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ABSTRACT

EXPONENTIAL INTEGRATOR METHODS FOR NONLINEAR

FRACTIONAL REACTION-DIFFUSION MODELS

by

Olaniyi Samuel Iyiola

The University of Wisconsin-Milwaukee, 2017
Under the Supervision of Bruce Wade

Nonlocality and spatial heterogeneity of many practical systems have made fractional dif-

ferential equations very useful tools in Science and Engineering. However, solving these type

of models is computationally demanding. In this work, we propose an exponential integrator

method for nonlinear fractional reaction-diffusion equations. This scheme is based on using a

real distinct poles discretization for the underlying matrix exponentials. Due to these real dis-

tinct poles, the algorithm could be easily implemented in parallel to take advantage of multiple

processors for increased computational efficiency. The method is established to be second-

order convergent; and proven to be robust for problems involving non-smooth/mismatched

initial and boundary conditions and steep solution gradients. We examine the stability of the

scheme through its amplification factor and plot the boundaries of the stability regions com-

parative to other second-order FETD schemes. This numerical scheme combined with frac-

tional centered differencing is used for simulating many important nonlinear fractional models

in applications. We demonstrate the superiority of our method over competing second order

FETD schemes, BDF2 scheme, and IMEX schemes. Our experiments show that the proposed

scheme is computationally more efficient (in terms of cpu time). Furthermore, we investigate

the trade-off between using fractional centered differencing and matrix transfer technique in
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discretization of Riesz fractional derivatives.

The generalized Mittag-Leffler function and its inverse is very useful in solving fractional

differential equations and structural derivatives, respectively. However, their computational

complexities have made them difficult to deal with numerically. We propose a real distinct

pole rational approximation of the generalized Mittag-Leffler function. Under some mild con-

ditions, this approximation is proven and empirically shown to be L-Acceptable. Due to the

complete monotonicity property of the Mittag-Leffler function, we derive a rational approxi-

mation for the inverse generalized Mittag-Leffler function. These approximations are especially

useful in developing efficient and accurate numerical schemes for partial differential equations

of fractional order. Several applications are presented such as complementary error function,

solution of fractional differential equations, and the ultraslow diffusion model using the struc-

tural derivative. Furthermore, we present a preliminary result of the application of the M-L

RDP approximation to develop a generalized exponetial integrator scheme for time-fractional

nonlinear reaction-diffusion equation.
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Chapter 1

Introduction and Preliminaries

1.1 Background

For many centuries, the concept of calculus has been indispensable in the field of mathemat-

ical sciences. Various applications could be found in physical sciences (astronomy, physics,

chemistry, and the Earth sciences), biology, actuarial science, computer science, statistics, en-

gineering, business, economics, demography, medicine and in many other fields wherever a

problem can be mathematically modeled and an optimal solution is desired. There have been

many studies on this concept following the modern development started in 17th-century by

Isaac Newton and Gottfried Wilhelm Leibniz in Europe. In 1695, among many correspondences

between L’Hopital and Leibniz, the question that gave birth to the concept of non-integer (frac-

tional) calculus was asked: What would be the 1
2 -th order derivative of a function? Leibniz then

responded, saying, "An apparent paradox, from which one day useful consequences will be

drawn."

In recent time, the use of fractional (non-integer) order derivatives has become popular due

to its non-locality property which is an intrinsic property of many complex systems. Various

applications are in modeling of different phenomena such as nanotechnology, control theory

of dynamical systems, viscoelasticity, anomalous transport and anomalous diffusion, financial

1



modeling, random walk, and biological modeling see [16, 32, 78, 87, 95, 98, 101, 109, 129]. More

detailed work on physical and engineering processes with more applications of fractional cal-

culus can be found in [62, 78, 103, 107, 109]. Furthermore, sub-diffusion (fractional in time) and

super-diffusion (fractional in space) have been observed and the effect of the fractional orders

have been seen in the solution profiles in many models, see [20, 93, 94]. The following two ma-

jor applications are highlighted, see [109] for detailed discussion of many more applications.

The definitions of the fractional integrals and derivatives used in this section will be given in

Chapter Two.

Fractional Calculus Applications in Viscoelasticity

It is well known that for solids, stress is proportional to the zeroth derivative of strain while it

is proportional to the first derivative of the strain for fluids. G.W. Scott Blair in [122] proposed

that for "intermediate" materials, stress is proportional to the "intermediate" derivative (non-

integer order) of the strain given as:

σ(t ) = E Dα
t ε(t ), (1.1)

where 0 < α < 1 and E are material-dependent constants and Dα
t is the so-called fractional

derivative. About the same time, A.N. Gerasimov in [50] proposed a similar equation for the gen-

eralization of basic law of deformation using the so-called Caputo fractional derivative, −∞Dα
t ,

given as:

σ(t ) = κ−∞Dα
t ε(t ), (1.2)

where 0 < α < 1 and κ is a generalized viscosity. Furthermore, A.N. Gerasimov studied the

movement of a viscous fluid between surfaces described by using two problems which led to
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the following equations:

ρ(t )
∂2 y

∂t 2
= κ−∞Dα

t

(
∂2 y

∂x2

)
, (1.3)

ρ(t )x3∂
2 y

∂t 2
= κ

∂

∂x

[
x3 ∂

∂x

(
−∞Dα

t y
)]

, (1.4)

where y = y(x, t ). The solutions to Equations (1.3)-(1.4) are based on the assumption that both

the unknown function and given functions are equal to zero for t < 0. It is known that Gerasimov

was the first to formulate and solve fractional-order partial differential models for particular

applied problems.

Another way of formulating fractional-order models of viscoelasticity is by using power-law

stress relaxation in real materials. In [90], P.G. Nutting was the first to give the formulation as:

ε= atασβ, (1.5)

where a, α, β are the model parameters. Therefore, for β = 1 and taking c0 = 1
a , we have the

following power-law relationship between stress and strain:

σ(t ) = c0εt−α, (1.6)

where ε is constant and

ε(t ) = σ

c0
tα, (1.7)

where σ is constant.

In [100], T.F. Nonnemnacher showed that the functions ε(t ) and σ(t ) satisfied the fractional

differential equations given as:

Dα
t σ(t ) = Γ(1−α)t−α

Γ(1−2α)
σ(t ), (1.8)

Dα
t ε(t ) = Γ(1+α)t−αε(t ). (1.9)
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This established relationship that exist between power-law representation of viscoelastic be-

haviour and fractional calculus.

Fractional Calculus and Abel’s Integral Equation

There have been extensive studies of Abel’s integral equation and its applications by many re-

searchers in many fields, see [54, 109] for a detailed discussion. The equation is given as:

1

Γ(α)

∫ t

0

ϕ(s)

(t − s)1−αd s = g (t ), t > 0, (1.10)

where 0 <α< 1. The solution to this equation is given by the formula

1

Γ(1−α)

d

d t

∫ t

0

g (s)

(t − s)1−αd s =ϕ(t ), t > 0. (1.11)

Equations (1.10) and (1.11) can be written in form of fractional differential equations respec-

tively as:

0D−α
t ϕ(t ) = g (t ), t > 0, (1.12)

0Dα
t g (t ) = ϕ(t ), t > 0. (1.13)

Abel’s integral equation became very popular and of great interest to many researchers due to

the ability to reduce many integral equations or mathematical models to Abel’s integral equa-

tion. This possibility is very important for obtaining solutions to those equations. Among many

of such equations that can be reduced to Abel’s integral equation and their corresponding solu-

tions in terms of fractional differential equations are summarized in Table 1.1; see the detailed

work on the derivation in [109].

A centered issue in the early biological and biochemical evolution is dealing with the mech-

anisms underlying spatial pattern formation. It is not enough to study genetics in order to un-

derstand the interaction between the physical and chemical properties of embryonic material
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to produce the complex spatio-temporal signalling cues that eventually determine the fate of

the cell, see [30]. Generally, the mechanisms of cell motility and/or the generation of chemi-

cal prepatterns are modeled using ideas of biological pattern formation, see [30]. In [51], sev-

eral models for pattern formation are proposed to explain the regenerative properties of hydra

which have been experimentally observed in various transplantations. Invoking the intrinsic

properties of fractional calculus is therefore apparent in biological and biochemical systems

due to these complexities.

Due to the non-local properties of the fractional calculus, there are many computational

challenges associated with solving fractional differential equations. The common numerical

approach for solving these brand of problems is to use the method-of-lines to reduce the frac-

tional differential equation (FPDE) to an ordinary differential equation (ODE) and then search

for an efficient scheme to solve the resulting ODE. Some numerical methods have been pro-

posed in the literature, such as finite difference, finite element or finite volume discretisation

of the fractional operator, combined with a semi-implicit Euler formulation for the time evolu-

tion of the solution. In particular for space fractional equations, methods like Krylov methods,

fast numerical integration in conjunction with effective preconditioners and Fourier spectral

methods have been introduced in [20, 21, 143], see also [13, 28, 147, 149].

In [58], Hairer & Wanner defined ‘stiff equation’ as a problem for which explicit methods

do not work well. Many effective implicit methods have been proposed to integrate stiff equa-

tions such as Runge-Kutta, Rosenbrock and Backward difference schemes. The computational

cost of these methods, however, is very high and may be impractical for certain applications.

Some other methods are also proposed to cut down on the computational cost associated with

integrating stiff problems such as linearly implicit methods, semi-implicit methods, projection

methods, see [3, 26, 49, 76, 132, 132]. The IMEX schemes, the class of implicit-explicit methods,

are introduced and have gained popularity in integrating stiff problems, see [65]. The effective-

ness of these schemes is in the fact that the non-stiff part of the problem is integrated explicitly

while the stiff part is handled implicitly. This is a way to offset any stability constraints while
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computational speed is gained. However, these schemes have been shown to have some in-

stabilities in the case where both the diffusion and reaction terms are stiff, and could lead to

spurious oscillation for the case of nonsmooth/mismatched initial/boundary conditions.

To fill in this gap related to maintaining stability even in the presence nonsmooth and stiff

problems, time integration schemes are introduced. Fractional Exponential Time Differencing

(FETD) schemes are among the schemes introduced to achieve this aim, see [29, 77, 92]. These

schemes make use of a single step representation of the evolutionary dynamics with an appro-

priate technique in the discretization of the resulting matrix exponentials. This has attracted

many researchers in this field due to the fact that these schemes treat the linear part of the

model exactly through the exponential solution operator, and the semi-implicitly treat the reac-

tion terms. Over the years, there have been various versions of ETD schemes which use different

approximations to the integral of the non-linear reaction term [36, 64, 77]. In [81], Kleefeld et al.

proposed an ETD where a Padé-(1,1) rational approximation for the matrix exponential is used.

This is called the ETD Crank-Nicolson Scheme. Nonsmooth initial and boundary conditions

generate spurious oscillations and can be handled well (damping out spurious oscillations) by

an L-stable scheme. This is a major setback for ETD Crank-Nicolson Scheme.

An L-acceptable scheme was then porposed in a follow-up paper by Yousuf et. al in [146] to

address this problem. In this scheme, a Padé-(0,2) rational approximation was used instead of

the Padé-(1,1) rational approximation due to the fact that the former is L-acceptable. Again, the

partial fraction decomposition of this approximation (Padé-(0,2)) used in deriving the scheme

has complex poles and requires complex arithmetic in all applications. This is a potential drag

to the speed of the the evolution process, depending on the matrices. We remark that these

notable issues with these existing schemes become worse when dealing with fractional order

derivative due to the full matrix involved.

In this thesis, we introduce a Fractional Exponential Time Differencing Scheme (FETD-RDP)

for nonlinear fractional reaction-diffusion equations (one-dimensional, two-dimensional and

systems of two-dimensional problems). In the case of integer order derivatives, this scheme
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was first introduced in [8,9], called the ETD-RDP scheme, for reaction-diffusion problems. This

scheme utilizes a non-Padé rational approximation with real and distinct poles for approxi-

mating the underlying matrix exponentials. The scheme is second-order and L-acceptable,

which help to damps out spurious oscillations. Furthermore, complex arithmetic is completely

avoided and parallel implementation is possible to speed up computation. We compare the

performance of the scheme to well known time integrator schemes. New real distinct poles

rational function approximations of the generalized Mittag-Leffler function and its inverse are

introduced. Under some mild conditions, this approximation is proven to be L-acceptable.

Many applications are explored from the complementary error function to the ultraslow diffu-

sion model.

The thesis is organized as follows: In the remainder of this Chapter, a survey of some stan-

dard time discretization schemes is provided. These are very useful ingredients for motivation

and the work that follows. This introductory and preliminaries chapter is closed by a brief intro-

duction to Padé rational functions for comparison purposes. In Chapter Two, we give a survey

of important definitions of fractional calculus and provide detailed proofs of some of the re-

sults of or related to fractional calculus. Theoretical results on the existence and uniqueness of

solutions to fractional differential models are presented in Chapter Three. Some of the earlier

theoretical results of this thesis on the existence and uniqueness of solutions to inverse prob-

lem involving fractional derivatives are included in this Chapter. Spatial discretization methods

for fractional derivatives are presented in Chapter Four. Here we introduce fractional centered

finite differences, the so-called matrix transfer technique and short memory principle. Detailed

proofs of many of the important results related to the fractional centered finite difference are

also provided. The FETD-RDP scheme is proposed in Chapter Five for fractional order differen-

tial equations. Analysis of its absolute stability region, some results on the error estimate and

convergence result are included in this Chapter. The performance and second-order conver-

gence of the proposed scheme to very interesting well known stiff problems are presented in

Chapter Six. Many of these systems of two-dimensional models involving nonsmooth or mis-
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matched initial/boundary conditions have applications in biochemical and biological pattern

formations. We further show empirically in this Chapter that there is a trade off in using matrix

transfer techniques compared to fractional centered finite difference. New real distinct poles

rational function approximations of the generalized Mittag-Leffler function and its inverse are

introduced in Chapter Seven. Under some mild conditions, this approximation is proven to be

L-acceptable. We present several applications of this approximations to complementary error

function, the ultraslow diffusion model etc. We close this Chapter by presenting a preliminary

result of the application of the M-L RDP approximation to develop a generalized exponetial

integrator scheme for time-fractional nonlinear reaction-diffusion equation. Finally, Chapter

Eight highlights some recommendations and possible future directions.

1.2 A Survey of Some Time Discretization Schemes

Linear Multistep Schemes

The general form of linear multistep methods is given as:

q∑
j=0

a j wn+ j = k
q∑

j=0
b j H

(
tn+ j , wn+ j

)
, n = 0,1,2, · · · ,

with H : R×Rm → Rm . For the case of a fractional reaction-diffusion equation, we do have

H (t ,u) =−Au + f (t ,u) with differential matrix A and nonlinear reaction term f.

These methods make use of multiple approximations from previous time levels to compute

the current solution. The scheme is implicit except when bq = 0. The fact that in a linear multi-

step method, one needs to solve just one nonlinear system is a major advantage. However, the

requirement for q starting values can lead to loss of accuracy or stability if not computed at very
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small time steps. The method has order p, for a sufficiently smooth H , if, see [65, Pg. 172],

q∑
j=0

a j = 0

q∑
j=0

a j j i = i
q∑

j=0
b j j i−1, i = 1,2,3, · · ·p.

A very popular multistep method, particularly for stiff problems, is the backward difference

formula (BDF) introduced by Curtis & Hirchschfelder [31]. It requires

bq = 1, b j = 0, 0 ≤ j ≤ q −1

and a j chosen conveniently to attain an optimal order of accuracy.

Second Order Backward Difference Scheme (BDF2)

A general non-autonomous formulation of an initial value problem for a system of ordinary

differential equations is considered, see [9, 31, 58],

ut =H (t ,u), t > 0, u(0) = u0 (1.14)

with H : R×Rm → Rm and u0 ∈ Rm . In [31], the second order backward difference scheme

(BDF2) as a multistep method for stiff problems is introduced as follows:

un+2 = 4

3
un+1 − 1

3
un + 2k

3
H (tn+2,un+2), (1.15)

with some one-step starting scheme. Newton’s method is requred at each step for this scheme.

In this work, FETD-RDP’s performance is compared to the second order backward difference

scheme (BDF2). The reader should see Hairer & Wanner [58] for a more comprehensive discus-

sion of multistep methods.
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Implicit-Explicit (IMEX) Schemes

IMEX methods are introduced to effectively handle time integration of problems comprising

very stiff and mildly or non-stiff parts, see [58, 65]. These methods compete very well with the

existing schemes. Advection-diffusion equations fit very well into this category with the advec-

tive parts being non-stiff and the diffusion part stiff. Also, some advection-diffusion reaction

equations with mild or non-stiff reactions are also suitable. Here we consider separating the

ODE system (1.14) into the form

ut =H1(t ,u(t ))+H2(t ,u(t )) (1.16)

where H1(t ,u(t )) and H2(t ,u(t )) represent the non-stiff component and the stiff components,

respectively. This separation allows the use of implicit schemes to handle the stiff component

and explicit methods to speed up computations of non-stiff parts.

The following are two second order IMEX schemes we consider for the purpose of compar-

ison.

1. IMEX-BDF2

3

2
un+1 = 2kH1(tn ,un)−kH1(tn−1,un−1)+ωkH2(tn+1,un+1)+2(1−ω)kH2(tn ,un)

− (1−ω)kH2(tn−1,un−1)+2un − 1

2
un−1,

where ω≥ 0. This method is derived from a combination of the explicit and implicit two-

step BDF schemes. Here, ω= 1 is used for our comparison as recommended in [65].

2. IMEX-Adams2

un+1 = 3

2
kH2(tn ,un)−ωkH2(tn+1,un+1)+

(
3

2
−2ω

)
kH2(tn ,un)

+
(
ω− 1

2

)
kH2(tn−1,un−1)+un .
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This method uses the explicit and implicit two-step Adam’s methods. Our choice ofω= 9
16

is motivated by the fact that the scheme with this parameter is known to provide maxi-

mum damping [10].

Readers are also directed to [9, 58] for details of these methods.

1.3 Padé Rational Approximation

Padé approximation, dated 1892, [106], are rational functions which, for a given degree of the

numerator and the denominator, have highest order of approximation of the exponential func-

tion. Padé schemes are designed to approximate the exponential function, ez , for complex

number z with high order of accuracy, see also [7, 37].

Theorem 1.3.1. [58, Thm 3.12] The (k,j)-Padé approximation to ez is given by

Rk, j (z) = Pk, j (z)

Qk, j (z)

where

Pk, j (z) = 1+ k

j +k
z + k(k −1)

( j +k)( j +k −1)

z2

2!
+·· ·+ k(k −1) · · ·1

( j +k) · · · ( j +1)

zk

k !

Qk, j (z) = 1− j

k + j
z + j ( j −1)

(k + j )(k + j −1)

z2

2!
−·· ·+ (−1) j j ( j −1) · · ·1

(k + j ) · · · (k +1)

z j

j !

with error

ez −Rk, j (z) = (−1) j j !k !

( j +k)!( j +k +1)!
z j+k+1 +O (z j+k+2)

Definition 1.3.2. We say that the rational approximation R(z) is A-acceptable if |R(z)| < 1 for

every z ∈ C such that R(z) < 0, and it is A0-acceptable if |R(z)| < 1 for every real and negative z.

If in addition to A-acceptability, |R(z)|→ 0 as Re(z) →∞, we say that R(z) is L-acceptable.

Theorem 1.3.3. [19] If k = j the Rk, j (z) is A-acceptable.

Theorem 1.3.4. [130] If j ≥ k then Rk, j (z) is A0-acceptable.
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Theorem 1.3.5. [37] If j ≥ k +1 or j = s +2, then Rk, j (z) is L-acceptable.

The existing Exponential Time Differencing, FETD-Padé schemes which use rational func-

tions to approximate the matrix exponential use Padé approximations. Particularly, the follow-

ing Padé rational functions are used to develop FETD-Padé schemes:

Padé(0,1) : ez ≈ 1
1−z ,

Padé(1,1) : ez ≈ 1+ 1
2

1− 1
2 z

,

Padé(0,2) : ez ≈ 1

1−z+ z2
2!

,

Some other well known Padé approximations are summarized in Table A1.
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Chapter 2

Fractional Calculus

In this Chapter, we give some definitions of fractional calculus and discuss many of the impor-

tant results of or related to fractional calculus.

2.1 Riemann-Liouville Fractional Integral and Derivatives

The Riemann-Liouville fractional integral and derivative form the basis for many other pro-

posed definitions of fractional derivatives.

Definition 2.1.1. The gamma function, Γ, is defined as

Γ(α) =
∫ ∞

0
yα−1e−y d y, α> 0. (2.1)

Using integration by parts, we obtain the relation

Γ(α+1) =αΓ(α). (2.2)

Note that this is a generalization of the factorial function: when α = n, n any positive integer,

we have the relation

Γ(n) = (n −1)!. (2.3)
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Definition 2.1.2. The Beta function, also called the Euler integral of the first kind, is defined as

B(α,β) =
∫ 1

0
yα−1(1− y)β−1d y, Re(α) > 0, Re(β) > 0. (2.4)

By appropriate change of variables, the following is the relationship that exists between the

Gamma function and the Beta function.

B(α,β) = Γ(α)Γ(β)

Γ(α+β)
. (2.5)

In 1850, the idea of Cauchy formula for repeated integration was generalized to arbitrary order

using Gamma function Γ as

Definition 2.1.3. (Riemann-Liouville Integral, [43, 109]). Let w ∈ L1[a,b], where −∞≤ a < x <
b ≤ −∞, be a real valued locally integrable function. The left-sided and right-sided Riemann-

Liouville (R-L) fractional integrals of order α of the function w are given, respectively, as

a Iαx w(x) = 1

Γ(α)

∫ x

a
(x − s)α−1w(s)d s, x > a, α> 0, (2.6)

and

x Iαb w(x) = 1

Γ(α)

∫ b

x
(s −x)α−1w(s)d s, x > a, α> 0. (2.7)

Notice that (R-L) fractional integral could be written as a convolution of two functions:

a Iαx w(x) = (w ∗ Jα) (x),

where Jα(x) = xα−1/Γ(α). For α= 0, we set a I 0
x := I , the identity operator.

Lemma 2.1.4. Let w ∈ L1[a,b] and α > 0. Then the integral a Iαx w(x) exists for almost every

x ∈ [a,b] and the function a Iαx w belongs L1[a,b].
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Proof. Define the following functions:

Φ1(s) =

 sα−1 0 < s ≤ b −a

0 otherwise,
and Φ2(s) =

 w(s) a ≤ s ≤ b

0 otherwise.

By construction, it is clear thatΦ1,Φ2 ∈ L1(R). We also have

∫ ∞

−∞
Φ1(x − s)Φ2(s)d s =

∫ a

−∞
Φ1(x − s)Φ2(s)d s +

∫ x

a
Φ1(x − s)Φ2(s)d s +

∫ ∞

x
Φ1(x − s)Φ2(s)d s.

SinceΦ2(s) = 0 for s < a, then ∫ a

−∞
Φ1(x − s)Φ2(s)d s = 0.

Also, we have that

Φ1(x − s) =

 (x − s)α−1 a − (b −x) ≤ s < x

0 otherwise,

Hence,

∫ ∞

x
Φ1(x − s)Φ2(s)d s = 0 and

∫ x

a
Φ1(x − s)Φ2(s)d s =

∫ x

a
(x − s)α−1w(s)d s.

Therefore,

a Iαx w(x) = 1

Γ(α)

∫ x

a
(x − s)α−1w(s)d s

= 1

Γ(α)

∫ ∞

−∞
Φ1(x − s)Φ2(s)d s

= 1

Γ(α)
(Φ1 ∗Φ2)(x).

Since Φ1,Φ2 ∈ L1(R), then (Φ1 ∗Φ2)(x) exists for almost every x ∈ R and Φ1 ∗Φ2 ∈ L1(R). Hence,

the integral a Iαx w(x) exists for almost every x ∈ [a,b] and the function a Iαx w belongs L1[a,b].
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Definition 2.1.5. (Riemann-Liouville Derivative, [43, 109]). Let w ∈ L1[a,b], where −∞ ≤ a <
x < b ≤ −∞, and (w ∗ Jm−α) ∈ W m,1[a,b], m = ⌈

α
⌉

, α > 0. The left-sided and right-sided

Riemann-Liouville (R-L) fractional derivatives of order α, of the function w are given, respec-

tively, as

aDα
x w(x) = d m

d xm a I m−α
x w(x) = 1

Γ(m −α)

d m

d xm

∫ x

a
(x − s)m−α−1w(s)d s, x > a, (2.8)

and

xDα
b w(x) = (−1)m d m

d xm x I m−α
b w(x) = (−1)m

Γ(m −α)

d m

d xm

∫ b

x
(s −x)m−α−1w(s)d s, x > a, (2.9)

where
⌈·⌉ is the ceiling function and the space W m,1 is defined as

W m,1[a,b] =
{

w ∈ L1[a,b] :
d m

d xm
w ∈ L1[a,b]

}
. (2.10)

Lemma 2.1.6. Let w ∈ L1(a,b), α≥ 0, and β≥ 0. Then we have the following

a Iαx a Iβx w(x) =a Iα+βx w(x), (2.11)

for x almost everywhere (a.e) on [a,b].

Proof. By Lemma (2.1.4), the two integral exists for almost every x ∈ [a,b] and by Fubini’s The-

orem, we have the following estimate

a Iαx a Iβx w(x) = 1

Γ(α)Γ(β)

∫ x

a
(x − s)α−1

∫ s

a
(s −τ)β−1w(τ)dτd s

= 1

Γ(α)Γ(β)

∫ x

a

∫ x

τ
(x − s)α−1(s −τ)β−1w(τ)d sdτ

= 1

Γ(α)Γ(β)

∫ x

a
w(τ)

∫ x

τ
(x − s)α−1(s −τ)β−1d sdτ (2.12)
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Change of variable s = τ+ t (x −τ) gives

a Iαx a Iβx w(x) = 1

Γ(α)Γ(β)

∫ x

a
w(τ)

∫ 1

0
[(x −τ)(1− t )]α−1 (x −τ)βtβ−1d tdτ

= 1

Γ(α)Γ(β)

∫ x

a
w(τ)(x −τ)α+β−1

(∫ 1

0
tβ−1(1− t )α−1d t

)
dτ.

By the definition of Beta function and using the identity (2.5), we then obtain

a Iαx a Iβx w(x) = B(α,β)

Γ(α)Γ(β)

∫ x

a
(x −τ)α+β−1w(τ)dτ

= 1

Γ(α+β)

∫ x

a
(x −τ)α+β−1w(τ)dτ

= a Iα+βx w(x), (2.13)

for x almost everywhere (a.e) on [a,b].

Lemma 2.1.7. Let w ∈ L1(a,b), and α> 0. Then

aDα
x a Iαx w(x) = w(x), (2.14)

for x (a.e) on [a,b]. If furthermore there exists a function g ∈ L1[a,b] such that w = a Iαx g then

a Iαx aDα
x w(x) = w(x), (2.15)

almost everywhere.

Proof. Let m = ⌈
α

⌉
. By the definition of R-L fractional derivative and the semigroup property

of R-L fractional integral (Lemma (2.1.6)) and the left inverse of the integer order differential

operator, we have

aDα
x a Iαx w(x) = d m

d xm a I m−α
x a Iαx w(x) = d m

d xm a I m
x w(x) = w(x).
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To prove the second part, we use (4.23) and the fact that a Iαx g ∈ L1[a,b] to get

a Iαx aDα
x w(x) = a Iαx

(
aDα

x a Iαx g
)

(x) = (
a Iαx aDα

x

)
a Iαx g (x) = a Iαx g (x) = w(x).

Lemma 2.1.8. Let x > a and β>−1. Then

a Iαx (x −a)β = Γ(β+1)

Γ(β+α+1)
(x −a)β+α, α> 0, (2.16)

aDα
x (x −a)α−1 = 0, 0 <α< 1. (2.17)

Proof. By definition and the change of variable τ= a + s(x −a), we have

a Iαx (x −a)β = 1

Γ(α)

∫ x

a
(x −τ)α−1(τ−a)βdτ

= 1

Γ(α)
(x −a)α+β

∫ 1

0
s(β+1)−1(1− s)α−1d s

= Γ(β+1)

Γ(β+α+1)
(x −a)β+α.

This establishes the first part. The second part also follows by definition.

aDα
x (x −a)α−1 = d

d x

(
a I 1−α

x (x −a)α−1)= d

d x
(Γ(α)) = 0.

2.2 Caputo Fractional Derivative

In 1967, M. Caputo introduced another definition of fractional derivative. We denote by AC n[a,b],

n ∈ N, the space of real-valued functions w(x) which have continuous derivatives up to or-

der n −1 on [a,b] such that w (n−1)(x) belong to the space of absolutely continuous functions
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AC [a,b]. That is

AC n[a,b] =
{

w : [a,b] →R :
d n−1

d xn−1
w ∈ AC [a,b]

}
. (2.18)

Definition 2.2.1. Let α> 0, m = ⌈
α

⌉
, and w ∈ AC m[a,b]. The left-sided and right-sided Caputo

fractional derivatives of order α of the function w are given, respectively, as

c
aDα

x w(x) =a I m−α
x

d m

d xm
w(x) = 1

Γ(m −α)

∫ x

a
(x − s)m−α−1w (m)(s)d s, x > a, (2.19)

and

c
xDα

b w(x) = (−1)m
x I m−α

b

d m

d xm
w(x) = (−1)m

Γ(m −α)

∫ b

x
(s −x)m−α−1w (m)(s)d s, x > a. (2.20)

Despite the fact that the Caupto and the Riemann-Liouville fractional derivatives have dif-

ferent definitions, there are connections between the two given in the following Theorem:

Lemma 2.2.2. Let α ∈ R+−N, m = [α], and w ∈ AC m[a,b]. Then the left-sided and right-sided

R-L fractional derivatives of order α of w exist almost everywhere and can be written as

aDα
x w(x) =c

a Dα
x w(x)+

m−1∑
j=1

w ( j )(a)

Γ( j −α+1)
(x −a) j−α, (2.21)

and

xDα
b w(x) =c

x Dα
b w(x)+

m−1∑
j=1

w ( j )(b)

Γ( j −α+1)
(b −x) j−α. (2.22)

Proof. Applying repeatedly integration by parts to the Riemann-Liouville fractional derivative,

we obtain

aDα
x w(x) =

m−1∑
j=1

w ( j )(a)

Γ( j −α+1)
(x −a) j−α+ 1

Γ(m −α)

∫ x

a
(x − s)m−α−1w (m)(s)d s, x > a,

=
m−1∑
j=1

w ( j )(a)

Γ( j −α+1)
(x −a) j−α+c

a Dα
x w(x).

Similarly, the result holds for the right-sided case.
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An immediate consequence of this Lemma is given as proposition below.

Proposition 2.2.3. Let α ∈R+−N, m = [α], and w ∈ AC m[a,b]. Then

c
aDα

x w(x) = aDα
x w(x), if w(a) = w ′(a) = ·· · = w (m−1)(a) = 0, (2.23)

c
xDα

b w(x) = xDα
b w(x), if w(b) = w ′(b) = ·· · = w (m−1)(b) = 0. (2.24)

One major difference between Riemann-Liouville and Caputo fractional derivatives is the

fact that

c
0Dα

x 1 = 0, while 0Dα
x 1 = x−α

Γ(1−α)
6= 0, α≥ 0, x > 0.

2.3 Hilfer Fractional Derivative

R. Hilfer in a series of works (see [62] and the references therein), considered a generalized

fractional operator, called the two-parameter fractional derivative, to study some applications

of fractional calculus. This generalized operator possesses special cases coinciding with the R-L

and the Caputo fractional derivatives.

Definition 2.3.1. Let 0 < α < 1, 0 ≤ β ≤ 1, w ∈ L1[a,b], −∞ ≤ a < x < b ≤ −∞, and (w ∗
J(1−α)(1−β)) ∈ AC 1[a,b]. Then the Hilfer fractional derivative is defined as

aDα,β
x w(x) =

(
a Iβ(1−α)

x
d

d x

(
a I (1−α)(1−β)

x w
))

(x). (2.25)

Note that the Riemann-Liouville fractional derivative Dα
t and the Caputo fractional deriva-

tive cDα
t := I 1−α

t D are special cases of the two-parameter fractional derivativeDα,γ
t for β= 0 and

β= 1, respectively. Thus, Dα,γ
t is considered as an interpolant between Dα

t and cDα
t .
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2.4 Grünwald-Letnikov Fractional Derivative

An alternative definition of fractional derivative was introduced by A.K. Grünwald and A.V. Let-

nikov between 1867 and 1868. This is a direct extension of the integer-order derivative to the

non-integer case. Grünwald-Letnikov fractional derivative definition will allow us later on to

construct numerical methods for differential equations of fractional order, using either the R-L

or Caputo fractional derivatives. We start with a formal definition.

Definition 2.4.1. The Grünwald-Letnikov fractional derivative of a function w is defined as:

GL
a Dα

x w(x) = lim
h→0+

1

hα

[ x−a
h

]∑
j=0

(−1) j

(
α

j

)
w(x − j h), α> 0, (2.26)

where (
α

j

)
= Γ(α+1)

j !Γ(α− j +1)
.

This definition is particularly useful for developing numerical schemes for solving fractional

differential equations. The next Lemma is important in gaining an insight into the connection

among the Grünwald-Letnikov derivative, the R-L fractional derivative and Caputo fractional

derivative.

Lemma 2.4.2. [102] Let w ∈C m[a,b], α≥ 0, and m = ⌈
α

⌉
. Then

GL
a Dα

x w(x) =
m−1∑
j=1

w ( j )(a)

Γ( j −α+1)
(x −a) j−α+ 1

Γ(m −α)

∫ x

a
(x − s)m−α−1w (m)(s)d s. (2.27)

Lemma (2.2.2) and Lemma (2.4.2) provide the link among the Grünwald-Letnikov fractional

derivative, Riemann-Liouville fractional derivative and Caputo fractional derivative for a suffi-

ciently smooth function. Hence, when it comes to numerical implementation of the Riemann-

Liouville and Caputo fractional derivatives, one could adopt the definition of the Grünwald-

Letnikov fractional derivative.
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We adopt the following notations for convenience.

GL
0 Dα

x =GL Dα
x , c

0Dα
x = c Dα

x , and 0Dα
x = Dα

x .

The Laplace and The Fourier Transforms

Introduction of the Laplace transform and the Fourier transform to fractional derivative is very

important in the study of fractional differential equations.

Definition 2.4.3. For a w ∈ L1(R), we define the Fourier transform and the inverse Fourier trans-

form respectively as:

F w = (F w) (ξ) =F {w(t );ξ} = ŵ(ξ) =
∫ ∞

−∞
e i xξw(x)d x, (2.28)

(
F−1ŵ

)
(x) = 1

2π

∫ ∞

−∞
e−iξx ŵ(ξ)dξ. (2.29)

Definition 2.4.4. The Laplace transform of a function w(x), denoted as W (s), is define as

W (s) =L {w(x); s} =
∫ ∞

0
e−sx w(x)d x, (2.30)

where Re(s) > 0, provided the right-hand side exists.

The following are the formulas for the Laplace transforms of the Riemann-Liouville and Ca-

puto fractional derivatives, respectively, for m −1 <α≤ m, see [109]

L {Dαw(x); s} = sαW (s)−
m−1∑
j=0

s j Dα− j−1w(x)|x=0, (2.31)

and

L {c Dαw(x); s} = sαW (s)−
m−1∑
j=0

sα− j−1w ( j )(x). (2.32)

We point out here that these formulas, (2.31) and (2.32), are the reason for using integral type
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initial condition when dealing with the Riemann-Liouville differential equation while the clas-

sical initial condition is used when dealing with the Caputo differential equation. This is a major

reason why many researchers use the Caputo fractional derivative.

2.5 Fractional Laplacian/Riesz Fractional Derivative

Another alternative definition is given to fractional derivatives which is commonly used in the

literature, called the Riesz fractional derivative. The link between fractional Laplacian and Riesz

fractional derivative has been established using Fourier analysis.

According to Samko et al. in [119], a fractional power of the Laplace operator is defined as

follows:

−(−∆)α/2w(x) =−F−1|x|αF w(x), (2.33)

where F and F−1 are the Fourier transform and inverse Fourier transform, respectively.

Definition 2.5.1. The Riesz fractional derivative of function w with order m −1 <α≤ m, m ≥ 1

is defined as [153]

∂α

∂|x|αw(x) =− cα
Γ(m −α)

d m

d xm

∫ +∞

−∞
|x −ξ|m−α−1w(ξ)dξ, (2.34)

where

cα = 1

2cos
(
απ
2

) , α 6= 1.

Lemma 2.5.2. For a function w(x) defined on the infinite domain −∞ < x < ∞, the following

equality holds:

−(−∆)α/2w(x) =−cα
[
−∞Dα

x w(x)+x Dα
+∞w(x)

]= ∂α

∂|x|αw(x), (2.35)

where −∞Dα
x w(x) and xDα+∞w(x) are the left-sided and right-sided the Riemann-Liouville frac-
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tional derivatives given as:

−∞Dα
x w(x) = 1

Γ(m −α)

∂m

∂xm

∫ x

−∞
w(ξ)

(x −ξ)α+1−m
dξ, (2.36)

and

xDα
+∞w(x) = 1

Γ(m −α)

∂m

∂xm

∫ +∞

x

w(ξ)

(ξ−x)α+1−m
dξ. (2.37)

Before proving the above Lemma 2.5.2, we recall the following:

1. The Laplace transform of a power function:

L
{

y r }= ∫ ∞

0
e−s y y r d y = Γ(r +1)

sr+1
, r >−1, s > 0. (2.38)

2. Euler’s reflection formula:

Γ(ν)Γ(1−ν) = π

sin(πν)
, ν ∉Z. (2.39)

3.

iν−1 + (−i )ν−1 = i
(
e− iπν

2 −e
iπν

2

)
= 2sin

(πν
2

)
. (2.40)

We also prove the following:

(a)

I1 = i
∫ ∞

−∞
e iξ(µ−x) |ξ|ν

ξ
dξ= si g n(x −µ)π

cos
(
πν
2

) |x −µ|νΓ(1−ν)
, 0 < ν< 1. (2.41)

(b)

I2 =
∫ ∞

−∞
e iξ(µ−x)|ξ|ν−2dξ= −π

cos
(
πν
2

) |x −µ|ν−1Γ(2−ν)
, 1 < ν< 2. (2.42)
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Proof. (a) Let 0 < ν< 1. Using (2.38), (2.39) and (2.40), we obtain

I1 = i

[
−

∫ ∞

0
e iξ(x−µ)ξν−1dξ+

∫ ∞

0
e iξ(µ−x)ξν−1dξ

]
= i

[
− Γ(ν)

[i (µ−x)]ν
+ Γ(ν)

[i (x −µ)]ν

]
= si g n(x −µ)Γ(ν)Γ(1−ν)

|x −µ|νΓ(1−ν)

[
iν−1 + (−i )ν−1]

= si g n(x −µ)π

cos
(
πν
2

) |x −µ|νΓ(1−ν)
.

(b) Similarly, for 1 < ν< 2, we have

I2 =
[∫ ∞

0
e iξ(x−µ)ξν−2dξ+

∫ ∞

0
e iξ(µ−x)ξν−2dξ

]
= Γ(ν−1)

[i (µ−x)]ν−1
+ Γ(ν−1)

[i (x −µ)]ν−1

= Γ(ν−1)Γ(2−ν)

|x −µ|ν−1Γ(2−ν)

[
iν−1 + (−i )ν−1]

= −π
cos

(
πν
2

) |x −µ|ν−1Γ(2−ν)
.

We are ready now to prove Lemma (2.5.2).

Proof. Case 1: 0 <α< 1

By definition, we have

−(−∆)α/2w(x) =− 1

2π

∫ ∞

−∞
e−i xξ|ξ|α

∫ ∞

−∞
e iξµw(µ)dµdξ.

Applying integration by parts on the inner integral in the right-hand side and assuming that w
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vanishes at x =+−∞ to get

−(−∆)α/2w(x) = − 1

2π

∫ ∞

−∞
w ′(µ)

[
i
∫ ∞

−∞
e iξ(µ−x) |ξ|α

ξ
dξ

]
dµ

= − 1

2π

∫ ∞

−∞
w ′(µ)

[
si g n(x −µ)π

cos
(
πα
2

) |x −µ|αΓ(1−α)

]
dµ

= − 1

2cos
(
πα
2

) [
1

Γ(1−α)

∫ x

−∞
w ′(µ)

(x −µ)α
dµ− 1

Γ(1−α)

∫ ∞

x

w ′(µ)

(µ−x)α
dµ

]
.

From Lemma (2.4.2) for 0 <α< 1, the Grünwald-Letnikov fractional derivative in [a, x] is given

by

GL
a Dα

x w(x) = w(a)(x −a)−α

Γ(1−α)
+ 1

Γ(1−α)

∫ x

a

w ′(µ)

(x −µ)α
dµ.

Therefore, if w(x) tends to zero as a →−∞ and w(x) tends to zero as b →−∞, then we have the

following

GL
−∞Dα

x w(x) = 1

Γ(1−α)

∫ x

−∞
w ′(µ)

(x −µ)α
dµ,

and

GL
x Dα

∞w(x) =− 1

Γ(1−α)

∫ ∞

x

w ′(µ)

(µ−x)α
dµ.

So, if w is continuous and w ′ is integrable for x ≥ a, the Riemann-Liouville fractional derivative

exists and coincides with the Grünwald-Letnikov fractional derivative for every 0 <α< 1. Hence

we have for 0 <α< 1,

−(−∆)α/2w(x) =−cα
[
−∞Dα

x w(x)+x Dα
+∞w(x)

]= ∂α

∂|x|αw(x),

where

−∞Dα
x w(x) = 1

Γ(1−α)

∂

∂x

∫ x

−∞
w(µ)

(x −µ)α
dµ,

and

xDα
+∞w(x) = 1

Γ(1−α)

∂

∂x

∫ +∞

x

w(µ)

(µ−x)α
dµ.

Case 2: 1 <α< 2
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In a similar way, we assume that w and w" vanish at x =+−∞ and applying integration by parts

twice to get

−(−∆)α/2w(x) = − 1

2π

∫ ∞

−∞
e−i xξ|ξ|α

[
−ξ−2

∫ ∞

−∞
e iξµw ′′(µ)dµ

]
dξ

= 1

2π

∫ ∞

−∞
w ′′(µ)

[∫ ∞

−∞
e iξ(µ−x)|ξ|α−2dξ

]
dµ

= 1

2π

∫ ∞

−∞
w ′′(µ)

[
−π

cos
(
πα
2

) |x −µ|α−1Γ(2−α)

]
dµ

= − 1

2cos
(
πα
2

) [
1

Γ(2−α)

∫ x

−∞
w ′′(µ)

(x −µ)α−1
dµ+ 1

Γ(2−α)

∫ ∞

x

w ′′(µ)

(µ−x)α−1
dµ

]
.

Again from Lemma (2.4.2) for 1 <α< 2, the Grünwald-Letnikov fractional derivative in [a, x] is

given by

GL
a Dα

x w(x) = w(a)(x −a)−α

Γ(1−α)
+ w ′(a)(x −a)1−α

Γ(1−α)
+ 1

Γ(2−α)

∫ x

a

w ′′(µ)

(x −µ)α
dµ.

Therefore, if w(x) and w ′(x) tend to zero as a →−∞ and w(x) and w ′(x) tend to zero as b →−∞,

then we have the following respectively

GL
−∞Dα

x w(x) = 1

Γ(2−α)

∫ x

−∞
w ′′(µ)

(x −µ)α
dµ,

and

GL
x Dα

∞w(x) =− 1

Γ(2−α)

∫ ∞

x

w ′′(µ)

(µ−x)α
dµ.

So, if w and w ′ is continuous and w ′′ is integrable for x ≥ a, the Riemann-Liouville fractional

derivative exists and coincides with the Grünwald-Letnikov fractional derivative for every 1 <
α< 2. Hence we have for 1 <α< 2,

−(−∆)α/2w(x) =−cα
[
−∞Dα

x w(x)+x Dα
+∞w(x)

]= ∂α

∂|x|αw(x),
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where

−∞Dα
x w(x) = 1

Γ(2−α)

∂2

∂x2

∫ x

−∞
w(µ)

(x −µ)α−1
dµ,

and

xDα
+∞w(x) = 1

Γ(2−α)

∂2

∂x2

∫ +∞

x

w(µ)

(µ−x)α−1
dµ.

Repeating this process, if m = dαe, then

−(−∆)α/2w(x) =−cα
[
−∞Dα

x w(x)+x Dα
+∞w(x)

]= ∂α

∂|x|αw(x),

where

−∞Dα
x w(x) = 1

Γ(m −α)

∂m

∂xm

∫ x

−∞
w(µ)

(x −µ)α+1−m
dµ,

and

xDα
+∞w(x) = 1

Γ(m −α)

∂m

∂xm

∫ +∞

x

w(µ)

(µ−x)α+1−m
dµ.

Lemma 2.5.2 still holds if the function w is given in a finite interval [0,L] by imposing ho-

mogeneous conditions.

2.6 Generalized Mittag-Leffler Functions

The fundamental role of the Mittag-Leffler function in the theory of fractional calculus remains

extremely important. No wonder it is called, “the Queen function of the fractional calculus."

In this section, we will give some useful definitions and important results of this function. The

Prabhakar generalized Mittag-Leffler function [112] is defined as

Eρ

α,β(w) =
∞∑

k=0

Γ(ρ+k)

Γ(ρ)Γ(αk +β)

w k

k !
, w,β,ρ ∈C, Reα> 0. (2.43)
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Some special cases of this function are the Mittag-Leffler function in one parameter Eα(w) =
E 1
α,1(w), and in two parameters Eα,β(w) = E 1

α,β(w).

The function Eρ

α,β is an entire function [112] and therefore bounded in any finite interval. In

addition, for w,β,λ ∈ C and Re α > 0, this function satisfies the following recurrence relations

[59, 78]:

λwα Eα,α+β(λwα) = Eα,β(λwα)− 1

Γ(β)
, (2.44)

and

αE 2
α,β(λwα) = (1+α−β) Eα,β(λwα)+Eα,β−1(λwα). (2.45)

Combining the relations (2.44) and (2.45) yields the recurrence relation:

αλwα E 2
α,β(λwα) = (1+α−β) Eα,β−α(λwα)+Eα,β−α−1(λwα), (2.46)

for w,β,λ ∈C and Reα> 0.

On the real line, we have the following upper bounds.

Lemma 2.6.1. Let 0 < α< 2, β ∈ R, and ρ = 1,2. Then, there is a constant M = M(α,β) > 0 such

that

λρtαρ
∣∣∣Eρ

α,β(−λtα)
∣∣∣≤ M , t ≥ 0, λ≥ 0. (2.47)

Proof. When ρ = 1, the result is a special case of Theorem 1.6 in [109]. When ρ = 2, the bound

follows from (2.46).

The function Eρ

α,β possesses the following positivity and monotonicity properties [55].

Lemma 2.6.2. Let 0 < α ≤ 1, λ > 0, and ρ > 0. Then the functions Eρ

α,β(−λtα), αρ ≤ β, and

tγ−1Eρ
α,γ(−λtα), αρ ≤ γ≤ 1, are positive monotonically decreasing functions of t > 0.

Lemma 2.6.2 and the recurrence relation (2.44) imply the following corollary.

Corollary 2.6.3. Let 0 <α≤ 1, 2α≤β, and λ> 0. Then tαEα,β(−λtα) is a monotonically increas-

ing function of t > 0.

30



Proof. Since β−α≥α, then by Lemma 2.6.2, Eα,β−α(−λtα) is a monotonically decreasing func-

tion of t > 0. Let 0 < s < t , then from (2.44) we have

λsαEα,β(−λsα) = 1/Γ(β−α)−Eα,β−α(−λsα)

< 1/Γ(β−α)−Eα,β−α(−λtα) =λtαEα,β(−λtα).

We conclude this section by recalling two Laplace transform formulas.

L
{

tβ−1Eρ

α,β(λtα)
}
= sαρ−β

(sα−λ)ρ
, |λs−α| < 1, (2.48)

where α,β,λ,ρ ∈ C, Re α> 0, Re β > 0, and Re ρ > 0. See for example (1.9.13) in [78] and (11.8)

in [59]. From [62], we have the formula

L
{
Dα,γw(t )

}= sαL {w}− sα−γI 1−γw(0). (2.49)
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Chapter 3

A Survey of Existence and Uniqueness

Results for Fractional Differential Models

The tremendous impact fractional calculus has had in many fields of applications has drawn

attentions of many researchers to its study. However, the fractional derivative operator is a

quasi-differential operator with nonlocal and weak singularity properties. Therefore, some of

the useful tools for theoretical studies such as the semigroup properties, the commutative law,

and many others are not satisfied by this operator. It is therefore very important to study ana-

lytic properties of solutions of fractional differential equations. In this section, we give survey

of the existence and uniqueness of solutions of differential equation of fractional type both di-

rect and inverse version. This is done by highlighting key results and Theorems in most cases.

Further detail may be found in the reference.

Many researchers depend heavily on the properties of the Fourier and Laplace transforms

to verify properties of classical solutions for fractional differential equations. Another way to

study the theoretical analysis of solutions to fractional differential equations is by studying the

corresponding variational problem (weak elliptic problem) in suitable functional spaces and

their corresponding norms. In this case, the existence and uniqueness results of weak solutions

are obtained by using the existing theory of elliptic problems such as Lax-Milgram theorem.
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Furthermore, there has been extensive study on the existence and uniqueness of solutions to

the fractional differential equations using fixed point theory approach. The following are the

commonly used Theorems to achieve the desirable results (existence and uniqueness of solu-

tions of fractional differential equations): (i) the Banach and Schauder fixed point theorems,

(ii) the Leggett-Williams fixed point theorem on a convex cone, (iii) the contraction mapping

principle and the Krasnoselskii fixed point theorems, (iv) the Arzelá-Ascoli compact theorem

and many more, see [2, 15, 23, 24, 113–115, 150, 151], see also [1, 38, 57, 60, 71, 134].

3.1 Direct Problems

Experts in this field have done various studies on the existence and uniqueness of solutions

to time-space fractional differential equations both linear and nonlinear for direct problems.

We focus attention on a few results and refer the readers to the cited works and the references

therein.

3.1.1 Space Fractional Models

Consider a Cauchy problem of the form

wt −ε∆wt + (−∆)αw = wθ+1, x ∈Rn , t > 0, (3.1)

subject to initial condition

w(x,0) = w0(x), x ∈R. (3.2)

This is called a pseudo-parabolic equation when α= 1 and ε> 0.

Existence of solutions to Equations (3.1)-(3.2) together with time-decay rates for small-amplitude

solutions has been study by L. Jin et al in [72] for α> 0. They proved the following Theorems:

Theorem 3.1.1. Let α ≥ 1, s > n
2 , θ > 4α

n , and θ ∈ Z. Assume that w0 ∈ H s(Rn)∩ L1(Rn) and

let E0 = ||w0||H s + ||w0||L2 . Then there exists a small positive constant δ0 such that for E0 ≤ δ0,
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(3.1)-(3.2) has a solution satisfying

∣∣∣∣∣∣(−∆)
l
2 w(t )

∣∣∣∣∣∣
L2

≤ cE0(1+ t )−
n

4α− 1
2α , ∀0 ≤ l ≤ s. (3.3)

Theorem 3.1.2. Assume that 0 < α < 1, θ > 4α
n , θ ∈ Z and

[ s
2ᾱ

] ≥ n
2α + 3

2 ᾱ. Let E0 = ||w0||H s +
||w0||L2 for w0 ∈ H s(Rn)∩ L1(Rn). Then there exists a small positive constant δ0 such that for

E0 ≤ δ0, (3.1)-(3.2) has a solution satisfying

∣∣∣∣∣∣(−∆)
l
2 w(t )

∣∣∣∣∣∣
L2

≤ cE0(1+ t )−
n

4α− 1
2α , for 0 ≤ l ≤ N0, . (3.4)

with

ᾱ= 1−α, N0 =αmin
{

s − n

2α
ᾱ,

([ s

2ᾱ

]
−1

)
ᾱ− n

2α
ᾱ+2

}
.

The following have been used in the estimate:

〈 f , g 〉H s =
∫
Rn

f̂ (ξ)ĝ (ξ)(1+|ξ|2)sdξ, (3.5)

with norm

|| f ||2H s =
∫
Rn

(1+|ξ|2)s | f̂ (ξ)|2dξ, (3.6)

where f̂ is the Fourier transform of f on Rn and H s(Rn) denotes the general Sobolev space with

H 0(Rn) = L2(Rn).

The Duhamel principle is used to transform (3.1)-(3.2) into an integral equation to make the

analysis easier to handle. Also, time-weighted energy method was introduced in their paper to

overcome the weakly dissipative property of the equations. Readers are directed to full detail

results of this problem in [72].
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3.1.2 Time-Space Fractional Models

Here, we consider the time-space fractional nonlinear super-diffusion equation with homoge-

neous Dirichlet boundary condition of the form:

c Dα
t w + ∂

∂x
f (w) = ε

(
−(−∆)

β
2

)
w, in ΩT , (3.7)

subject to initial condition

w(0, x) =ψ1(x) and wt (0, x) =ψ2(x), x ∈Ω, (3.8)

where 1 < α < 2, 1 < β ≤ 2, ε > 0, ΩT = [0,T ]×Ω, Ω is bounded region with smooth bound-

ary in Rn , n ≥ 1. ψ1,ψ2 ∈ H 1
0 (Ω) are given real-valued smooth functions and w ∈ H 1(Ω) is a

smooth unknown function. The nonlinear term f is also assumed to be Lipschitz continuous

on a bounded domainΩ. In [115], the following function spaces are defined together with their

corresponding norms.

Let the closures of C∞
0 (E) with respect to the norms ||w ||σHν

0
and ||w ||r Hν

0
be σHν

0 (E) and

r Hν
0 (E), respectively, for a constant ν> 0 and

||w ||σHν
0

:=
[
||w ||2L2 +|w |2σHν

0

] 1
2

, where |w |2σHν
0

:= ||Dα
t w ||2L2 , (3.9)

and similarly,

||w ||r Hν
0

:=
[
||w ||2L2 +|w |2r Hν

0

] 1
2

, where |w |2r Hν
0

:= ||Dα
t w ||2L2 . (3.10)

Also, the norm in the usual Sobolev space, Hν
0 (E), is defined as follows:

||w ||Hν
0

:=
[
||w ||2L2 +|w |2Hν

0

] 1
2

, where |w |2Hν
0

:=
[〈Dα

t w,t Dαw〉L2

cos(πν)

]
. (3.11)
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M. Qiu et al in [115] established the existence and uniqueness of weak solutions for a class of

fractional super-diffusion equations (3.7)-(3.8) in an appropriate function space, B, a closed,

bounded, convex subspace (subset) of the standard Banach space C
(
H 1

0 (Ω); [0,T ]
)
. The idea

of the proof is again based on transforming (3.7)-(3.8) into integral form, then formulating a

variational problem in the appropriate function space, then applying the Schauder fixed point

theorem and the Arzelá-Ascoli compactness theorem to obtain the existence and uniqueness

of the weak solution.

3.2 Inverse Problems

In this section, we present some of our results on inverse problem involving two-parameter

fractional derivatives, see [42]. This is an inverse problem, in the sense that the source term

function is unknown, and by imposing extra conditions on the data, the problem is well-posed.

Consider determining the solution u and the space-dependent source f for the following

two-parameter fractional diffusion equation (FDE):

Dα,γ
t u(x, t )−uxx(x, t ) = f (x), x ∈ (0,1), t ∈ (0,T ), 0 <α≤ γ≤ 1,

u(x,Tm) = z(x), u(x,T ) = h(x), x ∈ [0,1], 0 < Tm < T, (3.12)

u(1, t ) = 0, ux(0, t ) = ux(1, t ), t ∈ (0,T ],

where z and h are square integrable functions. The operator Dα,γ
t is the generalized Hilfer frac-

tional derivative.

A similar inverse source problem to (3.12) has been considered by Kirane et al. [79] but with

the Caputo derivative for which the initial condition is the traditional local condition. Furati

et al. [41] constructed a series representation of u and f for problem (3.12), but subject to an

integral-type initial condition instead, using a bi-orthogonal system. Unlike in [41], in the cur-
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rent problem, the value of the solution at some time t = Tm is used rather than the value of

the fractional integral of the solution I 1−γu(x, t ) at t = 0, which may neither be measurable nor

have a physical meaning. As a result, the construction of the series representation of u and f

is not a straightforward extension of the one in [41]. This is mainly due to the complexity in

ensuring the solvability of the arising linear systems and in achieving the necessary lower and

upper bounds for showing the convergence of the constructed series.

Inverse source problems for a one-parameter FDE with Caputo derivative have been in-

vestigated by many researchers under various initial, boundary and over determination condi-

tions. For a space-dependent source f , Zhang and Xu [152] used Duhamel’s principle and an

extra boundary condition to uniquely determine f . Kirane and Malik [79] studied first a one-

dimensional problem with non-local non-self-adjoint boundary conditions and subject to ini-

tial and final conditions. The results were extended to the two-dimensional problem by Kirane

et al. [80]. Özkum et al. [105] used the Adomian decomposition method to construct the source

term for a linear FDE with a variable coefficient in the half plane. In a bounded interval, Wang

et al. [135] reconstructed a source for an ill posed time-FDE by the Tikhonov regularization

method. A numerical method for reproducing kernel Hilbert space to solve an inverse source

problem for a two-dimensional problem is proposed by Wang et al. [136]. Wei and Wang [138]

proposed a modified version of quasi-boundary value method to determine the source term in

a bounded domain from a noisy final data. The analytic Fredholm theorem and some operator

properties are used by Tatar and Ulusoy [127] to prove the well-posedness of a one-dimensional

inverse source problem for a space-time FDE. Feng and Karimov [40] used eigenfunctions to

analyze an inverse source problem for a fractional mixed parabolic hyperbolic equation. They

formulated the problem as an optimization problem and then used a semismooth Newton al-

gorithm to solve it. Gülkaç [56] applied the Homotopy Perturbation Method to find the source

term allowing space dependent diffusivity. For a three-dimensional inverse source problem,

we refer the reader to the work by Sakamoto and Yamamoto [117] and by Ruan et al. [116]. In

relation to the above, for the case of time-dependent source term f , see [5,70,117,137,140,142].
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In all the previous works cited above, the problems considered involve the Caputo deriva-

tive together with the classical initial conditions. In our work, we consider a two parameter

fractional derivative, of which the Caputo and Riemann-Liouville derivatives are special cases.

As a result, we need to consider the possibility of having a nonlocal initial condition, which in

general may not have a clear physical meaning or a direct way of measuring. We show that these

nonlocal initial conditions can be replaced by a local observation.

In later sections, we deal with a 2×2 linear system with a coefficient matrix of the form

Aα,γ,µ(λ, s, t ) :=

 tαEα,µ(−λtα) tγ−1Eα,γ(−λtα)

sαEα,µ(−λsα) sγ−1Eα,γ(−λsα)

 . (3.13)

In the next lemma, we show that the determinant of this matrix, denoted by | . . . |, has a pos-

itive lower bound, and consequently the matrix is non-singular. This property plays a crucial

role for obtaining the coefficients of the series representation of u and f . Also, it provides the

necessary bounds for showing the convergence of these series.

Lemma 3.2.1. Let 0 <α≤ γ≤ 1, µ≥ 2α, and 0 < s < t . Then, there is a constant A > 0, indepen-

dent of λ, such that

|Aα,γ,µ(λ, s, t )| > A

λ2
, λ> 0. (3.14)

Proof. By Lemma 2.6.2 and Corollary 2.6.3, from (3.13), the determinant of the matrix is

∣∣Aα,µ,γ(λ, s, t )
∣∣=

tαEα,µ(−λtα) sγ−1Eα,γ(−λsα)− tγ−1Eα,γ(−λtα) sαEα,µ(−λsα) > 0.

In addition, from (2.44) we have

lim
λ→∞

λ2|Aα,γ,µ(λ, s, t )| = 1

Γ(µ−α)

sγ−1−α

Γ(γ−α)
− tγ−1−α

Γ(γ−α)

1

Γ(µ−α)
.

= sγ−1−α− tγ−1−α

Γ(γ−α) Γ(µ−α)
> 0.
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Therefore, λ2|Aα,γ,µ(λ, s, t )|, as a function of λ, is bounded below by a positive constant.

By combining Lemmas 2.6.1 and 3.2.1 we obtain the following estimate.

Corollary 3.2.2. Let 0 < α ≤ γ ≤ 1, µ ≥ 2α, and 0 < s < t . Then, there is a constant B > 0, inde-

pendent of λ, such that [
A−1
α,γ,µ(λ, s, t )

]
i j
< Bλ, λ> 0. (3.15)

Series Representations

Following [41, 79], the boundary conditions in (3.12) suggest the bi-orthogonal pair of bases

Φ= {ϕ0,ϕ1,n ,ϕ2,n}∞n=1 andΨ= {ψ0,ψ1,n ,ψ2,n}∞n=1 for the space L2(0,1) where,

ϕ1,0(x) = 2(1−x), ϕ1,n(x) = 4(1−x)cosλn x, ϕ2,n(x) = 4sinλn x, (3.16)

with λn = 2πn, and

ψ1,0(x) = 1, ψ1,n(x) = cosλn x, ψ2,n(x) = x sinλn x. (3.17)

Although the sequencesΦ andΨ are not orthogonal, it is proven in [68] that they both are Riesz

bases. We seek series representations of the solution u and the source term f in the form

u(x, t ) = u1,0(t )ϕ1,0(x)+
2∑

k=1

∞∑
n=1

uk,n(t )ϕk,n(x), (3.18)

f (x) = f1,0ϕ1,0(x)+
2∑

k=1

∞∑
n=1

fk,nϕk,n(x). (3.19)

Substituting (3.18) and (3.19) into (3.12) yields the following system of fractional differential

equations:

Dα,γu1,n(t )+λ2
nu1,n(t ) = f1,n , n ≥ 0, (3.20)

Dα,γu2,n(t )+λ2
nu2,n(t )−2λnu1,n(t ) = f2,n , n ≥ 1, (3.21)
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where λ0 := 0.

We solve (3.20) and (3.21) via Laplace transform. For convenience, we introduce the follow-

ing notations:

c1,0 = I 1−γu1,0(0) and ck,n = I 1−γuk,n(0), k = 1,2, n ≥ 1.

By applying the Laplace transform (2.49) to (3.20), we obtain

U1,n(s) = f1,n
1

s(sα+λ2
n)

+ c1,n
sα−γ

sα+λ2
n

. (3.22)

Similarly, by applying the Laplace transform to (3.21) and then substituting (3.22), we obtain

U2,n(s) = f2,n

s(sα+λ2
n)

+ c2,n sα−γ

sα+λ2
n

+ 2λn

sα+λ2
n

U1,n(s)

= f2,n

s(sα+λ2
n)

+ c2,n sα−γ

sα+λ2
n

+2λn

[
f1,n

1

s(sα+λ2
n)2

+ c1,n
sα−γ

(sα+λ2
n)2

]
.

Hence, from formula (2.48) we have

u1,n(t ) = f1,n tαEα,α+1(−λ2
n tα)+ c1,n tγ−1Eα,γ(−λ2

n tα), n ≥ 0, (3.23)

and

u2,n(t ) = f2,n tαEα,α+1(−λ2
n tα)+ c2,n tγ−1Eα,γ(−λ2

n tα)+dn(t ), n ≥ 1, (3.24)

where

dn(t ) = 2λn

[
f1,n t 2αE 2

α,2α+1(−λ2
n tα)+ c1,n tα+γ−1 E 2

α,α+γ(−λ2
n tα)

]
. (3.25)

Next, we determine the unknowns {c1,0,ck,n} and { f1,0, fk,n}. From the two time conditions

in (3.12) we have

u1,0(Tm) = z1,0, uk,n(Tm) = zk,n , u1,0(T ) = h1,0, uk,n(T ) = hk,n , (3.26)
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for n ≥ 1 with k = 1, 2, where {z1,0, zk,n} and {h1,0,hk,n} denote the Fourier coefficients of the

series representations of z and h in terms of the basis (3.16), respectively. That is,

z1,0 = 〈z,ψ1,0〉, zk,n = 〈z,ψk,n〉, h1,0 = 〈h,ψ1,0〉, hk,n = 〈h,ψk,n〉,

where 〈·, ·〉 denotes the inner product in L2(0,1).

Using (3.26) in (3.23), we obtain the linear system

An

 f1,n

c1,n

=

 h1,n

z1,n

 , n ≥ 0, (3.27)

where,

An = Aα,γ,1+α(λ2
n ,Tm ,T ) = (3.28) TαEα,α+1(−λ2

nTα) T γ−1Eα,γ(−λ2
nTα)

Tα
mEα,α+1(−λ2

nTα
m) T γ−1

m Eα,γ(−λ2
nTα

m)

 .

By Lemma 3.2.1, the linear system (3.27) is uniquely solvable and

 f1,n

c1,n

= A−1
n

 h1,n

z1,n

 , n ≥ 0. (3.29)

In a similar fashion, by using (3.26) in (3.24), we observe

 f2,n

c2,n

= A−1
n

 h2,n −dn(T )

z2,n −dn(Tm)

 , n ≥ 1. (3.30)

To determine the coefficients in the series representations (3.18) and (3.19), we first per-

form the calculations in (3.29) and (3.30) and then substitute in the formulas (3.23) and (3.24).

Therefore, the construction of the series representation of u and f is now completed.
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Existence and Uniqueness Result for Inverse Problem

In this section, under some regularity assumptions on the given data functions h and z in prob-

lem (3.12), we show that the series representations of the solution u in (3.18) and of the source

f in (3.19) satisfy certain smoothness properties. These smoothness properties will allow us to

show the existence and uniqueness of such u and f , and also to show that u form a classical

solution of (3.12).

Theorem 3.2.3. Let h, z ∈C 4[0,1] be such that

z ′(0) = z ′(1), z(1) = z ′′(1) = 0, h′(0) = h′(1), h(1) = h′′(1) = 0. (3.31)

Let u and f be as determined in the previous section. Then u(., t ) ∈C 2[0,1], Dα,γu(x, .) ∈C (0,T ],

and f ∈ C [0,1]. In addition, u and f form the unique classical solution and source of (3.12),

respectively.

Proof. LetΩ= (0,T ]×[0,1] andΩε = [ε,T ]×[0,1] ⊂Ω. We show that the series corresponding to

u, ux , uxx , Dα,γu are uniformly convergent and represent continuous functions on Ωε, for any

ε> 0. Also we show that the series representation of f is uniformly convergent in [0,1]. This is

shown by bounding all these series by over-harmonic series then applying Weierstrass M-test.

Throughout this proof, L = L(α,γ) is some positive (generic) constant.

Through repeated integration by parts, the assumptions in (3.31) yield

〈z,ψ1,n〉 = 1

λ4
n

{
z ′′′(0)− z ′′′(1)+〈z(4),ψ1,n〉

}
,

and

〈z,ψ2,n〉 = 1

λ4
n

∫ 1

0

[
4z ′′′(x)+xz(4)(x)

]
sinλn x d x.

The same expressions hold for the function h. Thus, there is a constant L > 0 such that

∣∣zk,n
∣∣≤ L/λ4

n ,
∣∣hk,n

∣∣≤ L/λ4
n , n ≥ 1, k = 1,2. (3.32)
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Using these bounds and (3.15), it follows from (3.29) that

|c1,n | ≤ L/λ2
n , | f1,n | ≤ L/λ2

n , n ≥ 1. (3.33)

Consequently, from (3.25) and (2.47) we have |dn(T )|, |dn(Tm)| ≤ L/λ5
n , n ≥ 1. Therefore, it fol-

lows from (3.30) that

|c2,n | ≤ L/λ2
n , | f2,n | ≤ L/λ2

n , n ≥ 1. (3.34)

Using the bounds (3.32), (3.33), (3.34) and (2.47), the formulas (3.23) and (3.24) imply that

t 1−γ+α|uk,n(t )| ≤ Lλ4
n , n ≥ 1, k = 1,2, t ∈ (0,T ]. (3.35)

Furthermore, by inserting this bound in the (3.20)-(3.21), we have

t 1−γ+α |Dα,γuk,n(t )| ≤ L/λ2
n , n ≥ 1, k = 1,2, t ∈ (0,T ]. (3.36)

When n = 0, it is obvious from (3.23) that the first term u1,0(t )φ1,0(x) of the series (3.18) is

continuous onΩ and has a continuous t fractional derivative onΩ. In addition, it has continu-

ous first and second derivatives with respect to x onΩ.

Therefore, the series in (3.18) is uniformly convergent in Ωε. Furthermore, the series ob-

tained through term-by-term fractional differentiation with respect to t , and through term-by-

term first and second differentiation with respect to x are all uniformly convergent inΩε. Hence,

being represented by uniformly convergent series of continuous functions onΩε, the functions

u, Dα,γu, ux , and uxx are all continuous onΩ. Similarly, f is continuous on [0,1].

The next step is to show that u(x, t ) satisfies the intermediate and final conditions. From

(3.26), the series representation (3.18) at t = Tm yields

u(x, t )|t=Tm = 2z1,0(1−x)+
∞∑

n=1
4(1−x)z1,n cos(λn x)+

∞∑
n=1

4z2,n sin(λn x) = z(x),
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for x ∈ [0,1]. Similarly, we have u(x,T ) = h(x), x ∈ [0,1]. Therefore, u form a classical solution.

Finally, the uniqueness follows by observing that when z = h = 0 in (3.12), then from (3.29)

and (3.30), all the coefficients ckn and fkn are zero. As a result, from (3.23) and (3.24), all the

coefficients in the series representations of u and f are identically zero.

Analytical and Computational Examples

To complement the achieved results, an analytical and a numerical example are presented.

Example 1 (Linear source and source-free diffusion)

Consider the problem (3.12) with

z(x) = 2(1−x), and h(x) = 2c(1−x), c > 0.

Then clearly, z and h satisfy the hypothesis of Theorem 3.2.3, and

z1,0 = 1, h1,0 = c, zk,n = hk,n = 0, n ≥ 1, k = 1,2.

Thus, it follows from (3.29) and (3.25) that

c1,n = f1,n = dn = 0, n ≥ 1,

which imply that

c2,n = f2,n = 0, n ≥ 1.

Accordingly, from (3.20) and (3.21), for t ∈ (0,T ],

uk,n(t ) = 0, n ≥ 1, k = 1,2.
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Thus, from (3.18) and (3.19), the series representations of f and u reduce to

f (x) = 2 f1,0(1−x),

and

u(x, t ) = 2u1,0(t )(1−x) = 2

[
f1,0

Γ(α+1)
tα+ c1,0

Γ(γ)
tγ−1

]
(1−x).

Next, from (3.29), to determine f1,0 and c1,0 we calculate A−1
0 . From (3.28),

A0 =

 TαEα,α+1(0) T γ−1Eα,γ(0)

Tα
mEα,α+1(0) T γ−1

m Eα,γ(0)

=

 Tα/Γ(α+1) T γ−1/Γ(γ)

Tα
m/Γ(α+1) T γ−1

m /Γ(γ)

 .

Thus,

A−1
0 = 1

T γ−1
m Tα−T γ−1Tα

m

 Γ(α+1) T γ−1
m −Γ(α+1) T γ−1

−Γ(γ) Tα
m Γ(γ) Tα

 .

Therefore,

 f1,0

c1,0

 = A−1
0

 h1,0

z1,0

= A−1
0

 c

1


= 1

T γ−1
m Tα−T γ−1Tα

m

 Γ(α+1)(cT γ−1
m −T γ−1)

Γ(γ)(Tα− cTα
m)

 .

Notice that, when c = (Tm/T )1−γ, then f (x) = 0 and thus problem (3.12) is source-free. On

the other hand, when c = (T /Tm)α, then the problem corresponds to the homogeneous initial

condition, u(x,0) = 0.
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Example 2

Consider the problem (3.12) with

z(x) = 1

10

[
1− (2x −1)3] and h(x) =−3x2(x2 +2)+8x3 +1.

Then, by direct calculations, we can verify that z and h satisfy the hypothesis of Theorem 3.2.3.

We solve the system of equations in (3.29) and (3.30) to find the Fourier series coefficients

and then substitute in the series representations of u and f in (3.18) and (3.19). We evaluated u

and f by truncating the series in (3.18) and (3.19) after 20 terms.

The graph of u at different times and the graph of f are shown in Figure 3.1 for T = 1, Tm =
0.3, and α= γ= 0.5. The graph of u at t = 0.2 represents the solution prior to the measurement

at Tm = 0.3.
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Figure 3.1: The solution and source term for Example 2.

3.3 Conclusion

An inverse two-parameter fractional diffusion problem subject to nonlocal non-self-adjoint

boundary conditions and two local time-distinct datum is studied. A series representation of

the solution and the space-dependent source term is obtained using a bi-orthogonal pair of
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bases. The asymptotic behavior and estimates of the generalized Mittag-Leffler function were

used to justify the solvability of the delicate 2×2 linear systems for the Fourier coefficients of the

source term and of the fractional integral of the solution at t = 0. Under certain regularity and

compatibility assumptions on the given data, the existence and uniqueness of the constructed

solution and source term in the classical sense are obtained.

This work should be a first step towards studying the well-posedness of our inverse model

problem under weaker regularity and compatibility assumptions on the given data. In addition,

our results will call for the extension to the two-dimensional two-parameter fractional diffusion

problem. These will be topics of future research.
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Chapter 4

Spatial Discretization Methods for

Fractional Derivatives

In this section, we introduce the fractional centered differencing and the matrix transfer ap-

proaches for the discretization of the Riesz fractional derivative.

4.1 Fractional Centered Difference Method

Definition 4.1.1. [104] Let α>−1. The fractional centered difference is defined as

∆αh w(x) =
∞∑

j=−∞

(−1) jΓ(α+1)

Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

)w(x − j h). (4.1)

It has been shown in [104] that

lim
h−→0

∆αh w(x)

hα
= lim

h−→0

1

hα

∞∑
j=−∞

(−1) jΓ(α+1)

Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

)w(x − j h), (4.2)

represents the Riesz fractional derivative defined in (2.34) when 1 <α≤ 2.

Lemma 4.1.2. Let the coefficients of the centered finite difference approximation given in (4.2) be
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denoted as:

g j = (−1) jΓ(α+1)

Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

) , j = 0,∓1,∓2, · · · , α>−1. (4.3)

Then we have the following:

1. g0 ≥ 0;

2. g− j = g j ≤ 0, for | j | ≥ 1;

3. g j+1 =
(
1− α+1

α
2 + j+1

)
g j .

Proof. Clearly, by the definition of the Gamma function Γ(z) > 0 for α> 0, we have

g0 = Γ(α+1)

Γ
(
α
2 +1

)2 > 0.

For all | j | ≥ 1, we also have

g− j = (−1)− jΓ(α+1)

Γ
(
α
2 + j +1

)
Γ

(
α
2 − j +1

) = (−1) jΓ(α+1)

Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

) = g j .

i.e g j = g− j .

Using the Gamma function relation in (2.2) and the ( j +1)-th coefficient, we obtain the fol-

lowing recursive relation

g j+1 = (−1) j+1Γ(α+1)

Γ
(
α
2 − j

)
Γ

(
α
2 + j +2

)
= ( j − α

2 )(−1) jΓ(α+1)

(α2 + j +1)Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

)
=

(
1− α+1

α
2 + j +1

)
g j .

i.e

g j+1 =
(
1− α+1

α
2 + j +1

)
g j ≤ 0, j =∓1,∓2, · · · .
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Lemma 4.1.3. Let the coefficients of the centered finite difference approximation be given as gk

for α>−1. Then

g j =O
(

j−α−1) , | j |→+∞. (4.4)

This Lemma 4.1.3 guarantee that the series in (4.1) converges absolutely for a bounded func-

tion w ∈ L1(R).

Proof. Using the Gamma function identity

Γ(z)Γ(1− z) = π

sin(πz)
, z ∈C, (4.5)

we can write

Γ(α+1)

Γ(β+1)Γ(α−β+1)
= sin

(
(β−α)π

)
π

Γ(α+1)Γ(β−α)

Γ(β+1)
. (4.6)

Setting β=α/2−k in (4.6) and using the well known Wendy’s Theorem in [119] given as

Γ(z +a)

Γ(z +b)
= za−b

(
1+

N∑
k=1

ck

zk
+O

(
z−N−1)) , |z|→∞, (4.7)

(4.4) is obtained.

Theorem 4.1.4. Suppose w ∈C 5(R) and all derivatives up to order five belong to L1(R) and let

∆αh w(x) =
∞∑

j=−∞

(−1) jΓ(α+1)

Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

)w(x − j h), (4.8)

be the fractional centered difference. Then

−∆
α
h w(x)

hα
= ∂αw(x)

∂|x|α +O(h2), h −→ 0, (4.9)

where ∂α

∂|x|α is the Riesz fractional derivative with 1 <α≤ 2.

Proof. We first recall that from [104], the generator function for the coefficient of the approxi-
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mation (4.2) for z ∈R is given as

∣∣∣2sin
(z

2

)∣∣∣= ∞∑
j=−∞

(−1) jΓ(α+1)

Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

)e i j z .

Applying the Fourier transform to both sides of Equation (4.8), since ∆αh w ∈ L1(R), ξ ∈R, to get

F
{
∆αh w(x)

}= ∞∑
j=−∞

(−1) jΓ(α+1)

Γ
(
α
2 − j +1

)
Γ

(
α
2 + j +1

)e i j hξŵ(ξ) =
∣∣∣∣2sin

(
ξh

2

)∣∣∣∣α ŵ(ξ). (4.10)

Define

ϕ̂(ξ,h) := |ξ|α


∣∣∣2sin
(
ξh
2

)∣∣∣α
|ξh|α −1

 ŵ(ξ). (4.11)

Setting y = ξh, we have

∣∣2sin
( y

2

)∣∣α
|y |α =

∣∣∣∣ 2

y

∣∣∣∣α ∣∣∣∣ y

2
−

( y

2

)3 1

3!
+·· ·

∣∣∣∣α
=

∣∣∣∣1− ( y

2

)2 1

3!
+·· ·

∣∣∣∣α
≤

(
1+

∣∣∣∣( y

2

)2 1

3!
+·· ·

∣∣∣∣)α
= 1+α

∣∣∣∣( y

2

)2 1

3!
+·· ·

∣∣∣∣+ α(α−1)

2

∣∣∣∣( y

2

)2 1

3!
+·· ·

∣∣∣∣2

+·· ·

≤ 1+α
∣∣∣ y

2

∣∣∣2
∣∣∣∣ 1

3!
+C0 y2

∣∣∣∣+C1|y |4

≤ 1+C2 y2, (4.12)

for some constant C2 > 0, independent of y . Hence, we have

∣∣2sin
( y

2

)∣∣α
|y |α = 1+O (y2), for small y.

Using the fact that w ∈ C 5(R) and all derivatives up to order five belong to L1(R), there exists a

positive constant C3 such that

|ŵ(ξ)| ≤C3(1+|ξ|)−5. (4.13)
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Combining (4.12) and (4.13) in (4.11), we then get

|ϕ̂(ξ,h)| = |ξ|α
∣∣∣∣∣
∣∣2sin

( y
2

)∣∣α
|y |α −1

∣∣∣∣∣ |ŵ(ξ)|

≤ |ξ|αC2|ξh|2C3(1+|ξ|)−5

≤ C4h2(1+|ξ|)α+2(1+|ξ|)−5

= C4h2(1+|ξ|)α−3, (4.14)

where C4 = C2C3 is a constant independent of ξ. This means that for 1 < α ≤ 2, the inverse

Fourier transform of the function ϕ̂ which can be estimated as follows

|ϕ(x,h)| = 1

2π

∣∣∣∣∫ ∞

−∞
e−iξxϕ̂(ξ,h)dξ

∣∣∣∣
≤ 1

2π

∫ ∞

−∞

∣∣ϕ̂(ξ,h)
∣∣dξ

≤ 1

2π

∫ ∞

−∞
C4h2(1+|ξ|)α−3dξ

= C h2, (4.15)

where C = C4
π(2−α) .

Observe that using (4.10) and (4.11), we can write

−h−αF
{
∆αh w(x)

}= |ξ|αŵ(ξ)+ ϕ̂(ξ,h). (4.16)

Taking the inverse Fourier transform of (4.16), we obtain

−h−α∆αh w(x) = ∂αw(x)

∂|x|α +ϕ(x,h). (4.17)

Hence by the estimate in (4.15), we obtain

−h−α∆αh w(x) = ∂αw(x)

∂|x|α +O (h2). (4.18)
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If we define function w∗ as

w∗(x) =

 w(x) x ∈ [a,b]

0 other wi se,
(4.19)

such that w∗ ∈ C 5(R) and all derivatives up to order five belong to L1(R), then direct conse-

quence of Theorem 4.1.4 results into the following:

∂αw(x)

∂|x|α =− 1

hα

[ x−a
h

]∑
j=−

[
b−x

h

] g j w(x − j h)+O (h2), (4.20)

where h = b−a
M , and M is the number of partitions of the interval [a,b].

Using the approach of the fractional centered difference method by Ortigueira in [104], the

symmetric Riesz fractional derivative of order α on (0,L) can be approximated by an (M −1)×
(M − 1) symmetry Toeplitz matrix G (α). Assume that w(x) is zero outside (0,L), L = Mh. Let

x = j h and w j = w(x j ), j = 1,2, · · · , M −1. Then we have

∆αh w(x j ) =
j−1∑

i= j−M+1
g (α)

i w j−i . (4.21)

That is

∆αhW =G (α)W, (4.22)
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where

G (α) =



g (α)
0 g (α)

1 g (α)
2 g (α)

3 · · · g (α)
M−2

g (α)
1 g (α)

0 g (α)
1 g (α)

2 · · · g (α)
M−3

g (α)
2 g (α)

1 g (α)
0 g (α)

1 · · · ω(α)
M−4

. . . . . . . . . . . . · · · · · ·
g (α)

M−3
. . . g (α)

2 g (α)
1 g (α)

0 g (α)
1

g (α)
M−2 g (α)

M−3
. . . g (α)

2 g (α)
1 g (α)

0


, W =



w1

w2

w3

...

wM−3

wM−2

wM−1



.

An alternative approach for the discretization of Riesz fractional derivative is to approximate

both the left-sided and the right-sided Riemann-Liouville fractional derivative and then take

the linear combination. Consider equidistant nodes x = j h, j = 0,1, · · · , M with the step h in the

interval [a,b], where x0 = a and xM = b. For a left-sided Riemann-Liouville fractional derivative,

the backward fractional difference approximation for the α-th derivative at the points x j , j =
0,1, · · · , M of a function w(x) defined on [a,b] such that w(x) ≡ 0 for x < a is given by

aDα
x j

w(x) ≈ ∆
αw(x j )

hα
= h−α

j∑
i=0

(−1)i

(
α

i

)
w j−i , j = 0,1, · · · , M . (4.23)

In matrix form, we can write (4.23), with g (α)
i = (−1)i

(α
i

)
, as



h−α∆αw(x0)

h−α∆αw(x1)

h−α∆αw(x2)

...

h−α∆αw(xM−1)

h−α∆αw(xM )


= 1

hα



g (α)
0 0 0 0 · · · 0

g (α)
1 g (α)

0 0 0 · · · 0

g (α)
2 g (α)

1 g (α)
0 0 · · · 0

. . . . . . . . . . . . · · · · · ·
g (α)

M−1
. . . g (α)

2 g (α)
1 g (α)

0 0

g (α)
M g (α)

M−1
. . . g (α)

2 g (α)
1 g (α)

0





w0

w1

w2

...

wM−1

wM


.

That is, the left-sided Riemann-Liouville derivative −∞Dα
x v(x, t ) can be approximated with an
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(M +1)× (M +1) lower triangular Toeplitz matrix L(α)
M as:

[
w (α)

0 w (α)
1 · · · w (α)

M−1 w (α)
M

]> = L(α)
M [w0 w1 · · · wM−1 wM ]> , (4.24)

where

L(α)
M = 1

hα



g (α)
0 0 0 0 · · · 0

g (α)
1 g (α)

0 0 0 · · · 0

g (α)
2 g (α)

1 g (α)
0 0 · · · 0

. . . . . . . . . . . . · · · · · ·
g (α)

M−1
. . . g (α)

2 g (α)
1 g (α)

0 0

g (α)
M g (α)

M−1
. . . g (α)

2 g (α)
1 g (α)

0


. (4.25)

In a similar way, the right-sided Riemann-Liouville derivative xDα+∞v(x, t ) can be approxi-

mated with an (M +1)× (M +1) upper triangular strip matrix L(α)
M , assuming w(x) ≡ 0 for x > b

as: [
w (α)

0 w (α)
1 · · · v (α)

M−1 v (α)
M

]> =U (α)
M [w0 w1 · · · wM−1 wM ]> , (4.26)

where

U (α)
M = 1

hα



g (α)
0 g (α)

1
. . . . . . g (α)

M−1 g (α)
M

0 g (α)
0 g (α)

1
. . . . . . g (α)

M−1

0 0 g (α)
0 g (α)

1
. . . . . .

· · · · · · · · · . . . . . . . . .

0 · · · 0 0 g (α)
0 g (α)

1

0 0 · · · 0 0 g (α)
0


. (4.27)

These approximations of symmetric Riesz fractional derivatives have been proven to give prac-

tically the same numerical results and, in the case of numerical solution of partial fractional dif-

ferential equations, lead to a well-posed matrix of the resulting algebraic system, see [104, 109].
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4.2 Matrix Transfer Techniques

Since the main idea of matrix transfer techniques is transferring the fractional exponent of frac-

tional derivative operator to the matrix obtained from discretization of the Laplacian, we first

introduce the definition of fractional exponent of a matrix from the theory of matrix functions,

see [61].

Definition 4.2.1. Given a generic matrix A, the fractional power of A is defined as a contour

integral

Aα = A

2πi

∫
Γ

zα−1(zI − A)−1d z, (4.28)

where Γ is a suitable closed contour enclosing the spectrum of A, σ(A), in its interior.

We consider the case where the fractional exponent of matrix A is expressed in terms of a

real integral. Detailed proofs can be found in [18], see also [4] which is based on a particular

choice of Γ and a subsequent change of variable.

Proposition 4.2.2. Let A ∈ Rm×m be such that σ(A) ⊂ C− (−∞,0]. For 0 < α < 1, the following

representation holds

Aα = A sin(απ)

απ

∫ ∞

0
(ρ

1
α I + A)−1dρ. (4.29)

In what follows in this section, spectral decomposition plays important role. We give an

overview in the following definition.

Definition 4.2.3. Assume that the Laplacian (−∆) has a complete set of orthonormal eigenfunc-

tions and the corresponding eigenvalues, respectively ϕ j and λ2
j , on a bounded regionΩ. That

is,

(−∆)ϕ j =λ2
jϕ j , inΩ.

In addition, we suppose that B(ϕ) = 0 on ∂Ω, the boundary of Ω, where B(ϕ) is one of the
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standard three homogeneous boundary conditions. Let

Wr =
{

w =
∞∑

j=1
c jϕ j

∣∣∣∣ c j = 〈w,ϕ j 〉,
∞∑

j=1
|c j |2|λ j |r <∞, r = max(α,0)

}
. (4.30)

Then for any w ∈Wr , (−∆)
α
2 w is defined as

(−∆)
α
2 w =

∞∑
j=1

c j

(
λ2

j

)α
2
ϕ j , (4.31)

where c j ∈ R, for j = 1,2,3, · · · . It can be easily seen that the operator (−∆)
α
2 is both linear

and self-adjoint. Also, if w ∈Wr∗ , where r ∗ = max(α1,α2,α1 +α2,0), then

(−∆)
α1
2 (−∆)

α2
2 w = (−∆)

α2
2 (−∆)

α1
2 w.

In the matrix transfer technique [66, 67], the fractional Laplacian is approximated by the

fractional power of the approximating matrix of the standard Laplacian. That is,

−(−∆)
α
2 ≈− 1

hα
T

α
2 , (4.32)

where T is the approximate matrix representation of the standard Laplacian, −∆, obtained

using finite difference methods. Note that the matrix T is required to be positive definite so

that its fractional power is well defined. However, this requirement is fulfilled by the underlying

standard centered difference scheme. The matrix transfer technique has been demonstrated to

be computationally efficient and accurate for space fractional differential equation, see [4,143].

4.3 Short Memory Principle

The nonlocality of the fractional derivative operators is a key issue in understanding and de-

veloping efficiently numerical schemes for solving the associated differential equations. The
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so called memory is associated with the fact that the definition of fractional derivatives involve

integral over the interval [a, x]. This is evident from the resulting matrix discretization.

The short memory principle has to do with ignoring the tail of the integral and then carry

out the integration only over a ‘smaller’ part in a neighborhood of the point of interest. This

principle makes sense for both time and space fractional derivatives. For problems involving

space fractional derivatives, far away points presumably have less impact on the determina-

tion of the spatial derivatives, while for the problems involving time fractional derivatives, it is

understood that remote events have minor effect.

Lemma 4.1.2 and Lemma 4.4 plays a very crucial role in the implementation of the short

memory principle. For instance, with Lemma 4.4, the entries in the matrix G (α)
M decay away from

the main diagonal and for very large meshes, the diagonals of G (α)
M become so indicative as we

move from the main diagonal, so that the resulting matrices after applying the short memory

principle, may be treated as banded matrices and can benefit from all the advantages of sparse

and structured matrices. Hence, the computational cost involved with the full matrix can be

greatly reduced.

When a threshold ε has been fixed for the amplitude of the smallest acceptable entries,

Lemma 4.4 can be applied to exactly establish the bandwidth. In fact, for

j > ε −1
α+1 (4.33)

the value |g j | is smaller than ε and can be ignored.
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Chapter 5

The FETD Real Distinct Poles Scheme

(FETD-RDP)

Our attention is focused on the nonlinear Riesz space fractional reaction-diffusion equation

with homogeneous Dirichlet boundary condition given as

 ut +λ (−∆)
α
2 u = f (t ,u), inΩ× (0, T ],

u(.,0) = u0, inΩ,
(5.1)

where λ > 0 is the diffusion coefficient, Ω is a bounded domain in RN with smooth boundary,

∂Ω, 1 < α ≤ 2 and (−∆)
α
2 represents the Riesz fractional derivative. We assume that f is a suf-

ficiently smooth function to ensure that the problem with the specified initial and boundary

conditions possesses a unique solution.
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5.1 Overview of FETD Schemes

By approximating the space fractional derivative in (5.1), we obtain the following systems of

nonlinear ordinary differential equations (ODEs):

Ut + AU =F (t ,U), (5.2)

where U is the vector containing the approximation to u, A is a matrix derived from the approx-

imation of the space fractional derivatives, and the term F (t ,U) approximates the nonlinear

function f (t ,u).

Using a variation of constants formula in (5.2) on the time interval [tn , tn+1], we have

U(tn+1) = e−k AU(tn)+
∫ tn+1

tn

e−A(tn+1−s)F (s,U(s))d s, (5.3)

where k = ∆t . Taking s = tn +τk with tn = nk, τ ∈ [0,1] and k is the time-step, the following

recurrence formula is obtained:

U(tn+1) = e−k AU(tn)+k
∫ 1

0
e−k A(1−τ)F (tn +τk,U(tn +τk))dτ. (5.4)

Note that the expression (5.4) is an exact solution of system (5.2), and its approximation leads

to different Fractional Exponential Time Differencing (FETD) schemes. For the case of integer

order derivative, see details work in [81].

FETD schemes have been very attractive due to the fact that the linear part of the Equa-

tion (5.4) can be treated separately. This is done by first discretizing the exponential operator

and then employing the advantage of the one-step variation of constants integral formula to

avoid iteration of the non-linearity in order to reduce computational time and preserve accu-

racy. A class of exponential time differencing schemes called ETD Runge-Kutta schemes was

proposed in [29]. However, the efficient resolution of the matrix exponentials is a major chal-

lenge in this work and many other schemes for more general problems. Due to the possibility of
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splitting, many researchers have explored the idea of using particular rational approximations

of the matrix exponential, see [81, 146]. Among such ETD schemes is an ETD Crank-Nicolson

Scheme (ETD-CN) which utilizes a Padé-(1,1) rational approximation [58]. Although, this ETD-

CN is highly efficient, it is not L-stable and therefore does not damp out spurious oscillations

generated by non-smooth initial and boundary conditions. Using an L-acceptable scheme for

the partial fraction decomposition of this approximation, the evolution process may be more

robust.

Different discretizations of the integral part lead to various methods of different orders and

properties. However, our interest is in second-order FETD schemes for which a linear approxi-

mation of the non-linear function is used,

F (tn +τk,U(tn +τk)) ≈F (tn ,U(tn))+τk

(
F (tn+1,U(tn+1))−F (tn ,U(tn))

k

)
,

which leads to the semi-discretized scheme given as

Un+1 = e−Ak Un + A−1
(
I −e−Ak

)
F (tn ,Un)+ A−2

k

(
k A− I +e−Ak

)
[F (tn+1,Un+1)−F (tn ,Un)].

(5.5)

Observe that the scheme in Equation (5.5) is fully implicit and would require Newton-type itera-

tions to recover the approximate solution. We therefore seek a linearly implicit implementation

for computational efficiency. By employing the constant approximation F (tn + s,U(tn + s)) =
F (tn ,U(tn)) in (5.4) and integrating, first order accuracy approximation is obtained as

U∗
n+1 = e−k AUn + A−1

(
I −e−k A

)
F (tn ,Un). (5.6)
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The final semi-discretized scheme is then obtained by setting F (tn+1,U∗
n+1) =F (tn+1,Un+1) as:

Un+1 = e−Ak Un + A−1
(
I −e−Ak

)
F (tn ,Un)

+ A−2

k

(
k A− I +e−Ak

)
[F (tn+1,U∗

n+1)−F (tn ,Un)] (5.7)

U∗
n+1 = e−Ak Un + A−1

(
I −e−Ak

)
F (tn ,Un).

5.2 The FETD-RDP Scheme

A major problem in the ETDRK schemes proposed by Cox and Mathews in [29] is in dealing with

the numerical cancellation errors inherent in evaluating coefficients such as A−1(I −e−k A), par-

ticularly when A has eigenvalues close to zero. In order to handle this issue, a contour integral

approach was introduced in [73] by Kassam and Trefethen to evaluate the coefficients. How-

ever, new challenges emerged, each time the problem is changed or the spatial resolution is

adjusted, due to the fact that there is a need to choose a contour in the complex plane that com-

pletely encloses all the eigenvalues of A. Another approach was introduced in [81, 96, 97, 146]

which uses Padé rational functions in approximating the matrix exponentials called ETD Padé

schemes. The issue with the numerical cancellation errors is avoided in these schemes. This

is achieved through a series of matrix algebraic operations, performed after replacing the ex-

ponential matrix with an appropriate Padé rational function. Among existing and commonly

used ETD Padé schemes are the ETD Crank Nicolson (ETD-CN) and ETD Padé(0,2) (ETD-P02).

Again, the proposed ETD Padé schemes also come with their shortcomings. One of these short-

comings these schemes is the lack of damping for the ETD-CN scheme and the complex poles

associated with the ETD-P02 scheme. These issues with complex poles have been known to

slow down the evolution.

Employing parallel techniques in dealing with multidimensional problems is an option most

researchers in this field would desire. Thus is essential to speed up the evolution. There is then

a need for a good separation between the poles of the rational approximation. However, Padé
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schemes do not have this property. In [8], a (non-Padé) rational approximation for the dis-

cretization of the matrix exponential is introduced among various ways for discretization of

the matrix exponential in (5.7) [81, 96, 97, 146]. This is splittable into simple real pole rational

functions, having error constant nearly best possible [133]. It was shown [133] that the approx-

imation

R(z) = 1+ 5
12 z

(1− 1
3 z)(1− 1

4 z)
= 9

1− 1
3 z

− 8

1− 1
4 z

≈ ez (5.8)

is nearly optimal (in error constant) for second-order rational approximations. This rational

approximation is called the real distinct poles (RDP) approximation.

Lemma 5.2.1. [8, 133] Given a generic rational function of the form

r (z) = 1+a1z

(1−b1z)(1−b2z)
, (5.9)

such that b1+b2+a1 = 1 and b1+b2−b1b2 = 1
2 . Then r (z) is a second order approximation to ez

i.e

r (z)−ez =C3z3 +O (zp+2)

with error constant

C3 = a1

2
− 1

6
. (5.10)

Note that from (5.8) when compared with (5.9), a1 = 5
12 , b1 = 1

3 and b2 = 1
4 . Therefore, the

error constant C3 = 0.0416̄.

Using the RDP rational function in (5.8) to approximate the matrix exponentials in (5.7), we

have

RRDP (−Ak) =
(

I − 5

12
Ak

)[(
I + 1

3
Ak

)(
I + 1

4
Ak

)]−1

≈ e−k A.

We utilize Padé-(0,1) as a locally second-order predictor of the solution in (5.7) given as

R0,1(−Ak) = (I + Ak)−1.
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Substituting these approximations into the semi-discrete equation (5.7), we obtain

Vn+1 = RRDP (−Ak)Vn + A−1 (I −RRDP (−Ak))F (tn ,Vn)

+ A−2

k
(k A− I +RRDP (−Ak)) [F (tn+1,V∗

n+1)−F (tn ,Vn)]

V∗
n+1 = R01(−Ak)Vn + A−1(I −R01(−Ak))F (tn ,Vn),

where Vn+1 ≈ Un+1.

We obtain a fully discretized scheme after simplifying as follows:

Vn+1 =
(

I − 5

12
Ak

)(
I + 1

4
Ak

)−1 (
I + 1

3
Ak

)−1

Vn

+k

2

(
I + Ak

4

)−1 (
I + Ak

3

)−1

F (tn ,Vn)

+k

2

(
I + 1

6
k A

)(
I + 1

4
k A

)−1 (
I + 1

3
k A

)−1

F (tn+1,V∗
n+1)

V∗
n+1 = (I + Ak)−1 (Vn +kF (tn ,Vn)) .

Note that we could take advantage of the following partial fraction decompositions

(
I − 5

12
Ak

)(
I + 1

4
Ak

)−1 (
I + 1

3
Ak

)−1

= 9

(
I + 1

3
Ak

)−1

−8

(
I + 1

4
Ak

)−1

(
I + Ak

4

)−1 (
I + Ak

3

)−1

= 4

(
I + 1

3
Ak

)
−3

(
I + 1

4
Ak

)−1

(
I + Ak

6

)(
I + Ak

4

)−1 (
I + Ak

3

)−1

= 2

(
I + 1

3
Ak

)−1

−
(

I + 1

4
Ak

)−1

to improve the computational efficiency of the scheme. Hence, using these decompositions

and simplifying, we have the final efficient scheme:

Vn+1 =
(

I + 1

3
Ak

)−1 [
9Vn +2kF (tn ,Vn)+kF (tn+1,V∗

n+1)
]

+
(

I + 1

4
Ak

)−1 [
−8Vn − 3k

2
F (tn ,Vn)− k

2
F (tn+1,V∗

n+1)

]
(5.11)

V∗
n+1 = (I + Ak)−1(Vn +kF (tn ,Vn)).
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Full details of the derivation of this scheme for integer-order reaction-diffusion equations could

be found in [8]. When the matrix involved comes from the discretization of fractional deriva-

tives, we called the scheme Fractional Exponential Time Differencing (FETD)

This final scheme is called the FETD Real Distinct Poles (FETD-RDP) Scheme. The following

algorithm implements the FETD-RDP Scheme:

Algorithm 1 FETD-RDP Scheme
1: Solve for first order predictor V∗

n+1

(I + Ak)V∗
n+1 = Vn +kF (tn ,Vn)

2: Solve for an+1 (Processor 1)

(
I + 1

3
Ak

)
an+1 = 9Vn +2kF (tn ,Vn)+kF (tn+1,V∗

n+1)

3: Solve for bn+1 (Processor 2)

(
I + 1

4
Ak

)
bn+1 =−8Vn − 3

2
kF (tn ,Vn)− k

2
F (tn+1,V∗

n+1) (5.12)

4: Obtain approximate solution Vn+1

Vn+1 = an+1 +bn+1 (5.13)

5.3 Stability Analysis

Theorem 5.3.1. The modulus of the rational approximation, R(z), given in (5.8) of e−z is less

than or equal to one, that is:

|R(z)| =
∣∣∣∣∣ 9

(1+ 1
3 z)

− 8

(1+ 1
4 z)

∣∣∣∣∣≤ 1,
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if the real part of z, Re(z), is nonnegative. In addition, |R(z)| −→ 0 as Re(z) −→∞.

Proof. Let z = a + i b, a, b ∈R and a ≥ 0. Simplifying (5.8), we have

|R(z)| =
∣∣∣∣∣ 9

(1+ 1
3 z)

− 8

(1+ 1
4 z)

∣∣∣∣∣=
∣∣∣∣ 12−5z

12+7z + z2

∣∣∣∣ .

Hence, it suffices to prove that

|12+7z + z2|2 −|12−5z|2 ≥ 0. (5.14)

For a ≥ 0, we have

|12+7z + z2|2 −|12−5z|2 = (12+7z + z2)(12+7z̄ + z̄2)− (12−5z)(12−5z̄)

= 144(z + z̄)+24zz̄ +12(z2 + z̄2)+7zz̄(z + z̄)+ z2z̄2

= 144(2a)+24(a2 +b2)+12(2a2 −2b2)+7(a2 +b2)(2a)

+a4 +2a2b2 +b4

= a4 +14a3 +48a2 +288a +2a(7+2a)b2 +b4 ≥ 0.

Clearly, using the partial fractional decomposition of R(z), |R(z)| −→ 0 as Re(z) −→ ∞. This

proves Theorem (5.3.1).

Remark 5.3.2.

Theorem 5.3.1 establishes the L-acceptablility of the RDP approximation given by (5.8). This is

further shown empirically through Figure 5.1.
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Figure 5.1: Behavior of functions e−z , RDP, Pade(0,2) and Pade(1,1) for z ∈ [0,100].

The RDP approximation is therefore an excellent choice for solving problems with high

frequency components with discontinuous boundary or initial data as well as significant ad-

vection see [8, 133] for more detail. This resolves many problems of spurious oscillations and

avoids complex poles associated with Padé-(0,2) and Padé-(1,1) approximation of matrix expo-

nentials, [58].

Stability Region

Following the same approach given in [17, 29, 36, 84], we analyze the stability of the scheme

(5.11) with the plots of its absolute stability regions. Consider a nonlinear autonomous ordinary

differential equation,

ut +λu =N (u), (5.15)

where N (u) is a nonlinear function. Assume that there exists a fixed point u0 such that N (u0)−
λu0 = 0. If u is a perturbation of u0 and γ = N ′(u0), then linearization gives the following test

equation:

ut = γu −λu. (5.16)
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We say that the fixed point u0 is stable if Re(γ−λ) < 0. In the context of the problem (5.1), λ

corresponds to the approximation of fractional diffusion terms.

Applying the semi-discretized form of the second order ETD (5.7) to the scalar test equation

(5.16) with λk = m, we have

un+1 = e−mun +kγ

[
(1−e−m)

m
+ (m −1+e−m)(e−m −1)

m2

]
un

+k2γ2
[

(m −1+e−m)(1−e−m)

m3

]
un . (5.17)

We generate different stability boundaries on the plane (δr ,δ j ) using the substitution γk = δ=
δr + iδ j . The region in the complex-λ plane where the solution un remains bounded as n →∞
is desired. Assume the solution is of the form, un = zn where z = |z|e iθ. Obviously, for |z| < 1,

the solution decays with n and it grows for |z| > 1. So, the condition |z| = 1 determines the

boundary of the stability region. Therefore, to find the boundary we set z = e iθ, with θ ∈ [0,2π].

Let

a = (m −1+e−m)(1−e−m)

m3
and b = (1−e−m)

m
+ (m −1+e−m)(e−m −1)

m2
.

Then, substituting kγ= δr + iδ j , Un = e i nθ in (5.17) and dividing through by e i nθ, we obtain:

e iθ = e−m + (δr + iδ j )b + (δr + iδ j )2a. (5.18)

Comparing the real and imaginary part after expanding (5.18) , we get

(
δ2

r −δ2
j

)
a +δr b = cosθ−e−m , (5.19)

2δrδ j a +δi b = sinθ. (5.20)

Solving these equations and simplifying we obtain the following system that defines our stabil-
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ity region:

Aδ4
r +Bδ3

r +Cδ2
r +Dδr −E = 0

δ j = sinθ

2δr a +b

where A = 4a3, B = 8a2b, C = 5ab2 −4a2 (cosθ−e−m), D = b3 −4ab (cosθ−e−m), E = a sin2θ+
b2 (cosθ−e−m).

For comparison purpose with the various second order FETD schemes, we make the follow-

ing substitutions to investigate the variation in stability regions

FETD-RDP : e−m ≈ 9

1+ 1
3 m

− 8

1+ 1
4 m

(5.21)

FETD-CN : e−m ≈
(
1− 1

2 m
)(

1+ 1
2 m

) (5.22)

FETD-P02 : e−m ≈ 2

2+2m +m2
. (5.23)
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Figure 5.2: Stability regions of FETD-RDP, FETD-CN, and FETD-P02 for different values of m.
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Remark 5.3.3.

1. Observe from Figure (7.1) that as we increase m, the stability regions of the schemes

widen. This then allows for larger time steps while the solution still remain stable.

2. Based on this comparison, we observe that the FETD-RDP has a better stability than

FETD-CN since the stability region of FETD-RDP contains larger values along the real

axis„ which means we can consider larger k = d t than for FETD-CN.

5.4 Error Estimates

Our interest here is to present error estimate results for ETD-RDP in the discretization of the

following semilinear evolution equation.

Ut + Au =F (U(t )) for t ∈ (0,T ], (5.24)

U(0) = U0.

For these estimates, the following assuptions are made: (i) A is a self-adjoint positive definite

operator with compact inverse in a Hilbert space H , (ii) the semilinear equation has a suffi-

ciently smooth solution u : [0,T ] → E =D(A) with derivatives in E , (iii) the function F : E → H

is sufficiently often Fréchet differentiable and satisfies the local Lipschitz condition. Under this

assumption the composition g : [0,T ] → H defined by t → g (t ) =F (U(t )) is a smooth mapping.

It is well known that the solution to this problem satisfies the integral equation.

u(t ) = S(t )U0 +
∫ t

0
S(t − s)F (U(s))d s, (5.25)
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where S(t ) := e−At is the analytic semigroup generated by A [154, Lemma 2.2.3, Theorem 2.6.2].

The recurrence relation on which these results are based is given as

u(tn+1) = S(k)u(tn)+k
∫ 1

0
S(k − sk)F (u(tn +τk))dτ (5.26)

obtained using the change of variables tn = nk, n ∈N +,0 < k ≤ k0 ∈ Re +, and s = tn +τk.

Definition 5.4.1 (Local Lipschitz condition). Suppose F is a nonlinear operator from a Banach

space B into B. F is said to satisfy the local Lipschitz condition if for any positive constant

M > 0, there is a positive constant LM depending on M such that when u, v ∈B, ∥ u ∥≤ M and

∥ v ∥≤ M ,

∥ F (u)−F (v) ∥≤ LM ∥ u − v ∥ .

Lemma 5.4.2. [9] The time discretization scheme (5.11) applied to the semilinear problem (5.24)

is accurate of order 2.

Lemma 5.4.3 (Stability Estimate, [9]). Let T j+1 and T j ,2 denote the local truncation errors at the

main and predictor stages of the scheme (5.11), then for k0 sufficiently small with 0 < k ≤ k0 and

for t ∈ (0,T ], there exists a constant C, depending on T , such that the error at time tn has bound

∥ en ∥≤C k
n−1∑
j=0
Ψ j+1 (5.27)

where

Ψ j+1 =C ∥ T j ,2 ∥ +k−1 ∥ T j+1 ∥, 1 ≤ j ≤ n,nk ≤ T

Theorem 5.4.4. [9] Under the stated assumption on F , if we assume further that g (l )(t ) ∈D(A2−l )

for l < 2, and the initial data v ∈D(A3) then for the numerical scheme (5.11) applied to the semi-
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linear problem (5.24), the following estimate for the error bound holds, for t ∈ (0,T ]

∥ en ∥ ≤C k2
[

(logn +1)
(∥ A2v ∥ + ∥ Av ∥)+ t̄ sup

0≤s≤tn

∥ A2g (s) ∥ +t̄ sup
0≤s≤tn

∥ Ag (s) ∥

+ t̄ sup
0≤s≤tn

∥ Ag (1)(s) ∥ +
∫ tn

0
∥ g (1)(τ) ∥ dτ+

∫ tn

0
∥ g (2)(τ) ∥ dτ

]

where the constant C depends on T .
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Chapter 6

Numerical Experiments

Using several examples, we investigate the performance and robustness of the FETD-RDP scheme

for space fractional reaction-diffusion problems. In particular, we consider problems having

sharp variations in solution profile and non-smooth/mismatched initial and boundary data.

The accuracy of the scheme in all cases is measured using the relative error

E(k) = ||u − ũ||∞
||u||∞

,

where u and ũ are the reference and approximate solutions, respectively. An exact solution can

be used as a reference solution if available, otherwise, an appropriate solution with a very fine

grid can be used. Leveque in [88] reported this idea as a well suited approach for recovering the

rate of convergence of numerical schemes, though it may not reflect the true error in using the

numerical scheme. The rate of convergence is calculated using the formula [88]:

p ≈
log

(
Ẽ(k)/Ẽ( k

2 )
)

log2
,

where Ẽ(k) is the approximate relative error on the temporal resolution k.
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6.1 Introduction

The description of transport dynamics in many complex systems is made possible by Kinetic

equations of the diffusion, diffusion advection, and Fokker-Planck equations with partial frac-

tional derivatives. These are governed by anomalous diffusion and non-exponential relaxation

patterns [93]. In [101], a Darcy-type law is derived from a fractional Newton’s law of viscosity

using spatial averaging methods. With this, description of shear stress phenomena in non-

homogeneous porous media is made possible. Furthermore, they studied reaction-diffusion

phenomena in disordered porous media in [129] with non-Fickian diffusion effects where an

effective medium equation of the concentration dynamics, using a fractional Fick’s law for the

particles flux was obtained. It was shown that the disordered structure of the porous medium

and the scaling from mesoscale to macroscale affect the the macroscale diffusion parameter.

In this section, we consider again nonlinear Riesz space fractional reaction-diffusion equa-

tion with homogeneous Dirichlet boundary condition given as

 ut +λ (−∆)
α
2 u = f (t ,u), inΩ× (0, T ],

u(.,0) = u0, inΩ,
(6.1)

where λ is the diffusion coefficient, Ω is bounded in RN , 1 < α ≤ 2 and (−∆)
α
2 represents the

Riesz fractional derivative. We assume that f is a sufficiently smooth function to ensure that

the problem with the specified initial and boundary conditions possesses a unique solution.

In [13,14,28], existence and uniqueness of solutions to the class of problem in (6.1) has been

investigated using some assumptions on f (such as local/global Lipschitz continuity). Also,

there have been many attempts to solve Equation (6.1) numerically. These include using finite

difference, finite element or finite volume discretisation of the fractional operator combined

with a semi-implicit Euler formulation for the time evolution of the solution. In this, a lin-

ear system of equations involving a fractional power matrix at each time stepmust be solved.

Recently, many authors have directed their effort to space discretization due to the fact that
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the resulting matrix is full. For example, approaches such as Krylov methods, fast numerical

integration in conjunction with effective preconditioners and Fourier spectral methods have

been employed, see [13, 20, 21, 28, 143, 147, 149]. However, there are very few works addressing

the study of time-discretization schemes for this class of multidimensional problems that can

complement the huge effort already put into the spatial part.

The purpose of this section is to fill in the gap described above. Our focus is to develop

a novel Fractional Exponential Time Differencing (FETD) method for non-linear Riesz space

fractional nonlinear reaction-diffusion equations. The advantage of this method is that it is

stable, second order convergent, and proven to be robust for problems involving non-smooth

initial and boundary conditions and steep solution gradients. Using some examples, we com-

pare our method over competing second order FETD schemes and discuss its superiority. Our

experiments show that the proposed scheme is computationally more efficient (in terms of CPU

time).

Model Problem with Exact Solution

To validate the second-order accuracy of the proposed FETD-RDP scheme, we consider the fol-

lowing Riesz space fractional reaction diffusion equation with homogeneous Dirichlet bound-

ary conditions [149].

∂u

∂t
=λ ∂αu

∂|x|α + f (x, t ,u), (x, t ) ∈ (0,1)× (0,1], 1 <α≤ 2, (6.2)

subject to initial condition

u(x,0) = 0, x ∈ (0,1),

where λ> 0 and

f (x, t ,u) = λ

4

{
3
[
1+ (2π)α

]
sin(2πx)− [

1+ (6π)α
]

sin(6πx)
}+αtα−1 sin3(2πx)−λu.
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By this construction, the exact solution to (6.2) is given as

u(x, t ) = tα sin3(2πx).

The numerical results are presented in Figures 6.1 and 6.2, and Table 6.1.
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Figure 6.1: The numerical solution of 6.2 obtained via FETD-RDP scheme vs the exact solution

when α= 1.8 and λ= 10−7

k h L∞ Error Rate Time (sec)

0.050000 0.050000 3.8926e-04 - 0.00147

0.025000 0.025000 1.1684e-04 1.74 0.00350

0.012500 0.012500 3.3961e-05 1.78 0.01240

0.006250 0.006250 9.1239e-06 1.90 0.05552

0.003125 0.003125 2.3743e-06 1.94 0.27502

Table 6.1: Emperical tested time rate of convergence of FETD-RDP for (6.2) with α = 1.8 and

K = 10−7
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Figure 6.2: Log-log plots showing convergence and efficiency of FETD-RDP with FETD-CN and

FETD-P(0,2) for the problem (6.2).
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Figure 6.3: Log-log plots showing convergence and efficiency of FETD-RDP with IMEX-BDF2

and IMEX-Adams2 for the problem (6.2)

Remark 6.1.1.

1. The second-order convergence of the FETD-RDP scheme is empirically validated by the

grid refinement given in Table 6.1.

2. The comparison of the FETD-RDP with other second order FETD schemes such as FETD-
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Pade(0,2) and FETD-CN shows that FETD-RDP is computationally more efficient see Fig-

ure 6.2.

3. Moving out of the FETD schemes, we also compare our proposed FETD-RDP scheme with

the well known BDF2 and IMEX-Schemes (IMEX-BDF2 and IMEX-Adams). As shown in

Figure 6.3, in general, the FETD-RDP scheme is more robust and computationally effi-

cient compared with the IMEX schemes.

6.2 Numerical Experiment I: Scalar Models

In this section, we discuss some numerical experiments for two-dimensional space-fractional

reaction-diffusion problems. These models are of particular important in applications.

6.2.1 Space Fractional Allen-Cahn Equation

We consider the nonlinear space fractional Allen-Cahn (S-FACE) problem of the form

∂u

∂t
=λ ∂αu

∂|x|α + (u +x)− (u +x)3, x ∈ [−1,1], t > 0, (6.3)

subject to initial and boundary conditions given as

u(x,0) = 0.47sin(−1.5πx)−0.47x, x ∈ [−1,1] and u(−1, t ) = 0, u(1, t ) = 0 t > 0.

Here, u represents the concentration of one of the species of the alloy and the parameter λ rep-

resents the diffuse interface width parameter. Note that this equation has solution regions near

±1 that are flat and where the interface does not change for a relatively long period of time, then

changes suddenly. Also, f (u), the nonlinear term, is the derivative of a free energy functional

F (u). However, the choice f (u) = (u + x)− (u + x)3 represents the bistable non-linearity for the

double-well potential.
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k h L∞ Error Rate Time (sec)

0.1000 0.1000 4.6948 ×10−4 - 0.00850

0.0500 0.0500 1.2791 ×10−4 1.88 0.00566

0.0250 0.0250 3.2893×10−5 1.96 0.02546

0.0125 0.0125 8.4377×10−6 1.96 0.12003

Table 6.2: Time rate of convergence of FETD-RDP for S-FACE with α= 1.8 and λ= 10−5
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Figure 6.4: Log-log plots showing convergence and efficiency of FETD-RDP with FETD-CN and

FETD-P(0,2) for the S-FACE (6.3)
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Figure 6.5: Log-log plots showing convergence and efficiency of FETD-RDP with IMEX-BDF2

and IMEX-Adams2 for the for S-FACE (6.3)

Remark 6.2.1.

1. The second-order accuracy of FETD-RDP is again demonstrated in Table 6.2.

2. As expected, the FETD-RDP scheme applied to S-FACE in Equation (6.3) is computation-

ally more efficienct than FETD-CN and FETD-P(0,2) without compromising the accuracy.

Furthermore, from Figure 6.28, it is interesting to observe that the FETD solutions to

the space fractional Allen-Cahn equation have comparable accuracy to BDF2 with much

higher computational efficiency. This is due to the necessity of iterating at each step.

3. The FETD-RDP scheme also has a very good comparison with the IMEX Schemes (IMEX-

BDF2 and IMEX-Adams2) both in accuracy and computational efficiency.

6.2.2 Fractional Enzyme Kinetics

We consider the two-dimensional Riesz space fractional enzyme kinetics (S-FEK) reaction-diffusion

problem with homogeneous Dirichlet boundary conditions:

∂u

∂t
=λ

(
∂αu

∂|x|α + ∂αu

∂|y |α
)
− u

1+u
0 < x < 1, 0 < y < 1, t > 0, (6.4)
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subject to initial condition

u(x, y,0) = 1, 0 ≤ x, y ≤ 1.

Observe that this equation is an example of a model with mismatched conditions due to the

fact that the boundary and the initial condition do not match. We use the model to examine

the ability of FETD-RDP to damp out spurious oscillation in two dimensional problems with

non-smooth data.

k h L∞ Error Rate Time

0.1000 0.0250 3.3610 ×10−4 - 0.12023

0.0500 0.0250 8.5225×10−5 1.98 0.23894

0.0250 0.0250 2.1502×10−5 1.99 0.47916

0.0125 0.0250 5.4032×10−6 1.99 0.94955

Table 6.3: Time rate of convergence of FETD-RDP for S-FEK with α= 1.6, λ= 0.01
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Figure 6.6: Log-log plots showing convergence and efficiency of FETD-RDP over FETD-CN,

FETD-P(0,2) and BDF2 schemes for S-FEK using α= 1.6 and λ= 0.01
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Figure 6.7: Log-log plots showing convergence and efficiency of FETD-RDP over IMEX-BDF2

and IMEX-Adams2 for the for S-FEK using α= 1.6 and λ= 0.01
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Figure 6.8: Solution of the two dimensional space fractional enzyme kinetics equation simula-

tion for t = 1 using 0.01 time step, α= 1.8 and λ= 0.01

Remark 6.2.2.

1. Again, the results presented in Table 6.3 and Figures 6.6-6.7 confirm the ability of the

FETD-RDP scheme not only to solve two dimensional space fractional problems, but also

fractional models with non-smooth data.
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2. The FETD-RDP scheme compared to other FETD schemes (FETD-CN and FETD-P(0,2))

and IMEX schemes (IMEX-BDF2 and IMEX-Adams): Once again it is the most accurate

and computationally efficient.

3. Moreover, we observe from Figure (6.8) that FETD-RDP damps spurious oscillations and

is therefore the most computational efficient scheme for space fractional enzyme kinet-

ics.

4. The accuracy of the FETD-CN solution is compromised by the spurious oscillations. How-

ever, the performance can be improved using initial smoothing steps [77]. This aspect has

not been considered here.

6.3 Numerical Experiment II: System of Two-dimensional Mod-

els

Introduction

Consider a system of two-dimensional nonlinear Riesz space fractional reaction-diffusion equa-

tions with homogeneous Dirichlet boundary condition on ∂Ω given as

ut + ζ1
∂αu

∂|x|α +ζ2
∂αu

∂|y |α = f1(u, v), (x, y, t ) ∈Ω× (0,T ] (6.5)

vt + K1
∂αv

∂|x|α +K2
∂αv

∂|y |α = f2(u, v), (x, y, t ) ∈Ω× (0,T ], (6.6)

with initial conditions

u(x, y,0) = u0(x, y), (x, y) ∈Ω∪∂Ω, (6.7)

v(x, y,0) = v0(x, y), (x, y) ∈Ω∪∂Ω. (6.8)
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where ζ1, ζ2, K1 and K2 are the diffusion coefficients, Ω is a bounded domain in R2, 1 < α≤ 2

and ∂α

∂|x|α represents the Riesz fractional derivative. f1 and f2 are assumed to be sufficiently

smooth functions to ensure that the problem with the specified initial and boundary conditions

possesses unique solutions.

Whenα= 2, the system (6.5)-(6.6) is the classical time-dependent system of reaction-diffusion

models. For many decades, this time-dependent system of reaction-diffusion equations has

been used to describe the time evolution of chemical or biological species in a fluid medium.

The description of transport of pollutants in the atmosphere, ground and surface water, track-

ing the progression of tumours, and studying pattern formation in biological species are made

possible using this type of system, see [6, 27, 48, 65, 82, 128, 131, 155] for detail. Many of these

phenomena have displayed anomalous processes such as sub-diffusion and super-diffusion of

which the classical (α = 2) mathematical models are not suitable. Recently, the attention of

researchers has been drawn to the study of fractional (non-integer) calculus due to its ability

to capture these anomalous processes. We now find systems of fractional reaction-diffusion

equations in many applications, including sound wave propagation in rigid porous materials,

and the memory and hereditary properties of different substances, see [39, 145]. In particu-

lar, the anomalous diffusion or dispersion effects caused by the movement of particles, which

is inconsistent with the classical Brownian motion model, is modelled using space fractional

derivatives, see [93]. The nonlinear Schrodinger equation with space fractional derivative in

one dimension is used to model the evolution of an inviscid perfect fluid with nonlinear dy-

namics, see [75]. In [69], the associated fractional Laplacian represents the dispersion effect of

the linearized gravity water waves equation for one dimensional surfaces.

The aim of this section is to develop a novel exponential integrator method for the system

of two dimensional nonlinear space fractional reaction-diffusion equations. This method uses

a real distinct poles discretization for the underlying matrix exponentials. The advantage of

this method is that it is stable, second order convergent, and proven to be robust for problems

involving nonsmooth/mismatched initial and boundary conditions. Our approach is exhib-
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ited by solving biological and biochemical systems of two dimensional problems: the fractional

Schnakenberg, Grey-Scott, Brusselator FitzHugh-Nagumo models. We empirically show the ef-

fect of the fractional power of the underlying Laplacian operator on the pattern formations in

these systems. This actually confirms the need for fractional calculus in understanding the

complexities involved in these models. Furthermore, the superiority of our method over some

competing second order FETD schemes, BDF2 scheme, and IMEX schemes is demonstrated.

Our experiments confirm that the proposed scheme is computationally more efficient and ro-

bust for system of two dimensional fractional differential equations.

6.3.1 The Fractional Schnakenberg Model and the Turing Pattern

We consider nonlinear two dimensional space fractional Schnakenberg model (S-FSM) with

homogeneous Dirichlet boundary conditions:

∂u

∂t
= λ1

∂αu

∂|x|α +λ2
∂αu

∂|y |α +γ(a −u +u2v), (x, y) ∈ (0,1)× (0,1), t > 0, (6.9)

∂v

∂t
= d1

∂αv

∂|x|α +d2
∂αv

∂|y |α +γ(b −u2v), (x, y) ∈ (0,1)× (0,1), t > 0, (6.10)

subject to initial conditions given as

u(x, y,0) = a +b +10−3 exp

{
−100

((
x − 1

3

)2

+
(

y − 1

2

)2)}
,

and

v(x, y,0) = b

(a +b)2
, 0 ≤ x, y ≤ 1,

where u and v represent chemical concentrations, λ1,λ2,d1,d2 are the diffusion coefficients, a

and b are reaction kinetic parameters, γ represents the relative strength of the reaction terms.

An increase in the value ofγmay result in an increase in activity of some rate-limiting. Schnaken-

berg system was first introduced in [120] to model autocatalytic chemical reaction which could

posses oscillatory behaviours. The presence of diffusion-driven instability gives rise to the spa-
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tial pattern formation found in this model.

Comparison of FETD-RDP Scheme with other Second-order Schemes for S-

FSM

We choose a = 0.1305, b = 0.7695, γ = 1.5, λ1 = λ2 = 0.1, and d1 = d2 = 0.001 for our computa-

tion, using fractional centered difference method for the spatial discretization. The proposed

FETD-RDP scheme is compared to some other second-order schemes for efficiency and accu-

racy.

Table 6.4: Time rate of convergence of FETD-RDP for S-FSM with different values of α and t = 1

k h L∞ Error Rate Time

α= 1.3 0.1000 0.0250 5.4656 ×10−4 - 0.25348

0.0500 0.0250 1.3445 ×10−4 2.02 0.50799

0.0250 0.0250 3.3023×10−5 2.03 1.00368

0.0125 0.0250 8.1489×10−6 2.02 1.97288

α= 1.5 0.1000 0.0250 7.2130 ×10−4 - 0.25861

0.0500 0.0250 1.7388 ×10−4 2.05 0.49116

0.0250 0.0250 4.1919×10−5 2.05 0.96467

0.0125 0.0250 1.0193×10−5 2.04 1.94773

α= 1.7 0.1000 0.0250 9.6645 ×10−4 - 0.26776

0.0500 0.0250 2.3029 ×10−4 2.07 0.47287

0.0250 0.0250 5.5694×10−5 2.05 1.18154

0.0125 0.0250 1.3863×10−5 2.01 2.04230
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Figure 6.9: Log-log plots showing convergence and efficiency of FETD-RDP with FETD-CN and

FETD-P(0,2) for the S-FSM (6.9)-(6.10), t = 1 and α= 1.5.
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Figure 6.10: Log-log plots showing convergence and efficiency of FETD-RDP with IMEX-BDF2

and IMEX-Adams2 for the for S-FSM (6.9)-(6.10), t = 1 and α= 1.5.

Remark 6.3.1.

1. The second-order convergence of the FETD-RDP scheme is empirically validated by the

grid refinement given in Table 6.6 for different values of α.

2. The comparison of the FETD-RDP scheme with other second order FETD schemes such
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as FETD-Pade(0,2) and FETD-CN shows that FETD-RDP is computationally more effi-

cient see Figures 6.9.

3. Considering second-order non-FETD schemes, we compare our proposed the FETD-RDP

scheme with the well known BDF2 and IMEX-Schemes (IMEX-BDF2 and IMEX-Adams).

As shown in Figure 6.10, in general, FETD-RDP scheme is more robust and computation-

ally efficient compared with the IMEX schemes.
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Figure 6.11: Solution plot of S-FSM (6.9)-(6.10) with t = 1 and γ= 40.

Effect of γ on the Turing pattern nature of Schnakenberg model

We examine the effect of the relative strength of the reaction terms, γ, on the solution profile

and how this affect the turing pattern found in this model.
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Figure 6.12: Effect of γ on the solution of S-FSM (6.9)-(6.10) with t = 1 and α= 2.0.
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Figure 6.13: Effect of γ on the solution of S-FSM (6.9)-(6.10) with t = 1 and α= 1.8.
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Figure 6.14: Effect of γ on the solution of S-FSM (6.9)-(6.10) with t = 1 and α= 1.5.

Remark 6.3.2.

1. We observe from Figures 6.29-6.14, that a Turing pattern is exhibited for all different val-

ues of fractional order, α, and the relative strength of the reaction terms, γ.
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2. The Turing patterns are different across different values of α for different values of γ.

While the case of α = 2.0 exhibits cell division nature, mitosis-like, the division found

when α = 1.8 is completely different. Furthermore, when α = 1.5, the solution profile

exhibits chain-pattern in which the divisions are in the chains.

3. Super-diffusion processes are observed even for different relative strength of the reaction

terms, γ using different values of α.

Effect of the fractional order, α, on the Turing pattern nature of Schnaken-

berg model

We examine the effect of the fractional order, α, on the solution profile and how this affects the

Turing pattern found in this model.
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Figure 6.15: Dynamics of the solution of S-FSM (6.9)-(6.10) with γ= 60 and α= 2.0.
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Figure 6.16: Dynamics of the solution of S-FSM (6.9)-(6.10) with γ= 60 and α= 1.8.
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Figure 6.17: Dynamics of the solution of S-FSM (6.9)-(6.10) with γ= 60 and α= 1.6.
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Figure 6.18: Dynamics of the solution of S-FSM (6.9)-(6.10) with γ= 60 and α= 1.5.

Remark 6.3.3.

1. We observe from Figures 6.15-6.18, that the Turing pattern is exhibited for all different

values of fractional order, α, over a period of time.

2. For the classical case α = 2.0, an increase in the value of t has no effect on the pattern

formation. However, as we decrease the value of α, the patterns are dynamic and the

divisions are faster. Also, a smaller value of α gives aligned and completely different pat-

tern. This is again a super-diffusion process, and so having fractional order in this model

is imperative to see intrinsic properties of the model.
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6.3.2 The Fractional Gray-Scott Model - Morphogenesis

We consider the nonlinear two-dimensional space-fractional Gray-Scott problem with homo-

geneous Dirichlet boundary conditions:

∂u

∂t
= λ1

∂αu

∂|x|α +λ2
∂αu

∂|y |α −uv2 +F (1−u), (x, y) ∈ (0,1)× (0,1), t > 0, (6.11)

∂v

∂t
= d1

∂αv

∂|x|α +d2
∂αv

∂|y |α +uv2 − (F +κ)v, (x, y) ∈ (0,1)× (0,1), t > 0, (6.12)

subject to initial conditions given as

u(x, y,0) =


0.5 0.45 < x < 0.55, 0.45 < y < 0.55,

1.0 otherwise,

and

v(x, y,0) =


0.25 0.45 < x < 0.55, 0.45 < y < 0.55

0.0 otherwise,

where F , κ, λ1, λ2, d1 and d2 are constants.

Comparison of RDP-FETD Scheme with other Second-order Schemes for S-

FGSM

We choose F = 0.03, κ= 0.055, α= 1.6, λ1 = λ2 = 0.0002, and d1 = d2 = λ1
2 for our computation

using the FETD-RDP scheme with the fractional centered difference method.
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Table 6.5: Time rate of convergence of FETD-RDP for S-FGSM with t = 2

k h L∞ Error Rate Time (sec)

α= 1.3 0.05000 0.05000 3.4387 ×10−9 - 0.21520

0.02500 0.05000 8.6129 ×10−10 2.00 0.43001

0.01250 0.05000 2.1559×10−10 2.00 0.84732

0.00625 0.05000 5.3749×10−11 2.00 1.70784

α= 1.6 0.1000 0.0250 1.9839 ×10−7 - 0.25118

0.0500 0.0250 4.9770 ×10−8 1.99 0.46305

0.0250 0.0250 1.2465 ×10−8 2.00 0.89773

0.0125 0.0250 3.1189 ×10−9 2.00 1.77096

α= 1.8 0.1000 0.0250 1.8462 ×10−6 - 0.21732

0.0500 0.0250 4.6382 ×10−7 1.99 0.28265

0.0250 0.0250 1.1626×10−7 2.00 1.25619

0.0125 0.0250 2.9105×10−8 2.00 2.39355
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Figure 6.19: Log-log plots showing convergence and efficiency of FETD-RDP with FETD-CN

and FETD-P(0,2) for the S-FACE (6.11)-(6.12) with α= 1.6 and t = 2
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Figure 6.20: Log-log plots showing convergence and efficiency of FETD-RDP with IMEX-BDF2

and IMEX-Adams2 for the for S-FGSM (6.11)-(6.12) with α= 1.6 and t = 2

Remark 6.3.4.

1. The second-order accuracy of FETD-RDP is again demonstrated in Table 6.5 for different

values of α.

2. The FETD-RDP scheme applied to S-FGSM in Equations (6.11)-(6.12) is computationally

more efficient than FETD-CN and FETD-P(0,2) as expected without compromising the

accuracy see Figure 6.19. Furthermore, it is interesting to observe from Figure 6.19 that

the FETD solutions of system of nonlinear space fractional Grey-Scott Model have com-

parable accuracy to BDF2 with much higher computational efficiency. This is due to the

necessity of iterating at each step.

3. We also have a good comparison with the IMEX Schemes (IMEX-BDF2 and IMEX-Adams2)

both in accuracy and computational efficiency see Figure 6.20.
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Effect of the fractional order, α, on the morphogenesis nature of the Gray-

Scott model

We examine the effect of the fractional order, α, on the solution profile and how this affects the

morphogenesis nature of the Gray-Scott model.
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Figure 6.21: V solution profiles for the S-FGSM with α= 1.6.
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Figure 6.22: V solution profiles for the S-FGSM with α= 1.8.
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Figure 6.23: Morphogenesis nature of V solution profiles for the S-FGSM (6.11)-(6.12) over time.
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(c) α= 2.0 and t = 6000
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Figure 6.24: V solution profiles for the S-FGSM with α= 1.6.

x

y

 u solution 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) α= 1.8 and t = 50

x

y

 u solution 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) α= 1.8 and t = 3000

x

y

 u solution 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) α= 1.8 and t = 3500

x

y

 u solution 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) α= 1.8 and t = 6000

Figure 6.25: V solution profiles for the S-FGSM with α= 1.8.
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Figure 6.26: Morphogenesis nature of U solution profiles for the S-FGSM (6.11)-(6.12) over time.

Remark 6.3.5.

1. We observe from Figures 6.33-6.38, a morphogenesis pattern is exhibited for all different

values of fractional order, α, over a period of time.

2. For the classical case α = 2.0, an increase in the value of t has no effect on the morpho-

genesis pattern. However, as we decrease the value of α, the patterns are dynamic and

the divisions are faster. Also, a smaller value of α gives an aligned and completely differ-
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ent pattern. This is again a super-diffusion process and so having fractional order in this

model is imperative to see intrinsic properties of the model.

6.3.3 The Fractional Brusselator Model - Turing Pattern

We consider the nonlinear two dimensional space fractional Brusselator (S-FBM) problem with

homogeneous Dirichlet boundary conditions:

ut = ζ

(
∂αu

∂|x|α + ∂αu

∂|y |α
)
+ A+u2v − (B +1)u, (x, y) ∈ (0,1)× (0,1), t > 0, (6.13)

vt = K

(
∂αv

∂|x|α + ∂αv

∂|y |α
)
+Bu −u2v, (x, y) ∈ (0,1)× (0,1), t > 0, (6.14)

subject to initial conditions given as

u(x, y,0) = 0.5+ y, and v(x, y,0) = 1+5x, 0 ≤ x, y ≤ 1.

Here, u and v represent dimensionless concentrations of two chemical reactants, ζ,K are the

diffusion coefficients and A and B are constants concentrations of the two imput chemical re-

actants. Many physical problems are modeled using the Brusselator system such as the forma-

tion of ozone by atomic oxygen through a triple collision and enzymatic reactions, see [85]. This

model is known to exhibit turing pattern, see [52, 86].

Comparison of RDP-FETD Scheme with other Second-order Schemes for S-

FBM

We choose A = 1, B = 3.4, ζ = K = 2×10−3 for our computation using fractional centered dif-

ference method for the spatial discretization. The proposed FETD-RDP scheme is compared to

some other second-order schemes for efficiency and accuracy.
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Table 6.6: Time rate of convergence of FETD-RDP for S-FBM with t = 1

k h L∞ Error Rate Time (sec)

α= 1.3 0.05000 0.05000 4.8237 ×10−3 - 0.03487

0.02500 0.05000 1.1921 ×10−3 2.02 0.06943

0.01250 0.05000 3.0656 ×10−4 1.96 0.13847

0.00625 0.05000 7.8099 ×10−5 1.97 0.27890

α= 1.5 0.05000 0.05000 4.2697 ×10−3 - 0.07582

0.02500 0.05000 1.0944 ×10−3 1.96 0.09496

0.01250 0.05000 2.8215 ×10−4 1.96 0.28431

0.00625 0.05000 7.1846 ×10−5 1.97 0.67017

α= 1.8 0.05000 0.05000 3.4494 ×10−3 - 0.04607

0.02500 0.05000 9.1795 ×10−4 1.91 0.13788

0.01250 0.05000 2.4014 ×10−4 1.93 0.19519

0.00625 0.05000 6.1545 ×10−5 1.96 0.45063
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Figure 6.27: Log-log plots showing convergence and efficiency of FETD-RDP with FETD-CN

and FETD-P(0,2) for the S-FBM (6.13)-(6.14)
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Figure 6.28: Log-log plots showing convergence and efficiency of FETD-RDP with IMEX-BDF2

and IMEX-Adams2 for the for S-FBM (6.13)-(6.14)

Remark 6.3.6.

1. Table 6.6 shows that the FETD-RDP scheme is second-order convergent by the grid re-

finement.

2. The FETD-RDP scheme is again computationally more efficient when compared with

FETD-Pade(0,2), FETD-CN, BDF2, IMEX-BDF2 and IMEX-Adams second-order schemes,

see Figures 6.27- 6.28.

The Turing Pattern Nature of Brusselator Model

As reported in the literature, see [52,86], that the Brusselator system is used to model the Turing

patterns, we exhibit this nature depending on the parameters chosen and the fractional order.

For this purpose, we use the parameters A = 1, B = 2.4, ζ=K = 10−5.
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Figure 6.29: V solutions profiles for the S-FBM (6.13)-(6.14) over a period of time for various

values of α.
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Figure 6.30: U solutions profiles for the S-FBM (6.13)-(6.14) over a period of time for various

values of α.

Remark 6.3.7.

We observe from Figure 6.29, that the Turing pattern is exhibited for all different values ofα over

a period of time.

6.3.4 The Fractional FitzHugh-Nagumo Model - Excitable Media

We consider the nonlinear two dimensional space fractional FitzHugh-Nagumo Model (S-FFNM)

with homogeneous boundary conditions. The study of the excitable media is made possible us-
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ing the FitzHugh Nagumo model see [35]. A cubic nonlinear reaction term is used to model the

propagation of the transmembrane potential in the nerve axon. However, a single ordinary dif-

ferential equation represents the recovery of the slow variable.

∂u

∂t
= λ1

∂αu

∂|x|α +λ2
∂αu

∂|y |α +u(1−u)(u −a)− v, (x, y) ∈ (0,2.5)× (0,2.5), t > 0, (6.15)

∂v

∂t
= ε(βu −γ−δ), (x, y) ∈ (0,2.5)× (0,2.5), t > 0, (6.16)

subject to initial conditions given as

u(x, y,0) =


1.0 0 < x ≤ 1.25, 0 < y < 1.25

0.0, otherwise

and

v(x, y,0) =


0.1 0 < x ≤ 2.5, 1.25 ≤ y < 2.5

0.0 otherwise,

where the model parameters ε, β, γ, δ and a are constants and λ1,λ2 are the diffusion coeffi-

cients. This choice of initial conditions is such that the trivial state (u, v) = (0,0) was perturbed

by setting the lower-left quarter of the domain to u = 1 and the upper half part to v = 0.1. This

allows the initial condition to curve and rotate clockwise generating the spiral pattern. This

model has gained much popularity in terms of applications for many field of study. Such ap-

plications are in the study C a+2 waves on Xenopus oocytes, the re-entry in heart tissue and

Medaka eggs, see [20, 74, 83, 89, 99].
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Comparison of RDP-FETD Scheme with other Second-order Schemes for S-

FFNM

Here we choose ε = 0.01, β = 0.5, γ = 1, δ = 0, a = 0.1, and λ1 = λ2 = 10−4 for our computation

using the FETD-RDP scheme with the fractional centered difference method.

Table 6.7: Time rate of convergence of FETD-RDP for S-FFNM

k h L∞ Error Rate Time

α= 1.3 0.1000 0.0250 2.3787 ×10−5 - 0.13983

0.0500 0.0250 5.8448 ×10−6 2.02 0.34823

0.0250 0.0250 1.4485 ×10−6 2.01 0.69920

0.0125 0.0250 3.6054 ×10−7 2.01 1.34459

α= 1.5 0.1000 0.0250 2.3704 ×10−5 - 0.16468

0.0500 0.0250 5.8246 ×10−6 2.02 0.32439

0.0250 0.0250 1.4435 ×10−6 2.01 0.57872

0.0125 0.0250 3.5930 ×10−7 2.01 1.00632

α= 1.8 0.1000 0.0250 2.3562 ×10−5 - 0.14025

0.0500 0.0250 5.7897 ×10−6 2.02 0.26373

0.0250 0.0250 1.4349 ×10−6 2.01 0.56663

0.0125 0.0250 3.5715 ×10−7 2.01 1.08846
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Figure 6.31: Log-log plots showing convergence and efficiency of FETD-RDP with FETD-CN,

FETD-P(0,2) and BDF2 for the S-FFNM (6.15)-(6.16) with α= 1.5
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Figure 6.32: Log-log plots showing convergence and efficiency of FETD-RDP with IMEX-BDF2

and IMEX-Adams2 for the for S-FFNM (6.15)-(6.16) with α= 1.5

Remark 6.3.8.

1. The second-order accuracy of the FETD-RDP is again demonstrated in Table 6.7.

2. The FETD-RDP scheme applied to S-FFNM, (6.15)-(6.16), is computationally more effi-

cient compared to the FETD-CN, the FETD-P(0,2) without compromising accuracy.
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3. The same observation is seen when The FETD-RDP scheme is compared BDF2, IMEX-

BDF2 and IMEX-Adams2 schemes both in accuracy and computational efficiency.

The Spiral Pattern Nature of The FitzHugh-Nagumo Model

FitzHugh-Nagumo Model has been observed to display spiral pattern for some choices of the

parameter constants. Also, here we choose ε= 0.01, β= 0.5, γ= 1, δ= 0, a = 0.1, and λ1 = λ2 =
2×10−4.
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Figure 6.33: Isotropic diffusion case: Spiral waves in V solutions profiles for the S-FFNM (6.15)-

(6.16) with t = 2500.
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Figure 6.34: Isotropic diffusion case: Spiral waves in U solutions profiles for the S-FFNM (6.15)-

(6.16) with t = 2500.

Considering different diffusion coefficients, we obtain different spiral pattern formations. This

has been observed in []. We choose ε = 0.01, β = 0.5, γ = 1, δ = 0, a = 0.1 using anisotropic

diffusion ratios.
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Figure 6.35: Anisotropic diffusion case: Spiral waves in V solutions profiles for the S-FFNM

(6.15)-(6.16) with t = 2500, λ1 = 5×10−5 and λ2
λ1

= 0.25 < 1.
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Figure 6.36: Anisotropic diffusion case: Spiral waves in U solutions profiles for the S-FFNM

(6.15)-(6.16) with t = 2500, λ1 = 5×10−5 and λ2
λ1

= 0.25 < 1
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Figure 6.37: Anisotropic diffusion case: Spiral waves in V solutions profiles for the S-FFNM

(6.15)-(6.16) with t = 2500, λ2 = 5×10−5 and λ1
λ2

= 0.25 < 1.
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Figure 6.38: Anisotropic diffusion case: Spiral waves in U solutions profiles for the S-FFNM

(6.15)-(6.16) with t = 2500, λ2 = 5×10−5 and λ1
λ2

= 0.25 < 1
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Remark 6.3.9.

1. Observe that in both the isotropic and anisotropic diffusion cases, the width of the excita-

tion wavefront is reduced for decreasing fractional powerα. The same for the wavelength

of the system. This then allows the domain to accommodate a larger number of wave-

fronts for a smaller fractional power.

2. Also, when α = 2, the spiral pattern is circular but the circular spiral pattern gradually

becomes rectangular for reduced fractional order α.

3. When an anisotropic diffusion ratios λ2
λ1

= 0.25 < 1 and λ1
λ2

= 0.25 < 1 are considered, see

Figures 6.35-6.38, the spiral wave follows an elliptical pattern. However, the have different

orientations.

6.4 Centered Difference vs Matrix Transfer

In this section, using the examples discussed above, we compare direct discretization of the

Riesz space fractional derivative using fractional centered differencing with the matrix transfer

technique discussed in the previous Chapter.

Centered Difference vs Matrix Transfer for the Enzyme Kinetic Model

Through the fractional Enzyme kinetic Equation (S-FEK) above, we compare direct discretiza-

tion of the Riesz space fractional derivative using fractional centered differencing with the ma-

trix transfer technique discussed in section (2) with α= 1.6, λ= 0.001.

109



Centered Difference Matrix Transfer Technique

k h L∞ Error Rate Time L∞ Error Rate Time

0.05000 0.0250 3.7408 ×10−5 - 0.42248 1.7498 ×10−4 - 0.06329

0.02500 0.0250 9.2612×10−6 2.01 1.00467 4.3543 ×10−5 2.01 0.13033

0.01250 0.0250 2.3041×10−6 2.01 1.62988 1.0859×10−5 2.00 0.23695

0.00625 0.0250 5.7462×10−7 2.00 3.11806 2.7115×10−6 2.00 0.47159

Table 6.8: Time rate of convergence of FETD-RDP for S-FEK with α= 1.6, λ= 0.001
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Figure 6.39: Log-log plots showing convergence and efficiency of FETD-RDP scheme compar-

ing the fractional centered differencing and matrix transfer technique for S-FEK using α = 1.6,

λ= 0.001

Centered Difference vs Matrix Transfer for the FitzHugh-Nagumo Model

The merits of using a matrix transfer technique or a fractional centered differencing are exam-

ined for the system of space fractional FitzHugh-Nagumo model (S-FFNM) (6.15)-(6.16) with

ε= 0.01, a = 0.1, β= 0.5, δ= 0, γ= 1, and λ1 =λ2 = 10−3.
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Table 6.9: Time rate of convergence of FETD-RDP for S-FFNM with t = 1

Centered Difference Matrix Transfer Technique

k h L∞ Error Rate Time L∞ Error Rate Time

α= 1.2 0.1000 0.0250 2.3549 ×10−5 - 0.12736 7.4332 ×10−5 - 0.02513

0.0500 0.0250 5.7872 ×10−6 2.02 0.28040 1.7978 ×10−5 2.05 0.04823

0.0250 0.0250 1.4343 ×10−6 2.01 0.61860 4.4214 ×10−6 2.02 0.09588

0.0125 0.0250 3.5702 ×10−7 2.01 1.00418 1.0963 ×10−6 2.01 0.18957

α= 1.4 0.1000 0.0250 2.3295 ×10−5 - 0.12579 1.3254 ×10−4 - 0.02531

0.0500 0.0250 5.7243 ×10−6 2.02 0.25551 3.2378 ×10−5 2.03 0.04842

0.0250 0.0250 1.4187 ×10−6 2.01 0.52547 8.0025 ×10−6 2.02 0.09544

0.0125 0.0250 3.5312 ×10−7 2.01 1.01078 1.9893 ×10−6 2.01 0.19255

α= 1.6 0.1000 0.0250 2.3202 ×10−5 - 0.12591 2.9512 ×10−4 - 0.02504

0.0500 0.0250 5.7002 ×10−6 2.03 0.25399 7.3579 ×10−5 2.00 0.04897

0.0250 0.0250 1.4126 ×10−6 2.01 0.49746 1.8375×10−5 2.00 0.09428

0.0125 0.0250 3.5159 ×10−7 2.01 1.29404 4.5918 ×10−6 2.00 0.18892

α= 1.8 0.1000 0.0250 2.3660 ×10−5 - 0.12604 6.0919 ×10−4 - 0.02516

0.0500 0.0250 5.8238 ×10−6 2.02 0.25046 1.5542 ×10−4 1.97 0.04879

0.0250 0.0250 1.4447 ×10−6 2.01 0.49733 3.9308 ×10−5 1.98 0.09496

0.0125 0.0250 3.5977 ×10−7 2.01 0.99377 9.8878 ×10−6 1.99 0.19052
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Figure 6.40: Log-log plots showing convergence and efficiency of FETD-RDP scheme com-

paring the centered differencing and matrix transfer technique for S-FFNM (6.15)-(6.16) with

α= 1.6

Centered Difference vs Matrix Transfer for the Schnakenberg Model

We examine the merits of using a matrix transfer technique or a fractional centered differencing

for the system of space fractional Schnakenberg model (S-FSM) (6.9)-(6.10).
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Table 6.10: Time rate of convergence of FETD-RDP for S-FSM (6.9)-(6.10) with t = 1 a = 0.1305,

b = 0.7695, γ= 1.5, λ1 =λ2 = 0.001, and d1 = d2 = 0.001

Centered Difference Matrix Transfer Technique

k h L∞ Error Rate Time L∞ Error Rate Time

α= 1.3 0.1000 0.0250 5.3589 ×10−5 - 0.24625 1.5989 ×10−3 - 0.04052

0.0500 0.0250 1.3293 ×10−5 2.01 0.48398 4.0492 ×10−4 1.98 0.08216

0.0250 0.0250 3.3066 ×10−6 2.01 0.98002 1.0163 ×10−4 1.99 0.16416

0.0125 0.0250 8.2431 ×10−7 2.00 1.97822 2.5442 ×10−5 2.00 0.32655

α= 1.5 0.1000 0.0250 1.3059 ×10−4 - 0.24426 2.3852 ×10−3 - 0.04421

0.0500 0.0250 3.3212 ×10−5 1.98 0.49677 5.6399 ×10−4 2.08 0.08108

0.0250 0.0250 8.3703 ×10−6 1.99 0.98015 1.3644 ×10−4 2.05 0.16219

0.0125 0.0250 2.1008 ×10−6 1.99 1.96976 3.3505 ×10−5 2.03 0.32798

α= 1.7 0.1000 0.0250 1.7465 ×10−4 - 0.44168 9.5076 ×10−3 - 0.04223

0.0500 0.0250 4.5045 ×10−5 1.95 0.50186 2.3822 ×10−3 2.00 0.08150

0.0250 0.0250 1.1450 ×10−5 1.98 0.98137 5.9731 ×10−4 2.00 0.16338

0.0125 0.0250 2.8872 ×10−6 1.99 2.22876 1.4960 ×10−4 2.00 0.32769

Centered Difference vs Matrix Transfer for the Grey-Scott Model

We examine the merits of using a matrix transfer technique or a fractional centered differencing

for the system of space fractional Grey-Scott model (S-FGSM) (6.11)-(6.12).
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Figure 6.41: Log-log plots showing convergence and efficiency of FETD-RDP scheme compar-
ing the fractional centered differencing and matrix transfer technique for S-FSM (6.9)-(6.10)
with t = 1, α= 1.5, a = 0.1305, b = 0.7695, γ= 1.5, λ1 =λ2 = 0.001, and d1 = d2 = 0.001

Table 6.11: Time rate of convergence of FETD-RDP for S-FGSM with t = 1, α = 1.5, F = 0.03,

κ= 0.063, and λ1 =λ2 = d1 = d2 = 0.005

Centered Difference Matrix Transfer Technique

k h L∞ Error Rate Time L∞ Error Rate Time

α= 1.3 0.1000 0.0250 3.3403 ×10−6 - 0.24548 1.2382 ×10−2 - 0.05082

0.0500 0.0250 8.3802 ×10−7 1.99 0.49113 3.0994 ×10−3 2.00 0.08273

0.0250 0.0250 2.0991 ×10−7 2.00 0.98821 7.7586 ×10−4 2.00 0.16217

0.0125 0.0250 5.2532 ×10−8 2.00 2.45318 1.9412 ×10−4 2.00 0.33851

α= 1.5 0.1000 0.0250 3.5112 ×10−5 - 0.28624 2.9574 ×10−2 - 0.04227

0.0500 0.0250 8.7653 ×10−6 2.00 0.50196 6.7515 ×10−3 2.09 0.08159

0.0250 0.0250 2.1913 ×10−6 2.00 0.99604 1.6452 ×10−3 2.03 0.18555

0.0125 0.0250 5.4793 ×10−7 2.00 1.98206 4.0805 ×10−4 2.01 0.39644

α= 1.7 0.1000 0.0250 8.5340 ×10−6 - 0.24607 1.4084 ×10−4 - 0.04329

0.0500 0.0250 2.1215 ×10−6 2.01 0.49175 3.5382 ×10−5 1.97 0.08233

0.0250 0.0250 5.2933 ×10−7 2.00 0.97554 8.9432 ×10−5 1.98 0.16487

0.0125 0.0250 1.3224 ×10−7 2.00 1.95107 2.2604 ×10−6 1.98 0.32747114
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Figure 6.42: Log-log plots showing convergence and efficiency of FETD-RDP scheme compar-

ing the fractional centered differencing and matrix transfer technique for S-FGSM (6.11)-(6.12)

with t = 1, α= 1.3, F = 0.03, κ= 0.063, and λ1 =λ2 = d1 = d2 = 0.005

Remark 6.4.1.

1. The two methods (centered difference and matrix transfer technique) gave second-order

convergence and are found to be effective in handling nonlinear space fractional reaction-

diffusion with mismatched data for different values of α, see Tables 6.8-6.11.

2. The matrix transfer technique compares favourably over the centered difference approach

in CPU time, see Tables 6.8-6.11. However, the centered difference approach compares

favourably over the matrix transfer technique in terms of error produced, see Tables 6.8-

6.11 and Figures 6.39-6.42.

3. It is therefore important to understand the trade-off in using any of these methods and

based on the interest of the researcher.
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Summary

The scheme proposed in this Chapter is shown to be second-order of convergence when ap-

plied to system of two-dimensional space-fractional reaction-diffusion models. The scheme

is especially robust for problems with non-smooth/mismatched initial and boundary condi-

tions. In terms of efficiency, the cpu time for our scheme compares favourably with second-

order schemes such as FETD-CN, FETD-Padé(0,2), the BDF2, IMEX-BDF2 and IMEX-Adams2

schemes. The wider region of stability of our scheme allows for large time steps without los-

ing stability of the solution. The algorithm could be easily implemented in parallel to take

advantage of multiple processors for increased computational efficiency. Empirically, super-

diffusion processes are displayed by investigating the effect of the fractional power of the un-

derlying Laplacian operator on the pattern formation found in these models. Furthermore, we

have discussed the trade-off between using fractional centered difference and matrix transfer

technique in spatial discretization of Riesz fractional derivatives for different values of α.
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Chapter 7

Rational Approximation of the

Mittag-Leffler (M-L) Function and Its

Inverse

7.1 Introduction

There have been many attempts to solve equations involving fractional derivatives both ana-

lytically and numerically. These include using the Laplace transform, Fourier transform and

inverse Fourier transform, variational iteration method, homotopy analysis method, Adomian

decomposition method, finite difference, finite element or finite volume discretisation of the

fractional operator combined with a semi-implicit Euler formulation for the time evolution of

the solution, exponential time differencing schemes and many others see [11, 33, 66, 67, 143–

145, 147, 153]. Almost all these methods yield equations involving the (generalized) Mittag-

Leffler functions. The role of the fundamental solution operator exponential function in the

solution of integer-order differential equations is similar to the role of the generalized Mittag-

Leffler functions in the solutions of fractional-order differential equations. In fact, the expo-

nential function is a special case of the Mittag-Leffler type for a particular choice of the param-
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eters. This has made Mittag-Leffler functions and their generalizations very important special

functions and has drawn the attention of many researchers hoping to find efficient ways to nu-

merically compute solutions. Recall from the earlier Section that the generalized Mittag-Leffler

function (also called two-parameter Mittag-Leffler function) is defined as:

Eα,β(z) =
∞∑

k=0

zk

Γ(αk +β)
, β, z ∈C, Re(α) > 0. (7.1)

A special case of this function, called a one-parameter Mittag-Leffler function, is given as:

Eα(z) = Eα,1(z) =
∞∑

k=0

zk

Γ(αk +1)
, z ∈C, Re(α) > 0. (7.2)

Straightforwardly, we see that this function represents many important special cases, such as:

E1,1(z) = ez , E1,2(z) = ez −1

z
,

E2,1(z) = cosh(
p

z), E2,2(z) = sinh(
p

z)p
z

,

E2,1(−z2) = cos(z), E0,1(z) = 1

1− z
, |z| < 1.

We also recall that the generalized Mittag-Leffler function is an entire function [112], so bounded

in any finite interval.

Lemma 7.1.1. Let β, x ∈Rwith 0 <β≤ 1. Then

Γ(x)

Γ(x +β)
≥ 1

xβ
. (7.3)

Proof. Recall from the definition of the Gamma function that

Γ(x +β) =
∫ ∞

0
y x+β−1e−y d y,
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and the Gamma identity holds:

Γ(x +1) = xΓ(x).

Let 0 <β< 1. Define the following functions

f (y) := yβxe−βy and g (y) := y (1−β)x+β−1e−(1−β)y .

Let p = 1
β

and q = 1
1−β . Then we have

1

p
+ 1

q
= 1.

Hence, Hölder’s inequality gives

Γ(x +β) =
∫ ∞

0
y x+β−1e−y d y

=
∫ ∞

0

(
yβxe−βy

)(
y (1−β)x+β−1e−(1−β)y

)
d y

≤
(∫ ∞

0
f (y)p

) 1
p
(∫ ∞

0
g (y)q

) 1
q

d y

=
(∫ ∞

0
yβe−y

)β (∫ ∞

0
y x−1e−y

)1−β
d y

= [Γ(x +1)]β[Γ(x)]1−β

= [xΓ(x)]β[Γ(x)]1−β

= xβΓ(x).

That is

Γ(x)

Γ(x +β)
≥ 1

xβ
, x ∈R, 0 <β≤ 1.

In [53], the computation of the generalized Mittag-Leffler function and its derivative are

studied with α> 0, β ∈ R and z ∈C. Later, an alternative seemingly simpler algorithm for com-

puting the generalized Mittag-Leffler function was proposed in [63,123]. This is based on mixed

techniques such as asymptotic series, Taylor series, and integral representations. Subroutines
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for evaluating the generalized Mittag-Leffler function with any desired accuracy were provided

in [46, 47, 110]. Numerical inversion of the Laplace transform of this function is instrumental in

the development of these scripts.

A naive approach to evaluating the generalized Mittag-Leffler is by truncating the series rep-

resentation of this function. Unfortunately, the convergence of the series can be very slow for

arguments having moderate or large modulus, giving a huge amount of computation. Numer-

ical cancellation could result, as well. One way out could be to use variable precision arith-

metic [46]. Thus, a rational function approach such as a Padé approximation could be desirable

and expected to be robust as far as accuracy and computationally efficient. The Padé approx-

imations of the Mittag-Leffler function have been recently introduced in [126] on the compact

set {|z| ≤ 1}. In [91], upper and lower bounds for the Mittag-Leffler function with t > 0 are given

using the Padé approximation. More works are done on this in [33] and a table of coefficients

of the rational approximants to the M-L function for 0 < α < 1 is provided. On [0.1,15], these

coefficients are calculated numerically to approximate the M-L function.

Furthermore, a global Padé approximation was previously proposed was used in [12] to

construct a uniform rational approximation of the M-L function with z > 0 and 0 < α < 1 see

also [4]. It is worth noting that most of these rational (Padé) approximations involve complex

roots, which further slow down the computation. When solving multidimensional problems, it

would be beneficial to utilize parallel techniques to speed up evolution. A good separation be-

tween the poles of the rational approximation is required, and most of the Padé approximations

lack such property. It is therefore imperative to develop a real distinct pole rational approxima-

tion of M-L function to facilitate easy parallelization while ensuring computational accuracy

and a relatively small error constant. This is the focus of the next section.
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7.2 A Real Distinct Poles Rational Approximation of the Gener-

alized Mittag-Leffler Functions

In this section, we develop a real distinct poles rational approximation (RDP) of the generalized

Mittag-Leffler functions and prove some of the useful properties of this approximation which

are applicable in solving fractional differential equations.

7.2.1 A Real Distinct Pole Rational Function

We seek to construct a rational function of the form [8, 9, 133]:

R∗(z) = 1+a1z

(1−a2z)(1−a3z)
, (7.4)

with a1, a2, a3 ∈R, a2 6= a3. This is not of Padé type.

Theorem 7.2.1. Assume a1, a2, a3 ∈R, a2 6= a3 such that

a1 +a2 +a3 = Γ(β)

Γ(α+β)
, a3 −a2a3 = Γ(β)

Γ(2α+β)
− Γ(β)

Γ(α+β)
a2,

and Eα,β(z) = Γ(β)Eα,β(z). Then, R∗(z) is a second order approximation to Eα,β(z) i .e

R∗(z)−Eα,β(z) =C z3 +O
(
zp+2) , as z → 0,

with error constant

C =
(
Γ(β)

Γ(α+β)
−1

)
a2

3 +
(

Γ(β)

Γ(2α+β)
−1

)
a3 +

(
Γ(β)

Γ(2α+β)
− Γ(β)

Γ(α+β)

)
a2 + Γ(β)

Γ(2α+β)
− Γ(β)

Γ(3α+β)
.
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Proof. We have from (7.1) that

Eα,β(z) = 1+ Γ(β)

Γ(α+β)
z + Γ(β)

Γ(2α+β)
z2 + Γ(β)

Γ(3α+β)
z3 +o(z4). (7.5)

Also, expanding the rational function, R∗(z), we obtain

R∗(z) = 1+ (a1 +a2 +a3)z + (a3 +a2(a1 +a2 +a3)−a2a3)z2 +o(z3). (7.6)

Using the assumptions, the coefficients of z and z2 clearly agree. In the expansion of R(z) the

coefficient of z3 is calculated to be

R∗(3)(0)

3!
= a1a2a3 + (a2

2 +a2
3)(a1 +a2 +a3).

Hence, substituting the order equations and simplifying, the error constant is

C = a1a2a3 + (a2
2 +a2

3)(a1 +a2 +a3)− Γ(β)

Γ(3α+β)

= a1

(
a3 − Γ(β)

Γ(2α+β)
+ Γ(β)

Γ(α+β)
a2

)
+ Γ(β)

Γ(α+β)
(a2

2 +a2
3)− Γ(β)

Γ(3α+β)

=
(
Γ(β)

Γ(α+β)
−1

)
a2

3 +
(

Γ(β)

Γ(2α+β)
−1

)
a3 +

(
Γ(β)

Γ(2α+β)
− Γ(β)

Γ(α+β)

)
a2

+ Γ(β)

Γ(2α+β)
− Γ(β)

Γ(3α+β)
.

Definition 7.2.2 (L-Acceptable). A rational approximation R(z) of Eα,β(z) is said to be A-acceptable,

if |R(z)| < 1 whenever Re(z) is negative and L-acceptable if, in addition |R(z)| → 0 as Re(z) →
−∞.

Lemma 7.2.3. The rational approximation (7.4) is L-acceptable if a2 > 0 and a3 > 0.

Proof. This follows from Maximum-Modulus principle.
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It is known that the smallest error constant, C , in Theorem (7.2.1) occurs when a2 = a3, [8, 9,

133], which is the case of repeated poles. Our aim is the construction of L-acceptable ratio-

nal approximation to Eα,β(z), as oscillations are frequent in the methods arising from the A-

acceptable diagonal Padé approximations. When such rational repeated pole approximations

are used for the Mittag-Leffler function, Eα,β(z), it results in inherently serial algorithms. Alter-

natively, we construct the L-acceptable rational approximation:

R(z) = 1+a1z

Γ(β)(1−a2z)(1−a3z)
, (7.7)

where

a1 = Γ(β)

Γ(α+β)
−a2 −a3, (7.8)

a2 = Γ(α+β)

Γ(2α+β)
− 1

4
, (7.9)

a3 = Γ(β)Γ(2α+β)

Γ(α+β)
(
5Γ(2α+β)−4Γ(α+β)

) . (7.10)

Due to the fact that R(z) given above possesses real distinct poles, it admits a partial fraction

expansion

R(z) = a1 +a2

Γ(β)(a2 −a3)(1−a2z)
− a1 +a3

Γ(β)(a2 −a3)(1−a3z)
, (7.11)

which permits the resulting algorithm to be implemented in a multiprocessor environment. We

call this rational function the Real Distinct Poles (RDP) rational approximation of the Mittag-

Leffler function, Eα,β(z).

Theorem 7.2.4. Let 0 < α ≤ 1, β > 0 such that (α+β)α < 4, α+β ≥ 3
2 and Γ(β) ≥ 1. Then the

rational approximation R(z) given in (7.7) is L-acceptable.

Proof. By Lemma (7.1.1) and (α+β)α < 4, we have

a2 = Γ(α+β)

Γ(2α+β)
− 1

4
≥ 1

(α+β)α
− 1

4
= 4− (α+β)α

4(α+β)α
> 0.
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Using the fact that Gamma function, Γ, is monotone increasing on [1.5,+∞) and that α+β≥ 3
2 ,

we have that

Γ(α+β)

Γ(2α+β)
< 1.

Hence, we obtain

5

4
− Γ(α+β)

Γ(2α+β)
> 0 =⇒ 5Γ(2α+β)−4Γ(α+β) > 0.

Therefore, a2 > 0 and a3 > 0. By Lemma (7.2.3) and the conditionΓ(β) ≥ 1, the proof is complete.

We therefore obtain a real distinct pole rational approximation of the generalized Mittag-Leffler

function

Eα,β(−z) ≈ 1−a1z

Γ(β)(1+a2z)(1+a3z)
, (7.12)

where a1, a2 and a3 are given in (7.8), (7.9) and (7.10) respectively.

7.2.2 Special Cases

For a one parameter M-L function, which is usually encountered when solving a time fractional

diffusion equation, our rational approximation reduces to:

Eα(z) = Eα,1(z) ≈ 1+b1z

(1−b2z)(1−b3z)
, (7.13)
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where

b1 = 1

αΓ(α)
−b2 −b3, (7.14)

b2 = Γ(α)

2Γ(2α)
− 1

4
, (7.15)

b3 = Γ(2α)

αΓ(α) (5Γ(2α)−2Γ(α))
. (7.16)

Also, we note that the M-L function considered here is a generalization of many important func-

tions. For α= 1 ,

a2 = Γ(2)

Γ(3)
− 1

4
= 1

4
and a3 = Γ(3)

Γ(2)(5Γ(3)−4Γ(2))
= 1

3
and a1 = 1

Γ(2)
− 1

3
− 1

4
= 5

12
.

Thus we have as a special case,

ez = E1,1(z) ≈ 1+ 5
12 z

(1− 1
4 z)(1− 1

3 z)
. (7.17)

This corresponds to the rational approximation proposed in [8, 9] which has been very use-

ful in developing an fractional exponential time differencing scheme for the solution of frac-

tional reaction-diffusion equations. The FETD scheme developed using (7.17) in [9] was es-

tablished to be stable, second order convergent and demonstrated to be robust for problems

(integer-order) involving non-smooth initial and boundary conditions and steep solution gra-

dients. These choices of coefficients are proven to give an error constant of 0.0416̄ which is near

optimal in [8, 9, 133].
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Figure 7.1: Empirical display of the L-acceptablity of RDP approximation of ML-fuction for dif-

ferent values of α and β.

7.3 Inverse Generalized Mittag-Leffler Function

In this section we introduce some notions useful to deal with the inverse generalized Mittag-

Leffler function given in [63] and give the appropriate rational approximation on a suitable do-

main. The inverse Mittag-Leffler function E−1
α,β(z) as the operator such that

E−1
α,β

[
Eα,β(z)

]= z. (7.18)
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In [63], the principal branch for the inverse M-L function in the complex plane is given satisfying

the following conditions:

1. The function E−1
α,β(z) is single valued and well defined on its principal branch.

2. Its principal branch reduces to the principal branch of the logarithm for α−→ 1.

3. Its principal branch is a simply connected subset of the complex plane.

In order to be able to deal with the inverse Mittag-Leffler function, the following definition is

essential.

Definition 7.3.1. A real function h defined on the interval I is completely monotone if it has

derivatives of all orders on I and

(−1)nh(n)(t ) ≥ 0, (7.19)

for all t ∈ I and n = 0,1,2, · · · .

In [111], it was shown that the Mittag-Leffler function Eα(−z) is completely monotone for all

z ≥ 0 if 0 ≤ α ≤ 1. Furthermore, in [121], using Hankel contour integration and correspond-

ing probability measures, it was shown that the generalized Mittag-Leffler function Eα,β(−z) is

completely monotone for all z ≥ 0 if and only if 0 <α≤ 1 and β≥α. That is

(−1)n d n

d zn
Eα,β(−z) ≥ 0, (7.20)

for all z ∈ I and n = 0,1,2, · · · if and only if 0 <α≤ 1 and β≥α.

7.3.1 Rational Approximation of the Inverse Generalized M-L Function

Using the fact that the generalized Mittag- Leffler function Eα,β(−z) is completely monotone for

all z ∈ [0,∞), we can conclude that it is a continuous and decreasing function on [0,∞). Hence,

the corresponding inverse generalized Mittag-Leffler function −E−1
α,β(z) is well defined on the
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interval (0, 1
Γ(β) ] since we know by definition that Eα,β(0) = 1

Γ(β) . A global rational approximation

of the inverse Mittag-Leffler function −E−1
α (z) for all z ∈ (0,1], 0 <α< 1 was given in [12]. Also,

a global Padé approximation of the inverse generalized Mittag-Leffler function for some partic-

ular values of α and β appears in [148].

The simple nature of the proposed real distinct pole rational approximation of the generalized

Mittag-Leffler function given in (7.7) makes it easy to derive its inverse. We rearrange (7.12)

and solve the resulting quadratic equation to obtain a rational approximation of the inverse

generalized Mittag-leffler function corresponding to Eα,β(−z) as:

−E−1
α,β(z) ≈ ε4

z
+ε3 −

√
ε1

z
−ε2 +

(
ε3 + ε4

z

)2
, (7.21)

where

ε1 = 1

a2a3Γ(β)
, ε2 = 1

a2a3
, ε3 = a2 +a3

2a2a3
, ε4 = a1

a2a3Γ(β)
,

and a1, a2, a3 are given in (7.8), (7.9) and (7.10) respectively with −E−1
α,β(z)|z→0+ = +∞ and

−E−1
α,β(z)|z→ 1

Γ(β)
= 0.

7.4 Applications of the RDP Approximation of M-L Functions

We present some of the natural consequences of these approximations to the Mittag-Leffler

function. In the cases where there are closed form solutions, we directly compare the RDP

approximation. Otherwise, we make use of commonly used subroutines for evaluating the gen-

eralized Mittag-Leffler function with desired accuracy provided in [46, 47, 110] (mlf).
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7.4.1 Application 1: The Complementary Error Function

For α= 1
2 and β= 1, we have a closed form representation as:

E 1
2 ,1(−z) = exp(z2)er f c(z), z ≥ 0, (7.22)

where er f c(z) is the complementary error function. Using RDP approximation for E 1
2 ,1(−z), we

compare the result with the closed form (7.22) in Figure 7.2.
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Figure 7.2: RDP Approximation of ez2
er f c(z) with E 1

2 ,1(−z) for z ∈ [0,25].

7.4.2 Application 2: Solution of Scalar Linear Fractional Differential Equa-

tions

We apply our proposed RDP approximation to the following scalar linear fractional differential

equations:
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1. Consider

r Dα
t u(t )+σu(t ) = 0, t ≥ 0, (7.23)

with initial condition

Iαu(t )|t=0 = κ1,

where 0 < α ≤ 1, σ > 0, κ1 is some constant, r Dα
t and Iα are, respectively, the Riemann-

Liouville fractional derivative and integral of order α [78, 109]. Applying a Laplace trans-

form to (7.23) and using the initial condition given, it is easy to obtain the analytical solu-

tion

u(t ) = κ1t−αEα,α(−σtα). (7.24)

We can see that as simple as this equation seems to be, the solution is given in the form

of the ML-function and computing it could be very involved when dealing with large ar-

guments. The RDP rational approximation of the solution is given as:

u(t ) = κ1(1−λ1σtα)

Γ(α)tα(1+λ2σtα)(1+λ3σtα)
, (7.25)

where

λ1 = Γ(α)

Γ(2α)
−λ2 −λ3, λ2 = Γ(α)

Γ(3α)
− 1

4
, λ3 = Γ(α)Γ(3α)

Γ(2α) [5Γ(3α)−4Γ(2α)]
.

The comparison between the RDP approximation (7.25) with the subroutine mlf is pre-

sented in Figure 7.3.
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(b) α= 0.8, σ= 0.01 and κ= 1.

Figure 7.3: RDP approximation vs mlf of the solution (7.27).

2. Consider

r Dα
t u(t )+r D

β
t u(t ) = δ(t ), t ≥ 0, (7.26)

with initial condition [
Iαu(t )+ Iβu(t )

]
|t=0 = κ2,

where 0 <α<β≤ 1, κ2 is some constant. The analytical solution is given as, [148],

u(t ) = (κ2 +1)tβ−1Eβ−α,β(−tβ−α). (7.27)

The RDP rational approximation of the solution is given as:

u(t ) = γ
(
tβ−1 −ζ1t 2β−α)

(1+ζ2tβ−α)(1+ζ3tβ−α)
, (7.28)

where γ= κ2+1
Γ(β) and

ζ1 = Γ(β)

Γ(2β−α)
−ζ2 −ζ3, ζ2 = Γ(2β−α)

Γ(3β−2α)
− 1

4
, ζ3 = Γ(β)Γ(3β−2α)

Γ(2β−α)
[
5Γ(3β−2α)−4Γ(2β−α)

] .

The comparison between the RDP approximation (7.28) with the subroutine mlf is pre-

131



sented in Figure 7.4.
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(a) α= 0.5, β= 0.55 and κ= 2.
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(b) α= 0.35, β= 0.95 and κ= 2.

Figure 7.4: RDP approximation vs mlf of the solution (7.27).

7.4.3 Application 3: Solution of the Space-Time Diffusion Equations

Consider the following space-time fractional diffusion problem, for which the analytical solu-

tion in the form of a Mittag-Leffler function is known.

∂αu(x, t )

∂tα
= ∂βu(x, t )

∂|x|β , 0 < x <π, 0 ≤ t ≤ 1, (7.29)

with initial and boundary conditions

u(x,0) = x4(π−x)4, 0 ≤ x ≤π,

u(0, t ) = u(π, t ) = 0, 0 ≤ t ≤ 1.

The analytical solution is given as, [34, 145],

u(x, t ) =
∞∑

k=1

48(1− (−1)k )(π4k4 −180π2k2 +1680)

πk9
Eα,1(−kβtα)sin(kx). (7.30)
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Observe that the solution involves a ML-function which is itself an infinite series, therefore giv-

ing a challenging computation. We apply the RDP rational function for the approximation of

the ML-function and obtain:

u(x, t ) =
∞∑

k=1

48(1− (−1)k )(π4k4 −180π2k2 +1680)(1−b1kβtα)sin(kx)

πk9(1+b2kβtα)(1+b3kβtα)
, (7.31)

where b1, b2, b3 are given in (7.14), (7.15) and (7.16) respectively. The approximation (7.31) is

compared with mlf. Clearly from Figure 7.5-7.6, there is a good match.
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(a) α= 0.65, β= 1.9 and t = 0.2.
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(b) α= 0.65, β= 1.9 and t = 0.8.

Figure 7.5: RDP approximation vs mlf of the solution (7.30) with N = 20, α = 0.65, β = 1.9 for

different values of t .
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Figure 7.6: RDP approximation vs mlf of the solution (7.30) with N = 20, α = 0.55, β = 1.95 for

different values of t .

7.5 Applications of the RDP Approximation of The Inverse M-L

Functions

In this section, we explore some applications of the inverses of generalized Mittag-Leffler func-

tions and use the proposed rational approximation for its evaluation. It should be noted that

as the Mittag-Leffler function is a generalization of the exponential function, so is the inverse

Mittag-Leffler function is a generalization of the logarithm function for α=β= 1.

7.5.1 Ultraslow Diffusion Model Using Structural Derivative Equations

It is well-known that some anomalous diffusion (sub-diffusion) models experience slow dif-

fusion for which a fractional derivative in term of order 0 < α < 1 is used. Many laboratory

experiments and observations have indicated ultraslow diffusion. This kind of diffusion is ob-

served to behave completely differently from the standard anomalous diffusion. Researchers

have ultilized in using the logarithmic diffusion model to describe the ultraslow diffusion but

with very little outcome. Extensive work was done in [25], where the inverse Mittag-Leffler func-
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tion was used as the structural function in modeling ultraslow diffusion of a random system of

two interacting particles.

For a structural derivative modeling ultraslow diffusion, the probability of finding a diffusion

particle at position x at time t is the solution to a diffusion equation

Sp(x, t )

St
= Dα

∂2p(x, t )

∂x2
, x ∈R, t > 0, (7.32)

where Dα is the generalized diffusion coefficient ( m2

sα ). The corresponding structural derivative

in time, using the inverse Mittag-Leffler function, is defined as:

Sp(x, t )

St
= lim

t∗→t

p(x, t∗)−p(x, t )

E−1
α,1(t∗)−E−1

α,1(t )
. (7.33)

Solving (7.33), using the kernel transform t̂ = E−1
α,1(t ), a Gaussian distribution is obtained as:

p(x, t̂ ) = 1√
4πDα t̂

e− x2

4Dα t̂ . (7.34)

The mean squared displacement of the ultraslow diffusion particle x(t ) and the characteristic

function of p(x, t ) can be obtained from (7.34) respectively as

〈x2(t )〉 = 2DαE−1
α,1(t ), (7.35)

p(x, q) = e−4Dαq2E−1
α,1(t ), (7.36)

where q is the spatial frequency (wave number). In [25], a generalized mean squared displace-

ment of the ultraslow diffusion particle x(t ) was proposed to contain classical Sinai anomalous

diffusion law and its generalization (see [124, 125]) as:

〈x2(t )〉 = 2Dα

[
E−1
α,1(1+ t )

]b
, b > 0. (7.37)

Note that this diffusion process describes a ballistic motion when b > 4, see [125].
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When β= 1, we have the rational approximation of the inverse Mittag-Leffler function given as

E−1
α (z) ≈ω1 + ω2

z
−

√
ω3

z
−ω3 +

(
ω1 + ω2

z

)2
, (7.38)

where

ω1 = b2 +b3

2b2b3
, ω2 = b1

2b2b3
, ω3 = 1

b2b3
,

and b1, b2, b3 are given in (7.14), (7.15) and (7.16) respectively with E−1
α (z)|z→0+ = +∞ and

E−1
α (z)|z→1 = 0. Using our proposed rational approximation to the inverse Mittag-Leffler func-

tion, E−1
α,1(t ) in (7.38), we obtain the generalized mean squared displacement of the ultraslow

diffusion particle x(t ) and the characteristic function of p(x, t ) as

〈x2(t )〉 = 2Dα

(
ω1 + ω2

1+ t
−

√
ω3

1+ t
−ω3 +

(
ω1 + ω2

1+ t

)2
)b

, (7.39)

p(x, q) = exp

{
−4Dαq2

(
ω1 + ω2

t
−

√
ω3

t
−ω3 +

(
ω1 + ω2

t

)2
)}

, (7.40)

which is easily computed and does not involve truncation issues.

7.6 Generalized Exponential Time Discretization Scheme

In this section, we introduce the generalized exponential time discretization scheme (G-ETD),

how clasical case is extended from integer order to non integer order and show how the pro-

posed G-RDP for the M-L function is applicable. Consider a semilinear differential (reaction-

diffusion) equation of time fractional order (FDEs) in the form:

 Dαt u +K ∆u = f (u) in Ω, t ∈ (0,T ) ,

u(0, ·) = u0,
(7.41)
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where K > 0, and Dαt denotes the Caputo derivative operator (with respect to t ) of non-integer

order 0 <α≤ 1.

We state the following Lemmas which will be useful in the development of the scheme later.

Lemma 7.6.1. [44] Let a ≤ t , Re(α) > 0, and β> 0. Let r ∈R such that r >−1. Then

∫ t

a
eα,β(t −τ;λ)(τ−a)r dτ= Γ(r +1)eα,β+r+1(t −a;λ), (7.42)

where

eα,β(t ;λ) = tβ−1Eα,β(−tαλ).

Lemma 7.6.2. [44] Let a < b ≤ t , Re(α) > 0, and β> 0. Then

∫ b

a
eα,β(t −τ;λ)dτ= eα,β+1(t −a;λ)−eα,β+1(t −b;λ), (7.43)

and

∫ b

a
eα,β(t −τ;λ)(τ−a)dτ= eα,β+2(t −a;λ)− (b −a)eα,β+1(t −b;λ)−eα,β+2(t −b;λ). (7.44)

7.6.1 The Generalized ETD-RDP Scheme for Time Fractional Equations

In order to generalize the ETD methods to time fractional differential equations, we first dis-

cretize Equation (7.41) in the spatial direction using any finite difference approach to get:

dα

d tα
U (t )+ AU (t ) =F (U (t )). (7.45)

Applying the Laplace transform, we obtain

sαŨ (s)− sα−1U0 + AŨ (s) =F (s) ⇐⇒ Ũ (s) = sα−1

(sαI + A)
U0 + 1

(sαI + A)
F (s).
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Then applying the inverse Laplace transform, we get

U (t ) = eα,1(t ; A)U0 +
∫ t

0
eα,α(t −τ; A)F (U (τ))dτ, (7.46)

where

eα,β(t ; A) =L −1
[

sα−β

(sαI + A)

]
= tβ−1Eα,β(−tαA).

Equation (7.46) represents a variation-of-constants formula for the fractional differential equa-

tion given in (7.41) which is the counterpart of Equation (5.4) for the fractional derivative case.

In the case of the exponential function, we have the semi-group property which is very help-

ful in developing the ETD scheme for integer order case. However, this property is not present in

extension to the generalized Mittag-Leffler function, eα,β(s + t ;λ) 6= eα,β(s;λ)eα,β(t ;λ) for α 6= 1

and β 6= 1. Therefore, the variation-of constants formula given in (7.46) in a piecewise form:

U (tn) = eα,1(tn ; A)U0 +
n−1∑
j=0

∫ t j+1

t j

eα,α(tn −τ; A)F (U (τ))dτ. (7.47)

Following the same approach as in [45], we consider the piecewise first-order interpolating

polynomials of the form:

P2, j (s) =F (U j )+ (s − t j )

h
(F (U j+1 −F (U j )), (7.48)

where

F (U (s)) ≈

 P2, j (s) for s ∈ [t j , t j+1], j = 0,1,2, · · · ,n −2

P2,n−2(s) for s ∈ [tn−1, tn].
(7.49)

Using Lemma (7.6.2), B = hαA, and simplifying, the resulting semi-explicit scheme for n ≥ 2 is
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given by

Un = eα,1(n;B)U0 +hαe∗
B,nF (U0)+hα

[
n−1∑
j=1

e(2)
B,n− j F (U j )−e(2)

B,0F (Un−2)+2e(2)
B,0F (Un−1)

]
,

(7.50)

with

e∗
B,n = eα,α+2(n −1;B)+eα,α+1(n;B)−eα,α+2(n;B),

and

e(2)
B,n =

 eα,α+2(1;B), n = 0,

eα,α+2(n −1;B)−2eα,α+2(n;B)+eα,α+2(n +1;B), n ≥ 1,
(7.51)

where

eα,β(t ;B) = hβ−1eα,β

(
t

h
;hαB

)
, h > 0.

We call the scheme (7.54) semi-explicit since we have yet to approximate the matrix-argument

ML-function involved. We have from the previous section, the partial fraction form of the ratio-

nal approximation of the ML-function as:

R(−z) = 1

Γ(β)

(
a1 +a2

a2 −a3

)
(1+a2z)−1 − 1

Γ(β)

(
a1 +a3

a2 −a3

)
(1+a3z)−1 ≈ Eα,β(−z), (7.52)

and for the special case, we have

Eα,1(−z) ≈
(

b1 +b2

b2 −b3

)
(1+b2z)−1 −

(
b1 +b3

b2 −b3

)
(1+b3z)−1, (7.53)

For convenience, denote

C1 = 1

Γ(α+1)

(
a1 +a2

a2 −a3

)
, C2 = 1

Γ(α+1)

(
a1 +a3

a2 −a3

)
, C∗

1 =
(

b1 +b2

b2 −b3

)
and C∗

2 =
(

b1 +b3

b2 −b3

)
.
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Using these approximations and simplifying, we have the following:

eα,1(tn ;B)U0 ≈
[
C∗

1 (I +b2tαn B)−1 −C∗
2 (I +b3tαn B)−1]U0,

hαe∗
B,nF (U0) ≈ hαtα+1

n−1

α+1

[
C1(I +a2tαn−1B)−1 −C2(I +a3tαn−1B)−1]F (U0)

+hαtαn

(
1− tn

α+1

)[
C1(I +a2tαn B)−1 −C2(I +a3tαn B)−1]F (U0),

hα
[
−e(2)

B,0F (Un−2)+2e(2)
B,0F (Un−1)

]
≈ hα

(α+1)

[
C1(I +a2B)−1 −C2(I +a3B)−1] (2F (Un−1)−F (Un−2)) ,

and

hαe(2)
B,n− j F (U j )

≈ C1hα

α+1

[
tα+1

n− j−1(I +a2tαn− j−1B)−1 −2tα+1
n− j (I +a2tαn− j B)−1 + tα+1

n− j+1(I +a2tαn− j+1B)−1
]
F (U j )

+C2hα

α+1

[
tα+1

n− j−1(I +a3tαn− j−1B)−1 −2tα+1
n− j (I +a3tαn− j B)−1 + tα+1

n− j+1(I +a3tαn− j+1B)−1
]
F (U j ).

Define the following as:

Q(k1;k2;B) = C1(I +k1B)−1 −C2(I +k2B)−1,

Q(k1;k2;n;B) = C1(I +k1tαn B)−1 −C2(I +k2tαn B)−1,

Q∗(k1;k2;n;B) = C∗
1 (I +k1tαn B)−1 −C∗

2 (I +k2tαn B)−1,

T (k1;k2;k3;k4;n − j ;B)

= k1hα

α+1

[
tα+1

n− j−1(I +k3tαn− j−1B)−1 −2tα+1
n− j (I +k3tαn− j B)−1 + tα+1

n− j+1(I +k3tαn− j+1B)−1
]

+k2hα

α+1

[
tα+1

n− j−1(I +k4tαn− j−1B)−1 −2tα+1
n− j (I +k4tαn− j B)−1 + tα+1

n− j+1(I +k4tαn− j+1B)−1
]

.
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T (k1;k2;k3;k4;n − j ;B)

= khα

α+1

[
tα+1

n− j−1(I +k1tαn− j−1B)−1 −2tα+1
n− j (I +k1tαn− j B)−1 + tα+1

n− j+1(I +k1tαn− j+1B)−1
]

.

Finally, the full explicit scheme for n ≥ 2 is given by

Un = Q∗(b2;b3;n;B)U0 +
hαtα+1

n−1

α+1
Q(b2;b3;n −1;B)F (U0)+hαtαn

(
1− tn

α+1

)
Q(b2;b3;n;B)F (U0)

+
n−1∑
j=1

T (C1;C2; a2; a3;n − j ;B)F (U j )+ hα

(α+1)
Q(b2;b3;B) (2F (Un−1)−F (Un−2)) . (7.54)

Summary

A real distinct pole rational approximation of the generalized Mittag-Leffler function is intro-

duced. Under some mild conditions, this approximation is proven and empirically shown to

be L-Acceptable. A complete monotonicity property of the Mittag-Leffler function enables us

to derive a rational approximation for the inverse generalized Mittag-Leffler function by inver-

sion. These approximations are especially useful in developing efficient and accurate numeri-

cal schemes partial differential equations of fractional order. Several applications are presented

such as complementary error function, solution of fractional differential equations, and the ul-

traslow diffusion model using the structural derivative. Furthermore, we propose a generalized

exponential integrator scheme for time-fractional nonlinear reaction-diffusion equation using

the M-L RDP approximation.
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Chapter 8

Conclusion and Recommendation

The scheme (FETD-RDP) proposed in this work is shown to be a second-order convergence

when applied to systems of two-dimensional space-fractional reaction-diffusion models. The

scheme is especially robust for problems with non-smooth/mismatched initial and bound-

ary conditions. In terms of efficiency, the cpu time for our scheme compares favourably with

second-order schemes such as FETD-CN, FETD-Padé(0,2), the BDF2, IMEX-BDF2 and IMEX-

Adams2 schemes. The wider region of stability of our scheme allows for large time step without

losing stability of the solution. One of the major benefits of the proposed scheme is that the

algorithm could be easily implemented in parallel to take advantage of multiple processors for

increased computational efficiency. Our approach is exhibited by solving many important non-

linear fractional reaction-diffusion models some of which exhibit pattern formations and have

applications in cell-division. Empirically, super-diffusion processes are displayed by investi-

gating the effect of the fractional power of the underlying Laplacian operator on the pattern

formation found in these models. Furthermore, we have discussed the trade-off between using

fractional centered differencing and matrix transfer technique in spatial discretization of Riesz

fractional derivatives for different values of α.

Finally, a real distinct pole rational approximation of the generalized Mittag-Leffler func-

tion is introduced. Under some mild conditions, this approximation is proven and empirically
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shown to be L-Acceptable. A complete monotonicity property of the Mittag-Leffler function en-

ables us to derive a rational approximation for the inverse generalized Mittag-Leffler function

by inversion. These approximations are especially useful in developing efficient and accurate

numerical schemes partial differential equations of fractional order. Several applications are

presented such as complementary error function, solution of fractional differential equations,

and the ultraslow diffusion model using the structural derivative. Furthermore, we propose

a generalized exponential integrator scheme for time-fractional nonlinear reaction-diffusion

equation using the M-L RDP approximation. However, the proposed scheme is still at the pre-

liminary stage. Further work is required on the analysis of the efficiency and convergence re-

sults.

In the future, we recommend that efforts should be directed towards examining the perfor-

mance of FETD-RDP scheme for problem with significant advection terms. The proposed real

distinct pole rational approximation of the generalized Mittag-Leffler function has opened up

a lot of work in this direction. Developing an efficient numerical scheme for nonlinear time-

space fractional equations using the approximation should be a focus of future effort.
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Appendix

A: Some Commonly used Padé approximations

[k/j] 0 1 2

0 1
1

1+z
1

1+z+ z2

2!
1

1 1
1−z

1+ 1
2 z

1− 1
2 z

1+ 2
3 z+ 1

3
z2

2!

1− 1
3 z

2 1

1−z+ z2
2!

1+ 1
3 z

1− 2
3 z+ 1

3
z2
2!

1+ 1
2 z+ 1

6
z2

2!

1− 1
2 z+ 1

6
z2
2!

3 1

1−z+ z2
2! − z3

3!

1+ 1
4 z

1− 3
4 z+ 1

2
z2
2! − 1

4
z3
3!

1+ 2
5 z+ 1

10
z2

2!

1− 3
5 z+ 3

10
z2
2! − 1

10
z3
3!

Table A1: Summary of some common Padé approximations
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