only refer to that which is new. It is possible that the monuments or networks of banks and ditches warranted little comment. Perhaps in some cases they were neutralized as a relict past. But we should not decide beforehand that the temporalities of Neolithic monuments or Bronze Age field systems would have been replaced during the Roman occupation; they may have co-existed with, been targeted by, or otherwise interrupted hegemonic trajectories.
As Stahl (2012) asks, if continuity and change are not frozen at uniscalar points in time or in particular material forms, when does the story begin? Delineating the boundaries of relational histories, and the temporal and spatial contours that speak to the questions under consideration, is no simple task. Following the temporal rhythms of place biographies (see also Rogers 2015), the “trajectory of the material” (González-Ruíbal 2016, 146), may reveal some of these more nonlinear cycles. The settlement and field system dynamics in Dorset and the Middle Thames Valley indicate that a more multitemporal approach to the landscape—rather than one that homogenizes the Iron Age as the only relevant past—will be necessary to understand the landscape under the conditions of imperial occupation.

CONCLUDING REMARKS

In order to disentangle the material evidence from the acculturative assumptions of the Romanization paradigm, an archaeological language is needed that explores the spaces and times constituted by objects and places rather than fitting objects and places into a priori categories and chronologies that exteriorize process from context. Sorting criteria weave assumptions into categories and chronologies, such that typologies of artifacts and periods act as a form of archaeological language defining the parameters of what it is possible to say. I argued for a need to directly revisit theorization of typology in archaeology in order to talk about multiplicity and contradiction.

I argued that confronting multiplicity within defined categories will entail tracing the relational components of the categories we think we know, how these elements interact and diverge in different times and places. I also called for a conceptualization of typology that allows objects to weave in and out of their types in relation to the contexts for interaction that might shift the spatial, temporal, or social scales of relevance by bringing various aspects of the
artifacts into different assemblages. A Roman mortarium may be that. But it is not just that a mortarium might have assumed multiple meanings in diverse times and places, with its Roman-ness differently interpreted or contested depending on the positions of the people involved or the stage in the life cycle of the artifact. A mortarium may not have resonated as a mortarium or as a Roman object but could have become something else in its interactions with other assemblages—e.g., the same type of food preparation vessel usually classed as belonging to a different archaeological typology.

To explore multiplicity within defined periods, I argued for a focus on place and interaction that confronts synchrony and diachrony through a co-existence of temporalities rather than distilling sites to a serial chronology. The landscapes in Dorset and the Middle Thames valley point to a deep, multitemporal history that cannot be assessed as an Iron Age versus a Roman period. It isn’t a radical statement to argue against this “clumsy” “balancing” act (Woolf 2002, 5) between one time and another time that characterizes the analytical repertoire of the Romanization paradigm. I am attempting to expand on this critique by a concept of “history in sites” (Hantman 2013) that explores how relations with place are constitutive of temporalities. The deep histories of the landscape that pulse through, entwine with, and interrupt the Roman occupation as well as the aspects of those histories that became targets of imperial domination cannot be captured by designating the Iron Age chronology as the only relevant past and then rupturing prior periods as anachronistic remnants that do not co-exist with the temporality of Empire and do not even co-exist with the temporality of the Iron Age.
CHAPTER SEVEN, LANDSCAPE INTERCONNECTIVITY: COMMUNITIES, INTERACTIONS, AND MOVEMENTS

To address continuity and change in relation to how landscapes become populated in archaeological narratives, I focus on landscape interconnectivity, examining how the assembling and dissembling of places creates the settings and mechanisms of social formation and transformation. The analysis focuses on both the case studies and regional distribution sites. Evidence for the interlinking of enclosures and field systems at the case study sites suggests interaction within or between communities beyond the level of a single farmstead, with spatially differentiated yet interdependent functions supporting the notion of regular exchanges. To examine settlement aggregation at a larger scale, I chart concentrations of sites using kernel density estimation, exploring urban and rural dynamics as well as cycles of centralization and dispersal over time, using 50-year chronological intervals rather than aggregate Late Iron Age and Early Roman periods. Cycles of activity or occupation—the proportions of sites that go in and out of use in an interval—provide insight into the long-term forging of community networks.

SETTLEMENT INTERCONNECTIVITY

Sharples (1991, 91–92) suggests that the centralization of settlement within Maiden Castle in South Dorset and the corresponding absence of newly established field boundaries outside hillforts during the Middle Iron Age indicate a communally organized structure of land holding. He goes on to argue that Late Iron Age enclosures—smaller partitions than Middle/Late Bronze Age predecessors (see also Harding 2009, 283) and consisting of clusters isolated in large tracts of land—point to a shift to management of land by individual farmsteads and family units. Papworth (2008, 140, 83) cites the Late Iron Age proliferation of farmsteads in river valleys as well as the inhumation burial rite emerging especially in South Dorset as support for a transformation to individualism. However, the enclosure and field boundary evidence from
Dorset and the Middle Thames Valley—in terms of possible interconnections of sites with contrasting yet interdependent functions at the enclosure and hillfort level as well as interconnected networks of ditches and fields at sites such as Rope Lake Hole/Eldon’s Seat, Alington Avenue/Flagstones, Imperial College Sports Ground/Perry Oaks/HT5, or Ashford Prison/Hengrove Farm—point to regular interaction and interdependencies among community members, in both the Late Iron Age and Early Roman periods, perhaps oriented around movement of livestock and access to fields or pasture.

Davis (2008, 2011) has reviewed evidence for enclosures that appear to be closely associated spatially—or possibly “paired”—in the Early Iron Age of Wessex (southwest England), arguing that this settlement pattern, with two or more enclosures set within a complex of fields and linear earthworks, indicates a degree of interdependence and negotiation among families and kin groups in a community land allotment structure. Examples include Little Woodbury and Great Woodbury, Gussage I (Gussage All Saints) and Gussage II (Figures 7.1 & 7.2), and Winnall Down I and II. Gussage II mirrors the layout of Gussage All Saints (Bowen 1979, 180–1), with a ditch or track seemingly leading from Gussage All Saints to Gussage II. Davis (2011, 178) also points to what he terms a “pairing” of enclosures north of Gussage Brook and on Gussage Cow Down. He suggests that the substantial cropmark evidence for enclosures and field systems surrounding the Woodbury, Gussage, and Winnall Down enclosures represents an integrated organization of settlement and land holding. While the individual enclosures could indicate the creation of distinct rights or identities, he argues that the interconnectedness suggests regular interaction through such processes as crop tending or house construction, noting the continual maintenance of many roundhouses during the Iron Age. Penannular Gully 8, a possible roundhouse at Perry Oaks/HT5, could constitute an example of long-term maintenance and
modification at a single locale (see Figure 6.16 from Chapter Six), as could Circular Structure 3 at Ashford Prison (Carew et al. 2006, 83).

Figure 7.1. Gussage and Gussage II, possible paired enclosures (Bowen 1979, Figure 112).

Figure 7.2. Gussage and Gussage II and surrounding landscape (Bowen 1979, Figure 111).
A difficulty with this interpretation is establishing contemporaneity of the enclosures and associated cropmarks, where usually only one enclosure in the group has been excavated, and the field networks are identified from aerial photographs (although excavation suggests some parts of the Winnall Down and Woodbury grouped enclosure complexes might have been contemporary [Davis 2011, 179, 181]). However, evidence for site interconnectivity as a significant element in the settlement pattern is not exclusive to these enclosure groups or to the earlier part of the Iron Age, occurring in both Dorset and the Middle Thames Valley. While defended by massive earthworks, hillfort enclosures may have facilitated extramural interaction by differentiating use of space at the same time that this differentiation created interdependence.

Figure 7.3. Possible interconnected hillforts of Poundbury and Maiden Castle.
The hillforts of Poundbury and Maiden Castle could have acted as interconnected locations (Figure 7.3), perhaps sites of contemporary but complementary activity (Sparey Green 1987, 146). Poundbury and Maiden Castle seem to have been intertwined as part of a larger network—for defense and/or channeling the movement of cattle—with Poundbury serving as a locale for cattle grazing along the River Frome, and crops stored at Maiden Castle, the site of more intensive habitation (Papworth 2008, 131). Hambledon and Hod Hill in central Dorset could constitute another hillfort grouping (Figure 7.4) alongside a river (the Iwerne) (Papworth 2008, 223–26).

Figure 7.4. Possible interconnected hillforts of Hambledon Hill and Hod Hill, Central Dorset.
While evidence suggests a shift in the intensity of occupation from Hambledon to Hod during the Late Iron Age, which could account for the presence of closely associated hillforts, it seems that, similar to Poundbury, Hambledon’s earthwork defenses were maintained and modified. Continued activity at Hambledon Hill could indicate that Hambledon and Hod had some contemporary but contrasting uses.

Ditched and trackway-based field systems as well as differential site activities also provide evidence for intersettlement connectivity in both Dorset and the Middle Thames Valley. Rope Lake Hole is situated along a coastal strip that hosts several other sites, with the surrounding fields and terraces possibly organized and managed “in tandem” (Woodward 1987, 146). Rope Lake Hole and nearby Eldon’s Seat may have had contemporary but contrasting functions: with the structures, hearths, and material assemblages at Eldon’s Seat interpreted as evidence of domestic occupation, while the evidence for shale and flint waste dumping as well as the lack of spindle whorls and querns at Rope Lake Hole suggest activity linked to shale working and salt production (Woodward 1987, 146, 149). In the first century CE, the abandonment and plowing over of the circular stone structures and accompanying pits prior to the erection of Roman-period structures and shale-working floors might have been connected to arable reversion at Eldon’s Seat (Woodward 1987, 146). The different tasks undertaken as well as the linking of actions and processes at the two sites suggests that the people living there were engaged in reciprocal relationships that depended on regular community interaction.

Coordination beyond the site level is also evidenced in the Dorchester area, with ditches at Late Iron Age Flagstones sharing an orientation with Alington Avenue, likely forming an interconnected field or boundary system (Davies et al. 2002, 40).
Laying out, maintaining, and modifying the extensive networks of fields in the Heathrow area between the Colne and Crane Rivers would have required coordination beyond the level of a farmstead or local community (Powell et al. 2015, 303). While the extent of the field system at Imperial College Sports Ground could not be determined, the field ditch orientations, settlement, and trackway appear to align with the field ditches at Heathrow Terminal 5, suggesting “quite widespread integration of the landscape in the Late Iron Age/early Roman period” (Lewis et al. 2010, 285). The enclosures at Thorpe Lea Nurseries, situated at the southern end of a series of cropmarks, may have formed part of a larger complex of settlements and fields in the Staines environs (Jones 1990, 5). The Early Roman–period ditches and possible enclosures laid out at Ashford Prison might form part of the same field system evident at Hengrove Farm (Carew et al. 2006, 88; Poulton 2007a, 2) (Figures 7.5a & 7.5b). The apparent focus on animal husbandry at Ashford Prison rather than arable cultivation, a pattern seen elsewhere in the area, could indicate a seasonal cycle of use, with grain perhaps being brought into the site from elsewhere (Carew et al. 2006, 83–84). As at Ashford Prison, the activity at Lea Farm may have also been oriented toward pastoral practices from the Bronze Age to the Roman period (Manning and Moore 2000, 39). Since people presumably lived at the site for at least part of the year, evidenced by the structures and occupational debris, it seems likely that the inhabitants of Lea Farm also traded for grain during the Late Iron Age and Early Roman periods. Cereal remains are also lacking at Rope Lake Hole and Wood Lane (Table 5.8). The indications of trade, specialization, and interlinked systems of land division suggest regular community and intercommunity interaction at large scales at Lea Farm (Manning and Moore 2000, 39) and the other case study sites. This appears to occur in both the Late Iron Age and Early Roman periods at sites that surround towns (e.g., Ashford Prison/Hengrove Farm) and farther afield (e.g., Lea Farm).
Figure 7.5a. The Iron Age land divisions at Ashford Prison compared to Hengrove Farm (Carew et al. 2006, Figure 68).
Figure 7.5b. The Roman-period land divisions at Ashford Prison compared to Hengrove Farm (Carew et al. 2006, Figure 69).
Possible spatially associated individual structures at sites could indicate interdependence at another scale. Round structures IA5 and IA10 from Late Iron Age phase IIG at Poundbury could constitute a contemporary pairing of a larger and a smaller structure (Figure 7.6). This pattern also occurs on farmsteads. At Ashford Prison, Circular Structures 6 and 7 from the Mid/Late Iron Age phases are conjoined, with Circular Structure 7 noticeably larger than 6 (Figure 7.7). The homogeneous fill in the shared ditch segment suggests contemporaneity (Carew et al. 2006, 50). The differential finds distribution—towards the entrance in Circular Structure 7 but not in 6—indicates that they may have been used differently or treated differently upon abandonment. A similar grouping of a larger and smaller circular structure during the Iron Age can be found several kilometers away at Lower Mill Farm, Stanwell (Carew et al. 2006, 50).

Examples of spatially associated structures with perhaps complementary functions can be found in the Roman period. In Early Roman phases, rectangular structures R21 and R18 at Poundbury could constitute a pairing of a larger and smaller structure similar to earlier patterns at the site (Figure 7.8) (Sparey Green 1987, 66). St. Lawrence School, Bradford on Avon, exhibits paired villa buildings that may have facilitated different functions (Papworth 2008, 265). These suggestions about possible interdependent structures are preliminary, however, and must be subject to further analysis, as the interpretation that spatially associated structures with contrasting uses constituted a template of spatial and social organization at the individual structure level is complicated by the difficulty of establishing contemporaneity or the function of these structures. It would also be necessary to demonstrate whether this represents a widespread pattern. It seems possible, however, that structures might best be understood in terms of how they complement other structures on the site rather than as a bounded set of features or activities.
Figure 7.6. Possible paired structures IA5 and IA10, Poundbury, LIA phase IIG (adapted from Sparey Green 1987, Figure 30).

Figure 7.7. Conjoined Circular Structures 6 and 7 at Ashford Prison (Carew et al. 2006, Figure 41).
Evidence from enclosures, hillforts, and field systems suggests that settlement interconnectivity across the landscape—perhaps creating networks linking areas where different activities were taking place—constituted one form of facilitating and regulating community interaction in both Iron Age and Roman-period contexts. The landscapes appear to be complexes of interconnected sites rather than a collection of autonomous farmsteads. That the inhabitants at certain sites may have engaged in specialized activities—such as metalworking at Gussage All Saints in the Iron Age (Wainwright 1979), shale-working and salt production at Rope Lake Hole in the Iron Age and Roman period, and the centralization of Black Burnished Ware pottery production in the Wareham/Poole Harbour area of Dorset during the Late Iron Age/Roman period (Brown 1997; Williams 1977)—and also traded for essential items, such as grain at Ashford Prison and Lea Farm—seems to support the suggestion that individual farmsteads were involved in regular community interactions surrounding movement through the landscape, the management of animal and crop husbandry, and the production of material culture. Enclosing the land through laying out field ditches does not necessarily point to isolation, individualism, or a fragmentation of communal interaction and organization but could enact those very paths of
The separate enclosures interlinked by networks of fields and trackways could indicate a de-centralized but interdependent community organization rather than self-sufficient farmsteads.

SETTLEMENT PATTERN: COMMUNITY FORMATION, ACTIVITY/OCCUPATION CYCLES, AND MOVEMENTS

During the Roman occupation, towns such as Dorchester and Staines are assumed to have served as market centers, concentrating social, political, and administrative activities and directing the flow of economic production and craft specialization through settlements connected along the road network (Carew et al. 2006, 106; Lewis et al. 2010, 299–300; Smith et al. 1997, 302) (Figure 7.9). People living and working in farmsteads and fields in the hinterlands may have participated in, been forced, or coerced into labor regimes supplying urban populations with grain and meat (Lewis et al. 2010, 285; Smith et al. 1997, 303), with an intensifying of livestock production and marketing seemingly observed in the Middle Thames Valley concomitant with the development of Staines (Smith et al. 2016, 129–35).

Intensified arable cultivation and livestock management appears to have taken place at Hengrove Farm, evidenced by numerous field ditches and waterholes, with the reorganized enclosures at Ashford Prison likely relating to stock corralling (Carew et al. 2006, 106–7). Expansion of food production related to animals is also evident in the Heathrow area around Perry Oaks/HT5 and Imperial College Sports ground, suggested by the increasing number and size of enclosures in the Roman period (Lewis et al. 2010, 298; Powell et al. 2015, 107) (Figure 7.10). Extensive field boundaries were also established at Lea Farm (Manning and Moore 2000, 38–39) (Figure 7.11), and a rectilinear ditched area was laid out at Wood Lane in Late Iron Age/Early Roman Phase 8A (Figure 7.12), with several field ditches constructed in first century CE Phase 8B (Figure 7.13).
Figure 7.9. Locations of sites surrounding Dorchester. Site 3=Flagstones, Site 6=Maiden Castle Road, Site 10=Fordington Bottom. Note Maiden Castle (larger) and Poundbury (smaller) as possible interconnected hillforts (circled) (Smith et al. 1997, Figure 1).

Figure 7.10. Trackway and land division features at Imperial College Sports Ground, Iron Age and Roman period (numbered) (Powell et al. 2015, Figure 4.6).
Figure 7.11 Enclosure and field network at Lea Farm, Phase 2 (Iron Age) and Phase 3 (Roman-period) (Manning and Moore 2000, Figures 3 & 5).
Figure 7.12. Plan of Wood Lane, Phase 8A. Note rectilinear area established to the east of the trapezoidal enclosure (Ford et al. 2003, Figure 3.9).

Figure 7.13. Plan of Wood Lane, Phase 8B. Note additional field ditches (Ford et al. 2003, Figure 3.10).
These sites represent locations surrounding Staines (Perry Oaks/HT5) as well as at some distance from the immediate urban environs (25 km in the case of Lea Farm).

Such enclosures may indicate channeling the movement of animals rather than human domestic use. Near Dorchester, a ditched trackway was laid out at Maiden Castle Road (Smith et al. 1997, 59), with a D-shaped enclosure and droveway at Alington Avenue oriented toward a road to the north (Davies et al. 2002, 57–61). However, as noted in Chapter Five, changing pastoral practices and the expansion of agricultural production are not necessarily linear or post-conquest trends (Lewis et al. 2010, 286). Arable cultivation gradually increased at Perry Oaks/HT5, for example, from the Late Iron Age to the Late Roman period (Carruthers 2011b, 41). While Smith et al. (2016, 89, 129–35; Chapter Four) note a pattern of abandonment or reorganization of farmsteads in the Middle Thames Valley during the first century CE—e.g., a decline of open settlement, a rise in complex farmsteads, and the establishment of co-axial field systems—pre-conquest fields are evident at Perry Oaks/HT5 and Cippenham, Slough, with Roman-period field boundaries extending from the earlier Wood Lane settlement enclosure (Smith et al. 2016, 133; Figures 7.12 & 7.13). Considering long-term histories of community interconnections, what do patterns of centralization around towns look like across the landscape?

Site Clusters

To explore spatial distribution at the regional scale and identify areas of dense concentrations of sites—that is, the potential location, size, and density of site clusters surrounding and outside of towns—I used kernel density estimation (KDE). KDE is a type of intensity analysis of point patterns that visualizes how events in a point pattern—in this case, archaeological sites—vary in frequency across an area, pointing to zones of higher and lower densities of occurrence (Conolly and Lake 2006, 173–79; Murrieta-Flores 2014, 106–7;
Lasaponara et al. 2016, 563–64). KDE uses point features to calculate a magnitude per unit area around the points, which can provide insight into clusters. To create a smooth surface tapered to each point, a kernel function or window is placed “over each event of the point pattern and calculates the density around it. The dimension of the window is defined by the bandwidth” (Lasaponara et al. 2016, 563).

A key parameter that can be selected by the researcher is the bandwidth or radius of the kernel function. An appropriate metric depends on the research question and data set. A radius that is too wide will produce an “overly smoothed distribution,” while a too-narrow radius will result in “peaks around data clusters that may not reflect the actual distribution” (Conolly and Lake 2006, 177; Beardah and Baxter 1996). I used nearest neighbor analysis to create parameters for selecting a radius (see Lasaponara et al. 2016, 564). Nearest neighbor analysis is a type of point pattern analysis that assesses if an arrangement of points is dispersed, regular, or clustered, with the nearest neighbor statistic expressed as the ratio of the average distance between each point and its nearest neighbor to the expected average distance between nearest neighbors for a hypothetical random distribution (Chang 2014, 234–35). Nearest neighbor analysis has been used in archaeology to examine settlement patterns (Conolly and Lake 2006, 164–66). It does not lend itself, however, to detecting multiscalar effects, and the shape and size of the study area influence the results. Here, nearest neighbor analysis was used to identify the observed average distance between a site and its nearest neighbor to inform on selecting the radius for the KDE rather than to assess the clustering of the site distributions. Analyses were performed in Esri’s 10.5 ArcGIS software package.

Nearest neighbor analysis was performed on site distributions in both regions in 50-year chronological intervals to explore the average observed distance between sites in use
contemporaneously. The results are presented in Table 7.1. To perform analysis on a regional scale and to account for variability in nearest neighbor distances, I added 500 m to the average of the average observed distances (3111) and doubled this number, choosing a radius of 7000 m. Appendix D contains an example of the parameters set for the KDE analysis.

Table 7.1. Results of nearest neighbor analysis for the 50-year intervals.

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Avg. NN*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorset Sites 100–49 BCE</td>
<td>5522.5604</td>
</tr>
<tr>
<td>Dorset Sites 50 BCE–1</td>
<td>4396.163</td>
</tr>
<tr>
<td>Dorset Sites 1–49 CE</td>
<td>3497.1543</td>
</tr>
<tr>
<td>Dorset Sites 50–99 CE</td>
<td>2749.0617</td>
</tr>
<tr>
<td>Dorset Sites 100–149 CE</td>
<td>2869.3526</td>
</tr>
<tr>
<td>Dorset Sites 150–200 CE</td>
<td>2895.0505</td>
</tr>
<tr>
<td>MTV Sites 100–49 BCE</td>
<td>3374.3616</td>
</tr>
<tr>
<td>MTV Sites 50 BCE–1</td>
<td>3398.8916</td>
</tr>
<tr>
<td>MTV Sites 1–49 CE</td>
<td>2235.9556</td>
</tr>
<tr>
<td>MTV Sites 50–99 CE</td>
<td>2162.0526</td>
</tr>
<tr>
<td>MTV Sites 100–149 CE</td>
<td>2106.4489</td>
</tr>
<tr>
<td>MTV Sites 150–200 CE</td>
<td>2120.5511</td>
</tr>
<tr>
<td>Average</td>
<td>3110.633658</td>
</tr>
</tbody>
</table>

* Average observed distance between sites.

Figures 7.14–7.17 represent the results of the KDE for the Late Iron Age and Early Roman period in Dorset and the Middle Thames Valley. In Dorset, patterns of settlement aggregation seem to demonstrate increasing centralization during the Early Roman period, oriented around the town established at that time—*Durnovaria*. Settlement density is more
dispersed across the landscape in the Late Iron Age, with a greater number of the clusters exhibiting higher density values, while activity concentrates in the urban hinterlands during the Roman period. Furthermore, the densest areas during the Early Roman period are denser than the Late Iron Age densest areas (intensity values of 0.187 versus 0.114). In the Middle Thames Valley, more concentrated clusters are already identifiable during the Late Iron Age, including the region surrounding the future town at Staines. While the cluster in the lower right of Figure 7.17 is actually more diffuse than in the Late Iron Age map, the densest areas in the Early Roman period are again denser than those from the Late Iron Age (intensity values of 0.168 versus 0.125). This trajectory at first appears to conform to a general history of the establishment of

Figure 7.14. Concentration of Dorset sites dating to the Late Iron Age (100 BCE–43 CE). Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6
Figure 7.15. Concentration of Dorset sites dating to the Early Roman period (43–200 CE). Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.16. Concentration of Middle Thames Valley sites dating to the Late Iron Age (100 BCE–43 CE). Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2016
towns as centers of political and economic activity, reframing nodes and pathways of interaction. It also appears to accord with the picture of the southeast as the locus of a greater degree of political centralization and consolidation before the invasion.

However, while insights can be gained on settlement trends with these maps, this analysis also misses a lot of what might be important about the landscape, including how people moved and interacted, and how relational histories of place generated these contexts for interaction. Engagement with deep histories may be in these movements, in patterns of navigating through the landscape or in rhythms and cycles of activity and occupation.

Activity and Occupation Cycles

The language of contingency in *archaeologies of possibilities* can help foreground how movements articulate the relations of association and dislocation, and how entities emerge as intelligible through such entanglements in past landscapes. Citing Hirsch’s (1995) process-
oriented approach to landscape, Kirby evokes the subtlety and fluidity of landscapes as emergent, in which a “foreground of being and action points to ‘actuality’ while background augurs ‘potentiality’—in other words, stages of action towards multiple futures” (2009b, 12).

The contingency of movements opens up relational potentials for such alternative futures, mutually entangling (Hirsch 1995, 23) the provisional actuality of everyday action and the improvisational nuance of possibilities. Rather than residues of the already finished, the landscape constitutes “ensembles of possibilities” (de Certeau 1984, 98) or “stories so far” (Massey 2005, 9, emphasis added). In a manner of speaking, this pushes us towards archaeologies of “unsettlement patterns” (Dawdy 2013, 257), where “unsettling” the pattern entails tracing the movements and relations along which assemblages of the past are continually remade.

What happens if we unsettle these patterns, letting the tempos of activity and occupation define themselves rather than confining our expectations to the Late Iron Age/Early Roman period boundaries (Chapter Six)? Rather than aggregating sites of activity into one of two temporal moments, I constructed maps of 50-year chronological intervals for each region, beginning with 100 BCE and ending with CE 200 (Figures 7.18 to 7.29), charting cycles of activity over the course of those intervals—the number and proportion of sites that are established or go out of use during each interval (Table 7.2; see Appendix A for list of sites and further information on how intervals were constructed).

Heterogeneous and nonlinear patterns complicate the trends toward centralization in the Early Roman period discussed above and also crosscut divisions between the southwest and southeast. A differential pattern of centralization for the two regions is somewhat countered by the interval versus the period-based maps. The Late Iron Age as a whole appears more
centralized in the Middle Thames as compared to Dorset. However, the 50-year chronological intervals show a more similar spatial distribution pattern for both regions. In both regions, the 100–49 BCE and 50 BCE–1 intervals show the most dispersed clusters with the lowest maximum densities, and settlement aggregation in fewer areas is already apparent in the temporal interval from 1–49 CE, the period just preceding the invasion.

While the 50–200 CE intervals show a greater maximum density of clusters than the 100 BCE to 49 CE intervals, the sites do not demonstrate a linear trend toward aggregation from the earliest to the latest interval. The Late Iron Age for the Middle Thames as a whole shows a clustering in two main areas; however, when assessed by intervals rather than periods, the interval for 50 BCE to 1 appears slightly more dispersed than 100–49 BCE. And although the densest areas in the 150–200 CE interval are slightly more dense than in the previous two 50-year intervals, activity appears to expand beyond the two main clusters of sites in the second century CE while the 50–99 CE interval is characterized by more discrete clusters. There is also a greater proportion of newly founded sites in the 100–149 interval (17.6%) versus the 150–200 range (3.1%) (Table 7.2). In Dorset, while the clusters appear slightly more discrete in the 100–149 CE and 150–200 CE intervals than immediately after the invasion (50–99 CE), the differences in distribution are slight, and there is little change in maximum intensity values of the concentrations throughout the 50–200 CE time range.

Furthermore, while in general there are more sites in use at a time during the Early Roman period–intervals than before the invasion, the Dorset and MTV sites do not show a linear post-invasion pattern regarding number of sites in use (in Dorset, 66 from 50–99, 65 from 100–149, and 65 from 150–200 CE; in the MTV, 60 from 50–99, 68 from 100–149, and 64 from 150–200 CE), while the number of sites was increasing from the 100–49 BCE to the 1–49 CE
intervals in both regions. The largest jump in proportion of sites newly founded occurs from the 100–49 BCE to the 50 BCE–1 interval in both Dorset and the Middle Thames Valley, while the proportion of newly founded sites decreases significantly from 1–49 CE to 50–99 CE, with fewer established sites in the latter half of the second century CE, again in both regions (Table 7.2). The South as a whole indicates an expansion of settlement from the later Iron Age into the first century CE, with an especially high proportion of newly established sites, with a decline in settlement numbers after the mid-second century CE (Smith et al. 2016, 81–83).

I am not making these arguments to claim that there are no differences between Dorset and the Middle Thames Valley. Smith et al. (2016, 139–40) identify variability in settlement patterns between the eastern and western parts of the South. For example, expansion in the east is more rapid, followed by a decline, while the western pattern is slower and less interrupted. I am arguing that these cycles in settlement indicate continuous instances of community formation and interconnections in both regions that are masked by defining one domain as the locus of continuity and one the domain of change. These dynamics should be explored within a context of multiple possibilities, with variations at different scales, rather than broad-scale narratives of continuity or change that reduce each region to one direction. Processes of community formation and integration would have been ongoing and contingent.
Figure 7.18. Concentration of Dorset sites dating to the interval 100 to 49 BCE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.19. Concentration of Dorset sites dating to the interval 50 BCE to 1. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6
Figure 7.20. Concentration of Dorset sites dating to the interval 1 to 49 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.21. Concentration of Dorset sites dating to the interval 50 to 99 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6
Figure 7.22. Concentration of Dorset sites dating to the interval 100 to 149 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.23. Concentration of Dorset sites dating to the interval 150 to 200 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2015/6
Figure 7.24. Concentration of Middle Thames Valley sites dating to interval 100 to 49 BCE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2016

Figure 7.25. Concentration of Middle Thames Valley sites dating to interval 50 BCE to 1. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2016
Figure 7.26. Concentration of Middle Thames Valley sites dating to interval 1 to 49 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2016

Figure 7.27. Concentration of Middle Thames Valley sites dating to interval 50 to 99 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2016
Figure 7.28. Concentration of Middle Thames Valley sites dating to interval 100 to 149 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2016

Figure 7.29. Concentration of Middle Thames Valley sites dating to interval 150 to 200 CE. Intensity values expressed as sites per square km. Contains Ordnance Survey Data © Copyright and Database Right 2016
Activity and occupation patterns point to dynamic cycles of movements—inhabitation, abandonment or hiatuses, and reoccupation (Table 7.2).

Table 7.2. Activity and occupation cycles of Dorset and Middle Thames Valley sites over time. Data: RSRB database and HERs.

<table>
<thead>
<tr>
<th>Time Interval</th>
<th>Total no. of sites</th>
<th>No. of newly established sites</th>
<th>% newly established</th>
<th>No. of sites where activity ceases</th>
<th>% abandoned**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorset Sites 100–49 BCE</td>
<td>28</td>
<td>1*</td>
<td>2.85714286</td>
<td>1</td>
<td>2.857142857</td>
</tr>
<tr>
<td>Dorset Sites 50 BCE–1</td>
<td>35</td>
<td>8</td>
<td>19.047619</td>
<td>1</td>
<td>2.380952381</td>
</tr>
<tr>
<td>Dorset Sites 1–49 CE</td>
<td>55</td>
<td>21</td>
<td>33.8709677</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dorset Sites 50–99 CE</td>
<td>66</td>
<td>14</td>
<td>18.9189189</td>
<td>7</td>
<td>9.459459459</td>
</tr>
<tr>
<td>Dorset Sites 100–149 CE</td>
<td>65</td>
<td>5</td>
<td>6.944444444</td>
<td>3</td>
<td>4.166666667</td>
</tr>
<tr>
<td>Dorset Sites 150–200 CE</td>
<td>65</td>
<td>3</td>
<td>4.166666667</td>
<td>5</td>
<td>6.944444444</td>
</tr>
<tr>
<td>Middle Thames Valley Sites 100–49 BCE</td>
<td>24</td>
<td>1*</td>
<td>4.166666667</td>
<td>1</td>
<td>4.166666667</td>
</tr>
<tr>
<td>Middle Thames Valley Sites 50 BCE–1</td>
<td>31</td>
<td>8</td>
<td>25.8064516</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Middle Thames Valley Sites 1–49 CE</td>
<td>54</td>
<td>23</td>
<td>42.5925926</td>
<td>3</td>
<td>5.555555556</td>
</tr>
<tr>
<td>Middle Thames Valley Sites 50–99 CE</td>
<td>60</td>
<td>9</td>
<td>15</td>
<td>4</td>
<td>6.666666667</td>
</tr>
<tr>
<td>Middle Thames Valley Sites 100–149 CE</td>
<td>68</td>
<td>12</td>
<td>17.6470588</td>
<td>6</td>
<td>8.823529412</td>
</tr>
<tr>
<td>Middle Thames Valley Sites 150–200 CE</td>
<td>64</td>
<td>2</td>
<td>3.125</td>
<td>16</td>
<td>25</td>
</tr>
</tbody>
</table>

** Refers to the number and percent of sites within that interval that did not continue into the next.
* Note that, due to the focus on Roman rural settlement, the RSRB database start date field does not always indicate occupation prior to 100 BCE for Late Iron Age sites founded earlier, and thus sites with a start date of 100 BCE were not counted as newly established. These numbers might underrepresent the number of sites newly established within the 100–49 BCE interval.

Sites are abandoned, reoccupied, and newly founded through all 50-year intervals, with fluctuations in the intensity of these processes. The pattern of activity and occupation cycles—the proportions of newly founded sites and sites that are abandoned or show hiatuses in
activity—is similar in both Dorset and the Middle Thames Valley across all the 50-year intervals, complicating interpretations that create a division between the southwest as a locus of continuity post-conquest and the southeast as a locus of change. The 1–49 CE interval indicates the greatest increase in newly founded sites in both Dorset and the Middle Thames Valley, with 33.9% and 42.6% established, respectively. While inhabitation may have been concentrated in hillforts during the Middle Iron Age, a proliferation of settlement in river valleys characterizes the Late Iron Age. This movement through the landscape potentially indicates very fluid and dynamic community connections at the time, or changes in the way that social and political relations were distributed across the landscape.

Throughout the 100 BCE–1 temporal range, few sites go out of use in either region—only 2 total in Dorset, and 1 in the Middle Thames Valley. Few sites from the 1–49 CE interval appear to have been completely abandoned prior to the 50–99 CE interval, as none go out of use in Dorset and only 3 in the Middle Thames Valley (Table 7.2). The greatest percentage of newly founded sites occurs in the 1–49 CE interval, before the invasion, in both regions. In Dorset, while we see a greater percentage of newly established sites during the 50–99 CE (18.9%) interval than in the 100–49 BCE (2.9%) range, the proportion is roughly equal in the 50 BCE–1 (19%) range, and the newly founded proportion decreases in the 100–149 CE (6.9%) and 150–200 CE intervals (4.2%). In the Middle Thames Valley, the percentages of newly founded sites in each interval show a fairly similar but more fluctuating pattern, with the proportion of newly established sites somewhat higher than in Dorset. The 100–49 BCE percentage is low (4.2%) and increases in the next 50-year period (25.8%), as it does in Dorset, while the next intervals show a decline in the percentages, as in Dorset, but less linearly, with 15% of the sites in the 50–99 CE interval newly founded, and 17.6% and 3.1% in the next two intervals.
Thus, it would appear that in the 100 BCE–49 CE range, few sites are abandoned on the landscape. While the percentages of abandoned sites are slightly higher in the 50–99 and 100–149 CE time frames, the highest percentage is 9.5% (Dorset, 50–99 CE), indicating low- to moderate-level cycles of abandonment throughout most of the intervals. Proportions of abandoned sites are low in Dorset from 100–149 (4.2%), and come to 8.8% in the Middle Thames Valley for the same interval. The outlier in terms of abandonment is not the 1–49 CE interval prior to the invasion, but the 150–200 CE interval in the Middle Thames Valley, where 25% of sites do not continue past CE 200. It is possible that throughout much of these time frames people moved about the landscape frequently—for example, seasonal cycles as well as communication and interaction with the larger community, indicated by interconnected and interdependent locations—but that few locales went out of use entirely. Rather, they may still have existed in collective memories as sites to be revisited and returned to in the course of agricultural, and in the Middle Thames especially pastoral, cycles. Several of the case study sites indicate shifting patterns of occupation, cycles of activity, or perhaps seasonal use, in both Dorset and the Middle Thames Valley.

At Rope Lake Hole, while occupation was likely continuous during the Iron Age, “buildings were replaced and relocated several times within a system of shifting terraces, huts and working areas,” with occupation of the terraced hill slope “perhaps periodically reverting to arable” (Woodward 1987, 125, 146). The Late Iron Age/Early Roman decline of activity could indicate abandonment or an arable phase before the second century CE shale-working activity (Woodward 1987, 145). No structures are discernible during Phase 3—Late Iron Age/Early Roman—at Gussage All Saints, the site having been in use since the Early Iron Age (Wainwright 1979), indicating a possible shift of the main locus of habitation.
The pastoral nature of the Middle Thames Valley sites would suggest regular seasonal movements as part of wider routes and cycles of inhabiting the landscape. Phosphate sampling from Circular Structure 3 (Middle Iron Age) and Circular Structures 6 and 7 (Mid- to Late Iron Age) at Ashford Prison has not detected much evidence for human inhabitation, suggesting that the structures may have been used for short periods of time, although it is possible that the remaining unsampled structures could change that result (Carew et al. 2006, Figure 59, 78). The pastoral focus at Ashford Prison, combined with evidence for low intensity of use, could indicate that the site served as a seasonal stopping point (Carew et al. 2006, 82–83). A “shifting occupation sequence” (Poulton et al. 1993, 48) over long-term time scales characterizes activity at Thorpe Lea Nurseries. While long-term activity is evident around Imperial College Sports Ground from the Neolithic through to the medieval period, the continuity of the settlement arrangement is punctuated, with shifting patterns of settlement focus (Powell et al. 2015, 303). A break in occupation occurs during the Roman period between the first and early second century CE and the third and fourth century CE phases of activity (Powell et al. 2015, 8).

Paleoenvironmental evidence from Perry Oaks/HT5 suggests abandonment cycles during the Middle Iron Age and Late Iron Age/Early Roman period (Tetlow 2011, 35). A break in habitation is also possible at Lea Farm in the Early Roman period with the abandonment of the circular structures and setting out of field boundaries and trackways, although a concentration of occupational debris southwest of the enclosure may indicate a shift in settlement location rather than discontinuation (Manning and Moore 2000, 38–39).

In other words, sites that were “out of use” during or immediately before the Late Iron Age may not have been “out of memory” or “out of possibility.” Fordington Bottom near Dorchester in Dorset, for example, exhibits a lack of activity in the Early or Middle Iron Age.
before ditches, pits, structures, and an inhumation cemetery were established in the first century CE (Smith et al. 1997, 210–14). However, ditches, structures, and other features date to the Bronze Age (Smith et al. 1997, 203–10), and the area around Dorchester and in the vicinity of Fordington Bottom continued to be worked and lived in throughout the Iron Age (Alington Avenue, Flagstones, Maiden Castle, Poundbury). What might look like the founding of a site in the Late Iron Age/Early Roman period at Fordington Bottom, or the laying out of ditches at nearby Maiden Castle Road in the mid-first century CE, might not be a new foundation, but could already have been seen as part of an existing network of possible spatial/communal relationships.

Cycles of residence movement could have connected to long-term practices of community formation and negotiation, working within contexts that held multiple directions rather than reproducing a single condition. While the imperial administration would have attempted to contain and control people within towns and would have encroached on ways of inhabiting, moving through, and interacting with the landscape—likely confiscating lands and resources, placing them under new forms of jurisdiction, and extracting labor, taxes, and tribute (Chapter Four)—it is possible that abandonment and reoccupation of sites formed part of mobility strategies to retain, transform, or forge new community networks. Concentration of activity surrounding Dorchester, Staines, and the road network is apparent. However, there is still evidence into the Roman period for interconnected locales and interdependence, indicated by the shale-working emphasis at Rope Lake Hole, the ditch networks at Imperial College Sports Ground/Perry Oaks/HT5 and Ashford Prison/Hengrove farm, and the seasonal or specialized use of sites (the pastoral emphasis at Ashford Prison or Lea Farm, for example). Field boundaries may have been established, expanded, or reorganized at Ashford Prison and Hengrove Farm, but
the sites still appear to be connected (Figure 7.5b). These networks may have had deep yet contingent histories that formed a context for interdependent relationships across heterogeneous communities. The scale of the civitas territory with settlement and activity directed within and toward a town does not capture the full spectrum of these possibilities, which may have been more fragmented or horizontally organized (see also Smith et al. 2016, 402–3). Smaller-scale communities may have co-existed with and navigated the institutional landscapes carved out by the towns and the transportation routes involved in their economies and political geographies.

In this way, not all developments would have necessarily mapped to a group of processes that converged toward a single narrative at the same scale, but could have co-existed or aligned with different networks of interaction. Sites established in each of the 50-year intervals did not only trend toward the “hot spots” identified by the KDE, but moved into outlying areas, some of which had not seen much activity in previous periods (Figures 7.30 to 7.41). (Note: In these activity cycles maps, the “activity ceases” designation refers to sites that went out of use in the previous interval, showing which sites were abandoned or entered a hiatus in relation to the distribution of sites within the mapped interval. This contrasts with the activity cycles tables, where the goal was to identify the percentage of sites that did not continue from one interval to the next. See Appendix A for further explanation.)
Figure 7.30. Dorset activity cycles, 100–49 BCE. Distribution of Dorset, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.31. Dorset activity cycles, 50 BCE–1. Distribution of Dorset, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2015/6
Figure 7.32. Dorset activity cycles, 1–49 CE. Distribution of Dorset sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.33. Dorset activity cycles, 50–99 CE. Distribution of Dorset sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2015/6
Figure 7.34. Dorset activity cycles, 100–149 CE. Distribution of Dorset, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.35. Dorset activity cycles, 150–200 CE. Distribution of Dorset, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2015/6
Figure 7.36. MTV activity cycles, 100–49 BCE. Distribution of MTV sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2016.

Figure 7.37. MTV activity cycles, 50 BCE–1. Distribution of MTV sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2016.
Figure 7.38. MTV activity cycles, 1–49 CE. Distribution of MTV sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2016

Figure 7.39. MTV activity cycles, 50–99 CE. Distribution of MTV sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2016
Figure 7.40. MTV activity cycles, 100–149 CE. Distribution of MTV sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2016

Figure 7.41. MTV activity cycles, 150–200 CE. Distribution of MTV sites, showing sites that were established in that interval as well as sites that did not continue into this time period from the previous interval. Contains Ordnance Survey Data © Copyright and Database Right 2016
The 1–49 CE interval in both Dorset and the Middle Thames Valley demonstrates a proliferation of sites close to rivers. While, as would be expected, some newly founded sites in the 50–200 CE intervals are located within the densest concentrations (for example, this can be seen in the 100–49 CE and 150–200 CE intervals in Dorset), several sites lie outside these clusters, some converging along rivers or roads beyond densely inhabited parts of the landscape. This can be seen, for example, with several sites in the 50–99 CE interval in Dorset and in the 50–99 CE and 100–149 CE intervals in the Middle Thames Valley. The patterning of denser and fewer clusters over time in conjunction with these outlying sites of activity does not necessarily cohere with the perception of a single process of urban centralization and expansion of transportation, economic, and communication networks along roads and rivers. It is also possible that movement toward and along rivers worked within a context of possibilities for establishing community networks that navigated around or connected places within and in conflict with institutionalized domains of the towns and roads:

“Ways of operating”… intervene in a field which regulates them at a first level … but they introduce into it a way of turning it to their advantage that obeys other rules and constitutes something like a second level interwoven into the first...Without leaving the place where [the agent] has no choice but to live and which lays down its law for him, he establishes within it a degree of plurality and creativity.” (De Certeau, 1984, 30, see also citation in Silliman 2001, 195)

Purcell (2002) and Witcher (1998) argue that Roman-period roads and communication routes may have functioned not only as military or economic thoroughfares, but as instruments of imperial domination through forging symbolic geographies that disciplined movement and co-opted discourses of history and place, imposing conflicting knowledges about and ways of inhabiting the land- and riverscapes. For example, the town (colonia) at Colchester was built out of a conquest-era legionary fortress constructed at the site of the Late Iron Age center, a network of dykes situated near the River Colne. Witcher (1998, 67) cites an inscription implying that in
the second century CE, the spatial distinction between the town walls of the colonia and the dykes of the Iron Age settlement remained socially significant. The dynamics of the landscape indicated by the activity and occupation cycles in Dorset and the Middle Thames Valley may point to very plural geographies—simultaneous differences or “coexisting heterogeneity” (Massey 2005, 9)—of residence and movement.

Exploring the relationship between sites and river networks may be critical for understanding long-term community histories in these regions. Chapter Six discussed the possible incorporation of Neolithic-originating earthworks and Bronze Age–originating fields and earthworks into contexts for interaction during the Late Iron Age and Roman period. Williams (1998) documents how Neolithic and Bronze Age earthworks could be re-used in Roman-period shrines, temples, and burials, in addition to serving as contexts for the deposition of artifacts, indicating that these monuments presented alternative possibilities for negotiating identity, power, and place. Some earthworks during the Neolithic and Bronze Ages may have acted as important points connecting movement along rivers and waterways. The avenue—a ditch and bank linear earthwork—at Stonehenge (Wiltshire), for example, is oriented toward the River Avon, and may have formed part of an integrated land/waterscape including the Durrington Walls henge enclosure to the northeast, interlinking other monument complexes, such as Early Bronze Age mortuary barrows (Parker Pearson et al. 2006). An avenue at Durrington Walls also leads toward the Avon. In the Heathrow area, the Neolithic Stanwell Cursus—an earthwork with parallel banks and external ditches—may have materialized paths of movement along the Colne Valley floodplain, linking other significant spots of activity, such as middens and pits originating in the Late Mesolithic, a potential settlement area, and another Cursus monument (Lewis et al. 2010, 75). The Dorset Cursus in Cranborne Chase, a massive
earthwork spanning 90 m wide and running 10 km along the upper Gussage and Allen Valleys, likely linked together numerous long barrows during the Neolithic (Papworth 2008, 249), perhaps playing a similar role to the Stanwell monument in orienting movement (Lewis et al. 2010, 75). At Springhead, Kent, enclosures and a possible processional way leading from the river to the overlooking slopes date to the Late Iron Age; the site later formed the focus of a roadside settlement (Smith et al. 2016, 97).

In Dorset, there seems to have been a focus of activity within the Dorchester area in the Late Iron Age near the River Frome. As population at Maiden Castle declined during this time, settlement congregated in the Frome Valley (Papworth 2008, 139–40), with activity in evidence at Alington Avenue, Flagstones, Fordington Bottom, and Poundbury. Woodward (1993, 361, cited in Papworth 2008, 138) argues that this concentration may have been drawn to a spring under Wollaston Field, near Dorchester, situated along a coombe that tapers down to the Frome. Papworth (2008, 141) also suggests that this movement into the Frome Valley may have been associated with the spring, citing the burial clustering (the inhumation cemetery), including a possible chariot, around Fordington and the bath complex that developed at Wollaston Field as evidence for a shrine. The Late Iron Age field system at Flagstones—located south of the Frome on the crest of a chalk ridge, which had been the focus of ceremonial and mortuary activity over long time scales—was laid out over a Neolithic circular enclosure (Smith et al. 1997, 27–48) (Figure 7.42).
In the Thames Valley at Radley Barrow Hills, the earthworks of large Bronze Age barrows would have still been visible during the Roman period (Booth et al. 2007, 220). The confluence at the Staines islands seems to have been a site of long-lasting social significance, evidenced by the Yeoveney Neolithic enclosure and a Bronze Age square enclosure interpreted as a shrine (Jones and Poulton 2010, 38). A number of locations along the Thames have yielded evidence for Iron Age and Roman-period deposition of objects often interpreted as offerings of some kind, including deposits in wells and waterholes on valley settlements (Booth et al. 2007, 217–20). The possible significance of rivers and water for movement and deposition should be considered more systematically in future research (see below). I raise this possibility to suggest that it is not only a question of whether continuity of ritual practices or change toward a particular administrative and economic model focused on cities and transport routes can be detected. It is also possible that movement toward or along rivers could have carved out co-existent or conflicting spaces within the occupied province, engaging with pathways of
movement, nodes of interaction (e.g., Neolithic- and Bronze Age–originating earthworks), and engagement with the landscape that spoke to different histories from an aggregate pattern of settlement and economic expansion or ritual continuity.

LIMITATIONS AND FUTURE RESEARCH

A weakness of the activity and occupation cycles analysis is the coarse occupation intervals often available, due to the limitations of the dating itself as well as how site chronologies are described in reports. The RSRB database provides a start and end date, which may gloss over hiatuses or interruptions in activity and use. In other words, a site might not have been continuously inhabited or visited during the whole occupation range listed. A multiscalar approach can aid in accommodating these limitations, where long-term occupation history can be examined at a few sites in detail, charting possible intermittent use or hiatuses and comparing these patterns to the results for the wider landscape. Research into seasonal occupation could also help discern periodic activity patterns and relationships among sites. This fine-grained resolution could then be worked into large-scale databases to refine regional-scale work.

Evaluating fluctuations in occupation cycles in context could shift focus from extracted trends and period-based chronologies, potentially revealing co-existing networks that connect along different scales or that are oriented toward different histories and terms of interacting with the landscape, shedding light on the suggestion that ways of moving through the landscape could have provided a means of forging and negotiating community ties under the conditions of the imperial occupation. For example, examining the contexts of possibilities for the spike in newly abandoned sites during the 150–200 CE interval in the Middle Thames Valley could provide insight into local communities histories.
With respect to the specific regional case study presented here, the suggestion regarding
the multitemporal waterscape could be further evaluated in conjunction with activity and
occupation cycles. Where are new areas of activity founded throughout the chronological
intervals, and where in the landscape do sites appear to be abandoned or transform in use? How
do site distribution patterns relate to rivers as opposed to roads with respect to new
establishments or abandoned sites? Are there different types of sites concentrated within buffer
distances from roads versus rivers, and how dense are these concentrations? How do rivers,
roads, and associated site concentrations appear to connect to other elements of the landscape
usually segregated into separate temporal periods?

For example, the relationship to Roman-period roads suggests that at least some hillforts
may still have served as critical points on the landscape (see Appendix A for list of hillforts).
Aside from Poundbury, five hillforts in Dorset lie within 500 m of a road—Pilsdon Pen,
Lambert’s Castle, the Bend, Flower’s Barrow, Badbury Rings, and Bussey Stool Camp—with
several other hillforts lying close by (Figure 7.43). Furthermore, Badbury Rings acts as a node in
the road network, while a road also appears to lead directly to Flower’s Barrow. There are fewer
hillforts in the Middle Thames Valley overall, yet several of these sites in the Valley and
environs also lie within 500 m of Roman-period roads—Church Hill, Bulstrode Camp, Raven
Hill, and Pond Farm, in addition to the sites of later towns at Silchester and St. Albans (Figure
7.44). Many hillforts have not been excavated, and it is possible that their assumed end dates in
the Early and Middle Iron Age or by the CE 43 invasion may have in fact extended across the
transition. Several investigations at unexcavated hillforts (e.g., surface collection) suggest
activity dating to the Late Iron Age or later (see Chapter Six).
Figure 7.43. Location of hillforts and possible hillforts in Dorset in relation to 500 m buffers surrounding Roman-period roads. Hillforts within the buffers are labeled. Contains Ordnance Survey Data © Copyright and Database Right 2015/6

Figure 7.44. Location of hillforts, possible hillforts, and oppida (Silchester, Verulamium) in the MTV and environs in relation to 500 m buffers surrounding Roman-period roads. Hillforts within the buffers are labeled. Contains Ordnance Survey Data © Copyright and Database Right 2016
The emphasis on synchronous, period-bound evidence constitutes another weakness—I limited the distribution sites considered to those originating or exhibiting evidence for direct activity or manipulation during the Iron Age and Roman periods. I also confined the chronological intervals explored to the traditionally conceived relevant past—the 100 BCE starting point. This was partly due to defining a manageable scope of analysis. However, it was also due to the fact that this dissertation was originally conceived under a framework that followed an if-based structure of inquiry (Chapter Five)—if things change or not—which isolates the chronological span of the Late Iron Age as the relevant past and the Roman-period time frame as separate from those pasts. The RSRB database only includes sites that date to the Late Iron Age and Roman time frames, and my HER searches only requested Iron Age or Roman—period entries. This conception of time and place, however, may have excluded other significant elements as socially potent areas of the landscape that may have continued to orient movement and social relations.

Moving forward, it will be important to keep in mind that the contexts for interaction during the Iron Age or Roman period may have incorporated pathways, monuments, or other elements of the landscape and ways of navigating the landscape that pulsed through from other period designations, such as the Neolithic or Bronze Age, beyond roles as relics (Chapter Six). Questions designed to understand social, economic, or political processes prior to and during the imperial occupation could directly address this possibility. While enumerating hypotheses of potential factors influencing the route of a road during the Roman period, the visibility of earthworks originally erected during the Neolithic or Bronze Age, and not just Iron Age—occupied hillforts, could be included among options considered worth testing, for example. It
could also be instructive to examine whether newly founded or abandoned sites in each interval exhibit spatial relationships with reference to Neolithic or Bronze Age earthworks.

The analysis was also limited by considering sites in aggregate as opposed to examining the relationships among different kinds of site types, e.g., farms, field systems, nucleated settlements, hillforts, production centers, funerary or ritual locations, and villas. Such an analysis could have included the spatial relationships among site types; patterns in the proportion, location, and founding or abandonment of site types over time in relation to other settlement and landscape elements; as well as an interrogation of the validity of categorizations in context. It is often the case that one site fits into more than one category at any one time, and that one site does not remain a particular kind of site connected as a serial development throughout its occupation history. It was beyond the scope of this work to match site types to chronological intervals for all of the distribution sites. Future analyses could explore spatial relationships with more nuance if different kinds of activities across the landscape are considered.

Specific to the Dorset case study, it could be revealing to explore the relationship between Lindinis (Ilchester) and Durnovaria, rather than centering on Durnovaria as the sole or principal administrative center. Researchers are finding it increasingly problematic to divide the landscape into civitates whose territorial scope is static and well understood (Smith et al. 2016, 8, 15, 402–3). The RSRB project has identified that modern administrative boundaries do not capture the political geography of Iron Age and Roman landscapes (Smith et al. 2016, e.g., 15–16), and thus analysis beyond the confines of Dorset would help illuminate the dynamics observed in this region.

Furthermore, interpretive options are constrained by the nature of the evidence and not only the conceptual constructs used to frame analysis. An emphasis on possibilities and creative
negotiations in practices requires detailed and multiscalar empirical analyses (Pauketat 2001b, 87). It might not always be possible to carry out similar studies in regions where detailed excavation reports or secure dating are not available for large-scale data sets. While working within some of these limitations, this dissertation has attempted to pose or implement structures of questioning that can at least open up analytical visibility toward a greater range of possibilities. While it is not always possible to pinpoint the actualization of past processes, or the routes that people took, theoretical and methodological approaches can explore *ranges of possibilities* for actions, evaluating their likelihood in certain contexts (Llobera 2012, 505). By identifying spatial and temporal differences in likely activities and ranges of interaction, insights can be gained into the types of persons, things, animals, places, or scales that emerged as effective and affective in various contexts. Such approaches can suggest, illuminate, or challenge expectations and claims. For example, cost distance analysis could be utilized to model travel time among sites for the major clusters identified by the KDE in each interval, including average travel time to nearest neighbors as well as round trip cost distances from given locations (e.g., De Silva and Pizziolo 2000). In addition to the size and number of dense concentrations of occupation and activity across the landscape, the time needed to travel to nearest neighbors or the number of neighbors that could be reached in a daily round trip of walking from certain starting points could have profound implications for how communities interacted, and at what scales.

CONCLUDING REMARKS

The cycles of activity and occupation across the landscape point to long-term dynamic negotiations of community interaction at multiple scales. People living in farmsteads appear to have participated in regular interactions with wider community networks, indicated by interdependencies, interconnected systems of fields, and shifting patterns of movement.
Heterogeneous and interdependent communities may have co-existed with and navigated institutionalized and centralized domains of the towns and road network, creating plural geographies aligned along different pathways of interaction.

The patterns of shifting habitation cycles in Dorset and the Middle Thames Valley appear to cross-cut the traditional geographic separation of the southeast as a domain of change and the southwest as a domain of continuity, rather indicating ongoing and contingent processes of community formation. The possibilities and tendencies of the dynamic 100 BCE–49 CE context should not be flattened as a single condition prior to invasion, nor should the movements and interactions specific to this interval become homogenized as continuity during the Roman occupation. In other words, the Romanization paradigm admits a dynamic Iron Age at the same time that these dynamics are denied their potency during the Roman period. Continuity is not necessarily what is constant or delimited by a fixed spatial or temporal boundary, but can be seen or manifested in movements, in the processes of community interconnections being forged and renegotiated through engagement with multitemporal landscapes that afford possibilities for alternative constructions of power and place.
CHAPTER EIGHT. CONCLUDING REMARKS

Hingley (2011) explores the way identities of “pre-” Roman Iron Age communities have been mobilized in the context of European nation-building and imperialist enterprises. The politico-ideology of Western Europe traces its origins to the classical tradition: a narrative in which Rome’s Empire brought civilization and progress to wild and inchoate barbarian lands (see also González-Ruibal 2010). The origin of (prehistoric) Iron Age and (historic) Roman archaeology—two disciplines that traditionally construct their scope in opposition to each other—reside in the “civilization” and “barbarism” myths derived from Greek and Roman texts.

The teleological origin story embedded within the acculturation paradigm as iterated through Romanization defines a hegemonic temporality and territory, sorting and segregating time and space in ways that obscure the working of the past in the present at multiple scales, the dynamism of continuity, and long-term landscape and community histories that cannot be contained by a conquest border. As long as a progressivist temporality is taken to be the only relationship to the past, and when time is separated from space, then all history will be reduced to this narrative (see Chakrabarty 2000).

The approach in this dissertation examined time in its intersections with place, attempting to counter the transhistorical inevitability of the civilizational origin story perpetuated by binary categories of continuity and change as well as time and space, and challenged these binary categories by asking how significant nodes of interaction emerge in Late Iron Age and Early Roman landscapes. The problems addressed can be summarized as:

1) The idea that continuity cannot be dynamic and does not need to be explained (Chapter Five).

I argued that continuity and change are not constituted along ontologically separate domains of process and action, but are rather dynamic and interactive, or, part of “the same process”
Post-conquest transformations cannot be automatically aligned with being or becoming Roman. While trends appear to emerge in the landscape when measured from a fixed point—such as the increasing presence of cattle and decreasing significance of the horse over time—variation points to heterogeneous ways of interacting and organizing communities. For example, in Dorset, some of the trends associated with fauna are evident, such as the importance of sheep in the Iron Age and the declining presence of the horse during the Roman occupation, while in the Middle Thames Valley cattle and horse were quite significant during the Iron Age and remained so into the Roman period. This diversity is not always best represented by a narrative that assimilates all evidence in reference to conformity or deviation from a trend taken as an average condition of change relevant to all contexts. It is a matter of contexts for interaction within varying possibilities rather than a trajectory of change to, where change is viewed as additive beyond a transition.

I then explored the archaeological language that continues to underwrite binary divisions of continuity and change when deployed in the form of artifact typologies and period divisions, challenging:

2) Pinning the meaning of categories to their origin (Chapter Six). While context of origin can be a meaningful signifying dimension, the dynamics of use may change an object’s meaning—or change the object—in ways that defy a typological structure linking identity to time to material. A mortarium might be a “Roman” vessel at the same time that it or part of it becomes something else in relation to other pottery assemblages and contexts for interaction. For example, at Perry Oaks/HT5, mortaria may have been linked by function to other food preparation vessels rather than singled out as a Roman status object.
3) Pinning the social time of the landscape to sequential periods and transitions (Chapter Six). Rather, time is also about where (Aguilar and Preucel 2013). Reference to Neolithic and Bronze Age earthworks in the configuration of settlement space and layout of field systems—for example, the earthworks at Ashford Prison and Alington Avenue or the multiphase enclosures at Perry Oaks/HT5—points to deep, multitemporal landscape histories that oriented movement and social interaction. The Late Iron Age does not constitute the only relevant past for understanding Roman imperial occupation—analysis should not \textit{a priori} neutralize the temporality of earlier periods as relic when time moves forward into the imperial occupation. The relevant temporalities and experiences of temporalities emerge from relationships with place, and Neolithic and Bronze Age monuments, fields, and ditches may have still been potent social statements.

4) Pinning the social space of the landscape to separate domains and homogeneous processes and trends (Chapter Seven). While there appears to be a centralization of settlements around the towns of \textit{Durnovaria} and \textit{Pontibus} as administrative and economic nodes in the Early Roman period, with settlement more dispersed in the perhaps more politically fragmented southwest than the southeast during the Late Iron Age, these spatial trends are complicated through viewing the landscape at intervals that are more sensitive to the ongoing fluctuations of occupation cycles. When broken into 50-year chronological intervals rather than by Late Iron Age versus Early Roman periods, Dorset and the Middle Thames Valley demonstrate similar patterns of dispersal and centralization over time, including proportions of newly founded and abandoned sites, challenging traditional divisions of the southwest as a locus of continuity and the southeast as a locus of change. This is not to argue that there are no differences between the two regions, but that broad-scale patterns should not mask the
ongoing and contingent processes of community formation. The landscape may have been interconnected as interdependent, heterogeneous communities, indicated by specialization and networks of fields. It is possible that shifting patterns of inhabitation and movement through the landscape, working within contexts of possibilities that drew from long-term practices and mobilized within the conditions of imperial occupation, acted as a means of re-forging and maintaining interconnected communities in a differently contained and divided, yet plural, landscape. These heterogeneous communities may have co-existed with and navigated the institutionalized domains of the urban centers and road networks, engaging with different histories and social trajectories.

Where does this leave continuity and change in the landscape? Following from a conceptualization of these processes as dynamic and interactive, I argued that persistence and transformation do not constitute separate outcomes or trajectories of imperial occupation that always map to particular items of material culture, spaces, or territories. I am also arguing that this re-conceptualization needs to move a step further. Even if conceived as contingent and multiply registered, a continuity–change framework should not always define the primary context of questioning. Highlighting continuity and change as the object of inquiry—i.e., what these post-invasion narratives in Britain under the Roman Empire are about and should explain—defines the terms of the (origin) story, terms that still echo the priorities of the Romanization paradigm in assessing the landscape through the lens of becoming Roman or not, of whether communities change or not. This is not to say that claims to tradition and transformation, origin and trajectory, are not significant in certain contexts, but that the structure of inquiry should accommodate multidirectional conditions and terms that do not necessarily speak to that axis as the most relevant for explanation. In this way, it may be better to discuss the
evidence in terms of what community interactions were being mobilized and in what contexts, rather than a narrative of continuities and changes. It is not only about applying a theoretical perspective, but thinking about how questions and explanations are constituted, and what kinds of empirical analyses can speak to the questions asked. Explanations that account for multiple directions and that attend to the dynamics of practice in the constitution of historical processes “will be found only through the cumulative, painstaking, data-rich, multi-scalar studies of proximate causation” (Pauketat 2001b, 87).

I attempted to frame analyses in a different way through a structure of inquiry that might be termed archaeologies of possibilities. Centered on contexts for interaction that hold multiple tendencies, the approach tries to move beyond an explanatory priority that balances the imposition of the new versus the transposition of the old. Instead, the aim is to engage with relational histories through: 1) a concept of time that explores the multiple possibilities, and not just the actualities, of the past; and 2) a structure of inquiry that poses questions around these conditions of possibility rather than fixing an end point and origin story and then explaining only the sequence and contexts relevant for that along a continuity–change axis. The issue then is not just seeing objects and landscapes in their own times, but in a co-existence of times. Historicism reduces a fragmentary and heterogeneous now to a singular condition and serial trajectory. However, grappling with a plural present means that possibilities are not just “waiting to become actual” (Chakrabarty 2000, 249) in relation to a totality, nor can they be seen to be incomplete in terms of failing to materialize into a given condition. In other words, the future is not just the will be of the totality of the now but emerges from plural possibilities that may speak to contingencies and different conditions of being. Likewise, the past is not just the what was of the totality of the then, but acts as “precedents of alternative futures” (Sassaman 2012, 251). These terms of being
and alternative futures cannot be visible if the questions posed already define the temporal condition and principles that relate past and present.

The point is also to make visible how the logic of acculturation attempts to work against possible futures and sustains this narrative through a winnowing of the past to only those tendencies that speak to the totality of the narrative under question. The purview of archaeology—its domain of inquiry as well as its institution as a network of practitioners and knowledge—plays a part in constituting the principles that relate past and present (Lucas 2005), and thus archaeology articulates with a broader conversation on concepts of time, the past, and futurities in historical constructions and present conditions, and how temporal configurations include and exclude certain narratives. This conversation has particular relevance in the Roman imperial context, and other imperial and colonial contexts, where the ruptures and tempos of time and space underwrite binary categories of difference and exclusion that neutralize the past and contain it within a prehistory/history boundary (González-Ruibal 2010; Schmidt and Mrozowski 2013), but could have broader implications for the way that time is organized by archaeologists or historians beyond a homogeneous period narrative (e.g., Moore and Armada 2011).

In placing this emphasis on possibilities, I am not suggesting that all possibilities were equally understood or in play for everyone, or that material conditions in relation to social, economic, or political projects could have always been easily enacted. Therefore, I am not trying to argue that the material evidence is peripheral or could have been seamlessly overwritten in the construction of these narratives, or that particular pasts and futures could have been mobilized at will. This is not an attempt to relativize the reality of the material. The what was as materialized in the archaeological record makes statements about the conditions of inhabitation and contingent contexts. A framework focused on possibilities does not deny the what was of the
material nor relations of power under the Roman imperial occupation, but argues that those material conditions held other possibilities that may have been weighed or fought against and that the imposition of power may have related to intervening in future possibilities (see Sassaman 2012). The ranges of the possible to which I refer are not freely accessible options that have no relation to material conditions, but the conditions in which actions could come to be recognizable, socially potent, or threatening—the contexts for interaction, which may have been multidirectional or conflictual.

I am suggesting that following the time of the material (González-Ruibal 2016; Chapter Six) through relations with place may reveal other temporalities and conditions of living that have often been excluded from the narrative. Seeing other futures of the past entails being open to other pasts and other relationships between pasts and futures.
REFERENCES CITED

Alberti, Benjamin, Andrew Jones, and Joshua Pollard, eds. 2013. Archaeology After Interpretation: Returning Materials to Archaeological Theory. Walnut Creek: Left Coast Press.

Allison, Penelope M. 1993. "How do We Identify the Use of Space in Roman Housing?" In Functional and Spatial Analysis of Wall Painting: Proceedings of the Fifth International Congress on Roman Wall Painting, edited by Eric M. Moorman, 1–8. Leiden: Stichting BABESCH.

Allison, Penelope M. 1994. "Room Use in Pompeian Houses." In Pompeii Revisited: The Life and Death of a Roman Town, edited by Jean-Paul Descoeudres, Penelope M. Allison and Derek Harrison, 82–89. Sydney: Meditarch.

Barrett, John C., Andrew P. Fitzpatrick, and Lesley Macinnes, eds. 1989. *Barbarians and Romans in North-West Europe: From the Later Republic to Late Antiquity*. British

Booth, Paul, Anne Dodd, Mark Robinson, and Alex Smith. 2007. *The Thames Through Time: The Archaeology of the Gravel Terraces of the Upper and Middle Thames: The Early Historical Period, AD 1–1000*. Thames Valley Landscapes Monograph No. 27. Oxford: Published for Oxford Archaeology by Oxford University School of Archaeology.

Gardner, Andrew. 2007. An Archaeology of Identity: Soldiers and Society in Late Roman Britain. Walnut Creek: Left Coast Press.

Hill, J. D. 2011. "How Did British Middle and Late Pre-Roman Iron Age Societies Work (If They Did)?" In Europe in the First Millennium BC: Crossing the Divide, edited by Tom Moore and X. -L. Armada, 242–263. New York: Oxford University Press.

Lewis, John, Fraser Brown, Angela Batt, Nicholas Cooke, John Barrett, Rachel Every, Lorraine Mepham, Kayt Brown, Kate Cramp, Andrew J. Lawson, Fiona Roe, Steve Allen, David

Morgan, Lewis Henry. 1963 [1877]. *Ancient Society or Researches in the Lines of Human Progress from Savagery through to Barbarism to Civilization*. Cleveland: Meridian Books.

Webster, Jane, and Nicholas J. Cooper, eds. 1996. Roman Imperialism: Post-Colonial Perspectives. Leicester Archaeology Monographs No. 3. New York: University of Leicester.

Texts

APPENDIX A – DISTRIBUTION SITES

Consult Chapter Four for details regarding data collection.

List of Distribution Sites in Dorset (79). An underlined X indicates sites newly founded in a particular interval; a bold X indicates sites where activity ceases. Some RSRB site records that appear to be part of a single settlement are combined into one entry; all RSRB ID numbers are provided (this is the case for Hamworthy; Redcliff Farm, sites A, B, C; and Stoborough sites E & H). A location in the middle of the points was chosen to represent the entry. Sites without an RSRB ID were taken solely from HERs. Site records were exported from the RSRB database in October and November 2015. HER IDs are provided where they were listed as related identifiers on the RSRB database as of April 2017. The reader is invited to visit the RSRB database for updates. Identifiers from other sources are provided in individual entries. Data: RSRB database & Dorset HER (2015).

<table>
<thead>
<tr>
<th>site_name</th>
<th>RSRB_id</th>
<th>HER_id</th>
<th>county</th>
<th>Start date</th>
<th>End date</th>
<th>site_type_minor*</th>
<th>-100–49 BCE</th>
<th>50 BCE–1</th>
<th>1-49 CE</th>
<th>50–99 CE</th>
<th>100–49 CE</th>
<th>150–200 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alington Avenue, Fordington</td>
<td>20087</td>
<td>MDO18553</td>
<td>Dorset</td>
<td>1</td>
<td>400</td>
<td>farm, funerary site, field system</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Badbury Romano-Celtic temple</td>
<td>20014</td>
<td>MDO5991</td>
<td>Dorset</td>
<td>100</td>
<td>410</td>
<td>RC temple</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bagwood, Bere Regis</td>
<td>20056</td>
<td>MDO7151</td>
<td>Dorset</td>
<td>75</td>
<td>350</td>
<td>road, field system, farm, iron production, other industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Barton Field, Tarrant Hinton</td>
<td>20075</td>
<td>210228 ; MDO4946</td>
<td>Dorset</td>
<td>-100</td>
<td>410</td>
<td>farm, villa, quarry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bearwood, Poole</td>
<td>20041</td>
<td></td>
<td>Dorset</td>
<td>-100</td>
<td>-50</td>
<td>farm</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bestwall Quarry, Wareham</td>
<td>20089</td>
<td>MWX3524</td>
<td>Dorset</td>
<td>-50</td>
<td>420</td>
<td>pottery production, field system, farm, other industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Bradford Down,</td>
<td>20042</td>
<td>MDO5865</td>
<td>Dorset</td>
<td>-100</td>
<td>375</td>
<td>farm, field system, villa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>Type</td>
<td>Elements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------</td>
<td>-------------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pamphill</td>
<td></td>
</tr>
<tr>
<td>Bryanston School, Blandford Forum</td>
<td>20074</td>
<td>MDO3626</td>
<td>Dorset 1 350 farm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucknowle</td>
<td>20061</td>
<td>456872 ; MDO7522</td>
<td>Dorset -100 375 farm, villa, shrine X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burton Bradstock</td>
<td>20045</td>
<td>MDO604</td>
<td>Dorset 1 150 funerary site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Church Field, Shroton</td>
<td>20068</td>
<td></td>
<td>Dorset -50 200 farm X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Church Knapp, Wyke Regis</td>
<td>20003</td>
<td>MWX3341</td>
<td>Dorset -100 300 funerary site X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact Farm, Worth Maltravers</td>
<td>20050</td>
<td>MDO8390</td>
<td>Dorset -50 400 farm X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuckoo Pound Lane, Worgret</td>
<td></td>
<td>MWX690 ; MDO7054</td>
<td>Dorset -100 400 activity, occupation, pottery production site X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dewlish Roman villa</td>
<td>20038</td>
<td>MDO985</td>
<td>Dorset 1 400 villa, farm, field system X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorchester, Durnovaria</td>
<td>HE Pastscape Monument Number: 1057450</td>
<td>Dorset 70 400 small town, civitas capital, roadside settlement, funerary site, cemetery X X X</td>
<td></td>
</tr>
<tr>
<td>Eldon's Seat, Encombe</td>
<td></td>
<td>MDO7484</td>
<td>Dorset -800 225 occupation, shale production site X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flagstones, Alington Avenue</td>
<td>20021</td>
<td>MDO18016; MDO18018; MDO18088</td>
<td>Dorset -50 100 field system, farm, funerary site X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Site Code</td>
<td>Source Code</td>
<td>County</td>
<td>Grid Reference</td>
<td>Type</td>
<td>Other Uses</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fordington Bottom, A37 Western Link Road</td>
<td>20023</td>
<td>MDO18727; MDO424; MDO1870</td>
<td>Dorset</td>
<td>20023</td>
<td>funerary site, farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forston WTW, Charminster</td>
<td>20069</td>
<td>MDO767</td>
<td>Dorset</td>
<td>1</td>
<td>villa, farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furzey Island, Poole Harbour</td>
<td>20033</td>
<td>MDO7458</td>
<td>Dorset</td>
<td>-100</td>
<td>farm, other industry</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gillingham, Common Mead Lane</td>
<td>20032</td>
<td>MDO3875</td>
<td>Dorset</td>
<td>1</td>
<td>village</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldfields Farm, Minchington</td>
<td>20064</td>
<td>MDO23794</td>
<td>Dorset</td>
<td>-50</td>
<td>field system, funerary site, farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Island, Poole Harbour</td>
<td>20055</td>
<td>MDO7457</td>
<td>Dorset</td>
<td>-100</td>
<td>other industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grimstone Reservoir, Stratton</td>
<td>20070</td>
<td>Dorset</td>
<td>-100</td>
<td>200</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gussage All Saints</td>
<td>20018</td>
<td>Dorset</td>
<td>-100</td>
<td>100</td>
<td>farm, iron production</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halstock</td>
<td>20082</td>
<td>195721; MDO1221</td>
<td>Dorset</td>
<td>-50</td>
<td>farm, villa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hambledon Hill, Child Okeford</td>
<td>MDO3713</td>
<td>Dorset</td>
<td>-800</td>
<td>50</td>
<td>hillfort</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamworthy</td>
<td>20067; 20029; 20001</td>
<td>MDO28166; MDO6791; MWX3325</td>
<td>Dorset</td>
<td>-50</td>
<td>village, port, salt production, pottery production</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hengistbury Head</td>
<td>20019</td>
<td>MWX1092; MDO8633</td>
<td>Dorset</td>
<td>-100</td>
<td>oppidum, port</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Reference Code</td>
<td>Area</td>
<td>Phase</td>
<td>Site Type</td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------</td>
<td>------</td>
<td>-------</td>
<td>------------------------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hod Hill</td>
<td>20002</td>
<td>206122 ; MDO4809</td>
<td>Dorset</td>
<td>-100</td>
<td>50</td>
<td>hillfort, fort</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jordan Hill</td>
<td>20079</td>
<td>452622 ; MDO6665 ; MWX3405</td>
<td>Dorset</td>
<td>75</td>
<td>395</td>
<td>RC temple</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knob's Crook, Woodlands</td>
<td>20076</td>
<td>MDO6414</td>
<td>Dorset</td>
<td>75</td>
<td>150</td>
<td>funerary site</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land at Woodsford</td>
<td>20053</td>
<td>Dorset</td>
<td>1</td>
<td>400</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lea Road, Wyke Regis</td>
<td>20039</td>
<td>MDO6678</td>
<td>Dorset</td>
<td>1</td>
<td>150</td>
<td>funerary site</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maiden Castle</td>
<td>20035</td>
<td>451864 ; MDO3245 ; MDO3244</td>
<td>Dorset</td>
<td>-100</td>
<td>500</td>
<td>hillfort, RC temple, shrine</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Maiden Castle Road</td>
<td>20022</td>
<td>MDO18030; MDO18059; MDO18028</td>
<td>Dorset</td>
<td>50</td>
<td>410</td>
<td>farm, funerary site, quarry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manor Farm, Porthesham</td>
<td>20008</td>
<td>MWX2926</td>
<td>Dorset</td>
<td>50</td>
<td>400</td>
<td>funerary site, shrine</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manor Farm, Poxwell</td>
<td>20036</td>
<td>MDO2167</td>
<td>Dorset</td>
<td>150</td>
<td>375</td>
<td>farm</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milborne St Andrew</td>
<td>20084</td>
<td>MDO4358</td>
<td>Dorset</td>
<td>-50</td>
<td>400</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Moorway Lane, Sandford Orcas</td>
<td>20007</td>
<td>Dorset</td>
<td>50</td>
<td>400</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myncen Farm, Minchington</td>
<td>20004</td>
<td>1407907</td>
<td>Dorset</td>
<td>1</td>
<td>500</td>
<td>villa, farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norden, Corfe Castle</td>
<td>20015</td>
<td>MDO7468</td>
<td>Dorset</td>
<td>50</td>
<td>350</td>
<td>other industry, pottery production</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North West</td>
<td>Russell et al. 2014</td>
<td>Dorset</td>
<td>-400</td>
<td>450</td>
<td>farm, villa, funerary</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Code</td>
<td>County</td>
<td>Type</td>
<td>Size</td>
<td>Uses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>--------</td>
<td>----------</td>
<td>------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm, Winterborne Kingston</td>
<td>20026</td>
<td>Dorset</td>
<td>site, cemetery</td>
<td>400</td>
<td>X X X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oakley Down, Wimborne St Giles</td>
<td>20016</td>
<td>Dorset</td>
<td>farm</td>
<td>400</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ower</td>
<td>20016</td>
<td>Dorset</td>
<td>pottery production, village, salt production</td>
<td>400</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park Farm, Iwerne Minster</td>
<td>MDO4068 ; MDO4069</td>
<td>Dorset</td>
<td>occupation, villa</td>
<td>360</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilsdon Pen</td>
<td>MDO2018</td>
<td>Dorset</td>
<td>hillfort</td>
<td>50</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinford Lane, Castleton</td>
<td>20077</td>
<td>Dorset</td>
<td>farm</td>
<td>400</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pins Knoll, Litton Cheney</td>
<td>20049</td>
<td>Dorset</td>
<td>farm</td>
<td>400</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portesham Farm, Portesham</td>
<td>20025</td>
<td>Dorset</td>
<td>funerary site</td>
<td>100</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland, Royal Manor Arts College</td>
<td>20062</td>
<td>Dorset</td>
<td>village</td>
<td>400</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poundbury</td>
<td>20060</td>
<td>Dorset</td>
<td>funerary site, RC temple, roadside settlement, road, hillfort, village</td>
<td>700</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poundbury Farm</td>
<td>20088</td>
<td>Dorset</td>
<td>farm, field system, quarry</td>
<td>400</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poundbury Farm Track, Fordington</td>
<td>20054</td>
<td>Dorset</td>
<td>farm, field system</td>
<td>300</td>
<td>X X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Name</td>
<td>Code</td>
<td>County</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Putton Lane Brickyards, Chickerell</td>
<td>20046</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quarry Lodden, Bincombe</td>
<td>20048</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redcliff Farm, sites A, B, C</td>
<td>20009 ; 20010</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redlands Sports Centre</td>
<td>20059</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ridgeway Hill</td>
<td>20057</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rope Lake Hole, Corfe Castle</td>
<td>20017</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shapwick</td>
<td>20027</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shillingstone villa</td>
<td>20005</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southdown Ridge</td>
<td>20058</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St Nicholas Church, Studland</td>
<td>20071</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stoborough sites E & H</td>
<td>20011 ; 20012</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stourpaine Landfill Site, Stourpaine</td>
<td>20072</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sutton Poyntz (Empool - Chalbury gas)</td>
<td>20063</td>
<td>Dorset</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Place Name</td>
<td>MDO Code(s)</td>
<td>County</td>
<td>Period</td>
<td>Occupation/Activity</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tinney's Lane, Sherborne</td>
<td>MDO19698</td>
<td>Dorset</td>
<td>-100</td>
<td>funerary site</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolpuddle Ball</td>
<td>20080</td>
<td>Dorset</td>
<td>-100</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls Field villa, Charminster</td>
<td>MDO767</td>
<td>Dorset</td>
<td>100</td>
<td>villa</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Walls, Puncknowle</td>
<td>20037</td>
<td>Dorset</td>
<td>75</td>
<td>shrine</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Knighton Gravel Pit</td>
<td>20073</td>
<td>Dorset</td>
<td>1</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Moors</td>
<td>20034</td>
<td>Dorset</td>
<td>75</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitcombe</td>
<td>20031</td>
<td>Dorset</td>
<td>1</td>
<td>funerary site, farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodcutts</td>
<td>20051</td>
<td>Dorset</td>
<td>1</td>
<td>village</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodhouse Hill, Studland</td>
<td>20047</td>
<td>Dorset</td>
<td>1</td>
<td>farm, other industry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodyates, Bokerly Dyke</td>
<td>20052</td>
<td>Dorset</td>
<td>125</td>
<td>village, road, field system</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See Smith et al. (2016, Table 1.1, 17–43) for RSRB site type classification. I have added “activity” or “occupation” as terms to indicate cases where the activity could not be further categorized.
List of Distribution Sites in the Middle Thames Valley (78). An underlined X indicates sites newly founded in a particular interval; a bold X indicates sites where activity ceases. Some RSRB site records that appeared to be part of a single settlement were combined into one entry; all RSRB ID numbers are provided (this is the case for Brentford, London Road; and Staines). A location in the middle of the points was chosen to represent the entry. Sites without an RSRB ID were taken solely from HERs. Site records were exported from the RSRB database in October and November 2015. HER IDs are provided where they were listed as related identifiers on the RSRB database as of April 2017. The reader is invited to visit the RSRB database for updates. Data: RSRB database & MTV HERs (2015).

<table>
<thead>
<tr>
<th>site_name</th>
<th>RSRB id</th>
<th>HER id</th>
<th>county</th>
<th>Start date</th>
<th>End date</th>
<th>site_type_minor*</th>
<th>-100–49 BCE</th>
<th>50 BCE–1</th>
<th>1–49 CE</th>
<th>50–99 CE</th>
<th>100–149 CE</th>
<th>150–200 CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 Cressingham Road, Reading</td>
<td>12044</td>
<td>MRM16455</td>
<td>Berkshire</td>
<td>1</td>
<td>250</td>
<td>field system</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>51 Avenue Gardens, Acton</td>
<td>8018</td>
<td>MLO17554</td>
<td>Greater London</td>
<td>100</td>
<td>400</td>
<td>farm</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agar's Plough</td>
<td>13079</td>
<td></td>
<td>Buckinghamshire</td>
<td>1</td>
<td>400</td>
<td>farm, quarry, field system</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>All Souls Farm Quarry, Wexham</td>
<td>13065</td>
<td></td>
<td>Buckinghamshire</td>
<td>50</td>
<td>325</td>
<td>farm, quarry, iron production</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Alpine Avenue, Tolworth</td>
<td>8029</td>
<td></td>
<td>Greater London</td>
<td>-100</td>
<td>50</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashford Prison, Spelthorne</td>
<td>10024</td>
<td>5154</td>
<td>Surrey</td>
<td>-100</td>
<td>250</td>
<td>farm, field system</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Basingstoke Road, Spencer's Wood</td>
<td>12045</td>
<td>MRM15934</td>
<td>Berkshire</td>
<td>1</td>
<td>75</td>
<td>farm</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bath Road, Slough</td>
<td>12014</td>
<td>MSL15508</td>
<td>Berkshire</td>
<td>1</td>
<td>100</td>
<td>field system</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Berkyn Manor Farm, Horton</td>
<td>12047</td>
<td></td>
<td>Berkshire</td>
<td>100</td>
<td>400</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Code(s)</td>
<td>County</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---------</td>
<td>------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boundary Elms, Monument Burchetts Green</td>
<td>MRW892</td>
<td>Berkshire</td>
<td></td>
</tr>
<tr>
<td>Brentford, Gasworks</td>
<td>8037</td>
<td>Greater London</td>
<td></td>
</tr>
<tr>
<td>Brentford, London Road</td>
<td>8007 ; 8056</td>
<td>Greater London</td>
<td></td>
</tr>
<tr>
<td>Broadwater, Hurst</td>
<td>12027</td>
<td>Berkshire</td>
<td></td>
</tr>
<tr>
<td>Brook Farm, Slough</td>
<td>12017</td>
<td>Berkshire</td>
<td></td>
</tr>
<tr>
<td>Cippenham, Slough</td>
<td>12038</td>
<td>Berkshire</td>
<td></td>
</tr>
<tr>
<td>Cox Green, Maidenhead</td>
<td>12036</td>
<td>Berkshire</td>
<td></td>
</tr>
<tr>
<td>Cranford Lane, Harlington</td>
<td>8054</td>
<td>Greater London</td>
<td></td>
</tr>
<tr>
<td>Deen City Farm Grazing, Mitcham</td>
<td>8058</td>
<td>Greater London</td>
<td></td>
</tr>
<tr>
<td>East Park Farm, Charvil</td>
<td>12006</td>
<td>Berkshire</td>
<td></td>
</tr>
<tr>
<td>Eton Area 16</td>
<td>13078</td>
<td>Buckinghamshire</td>
<td></td>
</tr>
<tr>
<td>Property Name</td>
<td>Reference</td>
<td>Location</td>
<td>Area</td>
<td>Activity, Occupation</td>
<td>Reported Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------</td>
<td>----------------</td>
<td>------</td>
<td>----------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feens Farm, White Waltham</td>
<td>MRW643</td>
<td>Berkshire</td>
<td>50</td>
<td>400</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field A, Southlea Farm, Datchet</td>
<td>MRW15673</td>
<td>Berkshire</td>
<td>1</td>
<td>150</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fields 2, 3 and 4, Southlea Farm, Datchet</td>
<td>MRW276</td>
<td>Berkshire</td>
<td>25</td>
<td>150</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fields 4 and 6, near Englefield, Theale to Bradfield pipeline</td>
<td>MWB2889; MWB15687</td>
<td>(West) Berkshire</td>
<td>-100</td>
<td>350</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franklands Drive, Addlestone</td>
<td>13892; 13893; 13894; 19073</td>
<td>Surrey</td>
<td>100</td>
<td>400</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fulmer</td>
<td>13063</td>
<td>Buckinghamshire</td>
<td>100</td>
<td>200</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Westwood Quarry</td>
<td>6235; 6236; 6237</td>
<td>Hertfordshire</td>
<td>-100</td>
<td>125</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green Park (Phase 3), Reading</td>
<td>MRM17532</td>
<td>Berkshire</td>
<td>-100</td>
<td>400</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hampermill, Watford</td>
<td>3064</td>
<td>Hertfordshire</td>
<td>50</td>
<td>225</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hatch Farm Dairies, Winnersh</td>
<td>MRM16049</td>
<td>Berkshire</td>
<td>25</td>
<td>250</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hayes Manor School, Wood End Green</td>
<td>MLO98137</td>
<td>Greater London</td>
<td>-50</td>
<td>200</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Road</td>
<td>12013</td>
<td>12024</td>
<td>12035</td>
<td>12041</td>
<td>12059</td>
<td>12062</td>
<td>13069</td>
<td>13072</td>
<td>14039</td>
<td>14041</td>
<td>14050</td>
<td>14060</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>Heathcote Road Nursery, Twickenham Bridge</td>
<td>50</td>
<td>200</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedgerley</td>
<td>125</td>
<td>175</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hengrove Farm, Staines</td>
<td>-100</td>
<td>400</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hurst Park, East Molesy</td>
<td>43</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imperial College Sports Ground, Harlington</td>
<td>-50</td>
<td>400</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jennett's Park, Bracknell</td>
<td>-100</td>
<td>200</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kingsmead Quarry, Horton</td>
<td>-50</td>
<td>400</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knoll Hill</td>
<td>10</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Lake End Road West</td>
<td>-100</td>
<td>400</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laleham, Spelthorne</td>
<td>-100</td>
<td>600</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lea Farm, Hurst</td>
<td>1</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Long Lane, Ickenham</td>
<td>25</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Lower Horton Channel</td>
<td>1</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>Site Name</td>
<td>Postcode</td>
<td>Location</td>
<td>Address</td>
<td>Coordinates</td>
<td>Farm Type</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>----------------</td>
<td>---------------------------------------</td>
<td>-------------</td>
<td>----------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manor Farm, Horton</td>
<td>12012</td>
<td>Berkshire</td>
<td>H Horton Manor Farm, Horton</td>
<td>MRW15501</td>
<td>25 200 farm</td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mansfield Road, RAF Chessington</td>
<td>10018</td>
<td>Surrey</td>
<td>Mansfield Road, RAF Chessington</td>
<td></td>
<td>-100 300 farm X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marloes Road, Kensington</td>
<td>8015</td>
<td>Greater London</td>
<td>Marloes Road, Kensington</td>
<td>MLO62103</td>
<td>-50 200 farm X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayfield Farm, East Bedfont</td>
<td>8010</td>
<td>Greater London</td>
<td>Mayfield Farm, East Bedfont</td>
<td>MLO73666</td>
<td>-50 400 farm, field system X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mereoak Lane, Three Mile Cross</td>
<td>12048</td>
<td>Berkshire</td>
<td>Mereoak Lane, Three Mile Cross</td>
<td>MRM17619</td>
<td>40 175 farm X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moor Park Golf Course, Slough</td>
<td>82</td>
<td>Hertfordshire</td>
<td>Moor Park Golf Course</td>
<td></td>
<td>130 200 occupation, villa ? X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Village Settlement, Grazeley</td>
<td>12052</td>
<td>Berkshire</td>
<td>New Village Settlement, Grazeley</td>
<td>MWK15608 ;</td>
<td>-80 400 farm X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Old Way Lane, Slough</td>
<td>12019</td>
<td>Berkshire</td>
<td>Old Way Lane, Slough</td>
<td></td>
<td>-100 350 farm, field system X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Park Farm, Binfield</td>
<td>12058</td>
<td>Berkshire</td>
<td>Park Farm, Binfield</td>
<td>MBF6988</td>
<td>-100 150 farm X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perry Oaks/Heathrow Terminal 5, Hillingdon</td>
<td>8026</td>
<td>Greater London</td>
<td>Perry Oaks/Heathrow Terminal 5,</td>
<td></td>
<td>-100 400 farm, field system X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phoenix Project, Atomic Weapons Establishment, Burghfield</td>
<td>12057</td>
<td>Berkshire</td>
<td>Phoenix Project, Atomic Weapons</td>
<td></td>
<td>-100 400 farm X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Reference</td>
<td>County</td>
<td>Area</td>
<td>Date</td>
<td>Type</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pingewood Area, 1982 excavations</td>
<td>12026</td>
<td>Berkshire</td>
<td>50</td>
<td>200</td>
<td>field system</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pingewood, Burghfield</td>
<td>12031</td>
<td>Berkshire</td>
<td>50</td>
<td>300</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading Business Park</td>
<td>12009</td>
<td>Berkshire</td>
<td>100</td>
<td>350</td>
<td>farm</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Robin Hood's Arbour</td>
<td>12037</td>
<td>Berkshire</td>
<td>1</td>
<td>50</td>
<td>hillfort</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadler's End, Sindlesham</td>
<td>12060</td>
<td>Berkshire</td>
<td>-100</td>
<td>-50</td>
<td>iron production</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sir John Atkins Building, Campden Hill</td>
<td>8011</td>
<td>Greater London</td>
<td>1</td>
<td>500</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skerne Road, Kingston upon Thames</td>
<td>8030</td>
<td>Greater London</td>
<td>50</td>
<td>400</td>
<td>farm, quarry</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solesbridge, Chorleywood</td>
<td>1854 ; 779</td>
<td>Hertfordshire</td>
<td>100</td>
<td>410</td>
<td>occupation, villa?</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springwood, Gerrards Cross</td>
<td>13057</td>
<td>Buckinghamshire</td>
<td>125</td>
<td>175</td>
<td>pottery production</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>St John's Vicarage, Old Malden</td>
<td>8024</td>
<td>Greater London</td>
<td>-50</td>
<td>400</td>
<td>farm</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staines, Old Police Station, 10-16 London Road</td>
<td>10051</td>
<td>Surrey</td>
<td>150</td>
<td>325</td>
<td>roadside settlement</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staines, Pontibus</td>
<td>10016 ;</td>
<td>Surrey</td>
<td>45</td>
<td>410</td>
<td>small town, roadside settlement</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Description</td>
<td>Reference Code</td>
<td>County</td>
<td>Date Code</td>
<td>Horizon</td>
<td>Period</td>
<td>Occupation/Industry</td>
<td>Remarks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>--------------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temple Lane, Bisham</td>
<td>12051</td>
<td>Berkshire</td>
<td>5124; 807</td>
<td>-100</td>
<td>425</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thames Valley Park, Reading, Floodplain excavations (W244)</td>
<td>12011</td>
<td>Berkshire</td>
<td>MWK15538</td>
<td>-100</td>
<td>200</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thames Valley Park, Reading, Terrace Area Excavations (W164)</td>
<td>12010</td>
<td>Berkshire</td>
<td>MWK1929</td>
<td>-100</td>
<td>200</td>
<td>X X X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Lea, Denham</td>
<td>13077</td>
<td>Buckinghamshire</td>
<td>175</td>
<td>400</td>
<td>farm, funerary site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thorpe Lea Nurseries, Egham</td>
<td>10042</td>
<td>Surrey</td>
<td>5273; 15355; 15356; 15357</td>
<td>-100</td>
<td>400</td>
<td>farm, other industry, field system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ufton Nervet</td>
<td>12034</td>
<td>(West) Berkshire</td>
<td>MWB2555</td>
<td>25</td>
<td>300</td>
<td>farm</td>
<td>X X X X X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Grid Reference</th>
<th>County</th>
<th>Activity</th>
<th>Date 1</th>
<th>Date 2</th>
<th>Activity 1</th>
<th>Activity 2</th>
<th>Activity 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western International Market, Hounslow</td>
<td>8072</td>
<td>Greater London</td>
<td>field system, quarry</td>
<td>25 200</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weycock Hill</td>
<td>12055</td>
<td>Berkshire</td>
<td>RC temple, funerary site</td>
<td>100 400</td>
<td>X</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Place Farm, Cookham</td>
<td>12054</td>
<td>Berkshire</td>
<td>farm</td>
<td>-50 150</td>
<td>X</td>
<td>X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitehall Brick and Tile Works, Arborfield Garrison</td>
<td>12007</td>
<td>Berkshire</td>
<td>farm, iron production</td>
<td>-50 250</td>
<td>X</td>
<td>X X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wood Lane, Slough</td>
<td>12018</td>
<td>Berkshire</td>
<td>farm, field system</td>
<td>-100 250</td>
<td>X</td>
<td>X X X X X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* See Smith et al. (2016, Table 1.1, 17–43) for RSRB site type classification. I have added “activity” or “occupation” as terms to indicate cases where the activity could not be further categorized.
SQL Queries for Activity and Occupation Cycles

SQL Queries used to derive sites in use during the LIA & ER periods and 50-year chronological intervals. Sites that were in use only one year into a new interval were not considered part of that interval. For example, a site that went out of use in CE 50 was not included in the 50–99 CE interval.

LIA & ER Periods

- **LIA**: \((\text{start}_\text{date} < -100 \ \text{AND} \ \text{end}_\text{date} > -100) \ \text{OR} \ (\text{start}_\text{date} \geq -100 \ \text{AND} \ \text{start}_\text{date} < 43)\)
- **ER**: \((\text{start}_\text{date} < 43 \ \text{AND} \ \text{end}_\text{date} > 43) \ \text{OR} \ \text{start}_\text{date} \geq 43\)

50-year intervals:

- \((\text{start}_\text{date} \geq \text{beginning date of interval} \ \text{AND} \ \text{start}_\text{date} < \text{beginning date of next interval}) \ \text{OR} \ (\text{start}_\text{date} < \text{beginning date of interval} \ \text{AND} \ \text{end}_\text{date} > \text{beginning date of interval})\)
- \(100 – 49 \text{ BCE}: (\text{start}_\text{date} \geq -100 \ \text{AND} \ \text{start}_\text{date} < -50) \ \text{OR} \ (\text{start}_\text{date} < -100 \ \text{AND} \ \text{end}_\text{date} > -100)\)
- \(50 \text{ BCE} – 1: (\text{start}_\text{date} \geq -50 \ \text{AND} \ \text{start}_\text{date} < 0) \ \text{OR} \ (\text{start}_\text{date} < -50 \ \text{AND} \ \text{end}_\text{date} > -50)\)
- \(1 – 49 \text{ CE}: (\text{start}_\text{date} \geq 1 \ \text{AND} \ \text{start}_\text{date} < 50) \ \text{OR} \ (\text{start}_\text{date} < 1 \ \text{AND} \ \text{end}_\text{date} > 1)\)
- \(50 – 99 \text{ CE}: (\text{start}_\text{date} \geq 50 \ \text{AND} \ \text{start}_\text{date} < 100) \ \text{OR} \ (\text{start}_\text{date} < 50 \ \text{AND} \ \text{end}_\text{date} > 50)\)
- \(100 – 149 \text{ CE}: (\text{start}_\text{date} \geq 100 \ \text{AND} \ \text{start}_\text{date} < 150) \ \text{OR} \ (\text{start}_\text{date} < 100 \ \text{AND} \ \text{end}_\text{date} > 100)\)
- \(150 – 200 \text{ CE}: (\text{start}_\text{date} \geq 150 \ \text{AND} \ \text{start}_\text{date} < 200) \ \text{OR} \ (\text{start}_\text{date} < 150 \ \text{AND} \ \text{end}_\text{date} > 150)\)

Sites newly established in an interval:

\(\text{start}_\text{date} \geq \text{[beginning date of interval]} \ \text{AND} \ \text{start}_\text{date} < \text{[beginning date of next interval]}\)

E.g., for \(100 – 149 \text{ CE}, \ \text{start}_\text{date} \geq 100 \ \text{AND} \ \text{start}_\text{date} < 150\)

Sites discontinued in an interval:

\(\text{end}_\text{date} \geq \text{[beginning date of interval]} \ \text{AND} \ \text{end}_\text{date} \leq \text{[start}_\text{date} \text{of next interval]}\)

e.g., for \(100 – 149 \text{ CE}, \ \text{end}_\text{date} > 100 \ \text{AND} \ \text{end}_\text{date} \leq 150\)
Note that for calculating the activity cycles in Tables 7.2 and 7.3, the percentage of sites abandoned within an interval refers to sites that did not continue into the next. The goal was to chart fluctuations in activity and movement about the landscape within each of the 50-year intervals.

This differs from the occupation cycles maps, which intended to demonstrate how the distribution of sites and newly founded sites within an interval related to the abandonment of previously active areas of the landscape. This means that sites abandoned within an interval are actually plotted on the map for the next interval. For example, sites abandoned in the 100 – 149 CE interval are plotted on the activity cycles map for the 150 – 200 CE interval, showing how the distribution of sites from 150 – 200 CE relates to areas of the landscape where activity ceased. Thus, there is no plotting of discontinued sites on the earliest (100 – 49 BCE) interval map.
List of Hillforts

List of hillforts and possible hillforts in Dorset (31) used for Figure 7.43. This excludes the hillforts already included in the Dorset distribution sites sample (Hambledon Hill, Hod Hill, Maiden Castle, Pilsdon Pen, Poundbury). Some, such as The Bend and Dungeon Hill, yielded surface finds of material—e.g., pottery or tile—suggestive of Roman-period use.

<table>
<thead>
<tr>
<th>site_name</th>
<th>HER id</th>
<th>county</th>
<th>Start date</th>
<th>End date</th>
<th>site_type_minor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbotsbury Castle, Wears Hill, Abbotsbury</td>
<td>MDO12</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Badbury Rings</td>
<td>MDO5994</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Banbury Hill, Okeford Fitzpaine</td>
<td>MDO4526</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>The Bend</td>
<td>MDO1541</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Bindon Hill, West Lulworth</td>
<td>MDO8257</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Bulbury Camp, Lytchett Minster</td>
<td>MDO7793</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Burcombe Farm, North Poorton</td>
<td>MDO1788</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Bussey Stool Camp, Tarrant Gunville</td>
<td>MDO4906</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>The Castle, Cattistock</td>
<td>MDO666</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort ?</td>
</tr>
<tr>
<td>The Castle, Leigh</td>
<td>MDO1341</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Chalbury Hillfort, Bincombe</td>
<td>MDO309</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Chilcombe Hill, Chilcombe</td>
<td>MDO907</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Coney's Castle, Whitchurch Canonicorum</td>
<td>MDO2980</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Dogbury Plantation, Minterne Magna</td>
<td>MDO1714</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort ?</td>
</tr>
<tr>
<td>Dudsbury, West Parley</td>
<td>MDO6225</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Dungeon Hill, Buckland Newton</td>
<td>MDO567</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Eggardon Hill</td>
<td>MDO95 ; MDO2139</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Flower's Barrow, East Lulworth</td>
<td>MDO7654</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>site_name</td>
<td>HER id</td>
<td>county</td>
<td>Start date</td>
<td>End date</td>
<td>site_type_minor</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>-------------------</td>
<td>------------</td>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Lambert's Castle, Marshwood</td>
<td>MDO1636</td>
<td>Dorset</td>
<td>-100</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Lewesdon Hill, Broadwindor</td>
<td>MDO532</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Mistleberry Wood, Sixpenny Handley</td>
<td>MDO6069</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Nettlecombe Tout, Melcombe Horsey</td>
<td>MDO1688</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Old Warren, Littlebredy (Dane's Camp)</td>
<td>MDO1364</td>
<td>Dorset</td>
<td>-800</td>
<td>1065</td>
<td>hillfort</td>
</tr>
<tr>
<td>Penbury Knoll, Pentridge</td>
<td>MDO5940</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Rawlsbury Camp, Stoke Wake</td>
<td>MDO4766</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Shipton Hill, Shipton Gorge</td>
<td>MDO2432</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort ?</td>
</tr>
<tr>
<td>Spettisbury Rings (Crawford Castle)</td>
<td>MDO4724</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Sturminster Newton Castle</td>
<td>MDO4852</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort ?</td>
</tr>
<tr>
<td>Weatherby Castle, Milborne St Andrew</td>
<td>MDO4360</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Woodbury Hill, Bere Regis</td>
<td>MDO7148</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
<tr>
<td>Woolsbarrow, Bloxworth</td>
<td>MDO7215</td>
<td>Dorset</td>
<td>-800</td>
<td>43</td>
<td>hillfort</td>
</tr>
</tbody>
</table>

List of hillforts, possible hillforts, oppida, and towns in the Middle Thames Valley and environs (16) used for Figure 7.44. This excludes the hillfort already included in the Middle Thames Valley distribution sites sample (Robin Hood’s Arbour).
<table>
<thead>
<tr>
<th>Place Name</th>
<th>Code(s)</th>
<th>County</th>
<th>Date</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medmenham Camp</td>
<td>MBC3525 ; MBC2528</td>
<td>Buckinghamshire</td>
<td>-700</td>
<td>hillfort</td>
</tr>
<tr>
<td>Pond Farm</td>
<td>20196</td>
<td>Hampshire</td>
<td>-800</td>
<td>hillfort</td>
</tr>
<tr>
<td>Pulpit Hill</td>
<td>MBC43</td>
<td>Buckinghamshire</td>
<td>-700</td>
<td>hillfort</td>
</tr>
<tr>
<td>Raven Hill</td>
<td>MBW1361</td>
<td>Berkshire</td>
<td>-1000</td>
<td>hillfort</td>
</tr>
<tr>
<td>St. Albans/Verulamium; Verlamion</td>
<td>4 (Verulamium); 14336 (Verlamion Central Enclosure)</td>
<td>Hertfordshire</td>
<td>-100</td>
<td>oppidum, town, municipium</td>
</tr>
<tr>
<td>Seven Ways Plain</td>
<td>MBC4607</td>
<td>Buckinghamshire</td>
<td>-700</td>
<td>hillfort</td>
</tr>
<tr>
<td>Silchester/Calleva Atrebatum</td>
<td>41630 ; 35308</td>
<td>Hampshire</td>
<td>-800</td>
<td>oppidum, town, civitas capital</td>
</tr>
<tr>
<td>St George's Hill</td>
<td>717 ; 4735 ; 15001 ; 4516</td>
<td>Surrey</td>
<td>-800</td>
<td>hillfort</td>
</tr>
<tr>
<td>St. Anne's Hill</td>
<td>14262 ; 590</td>
<td>Surrey</td>
<td>-1000</td>
<td>hillfort</td>
</tr>
<tr>
<td>Taplow</td>
<td>MBC2300 ; MBC2506</td>
<td>Buckinghamshire</td>
<td>-700</td>
<td>hillfort</td>
</tr>
</tbody>
</table>
Figure 1. Dorset case study sites in relation to a modern map of Dorset. Contains OS data © Crown copyright and database right.
Figure 2. Middle Thames Valley case study sites in relation to a modern map. Contains OS data © Crown copyright and database right.
APPENDIX C – RELATIONAL DATABASE SCHEMA

The following represents a working schema of the relational database used to manage and query information on the case study sites and to maintain a list of the distribution sites. The database was amended during the data entry and analysis phases in order to accommodate the shifts in project scope (see Chapter One) as well as variations in the way that data were represented in the site reports (see Chapters Four and Five). Changes to the database were implemented on this ad hoc basis in response to the queries and analysis that ended up forming the core focus of the thesis and thus were not necessarily standardized across all tables. The software used was MySQL Community 5.1 (https://www.mysql.com).

-- Database: `phd-dissertation`
--

-- ---

-- Table structure for table `distribution_sites`
--

CREATE TABLE IF NOT EXISTS `distribution_sites` (
 `site_name` varchar(255) NOT NULL,
 `RSRB_id` varchar(255) DEFAULT NULL,
 `HER_id` varchar(255) DEFAULT NULL,
 `county` enum('Berkshire','West Berkshire','Buckinghamshire','Dorset','Greater London','Hampshire','Hertfordshire','Surrey') NOT NULL,
 `RSRB_region` enum('South','Central Belt') DEFAULT NULL,
 `start_date` int(11) NOT NULL,
 `end_date` int(11) NOT NULL,
 `site_type_major` varchar(255) NOT NULL,
 `site_type_minor` varchar(255) NOT NULL,
 `rural_settlement_form` varchar(255) DEFAULT NULL,
 `non_domestic_structure` varchar(255) DEFAULT NULL,
 `fieldwork_type` text,
 `area` double DEFAULT NULL,
 `organisation` text,
 `x_ref` int(11) DEFAULT NULL,
 `y_ref` int(11) DEFAULT NULL,
 `NGR` varchar(255) DEFAULT NULL,
 `no_of_circular_buildings` int(11) DEFAULT NULL,
 `circular_buildings_present` enum('Y','N','M') DEFAULT NULL,
 `no_of_rectangular_buildings` int(11) DEFAULT NULL,
 `rectangular_buildings_present` enum('Y','N','M') DEFAULT NULL,
 `paddocks` enum('Y','N','M') DEFAULT NULL,
 `multi_room_building` enum('Y','N','M') DEFAULT NULL,
 `aisled_building` enum('Y','N','M') DEFAULT NULL,
CREATE TABLE IF NOT EXISTS `settlement_artifact` (`artifact_id` int(10) unsigned NOT NULL, `artifact_name` varchar(255) NOT NULL, `settlement_name` varchar(255) NOT NULL, `Period` varchar(255) NOT NULL, `Century` varchar(255) DEFAULT NULL, `start date` varchar(255) DEFAULT NULL, `end date` varchar(255) DEFAULT NULL, `type` text, `material` text, `count` int(11) DEFAULT NULL, `%_count` decimal(11,2) DEFAULT NULL, `count_upper` int(11) DEFAULT NULL, `count_lower` int(11) DEFAULT NULL, `weight` decimal(11,2) DEFAULT NULL, `%_weight` decimal(11,2) DEFAULT NULL, `location` text, `function` text, `comments` text, `related_to` varchar(255) DEFAULT NULL, `references` text) ENGINE=MyISAM AUTO_INCREMENT=551 DEFAULT CHARSET=latin1;
CREATE TABLE IF NOT EXISTS `settlement_element` (
`element_id` int(10) unsigned NOT NULL,
`element_name` varchar(255) NOT NULL,
`settlement_name` varchar(255) NOT NULL,
`landscape_context` enum('rural','hillfort','urban') DEFAULT NULL,
`period` varchar(255) NOT NULL,
`start_date` varchar(255) DEFAULT NULL,
`end_date` varchar(255) DEFAULT NULL,
`shape` varchar(255) DEFAULT NULL,
`type` text,
`count` int(11) DEFAULT NULL,
`count_upper` int(11) DEFAULT NULL,
`location` text,
`diameter` double DEFAULT NULL,
`depth` double DEFAULT NULL,
`average_diameter` double DEFAULT NULL,
`average_depth` double DEFAULT NULL,
`volume` int(11) DEFAULT NULL,
`area` text,
`entrance_count` int(11) DEFAULT NULL,
`entrance_present` enum('Y','N') DEFAULT NULL,
`orientation` enum('N','NE','E','SE','S','SW','W','NW') DEFAULT NULL,
`material` text,
`material_roof` varchar(255) DEFAULT NULL,
`material_walls` varchar(255) DEFAULT NULL,
`construction_techniques` varchar(255) DEFAULT NULL,
`length` double DEFAULT NULL,
`width` double DEFAULT NULL,
`avg_width` decimal(11,2) DEFAULT NULL,
`post_hole_count` int(11) DEFAULT NULL,
`post_hole_present` enum('Y','N') DEFAULT NULL,
`pit_count` int(11) DEFAULT NULL,
`pit_present` enum('Y','N') DEFAULT NULL,
`structure_count` int(11) DEFAULT NULL,
`structure_present` enum('Y','N') DEFAULT NULL,
`room_count` int(11) DEFAULT NULL,
`room_present` enum('Y','N') DEFAULT NULL,
`function` text,
`multiple_building_phases` enum('Y','N') DEFAULT NULL,
`spatial_division` enum('Y','N') DEFAULT NULL,
`comments` text,
`related_to` varchar(255) DEFAULT NULL,
`references` text,
`year_begin` int(11) DEFAULT NULL,
`year_end` int(11) DEFAULT NULL
) ENGINE=MyISAM AUTO_INCREMENT=158 DEFAULT CHARSET=latin1;

-- ---

--

-- Table structure for table `settlement_feature`
--

CREATE TABLE IF NOT EXISTS `settlement_feature` (
`feature_id` int(10) unsigned NOT NULL,
`feature_name` varchar(255) NOT NULL,
`settlement_name` enum('Alington Avenue','Flagstones','Fordington Bottom','Gussage All Saints','Maiden Castle Road','Poundbury','Ashford Prison','Hengrove Farm','Perry Oaks / Heathrow Terminal 5','Thorpe Lea Nurseries','Imperial College Sports Ground','Wood Lane','Rope Lake Hole','Lea Farm') NOT NULL,
`Period` varchar(255) NOT NULL,
`century` varchar(255) DEFAULT NULL,
`start_date` varchar(255) DEFAULT NULL,
`end_date` varchar(255) DEFAULT NULL,
`type` text,
`count` int(11) DEFAULT NULL,
`count_upper` int(11) DEFAULT NULL,
`location` text,
`diameter` double DEFAULT NULL,
`depth` double DEFAULT NULL,
`depth_2` decimal(11,2) DEFAULT NULL,
`average_diameter` double DEFAULT NULL,
`average_depth` double DEFAULT NULL,
`area` text,
`orientation` enum('N','NE','E','SE','S','SW','W','NW','NS','EW') DEFAULT NULL,
`material` text,
`length` double DEFAULT NULL,
`width` double DEFAULT NULL,
`length_2` decimal(11,2) DEFAULT NULL,
`width_2` decimal(11,2) DEFAULT NULL,
`function` text,
`multiple_construction_phases` enum('Y','N') DEFAULT NULL,
`spatial_division` enum('Y','N') DEFAULT NULL,
`comments` text,
`related_to` varchar(255) DEFAULT NULL,
`references` text
) ENGINE=MyISAM AUTO_INCREMENT=498 DEFAULT CHARSET=latin1;

-- ---
CREATE TABLE IF NOT EXISTS `structure` (
 `element_id` int(10) unsigned NOT NULL,
 `element_name` varchar(255) NOT NULL,
 `settlement_name` varchar(255) DEFAULT NULL,
 `location` text,
 `dimension_length` double DEFAULT NULL,
 `dimension_width` double DEFAULT NULL,
 `dimension_diameter` double DEFAULT NULL,
 `shape` enum('round','rectangular') DEFAULT NULL,
 `type` text,
 `structure_count` int(11) DEFAULT NULL,
 `structure_present` enum('Y','N') DEFAULT NULL,
 `room_count` int(11) DEFAULT NULL,
 `room_present` enum('Y','N') DEFAULT NULL,
 `post_hole_count` int(11) DEFAULT NULL,
 `post_hole_present` enum('Y','N') DEFAULT NULL,
 `pit_count` int(11) DEFAULT NULL,
 `pit_present` enum('Y','N') DEFAULT NULL,
 `entrance_count` int(11) DEFAULT NULL,
 `entrance_present` enum('Y','N') DEFAULT NULL,
 `orientation` enum('N','NE','E','SE','S','SW','W','NW') DEFAULT NULL,
 `period` text,
 `year_begin` int(11) DEFAULT NULL,
 `year_end` int(11) DEFAULT NULL,
 `material_roof` text,
 `material_walls` text,
 `construction_techniques` text,
 `landscape_context` text,
 `living_area` text,
 `volume` text,
 `function` text,
 `multiple_building_phases` enum('Y','N') DEFAULT NULL,
 `comments` text,
 `references` text
) ENGINE=MyISAM AUTO_INCREMENT=38 DEFAULT CHARSET=latin1;

-- Table structure for table `structure_artifact`
--
CREATE TABLE IF NOT EXISTS `structure_artifact` (
`artifact_id` int(10) unsigned NOT NULL,
`artifact_name` varchar(255) NOT NULL,
`element_name` varchar(255) NOT NULL,
`period` varchar(255) DEFAULT NULL,
`start_date` varchar(255) DEFAULT NULL,
`end_date` varchar(255) DEFAULT NULL,
`type` text,
`material` text,
`count` int(11) DEFAULT NULL,
`count_upper` int(11) DEFAULT NULL,
`%_count` decimal(11,2) DEFAULT NULL,
`weight` decimal(11,2) DEFAULT NULL,
`%_weight` decimal(11,2) DEFAULT NULL,
`location` text,
`function` text,
`comments` text,
`related_to` varchar(255) DEFAULT NULL,
`references` text
) ENGINE=MyISAM AUTO_INCREMENT=71 DEFAULT CHARSET=latin1;

-- ---

-- Table structure for table `structure_element`

--

CREATE TABLE IF NOT EXISTS `structure_element` (
`element_id` int(10) unsigned NOT NULL,
`element_name` varchar(255) NOT NULL,
`house_name` varchar(255) NOT NULL,
`type` text,
`count` int(11) DEFAULT NULL,
`count_upper` int(11) DEFAULT NULL,
`location` text,
`diameter` double DEFAULT NULL,
`depth` double DEFAULT NULL,
`average_diameter` double DEFAULT NULL,
`average_depth` double DEFAULT NULL,
`area` text,
`orientation` enum('N','NE','E','SE','S','SW','W','NW') DEFAULT NULL,
`material` text,
`length` double DEFAULT NULL,
`width` double DEFAULT NULL,
`function` text,
`multiple_building_phases` enum('Y','N') DEFAULT NULL,
CREATE TABLE IF NOT EXISTS `structure_feature` (
 `feature_id` int(10) unsigned NOT NULL,
 `feature_name` varchar(255) NOT NULL,
 `house_name` varchar(255) NOT NULL,
 `period` varchar(255) DEFAULT NULL,
 `start_date` varchar(255) DEFAULT NULL,
 `end_date` varchar(255) DEFAULT NULL,
 `type` text,
 `count` int(11) DEFAULT NULL,
 `count_upper` int(11) DEFAULT NULL,
 `location` text,
 `diameter` double DEFAULT NULL,
 `depth` double DEFAULT NULL,
 `average_diameter` double DEFAULT NULL,
 `average_depth` double DEFAULT NULL,
 `area` text,
 `orientation` enum('N','NE','E','SE','S','SW','W','NW') DEFAULT NULL,
 `material` text,
 `length` double DEFAULT NULL,
 `width` double DEFAULT NULL,
 `function` text,
 `multiple_building_phases` enum('Y','N') DEFAULT NULL,
 `comments` text,
 `related_to` varchar(255) DEFAULT NULL,
 `references` text
) ENGINE=MyISAM AUTO_INCREMENT=2 DEFAULT CHARSET=latin1;

-- Indexes for dumped tables
--

-- Indexes for table `distribution_sites`
--

ALTER TABLE `distribution_sites`
ADD PRIMARY KEY ("site_name");

--
-- Indexes for table `settlement_artifact`
--
ALTER TABLE `settlement_artifact`
ADD PRIMARY KEY ("artifact_id");

--
-- Indexes for table `settlement_element`
--
ALTER TABLE `settlement_element`
ADD PRIMARY KEY ("element_id");

--
-- Indexes for table `settlement_feature`
--
ALTER TABLE `settlement_feature`
ADD PRIMARY KEY ("feature_id");

--
-- Indexes for table `structure`
--
ALTER TABLE `structure`
ADD PRIMARY KEY ("element_id");

--
-- Indexes for table `structure_artifact`
--
ALTER TABLE `structure_artifact`
ADD PRIMARY KEY ("artifact_id");

--
-- Indexes for table `structure_element`
--
ALTER TABLE `structure_element`
ADD PRIMARY KEY ("element_id");

--
-- Indexes for table `structure_feature`
--
ALTER TABLE `structure_feature`
ADD PRIMARY KEY ("feature_id");

--
-- AUTO_INCREMENT for dumped tables
-- AUTO_INCREMENT for table `settlement_artifact`

ALTER TABLE `settlement_artifact`
MODIFY `artifact_id` int(10) unsigned NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=551;

-- AUTO_INCREMENT for table `settlement_element`

ALTER TABLE `settlement_element`
MODIFY `element_id` int(10) unsigned NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=158;

-- AUTO_INCREMENT for table `settlement_feature`

ALTER TABLE `settlement_feature`
MODIFY `feature_id` int(10) unsigned NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=498;

-- AUTO_INCREMENT for table `structure`

ALTER TABLE `structure`
MODIFY `element_id` int(10) unsigned NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=38;

-- AUTO_INCREMENT for table `structure_artifact`

ALTER TABLE `structure_artifact`
MODIFY `artifact_id` int(10) unsigned NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=71;

-- AUTO_INCREMENT for table `structure_element`

ALTER TABLE `structure_element`
MODIFY `element_id` int(10) unsigned NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=2;

-- AUTO_INCREMENT for table `structure_feature`

ALTER TABLE `structure_feature`
MODIFY `feature_id` int(10) unsigned NOT NULL
AUTO_INCREMENT,AUTO_INCREMENT=104;
APPENDIX D – PARAMETERS FOR KERNEL DENSITY ESTIMATION

Examples of tool settings and selected parameters for the kernel density estimation (Chapter Seven). Software: Esri’s ArcGIS 10.5, tool: Kernel Density.
APPENDIX E – HER SEARCH TERMS

The following constitutes a template of search terms requested from HERs, derived from Historic England’s Heritage Thesaurus (http://thesaurus.historicengland.org.uk). These keywords were not completely standardized, as they were adapted during the data collection process based on HER officer recommendations or limited by the number of search terms that each HER could accommodate in an enquiry. Enclosure, settlement, hillfort, and villa were always included. This represents a more expansive list than could be included within the scope of the project, which did not end up undertaking a systematic analysis of features such as trackways and droveways (see Chapter One).

- **Enclosure**
- **Religious, Ritual and Funerary**
 - Altar
 - Amphitheatre
 - Ritual pit
 - Ritual shaft
 - Stockaded enclosure
 - Temple
- **Settlement**
 - Enclosed settlement
 - Enclosed hut circle settlement
 - Enclosed oppidum
 - Hillfort
 - Bivallate hillfort
 - Multiple enclosure fort
 - Multivallate hillfort
 - Univallate hillfort
 - Hilltop enclosure
 - Palisaded hilltop enclosure
 - Oppidum
 - Enclosed oppidum
 - Palisaded enclosure
 - Palisaded homestead
 - Palisaded settlement
 - Promontory fort
 - Cliff castle
 - Hamlet
 - Homestead
 - Hut circle settlement
 - Enclosed hut circle settlement
 - Unenclosed hut circle settlement
 - Open site
 - Trading settlement
 - Town
 - Unenclosed settlement
• Agriculture and subsistence
 o Ditch system
 o Farm
 o Farmstead
 o Farmyard
 o Field
 o Field System
 o Stock enclosure
 o Villa

• Transport
 o Bridge
 o Causeway
 o Road
 ▪ Drove road
 ▪ Trackway
 ▪ Road bridge
EDUCATION:

2017 Ph.D., Anthropology, University of Wisconsin–Milwaukee
 Minor in Art History
 Dissertation: Shifting Ground: Rethinking Concepts of Continuity and Change in Late Iron Age and Early Roman Landscapes of Southern England
 Committee Chair: Bettina Arnold

2010 M.S., Anthropology, University of Wisconsin–Milwaukee
 Thesis: Gender, Domestic Space and Temporality in Late Iron Age and Early Roman Dorset

2008 B.A. (Highest Distinction), Anthropology (Highest Honors) & Latin (Highest Honors), University of Michigan, Ann Arbor

GRANTS, FELLOWSHIPS, AND AWARDS:

2014–16 CHCI Integrative Graduate Humanities Education and Research Training (IGHERT) Dissertation Fellowship. Funded by the Andrew W. Mellon Foundation, administered at the UWM Center for 21st Century Studies

2014–15 Chancellor’s Golda Meir Library Scholar Award, UWM

2014–15 Wenner-Gren Foundation Dissertation Fieldwork Grant, Gr. 8948

2008–10 Chancellor’s Graduate Student Award, UWM

2007–08 Award for Outstanding Accomplishment in Classical Studies, The Classical Association of the Middle West and South

PUBLICATIONS:

Journal Articles

Edited Journal Special Issues

CONFERENCE PRESENTATIONS:

ORGANIZED CONFERENCE SESSIONS:

CAMPUS TALKS:

PUBLIC PRESENTATIONS AND MEDIA:

FIELDWORK, LABORATORY, AND MUSEUM EXPERIENCE:

2013 Archaeological Technician. Commonwealth Cultural Resources Group, Inc., Milwaukee, WI.

2012 Crew Member. The Durotriges Big Dig Archaeology Field School. Bournemouth University, United Kingdom.

2009 Crew Member. Carapelle Valley Survey Project. University of Foggia, Italy.

2007 NSF-Intern. International Field School on the Swabian Alb, Germany. University of Illinois at Springfield, University of Tübingen, Germany.

TEACHING:

University of Wisconsin–Milwaukee

Laboratory Instructor Biological Sciences: Human Anatomy and Physiology I (Fall 2016, Spring 2017)

Teaching Assistant Anthropology: Human Origins (Fall 2008, Spring 2009, Fall 2009, Spring 2010, Spring 2013)

Anthropology and Celtic Studies: The Celtic World (Fall 2012)

Anthropology: Lifeways in Different Cultures: A Survey of World Societies (Fall 2011, Spring 2012)

Guest Lecturer Celtic Studies: Overview of the History and Cultures of the Celtic World (Fall 2010, “Archaeology of Celtic Europe,” Sept. 8 & 15)

SERVICE:

2014–2017 Co-Editor-in-Chief. *Field Notes: A Journal of Collegiate Anthropology*

2011–2017 Reviewer and Copyeditor. *Field Notes: A Journal of Collegiate Anthropology*
2016 Mentor. UWM Anthropology Student Union Mentorship Program

2014 UW–Milwaukee Sabin Hall Anthropology Education and Promotional Exhibits Project

2014 Planning Committee Member. UWM Anthropology Student Union Student Colloquium. March 29

2013–14 President. UWM Anthropology Student Union

2013 Coordinator. UWM Anthropology Student Union Student Colloquium. Feb. 24

2012–13 Vice President. UWM Anthropology Student Union