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ABSTRACT 

DESIGN AND MODELING OF FIBER OPTICAL CURRENT SENSOR BASED ON 

MAGNETOSTRICTION 

 

by 

Suha Lasassmeh 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Chiu-Tai Law 

 

A novel fiber optical current sensor (FOCS) which is based on a giant magnetostrictive material, 

Terfenol-D (T-D) is modeled and prototyped. Several experiments have been conducted to 

validate the expected results. Magnetostriction is defined as the change in dimensions of a 

material under the influence of an external magnetic field. The cause of the change in length is 

due to the rotation and re-orientation of the small magnetic domains in the magnetostrictive 

material. The magnetostriction of Terfenol-D is modeled and investigated using several software 

packages. Here, a magnetostriction-based FOCS using a Terfenol-D/epoxy composite is 

investigated. Particularly, the FOCS is based on applying magnetostrictive composite material to 

transform an external magnetic field into a corresponding mechanical strain caused by the 

magnetostriction of the composite. The composite is incorporated in the FOCS for increased 

durability, flexibility in shape, extended frequency response, and tensile strength compared to 

monolithic materials.  Coupling Terfenol-D with a fiber Bragg grating (FBG) is an excellent 

method of magnetic field sensing. It consists of an FBG embedded in the composite that converts 

magnetostrictive strain into frequency chirp of the optical signal in proportion to a magnetic 

field. This will form a sensor that is compact, lightweight, and immune from electromagnetic 

interference. For electromagnetic interference mitigation and optimal signal condition, an FBG, 

which can be easily integrated with an optical fiber network and reflect a narrow band of 
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wavelengths based on grating periods, is used to encode strain information onto an optical signal. 

This FOCS has potential in detecting power systems faults due to its advantages over the 

conventional current transformers.  

 

 Experiments have been performed to investigate the effect of direct current (DC) and 

alternate current (AC) on the response of the FOCS. Consistent results that indicate its reliability 

have been obtained. The experiment results matched the predicted response. The effect of the 

temperature on the response of the FOCS also has been investigated. Finally, future research 

directions are presented for the enhancement of the FOCS technology.  
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1. INTRODUCTION 

1.1 REVIEW OF CONVENTIONAL CURRENT SENSORS 

The interest in sensors for electrical current metering has increased significantly over the last 

decade due to the massive growth in the use of electric equipment in developed countries and the 

worldwide increase of the electrical distribution/consumption [1]. In electrical power distribution 

systems fault detection devices and schemes are very important.  Conventionally, a sequence of 

relays, current transformers (CT), and circuit breakers are deployed along power systems for the 

protection purpose with CTs functioning as current sensors. The CTs are used extensively for 

electric current sensing and monitoring the operation of the power grid [2]. The aim of this section 

is to provide a survey of the techniques that are available for current sensing. These techniques can 

be classified based upon the underlying physical principle as follow [3]: 

1. Ohm’s law of resistance  

2. Faraday’s law of induction  

3. Magnetic field sensors 

4. Faraday effect. 

1.1.1 CURRENT SENSORS BASED UPON OHM’S LAW OF RESISTANCE 

By the Ohm’s law (in equation 1.1) which states that the voltage drop V across a resistor R is 

proportional to the current I flowing, the resistor can be used for current sensing.  

                                               𝑉 = 𝐼𝑅                                                                            (1.1) 

The advantages of using current sensors which are based upon Ohm’s law are the low cost and 

reliability owing to the simple working principle.  

Shunt resistor is the simplest approach that can be used for sensing direct current (DC) and 

alternating current (AC). The voltage drop across the shunt resistor is used as an indicator of the 

current flow. Trace resistance (copper trace or busbar) sensing is another approach that based upon 
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the ohm’s law to sense the current instead of using a dedicated shunt resistor. This approach has 

very low cost with no additional power losses. However this approach has difficulties in 

maintaining reasonable accuracy owing to large thermal drift [3].  

1.1.2 CURRENT SENSORS BASED UPON FARADAY’S LAW OF INDUCTION 

Current sensors based upon Faraday’s law of induction provide electrical isolation between the 

current that needs to be measured and the output signals. Rogowski coil (shown in Fig. 1.1) is a 

common technique that has been used for current sensing based upon Faraday’s law [3]. Rogowski 

transducers have the following features: very high bandwidth, capability of measuring large 

currents, non-saturation, and ease of use [4].  

 

Fig. 1.1: Schematic of a Rogowski coil that uses a nonmagnetic core material [3].  

The working principle of Rogowski coil is based on Ampere’s law which relates the closed 

path integral of the magnetic flux density 𝐵⃗  inside the coil to the current 𝑖 𝑐: 

                                             ∮ 𝐵⃗ ⋅ 𝑑𝑙 = 𝜇0𝑖𝑐                                                                      (1.2) 
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where 𝜇𝑜 is the air permeability and Ci flows through the area enclosed by the closed path. Then 

𝐵⃗  inside the coil can be found in terms of the current Ci and the Rogowski radius r  with the 

assumption that the cross-section diameter of the Rogowski coil is much smaller than its radius.  

                                                0

2

ciB
r




                                                                          (1.3) 

The induced voltage into the Rogowski coil due to the change in the current Ci can be found by 

applying Faraday’s law of induction. 

                                 0

2

CNA did dB
v N NA

dt dt r dt




                                                  (1.4) 

 

Where A is the cross sectional area of the coil body that is formed by the windings, and N is the 

number of turns. An integrator with integrating constant k is required to get a signal outS  

proportional to the primary current Ci from the induced voltage (as shown in Fig 1.1).   

                  
0 0. (0) (0)

2 2

C
out out C out

t

NA di NA
S k dt S k i S

r dt r

 

 
                                    (1.5) 

Rogowski coil can be used to measure currents in power distribution systems, slip-ring induction 

motors, and short-circuit testing without saturation and hysteresis [3].  

Current transform (CT) is another common technique employs Faraday’s law of induction 

to measure current (shown in Fig 1.2). CT consists of one primary turn and N secondary turns 

similar to Rogowski coil but the core material has high relative permeability 𝜇𝑟. The secondary 

winding of the current transformer is loaded with a sense resistor sR . The current si  through sR  

generates a magnetic flux that reacts to counter the flux generated by the primary current.  
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Fig. 1.2: Current transformer consisting of one primary turn and multiple secondary turn [3].  

The voltage 𝑣𝑠 across sR  can be derived and written in terms of the cross-sectional area of the core 

A, N, and the average circumference of the core ml . 

                                   𝑣𝑠 = −𝑁
𝑑𝜙

𝑑𝑡
= −𝑁𝐴

𝜇0𝜇𝑟

𝑙𝑚

𝑑(𝑖𝑐−𝑁𝑖𝑠)

𝑑𝑡
                                         (1.6) 

To solve for si the above equation can be rewritten as 

                                         
2

0

.c m
s s

r t

i l
i v dt

N N A 
                                                         (1.7) 

The CT is typically described by its current ratio between primary and secondary coils. The 

secondary side of a current transformer should not be disconnected from its load while current is 

flowing in the primary to avoid high voltage [3]. The ratings of the secondary windings of the 

current transformer have been standardized in order to achieve some form of interchangeability 

among different relays and meters from various manufactures. In the US, CT secondary windings 

are rated for 5A. CTs can be manufactured as free-standing devices, or they may be built inside 

the bushing of some power apparatus such as a circuit breaker [1].  



 

 

5 

 

1.1.3 MAGNETIC FIELD SENSORS 

Magnetic field sensors are able to sense static and dynamic fields, and can be considered as a major 

advantage for the magnetic field sensors over the current sensors based on Faraday’s law of 

induction that cannot perform DC measurements. There are different configurations for current 

sensing with magnetic field sensing devices. Hall Effect sensor is one of the most popular magnetic 

field sensors [3].  

1.1.4 CURRENT SENSORS THAT USE THE FARADAY EFFECT 

One of the Michael Faraday’s many discoveries was finding a difference in refractive index of 

glass for left-handed and right-handed circularly polarized light induced by an external magnetic 

field. In 1854, Émile Verdet showed that the angle of rotation 𝜃 of linearly polarized light is 

proportional to the strength of the magnetic field and the cosine of the angle between the field and 

the propagation direction of the light wave [1]. This can be expressed mathematically by: 

                                               V H d s                                                                     (1.8) 

where, V is Verdet constant of the optical material, H  is the applied magnetic field intensity, and 

d s  is the differential vector for the line integral along the direction of propagation. This effect is 

called the Faraday effect or linear magneto-optic effect and can be used to build optical current 

sensors (OCSs). 

1.2 INTORDUCTION TO OPTICAL CURRENT SENSOR TECHNOLOGY 

OCSs have many considerable advantages over the conventional CTs, including immunity to 

electromagnetic interference (EMI), wide measurement range, compact design, reduced 

complexity, the potential to make measurements in high voltage and/or high magnetic induction 

environment, lower cost of insulation and light weight [5], [6]. Owing to these advantages, interest 

in OCS technology has increased lately.   
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 According to the sensing mechanisms, OCSs can be categorized into two main groups: (i) 

OCSs operating on the principle of Faraday magneto-optics, (ii) OCSs employing magnetostrictive 

materials. In Faraday magneto-optic effect, the polarization azimuth angle of a linearly polarized 

light beam propagating inside an optical material is rotated under the influence of a magnetic field 

which is generated by the electrical current to be measured [7]. On the other hand, OCSs operating 

on the principle of magnetostriction converts the magnetic field generated by a nearby current 

source into longitudinal mechanical strain, which is used to modulate an optical signal carried by 

a fiber. Yariv and Winsor developed OCS employing magnetostrictive material as a transducer to 

detect the magnetic field [8]. The basic geometry of their sensor is a low-loss optical fiber 

embedded in a magnetostrictive jacket that undergoes a longitudinal strain (magnetostriction) 

when immersed in a magnetic field. This strain affects the phase delay of a light beam propagating 

in the fiber [8]. Mora et al presented a magnetostrictive sensor for dc magnetic fields interrogated 

by two fiber Bragg gratings (FBGs) that measures electric current and temperature simultaneously 

[9]. This sensor consists of two rods of different alloys joined together and a fiber grating epoxy-

bonded to those alloys as shown in Fig. 1.3. The first rod is made of Terfenol-D (T-D) which is a 

giant magnetostrictive material while the second rod is made of Monel 400. Both materials have 

the same thermal expansion coefficient. When T-D expands elastically under a magnetic field, the 

Bragg wavelength of its attached grating is shifted and the FBG outputs at longer wavelengths.  

However this sensor configuration requires spectral measurement and does not compensate for 

temperature. Yi et al. [10] used two techniques to compensate for the temperature effect. The first 

technique involved two FBGs placed perpendicular to each other and bounded onto a single T-D 

layer. The second technique involved two FBGs and stacking them onto two different 

magnetostrictive bars (T-D and nickel) which are placed physically parallel to each other. T-D and 
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nickel have similar thermal expansion coefficients but opposite polarity in magnetostrictive 

coefficients. Another configuration of sensor, proposed in [11], uses one grating, one half of the 

grating mounted on T-D and the other half of the FBG mounted on the Monel-400 rod. However, 

this design has a fragile structure owing to the brittleness of T-D, and the uncoated FBG. The 

severe shortcoming is in its limited response over a narrow 𝐻⃗⃗  range. Satpathi et al. [12] proposed 

and prototyped an optical current sensor with a piece of T-D attached to an FBG. T-D was 

subjected to mechanical pre-stress and DC magnetic field bias tuning in order to obtain a linear 

response.  

Yang et al [13] proposed in 2009 the first optic magnetic field sensor that utilizes a thin 

film of T-D instead of the bulk one. In this sensor, T-D thin films were deposited on etched FBGs. 

This method reduced the size of the sensor and increased the sensitivity to the magnetic field. 

Another approach was presented by Quintero et al. in [14]; they presented a sensor for both AC 

and DC magnetic field measurements. In this approach the sensor was prototyped by coating the 

grating with a layer of a composite. This composite was obtained by mixing T-D particles with an 

epoxy resin.  
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Fig. 1.3: Schematic diagram of the sensor proposed in [8] 

 

1.3 INTRODUCTION TO MAGNETOSTRICTION 

Generally, magnetostriction (λ) can be described as the change in the shape of a material due to a 

change in its state of magnetization (M) [15]. The dimensional change of the magnetic material 

due to applied magnetic field is known as the Joule effect while the magnetization change of the 

material due to the applied stress is known as the Villari effect. T-D and Galfenol are the most 

known giant magnetostrictive materials. Their typical properties are summarized in Table 1.1 

below. 

 

Material Name Free Strain (ppm) Modulus(GPa) Tensile Strength (MPa) 

Terfenol-D 1600-2400 25 – 35 28 (Brittle) 

Galfenol 300 – 400 ~ 60 500 (Ductile) 

Table 1.1: General properties of Terfenol-D and Galfenol 
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T-D (TbxDy1−xFey), with x~0.3 and y~2, is an alloy of rare earths Terbium (Tb) and 

Dysprosium (Dy) with 3D transition metal Iron (Fe). Large axial magnetostriction at relatively 

small applied field is the goal of most research investigations on T-D. This alloy is a commercially 

available material for a large variety of applications and is currently produced in a variety of forms, 

solid (monolithic), powder and thin films as shown in Fig. 1.4. T-D has numerous applications, 

such as power ultrasonic transducers, linear motors, micro-pumps, micro-valves, and micro-

positioners [16]. The performance of T-D in different applications is highly dependent on the state 

of the material such as the compressive mechanical load or prestress. It has been found that 

applying prestress to the T-D sample increases considerably the total strain capability of the 

material [17].  

There are many shortcomings associated with the use of monolithic T-D; operation above 

a few kilohertz is limited by the presence of eddy-current losses. Another problem associated with 

monolithic T-D is brittleness, which causes difficulties in machining and device fabrication. To 

overcome those shortcomings, T-D composites were formed by incorporating T-D particles into a 

passive polymer matrix [18]. 

 

 

 

 

 

 

 

 

Fig 1.4: Commercially available forms of Terfenol-D. 
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1.4 MODELING MAGNETOSTRICTION 

To fully understand the capabilities of using the magnetostrictive materials in the fiber optical 

current sensor, it is imperative to model and understand the mechanical and magnetic 

characteristics of the magnetostrictive materials. For this purpose, several models will be discussed 

in later chapters such as energy-based models and finite element models that have been 

implemented in COMSOL Multiphysics .  

1.5 PROPOSED FOCS AND COMPONENTS  

T-D composites can reduce the eddy current loss and improve the fracture toughness compared to 

monolithic T-D. In general, magnetostrictive composites can be fabricated by embedding 

magnetostrictive powders in a nonmetallic binder, such as epoxy. Here, a magnetostriction-based 

FOCS using a T-D/epoxy composite is investigated. Particularly, the FOCS is based on applying 

magnetostrictive composite as a transducer that transforms an external magnetic field into a 

corresponding magnetostrictive strain. The composite is incorporated in the FOCS for increased 

durability, flexibility in sensor geometry, extended frequency response, and tensile strength 

compared to monolithic materials.  For magnetic field sensing, an FBG is embedded in the 

composite that converts the magnetostrictive strain distribution into the frequency chirping of the 

optical signal in proportion to a magnetic field. Such a sensor is compact, lightweight, and immune 

from electromagnetic interference. Moreover, sensors based on FBGs can be easily integrated with 

an optical fiber network and enable the encoding of the magnetic field amplitude at various 

locations into different optical channels. Here, we propose a new design of FOCS that addresses 

the shortcomings of the previous designs. The new design considers the use of a T-D composite 

with a graded particle size distribution. A magnetostrictive composite with certain engineered T-

D particle distributions can exert various strain distributions according to different levels of 
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magnetic field. Here, the FBG is embedded in composite blocks with different distributions of T-

D particles (T-D particles ranging from 20 to 300 microns are commercially available) that produce 

an approximately linear strain distribution along the FBG. As a result, the optical signal reflected 

by the FBG has a spectral width proportional to the magnetic field. The FOCS will be fabricated 

with specimens of different volume fractions Vf   of T-D. In addition, particles of MONEL 400 

were blended with T-D particles to compensate for the thermal expansion and ensure a more 

uniform distribution of T-D. Since strain scales up with higher Vf, the region with higher 

distribution of T-D particles will have higher strain in an applied magnetic field. In Fig. 1.5, areas 

with higher volume fraction of T-D are shown with darker gray scale.  As 𝐻⃗⃗  increases, an FBG 

with uniform period (see Fig. 1.5 a) is transformed into a non-uniform one (see Fig. 1.5 b). 

 

 

Fig. 1.5a: Chirped FOCS with graded T-D composite at H=0. Fig. 1.5b: Chirped FOCS with graded T-D composite at H≠0 

 

 We propose another design, the cone-shaped sensor, to improve the response over a wider 

magnetic field H range. Random oriented particles of T-D ranging from 106-300 μm were used to 

prepare the magnetostrictive composite. Fig. 1.6 shows that the cone has different cross sectional 

area along its longitudinal axis. Owing to the boundary effect from the tapered shape, the strain 

and magnetization will raise as the cross section decreases. Thus, the grating period of the FBG 
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embedded in the cone-shaped magnetostrictive composite becomes aperiodic when the composite 

is stressed under the effect of the applied magnetic field H.  

 

Fig. 1.6: Cone-shaped FOCS.  

1.6 EXPERMINTAL COMPONETNTS AND SETUP  

The cone-shaped FOCS were prototyped in our lab, and tested for DC and AC operations to obtain 

their output response. Broadband Superluminescent light emitting diode (SLED) was used as the 

light source in our experiments. Optical spectrum Analyzer (OSA) was used to characterize the 

spectral responses of sensors.  A single channel fiber link was used to connect the SLED, the output 

measurement equipment and the sensor as illustrated in Fig. 1.7.   

Initially, coils with air core were used to generate the magnetic fields for DC and AC testing 

in our experiments. The DC coil was powered by two DC power supplies, and the AC coil was 

powered by an autotransformer. To be able to perform tests with higher magnetic fields, we 

upgraded our magnetic field source to a laboratory electromagnet which has been used to generate 

both AC and DC magnetic fields.  For both AC and DC testing, the current sensor was placed in 

middle of the air gap of the laboratory electromagnet to expose it to the generated magnetic fields. 

 

FIBER 
FBG 
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Gaussmeter with a Hall probe was placed tangent to the middle of the sensor to monitor the 

magnitude of the magnetic field. Experiments were conducted by sweeping the magnetic field of 

the electromagnet with the current from a power amplifier driven by a function generator. Spectra 

of the FBG have been recorded with the OSA controlled by the software supplied by the instrument 

manufacturer, Thorlabs. Further analysis was performed with saved spectra in order to measure 

the reflected power form the FBG. Previously, wavelength meter associated with a LabVIEW 

program was used to capture spectral response. Using the OSA and its associated software was a 

major update to our experiment set up.  

Additional experiments have been conducted to investigate the effect of the temperature 

on the response of our FOCS. The sensor was placed in a controlled thermal chamber. While 

increasing the temperature from room temperature to 39ᶱ C, the spectral data of sensors were 

collected.  

 

Fig. 1.7: Simplified diagram of the experimental setup 

1.7 THESIS ORGANIZATION 

In this thesis, the experimental set up and the sensor manufacturing process will be described in 

details. In addition, several models have been proposed to model the magnetostriction and the 

magnetization process in T-D.  Furthermore, the results of the proposed models and the 

experimental results are discussed and analyzed. The thesis is organized in eight chapters. The first 

Chapter presents an overview of the optical current sensor technology and the thesis outline. The 
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second Chapter provides a basic background of the FBG theory for uniform gratings. Then the 

numerical methods for simulating the FBG spectral responses are discussed. The third Chapter 

presents models for the magnetostriction in T-D that have been used and developed basing on free 

magnetic energy l. The Chapter four explains the use of COMSOL Multiphysics software to model 

the magnetostriction in T-D and different methods and simulation techniques employed. The 

design and modeling of fiber optical current sensors will be discussed in the Chapter five.  In the 

Chapter five, experimental procedure with different components such as photodiode circuit, OSA, 

and magnetometer is described.  A detailed procedure for sensor manufacturing is documented in 

the Chapter six. The Chapter seven discusses the results of the different simulation techniques and 

presents the experimental data. Then the simulation results and the experimental data will be 

compared and analyzed.  Finally, the thesis concludes by summarizing results and recommending 

more accurate sensor models and experiment procedure for future projects in the Chapter eight. 
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 2. FBG THEORY AND MODELING 

2.1 PROPERTIES AND TYPES OF BRAGG GRATINGS 

Numerous papers and articles have described the advancements in optical-fiber technology and 

their use in sensing and amplification [19], [20], [21]. FBGs are excellent device for sensing strain 

for various applications. Readiness for integration with an optical network, low cost, and low 

insertion loss are some of the advantages of the FBG over other competing technologies [19].  

Common Bragg reflector, blazed Bragg grating, and chirped Bragg grating are the most common 

types of FBG structures. The grating pitch (the spacing between the gratings planes), the tilt (the 

angle between the grating planes) and the fiber axis are the parameters used for distinguishing 

among the different types of Bragg grating structures. The simplest and most popular Bragg 

reflector is the one with uniform grating period, i.e. the uniform fiber grating, illustrated in the Fig. 

2.1 where the phase fronts are perpendicular to the fiber longitudinal axis. This type of Bragg 

grating has been used in many applications such as strain and temperature sensing. It has also been 

used as a tunable filter. 

In the blazed Bragg grating the grating planes are written at certain angles to the fiber axis, this 

will cause some radiation modes outside the fiber. In this case, specific wavelengths and modes 

emerge at certain angles. On the other hand, axial variation of either the period of the grating Λ or 

the refraction index of the core leads to the formation of chirped Bragg grating.  

The Bragg wavelength,
B , an important parameter for the FBG, is defined as the free space central 

wavelength of the reflected optical signal from the FBG where maximum reflection occurs.  The 

Bragg wavelength can be determined by: 

                                                         
 effB n2

                                                            (2.1) 
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where effn  is the effective refractive index of the fiber core at B ,  is the grating spacing, and L 

is the length of the grating as shown in Fig. 2.1. When an optical signal with different wavelengths 

1 7  enters the FBG, all wavelengths of light will be transmitted through the FBG except the 

wavelength that satisfy the Bragg condition B will be reflected back. 

 

 

Fig. 2.1: Illustration of a uniform Bragg grating with a periodic index modulation. 

The spectral response of a uniform, chirped, or apodized Bragg grating can be calculated 

through numerical solution of the coupled-mode equations or through approximation methods, 

such as the transfer matrix (T-matrix) method [19, 20]. 

2.2 COUPLED-MODE THEOTY 

The Bragg grating is defined as a periodical perturbation to the effective index of refraction 𝑛𝑒𝑓𝑓  

of the optical fiber core, which can be written as 

 𝛿𝑛𝑒𝑓𝑓(𝑧) =  𝛿𝑛̅̅̅̅
𝑒𝑓𝑓 (1 + 𝑣(𝑧) cos [

2𝜋

Λ
𝑧 + 𝜙(𝑧)]) (2.2) 
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where 𝛿𝑛̅̅̅̅
𝑒𝑓𝑓 is the “DC” index change spatially averaged over a grating period, 𝑣(𝑧) is the fringe 

visibility of the index change, z is the fiber axis, and 𝜙(𝑧) is the grating chirp.   

Coupled mode theory is considered as straightforward method to accurately model the 

optical properties of most fiber gratings. The notations here follow very closely those of [19]. The 

transverse component of the electric field in the ideal-mode approximation to coupled-mode theory 

can be written as a superposition of the ideal modes with slowly varying amplitudes  zAj and 

)(zB j  of the jth mode traveling in the +z and ‒z directions, respectively (modes in an ideal 

waveguide with no grating perturbation) [19]: 

               , , , exp ( )exp . , expj j j j jt

j

E x y z t A z i z B z i z e x y i t      
                     (2.3) 

where  ,jte x y  represents the transverse mode fields for guide LP modes or cladding modes. The 

amplitudes jA
 
and jB

 
evolve along the z axis owing to the presence of the dielectric perturbation 

as described in the following two equations: 

                                
   

   

exp

exp

j t z

k kj kj k z

j

t z

k kj kj k z

j

dA
i A K K i z

dz

i B K K i z

 

 

    

     




                                    (2.4) 
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j
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 

 

     

     




                                          (2.5) 

In the above two equations 
z

kjK  is the longitudinal coupling coefficient, 
t

kjK  is the transverse 

coupling coefficient between modes j  and k . It can be described by: 
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 𝐾𝑘𝑗
𝑡 (𝑧) =

𝜔

4
∬𝑒 𝑘𝑡(𝑥, 𝑦) Δ𝜖(𝑥, 𝑦, 𝑧) ⋅ 𝑒 𝑗𝑡(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

 (2.6) 

where   is the perturbation to the permittivity. Generally 𝐾𝑘𝑗
𝑧 ≪ 𝐾𝑘𝑗

𝑡  for fiber modes and it is 

usually neglected. 

 The above coupled mode theory equations may be used to solve the total transverse electric 

fields propagating in the forward and backward directions. Equations (2.4) and (2.5) can be greatly 

simplified if we consider only one pair of forward and backward propagation modes. For a Bragg 

grating etched in a single-mode optical fiber, the following coupled differential equations can be 

used to model forward (R) and backward (S) propagation modes through the grating (z is the 

propagation distance): 

 
𝑑𝑅

𝑑𝑧
= 𝑖𝜎̂𝑅(𝑧) + 𝑖𝜅𝑆(𝑧) (2.7) 

 
𝑑𝑆

𝑑𝑧
= −𝑖𝜎̂𝑆(𝑧) − 𝑖 * 𝑅(𝑧) (2.8) 

In Eqs. (2.7) and (2.8),  

𝜅 =
𝜋

𝜆
𝑣𝛿𝑛̅̅̅̅

𝑒𝑓𝑓 (2.9) 

𝜎̂ = 𝛿 + 𝜎 −
1

2

𝑑𝜙

𝑑𝑧
 (2.10) 

                                    
1 1

2D eff

D

n


    
 

 
      

  
                                               (2.11) 

                                                2D effn                                                                                  (2.12) 

                                                 
2

effn


 


                                                                             (2.13) 

Where  is the “AC” cross-coupling coefficient, 𝜎̂ is the “DC” self-coupling coefficient, and D  

is the design wavelength. The amplitudes R and S are; 
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 𝑅(𝑧) = 𝐴(𝑧)𝑒𝑖𝛿𝑧−
𝜙
2  (2.14) 

 𝑆(𝑧) = 𝐵(𝑧)𝑒−𝑖𝛿𝑧+
𝜙
2  (2.15) 

If the grating is uniform then / 0d dz  , and thus , , ,effn   and 𝜎̂ are all constants. A Bragg 

grating with length of L has an extent of    / 2 / 2L z L    under boundary conditions  

R(−L/2) = 1 and S(L/2) = 0. Then the field reflection coefficient 𝜌 =
𝑆 (−𝐿/2)

𝑅(−𝐿/2)
 for the grating can be 

simply expressed in terms of FBG parameters as: 

 𝜌 = −
𝜅

𝜎̂ + 𝑖𝛼 coth 𝛼𝐿
 (2.16) 

where 𝛼 = √𝜅2 − 𝜎̂2. The power reflectivity 𝑟 = |𝜌|2 is then given by 

 𝑟 =
1

−
𝜎̂2

𝜅2  csch2 𝛼𝐿 + coth2 𝛼𝐿
 

(2.17) 

It can be seen from equation (2.17) that the resultant reflectivity increases as the length of 

the grating increases. Fig. 2.2 shows a calculated reflection spectrum as a function of the 

wavelength.  
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Fig. 2.2: Bragg grating reflection spectrum as a function of wavelength detuning [20]. 

 

 

2.3 TRANSFER MATRIX APPROXIMATION 

Alternatively the transfer matrix (T-matrix) approximation method can be used to model Bragg 

gratings with varying parameters. Piecewise uniformity is assumed in this approach. In this method, 

the grating is divided into M uniform sections, each represented by a 2x2 T-matrix. The number 

of sections cannot be made arbitrarily large since several grating periods are required for complete 

coupling.  M ~ 100 is sufficiently accurate for most chirped and apodized gratings [19]. It is 

required that the section length Δ𝑧 ≫ Λ to keep the coupled-mode-theory approximation valid. 

Therefore, it is required that 

 𝑀 ≪
2𝑛𝑒𝑓𝑓𝐿

𝜆𝐵
 . (2.18) 

For simulations of our FOCS, 5 sections are used. The transfer matrix of the mth section is given 

by 
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𝐓𝑚

=

[
 
 
 
 cosh(𝛾𝑚Δ𝑧𝑚) − 𝑖

𝜎̂𝑚

𝛾𝑚
sinh(𝛾𝑚Δ𝑧𝑚) −𝑖

𝜅𝑚

𝛾𝑚
sinh(𝛾𝑚Δ𝑧𝑚)

𝑖
𝜅𝑚

𝛾𝑚
sinh(𝛾𝑚Δ𝑧𝑚) cosh(𝛾𝑚Δ𝑧𝑚) + 𝑖

𝜎̂𝑚

𝛾𝑚
sinh(𝛾𝑚Δ𝑧𝑚)

]
 
 
 
 

 . 

      

(2.19) 

Here, Δ𝑧𝑚 is the width of the mth section, 𝛾𝑚 = √−𝜎̂𝑚
2  , 𝜎̂𝑚, and 𝜅𝑚 are the same parameters as 

those defined in Eqs. (2.7) and (2.8), evaluated at the middle of the mth section.  Once all the 

matrices for each individual section are known, we can find the output amplitudes from. 

                                                 

0

0

M

M

RR

S S

  
   

   
T                                                                      (2.20) 

This means that the whole FBG can be characterized by a total matrix 𝐓 which is equal to the 

multiplication of all of the matrices of the subsections, i.e. 

                                                        11 12

21 22

t t

t t

 
  
 

T                                                                      (2.21) 

 𝐓 = 𝐓𝑀𝐓𝑀−1 …𝐓𝑚 …𝐓1 (2.22) 

This method can be used to implement phase-shifted gratings by inserting a phase-shift matrix 

pmT between the factors mT and 1mT in the product in (2.22) for a phase shift after the mth section. 

The phase shift matrix is of the form 

                               

0
exp

2
exp

0 2

m

pm m

i

i





  
       

    

T                                                       (2.23) 

Fig. 2.3 shows the reflection spectral response for three uniform FBGs of various lengths that 

have been calculated using the T-matrix [21].  
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Fig. 2.3: Spectral reflectivity response for uniform Bragg gratings with different lengths [20]. 

 

2.4 STRAIN AND TEMPERATURE SENSITIVITY OF BRAGG GRATINGS 

When a stress is applied to the FBG, it can affect the refractive index of the core and the periodic 

spacing between the grating planes. Based on equation (2.1), the shift in the Bragg wavelength Δ

𝜆𝐵 of the FBG under an applied stress can be expressed by: 

                                        2B

n
n l

l l


  
     

  
                                                     (2.24) 

This equation can further be expressed in terms of axial strain 𝜖𝑧 as: 

                                          1B B e zp                                                                    (2.25) 

where ep is the effective strain-optic constant which can be defined as: 
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                                
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2

e

n
p p p p                                                             (2.26)

 

 

Where 
11p and 

12p are the components of the strain-optic tensor, n is the index of the core, and 

is the Poisson’s ratio. For a typical optical fiber 11 120.113, 0.252, 0.16,p p v  
 
and n = 1.482 

[20].  

To represent the temperature effect on the optical fiber a second term should be added to equation 

(2.24), then the shift in the Bragg grating center wavelength will be given by 

                    2 2B

n n
n l n T

l l T T


      
           

      
                           (2.27) 

2.5 SIMULATION OF SPECTRAL RESPONSE FROM BRAGG GRATINGS 

The Bragg grating as a strain sensor can assume non-uniform grating period for the following 

conditions [21]: (i) an initially uniform (constant period) grating is subjected to a non-uniform 

strain field, (ii) an initially chirped (aperiodic) grating is subjected to a constant strain field, and 

(iii) an initially chirped grating is subjected to a non-uniform strain field. Eqs. (2.7) and (2.8) can 

be solved numerically to model these conditions. They can be transformed into a Ricatti 

differential equation by introducing ( ) ( ) / ( )z S z R z  . Differentiating  with respect to z and 

substituting into Eqs. (2.7) and (2.8) yields 

𝑑𝜌(𝑧)

𝑑𝑧
= −𝑖𝜅 − 2𝑖𝜎̂𝜌(𝑧) − 𝑖𝜅𝜌(𝑧)2 (2.28) 

with the modified boundary condition ( / 2) 0L  . A fourth-order Runge-Kutta method with 

adaptive step size can numerically solve Eqs. (2.7), (2.8) or Eq. (2.28) by integrating backward 

from 𝑧 = 𝐿/2  to 𝑧 = −𝐿/2 . The power reflectivity of the Bragg grating is then obtained with 
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                                               (2.29) 

Alternatively we can use the transfer matrix which sufficiently accurate and faster than the 

previous method. The field reflection coefficient can be determined as 21 11/t t   with the transfer 

matrix method. 

With the theory that has been explained above, we were able to simulate the spectral 

response of the sensor shown in Fig. 1.5 which consists of the FBG embedded in composite blocks 

with different distributions of T-D particles. However, we consider monolithic T-D with varying 

magnetostrictive strain to represent the composite blocks. In Figs. 2.4 and Fig 2.5, we use the 

following FBG parameters: effective refractive index 𝑛𝑒𝑓𝑓 = 1.46547 , unchirped Bragg 

wavelength λB = 1550 nm, number of uniform sections M=5, and overall length L = 3cm. Fig. 2.4 

shows the spectral reflectivity as a function of the percentage of deviation from 𝜆𝐵  is 

  /B B       for various H’s. Fig. 2.5 presents the FOCS transfer function in terms of 

normalized power       0  / 0P P H P P     where P(H) is the reflected power at particular 

H from Fig. 2.4 and P(0) is the power at H=0.  
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Fig. 2.4: Variation of spectral reflectivity with magnetic field (H) in chirped FOCS. 

 

In Fig. 2.4, as H increases, the bandwidth of the reflected optical signal increases. The rise 

in bandwidth translates into increases in returned power (the area under each spectrum). As a result, 

the chirped FOCS will respond to a wide range of H without saturation as it can be seen in Fig. 

2.5. 

 

Fig. 2.5: Response of the chirped FOCS. 
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The numerical simulation in Fig. 2.4 and Fig. 2.5 were performed using Matlab to find the 

reflectance spectrum. Modeling of chirped FBG is based on the “synchronous approximation” to 

the coupled mode equations describing forward – and backward propagation modes in the fiber at 

wavelengths near resonance. Since the FOCS prototype in Fig. 1.5 is composed of a composite 

with a piece-wise graded particle distribution it is natural to consider a uniform structure for the 

grating, and the power reflectance at each wavelength is determined by multiplication of a series 

of transfer matrices. With this numerical technique, the power spectra of the FOCS returned signals 

under various magnetic fields H were obtained as shown in Fig. 2.4.  
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3. MAGNETIZATION AND MAGNETOSTRICTION IN  

TERFENOL-D 

3.1 TERFENOL-D MATERIAL BEHAVIOR 

It is imperative to examine the material behavior models of T-D in order to understand the 

experimental results and to optimize the transducer performance. The simplest model that has been 

used to explain the magnetostriction in T-D is the ellipsoid model in which magnetic domains are 

represented by ellipsoids with the magnetization direction pointing towards the major axis for T-

D since it has positive magnetostriction as shown in Fig. 3.1. Assuming that the ellipsoids have 

rigid structure, then the magnetization can be rotated with either an applied field or an applied 

strain [15].   

 

Fig. 3.1: The ellipsoid model of magnetostriction [15]. 

This model is capable of explaining the effect of pre-stress and how it can increase the 

magnetostriction; if a stress is applied first to the material such that the ellipsoids are rotated away 
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from the applied stress, then we apply a magnetic field in the direction of the applied pre-stress the 

resulting magnetostriction will be larger than if the pre-stress had not been applied. While the 

ellipsoid model enabled us to describe and explain certain T-D behavior, it is incapable of handling 

more complicated phenomena. For these complex situations, other models have been proposed. 

These models are based on the minimization of the free energy of a magnetoelastic system. It is 

necessary to review the crystal structure of T-D before we explain these models.  

3.2 TERFENOL-D CRYSTAL STRUCTURE 

For the crystalline structure of T-D, following vector conventions are used: planes are denoted by 

round bracket, directional indices are represented by square brackets, and angular brackets are used 

to summarize an entire set of indices. T-D has a cubic crystal structure and the magnetic moments 

prefer to align along the <111> orientations when no stress or field is applied due to the negative 

anisotropy constant. In other words, the <111> directions are the easy magnetization axes, as 

schematically illustrated in Fig. 3.2. The term magnetic anisotropy refers to the dependence of 

magnetic properties on the direction in which they are measured. There are several kinds of 

magnetic anisotropy such as magnetocrystalline anisotropy, stress anisotropy, and shape 

anisotropy [22]. T-D has a large magnetostriction anisotropy, where the strain along the <111> 

directions is much larger than the <100> direction ( 111 1640  ppm, 100 90  ppm).  T-D rods 

can be manufactured with <111>, <110>, or <112> preferred orientations. In thermal 

demagnetized <111>, <110>, and <112> Tb-Dy-Fe single crystal, there are eight kinds of 

magnetic moments along the <111> directions. The different domains are named by the angles 

between the crystal axes and the <111> directions to which the domains orient in thermal 

demagnetized state. Those different domains are shown in the tables below for different crystal 

axes.  
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Fig. 3.2: sketch of <111>easy axes in the cubic principal axes space [23]. 

Crystal axis is [111] 

Domain configuration Angle w/s crystal axis 

[111] 0  

[-1-1-1] 180  

[-111] 71  

[1-1-1] 109  

[1-11] 71  

[-11-1] 109  

[11-1] 71  

[-1-11] 109  

Table 3.1: Eight domains in the <111> Tb-Dy-Fe single crystal 
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Crystal axis is [112] 

Domain configuration Angle w/s crystal axis 

[111] 19.5  

[-1-1-1] 160.5  

[-111] 62  

[1-1-1] 118  

[1-11] 62  

[-11-1] 118  

[11-1] 90  

[-1-11] 90  

Table 3.2: Eight domains in the <112> Tb-Dy-Fe single crystal 

Crystal axis is [110] 

Domain configuration Angle w/s crystal axis 

[111] 35  

[-1-1-1] 145  

[-111] 90  

[1-1-1] 90  

[1-11] 90  

[-11-1] 90  

[11-1] 35  

[-1-11] 145  

Table 3.3: Eight domains in the <110> Tb-Dy-Fe single crystal 
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The angles in the above tables have been calculated as follows: Suppose we have two vectors 

[x,y,z] and [u,v,w] then the angle between those two vectors is: 

2 2 2 2 2 2

1 1

2 2

. . .
cos

:

[111] [110]

1 1 1 1 1 0
cos cos (0)

1 1 1 ( 1) 1

90

x u y v z w

x y z u v w

Example







 

 


   



     
  
     

 

 

3.3 MAGNETIZATION AND MAGNETOSTRICTION MODELS BASED ON FREE ENERGY 

Numerous articles have been written to describe the magnetization and magnetostriction of T-D, 

such as in Refs. [24] [25] [26] [27]. Some are based on purely physical principles while others 

model the magnetostriction and the magnetostriction processes using the phenomenological 

approach. The Stoner-Wohlfath model is the simplest model to describe the magnetization and the 

magnetostriction processes [28]. The model assumes that the material is composed of non-

interacting single domain ellipsoidal particles. According to this model, the orientation of the 

magnetization vector with respect to the measurement direction can be found by minimizing the 

total free energy which in this case is due to the shape of the particles and the applied field. At T 

= 0 K, the total energy can be written as [28]: 

                       
 2sin cosA z sE E E K HM                                              (3.1) 

The term AE
 
refers to the anisotropy energy which is given by the term 2sinK  where   is the 

angle between the magnetization and the z-axis. If 0K   the anisotropy energy will be minimum 

when 0  . The term  cosz sE M H HM         represents the Zeeman energy.   is the 

angle between the external magnetic field and the easy axis, where H is the external applied 
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magnetic field, M is the magnetization, and Ms is the saturation magnetization. The moment is 

along a direction such that the total energy E is minimized. The minimal condition at    is 

                                 

0
E

  

 
 

 
 and 

2

2
0

E

 
 

 
 

 
                                         (3.2) 

The Stoner-Wohlfath model works best for non-ferromagnetic metals and alloys that 

contain ferromagnetic impurities. The results of this model cannot be applied to T-D which 

exhibits low hysteresis.  

For the phenomenological approach, the magnetic domain in a single-crystal ferromagnetic 

material is extremely dependent on extrinsic variables such as the strength and direction of 

magnetic field, stress, as well as intrinsic material parameters such as the anisotropy of the material.  

Without the magnetic domain interaction, the equilibrium positions (also considered as 

magnetization orientations) for the cubic T-D can be simply determined by the local minima of 

the total free magnetic energy, which can be expressed as  

                   Ktotal fieldE E E E                                                                      (3.3) 

where ,K fieldE E , and E  are the magnetocrystalline anisotropy energy, the external magnetic field 

energy, and the stress induced magnetoelastic energy respectively. For T-D, the 

magnetocrystalline anisotropy energy is given by [29] 

 
3

2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 1 2 1 2 3 0 1 1 2 2 3 3 1 2 1 2 3K i j

i j

E K K K K K K             


              (3.4) 

where i  denotes the direction cosine of the magnetization with respect to the crystal axes <100>, 

<010>, and <001> and 0 1 2, ,K K K are the zero-order, first-order and second-order 

magnetocrystalline anisotropy constants respectively. The external magnetic field energy can be 

written as:  
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3

0

1

field s i i

i

E HM  


                                                              (3.5)

 

H denotes the magnetic field, and i  
is the direction cosine of the magnetic field with respect to 

the crystal axes, and 0   is the of free space magnetic permeability. The strain induced 

magentoelastic energy is given by: 

 

  

2 2 2

100 1 11 2 22 3 33 111 1 2 12 2 3 23 1 3 13

3
( ) 3 ( )

2
E                                          (3.6) 

 

𝜆100 and 𝜆111 are the saturation values of the longitudinal magnetostriction along [100] and [111], 

respectively. ij  denotes the component of the applied stress. 

 

When the sample is subjected to the uni-axial stress σ, the above equation can be simplified as 

𝐸𝜎 = −
3

2
𝜎𝜆100 ∑𝛼𝑖

2𝛾𝑖
2

3

𝑖=1

− 3𝜎𝜆111 ∑𝛼𝑖𝛼𝑗𝛾𝑖𝛾𝑗

3

𝑖<𝑗

. (3.7) 

Or it can be written as 

𝐸𝜎 = −
3

2
𝜎𝜆100(𝛼1

2𝛾1
2 + 𝛼2

2𝛾2
2 + 𝛼3

2𝛾3
2) − 3𝜎𝜆111(𝛼1𝛼2𝛾1𝛾2 + 𝛼2𝛼3𝛾2𝛾3

+ 𝛼1𝛼3𝛾1𝛾3). 

(3.8) 

i is the direction cosine of the stress with respect to the crystal axes. The following table 

summarizes the properties of T-D. 
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sM , saturation magnetization 
60.8 10 /A m  

0K  
5 33 10 /J m  

1K ,magnetocrystalline 

anisotropy 

6 30.06 10 /J m   

2K  
5 32 10 /J m   

111  
61640 10 /mm mm  

100  
690 10 /mm mm  

Table 3.4: Physical properties of T-D crystal [30]. 

Armstrong [30][31], formulated a model for T-D where bulk magnetization and strain are 

calculated as the expected value of a number of possible energy states or domain orientations with 

energy based probability density function. The model evaluates the magnetic free energy of a unit 

volume of magnetization, sM  at a spherical polar orientation of [ , ]m m   within a single crystal. 

The above expression for the energy terms can be rewritten in terms of   and  where 𝜃 is defined 

as the polar angle from z axis with 0 ≤ 𝜃 ≤ 𝜋, and 𝜑 is the azimuthal angle on the x-y plane 

measuring from the x axis with 0 ≤ 𝜑 ≤ 2𝜋. 

For the magnetocrystalline energy: 
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where [ , ]m m  is the magnetization direction in spherical polar coordinates. The field contribution 

to the magnetic free energy is: 

             0
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                                 (3.10)
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where H is the field strength and [ , ]f f  is the applied field orientation. When the magnetization 

and the applied field are perpendicular, the field energy is zero. On the other hand, the energy is 

at maximum negative value when the magnetization and the applied field are parallel. In a similar 

manner, the stress induced magnetoelastic energy for cubic crystal can be expressed as follow [30]: 
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(3.11)   

 

 ,   is the orientation of the stress,  . 

1

2

3

sin[ ]cos[ ]

sin[ ]sin[ ]

cos[ ]

 

 



  

  

 






 

 



 

 

36 

 

3.4 SIMULATION OF FREE ENERGY DISTRUBTION 

In the present simulation, the following assumptions are used, the same as those in previous models 

[31] [32] [33] [34]: 

 

 

 

(1) Perfect TbDyFe single crystals 

(2) No internal interaction among domains, and thus neglecting internal stresses produced 

during magnetization. 

(3) Ignoring domain wall movement, only considering domain rotation. 

 

Particularly, if we have the magnetic field applied along the [112] direction, then we can find the 

direction cosines of the applied field and then we can eventually find the angles f and f. 
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If we assume that the stress is also applied along the [112] direction then 
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Now to reduce this model to 2 D we assume that the domain lies in the (110) plane, this plane 

makes 45degree with the x-axis.  
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Figs. 3.3 to 3.5 show how the variation of the energy versus angle m , the polar angle of the 

magnetization from z axis, for various orientations and magnitudes of magnetic field H. 

 

Fig 3.3: Variation of the energy with angle m  for different values of the magnetic field. The field orientation is 

along [112] 

Fig 3.3 shows the variation of the energy with angle m  for different values of the magnetic 

field when the field direction is along [112]. It can be seen that at H=0A/m we had two minimum 

points in the total energy distribution. This means that the domains preferred to align in these two 

directions where the energy is minimized. However, as the magnetic field intensity increased the 

domains rotate and aligned with the direction where the magnetic field is applied, i.e. along the 

[112] direction. As we can see in Fig 3.3 the second minimum point locating around 120º 

disappears as the intensity of the magnetic field is increased. The same observations can be applied 

to Fig. 3.4 and 3.5; the only difference between these plots and Fig. 3.3 is the direction of the 

applied magnetic field.  
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Fig 3.4: Variation of the energy with angle m  for different values of the magnetic field. The field orientation is 

along [110] 

 

Fig 3.5: Variation of the energy with angle m  for different values of the magnetic field. The field orientation is 

along [111] 
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Fig. 3.6 shows an example of 3 D simulation for the free energy when the magnetic field 

and the stress are applied along the [112] direction. In this case H=10kA/m and the applied stress 

is 5MPa. 

      

Fig 3.6:  Three dimensional energy surface and contour plot of the magnetocrystalline energy. 

As shown in the above figure, there are eight minima in the total free energy. If we apply a 

magnetic field of H=10kA/m and the applied stress is 5MPa, the domains will rotate to follow the 

new state of minimum free energy, as shown in Fig 3.7. 

  

Fig 3.7: Three dimensional energy surface and contour plot of the total energy. 

 

Based on the principles described above, free energy distribution above (001) plane is in 

demagnetized state i.e. no external stress and magnetic field. As shown in Fig. 3.6, free energy 
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distribution is symmetry in directions above (001) plane due to T-D alloy with a symmetry cubic 

structure. It can be seen also that eight points contact with the (001) plane corresponding to eight 

<111> orientations, consistent with the fact that domains prefer to orient to <111> orientation 

where the free energy is minimum. The same conclusion can be drawn from the contour plot in 

Fig. 3.6.
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4. TERFENOL-D MAGNETOSTRICTION MODELING WITH 

COMSOL 

Accurate modeling of magnetostrictive materials requires coupling of electrical, mechanical, and 

magnetic domains. There are very few finite element software packages that include all these 

physical models. This chapter describes several models that were implemented by combining finite 

element solutions of mechanical and magnetic boundary value problems with the COMSOL 

Multiphysics (Finite Element) modeling software. These models describe the magnetomechanical 

behavior of T-D. An understanding of the mechanical and magnetic characteristics of 

magnetostrictive materials is essential for the exploration of their potentials in different 

applications such as transducers. 

4.1 MODEL DEFINITION  

The first step in creating a finite element model is to create the geometry. Creating the geometry 

in COMSOL can be done using several methods. COMSOL script can be used to develop the 

geometry but this method requires the knowledge of geometry creating commands. Geometry can 

also be created with graphical user interface such as those in COMSOL Multiphysics or any other 

commercially available drawing software. The geometry for all of the models in this research was 

created in the COMSOL Multiphysics GUI (version 4.4). Material properties, boundary and 

loading conditions as well as the meshing were also defined using COMSOL Multiphysics. 

The COMSOL models can be used to capture the magnetoelastic behavior of materials 

subjected to magnetic fields. We have implemented several models to study the nonlinear behavior 

of monolithic and composite T-D samples. In this Sub-section the graded FOCS model will be 

investigated. The geometry of the problem is solved as a 2D model as shown in the Fig. 4.1. The 

model consists of five rectangles representing the epoxy while the ellipses in each rectangle 

represent the T-D particles with the minor axis of 0.5mm in length and the major axis of 0.7mm 
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in length. Each block has different number of T-D particles, each block in the model is 7mm×5mm. 

The volume fraction in the first, second, third, fourth, and fifth block are 0.1, 0.13, 0.16, 0.19, and 

0.28 respectively. The gray shaded region with size of a50mm×50mm square represents the air 

domain enclosing the composite.  

 

Fig 4.1:  2D view of the graded FOCS surrounded by an air domain. The geometric dimensions are in millimeters. 

The purpose of the air domain around the composite T-D blocks is to realistically model 

the magnetic flux path. Two boundaries of the air domain are magnetically insulated to ensure that 

flux does not diverge out of the modeling domain. The nonlinear magnetic behavior of the T-D 

particles is modeled by using a HB curve to specify the magnetic constitutive relation in the 

magnetostrictive material. The HB data for the T-D material is stored in a table and is imported 

into COMSOL. Then this table is used to generate a value of the magnetic field (H) for a given 

magnetic flux density (B) in the material by interpolation. Other material properties pertinent to T-

D are shown in Table 4.1 while the material properties of the epoxy are shown in Table 4.2. 
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Table 4.1: Material properties of T-D  

 

Table 4.2: Material properties of the epoxy material  

4.2 STRAIN AND MAGNETIC RESPONSES OF T-D  

A material model is needed to correctly represent the λ-H and B-H behavior of T-D. COMSOL 

Multiphysics 4.4 allows the user to input B-H data to describe material magnetic behavior. In 

earlier versions of COMSOL the behavior of a magnetic material was described in terms of relative 

permeability 𝜇𝑟. With newer versions of COMSOL Multiphysics, the model will determine 𝜇𝑟 

directly from the B-H plots for each pre-stress. The nonlinear behavior of T-D is modeled by the 

constitutive model described in [35] [36]. In this model the relations among stress , strain , and 

magnetization M along the magnetostrictive composite are given by equation (4.1). In this model, 

the out-of-plane components of stress are assumed to be zero. 
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(4.1) 

where E is the Young’s modulus, sM  is the saturation magnetization, s  is the saturation 

magnetostrictive coefficient, 𝑀𝑥 and 𝑀𝑦 are the magnetization in-plane values. The stresses are 

given by 𝜎̃𝑥 = 𝜎𝑥 −
1

2
𝜎𝑦, 𝜎̃𝑦 = 𝜎𝑦 −

1

2
𝜎𝑥  and 𝜏̃𝑥𝑦 =

3

2
𝜏𝑥𝑦. The relationship between H and M is 

given by: 
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(4.2) 

where 3 /m sk M  ( m  is the magnetic susceptibility), and f is a nonlinear scalar function which 

can be approximated using various expressions, such as the hyperbolic function ( ) tanh( )f x x or 

the Langevin function ( ) coth( ) 1/f x x x  . In Eq. (4.2), 𝐼𝜎
2 − 3𝐼𝐼𝜎 = 𝜎𝑥

2 + 𝜎𝑦
2 − 𝜎𝑥𝜎𝑦 + 3𝜏𝑥𝑦

2 , 

where 𝐼𝜎 and 𝐼𝜎 are the first and second stress invariants respectively. 𝜎𝑠 represents the axial pre-

stress value.  

To input a B-H plot, it must be in the form of H(B,σ), which requires a conversion of the 

model output of B(H,σ) to H(B,σ). A similar matrix conversion should be done for the λ(H,σ) 

matrix to obtain a λ(B,σ) matrix. There are several ways for COMSOL Multiphysics 4.4 to read 

the material data. These methods include the use of a table, MATLAB function, or text file. In this 
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work, a table was used for purposes of determining λ(B,σ) and H(B,σ). An example interpolation 

file is shown below.  

 

 

Fig. 4.2: Interpolation data for T-D 

4.3 MICROSTRUCTURE GENERATOR TOOL  

The generation of T-D particles manually as ellipses in the geometry is time consuming and is 

inefficient for realistically modeling the composite T-D particles that are embedded in the epoxy.  

Another method was developed to generate the T-D particles. With the Synthetic Microstructure 

Generator Tool and the LiveLink for MATLAB, more complicated geometry was created to 

represent the T-D particles and imported into COMSOL.  

Synthetic Microstructure Generator tool has been developed to examine the influence of 

particle aspect ratio, area fraction, and orientation on representative length scales in two-phase 

microstructures [37]. This tool also includes the ability to generate particles with various distributions of 

B (T) 

H
(A

/m
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particle sizes and orientations. This MATLAB GUI script can be used to generate synthetic two-

phase microstructures with elliptical particles in a voxelated image [37]. In this model, Synthetic 

Microstructure Generator Tool has been used to generate the image which represents the T-D 

particles since this tool has the ability to generate particles with different distributions, aspect 

ratios, orientations, and area fractions.  

The first step is to enter values for volume fraction of particles and the image size (a0 and 

b0 define the major and the minor axis of the ellipses). The image size is the dimensions of the 

binary image, i.e., 2048 = 2048 x 2048 image. The resolution of the image and the particle size 

can be checked before proceeding to the next step. Given the particle size, the program will 

compute the number of particles that will fit within the image. The above steps are shown in Figs. 

4.3 to 4.  

 

Fig 4.3: Default particle size in Synthetic Microstructure Generator Tool. 

The next default step is to choose the lognormal size distribution for the particles and to 

enter the lognormal distribution parameters such as mean, sigma, and the increments parameter 

which indicates the number of bins for the lognormal distribution (as shown in Fig. 4.4). This will 

enable the program to randomly generate a list of particle sizes that best approximates the 

analytical form of the lognormal distribution and plots its representation.  
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Fig 4.4: Lognormal size distribution for the particles 

The other important feature for this program is the ability to choose the particles orientation 

distribution. There are three options that determine how the particles should be oriented: Aligned, 

random, and normal distribution. Aligned option is for the fully aligned case where we can select 

the orientation angle for the ellipses. Random is for perfectly random oriented particles, and the 

normal distribution allows the user to input the mean and the standard deviation (sigma) 

parameters for a normal distribution about an orientation angle. 

The final step is to choose the filename and the location for saving the generated image. 

After the program finishes execution a microstructure will be generated according to these inputs. 

Two images will be displayed once the program is done; the first image displays the microstructure 

while the second image displays a close-up image showing the size and the orientation of the 

particles (see Fig. 4.5).  
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Fig 4.5: Final image displays the microstructure and a close-up image showing the size and the orientation of the 

particles. 

 

In order to generate images with microstructures that is similar to the T-D particles, the 

default values in the Synthetic Microstructure Generator tool has to be adjusted. The volume 

fraction of the particles has been set to 0.05, a0 has been set to 16, and b0 has been set to 10. The 

size of resulting image is 2048 and the number of generated particles is 426. Fig. 4.6 shows the 

new generated image along with the distribution of T-D particles. Several other images have been 

created with larger particles size and different orientations as shown in Fig. 4.7. 
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Fig.4.6: Image displays the microstructure that is similar to T-D particles. 

 

Fig. 4.7: Generated images with different particle sizes and different orientations. 
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4.4 CREATING GEOMETRY FROM IMAGE DATA  

 

 The function mphimage2geom has been used to create geometry from the image data which was 

generated using the Synthetic Microstructure Generator tool (see Fig. 4.8). The image data format 

can be M-by-N array for a gray scale image or M-by-N-by-3 array for a true color image. With the 

function 'mphimage2geom' provided in Matlab LiveLink it's possible to convert a grey scale 

image into geometry. A COMSOL model can be generated with this function, and then physics 

can be assigned to the geometry in the COMSOL model. LiveLink for MATLAB uses the client-

server mode to connect COMSOL Multiphysics and MATLAB. When starting COMSOL with 

MATLAB, two processes are started— a COMSOL server and the MATLAB desktop. LiveLink 

for MATLAB connects COMSOL Multiphysics to the MATLAB scripting environment. Using 

this functionality we can build models using the LiveLink interface. We can also use the function 

mphgeom: mphgeom(model) to display the geometry in a MATLAB figure. The function mphsave 

can be used to save the model object linked to the MATLAB object model and its calling format 

is: mphsave (model,'filename'). If the filename is provided without a path, the file is saved relative 

to the local MATLAB path. The file extension determines the format to use (*.mph, *.m, or *.java).  

A model for the geometry based on the T-D composite from the microstructure generation 

tool is enclosed by a rectangular air domain as shown in Fig. 4.9. Similar to the first model that 

was generated manually, two boundaries of the air domain are magnetically insulated to ensure 

that flux does not diverge out of the modeling domain. The other two boundaries of the of the air 

domain are assigned to be the sources of the magnetic field. The geometry consists of a single 

square which is 1200mm×1200mm to represent the epoxy while the ellipses in the square represent 

the T-D particles, the size of the ellipses are varying since they were generated randomly using the 

microstructure generation tool. The volume fraction of the particles has been set to 0.05. The 
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rectangle in the geometry model represents the air domain enclosing the composite. The material 

properties used in this model for T-D and epoxy are similar to the one that used in the previous 

model as shown in Tables 4.1 and 4.2.  

 

Fig. 4.8: Geometry generated with the function mphimage2geom. 
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Fig.4.9: Geometry of the composite T-D with the air domain represented by the rectangle.  

Using the function mphimage2geom, another image has been used to depict the geometry 

for the T-D composite. The image is shown below in Fig 4.10 while the generated geometry is 

shown in Fig. 4.11.  

 

Fig. 4.10: Image depicts the real distribution and shape of T-D particles in composite block. 
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Fig. 4.11: Geometry generated using the function mphimage2geom from the image in Fig.4.10. 

 

 

Fig. 4.12: Geometry of the cone-shaped transducer. 

 

To predict the performance of the cone-shaped transducer, we have modeled its strain and 

magnetic field distribution with COMSOL. In the geometry setting for the cone model, the length 
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L of the cone was set to 37mm, the same length as the actual cone sensor that we prototyped in the 

laboratory (see Fig. 4.12). In COMSOL, the origin of the coordinates locates at the center of the 

object. Hence, 𝛿 = 18.5 mm is the half height of the cone. The upper radius is 𝑅+ = 2 mm and the 

lower radius is 𝑅− = 5 mm.  In Fig. 4.12, we do not show the middle narrow rectangle region that 

represents the channel filled with epoxy for the embedment of an FBG inside the sensor. The 

material properties for the cone are the same as those listed in Table 4.1 for the monolithic T-D 

while the material properties for the channel are the same as those listed in Table 4.2. Exploiting 

the cylindrical symmetry of the cone geometry, we have performed 2D simulations with COMSOL 

since the problem can be solved easily with less execution time under reduced dimension. 

4.5 MESHING 

A benefit of the finite element method is the ability to discretize the problem into several parts. 

This allows for a more computationally efficient solution for problems with complicated geometry 

and interactions among various physical properties. This section analyzes how an understanding 

of meshing properties is fundamental to obtaining an accurate and computationally efficient 

solution. A mesh is a discretization of geometry into pieces known as elements. Each element 

contains nodes which help to define the relationships of the key variables of the problem. In a 2D 

model, the most traditionally used elements are triangular and rectangular. Most triangular 

elements contain either three, six or seven nodes. 

There are several options to choose from when creating a mesh. The predefined free mesh 

parameters vary from extremely fine to extremely coarse. For this study a coarse mesh was 

implemented. Clearly, there is a tradeoff between computational efficiency and model accuracy, 

as a finer mesh normally requires more memory and computational time, but generally gives a 

more accurate solution. Multiphysics model can be created, solved, and analyzed in COMSOL 
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Script. This includes creating the geometry, meshing, assigning loads and boundary conditions, 

solving the model, post-processing, etc.  

4.6 CALCULATING NONLINEAR MAGNETOSTRICTION 

The magnetostriction component along any direction can be calculated as a nonlinear function of 

the magnetization using Eq. 4.3 [38].  

 𝜆𝑖 =
3

2
𝜆𝑠 (𝛼𝑖

2 −
1

3
) =

3

2
𝜆𝑠 ((

𝑀𝑖

𝑀𝑠
)
2

−
1

3
) (4.3) 

Magnetostriction (λi) along the direction i depends on the magnetostriction constant (λs) and the 

magnetization direction cosine (αi). The direction cosine is the ratio of magnetization along the 

required direction (Mi) and the saturation magnetization (Ms) of the material. Those values have 

been specified for this model under the global parameters as shown in the figure below. 

 

Fig 4.13:  Magnetostriction and magnetization saturation values of the model. 

 

4.7 RESULTS 

Fig.4.14 shows the magnetic flux concentration in the magnetostrictive T-D ellipsoid particles for 

the first model where the T-D particles have been generated manually in COMSOL. Fig. 4.15 

shows a surface plot of the norm of the magnetic flux density in the second model. The mesh size 

that has been used in these models is fine. It can be seen from Fig. 4.14 that the magnetic flux 

density is concentrated in the ellipses which represents the T-D particles. As the number of 
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particles increases in each block the magnetic flux density increases in that particular block 

especially the last block which has more T-D particles. Fig 4.15 shows that the magnetic flux 

density represented by the arrows is also concentrated in the T-D particles. Due to the random 

orientation of T-D particles the arrows that represent the T-D particles are also oriented randomly 

in the model.  

 

 

Fig. 4.14: Surface plot of the norm of the magnetic flux density and a normalized arrow plot of its x and y-

components showing the closed flux path in the first model. 
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Fig. 4.15: Surface plot of the norm of the magnetic flux density and a normalized arrow plot of its x and y-

components showing the closed flux path in the second model. 

 

Fig. 4.16: Surface plot of stress and deformation of the T-D particles for the second model.  
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Fig. 4.17: Surface plot of stress and the deformation of the T-D particles for the third model.  

Fig 4.16 shows the surface plot of stress and deformation of the T-D particles for the second 

model while Fig 4.17 shows the surface plot of stress and the deformation of the T-D particles for 

the third model. In both figures we can notice the deformation that occurred to the T-D particles 

due to the applied field. The T-D particles have expanded in direction of the applied field. A 

parametric sweep study has been done to the second model where the magnetic field range was 

specified and the strain on a certain point on the T-D composite was measured. The resulted 

saturation strain was in order of 1000µɛ (a very high for composite T-D) since the saturation 

magnetization for monolithic T-D has been used in this study. This may contribute to the high 

saturation in the strain values for the composite T-D model at high magnetic intensity (on the order 

of 106 kA/m). If we scale the saturation magnetization based on the volume fraction of T-D, the 

saturation in the strain values will be on the order of 100’s µɛ. 
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Figs. 4.18 and 4.19 illustrate the typical results from simulations for the cone-shaped 

transducer under uniform magnetic field intensity of 10 kA/m. Particularly, Fig. 4.18 shows the 

disturbance in the magnetic field with a surface plot of the magnitude of the magnetic flux density 

and a normalized arrow plot of its x and y-components after the introduction of the cone to the 

external field. It clearly shows that the closed flux path in the cone sensor model satisfies the 

magnetic boundary conditions. We notice that the magnetic field near the upper end reaches the 

peak value rapidly while the magnetic field near lower end increases to the peak gradually. This 

tendency can be interpreted as the cone focusing the magnetic flux. More precisely, this is a 

manifestation of the demagnetization. With the upper end having higher longitudinal to transverse 

aspect ratio, this end experiences less demagnetization than the lower end. The surface plot of 

strain along the Z axis of the cone sensor model in Fig. 4.19 indicates the strain distribution 

tracking that of the magnetic field since the applied magnetic field is rather low and there is no 

saturation.  

 

Fig. 4.18: Surface plot of the magnitude of the magnetic flux density and a normalized arrow plot of its x and y-

components showing the closed flux path in the cone sensor model. 
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Fig. 4.19: Surface plot of strain along Z axis of the cone sensor model, H = 10 [kA/m]. 
 

4.8 ANALYTICAL EXPRESSION FOR THE MAGNETIC FIELD INSIDE THE CONE 

In this Section, we develop an analytical expression for the axial magnetic field in the cone-shaped 

transducer in order to verify the correctness of the COMSOL simulations. The formulation of the 

analysis is based on the demagnetization from the magnetization M


inside the cone sensor induced 

by the external field H  [39]. The analysis is similar to Ref. 39 but has been updated for the cone 

shape instead of a cylindrical one. We follow the geometry defined in Fig. 4.12 where radius 𝑅+  

is the upper radius, 𝑅− is the lower radius, the height of the cone is L along the z-axis, which is the 

longitudinal axis of the cylinder. Since the origin 0z  is at the middle of the cone, the upper end 

of the cone is at z and the lower end lies at z .  For later calculation, we need to definite 

the slanted angle between the side wall of the cone and z-axis 𝛼 = tan−1 (
𝑅−−𝑅+

𝐿
) and the radius 

of the side wall on the x-y plane 𝑅0 = 𝑅+ + 𝛿 tan𝛼.  

In the case of current-free region (i.e. 0J


), the magnetic field can be found as follows: 
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                                               


H .                                                                            (4.4) 

where   is the magnetic field scalar potential. 

Similar to the electric field and potential being expressed in terms of charges, we can define 

magnetization surface charge density 𝜌𝑚𝑠 = 𝑀⃗⃗ ⋅ 𝑛̂ where 𝑛̂ is the outward pointing normal on the 

surface of the cone and magnetization volume charge density 𝜌𝑚𝑣 = −∇ ⋅ 𝑀⃗⃗  relates to the 

divergence inside the cone. Hence, we can calculate with 

 𝜙 =
1

4 𝜋
∮

𝜌𝑚𝑠

𝑅
𝑑𝑠′

𝑠’
+

1

4 𝜋
∫

𝜌𝑚𝑣

𝑅
𝑑𝑣′

𝑣′
 . (4.5) 

where 𝑅 = |𝑟 − 𝑟 ′| is the distance between the source point with position vector 𝑟 ′ = 𝜌′𝜌̂′ + 𝑧′𝑧̂ 

and the observation point .with position vector 𝑟 = 𝜌𝜌̂ + 𝑧 𝑧̂. Notice that 𝜌 is the radial direction 

for the observation point, 𝜌′ is the radial direction for the source point and 𝑧̂ is the unit vector for 

the z-axis. We observe from the COMSOL simulation that there is very little transverse magnetic 

field component and the external field is uniform. As the first order approximation, we assume the 

induced magnetization to be uniform with magnitude 𝑀𝑧 and along the longitudinal direction, i.e. 

zMM z
ˆ


. Owing to uniform magnetization, 𝜌𝑚𝑣 = 0 but there are surface charge densities. 

Particularly, 𝜌𝑚𝑠 = ±𝑀𝑧  at z , respectively. This means that the top end has a positive 

charge while the bottom end has a negative charge. In addition, 𝜌𝑚𝑠 on the side wall cannot be 

neglected and is a function of z-axis which is different from a cylinder. The magnetic field H

inside the cone is generated by an effective magnetic charge density that can be written as: 

 

𝜙 =
𝑀𝑧

2
Φ(𝑧) 

      =
𝑀𝑧

2
(2𝑧 + √𝑅+

2 + (𝑧 − 𝛿)2 − √𝑅+
2 + (𝑧 − 𝛿)2) 

(4.6) 
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         +
𝑀𝑧

2
sin 𝛼 [R0 cos2 𝛼 (1 −
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𝑅0
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𝑅0
 sec 𝛼 − sin 𝛼

−
𝑧
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where Δ(z, z′) = √(1 −
tan𝛼

𝑅0
𝑧′)

2

+
1

𝑅0
2 (𝑧 − 𝑧′)2. The second line of Eq. (4.6) contains potentials 

of the top and bottom of the cone while the third and fourth lines of Eq. (4.6) account for the 

potential of the side. Then 𝐻𝑧 can be found as a function of z with: 

 𝐻𝑧 = −
𝑑𝜙

𝑑𝑧
= −

𝑀𝑧

2

𝑑Φ(𝑧)

𝑑𝑧
 . (4.7) 

Since the internal field 𝐻𝑖𝑛𝑡 ≈ 𝐻𝑧 should the sum of the external field 𝐻𝑒𝑥𝑡 and the field from 

magnetization which opposes the external field and 𝑀𝑧 ≈ 𝜒𝑚𝐻𝑧  where 𝜒𝑚  is the magnetic 

susceptibility, we can estimate 

 𝐻𝑖𝑛𝑡 =
𝐻𝑒𝑥𝑡

1+
𝜒𝑚
2

𝑑Φ(𝑧)

𝑧

 . (4.8) 

In the cone-shaped transducer case, 1.85 , 2 , 5cm R mm R mm     . Fig. 4.20 below shows the 

behavior of the demagnetization magnetic field 𝐻𝑖𝑛𝑡 along the z-axis of the cone for 𝐻𝑒𝑥𝑡 =
0.01

𝜇𝑜
. 

and 𝜒𝑚 = 9. We find that the curve in Fig. 4.20 matches COMSOL very well. 
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Fig. 4.20: Magnetic field intensity along z-axis of a cone under uniform external field. 
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5. EXPERIMENT COMPONENTS AND PROCEDURES 

5.1 EXPERIMENT COMPONENTS 

Optical components and instruments as well as electric power supplies, and many other magnetic 

components have been used to set up experiments for the characterization and fabrication of 

prototypes.  The fiber type used in the experiments is SMF-28, single- mode with 900µm or 250µm 

jackets. An Exalos SLED with around 1547nm central wavelength, 16mW output power, and 

7.9THz bandwidth was used as the source of the broadband optical signal (shown in Fig. 5.1). 

 

 

 

 

 

 

 

 

 

Fig. 5.1: Superluminous LED (SLED) 

Optical circulator has been used in the experiment setup. The optical circulator is a special 

fiber-optic component used to control the flow of optical signals so that signals travel in one 

direction among its 3 ports (see Fig. 5.2). In addition, an optical isolator (shown in Fig. 5.3) has 

been used in the setup to prevent light from being reflected back to the source.  The broadband 

optical signal from the SLED passes through the optical isolator and enters port 1 of the optical 

circulator. Then the light signal exits from port 2 of the circulator and propagates through the fiber 
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Bragg grating FBG. Port 3 of the circulator routes the reflected signal from the FBG that enters 

port 2 to an optical spectrum analyzer, a wavelength meter, or a power meter.  

 

 

 

 

 

 

Fig. 5.2: Optical circulator. 

 

 

Fig. 5.3: Optical isolator 

Two magnetic field sources have been used for testing. In previous trials, a magnetic coil 

of about 1050 turns of 14 AWG conductors has been used as the source of the magnetic field 

(shown in Fig. 5.4). The coil has a resistance of about 6 Ω and a measured inductance of about 

OC

Port 1

Port 2
Port 3
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π/40~0.0785 H. For measurement purposes, the sensor is placed in the middle of the coil’s air 

core.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4: Magnetic coil for magnetic field source. 

Later, a laboratory electromagnet has been acquired and was used to generate the magnetic 

field for the testing of the cone-shaped sensor (see Fig. 5.5).  A magnetometer/Gauss-meter has 

been used in measuring and monitoring the magnetic field level. OSA is not practical for 

measurement in the field and is mainly used for sensor characterization in the laboratory. For 

sensing in the field, we can use a photodiode. The photodiode circuit converts the optical power 

into electrical signals that can be easily processed and measured as the output voltage; e.g. an 

oscilloscope was used in our experiments. The setups of the previous and the current setups for 

the DC and AC magnetic field testing are shown in Fig. 5.4 and Fig. 5.5, respectively.   

32V 10A (DC) 

50V 10A (DC) 

14AWG magnet wire 
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Fig. 5.5: Laboratory electromagnet for magnetic field source.   

For the AC magnetic field generation, the electromagnet was driven by a 7224 AE Techron power 

amplifier that boosts the power of the AC signal from a function generator to sufficient level for 

high field level.  

5.2 EXPERIMENTAL SETUP 

Using the components described in the previous sections, a single channel optical link has been 

built and connected to the current sensor as shown in Figs. 5.6 and 5.7. 
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Fig. 5.6: Experimental setup used for DC magnetic field experiments in the laboratory.   

 

Fig. 5.7: Experimental setup used for AC magnetic field experiments in the laboratory.   

Various optical circuit components including the sensor, i.e. the FBG, in the circuit are 

connected together by fiber splicing. The components required for this procedure include: fiber 

optic stripper, optical fiber cleaver, and non-abrasive wipes, and fusion splicer. The quality of 
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splicing is very important for our experiment setup since it affects the losses and reflections in the 

optical circuit.  

The first step is to prepare the fiber to be spliced by stripping about 1 to 1.5 cm of the outer 

fiber jacket. Then the stripped portion of the fiber is cleaned with a non-abrasive wipe after wetting 

it with one to two drops of methanol. With the cleaver, smooth surfaces perpendicular to the fiber 

axis are created a both ends of the fibers that are going to be spliced by following the instructions 

on the cleaver. The fiber ends need to be cleaned again with the non-abrasive wipe and methanol 

to remove any unwanted particles. The two ends are now ready to be spliced; each end is inserted 

into the fusion splicer until it is centered in the view window of the splicer. To keep the fiber ends 

secured, the lock nuts on the slice should be closed. The splice can be verified through the view 

window of the splicer where the estimated loss is displayed.  

5.3 MEASUREMENT PROCEDURES 

5.3.1 MAGNETIC FEILD MEASUREMENTS  

 Accurate measurement of the magnetic field is required in order to correctly characterize 

the FOCS performance. In our sensor prototype, we used T-D composite to perform as the 

transducer which converts the magnetic energy from the current source into the mechanical energy 

as the composite expands in the presence of the magnetic field.  An AC/DC-selectable 

magnetometer has been used to measure the magnetic field surrounding the sensor. The 

magnetometer has an adjustable range, and measure the magnetic field in Gauss.  When testing 

with the magnetometer in the laboratory setup for the graded sensor, the probe of the magnetometer 

is placed inside the coils and attached to the holder using one piece of tape.  In the setup for the 

cone-shaped sensor, the probe is positioned so that the probe head lies directly above the sensor 

inside the electromagnet. The probe was attached to the electromagnet with hot glue. When testing 
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of the graded FOCS at various levels of current, the values for the magnetic field were read directly 

from the magnetometer while the output spectrum data were collected by the WLM controlled by 

a labVIEW program.  The range on the magnetometer needs to be adjusted to match the generated 

field by the coil.  For further data processing and analysis, the measurements of the magnetometer 

in Gauss have been converted to kA/m by simply dividing them with a factor of 4𝜋 since the 

magnetometer probe is placed in air for all relevant measurements.  In order to compare AC field 

measurements to DC ones, the root mean square (rms) value recorded from the magnetometer is 

multiplied by a conversion factor (determined by the shape of the waveform) for obtaining the 

peak field value.  

5.3.2 SPECTRAL POWER MEASUREMENTS  

Spectral power measurement is very important to determine the input-output transfer 

characteristics of the various prototypes of FOCS. With the old experimental set up, the FBG 

reflection spectrum from the sensor was acquired with the WLM.  On the WLM screen the 

complete spectrum, peak powers, and peak power wavelengths can be displayed. During sensor 

construction, it is useful to view the spectrum shape, peak power and wavelength as a quick check 

of the correct procedure of sensor prototyping. For example, when embedding the FBG into the T-

D transducer, a visual check of these parameters helps determining the next step.  For further 

processing of the spectrums of the sensors, the WLM is connected to a computer via GPIB-USB 

interface. With LabVIEW program, the spectrum can be viewed and stored for further processing 

and the calculation of the total spectrum power.   

 The LabVIEW program that has been used to collect and record data from the WLM has 

been created by Aaron Muller [6]. This program has a user-selectable measurement range which 

allows the user to specify the wavelength range of interest.  An acceptable range for our 



 

 

71 

 

experiments is 1548nm-1554 nm.  For collection of FOCS data at various levels of 

current/magnetic field, the magnetic field value is read from the magnetometer while the 

LabVIEW program downloads data from the WLM at discrete levels of current.  

In the new experiment setup we used the OSA instead of the WLM to monitor the spectrum. 

With the software for the OSA, the spectrum of the FBG can be recorded and saved through a 

straightforward and responsive GUI that controls the OSA while calculating various parameters, 

e.g. the total power, the peak wavelength and the full width at the half maximum (FWHM) spectral 

width. 

5.3.3 DIRECT POWER MEASUREMENTS 

In the laboratory, we record the output spectrum of the sensor and numerically integrate the output 

to obtain the total reflected power or we use the OSA to obtain the total reflected power. In field 

applications, this approach is slow and result in massive amount of data. In the actual 

implementation of this sensor, only the returned optical power will be used as the output.  There 

are a few ways of measuring total power output in the lab.  For DC magnetic field measurements, 

we used the OSA software to obtain the total power under each spectrum. For AC magnetic field 

measurements, the sensor output from port 3 of the optical circulator is routed to a simple 

photodiode circuit, shown in Fig. .  In the photodiode circuit used in the experiments, 𝑉𝐵 was 

supplied by a 9V battery and the photodiode had a responsivity ℛ =0.94 A/W at 𝜆=1550 nm.  We 

used various values of load resistances 𝑅𝐿 (4.75kΩ, 32kΩ, and 52kΩ) to obtain a clear output 

signal from the photodiode, we used. The output voltage 𝑉𝑜 of this circuit in response to the input 

optical power 𝑃𝑂𝑃𝑇 is given by 

 𝑉𝑜 = 𝑃𝑂𝑃𝑇 × ℛ × 𝑅𝐿 . (5.1) 
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For measuring 𝑉𝑜 in response to a DC magnetic field, a multi-meter was used. In addition, we used 

the oscilloscope to record the amplitude, the frequency, and the shape of the output waveform for 

AC magnetic field measurements.  

 

Fig. 5.8: PIN photodiode circuit used for power measurement. 
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5.3.4 TEMPERATURE MEASUREMENTS 

For the investigation of thermal effect on the response of the FOCS, several experiments 

have been performed. A conventional oven with attached proportional integral (PI) controller has 

been used in the beginning. The sensor was placed in the middle of the oven. Special holder was 

fabricated with a 3D printer for fixing the sensor position inside the oven. In order to ensure that 

the heat will be distributed uniformly inside the oven, a fan was inserted inside the oven. The 

controller has a display to show the current temperature inside the oven and push buttons to 

increase or decrease the temperature. While increasing the temperature from room temperature to 

50° C with an increment of 2° C degrees, the spectrum was recorded by the WLM or the OSA. 

This method has some shortcomings; the heating element in the oven was at the top of the oven 

and this was a direct heat source above the sensor. Besides, we had to leave the door of the oven 

open in order to get a stable temperature reading on the display of the PI controller.  

To get more precise results and to be able to automate the process of the temperature 

adjustments and spectral data collection, we improved the setup and procedure for thermal 

measurement in several areas. We used a thermal chamber instead of the oven. The heating element 

inside the chamber was made of four light bulbs. Two fans have been installed inside the chamber 

to ensure that the heat will circulate uniformly; one has been installed in the back of the chamber 

while the other is in the top. To obtain accurate temperature measurements, we used a digital 

thermometer (Data Logger RTD Thermometer, SE-376) that has a measurement range of -100°C 

to 400°C with an accuracy of ±0.05% reading + 0.1ºC). Data from the built-in-memory on the 

digital thermometer was transferred to the PC through a USB cable under the control of the SE376 

software. The time interval between each data to be recorded can be specified by setting the 

sampling rate. The resulting real time graph is effective for monitoring the temperature inside the 
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chamber (as shown in Fig 5.9). Since the temperature sensor is located at the end of the metal 

sheath of the sheath type temperature probe, the thermometer probe should be inserted horizontally 

through a hole inside the chamber and put very close to the cone-shaped sensor which lies on the 

floor of the chamber in order to obtain accurate temperature measurements.  

 

Fig. 5.9: Real time graph in the SE376. 

 

In addition, we used a LM35AH temperature sensor to measure the temperature inside the 

chamber for the controller. The LM35 series are precision integrated-circuit temperature devices 

with an output voltage linearly proportional to the Centigrade temperature. The temperature sensor 

and the light bulbs are connected with National Instruments NI cDAQ-9174 and Arduino UNO to 

set and measure the temperature inside the chamber (as shown in Fig. 5.10). Both the RTD digital 

thermometer probe and the DAQ temperature sensor were placed very close to the sensor in order 

to monitor the temperature and to get more reliable data. We put a small barrier of insulating 

material between the sensor and the heating element to prevent direct heat from effecting our 

measurements.  
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It has been noticed that at temperature higher than 30° C it takes very long time to reach 

the next temperature set point. In addition, we have to wait for half an hour at each temperature 

set point before collecting the spectrum to ensure that the temperature equilibrium has been 

reached. Hence, the automation of data collection becomes. With MATLAB and CS-Script files, 

a program was developed, with the collaboration of Edward Lynch and Daniel Brandt, to control 

the OSA with the CS-Script named osascript.cs that synchronizes data collection from the OSA 

and thermal probe. For each data collection session, a folder is created to save the files with the 

temperature and the time stamp incorporated into their names. The program is set to save the 

spectrum for every degree over the range 22° C to 50° C. However the maximum temperature that 

we were able to achieve inside the thermal chamber was 39C. The results of the thermal testing 

are presented in chapter seven.  

 

Fig. 5.10: Setup for temperature measurement. 
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6. SENSOR PROTOTYPES 

6.1 CONE-SHAPED SENSOR CONSTRUCTION 

All the sensors prototyped in our laboratory are based on embedding an FBG in a T-D composite 

which was prepared by mixing T-D particles with a polymer. The employed polymer is a kind of 

adhesive, which is normally in a liquid state. In order to fabricate the transducers in different shapes, 

we applied several methods. All the methods required mold manufacturing. For sensor prototypes 

with simple geometry, we used the EasyMold Silicone Putty with a Plexiglas template that was 

fabricated by cutting a piece of Plexiglas into the required shape and specified dimensions. The 

EasyMold Silicone Putty has 3 minutes of working time at 70° F. Cooler temperatures will result 

in slightly slower cure rates while higher temperatures will fasten the cure rates. Therefore, it is 

important to work quickly when making the molds. The template was cut and ready in the correct 

dimensions before the mold was prepared. First, the EasyMold Silicone Putty was quickly kneaded 

together in equal amounts by weight or volume of components A and B until swirl free uniform 

color was achieved. This process usually takes about 1 minute. Then roll the kneaded components 

into a ball and then flatten slightly. The next step is to press the object with the template in desired 

shape into putty to form the mold. Then the template was left in putty to cure for 25 minutes. 

Finally, the object was removed and the mold was ready to use. Some of the molds that have been 

constructed with this method are shown in Fig. 6.1. For accelerating the cure process with heat, 

the mold on the top of an aluminum foil was either placed in the center of an oven at least 6” from 

the heating elements or near a heat lamp.  
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Fig. 6.1: Molds for simple shapes manufactured with EasyMold Silicon Putty 

However, it was hard to cut the cone shape and construct a mold with the silicon putty 

method which was appropriate for simple shapes as shown in Fig 6.1. The cone shape was chosen 

since it has different cross sectional area along the z-axis which means that the number of T-D 

particles will be different across the length of the embedded FBG particles. Owing to the taper 

shape of the composite, the strain distribution varies with the magnitude of the magnetic field. In 

order to construct the cone-shaped sensor, a cone was created with a 3-D printer (as shown Fig. 

6.2). Then two silicon compounds have been mixed and poured into a hollow cylinder which was 

also 3-D printed. In this process, we used Alumilite's High Strength 2 silicone mold making rubber 

since it is soft enough but is sufficiently rigid for multiple re-use while maintaining good alignment. 

In addition, High Strength 2 silicone has a low viscosity and is capable of replicating the exact 

detail of the original piece. It is a tin based silicone and cures under all different types of clay and 

substrate. Temperature and humidity may affect the cure speed of the rubber. There are two 

components: A side or component which is the base and B side which is the catalyst. To prepare 
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the mold with Alumilities’s High Strength 2 silicon, the amount of material for the mold was first 

calculated. The mixing ratio of the High Strength series silicon rubber is 10:1 by weight. The two 

components were poured in a large container to give adequate room for the thorough mixing of 

the rubber. Moreover, the large container allows the rubber to expand /grow if degas/vacuum is 

necessary and prevents the mixture from over flowing into the vacuum chamber. Degassing the 

mixture may be required since air bubbles are introduced during mixing. The base and the catalyst 

were mixed thoroughly for about 2-3 minutes. Once the material was mixed thoroughly, it was 

poured slowly into the hollow cylinder to avoid air entrapment. The Silicon has a very high tear 

strength and ability to bond to other surfaces. Therefore, it is imperative to use the mold release to 

prevent the mold from adhering to the inside surface of the hollow cylinder. Then the cone-shaped 

template was immersed into the mixture and left to harden. The full cure schedule of the Silicon 

is seven days. Next the mold was extracted out of the hollow cylinder. Finally, the mold was ready 

to be used to fabricate the cone-shaped sensor as shown in Fig. 6.2.  

 

Fig. 6.2: Cone-shaped template and its mold produced with the first method. 
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The production of the transducer requires the manufacturing of the epoxy-bonded Terfenol-

D particulates in sizes of 250–300 μm. The first stage of the manufacturing process is to prepare 

the epoxy by mixing the epoxy resin (part A) with the Super Sap 1000 hardener (Entropy Resins, 

Inc) in 2:1 ration by volume or 100:48 by weight. The mixing of the two parts must be performed 

thoroughly and slowly to reduce the air bubbles. The epoxy mixture was put in a vacuum chamber 

to remove the trapped air bubbles. This process was done very quickly before the epoxy started to 

harden since the work time of this epoxy is 25 minutes. The T-D particles weighted using a 

probable milligram scale. For accurate reading, the scale was placed on a horizontal flat surface. 

Predetermined quantities of T-D particles and epoxy (4.512g epoxy: 1.263g T-D) were 

homogenously mixed. After proper stirring; the mixture was placed inside the vacuum chamber. 

Since the resin had a relatively low viscosity, the process allowed to get rid of unnecessary air 

trapped inside the mixture during the stirring process. Then the mixture was poured into the 

previously prepared cone shaped mold. 

Before pouring the mix into the mold, a PL013 (0.33mm) acoustic/electric high carbon 

steel guitar string (D'Addario & Company, Inc) was used to create the hole in the transducer. The 

guitar wire was fixed from one end and a weight was attached to the other end to keep it straight 

and centered inside the mold. Now the T-D composite mixture was then poured inside the mold 

with the embedded guitar wire that prepared a channel for the introduction of an FBG inside the 

transducer. Week later (the recommended full cure time for the Super Sap epoxy), the cone-shaped 

transducer was ready to be extracted out of the mold. The next step for prototyping the sensor is 

to embed the FBG inside the cone shaped composite. This process will be discussed in section 6.3.  

A second method has been used to construct the cone-shaped transducer. In this method, a 

cone, hollow cylinder, two lids for the cylinder, and a base were manufactured in the machine shop 
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with aluminum (the schematics are shown in appendix B). In the middle of the cylinder lids, there 

are two small Plexiglas pieces with a central hole for the traverse of the guitar string through the 

mold (shown in Fig 6.3). Plexiglas has been used in fabricating those two small pieces since a thin 

drill bit for the size of the small hole was brittle and failed to penetrate a thick piece of aluminum 

without breaking. The mold making process for the second method is similar to the first one. With 

the cone placed inside the hollow cylinder, the mold making silicon rubber was poured around the 

cone. After the silicon hardened, the cone was taken out of the hollow cylinder. Then the guitar 

wire was inserted into one end of the hollow cylinder where the mold was attached to the lid with 

a hole for the wire. Now the T-D and the epoxy mix can be poured inside the mold. The other side 

of the guitar wire can go through the hole in the second lid. After one week, the cone-shaped 

transducer is ready to be released from the mold as shown in Fig 6.4.  

 

Fig. 6.3: Cone shape mold and associated pieces for the second method. 
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Fig. 6.4: Cone shaped Transducer  

 

6.2 GRADED   SESNOR CONSTRUCION 

To manufacture the graded sensor, the FBG was embedded in a T-D composite with a graded 

particle size distribution. T-D particles ranging from 20 to 300 microns were used. The FOCS was 

prototyped by fabricating layers with different volume fractions of T-D. Particles of MONEL-400 

were blended with T-D particles to compensate for thermal expansion and ensure more uniform 

distribution of T-D. MONEL-400 was grinded with Dremel wheels to MONEL-400 powders. A 

rectangular piece with five squares has been 3-D printed. Then the mold material (Alumilite's High 

Strength 2 silicone mold making rubber) was mixed and poured inside. One week later, the mold 

was ready. The resulting sensor is shown in Fig. 6.5. 
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Fig 6.5: Graded FOCS 

 

6.3 FBG EMBEDDING PROCEDURES 

An appropriate method for embedding a FBG onto a transducer was of the utmost importance in 

the sensor fabrication. If the FBG is not properly embedded onto the transducer, the current sensor 

will not perform as expected and the gathered data will not suitably describe the practical events 

of interest. Before the FBG is embedded, it is spliced to the optical fiber link.  This was done so 

that the output characteristics of the FBG which include the peak wavelength, spectral width, the 

spectral power density at the peak wavelength, the total power, and the overall spectral shape can 

be actively monitored with the OSA during the embedding procedure. Being able to see the real 

time output is crucial for deciding how to proceed in the embedding process.  In the following 

descriptions, the portion of the grating fiber spliced to the link is identified as the link side, while 

the unconnected side is referred to as the open side.  The FBG with an overall length L=3cm, 



 

 

83 

 

linewidth (FWHM) = 0.066nm, and unchirped Bragg wavelength 1550B nm   was used to 

fabricate the FOCS. 

Embedding the FBG in both cone-shaped and graded sensors requires the same basic set 

of equipment, including the optical rails, rail carriers, posts, fiber optic positioners, fiber holders, 

and linear stage.  The fiber containing the grating is held taut with fiber optic positioners while the 

output characteristics of the FBG were monitored with the OSA. Then the open side of the link 

was inserted inside the hole in the cone-shaped transducer.  The transducer rests on a thin acrylate 

polymer platform which itself rests on a manual linear stage.  The fiber optic positioners are 

mounted on standard posts and optical rail carriers which have been slid onto a mini optical rail 

secured to an optical table.  The fiber optic positioners are generally kept about 20-25cm apart.  

This apparatus is shown in Fig 6.6.   
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Fig. 6.6: The FBG Embedding setup. 

To attach the FBG inside the transducer, a small hole was drilled on the narrow end of the 

cone composite. This hole functioned as a port for the injection of the epoxy which will attach the 

FBG to the transducer. Several types of epoxy were experimented on such as AA-BOND F113 

resin (Atom Adhesives. Inc) and F120 two-part fiber optic connecter epoxy (Thorlabs, Inc). The 

goal was to use a low viscosity epoxy that flowed from the hole at one end of the cone to the other 

end. In addition, a fast curing epoxy was used for rapid bonding of the FBG to the transducer. The 

F120 epoxy satisfied the requirement of fast cures and low shrinkage for quick high performance 

fiber optic connections. At room temperature, the FBG will be attached to the transducer within 

30 minutes; however, fully cured bonds require up to 48 hours. Unfortunately, the work time of 

this epoxy is five minutes which was too short for the epoxy to pass through the channel. LOCTITE 

ECCOBOND F112 BIPAX or known as TRA-BOND F112 (Henkel Electronic Materials, LLC.) 
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was used instead for its longer work time of 40 minutes. After mixing the two parts of the epoxy, 

a syringe was used to inject the epoxy through the injection port. The cured color of the epoxy is 

blue which enabled us to determine if the epoxy has filled the whole channel inside the transducer 

and surrounded the FBG all the way to the other end. The complete cone-shaped sensor with the 

FBG embedded inside is shown in Fig. 6.7. The success in attaching the FBG to the transducer is 

indicated by the maintenance of reflection spectrum throughout the whole embedding process.  

The sensor is now ready for experiments.  A holder with a cone shape in middle was 3-D printed 

to hold the cone-shaped sensor in the middle of the electromagnet for testing.  

 

Fig. 6.7: Cone-shaped FOCS with an embedded FBG. 
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7. RESULTS AND ANALYSIS 

In this chapter, the results from the DC magnetic field experiments are presented first.  Then, the 

AC magnetic field results are presented.  Next, thermal testing results are presented. Finally, the 

experimental results are compared with theoretical results determined from simulations.  Most of 

the experimental results are plotted in terms of the sensor output optical powers versus DC or AC 

magnetic field. 

7.1 DC MAGNETIC FIELD EXPERIMENTAL RESULTS 

WLM and OSA were used to collect data for the DC experiments. With the WLM, the spectra had 

to be numerically integrated to obtain the total power reflected by the FBG. On the other hand, the 

OSA can provide the reflected optical power through the Thorlabs OSA software. Two cone-

shaped sensors have been fabricated in the laboratory. Fig. 7.1 illustrates the typical results from 

DC experiments with the first cone-shaped sensor. In Fig 7.1 the reflected optical power is plotted 

as a function of the DC magnetic field from a coil. To explain the data in Fig.7.1, we next show a 

set of the reflection spectra for DC magnetic field ranging from 4kA/m to 384kA/m in Fig. 7.2. 

The experimental results in Fig. 7.1 show the expected monotonic increase of optical power with 

magnetic field when H is larger than 125kA/m. However, at low magnetic fields the total power 

dipped with increasing magnetic field owing to an initial strain distribution imposed on the FBG 

from the poor bonding of FBG to the cone with epoxy. It should be noted that this sensor was 

fabricated with the first method as described in Chapter six. In addition, the old experiment setup 

was used to obtain the results shown in Figs. 7.1 and 7.2 where we used the WLM to obtain the 

spectral power under the DC magnetic field generated by the DC coils.  
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Fig. 7.1: The measured optical power as a function of magnetic field for the first cone-shaped FOCS. 

 

 

Fig. 7.2: Reflection spectra at various field values for the first cone sensor. 
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To overcome the drawbacks of the first sensor, a second cone-shaped sensor was fabricated 

with the second method (see chapter six). In addition, a new experimental was set up with the 

electromagnet as the source for the magnetic field and with the OSA as the instrument for acquiring 

the spectral data from the sensor. With the Thorlabs OSA software, the automatic setup routine 

was used to measure spectral power of the sensor. The automatic setup performs a series of 

measurements on the light source currently being coupled into the OSA and adjusts the 

measurement settings to those most suitable for that source. The settings that will be adjusted are 

the resolution, sensitivity, apodization, and gain. This routine is started by clicking on the “Auto-

Setup” button in the sweep menu. It can take up to a minute to complete, and no other 

measurements can be performed while it is running. Upon the completion of the routine, the OSA 

software will obtain one measurement with the automatically determined settings, allowing user 

to inspect the result. The Thorlabs OSA software contains a number of analysis modes, each of 

which analyzes one aspect of the data. The result of each analysis is shown below the data display 

area. Total power, peak wavelength, and FWHM linewidth can be directly obtained from the 

analysis modes with the OSA software. During the embedding of the FBG inside the cone-shaped 

sensor, the FBG spectrum was monitored. Fig. 7.3 shows the spectrum power of the second cone 

sensor after the FBG was embedded and the epoxy was cured to bond the FBG inside the sensor. 

This enabled us to compare the spectra of the FBG before and after the embedding and the curing 

processes.   
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Fig. 7.3: Display of the cone sensor spectrum after the embedding of the FBG with OSA software.  Analysis 

displayed under the graph and in a breakout window. 
 

The results of the first two trials of the DC magnetic field measurements with the second 

cone-shaped sensor are presented in Fig. 7.4. They are also shown in Tables 7.1 and 7.2, including 

the magnetic field reading from the magnetometer and output power acquired by OSA.  The sensor 

was placed in the air gap of a laboratory electromagnet, a Gauss meter with a Hall probe was 

placed tangent to the middle of the sensor to monitor the intensity of the magnetic field. By 

sweeping the magnetic field, spectra of returned signals from the FBG at various values of H were 

recorded with the OSA.  An FBG with an overall length L = 3cm, linewidth (FWHM) = 0.066nm, 

and unchirped Bragg wavelength λB = 1550 nm was used to fabricate the FOCS.   
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Magnetic Field (Gauss) Total Power [nW] Magnetic Field (KA/m) Normalized power Trial 1 

27 902 2.148591732 1 

537 982 42.73310222 1.088691796 

1143 1058 90.95704998 1.172949002 

1682 1070 133.8493071 1.186252772 

2230 1090 177.4577615 1.208425721 

2784 1099 221.5436808 1.218403548 
Table 7.1: Values of magnetic field and total power for trial 1 DC testing. 

Magnetic Field (Gauss) Total Power (nW) Magnetic Field (KA/m) Normalized Power Trial 2 

1.1 816 0.087535219 1 

300 879 23.87324146 1.077205882 

500 917 39.78873577 1.12377451 

1000 982 79.57747155 1.203431373 

1500 992 119.3662073 1.215686275 

2000 998 159.1549431 1.223039216 
Table 7.2: Values of magnetic field and total power for trial 2 DC testing. 

 

 

Fig. 7.4: The measured output power for two DC testing trials at magnetic field levels for the second cone sensor. 

As seen in Fig. 7.4, sensor sn335611 trial (1) and trial (2) behaves as we would expect.  

Above a certain field level, the output power gradually increases with increasing field until the 

sensor reaches the saturation level. It can be seen also that only several data points were collected 

during the first two trials where we sweep the magnetic field in an increment of 500G. In Fig. 7.4, 
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the normalized power at each field value was obtained by dividing the power with the power at 

zero magnetic field.  The initial two trials have been conducted to demonstrate that the transfer 

characteristics of FOCS have similar trend as those from the modeling and the theory. Several 

trials have been conducted later with more data points; we incremented the magnetic field in steps 

of 50G and recorded the corresponding total power. Fig. 7.5 shows the experimental response of 

the second cone-shaped FOCS.  As H increases, the peak wavelength of the FBG will shift (Fig. 

7.6) and the bandwidth of the reflected optical signal increases as shown in Fig.7.7. The raise in 

bandwidth translates into an increase in return power from the FBG. As a result, the chirped FOCS 

will respond to a wide range of H as shown in Fig. 7.5.  

 

 
Fig. 7.5: Experimental response of the second cone-shaped FOCS. 
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Fig. 7.6: Peak wavelength versus magnetic field. 

 

Fig. 7.7: FWHM linewidth versus magnetic field. 
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Fig. 7.8 below shows the reflection spetcra at various magnetic fields levels for the seond 

sensor. Another trial for the DC testing has been done by increasing the magnetic field to a certain 

vlaue and then decreasing the magnetic field while the total power monitored throughout the whole 

process. As H decreases the bandwidth of the reflected optical signal decreases, leading to the 

similar trend in the returned total power (see Fig. 7.9). The experiment has been conducted also 

with reversing the direction of the magnetic field to ensure that we have the same behavior. It can 

be seen form the output characteristics of this FOCS that the output power increases almost linearly 

over the range from 0 to 150 kA/m. The general response of the FOCS from the experiments agrees 

with the FBG strain models that were presented in Chapter 2. 

 

Fig.7.8: Reflection spectra at various field values for the second cone-shaped sensor. 
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Fig. 7.9: Response of the FOCS with both increasing and decreasing the magnetic field.  

7.2 AC MAGNETIC FIELD EXPERIMENTAL RESULTS 

Since the intended application of the FOCS is monitoring the power lines against faults, its AC 

performance is of utmost importance.  Several sets of AC experiments have been performed in the 

laboratory.  An electromagnet driven by a sinusoidal signal source made up with a function 

generator connected to a power amplifier was used. The output voltage from the photodiode circuit 

was recorded by the oscilloscope in the first channel, and the output from the magnetometer was 

measured by the second channel. In addition, the output from the function generator was used as 

an external trigger to the oscilloscope. We used load resistance 𝑅𝐿  of various values (4.75kΩ, 

32kΩ, and 52kΩ) to obtain the output voltage from the photodiode circuit. It was difficult to 

generate adequate magnetic field for sinusoidal wave with 60 Hz owing to the impedance of the 

electromagnet. In the first AC experiment, a sinusoidal waveform with 2Vp-p amplitude and 3Hz 

frequency was outputted from the function generator that was connected to the power amplifier 

with a starting gain of 60.  Then we stepped up the gain by an increment of 5 and recorded the 

output voltage of the photodiode on the oscilloscope. The load resistance of the photodiode in the 
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first trial was 4.75kΩ. In the second trial of the AC experiment, we used an input signal from the 

function generator with an input voltage of 3Vp-p and frequency of 2Hz. Now, the starting gain 

of the power amplifier for a clean display of the photodiode circuit voltage on the oscilloscope was 

35. The load resistance of the photodiode is still fixed at 4.67KΩ. To increase the response from 

the FOCS, we increased the load resistance to 36KΩ, the input voltage has amplitude of 3V and a 

2Hz frequency. The output voltage from the photodiode has increased slightly. However, in all 

those trials we were not able to read the amplitude of the AC magnetic field using the 

magnetometer. After reading the data sheet for the magnetometer, we found that the minimum 

frequency of 10 Hz was required for reliable the magnetometer reading. Since setting signal 

frequency at 10 Hz reduced the photodiode circuit to too low a voltage, we tried 6 Hz instead. The 

magnetometer was able to measure the peak value of the AC magnetic field with an input 

sinusoidal wave with a peak value of 2 volts and a 6 Hz frequency. Figs. 7.10 to 7.14 below show 

some samples of the oscilloscope data for the output voltage from the sensor with the input voltage 

of 2 Vp-p at a frequency of 6Hz from the function generator under different power amplifier gains 

to increase the magnetic field magnitude. To further boost the photodiode circuit voltage, we used 

𝑅𝐿 =52kΩ.  
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Fig. 7.10: AC experiment data collected by an oscilloscope for the output voltage from the sensor with output 

optical power 8.531µW, 𝑅𝐿 =52kΩ, H = 0. 

 

Fig. 7.11: AC experiment data collected by an oscilloscope for the output voltage from the sensor with output 

optical power at 9.643µW, 𝑅𝐿 =52kΩ, under AC H field at 3Hz. 
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Fig. 7.12: AC experiment data collected by an oscilloscope for the output voltage from the sensor with output 

optical power at 12.388µW, 𝑅𝐿 =52kΩ, under AC H field at 3Hz. 
 

 

 

Fig. 7.13: AC experiment data collected by an oscilloscope for the output voltage from the sensor with output 

optical power at 13.812µW, 𝑅𝐿 =52kΩ, under AC H field at 3Hz. 
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Fig. 7.14: AC experiment data collected by an oscilloscope for the output voltage from the sensor with output 

optical power at 16.405µW, 𝑅𝐿 =52kΩ, under AC H field at 3Hz. 

 

We kept increasing the gain of the power amplifier until we obtain the maximum possible 

output when the gain was 50. Some results of measured values for this experiment are shown in 

Table 7.3, including the magnetic field reading from the magnetometer, output voltages obtained 

from the oscilloscope trace data.  The output power as a function of the peak amplitude of the AC 

magnetic field is shown in Fig. 7.15. The increase in the AC magnetic field translates into an 

increase in return power from the FBG. Data from both DC and AC magnetic field experiments 

exhibited almost linear response to magnetic field with slight fluctuations in output power. 
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H (G) 
H(kA/m) Gain of Power 

Amplifier 
Output Voltage 

(mV peak) 
0.000 0 10 0.6 
164.4 13.082 45 0.7 
193.5 15.398 50 0.75 
219.1 17.435 55 0.8 
243.8 19.401 60 1 
273.2 21.741 65 1.3 
299 23.794 70 1.4 
306 24.351 75 1.5 

 Table7.3: Values of peak magnetic field, and voltage measured in the AC lab experiment. 

 

Fig. 7.15: Output of FOCS versus AC magnetic field intensity. 
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7.3 THERMAL TESTING RESULTS 

Temperature variation effect on the response of the cone-shaped sensor has been investigated. Both 

DAC temperature sensor and the RTD thermometer have been used to measure the temperature 

inside the thermal chamber that has been described in chapter six. Table 7.4 below shows some 

temperature measurements that have been performed with both sensors. The two sensors placed 

very close to each other inside the thermal chamber in order to get consistent temperature 

measurements. Fig. 7.16 shows the real time graph and table of temperature readings for the 

thermal chamber generated by the SE-376 software for the RTD thermometer. In the first trials of 

thermal testing, we acquired the spectrum three to five minutes after increasing the temperature 

inside the thermal chamber. The results of those trials are shown in Fig. 7.17 below. Trials 1, 2, 

and 3 ran from 23ºC– 50ºC. In the figure, beyond 43ºC the sensor output power starts to increase 

in an exponential fashion as the temperature is rising. This is an indication that the chamber has 

not reached the thermal equilibrium. For this reason, the thermal testing has been repeated again 

with waiting half an hour after each temperature set point to ensure that the chamber has reached 

thermal equilibrium before collecting FOCS data.  The new results of thermal testing are shown 

in Fig. 7.18. It can be seen now that the output response of the current sensor is almost independent 

of the temperature effect and the output became steadier since it depends on the linewidth of the 

reflected spectrum. In fact, the peak wavelength of the FOCS tracks the steady increases in 

temperature as shown in Fig. 7.19. However, we could not increase the temperature inside the 

thermal chamber beyond 39ºC since the heat elements have insufficient power to reach higher 

temperatures within half an hour. With the limited thermal data, we can observe the potential effect 

on restricting the FOCS resolution owing to the low sensitivity of the FOCS.  
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DAC Temperature Sensor in 
Celsius 

RTD Thermometer 
in Celsius 

25.057 25.3 

27.12 27.3 

29.104 29.3 

31.11 31.34 

33.11 33.34 

35.126 35.31 

37.197 37.34 

39.26 39.46 

41.179 41.4 

43.19 43.12 

45.029 45.26 
Table 7.4: Comparison of temperature measurements with DAC and RTD sensors. 

 

Fig 7.16: Real time graph and table showing the temperature measurement with the SE-376 software. 
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Fig. 7.17: Output of FOCS versus. Temperature when data were taken every three to five minutes. 

 

 

Fig. 7.18: Output of FOCS versus temperature when data were taken every thirty minutes. 
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Fig. 7.19: Peak wavelength of FOCS versus temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

104 

 

8. CONCLUSIONS AND FUTURE WORK 

8.1 CONCLUSIONS 

This thesis presented modeling and experimental verification of several prototypes of the chirped 

FOCS. The main intended application for the prototyped FOCS is the detection of faults in 

electrical power distribution systems. This FOCS has several advantages over traditional fault 

detection schemes involving current transformers, including, compact design, high bandwidth, and 

immunity to electromagnetic interference, among others.  Additionally, it is more cost effective 

than other types of OCS typically used, requiring only a simple power measurement to detect 

current levels. 

After a quick review of the conventional current sensors and optical current sensor 

technology, modeling methods and considerations were presented.  This began with a basic review 

of FBG theory, and then different modeling methods for obtaining the theoretical reflection spectra 

were presented.  In addition, the effects of temperature and strain on the output characteristics of 

the FBG were reviewed.  With the FBG theory, we were able to simulate the spectral response of 

the sensor which consists of the FBG embedded in composite blocks with different volume 

fractions of T-D particles.   

It was imperative to examine the material behavior models of T-D in order to understand 

the experimental results and to optimize the transducer performance. Several models have been 

used to explain the magnetostriction in T-D. Some are based on purely physical principles while 

others model the magnetostriction with the phenomenological approach.  Generally, the analysis 

considers only single crystal. 

Accurate modeling of magnetostrictive materials requires coupling of electrical, 

mechanical, and magnetic domains. For this purpose, several models were implemented by 
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combining finite element solutions of mechanical and magnetic boundary value problems with 

COMSOL Multiphysics software package. These models describe the magnetomechanical 

behavior of T-D composite when applying magnetic field. There are limitations or uncertainty of 

numerical simulations since the material parameters for composites are unknown and assumed 

their magnitude being similar to those of T-D. 

Experimental components were described. In addition, the experimental setups for both 

DC and AC magnetic field measurements, sensor output spectrum, temperature, and total output 

power were explained.  

Several FOCS prototypes and configurations have been developed. Sensor fabrication 

methods are presented in details, particularly focusing on the shape of the T-D composites since 

sensor behavior is very sensitive to variability in these factors.  The prototyped sensors use T-D 

composites as a transducer. T-D composite reduces the eddy current loss and improves the fracture 

toughness in comparison to monolithic T-D. The magnetostrictive composite was fabricated by 

integrating magnetostrictive powders embedded in a nonmetallic binder (epoxy). Owing to the 

importance of having zero initial strain on the FBG, we developed a two-step method to achieve 

this goal. First, the composite was prototyped then the FBG was embedded inside. 

We then presented the experimental results obtained for several prototypes of the FOCS.  

Both DC and AC magnetic field results included both the output power as a function of incident 

field and a sample of the spectra at various field values  Although an OSA or wavelength meter is 

used to characterize FOCS, it is not required for practical applications. We have demonstrated that 

a photodiode circuit is sufficient to capture the waveform of AC currents.  According to the data, 

the prototyped sensors exhibited behavior almost similar to that predicted by the model but with 

very lower sensitive.  Sensor in both DC and AC responses of FOCSs exhibited linear increase 
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proportional to the increment in the magnetic field with slight fluctuations of output power, even 

for low fields. The results of the different DC and AC trials demonstrate repeatability. In addition, 

thermal testing has confirmed that the output characteristics of the sensor are almost independent 

of temperature increase but with random fluctuations. Unfortunately, such random fluctuations can 

hinder the FOCS in resolving the actual current level owing to the low output from the FOCS in 

comparison to these fluctuations.  

In summary, we have successfully design chirped FOCSs, their prototypes were fabricated 

by embedding an FBG in T-D composite and demonstrate their capability in current sensing.  

These sensor prototypes were characterized with both direct and alternating magnetic field 

measurements.  We observed that the repeatability in responses and FOCS prototypes had 

responses in trend similar to simulations. However, FOCS prototypes output within a narrow 

power range such that thermal variations can prevent them from providing definitive current level. 

Such low sensitivity can be attributed to the low magnetostriction of the T-D composite. At current 

stage, our results have shown consistency among different trials and support the operation of FOCS 

as a current sensing device that is useful for fault detection and location.  Further development will 

be required for chirped FOCS to function as a current measuring device. 

8.2 FUTTURE RESEACH DIRECTIONS 

Several modifications have already been implemented to sensor prototyping process and 

experimental procedures during the thesis research, such as replacing the WLM with the OSA for 

spectral data collection, switching to the electromagnet driven by a power amplifier as the 

magnetic field source and developing new techniques for sensor construction. However, several 

areas are identified that will enhance results for both DC and AC testing.  Additionally, more 
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research and testing are needed to determine the effect of temperature on the output spectrum of 

the current sensor.  

In order for DC and AC experimental data to be more accurate, we should wait longer at 

each field/current level before recording the spectrum to allow the thermal chamber to reach the 

equilibrium at each level. Since the whole testing procedure will last for a long time, enhanced 

automation program should be developed with more flexibility in controlling the DC and the AC 

testing processes.  

 The limitation in performing AC magnetic field measurements at high field levels and 

frequency around 60 Hz can be alleviated if additional power amplifier can be used to drive the 

electromagnet at high current.  

Regarding the T-D transducer prototyping, several modifications can be done to improve 

the response of the FOCS such as using the heat in the curing process to ensure that the T-D 

composite fully cure before embedding the FBG inside. Another improvement can be performed 

to reduce thermal variations is to investigate the use of other epoxies that has higher thermal 

conductivity or low thermal expansion coefficient. Similarly, we can ensure temperature spreading 

evenly on the sensor and eliminate any thermal gradient that might affect the sensor characteristics 

by the enclosing the FOCS with a heat conductive layer or film. 

 

Since the operating principle of the sensor relies on the magnetostrictive properties of T-

D, another important future enhancement to the transducer fabrication involves using high 

magnetic field intensity during the fabrication of the transducer. This will align the magnetic 

domains in T-D in a certain direction in order to optimize the sensor performance.  
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Although the simulation models that we used to investigate the T-D behavior with varying 

magnetic field are useful, many improvements can be added to the present models. The models 

built in COMSOL need a long time to converge. In future models, we will investigate techniques 

that accelerate the simulation process, such as experimenting with other meshing options to reduce 

the computation time. We should also research on the appropriate model parameters for modeling 

composites and finally reach our goal of constructing an equivalent model that can provide 

sufficient accuracy within a short execution time.  
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A APPENDIX A: LIST OF MATERIALS 

CURRENT SOURCES AND POWER SUPPLIES 

 DC Regulated Power Supply – Mf: BK PRECISION; Model: 1665 

 AC Adapter 5V 3A – Mf: D-Link; Model: JTA0302C 

 DC power supply – Mf: BK Precision; Model: 1790; Output current = 0-20 A; Output 

voltage = 0-32 V  

 DC power supply – Mf: Mastech; Model: HY5020E; Output current = 0-20 A; Output 

voltage = 0-50 V 

 Variable Autotransformer – Mf: The Superior Electric Co.  Model: Powerstat 3PN116C; 

Ratings: 120 V in, 0-140 V out, 10 A, 1.4 kVA 

OPTICAL LINK AND MEASUREMENT EQUIPMENT 

 Optical isolator – Mf: Newport; Model: ISC-1550; Operating wavelength = 1550nm; 

Insertion Loss = 0.35dB 

 Optical isolator (substituted circulator for dual stage isolator) – Mf: JDS Uniphase; Model: 

CR5500P-3P-CV5A; S/N: HD122865 

 3-port Optical Circulator – Mf: New Focus, Inc; Model: 0803; Operating wavelength = 

1550nm; Insertion loss (port 1 to port 2) = 0.62dB, Insertion loss (port 2 to port 3) = 0.58dB 

 3-port Optical Circulator – Mf: New Focus, Inc; Model: CIR10BN32N-01; S/N: 001 

803722 

 Fiber splice (x3) – Mf: Siemon; Model: ULTRAsplice; Average insertion loss < 0.2dB [2] 
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 Fiber FC-FC ceramic mating sleeve – Mf: FIS, Inc; Model: F18520; Typical insertion loss 

= 1dB 

 Superluminescent Light Emitting Diode (SLED) with driver board – Manufacturer (Mf): 

Exalos; SLED Model: EXS1520-2xxx; Max. optical output power = 16mW; Typical peak 

wavelength = 1550nm; Bandwidth = 60 nm; Driver Board Model: EBD2000-0000 

 Multi-Wavelength Meter; Mf: Hewlett Packard/Agilent; Model: 86120C 

 Magnetometer – Mf: Alpha Lab, Inc/USA; Model: DC Magnetometer (Gauss); With 

transverse probe –DC/AC adjustable range; Website: www.trifield.com; S/N: 2450 

 GPIB-USB cable 

 Desktop computer 

 Fiber Optic Power Meter – Mf: Photodyne Products 3M; Model: 17*TF; S/N: 21311 

 Digital Phosphor Oscilloscope – Mf: Tektronix; Model: 2024B 

 InGaAs PIN photodiode – Mf: NEC; Model: NR7800; Responsivity ℛ = 0.94 A/W @ 𝜆 = 

1550 nm. 

 Load resistor – 4.75kΩ, 36 kΩ, and 50 kΩ nominal 

 Battery – 9V 

 Photodiode circuit board and fixture 

 Digital Multimeter – Mf: TENNA TM; Model: True RMS Multimeter 72-4020 

SENSOR MATERIALS – INCLUDES TRANSDUCER/FIBER PARTS 

 Terfenol-D Powder –250-300µm Particle size. 

http://www.trifield.com/
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 Monel-400 rod (x2) – Cylindrical shape; Length = ? Diameter = 0.25 in. 

 Fiber Bragg gratings (x10) – Mf: O/E Land, Inc.; sn: 2393-1-x, 2459-x (x=1-5); Grating 

length = 30 mm; Initial center wavelength ≅ 1550nm; FWHM = 0.1 nm; Peak reflectivity 

≅ 97% 

AUXILIARY FIBER MATERIALS AND EQUIPMENT 

 Fiber type: SMF-28, single-mode fiber with 900μm or 250μm jacket 

 Fiber optic stripper – Mf: Clauss; Model: NO-NIK 

 Optical fiber cleaver – Mf: Fitel; Model: S323 

 Fusion splicer – Mf: Ericsson; Model: FSU975 

 Methanol 

 Kim Wipes 

 Fiber FC-FC ceramic mating sleeve (x2) – Mf: FIS, Inc; Model: F18520; Typical insertion 

loss = 1dB 
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APPENDIX B: SCHEMATIC DRWAING OF THE CONE 

SENSOR 
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