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ABSTRACT  
SURFACE ALLOYING OF PLAIN-CARBON STEELS DURING THE CASTING 

MANUFACTURING PROCESS 

 

 by  

Michael Beining 

 

The University of Wisconsin-Milwaukee, 2017 

 Under the Supervision of Professor Pradeep Rohatgi  

 

 

At times, the surface properties of an engineered component must be improved or 

enhanced when compared to the bulk of the component. Thus, various methods of surface 

alloying, one of the most important surface engineering processes, have been studied and 

developed for the decades. This study is concerned with the modification of the surface of WCB 

plain-carbon steel to improve corrosion and wear resistance of components used in the fresh 

water industry. The objective is to create a corrosion and wear resistant surface on an engineered 

component by enriching the surfaces with nickel or nickel and chromium, while the bulk of the 

component is composed of cheaper plain-carbon steel.  

A unique, novel method for surface alloying has been created in this study, which 

involves the incorporation of metal powders of selected size into a slurry using a binder. This 

slurry was coated onto traditional sand cores prior to pouring the molten steel to produce the 

castings. The cores are placed in a sand mold, and the plain-carbon steel is cast, fills the mold, 

and comes in contact with the core, melting the alloying elements and rapidly solidifying them 

on the surface of the casting. Once solidified, the surface of the casting is expected to be 

enriched by with nickel or nickel and chromium on the surface.  
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Maynard Steel Casting Company in Milwaukee, WI assisted the project by casting the 

steel samples, and various UWM experiments were conducted using an induction coil capable of 

melting steel. Once the samples were prepared so that the cross-section of the WCB steel with 

the enriched layer could be analyzed, various analytical tests were conducted to demonstrate 

surface enrichment. Optical microscopy was used to view the quality and measure the depth of 

the surface layer, as well as to analyze the microstructure. The average thickness of the enriched 

layer for the successful trials was 339μm. An SEM was used to provide quantitative chemical 

analysis of the samples, which showed a chemical composition on average of 19% chromium 

and 7% nickel, with an iron balance. X-ray diffraction was used to investigate the phases present 

in the surface, which showed the presence of austenite and ferrite, similar to the diffraction 

pattern of CF3 stainless steel. Microhardness tests show that the surface has an average hardness 

of 484 HV500, while plain-carbon steel has a hardness of 155 HV500, indicating a greater wear 

resistance for the enriched surface. The rate of corrosion of the surfaces enriched with nickel and 

chromium showed a range of 0.066 – 0.087 mm/yr, while typical plain-carbon steel showed a 

rate of 0.609 mm/yr, indicating the enriched surface is 10.8 - 14.0 times more corrosion resistant 

than the base steel. This indicates that surface enrichment has occurred during this casting 

method, and the wear resistance increased as well as the corrosion resistance.   
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1. Introduction 

 

 The goal of this study is to investigate a new process for modifying the surface of a 

material, and to see how this surface affects selected properties of the component. The base 

material that was surface modified was WCB grade plain carbon steel, and the alloying elements 

that were chosen to enrich the surface of this base alloy steel were nickel and chromium. By 

changing the chemical composition of the surface, the corrosion resistance and wear resistant 

properties became enhanced, and therefore replace expensive components made out of stainless 

steel with this new technology. The scope of this novel research project included the following 

items 

 

1. Research a new way to achieve surface alloying via the sand casting method 

2. Select the right alloying elements that would help enhance corrosion and wear 

resistance 

3. Create the optimum binder and metal powder sizes and mold coating procedures to 

achieve surface alloying in laboratory and industrial scale experiments  

4. Characterize the surface enriched samples using various analytical techniques for 

changes in surface composition and structure 

5. Measure the corrosion and hardness properties of the samples 

 

The initial challenge was to discover a way to transfer the alloying elements to the 

surface of the desired component, in a reproducible way that ensured a continuous coating. Once 
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that method was achieved, the next task was to characterize the surface chemistry and other 

properties of the samples. Throughout the course of this thesis, the reader will be able to follow 

the methodology of how the surface enrichment took place, how the various complications of the 

initial experimentation were overcome, and what characterization methods were used.   

 

2. Literature Review and Background 

 

2.1 Steel Alloys 

The processes used to successfully achieve nitriding and carburizing in ferrous alloys 

have been well studied and achieved both in the laboratory and in the industry. Instead of 

producing a modified layer on the surface steel using techniques suitable for nitriding or 

carburizing, the goal of this work is to achieve a metallic layer metallurgically bonded to the 

steel during the casting process itself. A unique method for coating sand cores with powdered 

elemental chromium and nickel prior to casting WCB steel has been developed. The target of 

this project is to achieve a chemistry of CF3 stainless steel on the surface of the WCB steel 

during casting, and to investigate and analyze the chemical and physical properties the samples. 

The use of quality steels of all grades is in high demand for applications in the freshwater 

industry. Plain carbon, WCB grade steel castings are utilized for components like valves, 

fittings, flanges, and pump casings, and are suitable for both low and high temperature 

applications[1]. According to ASTM-A216, WCB is acceptable for use in the temperature range 

of -20°F to 800°F for freshwater applications. WCB has a good combination of strength and 

ductility, with a tensile strength of 70,000 psi, a yield strength of 36,000 psi, and a 26% 

elongation[2].  
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In addition to its attractive physical properties, at $0.79/pound on the market today, it is 

inexpensive compared to its stainless steel counterparts. It has excellent castability and 

forgability, and can easily be welded and machined[3]. In addition, this alloy can be heat treated 

by annealing or normalizing to further improve the mechanical properties. This allows for WCB 

to be an advantageous material selected for many industries that require strong, low-cost 

applications, but this study will be focused primarily on components used in the water industry. 

The ASTM chemistry specifications for WCB are listed below in Table 1[4].  

 

 

Alloy 

 

Carbon % 

 

 

Manganese % 

 

Copper % 

 

Nickel % 

 

Chromium % 

 

Fe % 

WCB 0.3% Max 1.0% Max 0.3% Max 0.5% Max 0.5% Max Bal 

CF3 0.03% Max 1.5% Max 1.0% Max 8.0-12.0% 17-21% Bal 

 

Table 1: WCB and CF3 Alloy Compositions 

 

 The CF3 alloy is the most versatile and widely used alloy in the stainless steel family[5]. 

Referred to the standard ‘18/8 stainless’, this material is utilized in a wide variety of 

applications, including food processing equipment, particularly beer brewing, milk processing, 

kitchen appliances, architectural applications, nuclear applications, high-temperature 

applications, automotive and aerospace applications, heat exchangers, chemical containers, and 

components in pumps as well[6]. The incorporation of chromium and nickel (particularily around 
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18% chromium and 8% nickel) in this alloy is what makes it stainless, meaning the chromium 

produces a protective layer of chromium oxide when exposed to moisture, hindering the rate of 

corrosion[7]. This allows for the material to be used in harsh oxidizing environments, such as in 

seawater, or exposure to acids. Fresh water also promotes oxidation, which is why this alloy is 

used for fresh-water valves and pump casings.  

 In addition to the good corrosion resistance, CF3 (and other grades of stainless steel) 

possess mechanical and physical properties very similar to that of WCB and other low-carbon 

steel alloys. According to the ASTM-A351 standard for CF3, the tensile strength is 70,000 psi, 

the yield strength is 30,000 psi, and the elongation is 35%, giving a greater ductility than 

WBC[8]. Although the physical properties of CF3 are as good as WCB, it is three times as costly. 

The price for this alloy is $2.80/pound, which is due to the expensive qualities of nickel and 

chromium. The chemistry of the CF3 alloy is listed below in Table 1[9].  

 The driving factor behind this research project is to utilize a low-cost bulk material, such 

as WCB, which inherently possesses good mechanical properties, and modify only the surface of 

it to enhance the corrosion resistant and hardness properties. This will be beneficial in the 

freshwater industry because components like valves and flanges, which are already made of cast 

WBC, will have enhanced corrosion and wear resistant surfaces which are in contact with the 

water, while the rest of the component is made from cheaper material. The cost of the surface 

alloyed component should be cheaper than a component cast from 100% CF3. The current 

methods of laser alloying, laser cladding, and plasma nitriding are relatively expensive methods 

of surface modification, which is why a cheaper casting method has been considered. The ideal 

component should have a uniform, adherent layer, with chemistry close to that of CF3 stainless 

steel, which will increase the physical and chemical properties without compromising cost, 

which is the goal of this project.  
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2.2 Carburizing  

 One of the oldest surface hardening methods, dating back 3000 years ago[10], is 

carburizing, which is now a well-understood and established process. Carburizing involves 

diffusion of the element carbon into the surface of the substrate, which results in an increase in 

hardness of the surface layer. When steel is placed in a carbonaceous environment for a period 

of time at an elevated temperature, the carbon diffuses into the steel matrix due to a 

concentration gradient that exists[11]. Although the carburizing media is in solid state, there is not 

a solid-solid interaction between the steel and the carbon. Instead, oxygen in the air reacts with 

the carbon in the carburizing media, and the following reactions occur:  

𝐶 + 𝑂2  → 𝐶𝑂2 

2𝐶 +  𝑂2 → 2𝐶𝑂 

When the temperature rises, the following reaction occurs and the equilibrium shifts toward 

the right. Thus, the gas becomes richer in CO, and at a temperature at or greater than 800°C, the 

following reaction occurs:  

𝐶𝑂2 + 𝐶 ↔ 2𝐶𝑂 

Which is commonly known as the ‘Boudouard reaction’[12]. At the steel/gas interface, the 

decomposition of carbon monoxide gas occurs via the following reactions:  

2𝐶 +  𝑂2 → 𝐶𝑂2 + 𝐶𝑎𝑡𝑜𝑚𝑖𝑐 

𝐹𝑒 +  𝐶𝑎𝑡𝑜𝑚𝑖𝑐 → 𝐹𝑒(𝐶) 
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where near the surface of the steel, Fe(C) is the carbon that is dissolved and diffused into the 

austenite phase. Because of the size difference between the iron and carbon, and due to the 

concentration gradient and high temperature, carbon readily dissolves into the steel surface[12]. 

An increase in temperature, time, or the amount of carbon present will also increase the rate of 

the reaction and amount of carbon diffused. Carburization is a 3000-year-old technique that is 

still used today to increase the hardness of the surface of steel and increase its wear resistance. 

One of the objectives of this study is to investigate and determine if the surface produced 

through surface alloying with chromium and nickel will achieve a harder surface, although the 

reason for the increase in surface hardness may be different than through carburization.  

 2.3 Laser Surface Alloying 

 Laser surface alloying is a method used to modify the surface properties of a material 

without affecting its bulk properties[13], and is used especially for titanium alloys used in the 

biomedical sector[14]. Titanium is a favorable material to be used in the body due to its good 

biocompatibility, corrosion resistance, and a high specific strength similar to that of human 

bone[15]. The major downfall of titanium is its lack of hardness and poor wear resistance. 

However, laser remelting of titanium in a nitrogen-containing environment, also known as laser 

gas nitriding (LGN), and gained popularity for increasing the wear resistant and hardness 

properties of titanium[16]. Similar wear resistance and increased hardness findings have been 

discovered in aluminum alloys which have undergone laser surface alloying[17]. 

 Some of the advantages of using LGN over other diffusion-based surface treatments 

include being able to deliver large power/energy densities (103-105 W/cm2), a high heating to 

cooling rate (103-105 K/s), and high solidification velocities (1-30 m/s). The surface 

microhardness increased nearly four times when subjected to this method of laser alloying 
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compared to the non-laser treated substrate[14]. Typically, a laser, along with a supply of powder 

entrained in a carrier gas, passes over the surface of the metal substrate[18]. The heat generated by 

the laser immediately melts both the powder and the metal substrate, and once it passes over that 

region, the two solidify rapidly[19]. There are high rates of deposition with this method, as well as 

a low heat affected zone, and a refined microstructure as a result. The major downfall is the high 

cost of using this method, as well as requiring non-complex geometries of components. There is 

also a limitation in the thickness of the surface alloyed layer using this technique[20]. Figure 1 

below shows a typical setup schematic for laser surface alloying. 

 

Figure 1[21]: The schematic diagram of a laser alloying operation. 

Other alloying elements that are typically used in laser surface alloying processes are usually 

metals, such as cobalt, chromium, magnesium, nickel, and tungsten. Ceramics, such as carbides, 

nitrides, and borides, as well as nickel-based superalloys, are also used in laser surface 

alloying[22].   

2.4 Friction Stir Welding 
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 Another emerging surface engineering method is friction stir welding, which has been 

successful at surface alloying aluminum, copper, iron, and nickel based alloys. Capable of 

reducing or eliminating casting defects, this process is capable of improving strength, wear, and 

fatigue properties[23]. Microstructural refinement is also a beneficial byproduct of friction stir 

processing[24].  This method involves plunging a rapidly spinning, hard consumable drill bit tool, 

which consists of the alloying element which is desired to be deposited onto the surface, into the 

surface of the metal component, and then traversing the bit across the surface. Figure 2 below[25] 

shows a schematic for a friction stir weld process. The rotating pin moves at a high velocity, and 

is dragged along the length of the junction, creating the weld.  

 

Figure 2: Diagram of a friction stir welding set-up. http://www.uqac.ca/ceeuqac 

When the pin dragged along the surface, extreme heating and plastic deformation occurs, 

causing the metal to flow around the bit and solidify in the bit’s wake. Aluminum metal matrix 

composites (MMCs) consist of an aluminum matrix reinforced with ceramic materials[26]. They 

exhibit properties better than either parent material, including strength, elastic modulus, wear 

resistance, creep resistance, and fatigue resistance[27]. They are promising materials for 
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aerospace and automotive industries. By modifying the surface of these aluminum MMCs, they 

can become surface metal matrix composites (SMMCs), which exhibit a hard, wear resistant 

surface, and a ductile substrate[28]. 

Solid-state processing methods like friction stir welding are favorable because they do 

not require the formation of liquid state during manufacture, and produces very fine, equiaxed, 

homogeneous grain structures[28]. In the liquid state, the formation of some detrimental phases 

on the surface could occur during solidification of these SMMCs. Friction stir welding is a good 

choice in fabricating these composite materials, as it is entirely solid-state. The bonding of SiC 

and TiC particles on the surface of aluminum alloys has been successful, with a good particle 

bond with the metal matrix[29].  

2.5 Plasma Source Ion Implantation 

Another method of surface modification, plasma source ion implantation (PSII) is similar 

to traditional ion implantation, but this new cost-efficient modification forms an ion sheath 

around the substrate, and then bombards it with ions[30]. It uses a pulsed power supply with a 

maximum voltage of 25 kV and a current of 10 A with frequencies varying from 10 to 5 kHz[31]. 

PSII can be combined with thin film deposition systems as well, and may be used with 

nonreactive or reactive gasses, forming compound films.  

In comparison with plasma nitriding, PSII treated stainless steels show better properties, 

although the cost for using PSII is higher[32]. In the case of austenitic stainless steels, PSII 

provides a wear resistance three times higher than the untreated counterpart, with no loss in the 

good corrosion resistant properties. Ion implantation is regularly applied to harden surgical 

prostheses before implantation into the body, making it a favorable technique in surface 

modification of biomedical devices[33]. 
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2.6 Sand Casting Method 

Surface modification by means of any casting method, including sand, permanent die, 

continuous, or investment, have not been taken into consideration. The process that this project 

focuses on is the enrichment of a steel surface by means of sand casting. It is not a diffusion-

driven process like carburizing, nitriding, siliconizing, and chromizing, nor is it a melted-on, 

welded, or ion-bombarded process. Unlike the pricey, geometrically constrained methods like 

friction stir welding and ion-nitriding and implantation, this method uses the simplicity and 

inexpensiveness of sand casting to achieve an enriched surface layer. The following section 

explains the experimental methodology to achieve the desired results.  

 

3. Experimental Section  

The major experimental efforts for this study consisted of designing and perfecting a unique 

method to enrich the surface of WCB steel during the casting process, specifically sand castings 

both in an industry setting and experimentally in the Foundry Laboratory as well. Under the 

guidance of Dr. Hathibeligal Roshan of Maynard Steel Casting Company in Milwaukee, WI, 

two industrial heats were made during the course of this study. The unique method of enriching 

the surface of the castings involved creating a slurry with an appropriate binder that was mixed 

with powdered alloying elements of fixed mesh sizes. The objective was to create a suitable 

slurry that would effectively stick to the sand mold upon drying after application, and would 

allow for the molten steel to melt the powdered alloying elements during casting, leaving a good 

surface finish with a coherent surface alloyed layer. The details of both heats conducted at 

Maynard Steel, as well as all of the UWM Laboratory trials, are detailed in the following 

subsections.  
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3.1 First Maynard Heat and Set of UWM Experiments 

Often times, sand casting operations utilize the use of cores inside their molds to achieve 

products of complex geometries. Typically made from sand, a core is a rigid structure that forms 

the interior portion of the sand mold. The interior part of the sand mold gives an area for the 

metal to flow, while the core creates the negative of the desired product, as the metal cannot 

flow into any area occupied by the core. Since components used in the freshwater industry, such 

as pumps and valves, almost always require the use of cores in their sand molds, and because the 

surface that comes in contact with water and is therefore desired to it enrich touches the sand 

core while molten during casting, was decided to apply the slurry directly to the sand core prior 

to casting.  

 The slurry in consideration, which would be applied directly to the sand core, had two 

critical requirements that needed to be considered. First, it needed be made with a binder that 

would appropriately adhere to the surface of a sand mold, while also allowing for the alloying 

elements to release during the casting process when it came in contact with the molten steel. 

Secondly, the slurry needed to contain alloying elements that were in powder form, would 

effectively melt below the melting temperature of WCB steel, and would give rise to 

advantageous properties on the surface after casting.  

 Maynard Steel Company provided Refcohol 1010 refractory wash to be used as a binder 

for the slurry prior to the first heat being poured. This zircon-based wash, which is applied to the 

interior of the sand mold, along with the any cores inside of it, is alcohol based, protects the sand 

from sand burn on, prevents reactions from happening between the molten metal and the sand, 

and gives a good quality finish to the final product. It is always necessary to apply a refractory 

wash to the interior of sand molds in an industry setting. Since refractory wash is commonly 

used in sand foundries, it made for an acceptable first choice of a binder material in the slurry.  
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 The sand cores were provided by Maynard Steel and were made from no-bake sand. 

They were ¾” tall, the bottom circular diameter measured 2” and the top diameter measured 1”. 

Figure 3 below shows 12 sand cores, along with the mold that they were made in. 

 

 

 

Figure 3: Core box and 8 uncoated sand cores provided by Maynard Steel  

 

 The alloying elements that were chosen to coat the cores were copper and nickel for this 

initial heat at Maynard Steel. Copper inherently possesses good corrosion-resistant properties, 

and nickel is added to stainless steel for its good corrosion-resistant properties too. The two 

elements were ordered from Sigma Aldrich with a mesh size of <50 μm, and a purity of 99.5%. 

A design of experiments was used with three variables, and a low and a high value for them, 

giving a combination of 32, or 9 different possibilities. Table 2 below gives the details of the 

design of experiments for the first round of samples cast at Maynard Steel.  
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Table 2: Design of experiments for the first heat poured at Maynard 

 

  

Initially, 20 mL of industry wash was used as the binder, and then various amounts of powders 

were added, depending on the level for each factor. Once the powders were added to the wash, 

they were mixed by hand until they solution was homogeneous. A paintbrush was then used to 

carefully add the correct amount of slurry onto the sand core. Once the slurry was added to the 

core, it was ignited with a blowtorch to dry and solidify it. The mass was taken after the slurry 

was dried to make sure that the core contained the correct amount based on the level. If there 

was not enough slurry, more was added with the paintbrush and it was again ignited. If too much 

was added, some of the hardened slurry would be removed carefully by rubbing the top of it with 

600 grit sandpaper. The tops of all of the samples were carefully rubbed with 600 grit size 

sandpaper, and then marked accordingly. Figure 4 below shows the top of a sand core on fire 

after being ignited, and figure 5 shows the dried slurry containing the alloying elements and 

industry wash on 8 cores.  

 

 

 

 

 

Factor Low Level (-1) High Level (+1) 

Composition 3g Ni 6g Ni 

Mass of Baked-on Wash 15g 30g 

Copper Addition 0g Cu 3 Cu 
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Figure 4: The top of a sand core that has been ignited with a blowtorch. 

 

 
 

Figure 5: Eight cores with alloying element-containing slurry hardened on top of them. The tops 

of the cores had been smoothed with sandpaper. 

 

 Once all of the cores were prepared, they were delivered to Maynard Steel for casting. 

The cores were placed inside the middle of a rectangular test block pattern inside a large mold. 

Figure 6 illustrates the cope and drag in which the cores were placed, and Figure 7 shows the 

cores placed inside the drag side of the mold.  
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Figure 6: The cope and drag of the sand molds in which the cores were placed. 

 

 

Figure 7: The drag side of the sand mold with the sand cores placed inside the test cavities. The 

mold was then closed, and steel was cast into it. 

 

 Once the cores were placed into the test cavities and the mold was shut, it was time to 

cast the steel. The WCB was brought to a temperature near 1600°C and poured into the mold. 
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After that, the samples were shot-blasted and normalized, and were then sent to UWM for 

analysis.  

 Each sand core cavity was capable to filling up ten pounds of steel, and Figure 8 shows 

the test block with the supposed enriched surface. The center was cut out into a small cube, as 

the center face is the one that was enriched. The UWM machine shop cut the samples with a 

band saw, and a metallographic abrasive saw was used to cut them into smaller cube samples. 

Figure 9 shows where the sample was cut out so that the cross-section could be observed. 

 

Figure 8: The ten-pound test block. The enriched surface is the one that came in contact to the 

slurry, which is the flat, recessed surface that is visible. 
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Figure 9: The center cube was cut out from the test block. This sample was mounted in such a 

way that the cross-section from the surface into the substrate could be studied. 

 

 The samples were then taken to a mounting machine and were mounted in black phenolic 

powder. They were then ground with silicon carbide paper with grit sizes 320, 400, 600, 800, 

and 1200. After that, they were polished with 0.5 micron sized alumina, and were then etched for 

5 seconds with 3% Nital solution. The samples were then subjected to various characterization 

tests, including optical microscopy, a scanning electron microscope (SEM), energy dispersive 

spectroscopy (EDS), microhardness tests, X-Ray Diffraction, and finally potentiodynamic 

polarization test.  

 Meanwhile, as the samples were being poured at Maynard Steel, experiments were being 

conducted in the foundry laboratory at UWM. The same principle of coating cores with a slurry 

was being utilized, but in this case, a small vacuum induction furnace was used to melt the steel. 

A quartz tube closed system apparatus was designed so that no physical pouring was done. 

Instead, pieces of WCB steel were placed inside a small graphite crucible with a hole drilled out 

of the bottom. A coated sand core was then placed underneath the hole so that upon melting, the 

steel would drip directly on top of the sand core, allowing for the alloying elements to be 

released onto the surface of the molten steel. A hollow graphite spacer was placed between the 

The center was cut from 

the sample for 

investigation 
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crucible and the coated core. Below the core, Kaewol was placed for safety incase some of the 

steel ran off and fell below the core, although this run-off never happened in any of the 

experiments. All of these casting components were placed inside a quartz tube, which was then 

attached to a vacuum pump. Figure 10 is a picture of the quartz tube with all of the components 

inside. 

 
Figure 10: The quartz tube with all of the components used for casting in a small induction 

furnace. 

 

 Once all of the components of the melting set-up were placed inside the quartz tube, it 

was then connected to a vacuum pump and brought to a low vacuum condition. This ensured that 

oxidation would be at a minimum when the metal became molten and dripped onto the core. The 

induction furnace was then turned on, and the voltage was slowly ramped up at a rate of 15 

amperes/minute, until it reached 210 amperes, and was held there for 2 minutes. After that, the 

power to the furnace was shut off, and the sample was allowed to cool. Figure 11 shows the 

glowing red-hot quartz tube while the steel was being melted, and the vacuum pump on top of it.  
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Figure 11: The red-hot quartz tube on the vacuum pump as the steel is being melted. 

 

 The setup was such that the induction coils were positioned so that they heated up the 

portion of the tube that contained the crucible with the steel pieces in them. After the metal fell 

onto the core and solidified, it was taken out of the tube and mounted and prepared the same way 

that the Maynard Steel samples were, so that they could undergo the same characteristic 

analysis. 

 3.2 Second Heat at Maynard Steel with New Slurry Design 

 

 After the first trial of Maynard Steel samples and UWM samples were shown not to be 

enriched in the surface, a new binder material for the slurry was explored. The previous 

industrial wash binder did not allow for release of the alloying elements into the surface, so two 

other binders, methylcellulose and sodium polyacrylate, were considered. Both of these have 

been used for casting applications as binders, so both of the chemicals were purchased from 

Sigma Aldrich. 
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 It was decided that water was to be added to either of these chemicals to create the slurry 

in which powdered metallic alloying elements would be incorporated into. The methylcelluse 

was considered first, and when water was added to it, the methylcellulose did not absorb any of 

the water, and was simply suspended in it. The methylcellulose seemed to have no reaction with 

the water when stirred, shaken, or was allowed to set for a period of time. Therefore, the second 

potential binder chemical, sodium polyacrylate, was tried. This chemical is the active absorbent 

material in diapers, and is very efficient at absorbing and retaining liquids. Initially, 4 grams of 

sodium polyacrylate were attempted to be dissolved into 100 mL of distilled water. This was 

discovered to be a more than sufficient amount of powder, as see in Figure 12. 

 

 

Figure 12: The results of adding 4g sodium polyacrylate to 100 mL of water. The water became 

supersaturated almost instantly, and a lesser amount of binder was required. 

 

 After various experiments were conducted to determine the appropriate binder-to-water 

ration, it was determined that 0.3g of sodium polyacrylate being added to 100mL of water was 

sufficient. The solution was then placed in a Resodyn acoustic mixer and mixed at 80% intensity 

for 2 minutes to allow for a homogenous, viscous solution to form. Figure 13 shows the water 

and binder material solution after it has been acoustically mixed for two minutes. 
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Figure 13: The sodium polyacrylate and water solution after it has been acoustically mixed for 2 

minutes. The solution is not ready for addition of alloying element powders. 

 

Once the binder material was mixed acoustically, powdered nickel was ready to be added 

to the solution to create the final slurry. It was decided that copper was not going to be added for 

the second heat at Maynard Steel, because copper generally is not present in large quantities of 

corrosion-resistant grades of steel. For the second heat at Maynard steel, there were 8 cores 

prepared with nickel powders. Four cores had the same amount of nickel present, 8 grams, while 

the other four had 10 grams. The cores were prepared and dried in a low-temperature furnace at 

70ºC for two hours. The resultant slurry coating appeared smooth, uniform, and covered the 

entire surface. Figure 14 shows the slurry-coated core before it was placed in the furnace for 

drying. 



 22 

 

Figure 14: The slurry-coated core still wet before drying in a low-temperature furnace. 

 Once the cores were dried properly and examined to make sure that the slurry on the 

surface was smooth and continuous, they were sent to Maynard Steel for a second heat of 

casting. Meanwhile, in the lab, experiments with powdered copper were being conducted to see 

if the slurry would release the alloying element into the substrate upon casting. The same 

induction melting setup was used, and this time, a core coated with copper powder in the sodium 

polyacrylate binder was places beneath the spacer and crucible containing the steel. The sample 

was removed after the steel was poured onto the surface, and was cross-sectioned and examined 

to determine if the slurry released the powder. Figure 15 shows the cross-section of the sample 

containing 45 grams of WCB steel interacting with 18 grams of copper powder slurry, and figure 

16 shows a stereomicroscopic image of the interface between the substrate and the copper at 8x 

magnification.  
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Figure 15: The mounted sample of copper and steel made by induction melting in the UWM 

foundry lab. 

 

 
 

Figure 16: The stereoscopic image of the steel sample enriched with copper, 8x magnification. 

  

3.3 Third Heat with Stainless Steel Composition 

 

The results from the second heat at Maynard Steel gave a promising result that an 

enriched layer of nickel powder was achieved. This gave the indication that the design of slurry 

was successful, and for the third heat at Maynard Steel, it was determined to use chromium as 

well as nickel, to give the surface a composition similar to that of CF3 grade stainless steel. 

Since consistent reproducibility is a major factor when transferring this technology to an 

industrial operation, all eight cores were coated with the same amount of chromium and nickel 

powder. 20 grams of chromium and 8 grams of nickel were added to approximately 7-8 mL of 
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binder solution and mixed by hand, so that the powders were just saturated enough with the 

solution to stick to the sand cores. The slurry was carefully applied using a tongue depressor and 

a metallic spatula, so that the slurry was evenly distributed with a good surface finish. The cores 

were then placed in the furnace at 70ºC for two hours to allow for proper drying and adhesion to 

the sand. Figure 17 shows the dried sand core containing nickel and chromium powders after 

removal from the furnace. The surface has an evenly distributed coating of slurry that is adhered 

to the sand core.  

 

Figure 17: The dried on nickel and chromium slurry prior to delivery to Maynard Steel. 

 Once all eight cores were coated with the slurry, they were given to Maynard Steel for 

casting. Meanwhile, more laboratory experiments using the latest nickel and chromium slurry 

design were conducted in the induction furnace. Four laboratory specimens were produced in the 

time between the delivery of cores to Maynard until the castings were received back at UWM. 

The following chapter will discuss the methods used to test and characterize the samples to 

indicate whether or not enrichment of the surface during casting occurred. 
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4. Results and Discussion 
 

4.1 Sample Organization 
 

 In this section, the discussion regarding the organization of the samples will be clarified. 

In the first heat at Maynard Steel, two samples will be analyzed to determine if enrichment 

occurred. In the second heat, four samples were selected for analysis, and in the third heat, four 

samples were also selected for analysis. Maynard Samples #1 and #2 correspond with the first 

heat, Maynard Samples #3, #4, #5, and #6 correspond with the second heat, and Maynard 

Samples #7, #8, #9, and #10 correspond with the third heat. Additionally, UWM Samples #1 and 

#2 were made using the first industrial wash-based slurry, and UWM Samples #3, #4, #5, and #6 

were made using the sodium polyacrylate-based binder, and were selected for analysis.  

 

4.2 Optical Microscopy Results  

The use of an optical microscope was beneficial in examining microstructures, as well as 

measuring the thickness of the enriched surface layer. For Maynard Samples #1 and #2, which 

underwent the normalizing heat treatment, it can be expected that pearlite and ferrite will be 

present in the WCB steel matrix, based on conclusions drawn from the time-transition-

temperature curve for steel. Figure 18 shows the microstructure of Maynard Sample #1. 
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Figure 18: The surface of Maynard Sample #1. Dark phases of pearlite should be 

expected, along with light phases of ferrite, as this sample was normalized. 

 

The results here indicate that there is no visible enrichment layer present of Maynard 

Sample #1. In addition, the first set of UWM induction experiments shows no surface layer as 

well. Figure 19 shows the microstructure of the UWM Sample #1. It was apparent then that the 

design of the first slurry using the industrial wash was a failure, and that no enrichment had 

occurred along the surface. EDS chemical analysis was able to confirm this as well. 

 

 

Figure 19: The surface of UWM Sample #1 showing pearlite and ferrite in the 

microstructure, although no surface layer is evident.  
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Once it was realized that the industrial wash-based slurry was a failure, and once the new 

slurry using sodium polyacrylate was created and implemented, the second trial at Maynard Steel 

using only nickel powder was cast. The samples were received, and once again examined under 

an optical microscope. Figure 20 shows the microstructure, as well as the surface measurements, 

of Maynard Sample #3. The microstructures of Maynard Samples #4, #5, and #6 are shown in 

Appendix 2.  

 

 

Figure 20: The microstructures of the surface and the substrate of Maynard Sample #3. 

 

Once again it is apparent that the microstructure of the substrate is ferrite and pearlite 

based on the premise of normalizing heat treatment[34]. The surface is more difficult to view, but 

it may be a martensitic structure, as the surface alloying powders could have acted as a chill, 

solidifying the surface rapidly and causing a martensitic microstructure to appear. It is also 

possible that there is an austenite phase present, as nickel acts as an austenite stabilizer[35].  

The third and final trial at Maynard consisted of chromium and nickel powders used in 

the slurry. Figure 21 shows the microstructure of Maynard Sample #7, enriched with chromium 

and nickel. Once again, the substrate shows ferrite and pearlite structures, and the highly 

reflective and shiny surface layer, which is difficult to etch. It could be expected that the 
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microstructure of the layer could consist of austenite and ferrite, as nickel is an austenitic 

stabilizer, and chromium is a known ferrite stabilizer. The microstructures and surface 

measurements of Maynard Samples #8, #9, and #10 are presented in Appendix 2. 

 

 

Figure 21: Microstructure of surface and substrate of Maynard Sample #7. 

 

 The final samples made at UWM had the same chemical composition on the surface of 

the sand core as the ones used in the last trial at Maynard. Figure 22 shows the microstructure of 

UWM Sample #3, which shows similar structures in the substrate and on the surface. UWM 

Samples #4, #5, and #6 are presented in Appendix 2.  

 

Figure 22: The microstructure the surface and substrate of UWM Sample #3. 
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 The surface measurements are also able to be observed under the optical microscope. 

Table 3 below shows the average surface thicknesses for the Maynard Samples. The UWM 

Samples were not practical to take surface measurements of, because the quality of the surface in 

terms of smoothness was far less than the quality of the cast Maynard samples.  

 

Maynard Sample  Average Thickness (μm) 

3 1342 

4 1298 

5 1387 

6 1423 

7 342 

8 297 

9 319 

10 325 

 

Table 3: The average thickness of the alloyed layer in Maynard Sample #3 - #10. 

 

 It is apparent here that the average thickness of the first four only nickel Maynard 

samples produced a thicker layer, compared to the next four nickel and chromium samples. 30 

measurements were taken for each sample to ensure a large amount of readings and a more 

accurate measurement of the surface. 

 

4.3 SEM and EDS Results 

Scanning electron microscopy (SEM) is one of the most popular techniques to examine 

and characterize metallic specimens, including those that are subjected to surface engineering. 

Instead of using light waves to view a sample, it bombards the surface of the sample with 

electrons, which provide a high-resolution image of the surface[35]. Magnifications are capable of 
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achieving up to 1,000,000x, while optical microscopes are limited to around 1,000x 

magnification. For the SEM used in this study, the incident electrons had energies of 15keV.  

The SEM can image the surface by bombarding and scanning it with a beam of high-

energy electrons. When the beam raster scans the sample, secondary or back-scattered electrons 

are excited and produced, which are collected by detectors[36]. The electrons are then converted 

to a voltage, amplified, and then displayed as an image on a computer screen. The SEM is able 

to provide surface topographical information as well as quantitative chemical analysis of 

crystalline samples. When the incident high-energy electrons are passed over the sample, 

characteristic x-rays are generated by the atoms within an element[37]. Each element has its own 

characteristic x-rays, which gives rise to the capability of using an SEM to perform quantitative 

chemical analysis. When the high-energy electrons hit the surface, they knock out inner shell 

electrons, in which case outer shell electrons move into the empty electron orbit of the 

sample[38]. At this stage, X-rays are emitted to balance out the conservation of energy. The 

measurements of these x-ray energies, or the wavelengths, can provide chemical information 

about the specimen. These x-rays are measured and detected by an energy dispersive X-ray 

spectrometer, or EDS. An EDS was used in this study to examine the chemical composition of 

the samples. Figure 23 shows the SEM image of the surface of Maynard Sample #3, as well as 

the EDS chemical results.  
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Figure 23: Chemistry, EDS spectrum, and area analysis of surface of Sample #3, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

It can be seen here that the nickel enrichment at the surface is 16.21%, with a balance of 

iron. Figure 24 shows the SEM image and EDS results of the substrate of Maynard Sample #3. 

Here, the steel substrate is almost entirely iron, with no presence of nickel. This indicates that no 

diffusion of nickel into the substrate layer occurred during casting. The results of the SEM and 

EDS analysis for Maynard Samples #4, #5, #6, and #7 are presented in Appendix 1.  
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Figure 24: Chemistry, EDS spectrum, and area analysis of substrate of Sample #3, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

4.4 Vickers Microhardness Results 

Vickers microhardness testing is often used to analyze the differences in hardness 

between the surface and substrate of surface modified components. In this test, the applied load 

and resultant indentation size are small relative to the bulk tests, such as Brinell hardness testing. 

Here, the test material is indented with a pyramidal diamond indenter, with a specific dwell time 

and amount of force applied[39]. For these experiments, a 500 gf force with a dwell time of 10 

seconds was used.  

Ten surface measurements and ten substrate measurements were performed on each 

sample from Maynard Heat 2 and 3. For the surface measurements, three hardness tests were 

taken near the top surface, four were taken in the middle of the surface, and three were taken 

near the surface/substrate interface. For bulk measurements, three tests were taken just below the 

surface/substrate interface, four were taken near the middle of the substrate, and three were taken 
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at the bottom. Below are the surface and substrate microhardness results from Maynard Sample 

#7.  

 

Figure 25: Microhardness averages of Maynard Sample #7  

 

The results indicate that the average surface hardness is approximately 3.17 times higher 

than the substrate hardness. These results show that the hardness increased as the alloying 

elements were melted and solidified onto the surface of the casting. This could possibly be due 

to the alloying elements acting as a chill when coming in contact with the molten metal during 

casting, and solidifying rapidly near the interface, causing there to be in increase in hardness.  

4.5 X-Ray Diffraction Results 

X-Ray Diffraction (XRD) is an important tool used to characterize the phases present in 

metallic specimens. This analytical test involves using x-rays to impinge a solid material surface, 

in which a portion of the beam will be scattered by the electrons associated with each atom that 

lies within the beam’s path. The diffraction occurs when each object in a periodic array scatters 

the radiation coherently, producing constructive interference at specific angles[40]. The electrons 

in the sample coherently scatter the light, and the wavelength of x-rays are similar to the distance 
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between atoms. The diffraction of different planes of atoms produce different x-ray diffraction 

patterns, which ultimately gives information about the atomic arrangement within a crystal. This 

tool is useful to this study to investigate the various crystal phases present in the surface of the 

material, and compare that to the crystal phases present in the substrate[41].  

Samples from the third heat at Maynard were studied using XRD, and the results are 

shown below. The XRD peaks for the substrate and for the surface were compared against 

known XRD peaks for CF3 stainless steel and WCB plain-carbon steel, to see if the peaks had 

similar expected phases to these materials.  

 

Figure 26: The XRD peaks for the surface of Maynard Sample #7. 

 



 35 

 

Figure 27: The XRD peaks for the surface of CF3 stainless steel alloy[42]. 

The peaks for the surface of Maynard Sample #7 show the presence of austenite and 

ferrite. Austenite has peak intensities near 43°, 52°, and 75°, while ferrite has peak intensities 

near 44° and 65°. When compared to the known XRD peaks for CF3 stainless steel[41], it is clear 

that the peaks from Sample #7 are in the same locations, indicating the surface having a crystal 

structure primarily of austenite and ferrite. This is to be expected, since nickel is a known 

austenite stabilizer, and chromium is a ferrite stabilizer. CF3 is an austenitic stainless steel, and 

the results of the XRD show that the phases on the surface of Maynard Sample #7 are the same 

as a CF3 cast alloy. 

The substrate was also analyzed using XRD to determine if it had the expected crystal 

structure of non-heat treated WCB steel, which would be possess a ferritic crystal structure. 

Below are the XRD peaks for the substrate of Sample #7. 
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Figure 28: The XRD peaks for the substrate of Maynard Sample #7  

The peaks indicate a presence of ferrite in the bulk of Sample #7. There is no presence of 

austenite, which shows that the nickel did not diffuse into the substrate layer, and that the bulk of 

the material is entirely plain-carbon steel. The patterns for the surface and the patterns for the 

substrate of Maynard Sample #7 show that there are different crystal structures on the same 

sample, and that they correspond with the known peaks for CF3 and WCB[43], proving that the 

surface enrichment only on the surface occurred during casting.  

 

4.6 Linear Polarization Test Results 

Linear polarization testing was used to measure the corrosion current of the surface of the 

sample and for the bulk of the sample. The material is polarized during this test on the order of 

+/- 10 mV on an open circuit potential[43], and the potential is measured when no net current is 

flowing. As the potential of the working electrode is changed, a current will be inducted to flow 

between the working and counter electrodes, and the sample’s resistance to polarization is found 

by taking the slope of the potential vs current curve[44].  
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Maynard Samples # 7, 8, and 9, as well as the substrate material, were analyzed using a 

linear polarization test. With the help of Dr. Bob Bauer, the samples were conditioned in an 

ASTM G61 3.56% salt water solution[45] for one hour, and then underwent a linear polarization 

test for 10 minutes. After the test was completed, the corrosion current was extrapolated from 

the results of the experiment, and were then used to calculate the corrosion rate. The results of 

the linear polarization test for the substrate of Maynard Sample #7, and for the surface of the 

same sample, are given below.  

 

Figure 29: The linear polarization results for the substrate of Maynard Sample #7  

 

Figure 30: The linear polarization results for the surface of Maynard Sample #7  
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The corrosion current was calculated to be 25.45 𝜇𝐴 for Maynard Sample #7 steel 

substrate, and 4.31 𝜇𝐴 for the enriched surface of the same sample, after the linear polarization 

tests were completed. To calculate the corrosion rate, the corrosion current must be changed to 

the corrosion current density, using the following equation[46] 

𝒾𝑐𝑜𝑟 =
𝐼𝑐𝑜𝑟

𝐴
 

Where: 

𝒾𝑐𝑜𝑟 = 𝑐𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦,
𝜇𝐴

𝑐𝑚2
 

𝐼𝑐𝑜𝑟 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑛𝑜𝑑𝑖𝑐 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝜇𝐴 

𝐴 = 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑎𝑟𝑒𝑎, 𝑐𝑚2 
 

The equivalent weight is also needed to calculate the corrosion rate[47]. The equivalent 

weight for each element and alloy is different, and the equation which follows shows how to 

calculate equivalent weight for a pure material. The WCB equivalent weight was treated as a 

pure material, because it consists of over 99% iron[48].  

𝐸𝑊 =  
𝑊

𝑛
 

Where: 

𝑊 = 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 

𝑛 = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡  
 

 

For an alloy, the equivalent weight must total the equivalent weights of each metal in the 

system, and then must be added up and divided by 100. Below is the equation which details how 

to calculate equivalent weight of an alloy[49] 

 

 

𝑄 = ∑
𝑛𝑖𝑓𝑖

𝑊𝑖
 

Where: 

𝑓𝑖 = 𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑙𝑙𝑜𝑦  
𝑊𝑖 = 𝑡ℎ𝑒 𝑎𝑡𝑜𝑚𝑖𝑐 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑙𝑙𝑜𝑦  

𝑛𝑖 = 𝑡ℎ𝑒 𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑙𝑙𝑜𝑦  
 



 39 

The density of the material must also be considered to calculate corrosion rate. To find 

the density, the following equation must be applied 

 

𝜌 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑛 
𝑔

𝑐𝑚3
 

 

After calculating the necessary components for the corrosion rate equation, they can be 

substituted back into the equation for corrosion rate, which is as follows[50] 

𝐶𝑅 = 𝐾1

𝒾𝑐𝑜𝑟

𝜌
𝐸𝑊  

Where: 

𝐶𝑅 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑖𝑛 
𝑚𝑚

𝑦𝑟
, 𝒾𝑐𝑜𝑟  𝑖𝑛 

𝜇𝐴

𝑐𝑚2
 

𝐾1 = 3.27𝑥10−3 
𝑚𝑚 𝑔

𝜇𝐴 𝑐𝑚 𝑦𝑟
  

 

The corrosion rate of plain-carbon steel was determined to be 0.609 mm/yr, while the 

corrosion rate of Maynard Sample #7 was determined to be 0.066, indicating that the corrosion 

resistance of the surface is 10.8 times higher than the corrosion rate of the substrate. The same 

procedure was used to determine the corrosion rates of Maynard Samples #8-9 as well. The 

corrosion rate of Maynard Sample #8 was calculated as 0.071 mm/yr, and the corrosion rate of 

Maynard Sample #9 was calculated as 0.087 mm/yr. This indicates that the surfaces of the 

Maynard Samples enriched with nickel and chromium powder ranged from 10.8 – 14.0 times 

more corrosion resistance than the base steel.  

 

5. Conclusions 
The following conclusions can be drawn based off of the results generated during the 

experimentation for surface alloying as well as during the characterization testing. Figures 79 

and 80, in Appendix B, summarize the results of the project as well.  
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1. The thickness of the enriched layers was measured with the optical microscopy software, 

and it was determined that for Maynard samples 3, 4, 5, and 6, enriched only with nickel, 

the thicknesses of the surface enriched layers ranged from an average of 1148 μm to 

1584 μm. The thicknesses of the enriched layers for Maynard samples 7, 8, 9, and 10, 

enriched with nickel and chromium, ranged from an average of 297 μm to 352 μm. 

Although more material was used in the nickel and chromium coatings when compared 

to only nickel, the nickel and chromium layer measured thinner than the only nickel 

layer. This indicates that layer thickness is not dependent on amount of material used.  

2. The EDS chemical analysis of the cross sections suggests that there is no significant 

composition gradient in either the coatings or the substrates. Below the surface/substrate 

interface, there is primarily WCB steel composition present, with no measurable alloying 

elements present. In the enriched surface layer, nickel and iron were present when only 

nickel powder was used, and nickel, chromium, and iron were present when the nickel 

and chromium powders were present in the slurry coatings on the mold.  

3. The results of the Vickers microhardness test indicate that there is a substantial 

difference in microhardness between the enriched surface and the substrate. The substrate 

has microhardness values close to that of WCB steel, which is 155 HV500. The surfaces 

of the samples with enriched surfaces were much harder, ranging from 479-488 HV500. 

This harder layer could be caused by the rapid solidification during casting, and can 

provide better wear-resistant properties on the surface.  

4. The results of the XRD illustrate the difference in crystal structures between the enriched 

surface layer and the base steel substrate. The location of the peaks for the enriched layer 

matched with austenite and ferrite structures, which would be expected in an austenitic 

stainless steel like CF3. The peaks for the steel substrate matched with only ferrite, 
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which is what would could be expected in non-heat treated WCB steel. The results of the 

XRD show that there are not only different crystal structures between the enriched 

surface and the steel substrate, but they are the crystal structures that would be expected 

for both stainless steel and plain-carbon steel, respectively.  

5. The corrosion rates of the three Maynard Steel samples enriched with nickel and 

chromium ranged from 0.066 mm/yr to 0.087 mm/yr, respectively. When compared to 

the corrosion rate of WCB, which is 0.609 mm/yr, this shows that the corrosion 

resistance of the enriched surfaces were 10.8 – 14.0 higher than the base steel.   

6. Future Work 
 

 

The main focus of this study was to determine if a surface layer enriched in chromium and 

nickel could be formed through mold coating, and metallurgically bonded to a plain carbon steel 

substrate via a sand casting process. A novel and unique design of a slurry, which was tailored to 

adhere specifically to silica sand, was discovered over the course of the trials at Maynard Steel, 

as well as laboratory experiments at UWM. The slurry has been demonstrated to be effective in 

releasing the alloying elements onto the surface of the steel during casting, and upon 

solidification, there is a continuous, distinct layer that has chemistry similar to that of CF3 grade 

stainless steel. There are some factors, however, that should be taken into consideration when 

continuing on this work, as well as additional testing techniques that should be carried out.  

The adhesion of the surface layer should be measured, and there are multiple techniques that 

are able to do so, such as the tape method, the pull-off test, the shock wave loading method, and 

the scratch test. The scratch test uses a chrome-steel stylus with a tungsten carbide or Rockwell 

C diamond tip, or can use a Vickers microhardness tester as well. Both of these testing 

techniques can be performed at UWM. According to Fahlman, to perform the scratch test, the 
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stylus is drawn across the surface of the coating, and a vertical load is applied and is increased 

until the coating is removed. The minimum critical load at which the coating fails or chips is 

used to measure the adhesion.  

The use of this technology for making surfaces corrosion resistant for use in the water 

industry was the driving force behind this study. Since the surface that comes in contact with the 

water is the one that was alloyed, it must be implemented in the field as cast, and without 

machining. Therefore, it is in the best interest of future researchers to develop ways to achieve 

an excellent as-cast surface, which is smooth, free of porosity, and continuous throughout the 

surface of the entire component.  

In addition to improving the as-cast surface quality, controlling the thickness of the alloyed 

layer is another major area of focus. It is evident from the EDS chemical analysis that there is no 

gradient between the surface and the substrate; just below the threshold between the surface and 

substrate, there is no presence of the alloying elements, just the plain-carbon steel. For future 

research, heat-treating the samples at different temperatures for different amounts of time could 

reveal a diffusion profile. Annealing and normalizing are common techniques that should be 

implemented to study the effects of diffusion, and to see if the alloying elements will diffuse 

further at different times.  
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Figure 30: Chemistry, EDS spectrum, and point analysis of surface of Maynard Sample #1, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

 

Figure 31: Chemistry, EDS spectrum, and point analysis of substrate of Maynard Sample #1, 

cast at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 32: Chemistry, EDS spectrum, and point analysis of surface of Maynard Sample #2, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

 

Figure 33: Chemistry, EDS spectrum, and area analysis of substrate of Maynard Sample #2, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 34: Chemistry, EDS spectrum, and point analysis of surface of UWM Sample #1, cast at 

UWM. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

Figure 35: Chemistry, EDS spectrum, and area analysis of substrate of UWM Sample #1, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 36: Chemistry, EDS spectrum, and point analysis of surface of UWM Sample #2, cast at 

UWM. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

Figure 37: Chemistry, EDS spectrum, and area analysis of substrate of UWM Sample #2, cast at 

UWM. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 38: Chemistry, EDS spectrum, and area analysis of surface of Sample #3, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

Figure 39: Chemistry, EDS spectrum, and area analysis of substrate of Sample #3, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 40: Chemistry, EDS spectrum, and area analysis of surface of Sample #4, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

Figure 41: Chemistry, EDS spectrum, and area analysis of substrate of Sample #4, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 42: Chemistry, EDS spectrum, and area analysis of surface of Sample #5, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

Figure 43: Chemistry, EDS spectrum, and area analysis of substrate of Sample #5, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 44: Chemistry, EDS spectrum, and area analysis of surface of Sample #6, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

Figure 45: Chemistry, EDS spectrum, and area analysis of substrate of Sample #6, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 46: Chemistry, EDS spectrum, and area analysis of surface of UWM Sample #3, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

Figure 47: Chemistry, EDS spectrum, and area analysis of substrate of UWM Sample #3, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 48: Chemistry, EDS spectrum, and area analysis of surface of UWM Sample #4, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

Figure 49: Chemistry, EDS spectrum, and area analysis of substrate of UWM Sample #4, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 50: Chemistry, EDS spectrum, and area analysis of surface of UWM Sample #5, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

Figure 51: Chemistry, EDS spectrum, and area analysis of substrate of UWM Sample #5, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 52: Chemistry, EDS spectrum, and area analysis of surface of UWM Sample #6, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 
 

 

Figure 53: Chemistry, EDS spectrum, and area analysis of substrate of UWM Sample #6, cast at 

Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 54: Chemistry, EDS spectrum, and area analysis of surface of Maynard Sample #7, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

 

 

 

 

 
 

Figure 55: Chemistry, EDS spectrum, and area analysis of substrate of Maynard Sample #7, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 56: Chemistry, EDS spectrum, and area analysis of surface of Maynard Sample #8, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

 

 

 

 

 
Figure 57: Chemistry, EDS spectrum, and area analysis of substrate of Maynard Sample #8, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 58: Chemistry, EDS spectrum, and area analysis of surface of Maynard Sample #9, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

 

 

 

 
 

Figure 59: Chemistry, EDS spectrum, and area analysis of substrate of Maynard Sample #9, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  
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Figure 60: Chemistry, EDS spectrum, and area analysis of surface of Maynard Sample #10, cast 

at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV.  

 

 

 

 

 

 

 

 
Figure 61: Chemistry, EDS spectrum, and area analysis of substrate of Maynard Sample #10, 

cast at Maynard Steel. JOEL SEM, 27x, WD 12mm, accelerating voltage of 15 keV 
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Figure 62: Maynard Sample #3. Ten Vickers Microhardness tests were taken in the enriched 

area, and ten were taken in the steel substrate. 

 

 

 

 

 

 

 

 

   Maynard Sample 3     Maynard Sample 3 

            Surface              Substrate 

Position  HV500  Position  HV500 

1 390  1 149 

2 427  2 154 

3 416  3 155 

4 408  4 143 

5 397  5 159 

6 401  6 164 

7 412  7 160 

8 404  8 148 

9 399  9 162 

10 412  10 145 

Average 406.6  Average 153.9 
 

Figure 63: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #3 
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Maynard Sample 4     Maynard Sample 4 

          Surface              Substrate 

Position  HV500  Position  HV500 

1 399  1 147 

2 388  2 149 

3 410  3 158 

4 403  4 142 

5 418  5 159 

6 420  6 160 

7 396  7 153 

8 404  8 157 

9 417  9 140 

10 384  10 158 

Average 403.9  Average 152.3 
 

Figure 64: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #4 

 

 

 

 

   Maynard Sample 5     Maynard Sample 5 

              Surface              Substrate 

Position  HV500  Position  HV500 

1 388  1 159 

2 392  2 154 

3 413  3 149 

4 401  4 147 

5 387  5 152 

6 394  6 155 

7 406  7 161 

8 392  8 151 

9 408  9 147 

10 398  10 149 

Average 397.9  Average 152.4 
Figure 65: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #5 
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   Maynard Sample 6     Maynard Sample 6 

              Surface              Substrate 

Position  HV500  Position  HV500 

1 384  1 147 

2 424  2 154 

3 389  3 155 

4 405  4 143 

5 410  5 160 

6 401  6 157 

7 413  7 155 

8 397  8 143 

9 399  9 148 

10 387  10 146 

Average 400.9  Average 150.8 
 

Figure 66: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #6 

 

 

 

 

 

   Maynard Sample 7   Maynard Sample 7 

               Surface              Substrate 

Position  HV500  Position  HV500 

1 482  1 148 

2 487  2 159 

3 490  3 158 

4 486  4 152 

5 492  5 149 

6 479  6 153 

7 483  7 158 

8 482  8 149 

9 492  9 155 

10 489  10 153 

Average 486.2  Average 153.4 
 

Figure 67: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #7 
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Maynard Sample 8  Maynard Sample 8 

Surface  Substrate 

Position HV500  Position HV500 

1 479  1 158 

2 491  2 153 

3 477  3 158 

4 483  4 149 

5 482  5 155 

6 492  6 147 

7 482  7 159 

8 493  8 158 

9 490  9 161 

10 483  10 158 

Average 485.2  Average 155.6 

 

Figure 68: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #8 

 

 

 

 

    

Maynard Sample 9   Maynard Sample 9 

               Surface              Substrate 

Position  HV500  Position  HV500 

1 490  1 146 

2 492  2 152 

3 479  3 154 

4 478  4 155 

5 486  5 148 

6 482  6 159 

7 477  7 157 

8 493  8 155 

9 481  9 149 

10 487  10 153 

Average 484.5  Average 152.8 

 

Figure 69: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #8 
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Maynard Sample 

10  

Maynard Sample 

10 

Surface  Substrate 

Position HV500  Position HV500 

1 484  1 156 

2 487  2 155 

3 492  3 149 

4 486  4 157 

5 479  5 149 

6 478  6 152 

7 481  7 150 

8 484  8 155 

9 487  9 158 

10 478  10 155 

Average 483.6  Average 153.6 

 

Figure 70: The Vickers Microhardnesses of the surface and substrate of Maynard Sample #7 
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Figure 71: Optical image of enriched surface of Maynard Sample #3 at 50x magnification  

 

 
 

Figure 72: Optical image of enriched surface of Maynard Sample #4 at 50x magnification 
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Figure 73: Optical image of enriched surface of Maynard Sample #5 at 50x magnification  
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Figure 74: Surface measurements of Maynard Sample #6 at 100x magnification 

 

 

 
 

Figure 75: Surface measurements of Maynard Sample #7 at 100x magnification 
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Figure 76: Surface measurements of Maynard Sample #8 at 100x magnification 

 

 
 

Figure 77: Surface measurements of Maynard Sample #9 at 100x magnification 

 

 

 



 73 

 
 

 

Figure 78: Surface measurements of Maynard Sample #10 at 100x magnification 
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Figure 79: Chart summarizing results for the samples cast at Maynard Steel 

 

 

 

 

 
 

Figure 80: Chart summarizing results for the samples made at UWM Laboratory 
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