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ABSTRACT 

RIVER INFLUENCE ON THE NEARSHORE ECOSYSTEM  
OF WESTERN LAKE SUPERIOR 

 
 
 

by 
 

Joshua M. Delvaux 
 

The University of Wisconsin-Milwaukee, 2017 
Under the Supervision of Professor Harvey A. Bootsma 

 

As the interface between the terrestrial landscape and the open lake, nearshore areas of 

the Great Lakes play an important role in modulating whole-lake response to inputs of nutrients 

and energy from the watershed. These inputs occur primarily via tributary loading, and so it is 

critical to understand the dynamics of river plumes and the fate of organic carbon and nutrients 

delivered in the plumes. To assess the influence of river plumes on the biogeochemistry and 

metabolism of the Lake Superior nearshore zone, the spatial and temporal distribution of 

turbidity, nutrients, phytoplankton, dissolved oxygen, and dissolved carbon dioxide were 

measured in the western arm of Lake Superior and select tributaries from June 2016 through 

October 2016. This study focused on the nearshore ecosystem response to a large storm even in 

July, showing how the nearshore zone transitioned from a highly turbid, low productivity system 

immediately following the storm to high phytoplankton productivity after a one-month lag. A 

steady decrease in surface pCO2 in the month following suggests that increased water clarity and 

nutrient concentration following the plume event drive nearshore primary production. The shift 

towards net heterotrophy immediately following the storm event appears to be more so due to 

decreased water clarity and associated suppressed phytoplankton primary production rather than 

increased biological breakdown of dissolved organic carbon. 
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Chapter 1: Introduction and Background 

The Great Lakes basin is an immense ecosystem covering more than 780,000 km2 

(Wolter et al., 2006) and spanning 9o of latitude and 19o of longitude. Within this ecosystem, the 

Laurentian Great Lakes are the most prominent feature. These lakes have a combined surface 

area of about 244,000 km2 and a volume of 22,700 km3, which makes them the single largest 

collection of fresh water in the world, apart from polar ice caps and ground water (Herdendorf, 

1982). Despite their vast overall size, humans have dramatically altered the Great Lakes basin 

through agricultural practices, urban development, industrial, commercial, and recreational 

activities, as well as the introduction of non-native species (Mackey and Goforth, 2005; Niemi et 

al., 2009; Homer et al., 2015).  

These combined stressors have altered the chemistry, biological composition, 

productivity, and resiliency of these natural ecosystems. At the same time, they continue to 

provide critical resources to communities throughout the region, in terms of cultural and 

economic benefits. Cumulative stress is often the greatest in nearshore zones of the Great Lakes 

(Allan et al., 2013). Nearshore zones are dynamic transition zones between the terrestrial 

landscape and the open-lake, and as such they are susceptible to anthropogenic influences (Chu 

et al., 2014). Despite their obvious societal importance and current stressors, nearshore 

ecosystems have received little scientific attention in comparison to the open lake (Niemi et al., 

2009; Vadeboncoeur et al., 2011). 

The nearshore zones of the Great Lakes are heterogeneous ecosystems characterized by 

unique circulation patterns (Rao and Schwab, 2007; Boyce, 1974) and high biodiversity relative 

to offshore waters (Vadeboncoeur et al., 2011). Although these zones perform key ecosystem 

functions such as facilitating the lateral transfer of nutrients and energy to pelagic ecosystems, 
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the exact definition as to what constitutes the nearshore zone of large lakes is still debated. Some 

(Kelly et al., 2015; Yurista et al., 2015) describe the nearshore zone as 0-30 m in depth and less 

than 5 km from the shore. Here, depth and distance serve as simple, operational distinctions 

between nearshore and offshore zones. Using a different perspective, Edsall and Charlton (1997) 

describe nearshore zones as regions where the thermocline intersects the lake bed once 

stratification has firmly established. This definition can occasionally lead to significant 

differences between lakes, however. For example, Lake Erie’s thermocline develops at 20-30 m 

which is approximately the average depth of the entire lake, and encompasses most of the 

western basin (Edsall and Charlton, 1997). In comparison, deeper Lake Superior typically forms 

a thermocline at 10-20 m, and only a small proportion of the lake is classified as nearshore due to 

its steeply sloped sides. The stratified season in the Great Lakes typically begins mid- to late-

June and ends in late-September to early-October (Austin and Colman, 2007). Therefore, for the 

purposes of this project, hydrodynamic patterns may provide the best means of delineating the 

nearshore zone.  

The hydrodynamic regimes of large lakes are not all uniform but vary accordingly with 

depth, lake size, and morphometry. Spatial variations in the hydrodynamics of large lakes allow 

for the characterization of the nearshore zone, relative to offshore waters. Momentum in the open 

lake is driven by wind stress resulting in near-inertial oscillations that are balanced by the 

Coriolis force, including internal seiches and Poincaré waves (Mortimer, 2006; Ahmed et al., 

2014).  Winds blowing over a lake transfer kinetic energy to the lake surface, and this energy 

subsequently propagates through the water column due to internal friction. The strength of these 

oscillations is directly related to the strength of stratification; when stratification exists, the 

magnitude and duration of near-inertial oscillations increases (Austin, 2013). The current 
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patterns of the open lake tend to mirror variations in wind patterns, with a deflection to the right 

in the northern hemisphere, at the lake surface. Currents at greater depths within the epilimnion 

become progressively weaker and are often directed farther to the right under the influence of 

Coriolis Effect. The influence of wind on water movement often disappears below 20-30 m 

(Csanady, 1972), and currents below these depths are typically 180o out of phase with those 

above (Austin, 2013). Although the prevailing winds of the Great Lakes region typically blow 

from the southwest and west, winds at mid-latitudes are highly variable. Winds from other 

directions are frequent, and periods of winds out of the east or northeast are not unusual. 

Therefore, wind-driven movement of water is highly episodic and subject to rapid changes. In 

large lakes, open lake circulation is driven primarily by wind stress, and geostrophic flow is 

often of minimal importance (Beletsky et al., 1999; Bennington et al., 2010; Thupacki, 2012; 

Csanady, 2013).  

Several researchers (Murthy and Rao, 2003; Rao and Schwab, 2007) have illustrated the 

significance of open-lake circulation patterns on nearshore hydrodynamics of large lakes. Rao 

and Schwab (2007), in particular, provide an extensive review of mechanisms influencing the 

dynamics of water movement within the nearshore. Hydrodynamic patterns in the nearshore zone 

of large lakes are highly turbulent, and a result of the interaction between the coastal boundary 

and open-lake circulation patterns. Rao and Schwab (2007) describe the nearshore zone as the 

region between the wave breaking zone and the open lake, where bottom frictional forces and the 

diverting effect of the shoreline are dominant processes. Within the nearshore zone, wind stress 

is still the primary driving force of circulation.  

The nearshore zone can be sub-divided into the Frictional Boundary Layer (FBL) and the 

Inertial Boundary Layer (IBL), based on the relative importance of frictional and inertial forces 
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respectively. In Lake Huron, Murthy and Dunbar (1981) identified the IBL and FBL to extend 

approximately 10 km and 2 km offshore, respectively; however, these distinctions may vary 

between lakes. In their study, fluctuations in kinetic energy were used to delineate the different 

layers of the nearshore zone. Kinetic energy increases with distance offshore, as near-inertial 

oscillations become more dominant, and develops a peak at the interface between the FBL and 

IBL. Within the FBL, current patterns are directly influenced by bottom and shoreline friction. 

As wind-driven waves propagate from the open-lake toward the shore, the decreasing 

depth alters the wave kinematics (Boyce, 1974). Within the nearshore zone, shallower depths 

result in increased bottom friction. The vertical, circular motion found in open water waves shifts 

to elliptical orbits as waves propagate to the bottom (Wetzel, 2001; Yang et al., 2013). Waves 

within the nearshore are no longer energy dispersive, and the influence of the bottom causes 

velocity and wavelength to decrease while amplitude increases. As a result of the steepening of 

the wave in shallow water, the wave gradually becomes asymmetric, unstable, and finally breaks. 

Breaking waves transfer potential energy stored within the wave to kinetic energy, which acts on 

the lake bottom and shoreline (Eadie et al., 2002; Yang et al., 2013). Close to shore, wave-driven 

turbulence extends to the bottom of the lake, affecting sediment-water exchange and resulting in 

occasional sediment resuspension events, which can affect the transport of carbon and nutrients, 

as well as the light environment (Eadie et al., 2002). Within the wave-breaking zone of the FBL, 

longshore current, which flows parallel to shore,  is generated by the stresses associated with the 

breaking process of obliquely incoming waves. Longshore current contributes to the transport of 

sediment along the shoreline, and therefore to the accretion and erosion of the shoreline as well 

as the entrapment of riverine input (Jackson et al., 2017). It is important to note that episodic 

wind, out of different directions, may occasionally reverse mean longshore current patterns. This 
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abrupt change in longshore current patterns was illustrated by Bennington et al. (2010) for the 

western region of Lake Superior. This region where bottom and shoreline frictional forces 

dominate constitutes the FBL, and extends between 2-3 km offshore (Murthy and Dunbar, 1981; 

Rao and Schwab, 2007). 

Beyond 3 km, the adjustment of open-lake inertial oscillations for the shoreline forms the 

IBL (Murthy and Dunbar, 1981; Rao and Schwab, 2007). The presence of the shoreline acts as a 

lateral constraint on water movements, tending to divert currents so that they flow nearly parallel 

to the shoreline (Rao and Murthy, 2001). In the nearshore zone, a near balance exists between 

the Coriolis force, wind stress, and horizontal pressure gradients. Following a strong wind event, 

the balance between these factors gives rise to internal and surface Kelvin waves. These waves 

are coastally trapped oscillations of the thermocline or surface water that propagate with the 

shoreline to the right in the northern hemisphere. The Coriolis force results in wind-driven waves 

to deflect to the right; however, the coast prevents these waves from turning right, and instead 

causes water to pile up along the shoreline. The pile up of water causes a horizontal pressure 

gradient to develop, directed offshore. This results in a geostrophic, coastal current traveling 

along the shoreline (Jackson, 1988; Wang, 2002). The offshore extent of these currents and the 

IBL depends on the thermal structure and morphometry of the lake basin. 

The main driving force of circulation within the nearshore zone is wind stress; however, 

stratification can become very influential during the summer. During the stratified season, 

significant wind events cause rhythmic motions, including both oscillations of the water surface 

and internal oscillations at the thermocline. The motion of a surface seiche is barotropic, whereas 

the motion of an internal seiche is baroclinic and is associated with the maximum density 

gradient in stratified lakes. As a steady wind blows across the lake, the lake forms a depression 
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along the upwind end, and an increase in elevation along the downwind end. Following the wind 

event, momentum generated by the wind is great and equilibrium is overshot causing the lake to 

rock back and forth (Ji and Jen, 2006). At the downwind end, where the water level is elevated, 

the resultant pressure gradient causes water to flow towards deeper parts of the lake. In large 

lakes, the Coriolis force causes these oscillations to rotate clockwise in the northern hemisphere 

around the lake basin (Wetzel, 2001). Patterns in upwelling and downwelling are marked by 

corresponding changes in the thermal structure of the lake. The nearshore zone is exposed to 

cold, hypolimnetic water during periods of upwelling, whereas downwelling events expose the 

zone to warm, epilimnetic water. Seiches occur as a result of steady or extreme wind events, and 

have a significant impact on biological processes within the nearshore as well as the lateral 

nearshore-offshore transfer of materials and water. 

Upwelling events could provide a substantial source of nutrients to the nearshore zone 

and result in increased primary productivity within the nearshore. In some lakes, increases in 

productivity following the introduction of hypolimnetic nutrients as a result of upwelling events 

are well known (Hecky et al., 1996). Evidence suggests upwelling is vital to the metabolic 

dynamics of meromictic lakes, where seasonal mixing is incomplete (Corman et al., 2010). The 

importance of upwelling events as a potential source of nutrients in the Great Lakes is not as well 

understood. Lesht et al. (2002) suggest a phytoplankton bloom that accounted for approximately 

25% of Lake Michigan’s annual offshore primary production was a result of a significant 

upwelling event. In Lake Superior, Heinen and McManus (2004) show that roughly 50% of the 

total phosphorus input to the water column originates in the hypolimnion, and is introduced via 

resuspension or upwelling events. Although the benthic flux of nutrients during these events in 

Lake Superior is quite large, nutrient reintroduction from these events may not be important to 
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the spatial variation in plankton biomass (Megard et al., 1997). Although not addressed here, 

clearly more research is needed to determine the importance of upwelling events as a potential 

nutrient source for nearshore ecosystems of the Great Lakes. 

Discharge from surrounding rivers may also significantly alter the thermal structure and 

hydrodynamics of the nearshore. For example, Rao and Schwab (2007) discuss the influence of 

warm Niagara River inflow on the nearshore thermal structure of Lake Ontario. The resultant 

surface plume from Niagara River inflow extends from the river mouth in excess of 10 km, after 

which it mixes with lake water (Murthy et al., 1986). The warmer, less dense inflowing water 

develops a thermal front as it enters Lake Ontario. The resultant density gradient depends on the 

time of year, and therefore, the difference between the density of the Niagara River and ambient 

lake water. Strong density gradients may develop as a result of these inflows, and constrain 

riverine input of nutrients, energy, and sediment to the nearshore. Prevailing wind nearshore 

circulation patterns also play a role in regulating the lateral transport of riverine input between 

the nearshore and offshore, as well as along the shoreline. During periods of weak or calm wind 

conditions, the current in the nearshore zone is generally weak (Csanady, 1972). Therefore, river 

discharge during these periods tends to hug the shoreline, with limited lateral transfer, leading to 

nearshore entrapment of nutrients and energy.  However, significant nearshore-offshore 

exchange of nutrients and energy take place during episodic events (Rao and Schwab, 2007).  

The unique hydrodynamic patterns of the nearshore zone, and the associated physical 

transport and dispersal processes are complex. Nearshore hydrodynamics are an important factor 

in mediating the chemical and biological processes occurring within the nearshore ecosystem. 

The hydrodynamic patterns within the nearshore also significantly influence the lateral transfer 

of essential nutrients and materials to offshore ecosystems.  Therefore, a thorough 
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comprehension of the physical processes of the nearshore zone is vital to the understanding of 

spatiotemporal variability in the chemical and biological dynamics within the nearshore, as well 

as the whole-lake.    

Despite the lack of a definitive, simple, operational definition of the nearshore zone of 

larges lakes, these zones are integral components of large lake ecosystems. To emphasize their 

importance, the nearshore zone of Lake Superior contains approximately 90% of its overall 

species diversity (Vadeboncoeur et al., 2011). Nearshore zones of large lakes provide a variety of 

energy sources (Vadeboncoeur et al., 2002), a wide range of habitat (Gray, 1997), warmer water 

(Austin and Colman, 2008), and an abundance of nutrients (Hall et al., 2003; Makarewicz et al., 

2012), all of which support increased biodiversity. In some large lakes, many fishes and other 

organisms are dependent on nearshore energy sources (Hecky and Hesslein, 1995; Bootsma et 

al., 1996; Vadeboncoeur et al., 2002; Turschak et al., 2014). These nearshore zones are typically 

more productive and consist of multiple, basal energy sources (i.e. benthic and pelagic primary 

production, and terrestrial organic matter) in comparison to the open lake. This greater 

productivity within the nearshore is often associated with nutrient (typically phosphorus) loading 

due to the proximity of these zones to the surrounding watershed (Vollenweider, 1976; 

Schindler, 1978). For example, Wawrick and Paul (2004) showed that Mississippi River input of 

nutrients to the oligotrophic Gulf of Mexico supports increased primary productivity during 

periods of increased inflow.  In oligotrophic systems, like Lake Superior, studies have shown 

that phosphorus availability regulates autotrophic growth (Guildford and Hecky, 2000; Sterner, 

2010), biomass transfer efficiency (San Martin et al., 2006), species composition (Ivanikova et 

al., 2007), and both vertical and horizontal distribution of phytoplankton biomass (Popovskaya, 
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2000). Makarewicz et al. (2012) showed how influential river plumes are in modulating nutrient 

availability in nearshore Lake Ontario.  

While the loading of phosphorus to the nearshore zone may promote algal production, 

dissolved and particulate matter that is introduced in conjunction with nutrients may serve as a 

potential inhibitor of photosynthetic primary production. In lakes with highly turbid riverine 

input, phytoplankton and benthic algae in proximity to shore are often light-limited (Karlsson et 

al., 2009). Although autotrophs may be adversely affected by low light in nearshore, 

heterotrophic bacteria may be able to utilize these allochthonous subsidies as a metabolic 

substrate and introduce these subsidies into the food web through “microbial loop” pathways 

(Azam et al., 1983; Tranvik, 1992; Pomeroy et al., 2007). In fact, allochthonous organic matter 

has been shown to support 30-60% of bacterial respiration in some small northern temperate 

lakes (Kritzberg et al., 2004). Although the Great Lakes are substantially larger, these 

allochthonous subsidies may be of significance in nearshore zones. For example, Biddanda and 

Cotner (2002) estimated allochthonous inputs from terrestrial origin via rivers could support 10-

20% of net community metabolism in southern Lake Michigan. The spatial extent of the 

nearshore in comparison to the whole-lake belies their importance in supporting the biological 

communities of the lake ecosystem (Kalff, 2002).  

The western region of Lake Superior provides an ideal location to study the effects of 

riverine input on physical, chemical, and biological processes in the nearshore zone. In 

comparison to most of Lake Superior, the western region of the lake exhibits much more gradual 

descending slopes. These shallow, gently sloping plains may provide essential habitat for 

periphyton communities provided these zones are also well-lit (Vadeboncoeur et al., 2008). 

There is sufficient evidence to suggest that within the nearshore ecosystem of large lakes 
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phytoplankton and periphyton are equally important to ecosystem primary productivity (Bootsma 

et al., 1996l; Yoshii, 1999). Vadeboncoeur et al. (2001) found that in small, Michigan lakes 

benthic algae accounted for between 50-80% of whole-lake primary production. However, the 

relative importance of benthic primary production versus phytoplankton production depends on 

dissolved nutrient concentrations and water clarity. At high nutrient concentrations, high 

phytoplankton biomass causes corresponding decreases in water clarity which negatively affects 

periphyton communities (Vadeboncoeur et al., 2001).  

Not only does the western region of Lake Superior contain countless tributaries, it also 

boasts some of the lake’s largest, including the St. Louis and Nemadji Rivers. These rivers may 

serve as a source of both nutrients, which can support increased benthic and pelagic autotrophic 

production, as well as organic matter, which can support bacterial production. In addition to 

organic material, suspended sediment, including soil and clay, will also affect the nearshore light 

regime. Easily erodible red clay found along the shoreline of Lake Superior from Superior, WI to 

the Apostle Islands, often results in frequent and visible plumes within the nearshore zone. 

Mouw et al. (2013) illustrated the negative influence light absorption due to CDOM may have on 

the availability of light to autotrophs in western Lake Superior. Furthermore, Minor et al. (2014) 

suggested primary producers in this region transitioned from nutrient- to light-limitation 

following these river plumes. Minor et al. (2014), however, did not examine the changes in 

community metabolic patterns at the outer edges of these plumes where light availability may 

have been adequate for autotrophs to photosynthesize. Rather, their results highlighted the lack 

of autotroph response to riverine nutrient loading in the nearshore zone. By contrast, a previous 

study (Russ et al., 2004) found that autotrophic production tends to be greater in the western 

region of Lake Superior than other parts of the lake, highlighting the potential significance of 
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riverine nutrient loading to this part of the lake, and suggesting that autotrophs can take 

advantage of these nutrients if light is sufficient.  

The extent to which the chemical and metabolic processes of nearshore zones vary in 

space and time due to riverine input is not well understood in large lakes. According to Yurista et 

al. (2011), few studies describe the broad, complex relationship between riverine input and the 

nearshore ecosystem. Rao and Schwab (2007) also emphasize the need for more studies to 

understand the effects of riverine input on the nearshore water quality of large lakes. The 

research presented here not only focuses on river loading during the summer but also addresses 

the nearshore physicochemical and metabolic response to these inputs. The overarching objective 

of this project was to describe the nearshore ecosystem spatiotemporal response to river plumes. 

Transport of nutrients and energy from the surrounding watershed via river loading may drive 

fluctuations in primary production and respiration of large lake ecosystems. That is, episodic 

river plumes may effectively control the metabolic processes occurring within the nearshore on 

short-term basis, as well as the lateral transport of nutrients and energy offshore.  

In Chapter 2, the physical response as well as nutrient and organic carbon dynamics are 

illustrated through a time-series, encapsulating a large river plume event in western Lake 

Superior. The patterns in the physical distribution, both vertical and horizontal, of the plume are 

first identified and characterized. The distribution and dynamics of nutrient and energy inputs are 

regulated by plume dispersal and general circulation patterns (Halder et al., 2012). Physical 

processes often drive biological and chemical processes; therefore, examining the 

hydrodynamics in conjunction with the chemical and biological processes of this region 

following a plume affords a holistic understanding of the nearshore ecosystem.  
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The physical and chemical dynamics of western Lake Superior’s nearshore following a 

plume event reported in this chapter provide a foundation for the following chapter (Chapter 3), 

which builds on the previous chapter by assessing the nearshore community metabolic response 

to large river plumes in western Lake Superior. Vertical profiles of dissolved gases, as well as 

gas flux measurements were used to qualitatively assess spatial and temporal variability in 

primary production and respiration following a river plume. Significant input of vital nutrients 

from rivers has been shown to subsidize phytoplankton (Wawrick and Paul, 2004) and benthic 

algal production (Jassby et al., 1993). However, decreased water clarity may diminish primary 

production (Minor et al., 2010) while allowing bacterial respiration to dominate (del Giorgio and 

Peters, 1997). Therefore, it is critical to understand nearshore patterns and fluctuations in 

primary production and respiration in response to river inflow. 

Finally, Chapter 4 serves as summation of the previous chapters. Here, broad conclusions 

regarding river influence on Great Lakes nearshore ecosystems are drawn from the 

hydrodynamic, nutrient and energy dynamics, and community metabolism topics of the 

preceding chapters. These results are put into a broader context by comparison with nutrient and 

carbon dynamics in Lake Superior at the whole-lake scale, and by comparison with other lakes. 
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Chapter 2: Physical, Chemical, and Biological Response to a Large Storm Event 

in the Nearshore Zone of Lake Superior 

Introduction 

The transport of water from a river to a lake ecosystem can be an important ecological 

regulator. Riverine loading of particulate and dissolved organic material, as well as nutrients, can 

have a significant influence on the physical, chemical, and biological processes in the nearshore 

zone of large lakes. River systems serve as conduits transporting nutrients and energy from the 

watershed to receiving lake basins. Variations in watershed size (Steinman et al., 2009) and 

characteristics, such as soil type (Frost et al., 2006) and land-use (Yurista et al., 2011), drive 

changes in the amount and composition of river input at baseline conditions. Yurista et al. 

(2011), in particular, illustrated how spatial patterns in Lake Superior nearshore plankton and 

water quality properties were strongly predicted by variations in adjacent watershed land-use. 

Loadings of nutrients, organic carbon, and suspended matter may vary significantly from river-

to-river. However, few studies have examined the collective influence of multiple rivers on lake 

ecosystems 

Episodic, storm inflow events are capable of providing a substantial fraction of the annual 

nutrient and organic carbon load. For example, Inamdar et al. (2006) found that large storm 

events contributed a relatively small fraction of the annual discharge but one-third of the annual 

input of dissolved organic carbon in certain lakes of New York. In Lake Malawi, McCullough et 

al. (2007) showed that immediately following a storm event the suspended sediment load of the 

Linthipe River increased three-fold, and remained relatively high for about a week until returning 

to pre-storm conditions. The ecological response of these recipient ecosystems to such episodic 
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events depends to a large degree on the dispersal of the inflowing river water and the associated 

dissolved and particulate components.  

The distribution of river water entering a lake can take various forms depending on the 

density of the inflowing water relative to the density of the receiving lake water. A river plume 

may float on the lake surface, may sink to a depth within the water column, or may remain 

confined to the lake bottom depending on the density of inflow, which is influenced by 

temperature, salinity, and suspended solids load. If the plume reaches a depth of neutral 

buoyancy, it will flow through the water column as an intrusion and spread horizontally along a 

gradient of equal density. The depth and extent of the intrusion is dependent on the density of the 

inflowing river, lake stratification, and the turbulent mixing between the two water masses 

(Hogg et al., 2013; Scheu et al., 2015).In large lakes with many inflowing rivers, the mixing 

between the rivers and the lake can be complex due to multiple river sources with differing loads 

and densities, as well as lake circulation patterns.  

Flow regimes of large lakes can potentially constrain riverine inputs to the nearshore 

while allowing for minimal lateral transfer to offshore water (Rao & Schwab, 2007). In large 

lakes, episodic river input often forms a geostrophic alongshore current of turbid, nutrient-rich 

water, which results in retention of nutrients and energy within the nearshore area. For example, 

in western Lake Superior summer circulation patterns are typically cyclonic, with nearshore 

currents running parallel to the shore in a counterclockwise direction (Beletsky et al., 1999; 

Bennington et al., 2010). Geostrophic balance causes river inflow to be relatively constricted to 

the nearshore along the southern shoreline of western Lake Superior, as illustrated in satellite 

imagery (Fig. 2.1). This entrapment of nutrients within the nearshore, along with warmer 

temperatures, often results in higher species diversity and increased phytoplankton biomass in 
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comparison to the offshore. Thus, the nearshore and offshore zones of large lakes can be 

considered distinct, albeit connected, ecosystems. Since few studies focus specifically on the 

nearshore relative to offshore zones (Niemi et al., 2009; Vadeboncoeur et al., 2011), more 

research is required to fully understand the spatial and temporal variability in the distribution of 

nutrients, organic carbon, and phytoplankton within the nearshore zone. More specifically, how 

do nutrient and organic carbon pools and phytoplankton in the nearshore respond to episodic 

river inflow events. 

The horizontal and vertical dispersal of river inflow plays a critical role in determining 

the distribution of organic carbon and nutrients delivered to the nearshore (Halder et al., 2012). 

The mixing of river and lake water, as a function of density and turbulence, may restrict these 

inputs to specific regions within the water column. This entrainment of nutrients and organic 

carbon may result in strong chemical gradients that may influence the distribution of lake biota. 

Most large lake ecosystems are nutrient-poor and, consequently, have sparse phytoplankton 

communities (Vollenweider et al., 1974; Guildford et al., 2000). In temperate and tropical lakes, 

the distribution of phytoplankton biomass has been shown to vary in response to nutrient loading 

from specific regions of the watershed (George & Jones, 1987).  

Phytoplankton productivity and biomass is often greater at the edge of the pelagic zone 

close to the perimeter of the lake (Wetzel, 2001). Here, the availability of essential nutrients, 

such as dissolved phosphorus, is greater and light is sufficient to allow for increased primary 

production, due to a shallow mixed layer. The depth of the euphotic zone in Lake Superior (25 m 

inshore and 29 m offshore) suggests light penetration is sufficient enough throughout the lake to 

support phytoplankton growth within the mixed layer, between 10 and 15.m (Nalewajko et al., 

1981). Thus, at the edges of surface, river plumes, where water clarity remains high, 



16 

phytoplankton may be able to efficiently utilize increased dissolved phosphorus concentrations. 

In large lakes, this horizontal variability in phytoplankton biomass becomes even more apparent. 

For example, Popovskaya (2000) suggested greater phytoplankton biomass near the Selenga 

Delta in Lake Baikal was a result of warmer, nutrient-rich, river input. In Lake Superior, Auer 

and Bub (2004) reported high spatial variability in phytoplankton biomass along the Keweenaw 

Peninsula which seems to reflect the impact of point-source riverine nutrient loading. 

Nutrient influx is not the only variable controlling the distribution of phytoplankton 

communities. As the transition between the well-lit water of the epilimnion and darker, deeper 

water, the thermocline plays a vital role in determining the biological properties of the water 

column in Lake Superior (Barbiero and Tuchman, 2004). During stratified periods, the presence 

of a deep chlorophyll maximum is a persistent phenomenon in many large lake ecosystems 

(Padisák et al., 1997; Salonen et al., 1999; Barbiero and Tuchman, 2001, Barbiero and Tuchman, 

2004; Fietz et al., 2005). For example, Barbiero and Tuchman (2004) found consistent deep 

chlorophyll maxima in stratified regions of Lake Superior at depths ranging from 23-35m. 

Although light is a necessity for phytoplankton to photosynthesize, under extremely high light 

intensities phytoplankton communities may be photoinhibited by the excess light (Peterson et al., 

1987). In large, nutrient-poor lakes, phytoplankton biomass may be greater in deeper water 

where there is an adequate nutrient pool as well as near-optimal light intensity.  

Episodic influxes of nutrients may reduce the depth of phytoplankton biomass in large 

lakes in response to decreased light intensity caused by suspended particulate matter. It is 

important to note, however, that river loading of suspended particulate matter does not always 

equate to high loading of nutrients. For example, rivers, such as the Nemadji and Iron Rivers, 

within the red clay plain of western region of Lake Superior do not provide a significant source 
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of nutrients. Although red clay does not contribute a large quantity of nutrients, it may serve to 

transport nutrients contributed from sources outside of the red clay plain. A large portion of the 

St. Louis and Bois Brule River watersheds lie outside of the plain, and, therefore, may contribute 

a significant amount of nutrients during episodic events (USEPA 1979). 

The western region of Lake Superior may be disproportionately affected by these inflows 

due to the dominance of shallow waters, high tributary loading, and easily erodible shoreline. 

Measuring the physical and chemical dynamics of this region following an episodic inflow event 

provides insight as to how the distribution of phytoplankton and the nutrient and organic carbon 

within the nearshore ecosystem responds to such an event.  

There are several hypotheses I address in this chapter: 1) in addition to surface riverine 

inflow, subsurface intrusions are a dominant occurrence in this region, 2) the flowpath of river 

inflow results in distinct layers or regions of increased concentrations of nutrients and organic 

carbon within the nearshore zone, and 3) phytoplankton response to river loading is determined 

by both nutrient input and water clarity. The objectives of this chapter are three-fold: 1) provide 

a representation of the dispersal of an episodic river inflow, 2) quantify the dynamics of the total 

phosphorus and organic carbon in the nearshore before, during, and after such an event, and 3) 

determine how phytoplankton responded to such an event. 
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Figure 2.1: MODIS Aqua satellite true color image of western Lake Superior on July 16, 2016, 
illustrating the resultant surface plume following the southern shoreline after a major rain event 
on July 13, 2016. Accessed on November 21, 2016 from https://worldview.earthdata.nasa.gov/ 
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Methods 

 

Sampling Frequency & Spatial Coverage 

The fieldwork in western Lake Superior to determine the influence of river inflows on the 

nearshore ecosystem was conducted on multiple trips using the National Park Service Vessel 

Grebe and a third party (Good Earth Outfitters, LLC; Cpt. Mike Garnich) vessel out of 

Cornucopia, WI. Specific dates of each trip are described in Table 2.1.Sampling began in June 

2016 and continued until October 2016.  

During the course of fieldwork, a major storm event in this region resulted in over 20 cm 

of precipitation falling on the lake and surrounding watershed on July 12, 2016, and produced a 

500-year flood event in the subsequent days. In the days following the storm, a significant 

surface river plume within the western region of Lake Superior developed (see Fig. 2.1). The 

distribution of sampling trips encapsulated this event, thereby, providing a time-series (before, 

during, and after) analysis as to river inflow dynamics and the nearshore ecosystem chemical and 

biological response. 

Each sampling trip included one day of river sampling and one day of nearshore-offshore 

transect sampling. A spatial representation of the nearshore-offshore transect, as well as the 

rivers sampled is shown in Fig. 2.2. The location of the nearshore-offshore transect, as well as 

each river, was chosen for specific reasons. In western Lake Superior, water typically circulates 

in a cyclonic pattern during the summer (Beletsky et al., 1999; Bennington et al., 2010) often 

resulting in geostrophic currents traveling parallel to shore along the southern shoreline. These 

current patterns force riverine input to the northeast along the shoreline. Upon reaching the 

Apostle Islands archipelago, riverine inputs of nutrients and energy are deflected towards deeper, 

offshore waters (Anderson et al., 2015).  
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Figure 2.2: June 
western Lake Superior and associated 
tributary study sites measured in 
decimal degrees North and West. The 
black triangles refer to river sampling 
sites located near the
confluence for each of the five rivers. 
Black circles indicate lake sampling 
locations along a nearshore
transect. These lake sites were located 
specifically at 0, 2.67, 4.67, 8.25, and 
10.79 km offshore; respectively.  The 
star icon represents the location of the 
ADCP. Coordinates are in the WGS84 
spatial reference system.

 

June – October 2016 
western Lake Superior and associated 
tributary study sites measured in 
decimal degrees North and West. The 
black triangles refer to river sampling 
sites located near the river-lake 
confluence for each of the five rivers. 
Black circles indicate lake sampling 
locations along a nearshore-offshore 
transect. These lake sites were located 
specifically at 0, 2.67, 4.67, 8.25, and 
10.79 km offshore; respectively.  The 

epresents the location of the 
ADCP. Coordinates are in the WGS84 
spatial reference system. 
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According to Yurista and Kelly (2009), river water inputs from many of the tributaries 

that line the shoreline of Lake Superior can be detected between 0.5-2.0 km from shore through 

the analysis of specific conductivity values. This suggests the impacts of these tributaries could 

be significant quite a distance from the river-lake interface. However, not every tributary had 

neighboring identifiable patches in the nearshore zone of Lake Superior. The difference in 

discharge among tributaries is primarily determined by spatial differences in rainfall and, more 

importantly, the relative size of the watershed.  

The spatial coverage in river and lake sampling in this study served to holistically address 

the influence a multitude of rivers had on the entire nearshore ecosystem of western Lake 

Superior following the episodic storm event. The Bois Brule, Iron, Flag, Siskiwit, and Sand 

Rivers were chosen to quantify nutrient and energy input along the southern shoreline in this 

region of the lake. These five rivers were among the largest inflowing rivers along the southern 

shoreline, in terms of watershed and mean discharge.   

The area of Lake Superior to be studied was determined based on the hydrodynamic 

patterns of nearshore zones described by Rao and Schwab (2007), and an analysis of past 

satellite imagery of river plumes. The location of the nearshore-offshore transect was chosen to 

assess the nearshore biogeochemical response at the furthest extent of riverine input, as well as 

whether or not a strong nearshore-offshore metabolic gradient in response develops. The 

nearshore-offshore transect spanned approximately 11 km, extending from Sand Point towards 

offshore water. The furthest point offshore was considered as the beginning of offshore waters. 

Five sampling stations were monitored throughout the 2016 field sampling season along the 

nearshore-offshore transect. Along each transect, vertical profiles were conducted and water 

samples were collected at discrete depths. The vertical resolution of the profiles, as well as the 
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discrete water sample collections are shown in Figure 2.3. The vertical profiles were conducted 

using a YSI ExoSonde capable of measuring pH, turbidity, specific conductivity, dissolved O2 

(both mg L-1 and % saturation), and chlorophyll a fluorescence. Prior to each sampling trip, the 

sonde was calibrated and upon return a post-calibration was performed to account for any drift in 

sensor measurements. Over the course of the 2016 field season, there was no measurable drift for 

each sensor. 
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  Site Coordinates   June July August September October  

Rivers 

Bois Brule 46o 44.177N 
91o 36.097W 

21 6,15,27 16 22 26 

Iron 48o 44.811N 
91o 29.156W 

21 6,15,27 16 22 26 

Flag 46o 46.897N 
91o 22.351W 

21 6,15,27 16 22 26 

Siskiwit 46o 57.262N 
91o 05.495W 

21 6,15,27 16 22 26 

Sand 46o 57.965N 
90o 57.376W 

21 6,15,27 16 22 26 

      
Nearshore-Offshore       

10.79 km 47o 01.426N 
91o 03.823W 

23 7,20,28 17 21 25 

8.25 km 47o 00.427N 
91o 02.705W 

23 7,20,28 17 21 25 

4.67 km 46o 58.948N 
91o 00.644W 

23 7,20,28 17 21 25 

2.67 km 46o 58.346N 
90o59.255W 

23 7,20,28 17 21 25 

0 km 46o 57.437N 
90o 57.650W 

23 7,20,28 17 21 25 

      
 

Table 2.1: Geographic coordinates for each tributary and Lake Superior sampling site; including 
specific dates of 2016 the site was sampled. The spatial reference system used was WGS84. 
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Figure 2.3: Distribution of sonde vertical profiles
the nearshore-offshore transect. The black polygon represents the bottom of 
Each individual depth profile is labeled by site identification and distance offshore. Sites NO 2, NO 3, NO 4, and NO 5 are designated 

as nearshore Lake Superior, whereas site NO 1 is representative of the beginning of offshore waters.

NO 4; 2.67 km NO 5; 0 km 

profiles (0.25 m vertical depth resolution) and discrete water samples (open circles) along 
offshore transect. The black polygon represents the bottom of the sonde profile along the nearshore

ile is labeled by site identification and distance offshore. Sites NO 2, NO 3, NO 4, and NO 5 are designated 
as nearshore Lake Superior, whereas site NO 1 is representative of the beginning of offshore waters.

NO 3; 4.67 km NO 2; 8.25 km 

) and discrete water samples (open circles) along 
along the nearshore-offshore continuum. 

ile is labeled by site identification and distance offshore. Sites NO 2, NO 3, NO 4, and NO 5 are designated 
as nearshore Lake Superior, whereas site NO 1 is representative of the beginning of offshore waters.

 

NO 1; 10.79 km  
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Horizontal Distribution of River Inflow 

Lake hydrodynamic patterns play a critical role in the horizontal distribution of chemical 

and biological species, and processes. Therefore, knowing where and how much inflowing river 

water ends up in large lakes is vital to our understanding of how rivers influence these 

ecosystems. The instantaneous discharge for each of the five rivers was quantified during each 

sampling trip (see Table 2.1). Discharge was calculated by dividing the river channel into ten 

contiguous cross sections. Within each subsections, the area was obtained by measuring the 

width and depth. A flow meter was used to determine instantaneous velocity for each subsection 

at mid-depth when the depth of the channel was less than 1 m. Two measurements of discharge 

were taken and averaged if the depth was greater than 1 m. The discharge in each subsection was 

determined by multiplying the subsection area by the measured velocity. The total, instantaneous 

discharge was then calculated by summing the discharge of each subsection.  

 A flow meter (Sigma Sport BC1200) was used to determine instantaneous discharge of 

each tributary on sampling days. To verify the accuracy of the flow meter, a paired t-test was 

used to test for differences in discharge of the Bois Brule River between the flow meter and the 

USGS station for the entire field season. There were no significant differences between the 

discharges determined by both methods when they were analyzed together (t6 = -0.14, p = 

0.891). Therefore, the flow meter was an adequate means for quantifying river discharge for all 

of the rivers sampled. 

The discharge of the Bois Brule River was continuously monitored throughout the 2016 

field sampling season by the USGS. The discharge of the other four rivers was measured only 

during sampling trips (see Table 2.1). Due to the inconsistent measurements, indirect discharge 

estimates were required to fill in the discharge data gaps of the Iron, Flag, Siskiwit, and Sand 
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Rivers. To obtain continuous discharge data for the Iron, Flag, Siskiwit, and Sand Rivers, the 

watershed-area ratios between these individual rivers and the Bois Brule River were used 

following a modified approach of Ries (2007). The equation used to estimate discharge data for 

the Iron, Flag, Siskiwit, and Sand Rivers is shown below. 

 

 

where QE is the estimated discharge, (AE/ABrule) is the watershed-area ratio between one of the 

four rivers and the Bois Brule River, and finally, QBrule is the discharge of the Bois Brule River as 

determined by the USGS gauge station. To justify the practicality of determining continuous 

discharge estimates of the Iron, Flag, Siskiwit, and Sand Rivers using this method, a paired t-test 

was used to test for differences between the discharge estimated using watershed-area ratios and 

discharge measured using the flow meter. There were no significant differences between the 

discharges determined by both methods (t = 0.02, p = 0.981). Therefore, the estimation method 

using watershed-area ratios was a satisfactory means of quantifying continuous river discharge 

for the Iron, Flag, Siskiwit, and Sand Rivers. 

The relationships between the estimated discharge, based on watershed-area ratios, and 

measured discharge are shown in Fig. 2.4. Although the relationship is strong, there are some 

deviations from a 1:1 relationship. This is most likely due to differences in watershed soil type 

and slope, both of which significantly influence the runoff, and subsequently river discharge to 

the lake (Ries, 2007). Some variability within the relationship may be due to spatial differences 

in rainfall over the duration of the storm. 

QE = (AE/ABrule) * QBrule      (1) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Linear relationship between 
watershed-area ratios for all tributaries
data set; the correlation coefficient, r
between the measured and estimated discharge. The dotted lines refer to the 95% confidence 
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elationship between measured discharge and estimated discharge based on 
for all tributaries. The solid black line represents the overall trend of the 

set; the correlation coefficient, r2 = 0.98, for the trendline suggests a strong relationship 
between the measured and estimated discharge. The dotted lines refer to the 95% confidence 

interval for the data set. 

measured discharge and estimated discharge based on 
. The solid black line represents the overall trend of the 
= 0.98, for the trendline suggests a strong relationship 

between the measured and estimated discharge. The dotted lines refer to the 95% confidence 

 



 

28 

 

In the western region of Lake Superior, significant riverine plumes are noticeably visible 

on satellite imagery. As a result of the easily erodible red clay plain that dominates the 

watershed, these inflows are characterized as very turbid, reddish-brown surface plumes (Stortz 

et la., 1976; see Fig. 2.1). The distinct differences in water mass color made it possible to use 

remote sensing to determine surface plume extent and duration. For the purposes of this study, 

remote sensing was used to provide a time-series visualization of Lake Superior surface 

dynamics in response to episodic inflow.  

 MODIS Aqua Level 2 image with 1 km spatial resolution were selected between July 5 

(Julian day 187) 2016 and August 16 (Julian day 229) 2016 from NASA’s Ocean Color database 

(https://oceancolor.gsfc.nasa.gov/data/aqua/). More specifically, images were downloaded for the 

following days, which were largely cloud-free: July 5th, July 12th, July 16th, July 18th, July 25th, 

and August 16th. Specific swaths were selected, with a zenith angle of 45o or less, pertaining 

directly to the western region of Lake Superior between 46.5o – 47.75o latitude and 90.25o – 

92.25o longitude. For simplicity, Level 2 images were chosen because they had already been 

atmospherically corrected and geolocated. Mouw et al. (2013) showed that the standard 

atmospheric correction used by NASA is the best option for Great Lakes imagery. The 

downloaded MODIS Aqua images were processed and analyzed using R (Version 3.3.1) and 

QGIS (Version 2.18.9) software. 

The distribution of the surface plume was estimated using the remote sensing surface 

reflectance (Rrs) at 645 nm. Turbid water reflects proportionately more light at longer 

wavelengths, while clearer water reflects less. Therefore, a longer wavelength band such as 555-

670 nm provides the greatest distinction between clear, offshore Lake Superior water and highly 

turbid riverine input. At the edges of this wavelength spectrum, however, there are chlorophyll a 
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reflectance peaks in the blue-green region, as well as the red-near infrared region. For these 

reasons, Rrs 645 nm provides the ideal compromise, permitting the use of satellite imagery to 

monitor surface plume dispersal with minimal error due to chlorophyll a reflectance.  

The processing of each individual MODIS Aqua satellite image followed the methods 

used by Nezlin & DiGiacomo (2005), with some differences. Based on a literature review and 

personal communication (Brice Grunert, Michigan Technological University), the method used 

by Nezlin & DiGiacomo (2005) provides the most simplistic approach for the purposes of this 

project. Using R, the pixels of each resulting image of Rrs 645 nm were interpolated on a regular 

grid of 1 km resolution. Prior to interpolation, the 1 km x 1 km grid was clipped using an ESRI 

shapefile of the surrounding watershed so as to only interpolate surface reflectance data for the 

lake surface. To quantitatively estimate plume area over time, the regions containing missing 

data (likely due to cloud cover) were replaced with estimated Rrs 645 nm data obtained by 

averaging the surrounding grid nodes.  

This procedure was repeated until all the grid nodes were devoid of missing data. To 

interpolate between grid nodes, the resultant grid was interpolated using a bivariate spline 

interpolation technique performed using R equipped with the “akima” package. The resultant 

product was then saved as a raster file for import into QGIS for further spatial analysis of plume 

area and dynamics.  

Based on a review of available satellite imagery from 2005 to 2015 (Brenda Moraska 

Lafrancois and Shania Leask, National Park Service, pers. comm.) and a literature review of 

Lake Superior current patterns, flow parallel to shore appears to be the predominant current 

pattern within the nearshore of western Lake Superior. Hydrodynamic modeling conducted by 

Beletsky et al. (1999) and Bennington et al. (2010) shows counterclockwise current patterns for 
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the western region of Lake Superior during the summer. Along the southern shoreline, flow in 

geostrophic equilibrium develops traveling northeast, parallel to the shore. However, Bennington 

et al. (2010) also highlight the potential for complete reversal in current patterns following 

episodic storm events. To determine if this average counterclockwise pattern in current persisted 

during the study periods, vertical current profiles were conducted over the course of the 2016 

sampling season through the use of an Acoustic Doppler Current Profiler (SonTek Argonaut® - 

XR). The ADCP was located close to the western edge of the Apostle Islands archipelago, near 

the southwestern corner of Sand Island (see Fig. 2.2). 

 

Vertical Distribution of River Inflow  

Although satellite imagery can be useful in examining river plumes propagating along the 

surface, it does not address subsurface riverine intrusions. Intrusions of greater density than 

recipient lake water plunge beneath the surface and propagate through the water column as 

density currents.  The fate and dispersal of these intrusions depends on several factors, including 

stratification, the strength of the inflows, and density differences between the inflow and the 

lake. Following episodic storm events, these inflows may be strong enough to result in 

significant intrusions stretching far into the lake. Vertical profiles of temperature and specific 

conductivity were used to address subsurface inflow dynamics. 

Electrical conductance normalized to 25oC (EC25) has been shown to be a useful tracer of 

differing water masses, provided the difference in conductance between them is considerable 

(George & Jones, 1987; Yurista and Kelly, 2009). For this region of Lake Superior, conductance 

differences between tributaries and Lake Superior are likely large enough to merit using this 

tracer technique. Paired t-tests were used to test for differences between the average EC25 of 



 

 

Lake Superior and five tributaries

were significant differences between the EC

tributaries were analyzed individually (

= 8.56 x 10-6, t6 = 3.04, p = 0.023, t

10.69, p = 2.08 x 10-12).Throughout the sampling period

was consistently close to 99 µS cm

always well above 120 µS cm-1, averaging around 168 

provide a useful tracer of subsurface intrusions in western Lake Superior

using EC25 as a tracer, binary two

river EC25 as endmembers, were determined to estimate the relative proportion of river water 

present at each depth increment, 

 

 

The greatest advantage of using EC

maximize data resolution while minimizing cost.

Density differences primarily regulate where th

and density are directly related. Slight increases in water temperature of Lake Superior result in 

proportional decreases in water density. Therefore, the depth and strength of stratification plays a 

critical role in determining the influence river intrusions have on the biogeochemistry of 

nearshore Lake Superior. This temperature

profiles as a form of validation of potential riverine input (i.e. spikes in EC

gradients of equal density. From the temperature profiles and the river temperature data for each 

sampling trip, density profiles were calculated 
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Lake Superior and five tributaries, the Bois Brule, Iron, Flag, Siskiwit, and Sand Rivers

were significant differences between the EC25 of the lake and the tributaries when these five 

ibutaries were analyzed individually (t6 = 4.77, p= 0.003; t6 = 9.19, p = 9.37 x 10

= 0.023, t6 = 31.04, p = 7.43 x 10-8; respectively) and together (t

Throughout the sampling period offshore Lake Superior water 

S cm-1. In comparison, the conductivity for each of the rivers was 

, averaging around 168 µS cm-1, suggesting that conductivity can 

subsurface intrusions in western Lake Superior. Upon validation of 

as a tracer, binary two-component mixed models, using average Lake Superior and 

as endmembers, were determined to estimate the relative proportion of river water 

nt at each depth increment, Z, using the following equation: 

using EC25 to trace subsurface river intrusions is in its ability to 

solution while minimizing cost. 

Density differences primarily regulate where these intrusions occur. Water temperature 

and density are directly related. Slight increases in water temperature of Lake Superior result in 

proportional decreases in water density. Therefore, the depth and strength of stratification plays a 

determining the influence river intrusions have on the biogeochemistry of 

temperature-density relationship allows for the use of 

validation of potential riverine input (i.e. spikes in EC25) propagating along 

gradients of equal density. From the temperature profiles and the river temperature data for each 

sampling trip, density profiles were calculated with contour lines showing density gradients 

    

, the Bois Brule, Iron, Flag, Siskiwit, and Sand Rivers. There 

of the lake and the tributaries when these five 

= 9.37 x 10-5, t6 = 13.92, p 

and together (t34 = 

offshore Lake Superior water at 30 m 

In comparison, the conductivity for each of the rivers was 

, suggesting that conductivity can 

Upon validation of 

component mixed models, using average Lake Superior and 

as endmembers, were determined to estimate the relative proportion of river water 

is in its ability to 

ese intrusions occur. Water temperature 

and density are directly related. Slight increases in water temperature of Lake Superior result in 

proportional decreases in water density. Therefore, the depth and strength of stratification plays a 

determining the influence river intrusions have on the biogeochemistry of 

relationship allows for the use of temperature 

ropagating along 

gradients of equal density. From the temperature profiles and the river temperature data for each 

with contour lines showing density gradients 

 (2) 
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certain rivers propagate along using R (Version 3.3.1). For each river and the lake, density 

corrections were made to account for suspended sediment load following the approach outlined 

by McCullough et al. (2007). 

Although differences in EC25 between Lake Superior and surrounding rivers suggests 

EC25 may be the most useful waterbody tracer, turbidity differences within Lake Superior may 

also be indicative of river subsurface intrusions. The red clay plain of western Lake Superior’s 

watershed results in strong differences in turbidity between the lake (0.31 NTU ± 0.03 NTU, n = 

120) and its tributaries (6.65 NTU ± 4.29 NTU, n = 30). Turbidity is a measure of water clarity, 

more specifically how variable the passage of light through the water column is in response to 

suspended material concentrations.  Vertical profiles of turbidity were conducted at each lake 

sampling site to examine changes in water column clarity in response to an episodic river plume. 

Turbidity can often increase dramatically both during and following an episodic storm event. 

Highly turbid inflow can have a significant impact on recipient ecosystems. Episodic river 

plumes in western Lake Superior typically introduce an abundance of red clay complexes to the 

nearshore. These complexes contribute to the turbidity, and play a vital role in regulating the 

amount of light available to nearshore autotrophic communities. 

The turbidity of the western Lake Superior water column is primarily due to suspended 

solids, either as a result of riverine inflow or lake sediment resuspension. For total suspended 

solids (TSS; hereafter) analysis, a pre-determined amount of river and lake water samples were 

filtered through pre-weighed 0.7 µm Whatman GF/F filters. The retentate for each sample was 

stored in a dessicator until further analysis. In the lab, the retentate was dried at 105oC in an oven 

for approximately 2 hours to remove as much residual water as possible. The weight of the 

remaining residue was measured on a microbalance (Sartorius MSE3.6P Cubis Micro Complete 
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Balance) to the nearest 0.01 of a gram, which was used to determine the mass of TSS per volume 

of sample.  

The relationship between TSS and turbidity for western Lake Superior is shown in Figure 

2.5. The strong relationship between TSS and turbidity of Lake Superior and its tributaries 

suggests turbidity in this region of the lake is mainly due to the TSS load of the inflowing 

tributaries. Therefore, turbidity may be an indicator of river water presence along a nearshore-

offshore transect. An analysis of the turbidity profiles is needed to justify this assessment. 

Although the turbidity probe was calibrated prior to each sampling trip, to validate these 

turbidity profiles, at each lake sampling site the Secchi depth was also recorded. The method to 

determine Secchi depth followed the protocol set by the EPA and USGS (Green et al., 2015; 

USEPA 2009). Based on Figure 2.6, increases in average water column turbidity corresponded to 

decreases in Secchi depth; however, a few data points fall outside the 95% confidence interval. 

This suggests some variability in the relationship between Secchi depth and turbidity, which is 

most likely an artifact of human error in the estimation of Secchi depth or the particle size of 

suspended sediment. Therefore, turbidity profiles were useful in assessing water column clarity 

on each sampling trip.  

 

 

        

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Linear relationship between 
black line represents the overall trend of the data set; the correlation coefficient, r
trendline suggests a strong relationship between 
95% confidence interval for the data set
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elationship between total suspended solids (TSS) and turbidity
black line represents the overall trend of the data set; the correlation coefficient, r
trendline suggests a strong relationship between TSS and turbidity. The dotted lines refer to the 
95% confidence interval for the data set, whereas the dashed line represents the 90% confidence 

interval.  

and turbidity. The solid 
black line represents the overall trend of the data set; the correlation coefficient, r2 = 0.97, for the 

and turbidity. The dotted lines refer to the 
, whereas the dashed line represents the 90% confidence 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Exponential decay r
line represents the overall trend of the data set; the correlation coefficient, r

trendline suggests a strong relationship between Secchi depth and turbidity. The dotte
refer to the 95% confidence interval for the data set.
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decay relationship between Secchi depth and turbidity. The solid black 
line represents the overall trend of the data set; the correlation coefficient, r2 = 0.88, for the 

trendline suggests a strong relationship between Secchi depth and turbidity. The dotte
refer to the 95% confidence interval for the data set. 

. The solid black 
= 0.88, for the 

trendline suggests a strong relationship between Secchi depth and turbidity. The dotted lines 
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Total Phosphorus & Organic Carbon Dynamics 

Episodic river inflows typically introduce nutrient and organic carbon-laden water to 

receiving basins. The differences in density between the two water masses (i.e. river and lake) 

may effectively create distinct chemical gradients of phosphorus and organic carbon within the 

water column. These gradients persist until sufficient physical drivers are able to thoroughly mix 

the two water masses. The entrainment of these inputs to specific depths may drive the 

distribution of organisms capable of utilizing the nutrient and energy subsidies.  

All river water samples were collected for total dissolved phosphorus and dissolved 

organic carbon using 4 L acid-washed Nalgene® sample bottles. Each of these river water 

samples was collected at mid-depth near the center of the river. Prior to collection, each of the 

sample bottles underwent a triplicate rinse of river water to remove any potential contamination 

and assure that the sample was pure river water. The river discharge data was used to determine 

the total instantaneous loading of phosphorus and organic carbon to Lake Superior on each 

sampling day.  

To assess the influence rivers have on nearshore chemical dynamics, Lake Superior water 

samples were collected along the nearshore-offshore transect. Similar to the river samples, these 

lake water samples were collected for total dissolved phosphorus and dissolved organic carbon. 

Lake water samples were collected using a 5 L Niskin sampler at the surface, 10 m, and 20 m 

(when the depth was greater than 10 m), and subsequently transferred to their respective 4 L 

acid-washed Nalgene® sample bottles. Upon collection both river and lake water samples were 

stored on ice to slow biological activity until they could be filtered in the lab. 

The total phosphorus pools analyzed were total dissolved phosphorus (TDP; hereafter), 

soluble reactive phosphorus (SRP; hereafter), and particulate phosphorus (PP; hereafter). 
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Phosphorus is an essential nutrient for organisms in aquatic systems. In Lake Superior, 

phytoplankton communities are typically phosphorus-limited (Sterner, 2010). Therefore, any 

influx of phosphorus to the lake may have significant ecological ramifications. These 

subcategories are essential to understanding phosphorus dynamics in the nearshore zone. The 

only readily available form of phosphorus phytoplankton can use is orthophosphate. However, 

certain phytoplankton with the enzyme alkaline phosphatase can break bonds in dissolved 

organic phosphorus, releasing phosphate which then becomes available for uptake.  

For phosphorus, defined water sample volumes were filtered through pre-combusted 

0.7µm Whatman GF/F filters. The filtrate was used for the SRP and TDP analysis. Filtrate was 

saved in 250 mL acid-washed Nalgene® sample bottles. The analysis of SRP and TDP were 

conducted following the colorimetric methods of Stainton et al. (1977). High intensity UV 

photo-oxidation converts dissolved organic phosphorus compounds to phosphate, enabling TDP 

concentrations to be quantified. Therefore, prior to analysis with the molybdate blue method, 

TDP samples were UV photo-oxidized (La Jolla Scientific Co. UV Photo-oxidation Unit) for 2 

hours. The PP filter samples were combusted at 550oC (Thermo Scientific Thermolyne Muffle 

Furnace) to remove all organic material. Subsequently, 2 mL of 1 N hydrochloric acid (HCl) and 

10 mL of de-ionized water was added, and then heated at 105oC for 2 hours to suspend all 

phosphorus in solution. 

All colorimetric determination of phosphorus concentrations were performed on a UV-

visible spectrophotometer (Varian Cary 50 Scan).A 10 cm quartz cuvette was used for SRP and 

TDP analysis, whereas a 1 cm cuvette was used for PP analysis. The absorbance was measured at 

a wavelength of 885 nm, which is the wavelength of greatest absorption by the antimony-

phosphomolydate complex produced using the method described by Stainton et al. (1977).  
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The total organic carbon pools that were analyzed were as follows: dissolved organic 

carbon (DOC; hereafter) and particulate organic carbon (POC; hereafter). For DOC, 25 ml of 

filtered water samples (pre-combusted 0.7 µm Whatman GF/F filters) were transferred to amber 

glass aliquots for DOC analysis. The 25 ml subsample was acidified to a pH of less than 2 by 

adding 2-3 drops of1 N hydrochloric acid (HCl). This process transforms all of the dissolved 

inorganic carbon to CO2 which can be purged from the sample by carbon-free gas prior to OC 

analysis. DOC samples were measured using the combustion catalytic oxidation method on a 

total organic carbon analyzer (Shimadzu Total Organic Carbon 5000 analyzer equipped with an 

ASI-5000 auto sampler). The TOC analyzer uses an infrared detector to quantify the OC 

concentration in the sample (after oxidation to CO2) and has a detection limit of approximately 

0.1 mg L-1 (Pat Anderson, University of Wisconsin-Milwaukee, pers. comm.).  

For POC analysis, defined water sample volumes were filtered through a 0.7µm 

Whatman GF/F filter. The retentate was placed in a Petri dish and stored in a dessicator until it 

could be analyzed. Measurements of POC concentrations were performed on an elemental 

analyzer (Costech Instruments ECS 4010 CHNSO Analyzer). After every 12th sample, an 

acetanilide control was run to ensure instrument calibration. A standard curve of pre-weighed 

acetanilide controls was used to convert the millivolt (mV) spikes in CO2 for each sample to total 

POC mass. Subsequently, the volume of water sample filtered was used to determine the total 

POC concentrations.  

Spatiotemporal changes in the vertical distribution of dissolved nutrients and organic 

carbon were compared for all stations along the nearshore – offshore transects to assess whether 

or not horizontal gradients developed in response to episodic riverine inflow. A three-way 

ANOVA with depth (i.e. the surface, 10 m, and 20 m), distance offshore, and sampling date as 
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factors was used to compare mean differences between SRP, TDP, PP, DOC, and POC 

concentrations. An alpha value of 0.01 was used to reduce the probability of incorrectly rejecting 

the null hypothesis and, thereby, increase the power of the statistical comparison. Post hoc 

comparisons were performed using Tukey HSD. All statistical analyses were performed in R 

(Version 3.3.1).  

 

Phytoplankton Spatial Variability  

The spatial distribution of phytoplankton in response to river discharge was determined 

using vertical profiles and discrete water samples. Vertical profiles of chlorophyll a fluorescence 

(Chla; hereafter) were used to provide increased vertical and horizontal resolution of changes in 

phytoplankton biomass. Chla has long been used as quick and easy-to-measure surrogate of 

phytoplankton biomass (Richards and Thompson, 1952; Dillon and Rigler, 1974).However, in 

some oligotrophic lakes, Chla fluorescence-derived concentrations tend to overestimate total 

phytoplankton biomass (Kasprzak et al., 2008).  

To validate the use of Chla fluorescence profiles, lake water samples were collected at 

discrete depths along each transect (see Fig. 2.3), and a 400 ml sub-sample was filtered through a 

0.7µm Whatman GF/F filter. The filters were then wrapped in aluminum foil and frozen to be 

stored until analysis. In the lab, the Chla filters were mixed with 10 mL of an extraction solvent 

(680 mL methanol, 27 mL acetone, and 5 mL DI water) in a centrifuge tube and placed in the 

freezer for 24 hours, wrapped in aluminum foil to allow for the complete extraction of Chla. 

After 24 hours, the samples were then spun in a centrifuge (Damon IEC HN-SII) at 3,000 to 

4,000 rpm for 5 minutes. Using a pipette, 5 mL of the supernatant from the centrifuge tube was 

transferred to a quartz fluorometer tube, and analyzed on a calibrated fluorometer (Turner 
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Designs). Following the initial reading, the sample was acidified with 2 drops of 4 N HCl to 

correct for any fluorescence due to phaeophytin. 

 The Chla fluorescence-derived concentration obtained through laboratory analysis were 

used to verify concentrations determined based on vertical fluorescence profiles. It is important 

to note that discrete water samples were collected, and vertical profiles performed within an hour 

of each other during the day (8 – 10 am CDT) for each sampling trip. Values of Chla 

fluorescence at depths along the vertical profile were matched with corresponding discrete water 

samples. A simple Deming regression was used to compare the two methods. The regression 

analysis resulted in a strong positive, linear relationship (Figure 2.7). The strong relationship 

between laboratory-derived Chla concentration and vertical profile Chla concentration supported 

the use of vertical profiles to estimate Chla fluorescence-derived concentration within the lake. 

Temporal variability in mean Chla concentration was values were analyzed using paired t-tests. 

Again, an alpha value of 0.01 was used to provide more statistical power. All statistical analyses 

were performed in R (Version 3.3.1).  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Figure 2.7: Comparison of two different methods for determining chlorophyll 
concentration using a Deming regression. The slope is 1

correlation coefficient, r2 = 0.93.These results indicate significant correlation between the sonde 
and fluorometer methods for Chl

  

41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison of two different methods for determining chlorophyll 
concentration using a Deming regression. The slope is 1.05; the intercept 0.02; and the 

= 0.93.These results indicate significant correlation between the sonde 
and fluorometer methods for Chla determination. 

Comparison of two different methods for determining chlorophyll a (Chla) 
.05; the intercept 0.02; and the 

= 0.93.These results indicate significant correlation between the sonde 
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 Autotrophic primary production and associated phytoplankton growth are dependent on 

nutrient availability and an optimal light environment. Therefore, understanding the 

phytoplankton response to episodic river plumes cannot be complete without describing changes 

in the light environment. Turbidity data of the epilimnion was used to determine variations 

within the depth of the euphotic zone following a substantial river plume event. The light 

extinction coefficient, kT (m
-1), was estimated through the following relationship from Brown 

(1984):  

 

A low coefficient was used to avoid overestimating the effect of turbidity. The depth of 1% light 

penetration is defined as the euphotic zone and can then be related to the light extinction 

coefficient as such: 

 

 

 

Results 

 

Horizontal Distribution of River Inflow 

 Hydrograph peaks in river discharge were sharp and occurred immediately following the 

storm event on July 12th (Fig. 2.8). This short lag time between spikes in rainfall and 

corresponding peaks in discharge suggests the discharge of rivers in this region was extremely 

sensitive to this episodic rainfall event. Peaks in discharge for each river were approximately 3 

times greater than the average baseline conditions (Bois Brule = 15.4 m3 s-1, Iron = 15.8 m3 s-1, 

Flag = 7.8 m3 s-1, Siskiwit = 3.0 m3 s-1, and Sand = 1.6 m3 s-1; respectively). Each hydrograph 

had recession limbs less steep than the corresponding rising limb, and returned to baseline flow 

kT = 0.05 * Turbidity (NTU)     (3) 

Zeuphotic = 
ି ୪୬(଴.଴ଵ)

୩౐
   

ସ.଺

୩౐
      (4) 
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conditions about 6 days after the storm event. The magnitude of discharge from each river in 

response to the July 12, 2016 storm event suggests the influence of river inflow on nearshore 

Lake Superior may be uncharacteristically stronger than usual following the storm event. 

 The optical properties of the lake surface of western Lake Superior changed substantially 

following the major storm event. A surface plume developed along the southern shoreline of 

western Lake Superior following the July 12, 2016 storm event. During the subsequent days, the 

plume was transformed by in-lake mixing and eventually dissipated. Fig.2.9 illustrates a time-

lapse depiction of the surface plume dynamics from July 12th to August 16th of 2016.  

 Immediately following the major storm event on July 12th the plume covered 

approximately 352 km2. On July 16th, only four days later, the surface plume increased 

substantially to cover over 2,736 km2, and encompassed the entire nearshore area along the 

southern shoreline of western Lake Superior. Along the surface, the plume spread horizontally to 

reach its greatest extent, over 12 km offshore (Fig. 2.9; B). At this time, the surface plume had 

also begun to move through the Apostle Islands archipelago. Over the next week, the plume 

decreased slightly in total area (2,470 km2), and developed a counterclockwise gyre in proximity 

to the Duluth-Superior harbor (Fig. 2.9; C). On July 18th, the plume extended further into the 

Apostle Islands archipelago, and even reached Outer Island (i.e. the furthest island offshore). 

About two weeks after the storm event, the surface plume had begun to recede, and decreased in 

total area to approximately 1,944 km2. By July 25th, the plume had traveled entirely through the 

Apostle Islands and was now visible to the east of Madeline Island (i.e. the furthest island to the 

east). Finally, about a month later on August 16th, the surface plume had all but dissipated, and 

the plume boundary could no longer be discerned through the use of Rrs645 nm.  
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 Beletsky et al. (1999) and Bennington et al. (2010) used hydrodynamic modeling to 

describe the general circulation pattern of western Lake Superior during the summer months. 

Based on these models, general circulation patterns in this region are typically counterclockwise, 

and travel northeastward along the southern shoreline towards the Apostle Islands archipelago. 

Figure 2.10 illustrates a pattern in measured nearshore circulation during the present study 

similar to that observed by Beletsky et al. (1999) and Bennington et al. (2010). Between June 8 

and July 30, 2016 mean current patterns typically flowed to the northeast, and parallel to the 

adjacent shoreline. During this period, mean current traveled to the northeast 41 days out of the 

total 54 days. Along the southern shoreline of western Lake Superior, mean current peaked at the 

surface (17.2 cm s-1) and decreased accordingly as depth increased (2 m = 10.3 cm s-1; 3 m = 9.7 

cm s-1; 4 m = 9.0 cm s-1; 5 m = 8.6 cm s-1; 6 m = 8.3 cm s-1; 7 m = 7.7 cm s-1; 8 m = 7.2 cm s-1; 9 

m = 6.3 cm s-1). Currents in this region, however, were bimodal suggesting they were strongly 

influenced by changes in wind patterns. Variability over daily and hourly time scales existed, and 

all current roses (Fig. 2.10) exhibited some spread in velocity and direction. Following the storm 

event on July 12th, current velocity increased by about 2 cm s-1 at each depth in comparison to 

the long-term average and traveled parallel to the shore towards the Apostle Islands for 

approximately 2 weeks until wind shifts resulted in changes in current direction. This suggests 

either episodic winds during the storm transferred increased momentum to the lake or the storm 

surge of river inflow influenced the nearshore current. 
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Figure 2.8: Hydrograph for each of 
the sampled rivers from June 23 
(Julian Day 179) to October 25 
(Julian Day 300) 2016. The solid 
line represents continuous 
discharge, Q, estimated following a 
modified approach similar to Ries 
(2007), whereas the black circles 
refer to measured discharge, 
specific dates. 
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2.3-2:
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Figure 2.9: Time-lapse Rrs 645 nm images of an episodic, surface plume developing as a result of a 
major storm event that occurred on July 12th; (A) July 12th, (B) July 16th, (C) July 18th, (D) July 25th, 

and (E) August 16th, which was about a month after the storm. The location of the five rivers 
monitored over the course of the 2016 field sampling season area shown along the southern 

shoreline. Spatial extent of the plume was measured in decimal degrees North and West. Each image 
was rectified using the WGS84 spatial reference system. 
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Figure 2.10: Depth-incremented horizontal current velocities
sampling season. Each current rose plot corresponds to discrete depths (between 1 to 9 m) within the water column. 

indicates the direction towards which current flows. The overall length of each bar represents the total number of days (June
30, 2016) that average flow was in that direction. Color of the bar indicates the current velocity. Current in one direction 
many colors, indicating the total number of days that average flow was both in that direction and with that veloci

deployed at 10 m in depth near the southwestern corner of Sand Island, Apostle Islands, WI from June 
coordinates (WGS84) for the ADCP location are as follows: 46

 

 
 

current velocities and directionality, measured with a 0.75 MHz ADCP over the 2016
plot corresponds to discrete depths (between 1 to 9 m) within the water column. 

indicates the direction towards which current flows. The overall length of each bar represents the total number of days (June
30, 2016) that average flow was in that direction. Color of the bar indicates the current velocity. Current in one direction 
many colors, indicating the total number of days that average flow was both in that direction and with that veloci

deployed at 10 m in depth near the southwestern corner of Sand Island, Apostle Islands, WI from June – 
coordinates (WGS84) for the ADCP location are as follows: 46o 58.346 N; 90o 59.255 W.

measured with a 0.75 MHz ADCP over the 2016 field 
plot corresponds to discrete depths (between 1 to 9 m) within the water column. Bar direction 

indicates the direction towards which current flows. The overall length of each bar represents the total number of days (June 8 – July 
30, 2016) that average flow was in that direction. Color of the bar indicates the current velocity. Current in one direction may have 
many colors, indicating the total number of days that average flow was both in that direction and with that velocity. The ADCP was 

 August 2016. Specific 
59.255 W. 
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Vertical Distribution of River Inflow 

Using temperature, EC25, turbidity, and density profiles, the distribution of subsurface 

riverine intrusions were illustrated through time in Figures 2.3-4 to 2.3-9. On June 23, 2016 (Fig. 

2.11), the water column along the nearshore-offshore transect was relatively homogenous with 

regard to temperature, EC25, turbidity, and density (7.5 oC ± 1.4 oC, 99.3 µS cm-1 ± 0.08 µS cm-1, 

0.5 NTU ± 0.3 NTU, 999.9 kg m-3 ± 0.08 kg m-3, n = 278; respectively). At this time, thermal 

stratification had yet to set in. The upper reaches of the water column had begun to warm, 

however. This is illustrated by the slightly higher temperatures in the upper 10 – 12 m (8.9 oC ± 

0.8 oC) in comparison to deeper, offshore water (6.4 oC ± 0.7 oC).The water column was also 

denser (999.9 kg m-3 ± 0.1 kg m-3) in comparison to the sampled tributaries (998.6 kg m-3 ± 0.4 

kg m-3) suggesting any significant riverine inflow would be constrained primarily to the surface 

of the lake (Fig. 2.11; D). Despite the potential for river inflow to propagate along the surface, 

the lack of spikes in EC25 and turbidity implies that no substantial river inflow had reached the 

Apostle Islands archipelago. 

About two weeks later on July 7, 2016 (Fig. 2.12), the beginning of thermal stratification 

set in, and a weak thermocline began to develop around 5 m. In terms of EC25 and turbidity, the 

water column was still relatively constant, albeit with a slight increase in turbidity at the sites 

closest to shore. Between 0 and 2.67 km offshore, turbidity (1.78 NTU ± 0.2 NTU) 

approximately doubled that of offshore waters (0.75 NTU ± 0.2 NTU). Since there was not an 

accompanying spike in EC25, the rise in water column turbidity within this area may have 

resulted from a minor, sediment resuspension event rather than riverine inflow. The density 

profile mirrored that of temperature; warmer, less dense water was situated near the surface and 

denser water within the hypolimnion. Although there was no significant riverine inflow as shown 
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by the EC25 profile, horizontal density gradients developed where dense (>998.4 kg m-3) river 

intrusions, such as the Flag (999.3 kg m-3) and Siskiwit Rivers (998.6 kg m-3) could have 

potentially propagated along. This was one week prior to the major storm event.  

On July 28, 2016 (Fig. 2.13), two weeks after the major storm event, stratification had 

become a little deeper (between 6 – 8 m) and subsurface river intrusions were clearly visible. 

The EC25 of the entire nearshore and the upper 15 m of the water column offshore were elevated, 

greater than 102.8 µS cm-1 (Fig. 2.13; C) suggesting substantial river inflow both at the surface 

and within the epilimnion. The greatest spikes in EC25 (110.6 µS cm-1 ± 2.5µS cm-1) occurred 

along the thermocline. The density profile (Fig. 2.13; D) illustrates the horizontal density 

gradient and the pycnocline that the Flag (999.2 kg m-3), Sand (998.9 kg m-3), and Siskiwit 

Rivers (998.9 kg m-3) traversed along. The magnitude of the EC25 spikes were variable along the 

nearshore-offshore transect, which suggests the presence of several neutrally buoyant inflowing 

rivers. Close to the shoreline, spikes in EC25 (109.9 µS cm-1± 1.2 µS cm-1) were apparent 

between 4 – 7 m. At 4 km offshore, EC25 increased substantially (112.6 µS cm-1± 2.7 µS cm-1) 

between 6 – 9 m in comparison to the rest of the water column. Additionally, river presence was 

evident between 9 – 11 m over 10 km from shore.  

Turbidity profiles (Fig. 2.13; B) also corroborated the appearance of significant riverine 

intrusions as shown in EC25 profiles. Prior to the appearance of subsurface riverine intrusions, 

turbidity of Lake Superior typically averaged 0.5 NTU ± 0.3 NTU. On July 28th, the epilimnion, 

which extended to around 10 m in depth, showed decreased water clarity (1.82 NTU ± 0.8 NTU) 

relative to typical Lake Superior turbidity. The turbidity within entire water column between 0 

and 2.67 km offshore rose dramatically to 2.37 NTU ± 0.7 NTU. Although the entire water 

column between 0 and 2.67 km offshore became much more turbid, spikes in turbidity further 
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offshore (2.21 NTU ± 0.8 NTU) appear relatively confined to the surface (between 1 – 3 m).The 

apparent disconnect between spikes in EC25 (at the metalimnion) and turbidity (at the surface) 

suggests the presence of multiple inflowing rivers with differing buoyancies and suspended 

sediment loads. The distribution of horizontal density gradients of equal density to that of select 

tributaries validates this assumption (Fig. 2.13; D). Along the surface, less dense rivers such as 

the Bois Brule (997.9 kg m-3), Iron (997.8 kg m-3), and St. Louis (997.2 kg m-3) propagate 

horizontally across the lake. 

On August 17, 2016 (Fig. 2.14) about a month after the storm event, subsurface remnants 

of river intrusions were still present. At this time, stratification had completely set in and the 

thermocline had become established around 10 – 20 m. Within the epilimnion, EC25 was still 

elevated (104.7 µS cm-1± 1.9 µS cm-1). Spikes in EC25 were still apparent along the thermocline, 

although the magnitude had diminished (109.6µS cm-1± 2.3 µS cm-1), particularly between 0 and 

2.67 km offshore. Again, vertical density profiles attribute spikes in EC25 along the thermocline 

to dense, subsurface river inflow. The calculated density for the Bois Brule (998.6 kg m-3), Flag 

(999.4 kg m-3), Siskiwit (998.9 kg m-3), and Sand (999.1 kg m-3) Rivers suggests remnants from 

these rivers achieve neutral buoyancy near the thermocline. The horizontal dispersal of river 

intrusions along the thermocline was also validated by accompanying decreases in water clarity 

(Fig. 2.14; B). Areas along the nearshore-offshore transect with high EC25 show associated 

spikes in turbidity (2.38 NTU ± 1.1 NTU). 

About a month later (Fig. 2.15) thermal stratification had begun to break down and 

remnants of the initial river intrusions were still present along the thermocline. Along the 

thermocline, EC25 remained slightly higher (103.3 µS cm-1± 0.5 µS cm-1) in comparison to the 

rest of the Lake Superior water column (99.3 µS cm-1 ± 0.08 µS cm-1; Fig. 2.15; C). By now 
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much of the original river input had dissipated and thoroughly mixed with ambient Lake 

Superior water. The water clarity in this region had returned to pre-episodic inflow conditions 

(Fig. 2.15; B). The turbidity for the entire profiled area averaged 0.42 NTU (± 0.2 NTU, n = 434) 

suggesting most of the suspended solid load introduced by the rivers had either settled out of the 

water column or been advected and diffused throughout the lake.  

In October, thermal stratification had completely broken down, and the water column had 

become relatively isothermal with a mean temperature of 9.8 oC ± 0.5 oC (Fig. 2.16; A). The 

isothermic conditions of the water column resulted in the density of this region of Lake Superior 

remaining relatively constant (999.7 kg m-3 ± 0.03 kg m-3; Fig. 2.16; D). The dense ambient 

water of Lake Superior suggests any significant riverine input would be constrained to the lake 

surface. The St. Louis, Bois Brule, Iron, Flag, Siskiwit, and Sand Rivers are all warmer than the 

lake at this time, and therefore, less dense. The ubiquitous EC25 (99.3µS cm-1 ± 0.2µS cm-1) and 

turbidity (0.43 NTU ± 0.2 NTU) vertical profiles suggests very little to no significant river 

influence on the nearshore zone.  

Spatiotemporal changes in subsurface river intrusions were further described by the 

variability in the relative proportion of river water within Lake Superior (Fig. 2.17). On June 

23rd, the presence of river water within this area of Lake Superior was minimal, and accounted 

for only 0.39% ± 0.3% of the total volume. About two weeks later on July 7th, approximately 

0.54% ± 0.29% of water along the nearshore-offshore transect was of riverine origin. Prior to the 

major storm event, the water column was relatively homogenous. Two weeks following the 

storm event, river water accounted for a significantly greater percentage of the total water 

volume (4.2% ± 3.2% on July 28th). The surface mixed layer contained a large proportion of 

river water in comparison to the hypolimnion (5.6% ± 3.4% and 0.63% ± 0.2%; respectively). 
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Spikes in river water were prevalent along the thermocline between 0 – 10.79 km offshore 

(12.3% ± 3.8%). On August 17th, about a month after the initial storm event, the surface mixed 

layer still contained a large proportion of riverine water (4.4% ± 3.7%), and water of riverine 

origin made up a relatively large proportion of the total volume along the thermocline (12.6% ± 

2.8%). In September, the mean proportion of river water began to decrease (1.8% ± 1.6%), 

although remnants were still present along the thermocline (7.0% ± 0.7%). Finally, on October 

25th, Lake Superior returned to pre-storm conditions. At this time, river water contributed very 

little to the water column (0.4% ± 0.2%). 
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Figure 2.11: Vertical structure of (A) temperature (
23, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by 

black line in panel D. The horizontal axis is expressed as distance along the nearshore
Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles.
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Vertical structure of (A) temperature (oC), (B) turbidity (NTU), (C) EC25 (µS cm-1), and (D) density (kg m
23, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by 

black line in panel D. The horizontal axis is expressed as distance along the nearshore-offshore transect to the southwest of the 
Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles.
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and (D) density (kg m-3) on June 
23, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by the solid 

offshore transect to the southwest of the 
Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles. 
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Figure 2.12: Vertical structure of (A) temperature (
7, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by t
black lines in panel D. The horizontal axis is expressed as distance along the ne

Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles.
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Vertical structure of (A) temperature (oC), (B) turbidity (NTU), (C) EC25 (µS cm-1), and (D) density (kg m
7, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by t
black lines in panel D. The horizontal axis is expressed as distance along the nearshore-offshore transect to the southwest of the 

The vertical black lines represent the location of vertical sonde profiles.

C 

D 

 

), and (D) density (kg m-3) on July 
7, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by the solid 

offshore transect to the southwest of the 
The vertical black lines represent the location of vertical sonde profiles. 
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Figure 2.13: Vertical structure of (A) temperature (
28, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by 
black lines in panel D. The horizontal axis is expressed as distance along the

Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles.
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Vertical structure of (A) temperature (oC), (B) turbidity (NTU), (C) EC25 (µS cm-1), and (D) density (kg m
28, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by 
black lines in panel D. The horizontal axis is expressed as distance along the nearshore-offshore transect to the southwest of the 

The vertical black lines represent the location of vertical sonde profiles.
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), and (D) density (kg m-3) on July 
28, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by the solid 

offshore transect to the southwest of the 
The vertical black lines represent the location of vertical sonde profiles. 
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Figure 2.14: Vertical structure of (A) temperature (
August 17, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustra

the solid black lines in panel D. The horizontal axis is expressed as distance a
of the Apostle Islands archipelago.
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Vertical structure of (A) temperature (oC), (B) turbidity (NTU), (C) EC25 (µS cm-1), and (D) density (kg m
August 17, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustra

the solid black lines in panel D. The horizontal axis is expressed as distance along the nearshore-offshore transect to the southwest 
of the Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles.
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), and (D) density (kg m-3) on 
August 17, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by 

offshore transect to the southwest 
The vertical black lines represent the location of vertical sonde profiles. 
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Figure 2.15: Vertical structure of (A) temperature (
September 21, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illus

by the solid black lines in panel D. The horizontal axis is expressed as
southwest of the Apostle Islands archipelago.
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Vertical structure of (A) temperature (oC), (B) turbidity (NTU), (C) EC25 (µS cm-1), and (D) density (kg m
September 21, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illus

by the solid black lines in panel D. The horizontal axis is expressed as distance along the nearshore-offshore transect to the 
southwest of the Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles.
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), and (D) density (kg m-3) on 
September 21, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated 

offshore transect to the 
The vertical black lines represent the location of vertical sonde profiles. 
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Figure 2.16: Vertical structure of (A) temperature (
October 25, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustr
the solid black line in panel D. The horizontal axis is expr

of the Apostle Islands archipelago.
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Vertical structure of (A) temperature (oC), (B) turbidity (NTU), (C) EC25 (µS cm-1), and (D) density (kg m
October 25, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustr
the solid black line in panel D. The horizontal axis is expressed as distance along the nearshore-offshore transect to the southwest 

of the Apostle Islands archipelago. The vertical black lines represent the location of vertical sonde profiles.
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), and (D) density (kg m-3) on 
October 25, 2016. The horizontal density gradients of Lake Superior equal to the density of specific study rivers are illustrated by 

offshore transect to the southwest 
The vertical black lines represent the location of vertical sonde profiles. 
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Figure 2.17: Two component binary mixing model illustrating the relative proportion of river water within the 
water column along a nearshore-offshore transect. Mean offshore, hypolimnetic EC25 and mean river EC25 

were used as the two endmembers for calculating the proportion of river to lake water. Each plot represents a 
specific date: (A) June 23, (B) July 7, (C) July 28, (D) August 17, (E) September 21, and (F) October 25. The 

vertical black lines represent the location of vertical sonde profiles. 
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Total Phosphorus & Organic Carbon Dynamics 

Following the major storm event, daily tributary loadings of total phosphorus and organic 

carbon increased substantially on July 15th. Table 2.2 illustrates the loadings for the Bois Brule, 

Iron, Flag, Siskiwit, and Sand Rivers over the course of the 2016 field sampling season. On July 

15th, the daily SRP loading almost doubled for the Bois Brule (4.9 kg day-1), Iron (7.5 kg day-1), 

Flag (3.2 kg day-1), Siskiwit (2.2 kg day-1), and Sand (0.3 kg day-1) Rivers, and returned to 

baseflow conditions approximately two weeks later. A similar pattern emerged for daily TDP 

loadings of each river (Brule: 7.5 kg day-1, Iron: 11.9kg day-1, Flag: 4.4kg day-1, Siskiwit: 3.8 kg 

day-1, Sand: 0.5 kg day-1). The loading of SRP on July 15th accounted for approximately two-

thirds of the TDP load in each individual river, which suggests a large fraction of TDP loading 

was available for all phytoplankton. For each tributary, the magnitude of the increase in PP 

loading following the storm event was larger relative to that of SRP and TDP (Brule: 22.8 kg 

day-1, Iron: 37.3 kg day-1, Flag: 10.5 kg day-1, Siskiwit: 3.1  kg day-1, Sand: 3.9 kg day-1).  

Following the July 12th storm, instantaneous DOC loadings also increased to a much 

larger degree than either SRP or TDP. Relative to mean baseline loading conditions, the DOC 

loading of the Sand River approximately tripled after the storm event (368 kg day-1). The DOC 

loading for both the Bois Brule and the Iron River increased to about four times the average 

baseline level (6,929 kg day-1and 5,872 kg day-1; respectively). The Flag and Siskiwit River daily 

DOC loading increased to an even greater degree following the storm event (1,615 kg day-1and 

1,270 kg m-1; respectively). After the storm, loadings of POC increased as well (Brule: 837 kg 

day-1, Iron: 1,095 kg day-1, Flag: 409 kg day-1, Siskiwit: 174 kg day-1, Sand: 120 kg day-1); 

however, DOC loadings to the nearshore zone were still greater. Clearly, following an episodic 
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storm event, a greater amount of total organic carbon enters nearshore Lake Superior in 

comparison to total phosphorus. 

The concentrations of SRP, TDP, and DOC exhibited very different spatial and temporal 

patterns of variation along the nearshore-offshore transect (Fig. 2.18 through Fig. 2.20). Over the 

2016 field sampling season, SRP, TDP, and DOC concentrations ranged between 0.16 – 1.83 µg 

L-1, 0.37 – 1.95 µg L-1, and 0.57 – 3.91 mg L-1; respectively. The particulate fractions, PP and 

POC, ranged between 1.41 – 4.80 µg L-1 and 0.08 – 0.24 mg L-1; respectively. Interestingly, over 

the course of the summer PP and POC showed no statistically significant increase or decrease 

(p>>0.01). In early summer and fall, concentrations of SRP, TDP, and DOC showed little to no 

variation along the nearshore-offshore transect regardless of depth and distance offshore. By 

contrast, the distribution of these nutrients and organic carbon fractions showed definitive 

spatiotemporal trends in the month following the July 12th storm event.  

On July 28th, SRP concentrations increased significantly (1.30 µg L-1± 0.12 µg L-1), and 

TDP concentrations followed a similar trend (1.62 µg L-1± 0.23 µg L-1). With respect to all other 

sampling days, the increases in dissolved phosphorus concentrations were statistically significant 

for each fraction, SRP (F5,10= 28.3, p = 4.2x10-9) and TDP (F5,10 = 17.4, p = 6.7x10-8). Dissolved 

phosphorus concentrations within the nearshore at 10 m in depth were slightly higher (SRP: 1.51 

µg L-1± 0.25µg L-1and TDP: 1.79 µg L-1± 0.14µg L-1) relative to the lake surface and 20 m in 

depth. These increases were not statistically significant (a = 0.01), however, the probability 

(0.015) was only marginally higher than a, which suggests the increase was substantial. 

The mean concentration of DOC on July 28th increased significantly (2.43 mg L-1 ± 0.99 

mg L-1). In comparison with the other sampling days, the periodic increase in DOC on July 28th 

was statistically significant (F5,10= 14.8, p = 4.9x10-5). Between July 28th and August 17th, 
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average whole-water column SRP and TDP decreased to a lesser extent that that of DOC (-0.55 

µg L-1, -0.59 µg L-1, and -0.92 mg L-1; respectively). 

About a month after the initial storm event, the mean SRP and TDP concentration 

decreased, relative to July 28th (0.56 µg L-1 ± 0.09 µg L-1, 0.59 µg L-1 ± 0.07 µg L-1; respectively) 

along the nearshore-offshore transect. SRP and TDP mean concentrations on August 17thwere 

not statistically greater than mean pre-storm and fall concentrations (p >> 0.01 for both). 

However, SRP and TDP concentrations followed a distinctive nearshore-offshore spatial trend. 

Mean concentrations of SRP and TDP were significantly higher between 0 and 2.67 km offshore 

(1.12µg L-1 ± 0.14 µg L-1, 1.38µg L-1 ± 0.31 µg L-1; respectively) and exhibited a decreasing trend 

toward offshore waters (0.65µg L-1 ± 0.24 µg L-1, 0.89µg L-1 ± 0.19 µg L-1; respectively). The 

difference in SRP and TDP between the nearshore and offshore zones was statistically different 

on August 17th (F2,10 = 8.49, p = 2.1x10-3; F2,10 = 7.18, p = 9.2x10-3; respectively). The 

nearshore-offshore spatial differences in SRP and TDP on August 17th are illustrated in Fig. 2.18 

and Fig. 2.19. On August 17th, the DOC concentration within the water column along this 

nearshore-offshore transect was relatively uniform (1.51 mg L-1 ± 0.23 mg L-1), and there were 

no significant spatial or temporal differences (p >> 0.01). Between August 17th and September 

21st, average whole-water column SRP and TDP decreased to a greater extent than that of DOC 

(-0.46 µg L-1, -0.51 µg L-1, and -0.20 mg L-1; respectively). 

The resultant horizontal and vertical SRP, TDP, and DOC gradients in response to 

episodic inflow are more clearly visualized in Fig. 2.18 through Fig. 2.20. However, it must be 

noted that there is substantial interpolation between the surface, 10 m, and the 20 m in depth 

introducing the potential for either an overestimation or underestimation of SRP, TDP, and DOC 

between these depths. From these contour plots, it is apparent that although the majority of the 
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surface plume dissipated about two weeks after the storm event concentrations of dissolved 

phosphorus within the nearshore zone remained higher for a longer period of time than DOC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2: Instantaneously measured total phosphorus (SRP, TDP, and PP 
fractions) and total organic carbon (DOC and POC fractions) loadings in kg 

day-1 for each sampled tributary in 2016.  

Rivers Date 2016 
SRP Load    
(kg day-1) 

TDP Load    
(kg day-1) 

PP Load  
(kg day-1) 

DOC Load   
(kg day-1) 

POC Load   
(kg day-1) 

Bois Brule June 22 3.5 7.9 5.5 3528.8 261.4 

July 6 2.8 7.3 8.8 1668.6 283.2 

July 15 4.9 7.5 22.8 6929.2 873.3 

July 27 3.2 6.7 6.6 2113.3 266.5 

August 16 2.2 3.9 5.2 1524.1 134.6 

September 22 1.9 4.7 6.1 1477.1 222.3 

October 26 2.3 4.3 2.2 1291.9 92.5 

Iron  June 22 3.2 9.7 7.7 3432.1 228.2 

July 6 4.7 5.9 7.7 1474.9 230.9 

July 15 7.5 11.9 37.3 5872.4 1095.8 

July 27 1.2 3.7 5.5 1772.3 169.8 

August 16 2.0 3.7 4.4 1154.3 92.5 

September 22 1.9 5.6 4.6 1679.1 163.1 

October 26 3.0 4.5 2.7 1074.8 80.9 

Flag June 22 1.8 2.6 2.1 729.8 56.9 

July 6 2.0 2.4 1.5 268.8 49.7 

July 15 3.2 3.4 10.5 1615.3 409.0 

July 27 1.0 2.3 2.0 249.0 67.9 

August 16 2.0 2.1 1.6 241.4 205.9 

September 22 1.6 2.9 1.7 467.9 54.6 

October 26 1.1 1.6 1.1 162.5 35.7 

Siskiwit June 22 0.7 1.8 0.9 356.7 30.2 

July 6 0.4 0.9 0.8 150.8 26.4 

July 15 2.2 1.8 3.1 1270.7 174.0 

July 27 0.7 1.0 1.3 397.7 58.8 

August 16 0.6 0.8 0.8 344.0 20.8 

September 22 0.8 1.4 0.6 427.0 22.7 

October 26 0.7 0.9 0.6 165.0 15.6 

Sand  June 22 0.3 0.7 0.5 264.1 18.6 

July 6 0.3 0.5 0.6 76.2 9.7 

July 15 0.3 0.5 3.9 381.6 119.7 

July 27 0.1 0.1 0.7 192.8 23.1 

August 16 0.1 0.1 0.7 34.4 20.3 

September 22 0.1 0.3 0.2 234.7 7.5 

  October 26 0.2 0.2 0.3 160.1 8.1 
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Figure 2.18: Colored contour plots showing the vertical and
July 28th, (D) August 17th, (E) September 21st

low concentrations. The black dots on panel C represent location and depth of discrete water samples. Concentration units are 

A 

B 

C 

 

Colored contour plots showing the vertical and horizontal distribution of SRP over time; (A) June 23
st, and (F) October 25th. Cooler colors (i.e. blue and purple) represent areas of relatively 

The black dots on panel C represent location and depth of discrete water samples. Concentration units are 

F 

E 

D 

June 23rd, (B) July 7th, (C) 
colors (i.e. blue and purple) represent areas of relatively 

The black dots on panel C represent location and depth of discrete water samples. Concentration units are µg L-1.

 

µg L-1 
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Figure 2.19: Colored contour plots showing the vertical and
July 28th, (D) August 17th, (E) September 21st

low concentrations. The black dots on panel C represent location and depth of discrete water samples. Concentration units are 

A 

B 

C 

 

showing the vertical and horizontal distribution of TDP over time; (A) June 23
st, and (F) October 25th. Cooler colors (i.e. blue and purple) represent areas of relatively 

The black dots on panel C represent location and depth of discrete water samples. Concentration units are 

F 

E 

D 

June 23rd, (B) July 7th, (C) 
Cooler colors (i.e. blue and purple) represent areas of relatively 

The black dots on panel C represent location and depth of discrete water samples. Concentration units are µg L-1.

 

µg L-1 
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Figure 2.20: Colored contour plots showing the vertical and
July 28th, (D) August 17th, (E) September 21st

low concentrations. The black dots on panel C represent location and depth of discrete water sampl

A 

B 

C 

Colored contour plots showing the vertical and horizontal distribution of DOC over time; (A) June 23
st, and (F) October 25th. Cooler colors (i.e. blue and purple) represent areas of relatively 

The black dots on panel C represent location and depth of discrete water samples. Concentration units are 

F 

E 

D 

June 23rd, (B) July 7th, (C) 
Cooler colors (i.e. blue and purple) represent areas of relatively 

es. Concentration units are mg L-1.

 

mg L-1 
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Phytoplankton Spatial & Temporal Variability 

Along the nearshore-offshore transect, mean Chla fluorescence-derived concentrations 

increased in the month following the episodic storm event on July 12th (Fig. 2.21).The mean 

Chla concentration on July 28th for this nearshore-offshore cross section (1.91 µg L-1 ± 0.04 µg 

L-1) was statistically greater than any of the other sampling days (F5,20 = 110.5 , p < 2.2 x 10-16). 

On August 18th, Chla concentrations decreased slightly (1.60 µg L-1 ± 0.07µg L-1). Mean Chla 

concentrations on August 18th were comparable to that of June 23rd (1.47 µg L-1 ± 0.45 µg L-1), 

and were, therefore, not statistically different (p >> 0.01). Although Chla concentrations on 

August 18th were not statistically different from those on June 23rd, they were much greater than 

July 7th, September 21st, and October 25th (1.21 µg L-1 ± 0.04 µg L-1, 1.20 µg L-1 ± 0.02 µg L-1, 

1.25 µg L-1 ± 0.03 µg L-1; respectively). These differences between August 18th and July 7th, 

September 21st, and October 25th were statistically significant (F5,20 = 92.4, p < 2 x 10-16; F5,20 = 

96.7, p < 2 x 10-16; F5,20 = 89.2, p < 2 x 10-16; respectively).  

Not only did Chla concentrations vary temporally, they also varied spatially in response 

to the episodic storm event. The spatial variability in chla concentrations are illustrated in Fig. 

2.21 and Fig. 2.22. Early in the summer on June 23rd, the Chla concentration of the upper 5 m of 

the water column was relatively low (0.59 µg L-1 ± 0.34 µg L-1). Below 5 m, concentrations rose 

slightly (1.44 µg L-1 ± 0.35 µg L-1) and were uniform throughout the nearshore-offshore transect.  

Later in the summer on July 7th, mean Chla within the water column decreased (1.21 µg 

L-1 ± 0.04 µg L-1). A spike in Chla, however, was apparent between 0 and 2.67 km offshore 

below 3 m (2.78µg L-1 ± 0.7 µg L-1). On July 28th, following the storm event, mean Chla 

increased significantly throughout the nearshore-offshore cross-section (1.91 µg L-1 ± 0.04 µg L-

1). Chla increased within the entire water column between 0 and 2.67 km offshore (2.0 µg L-1 ± 
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0.6 µg L-1), along the 10 m isobath (1.86 µg L-1 ± 0.47 µg L-1), and at the furthest point offshore 

around 20 m (3.17 µg L-1 ± 0.75 µg L-1).  

On August 17th, Chla concentrations decreased within the nearshore but remained high at 

the furthest points offshore (8.25 – 10.79 km). Within the nearshore on August 17th, the mean 

chla concentration was1.20 µg L-1 ± 0.34 µg L-1, and represented a significant drop in 

comparison to July 7th and July 28th. Further offshore, Chla remained relatively high, especially 

between 8.25 to10.79 km offshore. At these distances offshore, mean Chla was elevated between 

5 to 20 m in depth (2.80 µg L-1 ± 0.5 µg L-1). Similar to July 28th, the largest offshore spike in 

chla between 5 to 20 m appears to be situated close to the pycnocline, which was at about 10 m 

(Fig. 2.14; A and D). Finally, on September 21st and October 25th the mean Chla concentration 

along the nearshore-offshore transect decreased substantially (1.20 µg L-1 ± 0.02 µg L-1, 1.25 µg 

L-1 ± 0.03 µg L-1; respectively). There were no spikes in Chla on these fall sampling days 

suggesting the water column along this cross-section was relatively uniform. 

Estimates of euphotic depth based on turbidity vertical profiles show significant variation 

in depth of 1% light penetration following the major storm event (Fig. 2.26). On July 28th, the 

euphotic depth decreased, and averaged about 2 m across the entire nearshore zone. The ratio 

between the depth of the euphotic zone and epilimnion was considerably below 1 (0.3). The 

euphotic depth began to increase in the month following the storm event. This was evident by the 

increase in Zeuph:Zepi ratio, which increased to 0.7 and eventually rose to 0.9 by September. Close 

to shore, the euphotic depth ranged between 5 and 6 m, and the depth of the euphotic zone 

increased further offshore reaching a maximum of around 9 m 8.25 km offshore. Over 10 km 

offshore, the water surface was slightly turbid which resulted in a slight decrease in euphotic 

depth. In the fall, the estimated euphotic depth was consistently greater than 9 m in depth. The 



 

 

 

ratio was significantly depressed in October, most likely due to increased depth of the epilimnion 

as a result of cooler water temperature an

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: Daily mean Chl
the entire nearshore

bars. The letters indicate statistical differences between dates.

70 

ratio was significantly depressed in October, most likely due to increased depth of the epilimnion 

as a result of cooler water temperature and increased mixing. 

Daily mean Chla fluorescence-derived concentrations for 
the entire nearshore-offshore transect on each sampling day with error 

bars. The letters indicate statistical differences between dates. 

ratio was significantly depressed in October, most likely due to increased depth of the epilimnion 

 

concentrations for 
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Figure 2.22: Chla fluorescence-derived concentration spatial variability along the nearshore-offshore transect for each sampling day; 
(A) June 23, (B) July 7, (C) July 28, (D) August 17, (E) September 21, and (F) October 25 of 2016. Chla concentrations are in µg L-1, 
and range from 0 to from µg L-1. The vertical black lines represent the location of vertical Chla fluorescence profiles. It is important to 

note that on July 7, 2016 no Chla fluorescence data was able to be obtained at the furthest location offshore. 
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Figure 2.23: Estimate of euphotic depth along the 
nearshore-offshore transect illustrating the decrease 

in euphotic depth following the plume event.

 

Estimate of euphotic depth along the 
offshore transect illustrating the decrease 

in euphotic depth following the plume event. 
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Table 2.3: The depth of the euphotic zone (Zeuph), epilimnion (Zepi), and the ratio between the 
two depths averaged along the nearshore-offshore transect for each sampling date. Estimates of 

depths (m) are based upon temperature and turbidity vertical profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

Although mean wind speed was high during the storm on July 12th (10.5 m s-1; NDBC 

buoy 45028), the lack of increased whole water column turbidity and shallow depth of the 

thermocline two weeks after the storm suggests that the surface plume was most likely a result of 

tributary discharge rather than a significant resuspension event. Surface plumes driven by 

resuspension events are a common occurrence in southern Lake Michigan following episodic 

wind events in the early spring (Lou et al., 2000; Eadie et al., 2002). The wind events that drive 

the Lake Michigan resuspension plumes, however, are significantly larger (> 15 m s-1) than what 

occurred on July 12th in western Lake Superior. Despite the variability in current velocity and 

direction, mean nearshore current supports the horizontal spread of riverine input along the 

surface shown in Figure 2.9. The mean nearshore current illustrated in Figure 2.10 suggests river 

 

Date Zeuph Zepi Zeuph:Zepi 

June 23 2016 4.0 12.0 0.3 

July 7 2016 7.3 5.0 1.5 

July 28 2016 2.2 8.0 0.3 

August 17 2016 7.6 10.6 0.7 

September 21 2016 11.4 13.0 0.9 

October 25 2016 12.4 30+ 0.4 
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subsurface interflow follows a similar pattern, and so the physical, chemical, and biological 

changes within the nearshore may reflect the maturation of the episodic tributary plume. 

Episodic storm events, such as was seen on July 12, 2016, and the accompanying river 

loading of nutrients, organic carbon, and water are important drivers of spatial and temporal 

heterogeneity within the nearshore zone of western Lake Superior. Following the storm event, 

the discharge of all tributaries in the area increased significantly. In some cases, discharge tripled 

baseline flow conditions. The short lag time between the end of rainfall and the subsequent spike 

in discharge indicates that rivers in this region are highly susceptible to episodic runoff events. 

The short response time between episodic discharge and the appearance of a surface plume also 

suggests watersheds in this region are relatively impervious and have little storage. The 

surrounding watershed of western Lake Superior consists of predominantly red clay (US EPA, 

1979), which is significantly less permeable in comparison to other soil types (Mesri and Olson, 

1971). The impermeability of soil in this region forces water to flow overland quickly resulting 

in large fluctuations in river discharge.  

The magnitude of tributary influence following the storm event is highlighted by both 

horizontal and vertical patterns within the nearshore zone. Prior to the storm event, nearshore 

waters of Lake Superior were relatively uniform as evident in the satellite imagery and vertical 

profiles of EC25 and turbidity. On July 7th, there were no spikes in EC25 or turbidity within the 

water column suggesting there was no significant riverine input to the region. Furthermore on 

July 12th, immediately following the storm, the surface water of western Lake Superior was still 

relatively clear. However, there was evidence of increased turbidity at the surface near the river-

lake confluence of larger rivers, such as the St. Louis, Bois Brule, and Iron, which suggests the 

beginning of surface plumes. Four days later, the resultant surface plume reached its full extent 
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(over 2,700 km2 and extending over 12 km offshore). The surface plume slowly began to 

dissipate as evident by the decreasing overall area on July 18th and July 25th. By July 25th, much 

of the surface plume had dissipated in comparison to the week immediately following the storm 

event.  

Despite the breakdown of the surface plume over time prior to July 25th, the plume was 

still apparent, and covered more than 800 km2 of the nearshore zone of western Lake Superior. 

Within the Apostle Islands archipelago, the surface water was still relatively turbid. Below the 

surface, vertical profiles of EC25 and turbidity on July 28th suggest the presence of significant 

riverine subsurface intrusions near the Apostle Islands archipelago. Vertical current profiles 

suggest these subsurface intrusions flowed northeastward, and were relatively constrained to the 

nearshore zone. The flowpath of subsurface intrusions are dependent on turbulent mixing and 

density gradients. Increases in turbidity were constrained to the surface, whereas spikes in EC25 

appeared to propagate horizontally along the thermocline as intrusions of neutral buoyancy. This 

suggests the presence of multiple inflowing rivers to the region. The less dense, larger rivers, the 

St. Louis, Bois Brule, and Iron Rivers, were constrained to the surface, whereas the denser Flag, 

Siskiwit, and Sand Rivers reached neutral buoyancy along the thermocline. The larger rivers 

drain larger watersheds, and as such have greater average discharge and associated sediment 

loads relative to the smaller rivers suggesting larger rivers account for the increased turbidity 

seen at the surface. It is important to note that although spikes in EC25 occurred near the 

thermocline, EC25 was also slightly elevated at the surface. The difference in magnitude of EC25 

between the surface and thermocline suggests that by the time river water from the larger rivers 

reached the Apostle Islands it had mixed to some degree with ambient Lake Superior water. 
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External, episodic loadings of phosphorus and organic carbon have been shown to 

significantly influence the distribution of phytoplankton (Popovskaya, 2000) as well as 

community metabolic processes (Hanson et al., 2003; Smith & Prairie, 2004). Understanding the 

impact of storm events on phosphorus and organic carbon dynamics requires the consideration of 

the flowpath of inflowing rivers, as well as the area of a lake that is affected. As described above, 

the flowpath of river inflows are variable and dependent on density gradients within the 

receiving lake. Vertical density gradients, combined with time-dependent changes in the depth of 

nutrients and organic carbon brought in from tributaries, creates the contingency for the 

formation of distinct layers with differing chemical compositions. These layers may allow for the 

development of chemical and productivity gradients, as has been observed in fjords and coastal 

waters (Alldredge et al., 2001; McManus et al., 2003). In freshwater lakes, MacIntyre et al. 

(2006) showed that distinct chemical layers developing in response to storm events may be a 

common occurrence. Whether the distinct nutrient layer corresponds to increases in 

phytoplankton biomass is dependent on the magnitude of the nutrient layer and optimal light 

intensity. Based upon the increase in phosphorus and a literature review of phosphorus-limited 

phytoplankton growth in Lake Superior (Sterner et al., 2004), I thought Chla concentrations 

would increased following the episodic plume event. 

About two weeks after the storm event, the entire water column extending from nearshore 

to offshore was elevated in terms of dissolved phosphorus. At 10 m in depth, a distinct layer of 

elevated SRP and TDP concentrations formed across the nearshore zone (Fig. 2.18 and Fig. 

2.19).  The development of a distinct layer of SRP and TDP at 10 m corresponded to the depth of 

the pycnocline on July 28th (Fig. 2.13; D). Increases in Chla were also apparent along 10 m in 

depth (Fig. 2.22; C) suggesting there was an increase in phytoplankton biomass along the 
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horizontal layer of greater SRP and TDP concentrations. The elevated Chla along this depth 

gradient appears to follow the lower bound of the pycnocline (Fig. 2.13; A and D). In fact, the 

entire nearshore water column was elevated in terms of Chla concentration on July 28th (Fig. 

2.21). These increases in Chla occurred despite the decreased water clarity at the surface on July 

28th. Spikes in chla also occurred deeper offshore (> 11 km) near 20 m in depth. According to 

Barbiero and Tuchman (2004), deep chlorophyll maxima develop between 23 – 35 m in Lake 

Superior. The elevated Chla concentrations at 20 m almost 11 km offshore suggest the 

establishment of a deep chlorophyll maximum at a shallower depth in this region. On July 28th, 

DOC was higher, on average, at the surface than at 10 m in depth. This suggests either much of 

the DOC at 10 m was sequestered or metabolized out of the water column or loading of DOC 

from rivers propagating along the thermocline was much less than that of SRP or TDP. The 

tributary loadings in Table 2.2, however, suggest the latter is not the case.  

A month later, SRP and TDP within the nearshore zone were still relatively high (SRP: 

0.8 µg L-1± 0.28 µg L-1& TDP: 1.03 µg L-1± 0.26 µg L-1) in comparison to early summer and fall. 

At a depth of 10 m, SRP and TDP were still higher relative to the surface and 20 m in depth, 

however, the magnitude decreased in comparison to July 28th. Within 2 km of the shoreline, a 

vertical gradient in SRP and TDP appeared to develop on August 17th. Within 5 km of shore, 

concentrations of SRP and TDP remained elevated and decreased with distance offshore. The 

development of a vertical nutrient gradient at about 5 km offshore suggests some of the excess 

phosphorus had either been sequestered out of the water column or utilized by phytoplankton. 

An area of increased Chla appeared between 6 and 11 km offshore, and between 5 and 20 m in 

depth suggesting there may be a relationship between depleted region of SRP and TDP offshore 

and the spike in Chla.  
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  On August 17th, DOC, however, decreased to pre-storm concentrations suggesting the 

excess DOC was removed from the water column relatively quickly. The presence of elevated 

SRP and TDP a month after the storm event and the corresponding return of DOC to pre-storm 

levels suggests a much quicker removal of DOC from the ambient water in comparison to 

dissolved phosphorus. The time-dependent asynchrony between apparent loss of DOC in 

comparison to that of SRP and TDP points to a net shift in nearshore metabolism to 

heterotrophy. Prairie et al. (2002) and Hanson et al. (2003) describe a similar pattern in 

temperate lakes across the US; however, these lakes only became heterotrophic when DOC was 

greater than 6 mg L-1. Therefore, although DOC doubled following the storm event and appeared 

to be lost quicker, relative to SRP and TDP, these concentrations were much less than 6 mg L-1, 

which suggests the nearshore may not shift toward net heterotrophy. 

As nutrient and organic matter loading increases, the euphotic depth typically becomes 

more compressed in response to either increased algal biomass concentration or more turbid 

surface water. Remote sensing and vertical turbidity profiles suggest the latter drove decreases in 

estimated euphotic depth following the storm event. Increases in Chla fluorescence on July 28th 

indicate increased phytoplankton biomass in response to nutrient influx; however, the 

significantly decreased water clarity and euphotic depth suggest these increases in Chla 

fluorescence may be an artifact of phytoplankton shade adaptation. Barbiero and Tuchman 

(2004) concluded that this shade adaptation in Lake Superior phytoplankton within the deep 

chlorophyll maximum resulted in increased Chla fluorescence. Barbiero and Tuchman (2004) 

used POC concentrations to determine depths of increased algal biomass in offshore waters of 

Lake Superior. Although the high tributary loading of POC makes using POC as a proxy for 

algal biomass difficult, the fact that there were no significant spatial and temporal differences in 
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POC within the nearshore suggests little to no change in phytoplankton biomass following the 

plume event. Therefore, estimates of phytoplankton biomass in this study must be taken with a 

grain of salt because of the very turbid riverine input.  

The breakdown of organic matter by heterotrophic bacteria can occur under low light 

conditions, whereas the phytoplankton uptake of dissolved nutrients and subsequent production 

of organic matter cannot. The decreased euphotic depth and associated high surface turbidity, 

and therefore, less than optimal light conditions, points to a lack of phytoplankton response 

within the nearshore. However, further offshore, where the euphotic depth increases and light 

intensity is optimal, the influence of increased river loadings of nutrients may be expressed at the 

confluence between nearshore and offshore zones, and within the pelagic zone. Between august 

17th and September 21st, the surface water cleared and euphotic depth increased, and on average 

more SRP and TDP left the system in comparison to DOC. This suggests an increased uptake of 

dissolved phosphorus under more optimal light conditions. Therefore, the interplay of light and 

nutrient availability drives the phytoplankton and metabolic response of the nearshore zone 

following a significant surface plume event. 

Overall, these results show that rivers in western Lake Superior are highly influential in 

determining the distribution of SRP, TDP, and DOC. Although the storm occurred on July 12th, 

the impact of the rivers was apparent over a month later. The spatial variability of these nutrient 

and organic carbon fractions is dependent on the flowpath of incoming rivers. The persistence of 

observable distinct chemical layers suggests strong thermal stratification and low turbulent 

mixing within the nearshore zone of Lake Superior between July 2016 and August 2016. 

Although overall phytoplankton biomass did not appear to vary significantly in response the 
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influx of nutrients, the presence of a large nutrient pool and associated decreases over time 

suggest the potential for increased primary productivity within the nearshore. 
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Chapter 3: Metabolic Response of the Nearshore Zone of Lake Superior 

to an Episodic Inflow Event 

 

Introduction 

 The complexity and dynamics of food webs and biogeochemical cycling in lakes are 

directly linked to the metabolic processes of primary production and respiration. For example, 

external inputs and internal cycling of phosphorus and other nutrients play a strong role in 

regulating phytoplankton production. Likewise, respiration by heterotrophs is accompanied by 

nutrient regeneration, and can also indirectly influence nutrient cycles by regulating redox 

conditions. Photosynthesis utilizes light energy to generate chemical energy and convert 

inorganic carbon to biomass. This conversion of energy provides a basal energy source for 

aquatic food webs (Falkowski & Raven, 2013). Respiration, which is associated with oxygen 

consumption and the release of inorganic carbon, is a catabolic process through which organisms 

break down organic compounds to generate energy. This process represents the largest sink of 

organic matter in aquatic ecosystems (del Giorgio & Williams, 2005).Lake metabolic balances 

represent the difference between primary production (CO2 consumption) and respiration (CO2 

production). The balance between the metabolic processes of gross primary production (GPP) 

and respiration (R) represents net ecosystem production (NEP): 

 NEP = GPP − R         

The combined production, synthesis, and breakdown of organic matter by all organisms 

within an ecosystem can be summed to quantify the community metabolism of that ecosystem. 

Net ecosystem production can be used to define lake trophic classification, with positive values 

corresponding to autotrophy and negative values to heterotrophy. The sign of net ecosystem 

production indicates whether or not the aquatic ecosystem is a sink or source of atmospheric 
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CO2. In a metabolically balanced, closed system, all organic matter generated through primary 

production is metabolized through respiration and the two processes are equal. In natural 

systems, however, this is rarely the case. 

Understanding the community metabolic response of aquatic ecosystems to significant 

environmental variations has been of great interest to ecologists. In particular, nearshore 

ecosystems of large lakes are more readily impacted by environmental variations in land-cover 

(Yurista et al., 2011; Homer et al., 2015), climate patterns (Christensen et al., 2003; Austin and 

Coleman, 2007), and human activities (Allan et al., 2013; Chu et al., 2014). These variables 

influence riverine input of nutrients and energy (in the form of organic carbon), as well as the 

forms and proportions of these materials (Gilbert, 2012).  

Both phytoplankton and periphyton communities are heavily dependent on nutrient 

availability and, as such, nutrient abundance is often a limiting factor in their ability to generate 

organic matter (Schindler and Nighswinder, 1970; Schindler, 1978; Vadeboncoeur et al., 2008). 

Within aquatic systems, nutrient availability is ultimately determined by external inputs. For 

example, nutrient-rich river inflow has been shown to support elevated primary production levels 

in the Gulf of Mexico near the interface between the Mississippi and Atchafalaya Rivers and the 

Gulf (Lohrenz et al., 1990; Rabalais et al., 1996; Lohrenz et al., 1997). However, internal  

recycling of nutrients, specifically phosphorus, often modulates whole-lake primary productivity 

in these ecosystems, and internal processing of nutrients and organic carbon can play a large role 

in determining whether a system is net heterotrophic or autotrophic. Hence it is important to 

understand how externally-derived nutrients and organic carbon are processed within lakes in 

order to predict how lakes will respond to changes in external loading.   
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Episodic inflow and eroded soils entering lake ecosystems via rivers contain a large 

amount of essential substances for nearshore biota, such as organic carbon and nutrients 

(including phosphorus and nitrogen). While organic carbon primarily serves as an energy source 

for bacteria (Tranvik, 1992; del Giorgio et al., 1997; Kritzberg et al., 2004), nutrients can support 

both bacteria and autotroph communities. The effects of nutrient subsidies will depend on the 

availability of light which is regulated by suspended matter and colored dissolved organic matter 

(CDOM) concentrations introduced along with the river inflow (Bocaniov et al., 2013). In 

particular, CDOM creates a much darker aquatic environment by directly absorbing 

photosynthetically available light (Mouw et al., 2013). Therefore, on an areal basis, inputs of 

CDOM may reduce primary productivity due to the low light conditions (Minor et al., 2014; 

Thrane et al., 2014) and heterotrophic bacterial respiration increases (Jansson et al., 2000), 

resulting in net heterotrophy. At the edges of these turbid inflows, however, nutrient as well as 

light availability may be sufficient to increase primary production rates. Therefore, metabolic 

gradients (i.e. high respiration-low productivity to moderate respiration-high productivity), may 

exist at the outer edges of river plumes. 

Rates of planktonic respiration tend to covary with rates of primary production (del 

Giorgio & Peters, 1994). However, heterotrophic bacterial respiration may vary in response to 

fluctuations in the concentration and quality of the organic carbon pool (Tranvik, 1992; del 

Giorgio et al., 1997). Aquatic ecosystems often receive organic carbon from multiple sources, 

including, autotrophic production and allochthonous subsidies. The different sources may 

contribute to apparent uncoupling between community respiration and primary production rates.  

In many low productivity ecosystems, respiration exceeds photosynthesis in response to 

allochthonous inputs of organic carbon. Typically, these subsidies are the result of increased 
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river loading or ground water influxes (Russ et al., 2004).The increase in allochthonous organic 

carbon subsidies drives community respiration and results in CO2 supersaturation. Cole et al. 

(1994) showed patterns of persistent CO2 supersaturation in many temperate and tropical lakes. 

For example, Lake Superior has been repeatedly shown to be a net source of CO2 to the 

atmosphere (Cotner et al., 2004; Urban et al., 2004; Atilla et al., 2011).These patterns suggest 

external inputs of organic matter considerably subsidize aquatic food webs driving these 

ecosystems towards net heterotrophy. 

Although organic carbon of planktonic origin may be easily metabolized, inputs of DOC 

from the terrestrial landscape are considered to be refractory (Tranvik, 1992). However, a 

number of studies have shown that a portion of terrestrially-derived DOC is labile to microbial 

remineralization (Tranvik, 1992; del Giorgio et al., 1997; Kritzberg et al., 2004). In smaller 

lakes, since the loading of allochthonous organic carbon typically outweighs the generation due 

to primary production, respiration of even a small portion may have significant impacts on the 

community metabolic balance and food web productivity. The ratio of watershed to surface area 

for Lake Superior, 1.55, suggests the lake, as a whole, is far less impacted by its watershed in 

comparison to small lakes (Cotner et al., 2004). However, the nearshore area of Lake Superior is 

relatively small in comparison and is in close proximity to the watershed. Therefore, the 

nearshore area may be more readily influenced by allochthonous loadings of organic carbon and 

nutrients. Interestingly, contrary to the perception that Lake Superior as a whole is a net source 

of CO2 to the atmosphere (Cotner et al., 2004; Urban et al., 2004; Atilla et al., 2011), Russ et al. 

(2004) showed that during the spring and summer the western region of the lake shifts slightly 

towards net autotrophy. This suggests that river inputs have a much stronger effect on primary 

production than respiration in this area of Lake Superior.  
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In this chapter, I address three specific hypotheses: 1) River discharge promotes net 

heterotrophy within the nearshore ecosystem of western Lake Superior, 2) the variability in pCO2 

at the surface within the nearshore is controlled by biological factors following the influx of 

dissolved nutrients and organic carbon, and 3) episodic inflow events generate strong metabolic 

(i.e. primary production - respiration) spatial gradients. The objectives of this study were three-

fold: 1) generate vertical profiles of O2 and CO2, which are the primary dissolved gases 

reflecting metabolic processes, 2) determine whether vertical changes in the partial pCO2 

correspond to areas of increased algal biomass and distinct gradients of dissolved nutrient and 

organic carbon, and 3) quantify the net CO2 and O2 lake-atmosphere flux. 

 

Methods 

Sampling Frequency & Spatial Coverage  

The sampling frequency and spatial coverage for determining the community metabolic 

response were the same as previously stated in Chapter 2 (see page 19).  

  

Spatiotemporal Variability in pCO2 & O2 % Saturation 

The availability of equipment used to reliably measure free-water dissolved gases, such 

as O2 and CO2, affords a comprehensive analysis of spatiotemporal changes in the Lake Superior 

nearshore community metabolism. In measuring community metabolism, free-water 

measurements of dissolved gases directly influenced by metabolic processes have considerable 

advantages over incubation methods. Incubation approaches to measuring community primary 

production and respiration suffer from problems in scale (Chen et al., 2000). Although 

incubation measurements may be more accurate, ecosystem heterogeneity makes scaling from 
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incubation chambers/bottles to whole system highly uncertain due to the propagation of error 

when accounting for errors in individual methods (Van de Bogert et al., 2007). In comparison, 

free-water measurements of dissolved gasses provide an integrative measure of net ecosystem 

metabolism with high vertical and horizontal resolution. Vertical profiles of free-water CO2 may 

provide a more sensitive approach to assessing spatial and temporal differences in community 

metabolism. Relative to dissolved O2, concentrations of CO2 are much lower suggesting small 

variations may be more easily detectable and apparent.  

Spatiotemporal patterns in nearshore Lake Superior pCO2 profiles were validated through 

comparisons with the corresponding O2 percent saturation profiles. In aquatic systems, O2 

percent saturation refers to the ratio of dissolved O2 concentration in water to the saturated 

dissolved O2 concentration at a given temperature and pressure. Changes in the relative influence 

of photosynthesis and respiration are reflected in corresponding changes in O2 percent saturation, 

however, the influence of metabolic process on the saturation of O2 is often masked by variations 

in temperature (Eveleth et al., 2014). For example, increases in primary production rates often 

result in associated supersaturation of O2. In contrast, undersaturation of O2 is often indicative of 

greater respiration rate and pCO2 responds inversely. It is important to note that temperature 

significantly affects the solubility of gases, and so temperature changes need to be taken into 

account when interpreting the causes of pCO2 and % O2 fluctuations.   

Vertical profiles were conducted (see Figure 2.3) to measure dissolved O2 % saturation, 

temperature, and pH and the response of these variables to river plume dynamics. Vertical 

profiles of aqueous CO2 concentration ([CO2(aq)]; hereafter) were generated through a direct 

calculation method, considering variables such as pH, alkalinity, temperature, atmospheric 
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pressure, and ionic strength. If two variables within the inorganic carbon system are known, all 

the remaining variables can be calculated according to the equilibrium reactions (Millero, 2007).  

 

 

The relative concentrations of [HCO3
-], [CO3

2-], and [CO2(aq)], as well as [OH-] and [H+], 

comprise the carbonate alkalinity of the aquatic system. In many natural freshwater systems, 

total alkalinity predominantly consists of bicarbonate (HCO3
-) and carbonate (CO3

2-).Therefore, 

the carbonate alkalinity of western Lake Superior was used as a proxy for total alkalinity.  

The carbonate alkalinity for western Lake Superior was determined through the use of 

gas chromatography. Lake water samples were collected at three depths (surface, 10 m, and 20 

m) during each trip. In the field, 120 mL glass serum bottles were filled with a tube placed at the 

bottom, and flushed with at least twice the volume of the bottle to avoid gas exchange with the 

atmosphere. Upon collection, the samples were sealed with rubber stoppers and stored on ice for 

transport. In the lab, [CO2(aq)] within the sample was first determined by replacing ¼ of the 

sample with N2 headspace. After shaking the sample to equilibrate [CO2(aq)] with the gas 

headspace, 50 µL of gas sample was injected into a gas chromatograph (SRI Instruments Model 

8610C). To analyze total dissolved inorganic carbon (DIC; hereafter), samples were acidified 

using concentrated phosphoric acid (H2PO4) to convert all DIC to CO2, and the above procedure 

was repeated. Concentrations of HCO3
- and CO3

2- were adjusted iteratively to produce the target 

pH and alkalinity, and corrected for in situ temperature and ionic strength following (Cole et al., 

1994). Carbonate alkalinity was then determined through the use of the following equation: 

 Alkcarb= [HCO3
-] + 2[CO3

2-] + [OH-] – [H+]   (5) 

CO2(g) ↔ CO2(aq) 

CO2(aq) + H2O ↔ H+ + HCO3
- 

HCO3
- ↔ H+ + CO3

2- 
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The resultant alkalinity values measured over the course of the field sampling season 

were averaged to determine a mean Lake Superior alkalinity (852.84 µeq L-1 ± 52.88 µeq L-1, n = 

162). A literature review for Lake Superior showed similar values in comparison to those 

obtained through the use of the gas chromatograph (Bootsma & Hecky, 2003; Sterner, 2011; 

Chapra et al., 2012). The mean alkalinity obtained through this method, coupled with pH and 

temperature profiles, was used to generate vertical profiles of [CO2(aq)]. 

[CO2(aq]] was calculated for every ¼ m depth increment. These increments correspond to 

measurements of temperature and pH, both of which were critical to the determination of 

[CO2(aq)]. The first and second dissociation constants of carbonic acid and bicarbonate, k1 and k2, 

were used to determine in situ [CO2(aq]]. 

 

 

 

Corrections for k1 and k2 were made to account for variations in temperature at each depth 

increment. Vertical profiles of [CO2(aq)] were solved for algebraically, using a constant alkalinity, 

pH profile data, and the equations for both dissociation constants. The resultant formula for 

calculating [CO2(aq)] based on the rearrangement of the dissociation constant equations and the 

carbonate alkalinity equations is as follows:  

 

 

 

k1 = [HCO3
-]*[H+]       

(6) 

   [CO2(aq)] 

k2 = [CO3
2-]*[H+]       (7) 

   [HCO3
-] 

 

[CO2(aq)] = (
[ୌశ]

୩మ
) ∗ ( 

(୅୪୩ౙ౗౨ౘି [୓ୌష])

ൣౄశ൧

ౡమ
ା ଶ

) ∗ [Hା]    (8) 

             k1 
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where, Alkcarb, refers to the carbonate alkalinity, [H+], is the concentration of hydrogen ions 

based on pH data, [OH-] is the concentration of hydroxide ions based on pH data, and, k1 and k2, 

refer to the temperature-corrected first and second dissociation constants of carbonic acid. 

Vertical profiles of [CO2(aq)], in mol L-1, were converted to partial pressures of CO2 

(pCO2) to account for differences in day-to-day atmospheric pressure, as well as to allow for the 

determination of flux across the lake – atmosphere interface. The equilibrium between 

atmospheric and dissolved gases is governed by Henry’s Law, which states that at a given 

temperature, the concentration of a gas that dissolves in a given type and volume of liquid is 

proportional to the partial pressure of that gas (Sander, 2015).  

 

where, p, is the partial pressure of a gas above the solution, c, is the concentration of the gas 

within the solution, and kH, is the Henry’s Law constant which has units of mol/(volume* 

pressure)(e.g. mol m-3 Pa-1).  The temperature dependency of Henry’s constant is given by: 

  

where, kH
ϴ

 and Tϴ, denotes Henry’s constant and standard temperature (298.15 oK) and T is in 

situ temperature (oK). The enthalpy of the solution for dissolution of specific gases is given by, 

∆solnH/R. Values used for enthalpy vary between gases. For CO2, the value used was for the 

enthalpy of freshwater 2,393 K (Sander, 2015).  

To assess the validity of this approach for determining pCO2 profiles, the surface water 

pCO2 was directly compared to pCO2 data obtained using a unique field system equipped with an 

infrared gas analyzer (IRGA) for in situ CO2 analysis. This field system is more accurate and 

kH = kH
ϴ * exp[(

ି∆౩౥ౢ౤ୌ

ୖ
)*( 

ଵ

୘
 - 

ଵ

୘ϴ)]          (10) 

p = kH * c              (9) 



 

90 
 

 

provides real-time data, but, it does not allow for high vertical resolution data that could be 

acquired using sonde-derived pH values using the calculation method described above.  

In this field system, the infrared (IR) absorption properties of CO2 are used to determine 

the pCO2. As a gas, CO2 absorbs IR energy more readily at specific wavelengths, such as 4.24 

µm. The pCO2 in surface water can be determined through the comparison of the difference ratio 

of IR absorbance at 4.24 µm to a wavelength that is not readily absorbed by CO2 (i.e. 3.95 µm). 

The IR absorbance of CO2(g) is measured in an infrared gas analyzer (LiCor LI-820 Gas Analyzer 

equipped with a CR-10x Data logger). Prior to entering the optical path of the IR analyzer, 

aqueous CO2(aq) must equilibrate with CO2(g)  present in air within a closed-loop. Surface water 

flows through an equilibrator (MiniModule® 1x5.5 X50 Fiber) where CO2(aq) equilibrates with 

CO2 in the gas phase that is moving in the opposite direction of the water, which increases the 

CO2 air-water equilibration rate. The CO2(g) then is pumped into the IRGA where pCO2 is 

measured. A diagram of the field system is shown in Figure 3.1.  

To compare the applicability of the IR gas analysis and the direct calculation methods in 

determining pCO2, a Deming regression between the two was performed. Deming regression is 

an extension of simple linear regression, which is capable of accounting for random 

measurement errors in the Y dimension as well as the X dimension (Martin, 2000). The 

relationship between the two methods was both positive and strong, and is shown in Figure 3.2. 

Therefore, I felt justified in using the direct calculation method to generate pCO2 vertical 

profiles. Slight differences between the methods are most likely an artifact of variations in actual, 

in situ alkalinity. For simplicity, and because alkalinity was only measured at discrete depths, the 

alkalinity was kept constant (852.84 µeq L-1) during the generation of pCO2 profiles.  

 



 

 

 

  

Figure 3.1: General layout of the various components and processes of the CO
system which was developed by

internal components of the field system, as well as the flow of water (dark blue arrows)
and of closed-circuit air (light blue arrows). The system is divided into a “wet” and “dry” 

box. The “wet” box is where the water
houses the majority of electrical equipment and is where the actual infrared (
occurs. (B) Pictorial representation of the optical path within the IR analyzer. Each of the 

green dots represents individual CO
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developed by Harvey Bootsma, among others. (A) Depiction of the 

internal components of the field system, as well as the flow of water (dark blue arrows)
circuit air (light blue arrows). The system is divided into a “wet” and “dry” 

box. The “wet” box is where the water-air equilibration occurs whereas the “dry” box 
houses the majority of electrical equipment and is where the actual infrared (
occurs. (B) Pictorial representation of the optical path within the IR analyzer. Each of the 

green dots represents individual CO2 molecules.   

General layout of the various components and processes of the CO2 field 
Harvey Bootsma, among others. (A) Depiction of the 

internal components of the field system, as well as the flow of water (dark blue arrows) 
circuit air (light blue arrows). The system is divided into a “wet” and “dry” 

air equilibration occurs whereas the “dry” box 
houses the majority of electrical equipment and is where the actual infrared (IR) analysis 
occurs. (B) Pictorial representation of the optical path within the IR analyzer. Each of the 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Comparison of two different methods for determining CO
regression of the scatter plot, slope is 1.2x10
r2 = 0.98 indicated a very strong
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Comparison of two different methods for determining CO2 concentration
regression of the scatter plot, slope is 1.2x10-6; the intercept 0.24; and the correlation

very strong correlation between the direct calculation and infrared analysis 
methods for CO2 determination. 

concentration. A Deming 
; the intercept 0.24; and the correlation coefficient, 

correlation between the direct calculation and infrared analysis 
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Lake-Atmosphere CO2 & O2 Flux 

Lake-atmosphere flux of CO2 was measured on June 23rd, July 7th, July 15th, July 28th, 

August 17th, September 21st, and October 25th. The biweekly sampling served to encapsulate the 

lake response to the episodic storm event that occurred on July 12th. The flux of CO2 and O2 

between the lake surface and the ambient atmosphere has often been used as a means of 

assessing community metabolism. Comparisons between net CO2 and O2 lake-atmosphere flux 

provide insight into whether or not an aquatic environment is net auto- or heterotrophic at a 

given time. Gas fluxes are calculated according to Fick’s first law of diffusion, while taking into 

account the thickness of the boundary layer and the molecular diffusion coefficients of each 

specific gas. A generalized mathematical representation of Fick’s first law is shown below: 

 

where, Fa-w, is the flux at the air-water interface in mole m-2 s-1and, K, is the bulk transfer 

coefficient expressed in m s-1 (also called the “piston velocity”). The change in concentration of 

the gas between the water surface and the atmosphere is given by, ∆[c]. The concentration of gas 

is expressed in mole m-3. The sign and magnitude of the difference in concentration between the 

air and water determines the thermodynamic force and direction of flux while the transfer 

coefficient represents the kinetics of the process. Negative values of flux indicate gas being 

supplied from the atmosphere to the water. The surface water concentrations of O2 and CO2 were 

obtained at each sampling date and site following the methods described in Section 3.2.2. Prior 

to calculating gas flux, the concentrations of each gas were converted from mole L-1, [CO2(aq)], 

and mg L-1, [O2(aq)], to mole m-3.  

 For O2 flux at the air-water interface, the following equation can be formulated based on 

Fick’s first law of diffusion. 

Fa-w = K *∆[c]              (11) 
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where, flux is expressed as an amount transferred per area and time, mole m-2 s-1, and the 

concentrations are given in amount per volume, mole m-3. Finally, the transfer coefficient, K O2, 

has the dimension of velocity, m s-1. The equilibrium concentration of O2 is a function of 

temperature and salinity and is given by the following expression in Benson and Krause (1984): 

 

where, T, refers to temperature (oK) and, S to salinity. The salinity for Lake Superior was 

determined to be approximately 0.0436 psu (Chapra et al., 2012), which are the units required for 

calculation of [O2]sat. The above expression includes a function, ln[O2]sat (T), for the value of 

saturation at zero salinity, and a temperature function, f (T). These two functions are detailed 

further in the Appendix A. 

 The O2 bulk transfer coefficient is formulated by taking into the effect of wind speed on 

the kinetics of gas flux, and can be approximated following the approach of Wanninkhof (1992): 

 

where, k600, is the gas transfer velocity for O2 at 20oC in freshwater (m s-1). The variable, Sc, is 

the Schmidt number for oxygen. The Schmidt number for oxygen takes into account temperature 

(oC), t, and can be expressed as: 

 

The gas transfer velocity for O2, corrected for temperature, k600, can be approximated from the 

equation derived by Wanninkhof (2009). 

 

K୓మ
 = k600 * (Sc/600)-1/2                  (14) 

Sc = 1953.4 – 120t + 3.9918 t2 – 0.050091 t3          (15) 

Flux୓మ 
= -V୓మ

 ([O2] – [O2]sat)    (10) Flux୓మ 
= K୓మ

 ([O2] – [O2]sat)            (12) 

ln[O2]sat = ln[O2]sat (T) + f(T)*S            (13) 

k600 = 0.333*u10 + 0.222*u10
2             (16) 
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The wind velocity (m s-1) at 10 m above the water is represented by, u10, which was obtained 

from the meteorological station on Devils Island.  

The CO2 flux at the air-water interface is determined in a similar manner to O2, albeit 

with some small differences. The flux of CO2 is given by the following expression: 

 

where, flux is again expressed in mole m-2 s-1. The variable, K CO2, corresponds to the bulk 

transfer coefficient of CO2 in m s-1; kH, is Henry’s constant for CO2 expressed as mole m-3 atm-1; 

[CO2], is the concentration of CO2 in the surface water in mole m-3, and, pCO2, is the partial 

pressure of CO2 in the atmosphere in atm. In the atmosphere, CO2 is typically measured as a 

partial pressure. Therefore, Henry’s law can be used to convert partial pressure to concentration 

in mole m-3 of CO2.  

The bulk transfer coefficient for CO2 was calculated using the relationship described in 

Wanninkhof (1992): 

 

where, k600, is the gas transfer velocity for CO2 at 20oC in freshwater (m s-1) and was calculated 

in the same manner as for O2. The variable, Sc, is the Schmidt number for carbon dioxide. The 

Schmidt number for carbon dioxide takes into account temperature (oC), t, and can be expressed 

as: 

 

  The comparison of flux between CO2 and O2 can provide insightful information on the 

metabolic balance of lake ecosystems. Although air-water flux can only address the metabolic 

balance of the epilimnion, the dense water below the thermocline of Lake Superior suggests 

Fluxେ୓మ
 = Kେ୓మ

 ([CO2] –KH*pCO2(air))                    (17) 

Kେ୓మ
 = k600 * (Sc/600)-1/2            (18) 

Sc = 1911.1 – 118.11t + 3.4527 t2 – 0.04132t3         (19) 
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episodic river inflow may be constrained to the mixed layer. Therefore, the influence of river 

inflows on lake metabolism is likely reflected in epilimnetic gas concentrations 

 

Temperature-Biological Effect on pCO2 

Although pCO2 is modulated by metabolic processes, it is also influenced by shifts in 

temperature. Temperature directly impacts the solubility of a gas. Colder water typically holds 

more dissolved gases than warmer water. Significant increases or decreases may result in 

considerable gas exchange at the air-surface water interface regardless of the rate of metabolic 

processes occurring within the system. To account for temperature differences in ocean surface 

waters, Takahashi et al. (2002) developed a method for distinguishing the biological effect (i.e. 

photosynthesis and respiration) from the temperature effect. During the 2016 field sampling 

season, the range in temperature (9.22 oC to 20.55 oC) for the western region of Lake Superior 

suggests temperature may have an impact on pCO2 in surface water.  

In separating the influence of temperature from all other influences, such as biological 

factors, the approach outlined by Takahasi et al. (2002) was used. In order to do use this 

approach, the isochemical effect of temperature on freshwater pCO2 must first be determined.  

 

where, ∂T, is change in temperature (oC) and, ∂ ln(pCO2), is the change in the natural log of pCO2 

for the 2016 field season. Atilla et al. (2011) used a similar approach to distinguish between the 

temperature and biological effects on pCO2 in offshore Lake Superior. They estimated the 

coefficient for Lake Superior by calculating pCO2 across ranges of temperatures, total DIC 

concentrations, and alkalinity representative of the lake. The coefficient they calculated from 

∂ ln(pCO2) / ∂T        (20) 
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equation 19, 0.038 oC-1was considered to be constant and independent of temperature, salinity, 

and alkalinity, and used to correct for the effect of temperature in Lake Superior. 

To remove the temperature effect and yield biologically-driven shifts in pCO2, observed 

pCO2 values were normalized to a constant temperature of 15.92 oC, the mean temperature in 

this region for the 2016 field season, using the following formula (Takahashi et al., 2002): 

 

where, T, is the temperature (oC), and the subscripts “mean” and “obs” indicate the mean over 

the sampling season and observed value for a given time and location. To assess changes in 

pCO2 at the surface primarily driven by changes in temperature, the following formula was used: 

 

where mean 2016 values for temperature, Tmean, and pCO2 , pCO2(mean), were 15.92oC and 356.5 

ppm; respectively. The resulting values from equation 20 indicate changes in pCO2 that would 

be expected only based on the warming and cooling trend of Lake Superior over the summer and 

into the fall, disregarding the biological effect. A regression analysis between the observed pCO2 

and each of its components (biologically- or temperature-driven) was used to assess which 

component exhibited the most influence over nearshore surface pCO2variability. 

 

Results 

Spatiotemporal Variability in pCO2 & O2 % Saturation 

 pCO2 and O2 % saturation exhibited substantial spatial (vertical and horizontal) and 

temporal variability over the 2016 field sampling season (Fig. 3.3 and Fig. 3.4). During the 2016 

pCO2 at Tmean = pCO2(obs) * exp[0.038* (Tmean – Tobs)]            (21) 

pCO2 at Tobs = pCO2(mean) * exp[0.038* (Tobs – Tmean)]            (22) 
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field season, atmospheric pCO2 ranged between 386.0 ppm and 417.2 ppm. On June 23rd, pCO2 

at the surface was undersaturated with respect to the air (311.8 ppm ± 22.0 ppm). Within the 

epilimnion, pCO2 ranged between 282.1 ppm and 400.5 ppm, with a mean value of 357.5 ppm. 

Along the surface, pCO2 was lower close to shore (282.1 ppm) and increased with distance 

offshore to a maximum of 400.5 ppm. Near the shoreline, the water column was oversaturated 

with O2 (108.6 %) and decreased with distance offshore (100.6%). This pattern in O2 % 

saturation inversely mirrored that of pCO2. Beneath the thermocline, pCO2 increased as expected 

due to the colder water and potential organic matter decomposition within the hypolimnion, 

creating a vertical gradient in pCO2. Mean pCO2 within the hypolimnion on June 23rd was 624.8 

ppm, and reached a maximum of 815.8 ppm at a depth of 30 m about 11 km offshore. On 

average, the entire nearshore water column was supersaturated with O2 (101.7% ± 3.7%) on June 

23rd. Although the majority of the nearshore was supersaturated with O2, at the furthest offshore 

location below 20 m in depth O2 was below saturation (95.7%).  

 A similar spatial pattern in pCO2 was observed on July 7th. Again, the surface water was 

undersaturated with respect to the atmosphere, and surface pCO2 increased further offshore. 

There was no significant variability in O2 % saturation on July 7th. The nearshore water column 

was saturated with O2 (100.1% ± 0.8%). On July 28th, two weeks after the large storm event, the 

epilimnion was still undersaturated (332.0 ppm ± 22.1 ppm); however, in contrast to the 

increasing nearshore-offshore trend exhibited on June 23rd and July 7th, pCO2 decreased with 

distance offshore. The epilimnion was supersaturated in O2 (106.1% ± 1.5%) with a maximum 

between 0 and 2.67 km offshore (111.8%). Within the nearshore, mean pCO2 was 351.9 ppm and 

decreased to a minimum of 302.5 ppm at the furthest extent offshore. Interestingly, close to shore 

below the thermocline pCO2 was significantly above saturation (574.9 ppm ± 80.9 ppm). This 
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spike in pCO2 below the thermocline corresponded to a substantial decrease in O2 % saturation 

(98.1% ± 0.03%). Also, at the furthest extent offshore, pCO2 was undersaturated below the 

thermocline (305.5 ppm ± 19.0 ppm). Within this area offshore, supersaturation of O2 (105.4% ± 

0.2%) was also apparent. This region of undersaturation in pCO2 and supersaturation of O2 

offshore happened to coincide with an area of increased chla (Fig. 2.22; C). A minimum pCO2 of 

278.3 ppm was reached at 20 m in this region.  

 On August 17th, the surface mixed layer of Lake Superior was undersaturated to a greater 

extent than on July 28th (235.3 ppm ± 13.4 ppm). Supersaturation of O2 was also greater in 

comparison to that of July 28th (108.5 % ± 1.2 %). At the surface, mean pCO2 was higher close to 

shore (254.4 ppm) and decreased offshore, reaching a minimum of 218.1 ppm at 8.25 km 

offshore. In comparison to July 28th, there was no increase in pCO2 at the bottom within the 

nearshore zone on August 17th. However, a noticeably decrease in pCO2 was still present furthest 

offshore (240.8 ppm ± 40.7 ppm). A corresponding increase in O2 % saturation was present 

within the same region offshore (109.0 % ± 0.3 %). On August 17th, this region of 

undersaturation decreased in depth to encompass the area between 5 and 15 m. In contrast to July 

28th, the minimum reached in this area was much lower (189.2 ppm) and occurred at 10 m. 

Again, this region of undersaturation in pCO2 appeared to coincide with an increase in chla (Fig. 

2.23; A).  

 The pattern of pCO2 undersaturation within the epilimnion persisted into September 

(287.2 ppm ± 35.3 ppm). Supersaturation of O2 within the epilimnion was clearly observable 

(102.2 % ± 0.9 %). Again, pCO2 decreased with distance offshore reaching a minimum of 244.0 

ppm at 10.79 km offshore. Within the nearshore zone, pCO2 in the epilimnion was slightly 

higher than June 23rd, July 7th, and August 17th but lower than July 28th (317.8 ppm ± 11.0 ppm). 
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On September 21st, over a month after August 17th, remnants of severe pCO2 undersaturation at 

the furthest location offshore were still apparent, however, the range in depth had decreased (5 – 

10 m). There was a corresponding increase in O2 % saturation in the same area offshore (103.6 

% ± 0.2 %). Within this region, mean pCO2 was 272.3 ppm ± 5.6 ppm. 

 Finally, on October 25th, the entire water column along the nearshore-offshore transect 

was oversaturated in pCO2 with respect to the atmosphere (461.1 ppm ± 16.2 ppm). Not only is 

the water column oversaturated with pCO2, it is also relatively uniform in terms of pCO2, which 

suggests much of the excess pCO2 that was present in the hypolimnion over the course of the 

summer has been released. The lack of a thermocline (Fig. 2.3-9) suggests the disappearance of a 

strong density gradient capable of constraining elevated pCO2 within the hypolimnion. A similar, 

albeit inverse pattern was observed in O2 % saturation on October 25th. The entire water column 

was undersaturated in O2 (97.4 % ± 1.5 %) and was relatively uniform. 

 The temporal shifts in pCO2 at the surface of nearshore Lake Superior are further 

illustrated in Fig. 3.5. On average, mean pCO2 at the surface ranged from between 280 ppm and 

360 ppm. However, immediately following the storm event pCO2 increased significantly. On 

July 15th, mean pCO2 at the surface was 467.9 ppm ± 19. 1 ppm, and decreased over the next two 

weeks to reach a mean of 332.0 ppm ± 22.1 ppm on July 28th.  At the surface, pCO2 continued to 

decrease in the month following the storm event, eventually reaching a low point of 270.3 ppm ± 

24.9 ppm on August 17th. Following the low point on August 17th, pCO2 at the surface began rise 

again, and eventually peaked at 455.0 ppm ± 11.4 ppm in October. It is important to note, that on 

July 15th only surface water samples and pH data were collected because a sonde with pH sensor 

was not available for profiling.  
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Figure 3.3: Vertical profiles of pCO2(ppm) for specific sampling days; (A) June 23rd, (B) 

July 7th, (C) July 28th, (D) August 17th, (E) September 21st, and (F) October 25th. The 
vertical black lines represent the location of vertical sonde profiles.  
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Figure 3.4: Vertical profiles of O2 percent saturation for specific sampling days; (A) 

June 23rd, (B) July 7th, (C) July 28th, (D) August 17th, (E) September 21st, and (F) October 
25th.  The vertical black lines represent the location of vertical sonde profiles. 
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Figure 3.5: Nearshore Lake Superior surface water 
pCO2 values measured along the nearshore

transect during each sampling day. The y-axis range is 
adjusted to the range of the pCO2 dataset. The dashed 
line at 405.5 ppm represents pCO2 in equilibrium with 

the ambient atmosphere.  

Nearshore Lake Superior surface water 
values measured along the nearshore-offshore 

axis range is 
dataset. The dashed 
in equilibrium with 
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Lake-Atmosphere CO2 & O2 Flux 

 The flux of CO2 from the surface of Lake Superior to the atmosphere ranged from -15.4 

to 7.7 mmol m-2 d-1, and averaged -2.7 mmol m-2 s-1 ± 5.8 mmol m-2 d-1 (n = 35) over the course 

of the 2016 field season. Only two dates showed net evasion of CO2 from the lake to the 

atmosphere (i.e. positive values), July 15th and October 25th. The net evasion of CO2 out of the 

lake on July 15th occurred immediately after the storm event, and during the period the surface 

plume reached maximum extent (Fig. 2.9). Based on Fig. 3.6, the degree to which the nearshore 

zone shifts to net heterotrophy following the storm is much less than the shift observed on 

October 25th. In late October, the lake turned over (Fig. 2.16) and so much of the excess CO2 

within the hypolimnion would have reached the surface accounting for the apparent larger shift 

to heterotrophy.  

An ANOVA showed that the variation in CO2 flux over time is statistically significant 

(F6,6= 55.3, p = 1.4 x 10-13). As expected, post hoc comparisons using Tukey HSD show that the 

mean flux on July 15th (1.4 mmol m-2 d-1 ± 0.4 mmol m-2 d-1) and October 25th (6.4 mmol m-2 d-1 

± 0.7 mmol m-2 d-1) were different than that of June 23rd, July 7th, July 28th, August 17th, and 

September 21st. Although the net flux from the atmosphere to the lake appeared larger on August 

17th relative to some of other days (Fig. 3.6), there was no statistical difference (p>>0.01). Over 

the 2016 field season flux of CO2 into the lake was much greater on average (-5.6 mmol m-2 s-1) 

than the flux out of the lake (3.9 µmol m-2 s-1).  

For O2, the flux from the surface of Lake Superior to the atmosphere ranged from -64.6 to 

59.7 mmol m-2 d-1, and averaged 12.3 mmol m-2 d-1 ± 33.8 mmol m-2 d-1 (n = 35).The magnitude 

in O2 flux was significantly larger than that of CO2. There was net flux of O2 from the lake to the 

atmosphere (i.e. positive values) over the course of the 2016 field season. An ANOVA showed 
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that temporal changes in O2 flux over the course of the field season were statistically significant 

(F6,6= 69.2, p = 9.7 x 10-15). Post hoc comparisons using Tukey HSD show that the mean flux 

into the lake on July 15th (-11.6 mmol m-2 d-1 ± 3.3 mmol m-2 d-1) and October 25th (-46 mmol m-

2 d-1 ± 18.6 mmol m-2 d-1) was statistically different and opposite in direction compared to the 

other sampling dates.   

The efflux of O2 and influx of CO2 at the lake surface is indicative of net autotrophy. For 

the nearshore ecosystem adjacent to the Apostle Islands archipelago, the relationship between net 

lake – atmosphere flux of O2 and CO2 is illustrated in Fig. 3.6. The nearshore zone of western 

Lake Superior was net autotrophic for every sampling day except for July 15th and October 25th. 

The sudden shift towards net heterotrophy on July 15th was likely a response to the storm event 

on July 12th. About two weeks later, however, the nearshore zone shifted back to a net 

autotrophic system as evident Fig. 3.6. The shift towards net autotrophy increased even further a 

month after the storm event. Finally, on October 25th, the nearshore zone shifted back towards 

apparent net heterotrophy, albeit at a larger scale than July 15th. However, the shift in October is 

most likely due to upwelling of cold, CO2-rich hypolimnetic water as demonstrated in Fig. 3.7.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: CO2 and O2 lake –
mixed layer metabolism. The dotted lines represent equilibrium conditions between the lake 

surface and atmosphere for each dissolved gas. Positive values indicate 
gas, whereas negative values represent 

dissolved O2 is larger in comparison to dissolved CO
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– atmosphere flux biplot illustrating temporal shifts in surfa
mixed layer metabolism. The dotted lines represent equilibrium conditions between the lake 

surface and atmosphere for each dissolved gas. Positive values indicate efflux of the respective 
gas, whereas negative values represent influx to the lake. Note that the standing stock of 

is larger in comparison to dissolved CO2. Therefore, the range of O
greater than that of CO2.  

atmosphere flux biplot illustrating temporal shifts in surface 
mixed layer metabolism. The dotted lines represent equilibrium conditions between the lake 

flux of the respective 
hat the standing stock of 

. Therefore, the range of O2 flux is much 
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Temperature-Biological Effect on pCO2 

Trends in pCO2 generally follow those of the biologically-driven component (Fig. 3.7). 

Early in the summer (i.e. June 23rd and July 7th) and near the end of October, variations in 

observed surface pCO2 were the approximate difference between those of the biological 

component and the temperature-driven component of pCO2. This may be a result of the 

upwelling of cold, CO2-rich water. Interestingly, in the two months following the episodic storm 

event, anomalies in observed pCO2 are no longer the approximate difference between the 

biological and temperature component suggesting a much greater contribution of the biological 

component to surface pCO2.  

Following the episodic storm event, surface pCO2 driven by non-temperature factors 

alone decreased by about a net 300 ppm from July 15th to August 17th. This decrease 

approximates the net biological effect on surface pCO2. The warming water over the course of 

the summer resulted in a net increase of about 100 ppm, which describes the net temperature 

effect on surface pCO2. This suggests that the estimated biological drawdown following the 

influx of nutrients after the storm event (300 ppm) is compensated somewhat by an effect of 

rising temperature (100 ppm) to yield an observed pCO2 of about 250 ppm in August. This 

approximation based on the biological and temperature components is very close to the actual 

pCO2 at the surface (270.3 ppm ± 24.9 ppm). 

Regression analysis between observed surface pCO2 and the biological and temperature 

components suggests strong influence on the variability in pCO2 following the storm event by 

non-temperature, or biological, factors (Fig. 3.8). There was a strong correlation between 

observed surface pCO2 and its biological component for all observations (n = 33) made in 2016 

(r2 = 0.84). The lack of correlation between surface observed pCO2 and the temperature 



 

 

 

component (r2 = 0.49) also suggests that the variability in surface 

event was primarily driven by biological factors.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Surface observed 
pCO2, the white circles to the biological component, and the blue circles represent the 

temperature
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= 0.49) also suggests that the variability in surface pCO2 following the storm 

event was primarily driven by biological factors. 

Surface observed pCO2 and its components; the black circles refer to ob
, the white circles to the biological component, and the blue circles represent the 

temperature-driven component of pCO2. 

 

following the storm 

and its components; the black circles refer to observed 
, the white circles to the biological component, and the blue circles represent the 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Linear relationships between observed 
(B) the temperature component. The solid black line represents the general trend. The 90% 

confidence interval for the dataset is represented by the dashed, black lines.
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Linear relationships between observed pCO2 and (A) the biological component an
(B) the temperature component. The solid black line represents the general trend. The 90% 

confidence interval for the dataset is represented by the dashed, black lines.

and (A) the biological component and 
(B) the temperature component. The solid black line represents the general trend. The 90% 

confidence interval for the dataset is represented by the dashed, black lines. 
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Discussion 

Overall, the results presented here suggest riverine nutrient and organic carbon loads 

following a storm event drive shifts in community metabolism within nearshore Lake Superior. 

Lake systems with high TDP and low DOC concentrations tend to be more productive, while 

lakes with low TDP and high DOC tend to be dominated by respiration (Cole et al., 2000; 

Hanson et al., 2003). Following the major storm event, both TDP and DOC increased 

significantly; for example, on July 28th, total water column concentrations of TDP and DOC 

approximately doubled with respect to baseline concentrations in the early summer and fall. The 

development of distinct horizontal and vertical gradients in TDP and DOC within the nearshore 

zone following the storm event might be expected to result in spatiotemporal differences in 

metabolism. The nearshore zone of Lake Superior is large in comparison to the lakes studied by 

Cole et al. (2000) and Hanson et al. (2003). Therefore, the distinct TDP and DOC gradients may 

result in localized metabolic responses within the nearshore. The depth and stability of thermal 

stratification, river intrusion flowpath, and hydrodynamics effectively control localized 

metabolic response.  

Immediately following the plume, the nearshore zone shifted from a net autotrophic 

system to a net heterotrophic system on July 15th indicating greater community respiration 

relative to primary production.  Although DOC increased to a maximum of  3.9 mg L-1 and it 

decreased far quicker than TDP, Prairie et al. (2002) and Hanson et al. (2003) show that net 

heterotrophy does not occur in temperate lakes unless the DOC concentration is >6 mg L-1.The 

scale of the net evasion of CO2 to the atmosphere on this day was relatively small suggesting that 

respiration may not have increased dramatically, but rather there was a significant enough 

reduction in community primary production that resulted in a efflux of CO2 to the atmosphere. 
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The extremely turbid water as a result of a substantial surface plume (Fig. 2.9; B) may have 

inhibited the ability of autotrophs to photosynthesize due to decreasing light intensity. Minor et 

al. (2014) described a similar trophic response to a major river plume in nearshore Lake 

Superior.  

Their research suggested that close to the Duluth-Superior harbor, phytoplankton 

transitioned from nutrient – to light – limitation under turbid, surface plume conditions. By the 

time the water column cleared enough to promote photosynthesis, TDP concentrations had 

returned to concentrations typical of Lake Superior. Therefore, primary production did not 

increase in response to episodic riverine loading. Anecdotal evidence, however, suggests areas in 

close proximity to the Apostle Islands exhibited an autotrophic response to episodic riverine 

loading of nutrients (Larson et al., 2012). Larson et al. (2012) reported the presence of a 

cyanobacteria bloom near the Apostle Islands in response to an episodic river plume in June of 

2012. Remote sensing imagery (Fig. 2.9) indicates that the turbid surface plume was present near 

the Duluth-Superior harbor for a longer period of time than near the Apostle Islands during the 

present study.  It is also evident there is a temporal mismatch between the nutrient availability 

and light levels, where TDP remains relatively high and surface turbidity decrease within the 

month following the storm event. The observed asynchrony in the decrease of surface turbidity 

and TDP suggests there may be a temporal lag in the phytoplankton response to elevated nutrient 

availability, which is supported by the low surface pCO2 values observed over two weeks after 

the storm event (Fig. 3.5). 

The substantial decrease in surface pCO2 following July 15th within the nearshore zone 

suggests an increase in primary production or the advection of low pCO2 water from another 

region of the lake. Immediately following July 15th the nearshore zone shifted back towards a net 
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autotrophic system, further evident by comparisons between lake – atmosphere CO2 and O2 flux. 

In proximity to the Apostle Islands, the surface plume dissipated quickly, thereby increasing the 

availability of light while TDP concentrations were still relatively high. On July 28th, surface 

pCO2 decreased by about 100 ppm, relative to July 15th, and the surface mixed layer was 

significantly oversaturated with O2. About a month later, primary productivity increased even 

more as evident by another decrease in surface pCO2 and an associated increase in O2 % 

saturation. The further increase in the rate of CO2 flux into the lake and associated O2 flux out of 

lake on August 17th suggests increasing primary production within the nearshore zone. Prior to 

the episodic surface plume and accompanying riverine loading, the biological and temperature 

effect on surface pCO2 were approximately equal. However, after the storm event, the biological 

drawdown controlled the variability in pCO2 to a greater extent than temperature.  

Below the surface within the nearshore, vertical and horizontal gradients in TDP and 

DOC resulted in localized spatiotemporal variability in metabolism. On July 28th, elevated pCO2 

was evident near the bottom of the lake between 0 and 2.67 km offshore, which was validated by 

an associated undersaturation of O2 within the same area. DOC within this area decreased sharply 

after July 28th, while phosphorus remained high, suggesting remineralization of allochthonous 

DOC occurred near the lake bottom, below the thermocline thereby releasing CO2 to the 

surrounding water. Similarly, Hanson et al. (2003) illustrated a strong correlation between 

allochthonous DOC inputs and increased respiration (i.e. CO2 production) in small temperate 

lakes. Interestingly, further offshore DOC was relatively high along 10 m in depth; however, 

there were no other localized increases in community respiration as indicated by the pCO2 

profile. Following the storm event and subsequent river loading of TDP and DOC, increases in 

community respiration were evident by the shift towards net heterotrophy of the nearshore zone 
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on July 15th. The lack of sustained heterotrophy and the apparent shift two weeks later to net 

autotrophy suggests that the majority of the plume was replaced by less turbid offshore water, 

thereby increasing water clarity and primary production within the nearshore.  

At 10 m in depth, concentrations of TDP were relatively high in comparison to other 

depths. On July 28th, at the furthest extent offshore (> 11 km) there was subsurface spike in 

primary production at 10 m, which also corresponded to a region of high Chla concentration. 

This increase in primary production was evident by a decrease in pCO2 and a corresponding area 

of O2 supersaturation. Not only was this region of increased primary production apparent on July 

28th, a month after the initial river loading of TDP increased primary productivity between 5 and 

15 m within the offshore Chla spike was evident in the pCO2 and O2 % saturation profiles. 

Therefore, surface measurements of pCO2 and lake – atmosphere CO2 and O2 flux estimates tell 

only part of the story. Localized subsurface increases in primary productivity and respiration are 

apparent. The subsurface variability in community metabolism varies by distance offshore and 

depth, and is often associated with vertical and horizontal TDP and DOC gradients. 

As a whole, Lake Superior has been shown to be relatively heterotrophic. Urban et al. 

(2004) illustrate the consistent supersaturation and net efflux of CO2 within the nearshore along 

the Keweenaw Peninsula. The partial pressure of CO2 determined by Urban et al. was 

consistently above 400 ppm. Cotner et al. (2004) also describe the lake as a whole as net 

heterotrophic by illustrating that on average respiration dominates over primary production in 

Lake Superior. It is important to note, however, that neither of these studies examined the 

metabolic response of the lake following an episodic storm and flood event. Therefore, although 

in the long-term the lake as a whole may be heterotrophic this may shift in response to increased 

tributary loading. 
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Within western Lake Superior during the summer, Russ et al. (2004) showed a 

persistence of net autotrophy (whereas the rest of Lake Superior remains net heterotrophic) in 

proximity of the Duluth, MN suggesting increased primary productivity was driven by river 

nutrient loading. However, as evident by the marked shift towards net heterotrophy seen 

following the development of a surface plume and the work of Minor et al. (2014), episodic 

plume events may decrease autotrophic production by reducing light intensity. Episodic inflows 

rich in CDOM and red clay complexes may suppress primary production while simultaneously 

resulting in slight increases in respiration within the nearshore ecosystem. Once the surface 

plume dissipates and the water column clears the influx of riverine nutrients results in an 

increase in community primary production. Large storm events have a short-term effect of 

increasing heterotrophy. This effect appears to be due more to decreased water clarity than to 

organic carbon loading. By contrast, over the long-term (i.e. greater than 2 weeks), large storm 

events appear to promote nearshore autotrophy. 
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Chapter 4: General Conclusions 

 As the interface between the terrestrial landscape and the open lake, nearshore zones play 

an important role in modulating whole-lake response to inputs of nutrients and energy from the 

watershed. Nearshore zones of large lakes are regions of substantial temporal and spatial 

heterogeneity. This heterogeneity stems from the juxtaposition of a terrestrial environment with 

an aquatic environment, and the complexity of hydrodynamics within the nearshore zone. The 

proximity of the nearshore zone to the terrestrial environment makes them susceptible to 

anthropogenic impacts (Chu et al., 2014) and variations in land-use (Yurista et al., 2011). Many 

environmental variables drive spatiotemporal variability within the nearshore zone, including 

temperature regimes, light intensity, water and soil chemistry, hydrodynamics, episodic inflow 

events, and the quality and quantity of inflowing nutrients and energy to name a few (Strayer and 

Findlay, 2010). The connectivity, and thereby the influence of the nearshore zone on the whole-

lake, is large dependent on general circulation patterns (Rao and Schwab, 2007). 

The dynamics of nutrients and energy within offshore waters are primarily driven by 

mechanisms of internal cycling and the lateral transfer between the nearshore and offshore zones. 

Despite the relatively low watershed to surface area ratio of large lakes, river influence, and 

thereby, terrestrial influence, on large lake nutrient and organic carbon cycling can be significant. 

In Lake Baikal, the Selenga River accounts for over 50% of the nutrient load (Müller et al., 

2005) and often results in spatial variations in phytoplankton biomass (Popovskaya, 20000 and 

primary productivity (Straškrábová et al., 2005). Straškrábová et al. (2005) illustrated spatial 

differences in net ecosystem production between the northern and southern basins of Lake 

Baikal. For reference, the southern basin of the lake is the receiving basing for the inflowing 

Selenga River. Annual primary production in the southern basin was 1,730 mmol C m-2 year-1, 
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whereas annual production was lower in the more secluded northern basin (1,220 mmol C m-2 

year-1). This suggests riverine input of nutrients from the Selenga River subsidizes the nutrient 

pool in the southern basin resulting in annually greater autotrophic production. 

For southern Lake Michigan, Biddanda and Cotner (2002) reported that terrestrial 

nutrient and organic carbon subsidies introduced by riverine inflow supported approximately 

10% of the organic carbon remineralized by heterotrophic bacteria, and 20% of phosphorus 

associated with autotrophic primary production. Therefore, allochthonous input of phosphorus 

via rivers appears to have a larger influence on community metabolism relative to inputs of 

organic carbon. A similar conclusion was arrived at in this study, based on the metabolic patterns 

and chemical dynamics of nearshore Lake Superior. Enrichment experiments conducted by 

Johengen et al. (2008) suggest riverine input stimulates autotrophic production to a greater extent 

than heterotrophic bacterial production. Johengen et al. (2008) found that the ratio of bacterial to 

primary production in ambient lake water was 0.23, and decreased to approximately 0.10 with 

the addition of river water.  

As mentioned, shifts towards net autotrophy in western Lake Superior relative to the rest 

of the lake are clearly apparent (Russ et al., 2004; Urban et al., 2005). Both Russ et al. (2004) 

and Urban et al. (2005) conclude that this shift was in response to increased river input of 

nutrients. The study conducted by Russ et al. (2004) illustrated respiration to photosynthesis 

ratios (R: P) for offshore Lake Superior to be generally greater than 1, while an average R: P 

ratio of 0.6 was determined for western Lake Superior. The watershed of western Lake Superior 

drains some of the largest tributaries of the lake, such as the St. Louis and Nemadji Rivers. The 

research presented here also suggests the ecosystem is net autotrophic during the summer, and 

variations in magnitude of autotrophic primary production are heavily influenced by riverine 
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input. Evidence of increased primary production in response to point-source inputs of nutrients 

via rivers is also apparent in other regions of Lake Superior, such as near the mouth of the 

Ontagonon River along the Keweenaw Peninsula (Auer and Bub, 2004). 

 A large body of evidence suggests, despite the size of many large lakes, whole-lake 

variability in metabolic processes in response to river loading of nutrients and organic carbon is 

apparent. Therefore, the lateral transfer of terrestrially-derived nutrients and organic carbon 

between the nearshore and offshore zones is extremely important in subsidizing whole-lake food 

webs.  
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APPENDIX A: Oxygen Percent Saturation Function 
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