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ABSTRACT 
 

EFFECTS OF ELECTROLYTE FORMULATION ON 
GRAPHITE ANODE FOR WIDE TEMPERATURE APPLICATION 

 
by 

 
Jeremy Chang 

 
The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Benjamin Church 
 

In this study, we demonstrate that the low temperature power capability of a Li-ion battery 

can be substantially improved not by adding exotic additives into the electrolyte, but by rational 

design of the composition of the most commonly used solvents.  Through the detailed analysis 

with electrochemical impedance spectroscopy, the formation of a homogenous solid electrolyte 

interphase (SEI) layer on the carbon anode surface is critical to ensure the performance of a Li-ion 

battery in a wide temperature range.  Subsequent post mortem analysis after cycling of the negative 

electrode by XPS revealed that all the electrolyte compositions form similar compounds in the 

solid electrolyte interphase.  However, the higher capacity low temperature solvents showed a 

higher percentage of LiF and a lower percentage of carbon containing species such as lithium 

carbonate and lithium ethylene di-carbonate.  The electrolyte composition where cyclic carbonates 

make up less than 25 % of the total solvent showed increased low temperature performance.  

Additionally, solvent composition with higher percentage of linear short chain carbonates also 

showed an improvement in low temperature performance.  Lastly, there was no significant impact 

seen with high temperature performances in nearly all the combinations investigated. 
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CHAPTER 1 – INTRODUCTION 

 

1.1 BACKGROUND 

 Efforts for rechargeable lithium batteries started in the 1980s with lithium metal used as 

the anode.  The reason lithium metal as anode was so attractive is due to lithium having the 

lowest negative electrochemical potential (-3.04V vs. SHE) as well as being the lightest element 

(density = 0.534 g/cm3), capable of delivering a theoretical capacity of 3860 mAh/g.  The 

electronegative property translates to a high cell voltage when matched with certain cathodes.  

The weight of the metal results in it having high specific capacity.  Lithium was found to be 

stable in a number of nonaqueous solvents despite its reactivity [4].  The stabilization was 

attributed to the formation of a passivation film on the lithium surface, which prevents it from 

having a sustained reaction with electrolytes [2].  The efforts to expand from primary lithium-

based batteries in the 1960s and 1970s continued toward lithium chemistry being used in 

rechargeable technology.  However, there were instabilities in terms of cycle life and safety, as 

cycling the battery produced dendrites causing electrical shorts, leading to thermal runaway and 

possible explosion.  Dendrites, or needlelike lithium crystals, would grow on the anode upon 

recharge and during discharge, become electrically isolated from the substrate due to nonuniform 

dissolution rates at different sites of the dendrite.  Since then, research has shifted to using 

lithium ions with intercalated lithium metal oxide as electrode material.  In 1991, Sony 

commercialized the first lithium-ion battery, and today has become the most promising and 

fastest growing battery type on the market.  Today’s lithium-ion batteries are found in nearly all 

consumer electronics, and recently has been gaining in popularity in the automotive industry.  

Electric vehicles can help increase fuel-efficiency, lower greenhouse gas emissions and air 
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pollution, as well as reduce the dependence on oil with vulnerability to price volatility and 

supply disruption.  However, lithium-ion in the automotive application still faces many hurdles 

as of today, including performance and safety, high cost, infrastructure, and driving range.  The 

current cost of lithium-ion batteries for vehicle applications is four to eight times that of lead acid 

batteries and one to four times that of nickel metal hydride [1].  A comparison of other 

technologies can be seen in Figure 1 below, where it shows the traditional lead acid batteries 

have the lowest power density (W/kg) and energy density (Wh/kg).  Nickel metal hydride (Ni-

MH) and Li-ion type batteries.  There are also other emerging technologies not displayed that 

have the potential to go beyond that of Li-ion technology, however, is still far too early in 

development. 

 

Figure 1.  Power and energy by battery type [1] 

The reemergence of electric vehicle demands have sparked new research for advancement in 

batteries.  This newfound importance has come of late due to governmental requirements for 

increased fuel-efficiency, lower greenhouse gas emissions, and air pollution.  Lithium-ion 

batteries (LIBs) have gained a lot of attention as one of the most promising power sources for 
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electric vehicles (EV), hybrid electric vehicles (HEV), and plug-in hybrid-electric vehicles 

(PHEV).  It is estimated that by 2020, more than half of new vehicle sales will likely consist of 

hybrid-electric, plug-in hybrid, and all-electric models.  While 96% of all hybrids available in the 

world today run on nickel metal hydride batteries, it is projected that 70% of hybrids, and 100% 

of plug-in hybrid and all-electric vehicles will run on lithium-ion batteries in the near future [1].  

However, battery technology today are not able to meet the increasing demands of the 

consumers, leading to in-depth research in developing lithium-ion batteries with higher capacity 

and lower cost.  Other stringent criteria’s include high energy densities, moderate and consistent 

power densities, good safety, 10 year calendar-life, and a cycle-life of up to a few thousand 

charge and discharge cycles.  Furthermore, current available LIBs for EVs are volatile, especially 

at high temperatures.  Different studies have been made to improve the current issues including 

electrolyte development, alternative anode and cathode materials, and so forth.  In this study, we 

will be focusing on electrolyte variations and its impact at low and high temperature extremes. 

1.2 FUNDAMENTALS OF BATTERY OPERATION 

 A battery is a device that converts the chemical energy contained in its active material 

directly into electric energy by means of an electrochemical reduction-oxidation (redox) reaction 

[3].  For a rechargeable system, the battery is recharged by a reversal of this process.  This 

involves transferring of electrons from one material to another through an electric circuit.  

Reaction in lithium-ion batteries involve three essential components.  The positive electrode, 

negative electrode, and electrolyte.  The positive electrode, or cathode, is the oxidizing electrode 

which accepts electrons from the external circuit and is reduced during discharge of a battery.  

The negative electrode, or anode, is the reducing electrode which gives up electrons to the 

external circuit and is oxidized during discharge of a battery.  Lastly, the electrolyte, or ionic 
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conductor, provides the medium for transfer of charge, as ions, inside the cell between the anode 

and cathode [3].  Electrolytes used in lithium-ion batteries are typically a combination of lithium 

salts, such as LiPF6, LiBF4, or LiClO4, in an organic solvent.   

During the operation of lithium-ion batteries, lithium ions move from the negative 

electrode to the positive electrode during discharge and vice versa when charging.  A schematic 

of the operation of a cell is shown below in Figure 2 [1].  During discharge, electrons are 

released from the anode, becoming electric current, and travels to the outside circuit, then to the 

cathode.  The anode becomes oxidized as electrons flow from the anode, and electrons are 

accepted by the cathode with the cathode material being reduced. During charge, the current flow 

is reversed and oxidation takes place at the positive electrode and reduction at the negative 

electrode.  As the anode by definition is the electrode at which oxidation occurs and the cathode 

where reduction takes place, during charging the positive electrode is now the anode and the 

negative electrode the cathode.  The chemical nature of the positive and negative electrodes 

dictate the energy output, whereas the electrolyte, in most situations, defines how fast the energy 

could be released by controlling the rate of mass flow within the battery [2].  As new electrode 

materials are coming into use, the need for compatible electrolytes also arises. 
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Figure 2.  Discharge mechanism of a lithium-ion battery [1] 

In a practical system, the components within the battery are selected based on the 

following properties.  For anode, the efficiency as a reducing agent, high coulombic output 

(Ah/g), good conductivity, stability, ease of fabrication, and low cost.  The cathode must be an 

efficient oxidizing agent, be stable when in contact with the electrolyte, and have a useful 

working voltage.  Most common cathode materials in lithium-ion batteries are metallic oxides.  

Lastly, the electrolyte should have good ionic conductivity, nonreactive with electrode materials, 

minimal change with temperature fluctuations, safety in handling, and low cost.  Separator 

materials are also used to separate the anode and cathode materials to prevent internal short-

circuits.  This material is permeable to allow the electrolyte to maintain its ionic conductivity.   

Many different types of lithium-ion cathode materials have been developed such as 

LiCoO2, as it is the most commercially available material and has shown good electrical 

performance.  However, due to its high cost of raw materials and safety issues, battery makers 

have opted for cheaper and safer alternatives.  Among the attractive alternatives to LiCoO2 for 
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cathode materials is the layered lithium-nickel-manganese-cobalt (NMC) oxide that have piqued 

interest since its introduction in early 2000s.  NMC as a cathode material has relatively low cost, 

high capacity, and good thermal stability [51-52].  Additionally, NMC has a moderate high rate 

capability, lower solubility to solvents, smaller volume change and gas evolution during charge, 

and lower toxicity than other materials.  Below is the half-cell reaction for a typical transition 

metal oxide used as positive electrode: 

LiMa
nOb ↔ Li1-xMa

n+x + xLi+ + xe-  

NMC cathode combination is typically one-third nickel, one-third manganese, and one-third 

cobalt, also known as 1-1-1.  This unique blend takes advantage of the combination between 

nickel and manganese, as nickel is known for its high specific energy and manganese to achieve 

low internal resistance due to its stable spinel structure.  NMC as cathode is used in this study as 

it is currently the leading contender for automotive applications in addition to the many 

advantages briefly described over conventional metal oxides. 

Electrolytes serve as the medium for the transfer of charges, which are in the form of 

ions, between a pair of electrodes [2].  The majority of electrolytes in batteries consist of salts 

dissolved in solvents, either in water (aqueous) or organic solvents (nonaqueous).  The 

electrolyte should not go through any net chemical changes during the operation of a battery, and 

all Faradaic processes are expected to occur within the electrodes.  The electrolyte can be 

considered as an inert component of the battery and must have stability against both cathode and 

anode surfaces.  The electrochemical stability of the electrolyte is usually realized in a kinetic 

(passivation) manner versus thermodynamic, but is often challenged by the strong oxidizing and 

reducing nature of the cathode and anode, respectively [2].  The increasing demand of new 

battery systems drive the research of more oxidizing cathode and more reducing anode as 
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electrode materials, thus constantly needing to make improvements in electrolyte stability.  

While the electrode materials can be quantified by the redox potential in volts against a reference 

potential, the stability of the electrolyte can be quantified by the range in volts between its 

oxidative and reductive decomposition limits [2].  Thus, the electrolyte should have a wide 

electrochemical window so that it doesn’t degrade within the range of the working potentials 

between the electrodes.  Not only should the electrolyte have good stability, but also should be a 

good ionic conductor and electronic insulator for ease of ion transport and self-discharge can be 

kept to a minimum.  It should also be inert to other cell components, robust against abuses, and 

environmentally friendly. 

1.3 START OF LITHIUM-ION TECHNOLOGY 

As previously mentioned, the failure of lithium as an anode due to dendrite formation 

sparked research in ways to avoid the morphological change of the anode during cycling.  As a 

result, intercalation type electrodes were considered, which had been applied earlier to cathode 

materials for lithium batteries, as done by Whittingham, Goodenough, and others [19-22].  These 

intercalation type electrodes were also considered as “host-guest” materials, with most being 

transition metal oxides having stable crystal lattices, allowing pathways for guest ions such as 

lithium ion to diffuse through their structures.  Alternatively, research was also done by Japanese 

scientists that used materials containing carbon as anode intercalation hosts [9-11].  In the 

charged state of these new anodes, lithium exists in its ionic state rather than metallic state, 

therefore eliminating any possibility of lithium dendrites.  In addition, the high lithium ion 

activity help the anode potential be close to that of lithium metal.  Dahn et al. published their 

report on the principle of lithium intercalation chemistry with graphitic anodes and the effect of 
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electrolyte solvent in the process [12].  Figure 3 below shows how lithium is intercalated in 

between graphite planes of graphite from a side and top view, respectively. 

 

Figure 3.  Li+ insertion in graphite [3] 

A negative electrode based on intercalated lithium in graphite would have the following half-cell 

reaction: 

xLi+ + xe- + C6 ↔ LiC6 

In their findings, electrolyte solvents reduce on the anode and decompose forming a protective 

film, which prevents further decomposition of the electrolyte components.  This film was found 

to act as an ionic conductor but also electrically insulating.  Furthermore, the reduction process 

occurs only during the first charge and is absent in the following cycles so that the anode can be 

cycled many times in the electrolyte.  The chemical structure of the electrolyte solvents influence 

the nature of the protective film, and ethylene carbonate was found to be an essential component 

of the solvents that protects the crystalline structure of graphite.    Dahn et al. named this surface 

film on carbonaceous anodes as “solid electrolyte interphase”, or SEI.  The concept of the SEI 

layer was originally proposed by Peled in which a protective film was generated on the lithium 

anode when lithium metal was first found to be stable in nonaqueous electrolytes [31].  This term 

is used frequently in lithium-ion publications, however, its formation mechanism is still a topic 
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that’s not clearly understood, even today.  For graphitic anodes, Dahn accounted for the 

irreversible capacity around 1.2V which followed a linear relationship with the surface area of 

graphite anode and that this process is nonexistent in the following cycles.  As seen in Figure 4, 

“F” portion shows the irreversible capacity that comes from SEI formation at 1.2V.  Then at 

0.8V represented by portion “E”, the irreversible capacity stems from exfoliation of the graphite.  

Lastly, “I” portion shows the reversible capacity at very low potential, <0.20 V, to support 

lithium ion intercalation and deintercalation.  Therefore, Dahn speculated that a passivation film 

similar to the one proposed by Peled was formed on graphite via a similar electrolyte 

decomposition.  The SEI term that Peled had introduced for lithium anode was then also used for 

graphitic anode materials.   

 

Figure 4.  Initial cycle of Li/graphite cell.  F denotes irreversible capacity associated with SEI formation, E the 

irreversible capacity associated with exfoliation, and I the reversible capacity from lithium intercalation into graphite. 

[12] 

 

It is generally accepted that the SEI layer is mainly comprised of electrolyte reduction products 

and heavily influence the properties of the electrode.  It has been reported that the composition of 

the anode SEI generated include a complex mixture of compounds such as LEDC 



10 
 

(CH2COCO2Li)2, LEC (lithium ethyl carbonate, CH3CH2OCO2Li), Li2CO3, CH3OLi, 

CH3CH2OLi, LiOCH2CH2OLi, Li2O, LiF, and LixPFyOz [30].  Thus, it is believed that the 

chemical nature of the SEI is dictated by the electrolyte composition.  However, many studies in 

proving the makeup of the SEI layer through different characterization methods has proven 

difficult, as it has structural similarities to the components of the electrolyte.  The SEI layer 

ideally functions as a passivation layer and is lithium ion conducting but electrically insulating, 

allowing lithium ions to intercalate and deintercalate the electrode while preventing further 

electrolyte reduction at the anode surface [13].  The ideal SEI would constitute the following:  

(1) electron transference number te = 0, (2) high ionic conductivity in order for lithium ion to 

migrate to and from graphene layers, (3) uniform morphology and composition for current 

distribution, (4) good adhesion to anode, (5) good mechanical strength and flexibility to allow for 

expansion/contraction of graphene layers during intercalation/deintercalation of lithium ion, and 

(6) low solubility in electrolytes.   

1.4 LITHIUM-ION ELECTROLYTES  

As lithium-ion technology has seen a recent amount of tremendous growth, many 

researches have been focused on new materials for the anode and cathode, and not so much an 

emphasis on other cell components.  This study is to better understand the effects of electrolyte, 

as this component interacts closely with both the cathode and anode during operation as well as 

heavily influencing the nature of the SEI.  Many electrolytes used for lithium-ion are based on 

solutions of one or more lithium salts with at least two solvents.  The reason for typically more 

than two solvents is the multiple requirement of the battery applications, which cannot usually be 

met with only one type.  However, there is usually not a mixture of salts, as the choices are 

limited and performance advantages have yet to be proven.   
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1.4.1 LITHIUM-ION ELECTROLYTES - SALTS 

One of the components involved in lithium-ion electrolytes are lithium salts.  The basic 

requirements for an electrolyte solute include being able to dissolve and dissociate in 

nonaqueous solvent, solvated ions should have high mobility, the anion should be stable against 

oxidative decomposition at the cathode, and both cation and anion should remain inert toward 

other cell components.  In the current state of lithium-ion technology, there are not many 

available options for lithium salts.  Due to the small ionic radius of lithium ion, most salts of 

lithium do not meet the minimum solubility requirements.  The lithium salts that do qualify for 

solubility are anions which are stabilized by a Lewis acid agent. 

 Of the limited options for lithium-ion batteries, lithium hexafluorophosphate (LiPF6) is 

among the most widely known and used commercially.  LiPF6 was first proposed in the late 

1960, but initially had a series of issues such as sensitivity toward moisture which made it 

difficult in the salts preparation for commercial use.  Also, this solute was soon known to have 

chemical and thermal instabilities [28].  At elevated temperatures, the solute will produce LiF (s) 

and PF5 (g) as shown:   

LiPF6(s) ↔ LiF(s) + PF5(g) 

Leading to a series of side reactions from PF5 in the presence of nonaqueous solvents.  Figure 5 

below shows the decomposed product which results in ring-opening polymerizations of cyclic 

esters and cleavage of linear esters. 
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Figure 5.  Decomposition of electrolyte solvents by PF5 [2] 

This solute also had issues with hydrolysis with even small amounts of moisture present.  Figure 

6 below shows the decomposition into corrosive products in the presence of moisture: 

 

Figure 6.  Hydrolysis of LiPF6 from moisture [2] 

However, by the late 1980s, manufacturers were able to obtain high-purity LiPF6 through 

process improvements which finally lead to its commercialization and further research.  LiPF6 

does not have a single outstanding property that makes it better than other available lithium salts, 

however, has the combined effect of multiple properties unachievable by other salts.  Properties 

such as conductivity, dissociation constant, ionic mobility, thermal stability, anodic stability, and 

chemical stability are not exceptionally great for LiPF6, though none of the other salts could meet 

all these requirements simultaneously.  Table 1 below lists the basic physical properties of LiPF6 

that was used in this study.  In addition, LiBOB is also included in this table as it was another 

salt that was studied.  Further discussion on LiBOB salt will be discussed in the Section 1.7. 
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Table 1.  Lithium Salts 

Salt Structure 

Molecular 

Wt. 

(g/mol) 

M.P.  

(°C) 

LiPF6 

 

151.91 200 

LiBOB 

 

193.9 >300 

 

For nonaqueous solvents based on esters, LiPF6 is one of the most conducting salts available.  

This is because LiPF6 has both good ionic mobility and dissociation constant, although as 

previously mentioned, it is not the most outstanding in either category on its own.  A typical 

nonaqueous electrolyte system consists of approximately 1.0 M lithium hexafluorophosphate 

(LiPF6) dissolved in organic carbonate solvents.  Studies have shown that LiPF6 in mixed esters 

can also resist oxidation of up to 5.1V, making it one of the few salts that can support the 

operation of high voltage cathode material [23]. 

1.4.2 LITHIUM-ION ELECTROLYTES - SOLVENTS 

The ideal solvent in lithium-ion electrolytes should be able to dissolve salts (ie. high 

dielectric constant), low viscosity, inert to cell components, and have no phase changes at 

various temperatures.  The desire for low viscosity is to aid in ion transportation, which 

correlates to the need for solvent to be liquid at a wide temperature range.  Nonaqueous 

compounds with polar groups are suited best as electrolyte solvents as they are able to dissolve 

sufficient amounts of lithium salt.  Typical solvents have mainly been from organic esters and 

ethers in lithium-ion technology.  The most commonly used solvent system is the mixture of 
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ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in 3:7 ratio [53-55].  In this study, 

multiple solvents were investigated, including EC (ethylene carbonate), PC (propylene 

carbonate), EMC (ethyl methyl carbonate), DMC (dimethyl carbonate), and DEC (diethyl 

carbonate).  Table 2 shows the difference between these solvents and their properties, including 

their molecular weight, melting point, boiling point, flash point, and dielectric constant.  It can be 

assumed that by varying their ratios within an electrolyte mixture, cell performance can be 

altered.  One noticeable difference that can be seen between the electrolyte solvents is that all the 

acyclic esters have a low dielectric constant, whereas cyclic esters have a relatively high 

dielectric constant.  Cyclic esters has been commonly used as they exhibit a very wide 

electrochemical stability window and can effectively dissociate a large amount of lithium salts 

and hence provide high ionic conductivity. 

Table 2.  Electrolyte Solvents 

Solvent Structure 

Molecular 

Wt. 

(g/mol) 

M.P.  

(°C) 

B.P.  

(°C) 

F.P.  

(°C) 

Dielectric Constant 

(esu) 

EC 

 

88.06 35 243 143 89.6 

PC  102.09 -55 242 275 65 

EMC 

 

104.12 -53 107.5 26.7 2.99 

DMC 

 

90.08 3 90 17 3.1 

DEC 

 

118.13 -74 126 25 2.8 
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 One such cyclic ester within this study is propylene carbonate, or PC for short.  Interest 

grew for this solvent mainly due to its high dielectric constant and its ability to dissolve a wide 

variety of lithium salts.  The high dielectric constant of 65 makes this solvent frequently used as 

a high-permittivity component when in conjunction with a low viscosity solvent.  Its high 

polarity is also able to create an effective solvation shell around the lithium ions, which creates a 

conductive electrolyte.  However, studies in the past have shown that electrolytes containing PC 

have poor cycling performances due to continuous electrolyte reduction from the lack of a stable 

anode SEI formation [14].  Reasons why PC solvents lead to poor cycling have attributed the 

shortcomings to cointercalation of PC solvent molecules with lithium cation into the graphite 

sheets, leading to exfoliation of the graphite [15-17].  This type of failure follows Besenhard’s 

model of how an SEI layer is formed, which will be further discussed in the next section.  PC 

solvents were also found to be reduced at potentials around 1.0 V (Li/Li+) forming ROCO2Li 

and reversible intercalation of Li+ in graphite is not possible [13, 38].  Other studies have also 

attributed the poor performance to the physical properties of the electrolyte reduction products 

[18-20].   

 The other cyclic ester of interest in the lithium-ion industry is ethylene carbonate, or EC.   

In comparison with PC, EC has a slightly lower viscosity and higher dielectric constant at 89.6, 

which are all favorable attributes in selecting an electrolyte for lithium-ion batteries.  Initially 

however, due to its high melting point, which is around 36°C, it was not a good candidate for 

ambient temperature electrolyte solvent, as its liquid range was too limited and could not be used 

alone.  A study done in 1970 by Pistoia, De Rossi, and Scrosati showed the advantages of having 

EC as an electrolyte solvent.  They were able to achieve liquid solutions at room temperature 

with EC in the presence of specific salts [21].  Additionally, it was reported that the specific 
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conductivities of the electrolyte solutions in EC are greater than those of the corresponding 

solutions in PC.  Following this among other reports, EC was starting to be used in conjunction 

with PC as the electrolyte solvent.  Through the work of Dahn et al., they were able to find a 

difference in EC and PC in regards to their effects on the reversibility of lithium ion intercalation 

and deintercalation with graphite anodes.  EC was found to form an effective SEI layer on the 

anode that prevented any further electrolyte decomposition on the anode, whereas this was not 

achievable for PC.   

 Efforts in the 1990s focused on using EC based electrolytes with other possible 

cosolvents.  None of the cosolvents investigated performed well however, due to PC causing 

irreversible capacity in the initial cycle, in addition to ethers being unstable against oxidation 

from the charged cathode.  In 1994, Tarascon and Guyomard found a suitable electrolyte using 

EC based electrolyte with DMC (dimethyl carbonate) as a cosolvent [22-23].  Linear carbonates 

such as DMC have a low boiling point, low viscosity, and low dielectric constant.  They are able 

to form homogenous mixtures with EC at any ratio, and the results of this mixed electrolyte 

lowered the melting-temperature of EC as well as having lower overall viscosity, resulting in 

higher ion conductivity.  Additionally, the electrochemical stability of this mixture also did not 

change much, which came as a surprise, as linear carbonates are prone to oxidation on cathode 

surfaces.  The resulting mixture between EC and DMC showed qualities of each individual 

solvent, where there was high anodic stability of EC on the cathode surface, high solvation 

ability of EC toward lithium salts, and low viscosity of DMC for ion transportation.  The 

formulation between EC and a linear carbonate sparked researchers and manufacturers to explore 

different linear carbonates, including EMC and DEC.  Aurbach et al. studied the effects of EMC 

electrolyte and showed that graphite electrodes in single-solvent EMC solutions perform well 
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versus pure DMC and diethyl carbonate (DEC).  EMC-EC mixtures also performed just as well 

as pure EMC electrolyte.  They attributed this performance improvement partially due to the 

surface films formed containing Li2CO3, which is a very good passivating agent [44].  Aurbach 

also showed the effect of graphite electrodes in EC-DEC solutions which can be cycled at high 

capacity for hundreds of cycles due to the surface films on the electrodes [45].   

 Overall when these solvents are mixed, their physical properties change dramatically.  

For example, PC has a very low melting point, but its viscosity is comparably high. DMC is less 

viscous but has higher melting point (3°C). EMC has a low melting point (-53°C) and DEC has 

the lowest melting point (-74°C) among all the carbonates. The dielectric constant values of 

these solvents also vary widely; liquid EC (89.6 esu) and PC (65 esu) have very high values. The 

linear carbonates have low dielectric constants values (approximately 3 esu). 

1.5 MECHANISM OF SEI FORMATION 

As previously mentioned, many studies have found that the SEI layer is mainly 

comprised of electrolyte reduction products.  Two principal models have been theorized and 

commonly adopted on how the SEI layer is formed, one being Peled’s model which entails that 

the passivation film is established via a simple surface reaction, and the second being 

Besenhard’s model, which involves ternary graphite intercalation compounds (GIC).  According 

to Peled’s model, the film is not expected to form until the potential of the anode is cathodically 

polarized, as the potentials of the anode is much higher than the reduction potentials of most 

solvents.  In addition to this model, the SEI is formed by preferential reduction of certain 

electrolytes in a stepwise process.  Endo et al. investigated the reductive decomposition of 

various electrolytes and found that the reduction of cyclic carbonates such as EC and PC were 

the main species comprising of the SEI while linear carbonate species were very minimal [32].  
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Additionally, in confuting with Besenhard’s model, Aurbach interpreted graphite exfoliation as 

destruction of electrode structure at a macroscopic level, caused by gaseous products generated 

due to poor passivation properties from the initial SEI [38,46].  In contrast to Peled’s proposal, 

Besenhard et al. suggested that the reductive decomposition of electrolytes was not by a simple 

surface reaction.  It was argued that the solvent cointercalated into graphene layers, with the 

initial formation of a ternary GIC [Li(solvent)xCy], prior to their decomposition, and then the 

passivation layer formed could then penetrate into the graphene structure.  Figure 7 below shows 

a schematic illustration of SEI formation mechanism proposed by Besenhard that has subsequent 

decomposition near the edge of graphene layers to form the SEI.  Besenhard’s evidence for this 

mechanism on the graphite electrode was supported through dilatometric measurements, which 

indicated a crystal expansion of 150% [33].  However, subsequent XRD measurements 

conducted by other researchers failed to confirm any significant changes in the distance between 

graphene layers during cointercalation.  Additionally, the change in 2θ of the diffraction peak 

from these studies correspond to an expansion able to only accommodate lithium ions at 0.35Å 

[36-38].  Other studies have defended Besenhard’s model, stating that the lack of XRD evidence 

may be due to rapid decomposition or presence near graphite edges not being able to detect the 

ternary graphite intercalation compound.  Despite concerns raised, the Besenhard model has 

received much support and has become the prevalent model used by researchers in the industry.   

In summary, various models have been proposed to illustrate the formation of an SEI 

layer on graphite anode, based on the notion that the SEI is comprised mainly of reduced 

electrolyte components.  The main difference between the mechanisms mentioned is the primary 

step of interface formation, whether it begins by the formation of a ternary GIC or by the 

electrochemical reduction of electrolyte on the surface.  It is generally accepted that there is a 
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certain amount of solvent cointercalation during the formation of the SEI, however, further 

experimental studies are needed for confirmation. 

 

Figure 7.  Schematic of SEI formation based on Besenhard’s model [2] 

1.6 THERMODYNAMICS OF ELECTROLYTES 

In order to find the correct mixture between cosolvents, the temperature range of the 

electrolyte solutions also has to be kept in mind.  This range would help serve as a basis for 

estimating operating limits that use the nonaqueous electrolyte system.  As seen for the phase 

diagram in Figure 8, EC based electrolyte have varying temperature ranges based on their mole 

fraction with the co-solvent, which was performed by Ding, Xu, and Jow [29].  The liquidus line 

is characterized by the V-shape at which one of the components crystallizes in a binary system.  

Below the solidus line, characterized by the horizontal line, the whole system is in the solid 

phase.  Between the solidus and liquidus line are regions at which both solid and liquid phases 

exist in the system.  In order for the system to be in completely liquid phase, it must be above the 
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liquidus line.  From the phase diagram, one of the more popular solvent combinations for 

lithium-ion, LiPF6/EC/DMC, has a eutectic point at -7.6°C with molar fractions of 0.3 EC and 

0.7 DMC.  This is of concern for EC/DMC as the temperature limit is rather high when 

considering low temperature applications.  Even the replacement of DMC with EMC, which has 

a lower melting point at -53°C, does not significantly improve the area of the liquid phase in a 

binary system.  This shows that simply introducing a low melting point component does not 

result in extension of the liquid range.  The low temperature application will remain a challenge 

as long as the high melting point of EC remains as a solvent component for lithium-ion 

electrolytes, due to its heavy influence on the liquid phase irrespective of which cosolvents are 

used. 

 

Figure 8.  Phase Diagram of EC-based electrolyte [29] 

Considering the phase diagram just mentioned, it only takes into account the thermal properties 

of solvents, while in application, the salt concentration also has an effect on the phase diagram 
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and is of importance.  Ding, Xu, and Jow also studied the effects of salt on the liquidus and 

solidus line locations at various concentrations for LiPF6, as seen below in Figure 9 [29].  It was 

concluded that both lines were lowered with increasing salt concentrations.  At the salt 

concentrations investigated, the general curve of the phase diagram remain unchanged. 

 

Figure 9.  Phase diagram of EMC-EC with different LiPF6 salt concentrations [29] 

 As research continues and lithium-ion batteries are commercialized for a wide range of 

applications, electrolyte composition will differ from one to another.  However, the majority of 

these electrolyte are comprised of EC with one or more linear carbonates as the solvent and 

LiPF6 as the solute.  Certain battery performances are still problematic to this day even with the 

latest electrolyte combinations.  This includes issues with low temperature performance due to 

EC’s high melting point and liquidus temperature, as well as a high temperature performance 

impeded by LiPF6 due to its reactivity with solvents. 
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1.7 ELECTROLYTE ADDITIVES 

Due to the importance of the SEI formation on carbon based anodes and the abundance of 

research for different cosolvents have not shown much improvement, additives were also 

explored.  Rather than replacing the main components of current electrolytes that could cause 

more problems, an alternative means is to modify certain functions by incorporating small 

concentrations of a new component, or additive, so that the potential impact on existing 

electrolyte is minimal.  This would still have the benefits of the bulk properties of the main 

electrolyte components, but with the added effect of possibly changing unique properties.  

Additives have been used before in lithium batteries in an effort to subdue dendrite growth.  

Since the concept of the SEI, emphasis has been on the preferential decomposition of additives 

and the effect of the products on the SEI layer.  Specific functions of additives for lithium-ion 

batteries include improving the ion conductivity properties in the bulk electrolyte, SEI layer 

modification, and prevention of overcharge on the battery. 

 One such additive that was used in this study is VC solvent, or vinylene carbonate.  This 

solvent additive is the most used within the industry and was proposed initially by SAFT [25].  

VC additive has been the subject of many studies recently.  Although studies have shown the 

beneficial role of VC on the SEI layer, the exact mechanism of modification on the surface 

chemistry is still not clear.  It is generally received that the reactivity of VC stems from its ability 

to polymerize from its vinyl functionality and the high strain from its structure.  VC additive has 

been shown to effectively reduce the irreversible capacity associated with PC-based electrolyte, 

as well as not having any instability on charged surface of anode or cathode.  It is suggested that 

VC addition to the electrolyte changes the SEI layer formed at the electrode/electrolyte interface 

upon decomposition and inhibits the parasitic reactions at the interface [24].  Aurbach et al. 
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investigated the effect of VC in ethylene carbonate based electrolyte on the negative electrode 

and reported that the additive increases cyclability, heat resistance, and decreases irreversible 

capacity [26].  They analyzed the surface chemistry of VC on graphite by the C1s and F1s 

spectra via XPS.  As shown in Figure 10, the presence of VC reduced the content of LiF in the 

SEI, signified by the signal at 685 eV.  The peak shown at 687 eV is mainly contributed to 

PVDF (polyvinylidene fluoride binder) with the LiF peak only showing as a small shoulder, 

whereas VC-free electrolyte shows LiF as the predominant species.  In addition, there seems to 

be an increase of lithium alkyl carbonates (signal at 289 eV) with VC concentration. 

 

Figure 10.  XPS spectra of VC and VC-free additive in EC-based electrolyte [26] 
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They proposed that VC additive polymerizes on the graphite surface, forming poly alkyl Li-

carbonate species that suppresses solvent and salt anion reduction.  Additionally, surface films 

containing polymers are expected to be more cohesive and flexible, which would provide better 

passivation as opposed to surface films containing Li salts.  Even with different lithium-ion 

chemistries, VC has been shown to improve electrochemical behavior, cycling performance, and 

thermal stability.  Furthermore, VC was seen to have added benefits at the cathode interface.  In 

a study by Takamatsu et al., they found that adding VC to the electrolyte significantly improved 

the reversibility of the electronic structure at the cathode surface during subsequent 

charge/discharge cycles [27].  They attributed this to the formation of decomposed VC layer at 

the cathode/electrolyte interface, which helped in mitigating degradation of the capacity and the 

increase in resistance.  The main advantage of VC additive is its preferential reduction, before 

the cointercalation of solvent, due to their higher reductive potential.  The comparison between 

VC additive and other solvents can be seen below in Table 3.  EC solvent has a reduction 

potential of 0.9 on glassy carbon (GC), PC at 1.0, DMC at 1.32, and DEC at 1.32.  These 

solvents have a lower reduction potential than VC additive at 1.4, allowing VC to have 

preferential reduction and reduced on the anode surface before the bulk electrolyte components 

are involved.  Collectively, many believe that VC was an effective additive for chemical 

modification of the anode SEI.   
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Table 3.  Reduction Potentials of Solvents and Additives 

Solvent Structure 
Reduction 

Potential (vs. Li+/Li) 

EC 

 

0.9 

PC 

 

1.0 

DMC 

 

1.32 

DEC 

 

1.32 

VC 
 

1.4 

 

 There has also been research done in the pursuit of new lithium salts, due to the thermal 

instability of current electrolytes.  Two major properties in seeking a potential salt is the thermal 

and chemical inertness for replacement, however, sometimes these improvements comes at the 

consequence of other properties that are just as important for the operation of a lithium-ion 

battery.  One such type of salt was lithium borates with nonaromatic ligands, which are 

synthesized by a series of borate anions chelated by various alkyl-based ligands.  In comparison 

with aromatic ligands that has had extensive research, these salts had a much higher ion 

conductivity and anodic stability, while maintaining thermal stability.  Among these new lithium 

borates, salts based on oxalato ligands were of particular interest.  The salt, called lithium 

bis(oxalato)borate, or LiBOB for short, was invented by Lischka and other researchers [39].  Xu 

et al. found that LiBOB in mixed carbonate solvents was able to meet all the requirements for 
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electrolyte solute used for lithium-ion battery applications [40-41].  In their research, LiBOB 

showed comparable or better performances to LiBF4, LiClO4, and LiPF6.   Lithium-ion cells 

containing this salt as electrolyte solute exhibited stable performance even at 60°C, something 

LiPF6 is unable to achieve, which they concluded was due to the anion containing no labile 

fluorine.  Additionally, Xu reported that LiBOB can effectively stabilize graphite anode 

materials from exfoliation in PC based electrolyte while supporting reversible lithium ion 

intercalation/deintercalation.  For graphite anodes in PC-based electrolytes, exfoliation is 

characterized by a process occurring at 0.80V vs. Li.  As seen below in Figure 11, while this 

exfoliation proceeds, the potential of the cell remains at a steady plateau and is never able to 

reach the lithium ion intercalation potential below 0.3V.  This plateau is evident at ~0.80V in all 

salt anion variations tested except for LiBOB, where it is the only salt that successfully forms a 

protective film on graphite during the first lithiation and prevents exfoliation in PC electrolyte.   

 

Figure 11.  Profiles of Li/graphite half-cells containing various salts in PC-based electrolyte [41] 

To understand how LiBOB electrolyte was able to stabilize graphitic anode and demonstrate 

thermal stability at high temperatures, Xu investigated the SEI layer formed on graphite via XPS 
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analysis [42].  In his findings, represented in Figure 12, they attributed the improvements to stem 

from the increase in compounds containing carbonyl moieties (semicarbonate) due to 

decomposition of the BOB anion.  This high abundance peak of semicarbonate species has never 

been observed before for LiPF6 based electrolytes. 

 

Figure 12.  XPS C1s spectra for graphitic anode cycled in LiPF6 and LiBOB based electrolytes [42] 

 

Through much research, LiBOB has proven to be thermally stable, which is advantageous 

compared to the industry standard of LiPF6.  Additionally, LiBOB has shown to be economical 

in terms of manufacturing cost and environmentally friendly by decomposing into less corrosive 

products.  This novel salt has been proposed as a standalone electrolyte or in combination with 

other salts in order to operate at a much wider temperature range.  
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1.8 REMARKS ON CURRENT STATE OF LITHIUM-ION ELECTROLYTES 

 In summary, lithium-ion batteries are the latest state-of-the-art electrochemical energy 

storage devices used in consumer electronics, electric vehicles, and space exploration.  Fast 

charging and discharging, long calendar life, long cycle life, and operation over a wide 

temperature range (-30°C to +60°C) are some of the important properties desired for vehicle 

applications.  A state-of-the-art LIB, even with its superior high energy density and rate 

capability in comparison to other battery chemistries, lacks the high power ability at low 

temperature.  Recent understandings reveal the importance of investigating electrolyte 

formulations and chemical compositions as it directly affects cell performance in many aspects. 

There are still issues in irreversible capacity, temperature limits, safety, and ion 

transportation when trying to find the perfect electrolyte system.  Due to SEI formation, a certain 

amount of electrolyte is permanently consumed thereby having a loss of lithium ions, which are 

then immobilized in the form of insoluble salts.  As most lithium-ion batteries are built as a 

cathode-limited design to avoid lithium metal deposition on carbon anode at the end of charging, 

the consumption of the lithium ions at the initial stages end in permanent capacity loss of the 

battery.  The extent of the irreversible capacity depend on the anode material and the electrolyte 

composition.  As previously discussed, PC is well-known to cause exfoliation of graphene on the 

anode which leads to irreversible capacities.  In addition, changes in the electrolyte could help 

mitigate irreversible capacities, but consequently causing issues elsewhere.  Another problem 

facing improvements in electrolytes is temperature limits.  Two important components in 

present-day electrolytes are LiPF6 and EC as salt and solvent, respectively.  Although beneficial 

as evidenced previously, these two electrolyte components are sensitive to temperature extremes, 

therefore having these ingredients will impart temperature limits during the operation of lithium-
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ion batteries.  EC solvent is responsible for the lower temperature thresholds as it reduces the 

conductivity.  LiPF6 is responsible for the higher temperature extremes, typically above 60°C, 

which can limit the applications for certain industries.  LiPF6 is known to act as an initiator or 

catalyst for various decompositions involving the electrolyte, electrode, and SEI layer.  Thirdly, 

safety is another potential issue facing today’s lithium-ion electrolyte due to the use of certain 

solvents.  Linear carbonate solvents are known to be highly flammable with low flash points, 

which can cause thermal runaway.  Lastly, improvements in ion conductivity leaves much to be 

desired, as the conductivity is much lower compared with aqueous solutions.  Enhancements in 

bulk ion conductivity could lead to a more conductive SEI layer. 

In this study, 1.0 M LiPF6 solution was used in various combinations of EC, PC, DMC, 

EMC, and DEC. The goal of this work was to optimize the cell performance for both low and 

high temperature using the conventional electrolyte system. Vinylene carbonate (VC) and 

lithium bis(oxalato)borate (LiBOB) were used as additives in 1 % and 0.5% weight ratio, 

respectively in all the electrolytes tested.
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CHAPTER 2 – METHODOLOGY 

 

2.1 SAMPLE PREPARATION 

2.1.1 COIN CELL FABRICATION 

Lithium hexafluorophosphate (LiPF6, 99.99%), battery grade lithium bis(oxalato)borate 

(LiBOB), and vinylene carbonate (VC, 99.5%, acid < 200 ppm, H2O <100 ppm) were purchased 

from Sigma Aldrich and used without further purification. EC, PC, DMC, EMC and DEC 

solvents were purchased from BASF Corporation and used without further treatments. In the 

NMC 111 cathode laminate, the loading of the active material was 6.80 mg/cm2 (reversible 

capacity of 0.93 mA/cm2).  Graphite anode laminate was prepared with loading at 3.25 mg/cm2. 

Celgard 2325 polymer was also used as separator. 

Using our knowledge of electrolyte properties, literature, and past experiments, we adopted 

a DOE (design of experiments) for use in electrolyte optimization.  Design of experiments is a 

systematic technique that evaluates the relationship between the factor(s) affecting a process and 

the output of that process.  In this case, the factors are the different electrolyte combinations which 

can change the components of the SEI layer, thus resulting in different discharge capacity 

performances.  As seen below in Table 4, we had an upper and lower boundary limit for each 

solvent used in this study.  EC was set between 20-30%, PC between 5-30%, EMC between 0-

70%, DMC between 0-40%, and finally DEC between 0-40%. 
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Table 4.  Electrolyte bounds used for DOE 

Electrolyte Bounds 

Component Lower  Upper 

EC 20 30 

PC 5 30 

EMC 0 70 

DMC 0 40 

DEC 0 40 
 

All the electrolyte preparation was done in an argon filled glovebox (H2O <0.5 ppm, O2 < 

50 ppm). A mixture of 10.0 grams of solvent combination (EC, PC, EMC, DMC, and DEC) at 

various ratios were prepared. A total of 43 combinations were investigated. Table 5 outlines the 

different electrolyte variations by weight percentage.  The EC concentration was fixed between 20 

to 30% by weight.  PC was used between 5 to 30% by weight. The rest of the solvent mass was 

filled with linear carbonates (DMC, EMC, and DEC).  LiPF6, (1.51 g) salt was added to each of 

the solvent composition to make 1.0 M solution. In each of the solutions, 0.11 gram of vinylene 

carbonate and 0.057 gram of LiBOB was also added to make 1% and 0.5% by weight of the 

electrolyte as additive, respectively. The electrolytes were left overnight to allow to dissolve 

completely.   

Four replicates of coin cells were made using each electrolyte. Circular pieces of electrodes 

(cathode: 9/16 inch, anode: 5/8 inch in diameter) and 50 µL of electrolyte was used in each coin 

cells. The crimped coin cells were taken out from the glove box and stored at 25°C for 24 hours in 

a temperature controlled chamber.   
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A commercially available and widely used electrolyte (1.2 M LiPF6 in 3/7 EC: EMC + 2 % 

VC) was also made for comparison purposes. Similarly, 1.0 M LiPF6 solution in EC/PC/EMC 

(3:2:5) was made and CsPF6 additive was added in it to make a 0.05 M concentration [49].  EC 

free electrolyte, 1.2 M LiPF6 in EMC with 2% VC was also prepared.  These electrolytes were 

studied in coin cells in addition to the 43 electrolyte combinations.   

 

Table 5.  1.0M LiPF6 Electrolytes with solvent variations and 1% VC/0.5% LiBOB as additive 

Electrolyte 

No. 
EC PC EMC DMC DEC 

1 30.0 30.0 0.0 40.0 0.0 
2 30.0 30.0 0.0 0.0 40.0 
3 20.0 30.0 10.0 0.0 40.0 
4 22.0 9.9 48.7 11.0 8.5 
5 22.0 22.4 18.7 28.5 8.5 
6 20.0 5.0 70.0 0.0 5.0 
7 27.0 9.9 26.2 8.5 28.5 
8 20.0 5.0 70.0 5.0 0.0 
9 20.0 5.0 35.0 40.0 0.0 

10 22.0 9.9 48.7 8.5 11.0 
14 13.0 3.0 0.0 30.0 25.0 
15 30.0 5.0 0.0 40.0 25.0 
16 20.0 30.0 0.0 40.0 10.0 
17 20.0 5.0 0.0 35.0 40.0 
18 20.0 5.0 35.0 0.0 40.0 
19 30.0 5.0 0.0 25.0 40.0 
20 30.0 5.0 25.0 0.0 40.0 
21 20.0 30.0 0.0 10.0 40.0 
22 25.0 5.0 70.0 0.0 0.0 
23 30.0 5.0 65.0 0.0 0.0 
24 20.0 10.0 70.0 0.0 0.0 
25 20.0 30.0 50.0 0.0 0.0 
26 30.0 30.0 40.0 0.0 0.0 
27 30.0 5.0 25.0 40.0 0.0 
28 20.0 30.0 10.0 40.0 0.0 
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29 24.0 14.8 27.4 16.9 16.9 
30 27.0 22.4 13.7 8.5 28.5 
31 22.0 9.9 13.7 28.5 26.0 
32 27.0 9.9 13.7 28.5 21.0 
33 22.0 22.4 13.7 28.5 13.5 
34 27.0 22.4 13.7 28.5 8.5 
35 22.0 9.9 13.7 26.0 28.5 
36 22.0 9.9 31.2 8.5 28.5 
37 27.0 9.9 13.7 21.0 28.5 
38 22.0 22.4 13.7 13.5 28.5 
39 22.0 22.4 18.7 8.5 28.5 
40 24.5 9.9 48.7 8.5 8.5 
41 27.0 9.9 46.2 8.5 8.5 
42 22.0 12.4 48.7 8.5 8.5 
43 22.0 22.4 38.7 8.5 8.5 
44 27.0 22.4 33.7 8.5 8.5 
45 22.0 9.9 31.2 28.5 8.5 
46 27.0 9.9 26.2 28.5 8.5 

 

2.1.2 XPS SPECIMENS 

The cycled cells were discharged and taken to the argon filled glove box (H2O < 1.0 

ppm). They were disassembled and the anode was cut into 4 pieces.  The electrodes were then 

rinsed twice with small amounts of DMC.  DMC is used to remove residual electrolytes and 

polymer-like interphasial species from electrodes [57].  The wash solvent (DMC) was removed 

from the electrode surface by evacuating them overnight.  Samples were then mounted unto a flat 

cylindrical sample holder via double-sided carbon tape and allowed to vacuum overnight.   

2.1.3 XRD SPECIMENS 

Similarly with the XPS specimens, the XRD samples were taken from the cycled cells 

and prepped in an argon filled glove box (H2O < 1.0 ppm). They were disassembled and the 

anode was cut into 4 pieces.  The electrodes were then rinsed twice with small amounts of DMC. 
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The wash solvent (DMC) was removed from the electrode surface by evacuating them overnight.  

Samples were then mounted with double-sided tape in an airtight specimen holder ring.  The 

holder ring was then sealed with a dome shaped x-ray transparent cap. 

2.2 CHARACTERIZATION TECHNIQUES 

Different characterization techniques were used in this study to examine the effect on 

electrolyte composition at different temperature ranges.  This includes electrical performance 

testing, XPS, and XRD. 

2.2.1 ELECTRICAL PERFORMANCE TESTING 

In order to measure the effective capacity of each electrolyte at a certain temperature, 

electrical performance testing was done.  The cycle performance of different electrolytes 

containing coin cells were measured using custom built Arbin Battery testing equipment.  The 

procedures were designed to represent the battery duty cycles in a micro-hybrid vehicle.  Each 

coin cell had the theoretical total capacity of 1.39 mAh.  All charge/discharge experiments were 

done in constant current and constant voltage (CCCV) mode.  First, the cells were charged by 

constant current until the voltage reaches to 4.1 V.  Then, voltage was held constant at 4.1 V until 

the current value decayed to C/20.  They were then discharged at a constant current of C/5 until 

the voltage reached 2.7 Volts.  This cycle was completed 2 times.  Then, a constant current, 

constant voltage charge/discharge cycle at a rate of 1C were applied between 2.0 V and 4.1 V for 

three cycles as part of the condition step.  Between each charge and discharge cycle a one minute 

rest period was given.  The entire formation and conditioning process was completed at 25°C.  

Afterwards, the cells were charged at 1C rate and discharged at 5C rate at room temperature.  

Following this, the cells were again charged with a 1C rate and then cooled at -20°C for 2 hours 
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and then discharged at a 5C rate.  The cells were then warmed up to 25°C, kept at this temperature 

overnight and then charged at 1C.  After the charge was completed, the cells were cooled to -30°C 

for 2 hours and discharged at a 5C rate.  The cells were then warmed to 25°C and allowed to stay 

at this temperature overnight.  These cells were then held at 60°C and cycled for 100 cycles at a 

1C charge and 5C discharge rate.  At the end of the 100 cycles, the -20°C and -30°C cycles were 

repeated.  Then the above process of cycling (hot and cold) was repeated one more time.  A total 

of 200 cycles at 60°C and 3 cycles at -20°C and 3 cycles at -30°C were performed.   

Graphical representations can be seen below for formation, charge and discharge at room 

and low temperature (-20°C and -30°C), and 60°C cycling.  As can be seen from Figure 13 below, 

formation involves 2 cycles of CCCV to 4.1V and discharge to 2.7V, followed by a conditioning 

step of 1C charge and discharge between 2.0V and 4.1V.  Figures 14 and 15 shows a typical charge 

and discharge for room temperature and low temperature profiles.  As stated earlier, the cell has a 

CCCV charge 1C rate until 4.1V, then held at 4.1V until current decays to C/20, followed by 2 

hour rest at the temperature to be tested (1 minute for room temperature), then discharged at 5C 

rate until 2.0V.  A closer look at Figure 16 shows how the discharge capacity is determined for 

this study, as they are measured at 2V after 5C discharge at their respective temperature.  For 60°C 

cycling, only 7 cycles has been shown of the 200 cycles each electrolyte goes through in Figure 

17.  A tabulated version can also be seen in Appendix C outlining all cycling each cell goes 

through. 
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Figure 13.  Formation cycles and condition step at room temperature.  CCCV C/5 charge until 4.1V, held at 4.1V until 

I=C/20, then 1 minute rest, followed by C/5 discharge to 2.7V (2 cycles).  Lastly, CCCV 1C charge until 4.1V, held at 4.1V 

until I=C/20, then 1 minute rest, followed by 1C discharge to 2.0V (3 cycles).   
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Figure 14.  Representative room temperature cycling.  CCCV 1C charge until 4.1V, held at 4.1V until I=C/20, then 1 

minute rest, followed by 5C discharge to 2.0V. 
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Figure 15.  Representative -20°C and -30°C cycling.  CCCV 1C charge until 4.1V, held at 4.1V until I=C/20, then 2 hour 

rest, followed by 5C discharge to 2.0V. 

 

Figure 16.  Representative room temperature, -20°C, and -30°C Discharge.  Cells were discharged at 5C rate to 2.0V. 
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Figure 17.  Representative 60°C cycling repeated for 100 cycles.  CCCV 1C charge until 4.1V, held at 4.1V until I=C/20, 

then 10 minute rest, followed by 5C discharge to 2.7V. 

AC-impedance tests were also performed on the cells in the charged state after the 

formation cycles, but before cycling. The impedance tests were conducted at 25°C and -20°C by 

Metrohm electrochemical workstation. 

2.2.2 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 

XPS technique was used for this study to help identify the SEI components and is able to 

analyze the surface chemistry of a material.  This technique can measure the elemental 

composition, empirical formula, chemical state, and electronic state of elements within a 

material.  This technique works by having an X-ray beam excite the sample surface causing 

photoelectrons to be emitted.  The resulting XPS spectra is obtained by measuring the kinetic 

energy and number of electrons that are emitted from the surface of the material.  The kinetic 
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energy of the electron depends on the photon energy and the binding energy of the electron, or 

the energy required to remove the electron from the surface.  The binding energy depends on a 

few factors, such as the element from which the electron is emitted, the orbital from which the 

electron is ejected, and the environment of the atom from which the electron is emitted.  The 

energies and intensities of the peaks enable identification and quantification of the surface 

elements from the sample.   

The number of detected electrons in each peak is directly related to the amount of 

elements in the sample.  In order to generate atomic percentage, each XPS signal should be 

normalized by dividing its signal intensity by a relative sensitivity factor. 

XPS spectra of the anode surface were collected using Perkin-Elmer PHI 5400 system 

using Mg radiation.  For X-ray source setup, the pressure in the analysis chamber was <5 x 10-9 

Torr based on the digital gauge control readout.  In order to count the number of electrons with 

minimal error, the XPS detector must be operated under vacuum conditions as there is a long 

path length for detection of the irradiated material which requires low pressures.  The X-ray 

source was used at 14.5 kV.  C1s, F1s, O1s, and P2p spectra were calibrated using C-C peak at 

284.3 eV as a reference.  The elemental concentrations were calculated by dividing the ratio of 

peak area to sensitivity factor (A/s) of each element by sum of the same ratios of all the elements 

(∑A/s).  Here, A is the XPS peak area of each element obtained from multiple scans and s is the 

sensitivity factor of the same element. 

Table 6 shows the XPS settings that were used for the anode analysis.  For the survey 

analysis, the upper limit for binding energy was set at 1000 and the lower limit set at 0.  eV/step 

was ran at 1, pass energy at 89.45, time/step at 100, and a total of 5 sweeps using an aperture size 

of 4.  Survey time took a total of 8.3 minutes.  In the multiplex analysis, 4 different elements 
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were quantified, C1s, F1s, O1s, and P2p.  All eV/steps, sweeps, time/step, pass energy and 

cycles were remained consistent throughout all electrolytes sampled.  Survey scans are used to 

obtain qualitative elemental composition information of the sample which can be used to define 

narrower range multiplex scans, and in turn can then be used for composition and chemical state 

analysis. 

Table 6.  XPS settings for anode analysis 

 

2.2.3 X-RAY DIFFRACTION (XRD) 

In this study, the crystallographic orientation of samples can be determined by using the 

XRD.  X-ray powder diffraction technique identifies phases of a crystalline material and 

provides information on unit cell dimensions.   

 X-rays are generated by a cathode ray tube and directed toward the sample.  Interaction 

of incident rays with the sample produces constructive interference at specific angles.  In order 

for this to occur, Bragg’s law must be satisfied, as seen in the equation below, where the plane 

normal must be parallel to the diffraction vector.   

λ = 2dhklsinθ 

Upper Limit Lower Limit eV/step Pass Energy Time/Step Sweeps Time Aperture Size

Anode 1000 0 1 89.45 100 5 8.3 4

Anode

Element Upper Limit Lower Limit Sweeps Time / Step Cycles Time

C 1s 296 276 0.125 10 50 44.75 1 8.1

F 1s 695 675 0.125 20 50 44.75 1 8.1

O 1s 542 522 0.125 10 50 44.75 1 8.1

P 2p 140 120 0.125 20 50 44.75 1 8.1

eV/step

Survey

Multiplex - Anode

Binding Energy Acquisition Time Pass 

Energy

Total Acquisition Time



42 
 

Peak positions are then plotted which signify the space (dhkl) between diffracting planes of 

atoms.  The peak intensity is determined by what atoms are in the diffracting planes.  Typically, 

XRD spectra is plotted out in 2θ, conversion to dhkl allows for identification of the sample. 

The cycled coin cell samples were tested on a Bruker D8 Discover model XRD (AXS 

GmbH 2000).  XRD Commander software was used to scan the samples and measurement data 

acquisition.  In addition, Diffrac.eva software was used for quantitative analysis and phase 

identification.  The X-ray source used was a Cu tube with 1.54060 Å wavelength.  

Samples analyzed had a detector slit opening of 0.1 mm.  The X-ray generator was at 40 

kV and 40 mA as standard power.  Samples were scanned at 2θ values from 20° to 90°.  Scan 

step size settings were at 0.020° and 5 seconds per step. 
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CHAPTER 3 – RESULTS AND DISCUSSION 

 

3.1 ELECTRICAL PERFORMANCE TESTS 

In order to find an electrolyte best suited for low temperature application, we’ve tested 

various combinations per the DOE at both -20°C and -30°C down to 2V.  Table 7 shows a few 

representative electrolyte combinations out of all the electrolytes that were created and their low 

temperature performance after formation was complete.  Additionally, Table 8 shows low 

temperature performance for electrolytes that were investigated apart from the DOE.  The 

discharge rates for both -20°C and -30°C are reported at 5C. 

Table 7.  Representative low temperature performance for various electrolytes from DOE 

Electrolyte names Solvent ratios LiPF6 
Additives 

(1 % and 0.5%) 
-20 o C 
(mAh) 

-30 o C 
(mAh) 

1 
EC/PC/EMC/DMC/DEC 
30: 30: 0: 40: 0 

1.0 M VC+LiBOB 0.0 0.0 

2 
EC/PC/EMC/DMC/DEC 
30: 30: 0: 0: 40 

1.0 M VC+LiBOB 0.12 0.03 

3 
EC/PC/EMC/DMC/DEC 
20: 30: 10: 0: 40 

1.0 M VC+LiBOB 0.27 0.04 

4 
EC/PC/EMC/DMC/DEC 
22: 9.9: 48.7: 11: 8.5 

1.0 M VC+LiBOB 0.68 0.18 

5 
EC/PC/EMC/DMC/DEC 
22: 22.4: 18.7: 28.5: 8.5 

1.0 M VC+LiBOB 0.12 0.03 

6 
EC/PC/EMC/DMC/DEC 
20: 5: 70: 0: 5 

1.0 M VC+LiBOB 0.59 0.07 

7 
EC/PC/EMC/DMC/DEC 
27: 9.9: 26.2: 8.5: 28.5 

1.0 M VC+LiBOB 0.37 0.05 

8 
EC/PC/EMC/DMC/DEC 
20: 5: 70: 5: 0 

1.0 M VC+LiBOB 0.64 0.14 

9 
EC/PC/EMC/DMC/DEC 
20: 5: 35: 40: 0 

1.0 M VC+LiBOB 0.74 0.35 

10 
EC/PC/EMC/DMC/DEC 
22: 9.9: 48.7: 8.5: 11 

1.0 M VC+LiBOB 0.53 0.07 
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Table 8.  Additional low temperature performance for various electrolytes 

Electrolyte names Solvent ratios LiPF6 Additives 
-20 o C 
(mAh) 

-30 o C 
(mAh) 

Cs EC/PC/EMC, 3:2:5 [49] 1.0 M CsPF6 0.41 0.11 

11 EC/EMC, 3:7 1.2 M No additive 0.50 0.15 

12 EC/EMC, 3:7 1.2 M VC 0.63 0.11 

13 EC/EMC, 0:1 [48] 1.2 M VC 0.74 0.39 

 

It can be clearly seen from the Table 7 and 8 that the low temperature discharge capacity was 

strongly dependent upon the solvent composition.  When the sum of cyclic carbonates was more 

than 40% in the total mixture, the low temperature discharge capacity was adversely affected.  

Electrolyte 1, almost 60% of which had cyclic carbonates, did not deliver any discharge capacity.  

Similarly, electrolytes 5 and 2 had high percentage of cyclic carbonates and delivered very small 

discharge capacities at low temperatures.  Electrolyte 3, composed of 40% DEC and 50% cyclic 

carbonates, demonstrated slightly improved low temperature discharge capacity (compared to 

electrolytes 5 and 2).  However, when the percentage of EC, PC, and DEC decreased, the low 

temperature discharge capacity significantly increased (electrolytes 4, 6, 8, 9).  Another distinct 

behavior can be noticed in Tables 7 and 8 was that most of the electrolytes that performed well at 

-20°C, failed to perform at -30°C.  However, electrolytes 9 and 13 showed an exception, they 

demonstrated high capacity at -20°C (0.74 mAh) and -30°C (0.35 mAh or more).  In electrolyte 9, 

there was small amount of PC/EC balanced with high amount of DMC/EMC.  Interestingly, 

electrolyte 13 had no EC, PC, DMC, or DEC.  It had only EMC as the solvent and still performed 

well in both instances.  Electrolyte 12 showed better performance than electrolyte 11, with both 

having the same compositions (EC/EMC, 3/7), except electrolyte 11 has no VC additive whereas 
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electrolyte 12 has 2% VC.  The presence of the additive had a significant positive effect on the 

low temperature performance.  CsPF6 additive (0.05 M) [49] had been reported to enhance the low 

temperature performance of lithium-ion battery electrolytes.  The discharge capacities of the cell 

with CsPF6 additive (labeled as Cs) at -20°C and -30°C were relatively moderate (0.41 mAh and 

0.11 mAh respectively) in comparison with other electrolytes such as 12, 13, 9, 4, 8, etc. 

 Table 9 shows the remainder of the electrolytes that were investigated along with their -

20°C and -30°C capacity performance.  There are certainly differences in low temperature 

performance among the many electrolyte combinations which can be better depicted in figures 

below.  Performances for second round of -20°C and -30°C has also been tabulated in appendix 

A. 

Table 9.  Remaining low temperature performance for various electrolytes from DOE 

Electrolyte names Solvent ratios LiPF6 
Additives 

(1 % and 0.5%) 
-20 o C 
(mAh) 

-30 o C 
(mAh) 

14 
EC/PC/EMC/DMC/DEC 
13: 3: 0: 30: 25 

1.0 M VC+LiBOB 0.56 0.08 

15 
EC/PC/EMC/DMC/DEC 
30: 5: 0: 40: 25 

1.0 M VC+LiBOB 0.43 0.06 

16 
EC/PC/EMC/DMC/DEC 
20: 30: 0: 40: 10 

1.0 M VC+LiBOB 0.08 0.02 

17 
EC/PC/EMC/DMC/DEC 
20: 5: 0: 35: 40 

1.0 M VC+LiBOB 0.27 0.04 

18 
EC/PC/EMC/DMC/DEC 
20: 5: 35: 0: 40 

1.0 M VC+LiBOB 0.58 0.12 

19 
EC/PC/EMC/DMC/DEC 
30: 5: 0: 25: 40 

1.0 M VC+LiBOB 0.53 0.08 

20 
EC/PC/EMC/DMC/DEC 
30: 5: 25: 0: 40 

1.0 M VC+LiBOB 0.47 0.09 

21 
EC/PC/EMC/DMC/DEC 
20: 30: 0: 10: 40 

1.0 M VC+LiBOB 0.22 0.05 

22 
EC/PC/EMC/DMC/DEC 
25: 5: 70: 0: 0 

1.0 M VC+LiBOB 0.65 0.14 

23 
EC/PC/EMC/DMC/DEC 
30: 5: 65: 0: 0 

1.0 M VC+LiBOB 0.63 0.11 

24 
EC/PC/EMC/DMC/DEC 
20: 10: 70: 0: 0 

1.0 M VC+LiBOB 0.43 0.06 
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25 
EC/PC/EMC/DMC/DEC 
20: 30: 50: 0: 0 

1.0 M VC+LiBOB 0.43 0.08 

26 
EC/PC/EMC/DMC/DEC 
30: 30: 40: 0: 0 

1.0 M VC+LiBOB 0.07 0.02 

27 
EC/PC/EMC/DMC/DEC 
30: 5: 25: 40: 0 

1.0 M VC+LiBOB 0.45 0.08 

28 
EC/PC/EMC/DMC/DEC 
20: 30: 10: 40: 0 

1.0 M VC+LiBOB 0.46 0.07 

29 
EC/PC/EMC/DMC/DEC 
24: 14.8: 27.4: 16.9: 16.9 

1.0 M VC+LiBOB 0.41 0.06 

30 
EC/PC/EMC/DMC/DEC 
27: 22.4: 13.7: 8.5: 28.5 

1.0 M VC+LiBOB 0.35 0.06 

31 
EC/PC/EMC/DMC/DEC 
22: 9.9: 13.7: 28.5: 26 

1.0 M VC+LiBOB 0.52 0.04 

32 
EC/PC/EMC/DMC/DEC 
27: 9.9: 13.7: 28.5: 21 

1.0 M VC+LiBOB 0.45 0.07 

33 
EC/PC/EMC/DMC/DEC 
22: 22.4: 13.7: 28.5: 13.5 

1.0 M VC+LiBOB 0.46 0.05 

34 
EC/PC/EMC/DMC/DEC 
27: 22.4: 13.7: 28.5: 8.5 

1.0 M VC+LiBOB 0.08 0.02 

35 
EC/PC/EMC/DMC/DEC 
22: 9.9: 13.7: 26: 28.5 

1.0 M VC+LiBOB 0.64 0.13 

36 
EC/PC/EMC/DMC/DEC 
22: 9.9: 31.2: 8.5: 28.5 

1.0 M VC+LiBOB 0.60 0.12 

37 
EC/PC/EMC/DMC/DEC 
27: 9.9: 13.7: 21: 28.5 

1.0 M VC+LiBOB 0.14 0.03 

38 
EC/PC/EMC/DMC/DEC 
22: 22.4: 13.7: 13.5: 28.5 

1.0 M VC+LiBOB 0.51 0.09 

39 
EC/PC/EMC/DMC/DEC 
22: 22.4: 18.7: 8.5: 28.5 

1.0 M VC+LiBOB 0.17 0.03 

40 
EC/PC/EMC/DMC/DEC 
24.5: 9.9: 48.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.45 0.06 

41 
EC/PC/EMC/DMC/DEC 
27: 9.9: 46.2: 8.5: 8.5 

1.0 M VC+LiBOB 0.55 0.09 

42 
EC/PC/EMC/DMC/DEC 
22: 12.4: 48.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.62 0.09 

43 
EC/PC/EMC/DMC/DEC 
22: 22.4: 38.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.09 0.02 

44 
EC/PC/EMC/DMC/DEC 
27: 22.4: 33.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.26 0.04 

45 
EC/PC/EMC/DMC/DEC 
22: 9.9: 31.2: 28.5: 8.5 

1.0 M VC+LiBOB 0.59 0.10 

46 
EC/PC/EMC/DMC/DEC 
27: 9.9: 26.2: 28.5: 8.5 

1.0 M 
VC+LiBOB 0.59 0.09 
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Figure 18.  Discharge capacity of different electrolytes containing various amount of cyclic carbonates including DEC at -

20°C. The rate of discharge is 5C. 

Figure 18 shows the discharge capacity of various electrolytes at -20°C containing different 

amounts of cyclic carbonates.  The trend clearly shows that as the content of cyclic carbonates 

increases, the low temperature discharge capacity decreases.  In this experiment, the EC content 

was only varied from 20 to 30 percent, which makes it difficult to isolate the effect of varying 

only EC on the cold discharge capacity.  Therefore, we can only show the effect of varying EC, 

PC, and DEC in combination together.  

Figure 19 shows the impact of the concentration of short chain linear carbonates (and EC 

because of the reasons stated earlier) on the discharge capacity at low temperature.  Apparently, 

as the amount of linear carbonates increased so did the low temperature performance.  This was 

an unexpected result as we initially hypothesized that a higher percentage of these solvents 

wouldn’t give better low temperature performance due to the freezing points of DMC and EC 

being high (3°C and 35°C, respectively).  This leads us to believe that the electrolyte viscosity 

and conductivity plays a small role in cold temperature performance.  
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Figure 19.  Discharge capacity of different electrolytes containing various amounts of short chain linear carbonates and 

EC at -20°C. The rate of discharge is 5C. 

 

Figure 20.  Cox response plot of discharge capacity for different electrolytes at -20°C. The rate of discharge is 5C. 
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Figure 21.  Discharge capacity of different electrolytes containing various amounts of cyclic carbonates at -20°C. The rate 

of discharge is 5C. 

As mentioned earlier for the representative electrolytes, there is a strong correlation 

between lower amounts of cyclic carbonates leading to a better low temperature performance for 

the remaining electrolytes.  This is evidenced by the Cox plot displayed in Figure 20 showing 

that performance will decrease when increasing in either EC (blue line) or PC (dashed red line) 

from the reference blend at ~24% and ~15%, respectively.   In the same plot, an increase in the 

linear carbonates show better performance, however only up to a certain point, especially for 

EMC and DEC.  Additionally, Figure 21 above shows discharge capacity versus the percent of 

cyclic carbonates only.  Possibly the biggest hindrance for lower temperature performance is due 

to EC solvent, as it has a high melting point and its liquid range too restricted. 



50 
 

 

Figure 22.  Discharge capacity of different electrolytes containing various amounts of linear carbonates except DEC at -

20°C. The rate of discharge is 5C. 

 

 

  

 

Figure 23.  Discharge capacity of different electrolytes containing various amounts of linear carbonates at -20°C. The rate 

of discharge is 5C. 
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Figures 22 and 23 above also show the percentage of short linear carbonates only and all 

of linear carbonates used, respectively.  There seems to be a correlation between percentages of 

carbonate to low temperature performance, as more linear carbonates contribute to a better 

performance.  The same effect seems to happen with the addition of DEC solvent.  However, when 

adding DEC solvent to other linear carbonates, there is only a slight change in slope as opposed to 

only having short linear carbonates.  The addition of DEC suggests to have less of an impact for 

low temperature performance, as it may hinder the greater contribution coming from either EMC 

or DMC, or both.   

To better understand how the discharge capacity is changed with differences in testing 

temperature and after 60°C cycling, we looked at the discharge curves for better interpretation.  

Figure 24A shows the discharge curves for the electrolyte 9 at 25°C, -20°C, and -30°C after their 

formation cycles.  The electrolyte contains 40% of DMC along with EC (20%), PC (5%) and EMC 

(35%). The 5C rate discharge capacity at room temperature is about 1.26 mAh.  However, the 

discharge capacity at -20°C and -30°C with 5C rate is 0.74 mAh and 0.35 mAh, respectively. A 

total of 59 % and 28% of the room temperature discharge capacity was retained at -20°C and -

30°C, respectively. The IR drop at room temperature was 7.5 Ohms.  The IR drop at -20°C and -

30°C were 61.0 Ohms and 101.0 Ohms representing 8 times and 13 times increase, respectively.  

As can be seen, the large IR drop is mainly due to the lowering of the temperature, which then 

results in a lower overall discharge capacity.  The shape of the discharge curve between room 

temperature and -20°C look very similar, however, once going down to -30°C, the shape of the 

discharge curve drastically changes. 

 



52 
 

 

 

Figure 24.  A) Discharge curves of the electrolyte 9 at 5C rate at room temperature, -20°C and -30°C after the formation 

is complete. The cells were cooled for 2 hours before being discharged; B) Discharge curves of the electrolyte 9 at 5C rate 

at -20°C and -30°C after 100 cycles at 60°C. The cells were cooled for 2 hours before being discharged. The capacity loss 

at -20°C and -30°C is about 9% and 50% respectively compared with the fresh cells. 

The cells were then cycled at 60°C after completing the cold temperature discharge, as to mimic 

accelerated aging.  The cell capacity decreased from 1.26 mAh to 1.05 mAh after 100 cycles at 

60°C.  The capacity loss was 15 to 20% of the initial capacity.  

Figure 24B compares the discharge curves of the same cells at -20°C and -30°C (a second 

time) after they completed 100 cycles at 60°C.  The 5C rate discharge capacities at -20°C and -

30°C are 0.67 mAh and 0.18 mAh respectively.  Comparing the fresh cells to those after 100 cycles 
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at 60°C, it was seen that the -20°C discharge capacity decreased just by 9%.  However, the -30°C 

capacity decreased by roughly 50%.  After one more thermo-cycle (100 cycles at 60°C), the cell 

delivered 0.51 mAh and 0.09 mAh capacity (69% and 26% of the initial low temperature capacity) 

at -20°C and -30°C, respectively.  Evidently, electrolyte 9 retained its capacity well after 200 

thermo-cycles (60/ -20 /-30°C).   

Comparing the discharge values of electrolytes 11 and 12 in Table 8, electrolyte 12 had an 

increase in -20°C capacity by 26%, going from 0.50 mAh to 0.63 mAh.  The difference between 

the two electrolytes was that electrolyte 12 had 2 % VC.  It is worth to mentioning that the presence 

of 2 % VC in electrolyte did not change the conductivity of electrolyte.  Furthermore, the majority 

of VC would be reduced during the formation process, thus having it act as a sort of sacrificial 

additive.  Therefore, it can be assumed that the better low temperature performance may be more 

dependent on the quality of SEI than conductivity of the electrolyte.  

Another interesting electrolyte was the EC free electrolyte, electrolyte 13 in Table 8 [48]. 

This electrolyte performed well in its initial low temperature discharge; 0.74 mAh at -20°C and 

0.39 mAh at -30°C.  However, after 100 cycles at 60°C, only half of the low temperature capacity 

was retained.  It seems that EC is necessary for the stability of the SEI layer, especially at elevated 

temperatures.  

The electrolyte with CsPF6 additive was reported as a potentially good electrolyte for low 

temperature applications [49]. However, the electrolyte did not stand out among the electrolytes 

in our experiment protocol. The discharge capacity for fresh cells was only 0.41 mAh and 0.11 

mAh at -20°C and -30°C, respectively. 
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3.2 X-RAY PHOTOELECTRON SPECTROSCOPY (XPS) 

XPS technique was used for this study to analyze the surface chemistry of the anode in 

order to identify the SEI components.  Figure 25 shows the comparison of the XPS spectra of 

two representative electrolytes (9 and 10) and a fresh un-cycled anode spectra (on the top).  

Electrolyte 9 showed very good low temperature results at -20°C and -30°C, at 0.74 and 0.35 

mAh, respectively.  Electrolyte 10 also showed good high temperature performance at 60°C 

during thermo-cycling showing 1.06 mAh discharge capacity, however did not perform as well 

as electrolyte 9 at low temperature with performance at 0.53 mAh and 0.07 mAh at -20°C and -

30°C, respectively. 

 

Figure 25.  C1s (left) and O1s (right) XPS spectra of anodes cycles for 200 cycles at 60°C. 
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Compared to the fresh anode surface, the cycled anode had quite a different spectra.  This proved 

that the anode surface was completely covered with an SEI layer.  The C1s peak at 284.3 eV 

showed the presence of C-C and the peak at 285.7 eV corresponds to C-H species.  The peaks at 

286-287 eV and 288-289 eV corresponded to C-O and C=O species, respectively [50].  The C1s 

peaks for electrolyte 9 were considerably diminished.  Similarly, the O1s spectra for electrolyte 9 

showed that there was bigger peak for C-O (531-532 eV) but the C=O peak (533 eV) was reduced. 

The C=O species (288- 289 eV) was also very small in C1s spectra.   

 

Figure 26.  F1s (left) and P2p (right) XPS spectra of anodes cycles for 200 cycles at 60°C. 

Figure 26 shows the F1s and P2p spectra of the anodes cycled with electrolyte 9 and electrolyte 

10.  The peak at 684 – 685 eV in F1s spectra represented a LiF compound.  The peak at 686 eV – 

687 eV was from LixPOyFz species.  In the P2p spectra, the peak at 134 eV – 135 eV also 

corresponds to LixPOyFz species [50].  
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Table 10 compares the elemental concentrations in the SEI layer derived from the spectra 

discussed above for different electrolyte systems.  The carbon and oxygen elemental percentage 

were very similar (more than 50 %) for both 10 and 12.  However, the carbon and oxygen 

concentrations were low for electrolyte 9 (15.5 and 9.6 percent).  In addition, there was not much 

of a difference in phosphorus concentration. 

Table 10.  Elemental concentration on anode for different electrolytes 

Electrolytes Surface elemental concentration (%) on the anode surface 

C O F P 

Fresh anode 83.6 16.6   

10 57.8 28 10.5 3.7 

9 15.5 9.6 70.6 4.1 

12 54.6 24.8 16.2 4.3 

 

A stark difference in the fluorine concentration can be observed.  Electrolyte 9 was found to have 

its SEI layer composed of 70% fluorine, while electrolytes 10 and 12 gave only 10 and 16 percent, 

respectively.  It appears that the SEI layer containing LiF species had less resistivity. 

 Extending this thought unto the other electrolytes containing VC and LiBOB as additive, 

there is a clear trend as seen in Figure 27.  As fluorine species (F1s) increases, performance at 

low temperature also increases.  The opposite effect occurs with carbon species (C1s), as when it 

reduces, there is a detrimental effect on low temperature capacity.  This impact however, is not 

as prominent when in comparison to -20°C performance.  Table 11 outlines the amount of each 

species for all electrolyte combinations tested.  
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Figure 27.  F1s (left) and C1s (right) graphs of discharge capacity (5C rate) vs. elemental concentration at -30°C. 

 

Table 11.  Elemental concentration on anode for electrolytes with VC and LiBOB additive 

Electrolytes Surface elemental concentration (%) on the anode surface 

C O F P 

Fresh anode 83.6 16.6   
1 46.87 35.99 14.89 2.24 
2 29.05 27.98 39.04 3.92 
3 32.96 26.09 36.27 4.68 
4 30.26 28.58 36.43 4.73 
5 37.71 26.43 32.49 3.38 
6 45.72 27.13 23.46 3.70 
7 45.66 30.51 19.57 4.25 
8 36.08 29.63 29.56 4.72 
9 15.50 9.60 70.60 4.10 
10 57.80 28.00 10.50 3.70 
14 44.25 30.06 21.46 4.22 
15 47.05 29.72 19.62 3.61 
16 43.80 32.09 19.40 4.70 
17 34.22 26.71 32.29 6.79 
18 27.04 27.88 40.31 4.77 
19 53.35 28.46 15.95 2.24 
20 30.09 30.83 33.46 5.61 
21 42.88 25.75 26.12 5.25 
22 37.38 29.57 29.04 4.01 
23 33.00 29.01 33.16 4.84 
24 64.65 22.76 10.52 2.08 
25 44.94 32.19 19.63 3.24 
26 42.34 31.39 20.84 5.43 
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27 28.57 29.83 36.27 5.33 
28 33.04 29.56 32.93 4.48 
29 43.89 24.19 28.14 3.78 
30 29.11 30.86 35.25 4.78 
31 41.74 33.96 17.84 6.47 
32 68.23 21.98 8.95 0.84 
33 72.90 22.77 4.32 0.00 
34 47.64 30.92 17.04 4.40 
35 41.28 33.27 22.31 3.14 
36 43.36 32.92 19.87 3.84 
37 66.04 21.76 10.12 2.09 
38 34.55 29.33 31.34 4.78 
39 58.19 21.57 17.73 2.51 
40 35.77 27.64 29.83 6.77 
41 33.69 35.75 25.91 4.65 
42 27.91 30.62 36.15 5.32 
43 55.27 21.98 19.62 3.13 
44 43.46 23.63 29.35 3.56 
45 28.52 29.76 36.40 5.32 
46 28.58 29.62 36.23 5.57 

 

When looking at particular component species within both the C1s and F1s spectra, there 

seems to be the effect of both LiF and LixPOyFz bonds for the F1s spectra.  In addition, the C-H 

bond as evidenced in Figure 28 seems to show the opposite effect of F1s.  As LiF and LixPOyFz 

concentration increases, low temperature capacity also increases.  As C-O concentration 

increases, lower temperature capacity decreases.  This is similarly seen with other C1s bonds, 

however, not to the same degree.  
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Figure 28.  LiF (left), LixPOyFz (right), and C-O (bottom) graphs of discharge capacity (5C rate) vs. elemental 

concentration at -30°C. 

 

3.3 ELECTROCHEMICAL IMPEDANCE 

After the formation cycles, the surface of the LIB graphite anode is covered by the SEI 

layer, which prevent the further chemical or electrochemical reactions between the electrolyte and 

the carbon anode.  The SEI layer has a porous physical structure, the density of this porous 

structure is critical for performance of anode.  The reactions between electrode and electrolyte 

cannot be effectively prevented if the SEI layer is too porous, while if it is too dense, it can 

negatively impact the power of the anode.  Figure 29 shows a comparison of the impedance spectra 



60 
 

for anode in electrolytes 12, 13, Cs, and 9 at 25°C.  As shown previously, electrolyte 12 has good 

low temperature performance at -20°C with 0.63 mAh, which was an improvement as it had VC 

additive over electrolyte 11.  Electrolyte 13 had only EMC solvent comprised in the electrolyte 

and showed very good results at -20°C and -30°C at 0.74 mAh and 0.39 mAh, respectively.  

Electrolyte 9 also did very well at -20°C (0.74 mAh) and -30°C (0.35 mAh) low temperature 

performance, where the electrolyte had all solvent components except for DEC.  Lastly, Cs 

additive electrolyte was tested for comparison purposes as it was previously reported to have good 

low temperature performance [49].  However, Cs additive electrolyte did not show as good a 

performance as other electrolytes above showing only 0.41 mAh and 0.11 mAh discharge capacity 

at -20°C and -30°C, respectively.  The equivalent circuit used for the numerical fitting is shown as 

inset in the figure.  Also the enlarged high frequency semi-circle is also shown as an inset.  In the 

equivalent circuit, Rs represents ohmic resistance which could be a result of the material’s intrinsic 

resistance and the contact resistance in the cell; the R/C component represents the SEI layer where 

Cpseudo is the possible pseudo capacitance while R is the diffusion resistance of a Li-ion across the 

SEI layer.  The CPE is a constant phase element which used to simulate the distributed network of 

double layer capacitance and resistance in a porous electrode, here CPESEI /RctSEI is used to 

simulate the possible side reactions between electrode and electrolyte. The last CPEe/Rcte 

component, of course, represents the charge transfer and Li-ion insertion reaction at the    
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Figure 29.  ac-impedance and fitting for fresh cells (after formation) at 25°C. The insets show the equivalent circuit used 

in the fitting and the enlargement of high frequency portion of the impedance spectra. 

interface of the electrode and SEI layer.  Clearly, the equivalent circuit fitted the experimental data 

well.  The equivalent circuit for fitting the impedance spectra obtained at low temperature (-20°C) 

can be simplified.  In figure 30, the equivalent circuit is shown as an inset. The difference was that 

the CPESEI/RctSEI was not needed.  Excellent fitting is shown in the figure.  The fitting results are 

tabulated in Table 12.  It is worth to discussing the difference between the Cpseudo/R loop and the 

CPESEI/RSEI loop.  They were both used to simulate the SEI layer.  However, the former was used 

to simulate the Li-ion mass transfer through the SEI layer in which Cpseudo represented the 

“capacitor-like” or “pseudo capacitor” behavior resulted from the non-homogeneous or even 

porous nature of the SEI layer, 
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Figure 30.  ac-impedance and fitting for fresh cells (after formation) at -20°C. The inset shows the equivalent circuit used 

in the fitting. 

while R represented the diffusion resistance. The CPE is used to model the distributed capacitor – 

resistor network for a non-homogeneous matrix. When CPE-P is equal to 0.5, then the CPE 

becomes an infinite length Warburg element which demonstrates a homogenous charge diffusion, 

the well-known 45 degree line will be shown on the Complex-Plane graph. The deviation of CPE-

P from 0.5 illustrates the degree the system deviates from homogeneity. CPE-T is a time parameter, 

mathematically, when CPE-E=0.5, 1/CPE-T is proportional to the diffusion coefficient. Therefore, 

a CPE/R loop was used to simulate an electrochemical charge transfer reaction in a diffused, non-

homogeneous and porous matrix.  In this report, CPESEI/R and CPEe/Re stood for the possible side 

reaction e.g. small decomposition of electrolyte and Li insertion reaction on the carbon electrode, 

respectively. According to the fitting of the impedance spectra (shown in figure 29 and 30) there 

remains residual electrochemical decomposition of electrolyte at room temperature but the reaction 
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can be ignored at -20°C.  It is reasonable to assume that the rate for the decomposition of electrolyte 

was low, otherwise, the cell would not cycle well.  Thus, the larger semi-circle in figure 29 at low 

frequency was attributed to side reactions, while the higher frequency semi-circle resulted from 

the charge transfer reaction at carbon/SEI interface and the subsequent insertion into the carbon 

structure.  

As illustrated in Table 12, the Ohmic resistance (Rs) increased substantially when the 

temperature changed from 25°C to -20°C, however Rs for the different cells were almost all the 

same at the corresponding temperature, which shows not only the excellent cell engineering and 

reproducibility, but also that the conductivity of the electrolyte may contribute little to the 

differences in the cell performance.  When the cells were fresh (after formation before duty cycles), 

the Cpseudo and R were almost the same at 25°C, which shows that a similar SEI layer was formed. 

At -20°C, the Cpseudo and R for 9, 13, and Cs cells similarly changed with the same trend, the values 

of both parameters increased.  The detailed analysis of the fitting data can reveal something 

interesting regarding the SEI layer formed on the anodes in the three cells.  The CPESEI-P for cells 

13 and Cs (0.82 and 0.84, respectively) deviated away from 0.5 more than that of cell 9 (0.78), 

which demonstrated the more non-homogenous nature of the SEI layers in cell 13 and Cs. The 

same trend was seen in the change of Cpseudo for cell 13 and Cs, which was more than two times as 

that of cell 9.  

Table 13 shows the discharge capacity of those cells after one thermo-cycle (60°C, 100 

cycles).  Evidently, cell 9 survived the thermo-cycle much better. It seems that the non-

homogeneous and/or porous SEI layer did not survive the thermo-cycle well, especially the low 

temperature performance after thermo-cycles.  Cell 12 seemed to be an outlier, but it is worth 

pointing out that the CPESEI-P at 25°C for the cell was at the same level as that of cells 13 and Cs, 
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the non-homogeneous SEI layer went through a significant change at -20°C.  The morphology 

change of the SEI layer made the Li diffusion resistance (R) of cell 12 the lowest one among the 

four. However, such alteration substantially increased the charge transfer resistance (Rcte) for the 

Li-ion insertion process.  The net effect makes cell 12 a low performer at -20°C.  In addition, cell 

12 suffered during thermo-cycling due to the non-homogenous SEI layer.  RctSEI values for the four 

cells provided additional evidence to prove the hypothesis that the SEI layer in cell 9 was more 

stable.  Among all the RctSEIs, which represented the resistance of electrochemical decomposition 

of electrolyte, RctSEI for cell 9 was the highest.   

CPEe-T, CPEe-P, and Re simulated the charge transfer Li insertion reaction. It should be 

emphasized that the electrochemical reaction occurred at the interface between the carbon anode 

and SEI layer, in which the electrochemical decomposition of electrolyte also took place. 

However, they were in the different time domains.  The most notable aspects were the 

exceptionally high charge transfer resistance (Rct) and low Re for cell Cs. The latter one may due 

to the catalytic effect of Cs additive in the electrolyte. 

 

Table 12.  Equivalent fitting results for the impedance spectra shown in figure 29 and 30 

 Temp(oC) 

 

Rs(ΩΩΩΩ) Cpseudo 

(mF) 

R(ΩΩΩΩ) CPESEI-

T x103 

CPESEI-

P 

RctSEI 

(ΩΩΩΩ) 

CPEe-

T 

CPEe-

P 

Rcte 

(ΩΩΩΩ) 

12 25 3.6 0.12 0.68 0.52 0.81 28.2 2.0 0.75 5.6 

12 -20 11.5 0.035 4.16 - - - 0.61 0.81 616.9 

13 25 4.7 0.12 0.81 0.59 0.82 19.1 2.9 0.68 5.9 

13 -20 11.82 2.4 38.73 - - - 0.90 0.74 259.3 

9 25 3.4 0.19 0.5 0.5 0.78 34.5 1.3 0.81 4.9 
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9 -20 10.48 1.1 176.4 - - - 1.1 0.74 352.8 

Cs 25 3.1 0.16 1.1 0.7 0.84 21.52 6.4 0.81 4.9 

Cs -20 12.9 4.1 278 - - - 1.8 0.68 74.3 

 

Table 13.  Low temperature performance for the cells after thermo-cycle at 60°C for 100 cycles. 

Electrolyte Discharge Capacity 

at 25oC (mAh) 

Discharge Capacity 

at -20oC (mAh) 

Discharge Capacity 

at -30oC (mAh) 

13 0.88  0.50  0.05  

12 0.82  0.32  0.02  

9 1.05  0.67  0.18  

Cs 0.87  0.20  0.08  

 

In summary, it has been found that a high concentration of EMC and DMC were required 

to increase the low temperature performance of the cells.  DMC solvent is slightly favored over 

EMC.  High concentration of PC and EC are unfavorable for low temperature performance but 

their presence is found to be essential for the stability of SEI at high temperatures.   
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3.4 X-RAY DIFFRACTION (XRD) 

Results from XRD method are seen in Figure 31 for representative electrolytes 1-10 with 

analysis of 2θ values from 20° to 90°.  In order to remove the possible error in comparing 

between different spectra obtained, relative intensities of the diffraction peaks was calculated 

instead of absolute intensities.  This was done by dividing the absolute intensity of every peak by 

the absolute intensity of the most intense peak, which is then converted to a percentage.  The 

most intense peak would thus be at 100% for each spectra obtained.  Electrolytes shown were 

stacked in the figure as to not have one on top of each other.  Fresh uncycled anode was analyzed 

as seen in Figure 32 and 33 for phase identification.   The first material that had best peak fitting 

was from copper with pattern number cod 7101264, which correlates to the substrate used to coat 

the anode material.  Planes identified include (1,1,1), (2,0,0), (2,2,0), and (3,1,1) for the Cu 

material.  The relative intensities corresponding to these planes are 12.30%, 4.96%, 15.82%, and 

4.08%, respectively.  Table 14 also outlines the planes corresponding to the relative intensity and 

dhkl. 

The second material identified for the anode that fit the XRD Spectra was graphite with 

pattern number cod 9012230, which correlates to the active material used for the anode 

electrode.  Planes identified with the peaks include (0,0,2) and (0,0,4) with relative intensities at 

100% and 3.96%, respectively.  Table 15 also outlines the planes corresponding to the relative 

intensity and dhkl. 

The peaks for Cu material matched with the database, however, this was not seen with 

peaks identified in the database for graphite material.  Some of the missing planes include 

(1,0,0), (1,0,1), (1,0,2), (1,0,3), (1,0,4), (2,1,0), (2,1,2), (1,0,5), (0,0,6).  Possible factors that may 

contribute to differences seen in the peak profile could be scanning setup, crystallite size, 
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microstrain, inhomogeneity, impurities, and errors in sample preparation or setup.  If the plane 

normal is not parallel to the diffraction vector, a diffraction peak will not be produced and only 

background is observed.  Electrolyte 5 also seem to have an issue with its analysis as the peaks 

and background shifted roughly 5% higher in relative intensity. 

When looking closer at 2θ value of around 26°, which correlates to the carbon in 

graphene sheets, there seems to be slight shifts in the spectrum as seen in Figure 34.  The largest 

shift versus fresh anode comes from electrolyte 9 and 10, which moved from ~26.1° peak to 

26.4° peak.  In a study done by Whitehead et al., they found that the XRD patterns shifted from 

the (002) peak for graphite electrode signifying structural changes that occur during various 

degrees of lithium intercalation [56].  However, when comparing the performance of electrolyte 

9 and electrolyte 10, they had a performance of 0.74 and 0.53 mAh at -20°C, respectively.  This 

shift however, is not seen at the same degree for other electrolytes that also did very well (>0.50 

mAh) at -20°C, which were electrolytes 4, 6, and 8.   

 Unfortunately, XRD technique did not show anything conclusive as far as any differences 

between good and bad performing electrolytes at low temperature. 
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Figure 31.  XRD spectra of different electrolyte compositions 

 

Figure 32.  Plane Identification of Fresh Anode (Cu) 
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Table 14.  Relative Intensities of Fresh Anode (Cu) 

Plane 
dhkl 

(Å) 

Relative 
Density 
(%) 

(111) 2.104564 12.30% 

(200) 1.819281 4.96% 

(220) 1.282935 15.82% 

(311) 1.092999 4.08% 
 

 

Figure 33.  Plane Identification of Fresh Anode (Graphite) 

Table 15.  Relative Intensities of Fresh Anode (Graphite) 

Plane 
dhkl 

(Å) 

Relative 
Density 
(%) 

(002) 3.403719 100.00% 

(004) 1.687490 3.96% 
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Figure 34.  XRD spectra of Graphite at 2θ of ~26° for different electrolyte compositions 
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CHAPTER 4 – ANALYSIS AND DISCUSSION 

4.1 CONCLUSIONS 

Many different combinations of solvent compositions were studied for LIB electrolyte in 

a low temperature application (keeping LiPF6 and additive concentrations constant).  Through 

systematic variations of solvent types, we are able to see the impact of cell performance at wide 

range of temperatures.  Our results show that solvent selection can make a significant impact on 

the SEI formation, and consequently on the battery performance.  The electrochemical 

impedance and fitting revealed that the homogeneity of the SEI layer and its catalytic aspect on 

the carbon interface played a large role.  The low temperature performance depended more on 

the SEI quality than the conductivity of the solvent.  The low percentage of cyclic carbonates and 

high percentage of short chain linear carbonates favored the low temperature performance based 

on electrical testing.  However, some cyclic carbonates were necessary to retain the cell 

performance at elevated temperature.  For instance, the addition of VC improved the -20C 

discharge performance from 0.50 mAh to 0.63 mAh, as evidenced in electrolytes 11 and 12.  

Based on performances from all 43 electrolytes from the DOE, decreasing the cyclic carbonates 

EC and PC from 60% to 25% improved the -20C performance from 0.1 mAh to roughly 0.65 

mAh, showing a 550% improvement.  Additionally, increasing the short linear carbonates 

improved the -20C performance from 0.15 mAh to 0.60 mAh, showing a 300% improvement.  

Electrolyte 9 is a good representation of this as it had the lowest amount of cyclic carbonates at 

25% (20% EC and 5% PC due to DOE boundaries set) with higher short linear carbonates at 

75%.  XPS analysis of cycled electrodes show that the better performing electrolytes give higher 

percentages of LiF in SEI whereas bad performing electrolytes gives more carbon containing 

species.  Most importantly, we demonstrated that the low temperature power capability of an LIB 
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can be substantially improved not by adding exotic additives into the electrolyte, but by rational 

design of the composition of the most commonly used solvents. 

4.2 FUTURE WORK 

 Even with many advancements in Li-ion batteries as of late, there are still many 

improvements to be made.  Especially for vehicle applications, many hurdles such as 

improvements in wide temperature operation, long cycle life, rate performance, energy densities, 

power densities, among others, leave much to be desired.   

 Not only can slight electrolyte modifications improve performance in these applications as 

seen in this study, but changes in the cathode material, anode material, and other components that 

are comprised in a lithium-ion battery can be made to overcome issues seen today.  Improvements 

in cathode materials may include additives and/or coatings to improve conductivity and 

performance, or changes such as particle surface modification and compositions.  However, even 

with material changes that are made in a lithium-ion battery, a suitable electrolyte will also need 

to be considered as current electrolytes systems are tailor-made for the specific cell chemistry.  

This is of much importance as the electrolyte components yield certain surface chemistries on 

metal oxide cathodes and especially on graphitic anodes.   

 Through our findings with various compositions of different carbonates, we can investigate 

further by fine-tuning the boundaries of each component.  As mentioned previously, EC was fixed 

between 20-30%, PC between 5-30%, EMC at 0-70%, DMC at 0-40%, and DEC at 0-40%.  From 

what we have learned on how each component effects both low and high temperature performance, 

a possible next round of investigations would be to lower both EC and PC cyclic carbonates and 

increasing EMC and DMC short linear carbonates.  Table 16 below shows the next round of 
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investigations that would hone in on the issues with wide temperature electrolytes without using 

novel electrolyte components. 

 

Table 16.  Future work on electrolyte compositions  

Electrolyte Bounds 

Component Lower  Upper 

EC 5 25 

PC 0 10 

EMC 30 70 

DMC 30 70 

DEC 0 0 
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APPENDICES 

Appendix A.  -20°C and -30°C discharge capacity for various electrolyte at 5C rate after 100 cycles at 60°C 

Electrolyte names Solvent ratios LiPF6 
Additives 

(1 % and 0.5%) 
2nd -20 o C 

(mAh) 
2nd -30 o C 

(mAh) 

1 
EC/PC/EMC/DMC/DEC 
30: 30: 0: 40: 0 

1.0 M VC+LiBOB 0.00 0.00 

2 
EC/PC/EMC/DMC/DEC 
30: 30: 0: 0: 40 

1.0 M VC+LiBOB 0.09 0.03 

3 
EC/PC/EMC/DMC/DEC 
20: 30: 10: 0: 40 

1.0 M VC+LiBOB 0.14 0.04 

4 
EC/PC/EMC/DMC/DEC 
22: 9.9: 48.7: 11: 8.5 

1.0 M VC+LiBOB 0.41 0.07 

5 
EC/PC/EMC/DMC/DEC 
22: 22.4: 18.7: 28.5: 8.5 

1.0 M VC+LiBOB 0.08 0.01 

6 
EC/PC/EMC/DMC/DEC 
20: 5: 70: 0: 5 

1.0 M VC+LiBOB 0.17 0.03 

7 
EC/PC/EMC/DMC/DEC 
27: 9.9: 26.2: 8.5: 28.5 

1.0 M VC+LiBOB 0.14 0.02 

8 
EC/PC/EMC/DMC/DEC 
20: 5: 70: 5: 0 

1.0 M VC+LiBOB 0.34 0.06 

9 
EC/PC/EMC/DMC/DEC 
20: 5: 35: 40: 0 

1.0 M VC+LiBOB 0.67 0.18 

10 
EC/PC/EMC/DMC/DEC 
22: 9.9: 48.7: 8.5: 11 

1.0 M VC+LiBOB 0.29 0.06 

14 
EC/PC/EMC/DMC/DEC 
13: 3: 0: 30: 25 

1.0 M VC+LiBOB 0.20 0.03 

15 
EC/PC/EMC/DMC/DEC 
30: 5: 0: 40: 25 

1.0 M VC+LiBOB 0.14 0.03 

16 
EC/PC/EMC/DMC/DEC 
20: 30: 0: 40: 10 

1.0 M VC+LiBOB 0.08 0.01 

17 
EC/PC/EMC/DMC/DEC 
20: 5: 0: 35: 40 

1.0 M VC+LiBOB 0.08 0.01 

18 
EC/PC/EMC/DMC/DEC 
20: 5: 35: 0: 40 

1.0 M VC+LiBOB 0.28 0.06 

19 
EC/PC/EMC/DMC/DEC 
30: 5: 0: 25: 40 

1.0 M VC+LiBOB 0.26 0.05 

20 
EC/PC/EMC/DMC/DEC 
30: 5: 25: 0: 40 

1.0 M VC+LiBOB 0.21 0.05 

21 
EC/PC/EMC/DMC/DEC 
20: 30: 0: 10: 40 

1.0 M VC+LiBOB 0.13 0.03 

22 
EC/PC/EMC/DMC/DEC 
25: 5: 70: 0: 0 

1.0 M VC+LiBOB 0.33 0.06 

23 
EC/PC/EMC/DMC/DEC 
30: 5: 65: 0: 0 

1.0 M VC+LiBOB 0.34 0.06 
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24 
EC/PC/EMC/DMC/DEC 
20: 10: 70: 0: 0 

1.0 M VC+LiBOB 0.16 0.03 

25 
EC/PC/EMC/DMC/DEC 
20: 30: 50: 0: 0 

1.0 M VC+LiBOB 0.19 0.05 

26 
EC/PC/EMC/DMC/DEC 
30: 30: 40: 0: 0 

1.0 M VC+LiBOB 0.07  

27 
EC/PC/EMC/DMC/DEC 
30: 5: 25: 40: 0 

1.0 M VC+LiBOB 0.18 0.03 

28 
EC/PC/EMC/DMC/DEC 
20: 30: 10: 40: 0 

1.0 M VC+LiBOB 0.23 0.04 

29 
EC/PC/EMC/DMC/DEC 
24: 14.8: 27.4: 16.9: 16.9 

1.0 M VC+LiBOB 0.13 0.03 

30 
EC/PC/EMC/DMC/DEC 
27: 22.4: 13.7: 8.5: 28.5 

1.0 M VC+LiBOB 0.15 0.04 

31 
EC/PC/EMC/DMC/DEC 
22: 9.9: 13.7: 28.5: 26 

1.0 M VC+LiBOB 0.28 0.07 

32 
EC/PC/EMC/DMC/DEC 
27: 9.9: 13.7: 28.5: 21 

1.0 M VC+LiBOB 0.24 0.05 

33 
EC/PC/EMC/DMC/DEC 
22: 22.4: 13.7: 28.5: 13.5 

1.0 M VC+LiBOB 0.17 0.03 

34 
EC/PC/EMC/DMC/DEC 
27: 22.4: 13.7: 28.5: 8.5 

1.0 M VC+LiBOB 0.07 0.01 

35 
EC/PC/EMC/DMC/DEC 
22: 9.9: 13.7: 26: 28.5 

1.0 M VC+LiBOB 0.33 0.06 

36 
EC/PC/EMC/DMC/DEC 
22: 9.9: 31.2: 8.5: 28.5 

1.0 M VC+LiBOB 0.29 0.05 

37 
EC/PC/EMC/DMC/DEC 
27: 9.9: 13.7: 21: 28.5 

1.0 M VC+LiBOB 0.10 0.02 

38 
EC/PC/EMC/DMC/DEC 
22: 22.4: 13.7: 13.5: 28.5 

1.0 M VC+LiBOB 0.27 0.06 

39 
EC/PC/EMC/DMC/DEC 
22: 22.4: 18.7: 8.5: 28.5 

1.0 M VC+LiBOB 0.15 0.04 

40 
EC/PC/EMC/DMC/DEC 
24.5: 9.9: 48.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.18 0.04 

41 
EC/PC/EMC/DMC/DEC 
27: 9.9: 46.2: 8.5: 8.5 

1.0 M VC+LiBOB 0.26 0.05 

42 
EC/PC/EMC/DMC/DEC 
22: 12.4: 48.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.31 0.06 

43 
EC/PC/EMC/DMC/DEC 
22: 22.4: 38.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.08 0.01 

44 
EC/PC/EMC/DMC/DEC 
27: 22.4: 33.7: 8.5: 8.5 

1.0 M VC+LiBOB 0.11 0.03 

45 
EC/PC/EMC/DMC/DEC 
22: 9.9: 31.2: 28.5: 8.5 

1.0 M VC+LiBOB 0.27 0.05 

46 
EC/PC/EMC/DMC/DEC 
27: 9.9: 26.2: 28.5: 8.5 

1.0 M 
VC+LiBOB 0.22 0.04 
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Appendix B.  Elemental concentration on anode for electrolytes with VC and LiBOB additive 

Sample 
C1s O1s F1s P2p 

C-C C-O C-H C=O C=O C-O LiF LixPOyFz LixPOyFz LiPF6 

1 15.66% 16.57% 8.07% 6.24% 12.05% 23.80% 5.43% 9.80% 1.98% 0.40% 

2 13.45% 9.12% 8.83% 2.31% 21.01% 3.98% 20.81% 16.24% 3.86% 0.39% 

3 13.97% 14.10% 3.57% 1.27% 14.77% 10.71% 19.25% 17.28% 4.94% 0.14% 

4 12.92% 9.83% 4.72% 3.62% 20.35% 6.55% 18.61% 18.61% 4.07% 0.73% 

5 17.76% 10.75% 7.43% 3.21% 14.20% 11.74% 17.04% 14.49% 3.03% 0.34% 

6 24.22% 9.84% 8.59% 2.21% 15.92% 12.91% 13.38% 9.31% 2.83% 0.79% 

7 17.67% 10.19% 14.58% 3.04% 17.20% 13.71% 6.73% 12.60% 4.02% 0.26% 

8 17.33% 10.57% 4.91% 3.93% 16.95% 12.38% 14.38% 14.98% 4.12% 0.45% 

9 7.75% 14.91% 7.10% 1.24% 15.65% 0.80% 33.80% 15.70% 2.94% 0.11% 

10 14.46% 7.30% 4.28% 4.85% 15.21% 14.55% 15.76% 17.05% 5.36% 1.18% 

14 18.46% 17.30% 5.06% 3.48% 14.69% 15.53% 9.45% 11.99% 3.61% 0.43% 

15 22.40% 12.87% 9.31% 2.26% 16.58% 13.11% 7.92% 11.94% 3.05% 0.57% 

16 21.62% 11.52% 7.82% 2.91% 21.11% 11.02% 6.51% 12.40% 4.33% 0.78% 

17 14.16% 14.16% 6.26% 4.61% 19.43% 5.25% 15.15% 14.21% 6.31% 0.48% 

18 13.30% 6.96% 6.65% 1.68% 13.34% 16.10% 18.71% 18.31% 4.66% 0.30% 

19 19.06% 18.56% 10.63% 4.81% 13.51% 14.88% 8.69% 7.37% 2.17% 0.34% 

20 11.79% 10.44% 6.02% 1.78% 15.63% 14.85% 14.78% 18.79% 5.50% 0.42% 

21 15.62% 14.51% 5.50% 6.60% 22.65% 2.45% 13.50% 13.50% 5.37% 0.29% 

22 16.59% 11.42% 4.93% 4.35% 15.78% 13.86% 16.33% 12.70% 3.84% 0.20% 

23 16.74% 6.19% 7.90% 2.22% 16.09% 13.09% 16.52% 16.46% 4.31% 0.49% 

24 27.06% 16.42% 17.10% 3.80% 20.28% 3.28% 6.53% 3.66% 1.65% 0.21% 

25 19.11% 15.51% 5.79% 4.73% 16.24% 16.35% 8.75% 10.29% 3.00% 0.23% 

26 15.35% 14.69% 10.91% 1.97% 18.12% 13.12% 12.15% 7.15% 5.55% 0.98% 

27 11.87% 6.87% 4.83% 4.98% 21.69% 7.07% 16.34% 20.61% 5.22% 0.51% 

28 17.25% 6.78% 3.69% 4.85% 18.02% 11.71% 15.51% 17.66% 3.51% 1.02% 

29 19.21% 16.58% 3.87% 3.47% 13.03% 10.94% 6.53% 22.45% 3.28% 0.63% 

30 16.36% 5.94% 4.35% 1.80% 17.92% 13.11% 18.94% 16.39% 5.02% 0.17% 

31 15.35% 9.37% 9.67% 6.43% 17.24% 17.07% 2.12% 16.18% 6.03% 0.55% 

32 33.25% 17.85% 11.40% 4.80% 15.35% 7.35% 5.43% 3.36% 1.17% 0.05% 

33 44.97% 11.33% 10.47% 6.00% 10.84% 11.92% 4.32% 0.14% 0.00% 0.00% 

34 20.71% 18.19% 5.94% 2.83% 24.06% 6.76% 5.99% 10.91% 4.23% 0.39% 

35 24.17% 7.08% 6.21% 3.55% 16.60% 17.01% 10.94% 11.09% 2.93% 0.41% 

36 18.49% 9.21% 10.16% 5.21% 16.71% 16.02% 7.62% 13.49% 2.33% 0.75% 

37 34.95% 15.42% 9.53% 6.32% 9.41% 12.82% 5.42% 4.36% 1.62% 0.17% 

38 15.21% 8.08% 9.01% 2.33% 18.12% 11.30% 12.98% 18.30% 4.04% 0.63% 
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39 26.39% 19.74% 8.44% 3.71% 11.35% 10.19% 7.52% 10.08% 2.30% 0.29% 

40 15.85% 9.49% 7.72% 3.00% 17.46% 10.28% 14.58% 15.49% 5.55% 0.58% 

41 11.44% 9.37% 10.78% 1.79% 14.20% 21.29% 8.80% 17.50% 3.92% 0.92% 

42 11.65% 8.41% 3.79% 4.00% 15.83% 14.82% 19.55% 16.70% 4.42% 0.82% 

43 24.36% 12.60% 11.81% 6.30% 11.74% 10.24% 7.48% 12.32% 2.86% 0.27% 

44 19.00% 19.27% 5.77% 2.44% 11.95% 13.32% 10.05% 14.23% 3.14% 0.81% 

45 14.36% 4.40% 6.91% 1.10% 15.91% 11.68% 23.62% 16.96% 4.53% 0.53% 

46 10.74% 9.22% 6.39% 1.22% 15.82% 12.86% 19.06% 19.06% 5.08% 0.54% 

 

Appendix C.  Cell cycling for electrolyte DOE 

A. Formation cycles (2 cycles) at room temperature: 

1.      Cells will be charged by constant current (C/5) until the voltage reaches to 4.1 V (Where, C 
is cathode capacity). 

2.      As the 4.1 Volt is reached, the cells will be held constant volt at 4.1 V until the current falls 
to C/20 (which is 25 % of charging constant current) 

3.      The cells will be left at rest for 1 minute 

4.      The cells will be discharged by constant current of C/5 until the voltage reaches to 2.7 V. 

5.      The cells will be left at rest for 1 minute.  

6.      Again the cells will be charged as stated in step 1. The steps 2, 3, 4 and 5 are repeated. 

B.  Charge and discharge at room temperature, 25 0C (3 cycles) 

1.      The cells will be charged by 1C current rate until voltage reaches to 4.1 V 
2.      As the 4.1 Volt is reached, the cells will be held constant at 4.1 V until the current falls to 
C/20. 
3.      The cells will be left at rest for 1 minute 

4.      The cells will be discharged by constant current of 1C until the voltage reaches to 2.0 V. 

5.      The cells will be left at rest for 1 minute. 

6.      The cells will charged again by 1C as step 1. Step 1 to 5 are repeated. 

C.  Charge and discharge at room temperature, 25 0C (1 cycles) 

1.      The cells will be charged by 1C current rate until voltage reaches to 4.1 V 
2.      As the 4.1 Volt is reached, the cells will be held constant at 4.1 V until the current falls to 
C/20. 
3.      The cells will be left at rest for 1 minute 

4.      The cells will be discharged by constant current of 5C until the voltage reaches to 2 V. 

5.      The cells will be left at rest for 1 minute. 

6.       The cells will charged again by 1C as step 1. Step 1 to 5 are repeated. 

D. Charge and discharge at low temperature, -20 0C and -30 0C (1 cycle) 

1.      The cells will be charged by 1C rate at Room Temperature until voltage reaches to 4.1 V 
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2.      As the 4.1 Volt is reached, the cells will be held constant at 4.1 V until the current falls to 
C/20 (which is 5% of charging current) 

3.      The cells will be left at – 20 0C at rest for 2 hour. 

4.      The cells will be discharged by 5C rate to 2 V (at -20 oC).  

5.      The cells will be brought to 25 0C and left for 2 hours. 

6.      The cells will be charged again by 1 C rate (25 0C) as step 1. Step 1 to 5 is repeated. 

(The same test will also be run  at -300 C) 

E. Charge and discharge at high temperature, +60o C 

1.      The cells will be charged by 1C rate until voltage reaches to 4.1 V. 

2.      As the 4.1 Volt is reached, the cells will be held constant at 4.1 V until the current falls to 
C/20 charging current (i.e. 1 % of 5C) 

3.      The cells will be left at rest for 1 minute 

4.      The cells will be discharged to 2.7 V by 5C current. 

5.      The cells will be left at rest for 1 minute. 

6.      The cells will charged again by 1C as step 1. Step 1 to 5 is repeated for 100 cycles  
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