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ABSTRACT 

 

AN ARRAY OF CIRCULAR DIELECTROPHORESIS TRAPS TO SEPARATE AND 

CHARATERIZE INDIVIDUAL MICROPARTICLES FROM POPULATION 

by 

 

Hwangjae Lee 

 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Woo-Jin Chang 

 

 

Dielectrophoretic traps have been broadly studied in light of their many advantages of 

high controllability, ease of operation, and high efficiency. In the previous studies, however, it 

was challenging to count captured particles or required work to capture particles. In the thesis, an 

array of circular dielectrophoresis (DEP) traps was developed and tested to manipulate 

population of microparticles in single particle level. The circular DEP traps enable more precise 

control of the force field than conventionally used interdigitated electrodes due to its 

omnidirectional and symmetric properties. The location of the captured microparticle inside the 

trap was confirmed by both of numerical and experimental approaches, based on the direction 

and amplitude of the force field generated by numerical simulation. This comprehensive analysis 

facilitated separation as well as trapping. The individual microparticle captured in separate trap 

can be further tested or treated by follow up treatments. 
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1.1 Organization of the thesis 

The work performed in this thesis focuses on trapping single particles using an array of 

dielectrophoretic trap. The fabrication and numerical simulation of electrical dielectrophoresis 

(DEP) trap are illustrated in detail. The reasons why this trap is optimized for quantifying 

physical properties of single particle is also demonstrated.  

Chapter 1 presents the theory and experimental designs for the most significant 

approaches to DEP traps including its application areas. Chapter 2 is based on the fabrication of 

DEP trap device and the general experimental setup. Numerical simulation of the electrical DEP 

trap is introduced, which leads to DEP force simulation. Chapter 3 presents trapping 

experiments using different sized of polystyrene beads and traps including its numerical 

simulation. Chapter 4 features the effect of spacer is demonstrated with the details of the DEP 

trap’s electrical and physical properties. Chapter 6 consists of conclusion and future direction of 

the DEP trap’s application.  

 

1.2 Particle trapping and separation  

In the last several decades, a variety of methods have been studied and used widely to 

trap, manipulate, separate and concentrate particles. Systems designed for these purposes in 

many areas have improved both in quality and in efficiency. Typical methods of these systems 

include mechanical [1], optical [2], microfluidic [3], and magnetic [4] manners. Due to 

improvement of theses particle control skills, its application has also spread to a various areas 

such as bioscience [5], biomedical [6] and dental sciences fields [7].   
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1.3 Dielectrophoresis (DEP) theory and trap 

The phenomenon of DEP was first observed by Reuss F during his study of clay particles. 

After Reuss’s discovery, several researches about revealing the characteristics of DEP were 

conducted by Pohl who named this phenomenon as “dielectrophoresis” [8], [9].  

A non-uniform electric field and polarizable particles are the main factor to generate a 

DEP force. When dielectric particles are suspended in non-uniform electric field, a DEP force 

affects those particles [10]. The relative polarizabilities of the particle and of the surrounding 

medium determines the magnitude and direction of the DEP force [11]. For a spherical particle 

of radius r, the DEP force is defined as: 

< F⃗ > = 2𝜋𝑟3𝜀𝑜𝜀𝑚𝑅𝑒[𝐾(𝜔)]∇𝐸2                                              (1) 

where 𝜀𝑜 is the permittivity of free space, 𝜀𝑚 is the permittivity of the surrounding medium, and 

r is the particle radius. ∇𝐸2 denotes the electric field gradient and 𝑅𝑒[𝐾(𝜔)] is the Clausius-

Mossotti factor. The Clausius-Mossotti factor is defined as follows: 

K(ω) =  
𝜀𝑝
∗ − 𝜀𝑚

∗

𝜀𝑝
∗ +2𝜀𝑚

∗                                                               (2) 

𝜀∗  in Equation (2) is the complex permittivity and subscripts p and m stand for the particles and 

the medium, respectively. The complex permittivity ε* is described as follows: 

𝜀∗ =  ε − 𝑗
𝜎

𝜔
                                                                (3) 
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where ε is the permittivity, 𝜎 is the conductivity, 𝑗 =  √−1, and 𝜔 is the angular frequency of the 

applied AC electric field.  

 Particles exhibit either a positive DEP (p-DEP) or a negative DEP (n-DEP) depending on 

the real part of 𝐾(𝜔), which is expressed as 𝑅𝑒[𝐾(𝜔)]. This value is bounded by the limits -0.5 

< 𝑅𝑒[𝐾(𝜔)] < 1 for spherical particles and it depends on the frequency of the applied electric 

field and the relative magnitudes of 𝜀𝑝
∗  and 𝜀𝑚

∗  [12]. By controlling these parameters, particles 

can be led to a wanted direction, which enables separation and manipulation of particles. Positive 

DEP occurs when the complex permittivity of the particle is higher than that of the surrounding 

medium, 𝜀𝑝
∗  > 𝜀𝑚

∗ , and it results to 𝑅𝑒[𝐾(𝜔)] > 0. Particles under positive DEP has a tendency to 

travel towards to the higher electric field gradient region such as electrode edges. On the other 

hand, when the complex permittivity of the medium is higher than that of the particle, 𝜀𝑚
∗  > 𝜀𝑝

∗ , 

or 𝑅𝑒[𝐾(𝜔)] < 0, particles experience negative DEP. Under the effect of negative DEP, particles 

travel towards the low electric field gradient region [13].  

 Interdigitated (IDT) electrodes have been frequently studied for DEP force in the last 

several decades. In most cases of IDT electrodes, the electric field gradient is higher at the 

electrode edges compared to the center of the electrodes and the gap between the electrodes. 

When the system is affected by positive DEP, particles are attracted to the edges of the 

interdigitated electrodes due to its high electric field gradient. On the contrary, particles are 

repelled away from the edges and move towards the point where has low electric field gradient 

under negative DEP [1], [5]. Figure 1 illustrates the movements of the particles depending on 

their state including a normal state.  
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Figure 1. A schematic illustration of the responses of polarizable particles under interdigitated 

(IDT) electrodes. Under positive DEP, particles travel towards to the electrode edges where the 

electric field maxima. Particles are repelled away from the electrodes and move towards the 

point where has low electric field gradient under negative DEP. In this case, the low electric 

field gradient is generated both in the middle of electrodes and in the gap between the 

electrodes. 

Even though a variety of methods have been studied and used widely to trap, manipulate, 

separate and concentrate particles, DEP has been considered the optimized method for 
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electrically neutral particles with strong controllability, easy operation, high efficiency, low cost 

and slight damage compared to other methods [15]. Optical method is not the best because of 

hard operation and high cost; microfluidic method has a weak controllability; large damage is 

hard to avoid in mechanical method; magnetic method also has a disadvantage of hard operation.  

In recent times, the improvement of Micro-Electro-Mechanical System (MEMS) 

technology has enabled fabrications of lab-on-a-chip for DEP to be easier and effective. Many 

researches to maximize the benefits of DEP such as easy fabrication, strong controllability have 

been studied. DEP has been used in capturing and controlling bacteria [16], viruses [17], DNA 

[18], yeast cells [19], parasites [20], sperm cells [21] and cancer cells [22].  

Design of electrodes in DEP play an important role in characterizing a purpose of system 

with the types of DEP such as positive and negative DEP. In general, electrode structures can be 

classified into planar and three-dimensional (3D) categories. Electrodes of planar design are 

broadly used with easiness of fabrication by utilizing lithography procedures on top of a 

microchannel [10]. Spiral [23], curved [14], matrix [24], interdigitated [25], and oblique [26] 

shapes of electrodes has been fabricated and studied. 3D electrodes can be fabricated in more 

different ways than planar electrodes. However, 3D electrodes fabrication process is complicated 

and needs more efforts. Extruded patterns [27], a sidewall pattern [28], a top-bottom pattern [29], 

micro wells [30], and DEP wells [31] have been fabricated using this method.  

 

1.4 An array of circular DEP traps to characterize individual microparticle  

A variety of planar electrode shapes in DEP traps such as Spiral [23], curved [14], matrix 

[24], interdigitated [25], and oblique [26] shapes of electrodes have been demonstrated. IDT 

electrode are widely used among them with easiness of collecting particles [32], [33]. However, 
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IDT electrode is not optimized for analyzing in a single particle level, while it is suitable for 

manipulating a large number of particles. In addition to that, the location of particles under 

negative DEP in IDT electrode can’t be predictable because it can be trapped either on the center 

of the electrodes or on the gap between the electrode as shown in Figure 1.  

In most case of circle shaped electrodes, however, particles are attracted to the edges of 

the circle shaped electrodes due to its high electric field gradient under positive DEP. In the 

opposite, particles are repelled away from the electrodes and move towards the point that has low 

electric field gradient under negative DEP. This circular DEP trap can avoid the IDT electrode’s 

uncertainty under negative DEP. Figure 2 illustrates the movements of the particles depending on 

their state including a normal state. 

Figure 2. A schematic illustration of the responses of polarizable particles under circle shaped 

electrodes. Under positive DEP, particles travel towards to the electro edges where the electric 

field maxima. Particles are repelled away from the electrodes and move towards the center of 

the circular trap under negative DEP. This circular electrode design enables to avoid 

uncertainty that IDT electrode has under negative DEP. 
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Due to this stable and predictable property compared to IDT electrode, enclosed shape of 

electrodes have been introduced in a few researches to supplement the disadvantages of IDT 

electrode [10], [30], [34], but the geometry of electrodes in these researches is not perfect circle 

shape because of a long and narrow rectangular electrode attached to the end of the circle 

electrode.  

This disadvantage was completely overcome with a perfect circular geometry array of 

DEP traps in our study, which results in a more stable electric field and DEP force. With 

omnidirectional property of the circle shaped DEP traps, this stableness facilitates matching 

experimental results of the DEP trap with results from numerical methods.  

Trapping and separating a single particle has also been challenging for the past several 

decades under the DEP research areas even though the importance of fine-scale manipulation and 

positioning of single micro scale particles has been increasing because the applications in life 

science, diagnostic and medical industries have expanded.  

DEP force has been used in many areas to capture and manipulate a large numbers [32], 

[35] of particles in light of many advantages of high controllability, ease of operation, and high 

efficiency, but not many researches have focused on DEP traps in a single particle level. Some of 

researches demonstrates capturing a single particle. However, those researches are confined to 

concentrating or immobilizing a stationary single particle [30], [34].   

In the thesis, an array of circular DEP traps was developed and tested to manipulate 

population of microparticles in single particle level. The circular DEP traps enable more precise 

control of the force field than conventionally used IDT electrodes due to its omnidirectional and 
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symmetric properties. The location of the captured microparticle inside the trap was confirmed 

by both of numerical and experimental approaches, based on the direction and amplitude of the 

force field generated by numerical simulation. 

As shown in Figure 3, the newly designed array of DEP traps in this thesis can capture 

and immobilize moving micro scale single particles in each trap. The velocities and particle’s 

sizes that are required to be captured can be controllable with applied voltages and trap sizes. 

This novel property of the traps suggests the possibility of selective moving particle capturing. 

The DEP traps also facilitate analyzing each particle’s individual physical characteristics. In 

addition, the inner hollow design of the traps enables observing particle’s movements without 

any extra treatment such as fluorescence. 

Figure 3. An array of 30 𝜇𝑚 circle shaped electric DEP traps. Four polystyrene particle are 

captured in the middle of the array under negative DEP force. The circle shaped traps are 

transparent as opposed to the rest of area where chrome metal is deposited. Judging by the 
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position of particles which are close to the south rim of traps, it can be assumed that the medium 

is flowing from north to south direction.  

The suggested traps supplement disadvantages of different shaped DEP traps and 

strengthen established single particle capturing skills in company with decreasing time and work 

that needed to fabricate DEP traps. Especially, the suggested array of DEP traps in this thesis 

focus on capturing and analyzing particle in a single particle level, while most researches have 

focused on manipulating a large number of particles [10], [34]. The DEP traps are also optimized 

to be numerically analyzed by eliminating unnecessary electrodes which may cause electric field 

or DEP force to be unstable. This numerical analysis enable to quantify physical properties of 

single particles in conjunction with experimental analysis. In addition to that, capturing and 

analyzing a moving single particle are demonstrated compared to many other researches [3], 

[30], [36], [37] which mainly demonstrate controlling a stationary single particle.  

This thesis demonstrates that moving micro scale particles are captured according to their 

velocities and sizes by controlling applied voltages and trap sizes. Using this novel property, 

different sized particles can be separated. Spacer that is used to make a channel of particles 

between the microarray electrode on the bottom layer and the Indium Tin Oxide (ITO) counter 

electrode is also subject to change in order to see the different effect of the depth of spacer.  

Each operation condition is generated by finite element method (FEM) using computer 

software (COMSOL Multiphysics V5.2). This work facilitates acquiring and quantifying the data 

related to particle’s physical properties, which lead to the comprehensive and complete analysis 

of the system.  
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2.1 Overview 

Planar geometry electrodes in microfluidic device have many advantages over 3D 

electrodes. One of the most competitive and crucial advantages is the easiness of fabrication. It’s 

also cost-effective due to its short and convenient process. There are a variety methods for the 

fabrication of microfluidic devices such as reactive ion etching, wet etching, plasma etching, 

injection molding, conventional machining, hot embossing, and soft lithography [38]. 

Photolithography is regarded as a solid and fundamental process among all these methods [13].  

Two-dimensional microelectrodes can be simply fabricated using photolithography process 

compared to other manners. The simplicity can minimize any experimental errors that can be 

caused from mistakes of fabrication.  

In this chapter materials, equipment, and experimental methods for fabrication of an array 

of DEP traps to quantify physical properties of single particles will be discussed in detail. 

Photolithography technique was applied for the process of fabrication because of the benefits 

mentioned above. Numerical simulation of the array of electrical DEP trap were also conducted 

using computer simulation (COMSOL Multiphysics V5.2) to verify the validity of the 

experiment and quantify physical properties of single particles captured in the traps. Every detail 

from governing equations to geometry to mesh will be discussed.    

 

2.2 Fabrication of DEP Trap Device 

Prior to the process of photolithography, the circular electrode geometry was designed 

using the computer-aided design software (Auto CAD). Pure circle shaped geometry without any 

other extra electrode that attached to the circle was created and designed. As mentioned in the 
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introduction, the omnidirectional property of the circle shaped DEP traps facilitates matching 

experimental results of the DEP traps with results from numerical methods. Pure circle shaped 

design also contributes to producing a predictable and stable numerical simulation.  

The circular electrode geometry designed by Auto CAD were used to make a photomask 

which can be reusable. A variety of arrays are engraved in the photomask; 10 μm diameter circle 

shaped traps with 10 μm gap between the traps, 20 μm diameter traps with the same gap, 30 

μm diameter traps, and 40 μm diameter traps; Each size of traps from 10 μm to 40 μm are also 

designed with the different gaps sized from 10 μm to 50 μm. In this thesis, 10 μm ~ 40 μm traps 

with 20 μm gap and 40 μm traps with 40 μm gap were used.  

Since the photomask can be reusable, only the photolithography and metal deposit 

processes were conducted each time new devices were needed. The brief procedures of the 

photolithography and metal deposit is referenced in Table 1.  

Step Process Actions Equipment 

1 Preparation 

Cut a 3 × 1" microscope slide glass into three pieces, 

then wash off with DI H2O.  

Glass 

cutter 

2 

Surface 

cleaning 

Soak the slides in acetone, then sonicate it for 5 

minutes. After rinsing it with methanol, soak the slides 

in methanol and sonicate it for 5 minutes again. At last, 

mix sulfuric acid and hydrogen peroxide for piranha 

cleaning, then soak the slides in the mixed solution for 

30 minutes.  

Sonicator 
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3 Baking 

Place the slides on a convection oven for 5 minutes at 

65℃. 

Convection 

oven 

4 

Surface 

treatment 

Put a small petri dish at the bottom of a vacuum 

chamber with 8 ~ 9 drops of hexamethyldisilazane 

(HMDS) in it. Then, place the slides on the rack of the 

vacuum chamber and vacuum for 5 minutes. After 5 

minutes, stop vacuuming and let it still for 7 minutes. 

Vacuum 

chamber 

5 

Photoresist 

coating 

Coat the slides with a photoresist (AZ-5214) using a 

vacuum spin coater.  

Spin coater 

6 Baking Place the slides on a hotplate for 5 minutes at 65℃. Hotplate 

7 UV exposure 

Expose the slides to UV light with the photomask on it 

for 14 seconds at 7 mw/cm2. 

UV mask 

aligner 

8 Developing 

Mix the developer solution with DI H2O at the ratio of 

1:4. Soak and stir the slides for 55 seconds.  

Beaker 

9 Baking 

Place the slides on a convection oven for 5 minutes at 

65℃. 

Convection 

oven 

10 Metal deposit 

Deposit pure chrome metal piece with purity 99% on 

the slides until the thickness of 1 K𝐴̇ at the rate of 0.1 ~ 

0.3 𝐴̇/s. 

Thermal 

evaporator 

11 Lift-off 

Soak the slides into acetone and sonicate it for 30 

seconds.  

Sonicator 

12 Completion 

Rinse the slides with DI H2O and air dry with N2 gas 

before use. 

Convection 

oven 
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Table 1. The procedures and needed equipment for fabricating the array of circle shaped DEP 

traps. 

 2.2.1 Preparation and cleaning 

The purpose of cleaning is to remove any contaminants on the material’s surface which 

may affect the results of experiments. In addition, surface treatment is needed before photoresist 

coating to change the property of the surface from hydrophilic to hydrophobic, which can help 

coat photoresist. In this experiment, both solvent cleaning and piranha cleaning were used. The 

detail procedures and used materials from preparation to cleaning is as follows:  

1) Preparation slides for the device 

a) Cut a 3 × 1" microscope slide glass (NO. 7101, Viomed, China) with a glass 

cutter into three pieces. Each slide becomes 1 × 1" size. 

b) Rinse with DI H2O and air dry with N2 gas 

2) Solvent cleaning 

a) Soak the 1 × 1" size slides in acetone (NO. 841502, Carolina, USA) on a petri dish 

b) Sonicate for 5 minutes using a sonicator (2510R-MT 2510, Branson, USA) 

c) Rinse with methanol then, soak the slides in methanol 

d) Sonicate for 5 minutes  

e) Rinse with DI H2O and air dry with N2 gas 

3) Piranha cleaning 

a) Mix 99 % sulfuric acid (NO. 893302, Carolina, USA ) with 3 % hydrogen 

peroxide (NO. 858122, Carolina, USA) in a bowl at the ratio of 1:1 

b) Soak the slides in the mixed solution for 30 minutes. 
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c) Rinse with DI H2O and air dry with N2 gas 

d) Place the slides on a convection oven (NO. 658, Thermo scientific, USA) for 5 

minutes at 65℃ 

 2.2.2 Photolithography 

Small structures or features can be created on the slides by photolithography. Then, these 

structures are basis for generating electrodes after metal deposit process. Figure 4 shows a 

photolithography procedure used in this thesis. According to the procedure for the device that 

was invented and experimented in this thesis, the photoresist left after developing is the shape of 

circle which is the shape of the traps. 

 

Figure 4. A schematic illustration of photolithography procedure using photoresist. The 

photolithography procedure consists of coating, UV exposure, and developing. 
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The detail procedures and used materials for photolithography is as follows: 

1) Surface treatment 

a) Place a small petri dish at the bottom of a vacuum chamber with 8 ~ 9 drops of 

hexamethyldisilazane (HMDS) in it 

b) Place the slides on the rack of the vacuum chamber 

c) Vacuum for 5 minutes 

d) Stop vacuuming and close the valve and let it still for another 7 minutes 

e) Slowly ventilate the vacuum chamber 

f) Place the slides on a convection oven for 5 minutes at 65℃ 

2) Photoresist coating 

a) Place the slide on a vacuum spin coater (SCS 6800 Spin Coater, SCS, USA / 

Figure 5) 

b) Drop photoresist (AZ 5214E-IR Photoresist, IMM, USA) until it covers more than 

80 % of the surface of the slide.  

c) Place the lid on the vacuum spin coater  

d) Set the spin coater parameters to 500 rpm, 15 seconds for the first step, and 2000 

rpm, 30 seconds for the second step in one recipe 

e) Starting coating 

f) Place the slide on a hotplate for 70 ~ 90 seconds at 110 ℃ 
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Figure 5. A vacuum spin coater 

3) UV exposure 

a) Start a UV mask aligner (PLA-501-FA, Canon, Japan / Figure 6)  

b) Check gauges of vacuum, air, pressure and N2 

c) Measure the intensity of UV with a UV intensity meter  

d) Rinse a photomask with DI H2O and air dry with N2 gas 

e) Place the photomask on the UV mask aligner 

f) Palace the slide under the photomask 

g) Expose UV light for 14 seconds at the UV light intensity of 7 mw/cm2 

* The exposed time can be adjusted depending on the intensity of UV light 
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h) Remove the slide from the UV mask aligner 

4) Developing 

a) Mix a developer solution (NO. GHSBBG7070, AZ Electronic Materials, USA) with 

DI H2O at the ratio of 1:4 

b) Soak and stir the slide for 55 ~ 65 seconds 

* The stirring time can be adjusted depending on a room temperature  

c) Rinse the slide with DI H2O for more than 30 seconds and air dry with N2 gas 

d) Bake the slide on a convection oven for 5 minutes at 65℃ 

 

Figure 6. A UV mask aligner 

 2.2.3 Metal deposit and lift-off 
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Metal deposit contribute to generating electrodes based on small structures or features 

that are created by photolithography. Figure 7 shows a schematic illustration of metal deposit 

and lift-off procedure after photolithography process. The invented devise in this thesis has 

hollow circular traps. It also states that the rest of circle shapes are electrodes deposited with 

chrome metal piece of purity 99% . Metal is deposited on the whole area of the slides first, then 

the photoresist with metal on it is peeled off from the slides in the process of lift-off, which 

remains the shape of electrodes.  

 

Figure 7. A schematic illustration of metal deposit and lift-off procedure. In this process, 

chrome was used as metal and acetone was used for lift-off. 

The detail procedures and used materials from preparation to cleaning is as follows: 
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1) Metal deposit 

a) Stick the slides treated by photolithography on a wafer using kapton tape 

b) Place the wafer at the top of a chamber of a thermal evaporator (NO.KV-301-

32987-B, Key high vacuum products, USA / Figure 8) 

c) Place high purity chrome metal pieces inside a basket 

d) Lay the basket inside the chamber and close a shutter 

*Check the filament that the basket is connected 

e) Apply vacuum grease around the rim of the chamber 

f) Close the chamber and start the thermal evaporator 

g) Check if a filament tap switch indicates the filament number the basket is 

connected 

h) Turn off vent valve, foreline valve and high vacuum valve 

i) Turn on roughing valve 

j) Inject liquid nitrogen 

k) Turn on mechanical pump for one hour 

l) Turn on diffusion pump for two hours 

m) Turn off roughing valve 

n) Turn on foreline valve and high vacuum valve 

o) Connect a crystal coolant tube 

p) Set a program 

* Density: 7.2, Z-Factor: 0.31 

q) Turn on evaporation power supply and open the shutter 

r) Control evaporation power to around 30 
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s) Control Ac ampere to around 150 

t) Check and maintain the rate of deposit to 0.1 ~ 0.3 𝐴̇/s 

u) Deposit until 1000 𝐴̇  at the rate of 0.1 ~ 0.3 𝐴̇/s and close the shutter 

v) Turn off power control and power supply  

w) Turn off diffusion pump and mechanical pump 

x) Turn off high vacuum valve high vacuum valve 

y) Turn on roughing valve and vent valve 

z) Take off the slides and cool in a room temperature 

Figure 8. A thermal evaporator 

2) Lift-off 

a) Place the deposited slides on a petri dish 
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b) Soak in acetone 

c) Sonicate for 30 seconds  

d) Rinse the slides with acetone  

e) Check the shape of the electrodes with a microscope  

* If photoresist in not washed off, repeat the process from b) to d) 

f) Rinse the slides with DI H2O and air dry with N2 gas before use 

 

2.3 Experimental setup 

A variety of Lab-on-a-Chip (LOC) devices have been developed and used in different 

engineering areas during the past twenty years due to its advantages such as power efficiency, 

low contamination risk and reduced requirement for sample preparation [39, 40]. It has been 

contributing to the developments of microfabrication techniques. Since the first use of DEP in an 

LOC device [41], LOC became one of the main methods for DEP to be developed and 

applicated.  

In this thesis, the fabricated DEP traps on a glass slide according to the process 

mentioned above were developed into LOC device with an indium tin oxide (ITO) glass slide, 

extra thin double-sided tape for spacer, and copper conductive adhesive tape. Then, this LOC 

device of electrical DEP traps were connected to a function generator, a microscope, and 

computers for a completed setup for manipulating particles.  

 2.3.1 Lab-on-a-Chip device with electrical DEP traps 

 The proposed LOC device consists of three layers as shown in Figure 9. The ITO layer 

(NO. IT10-111-25, NANOCS, USA) is one of the important components that functions as the 
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counter electrode. To maximize the benefit of transparent DEP traps, the transparent ITO layer 

was used, which enables to observe and monitor movements of particles inside the traps.  

A spacer (Nitto Denko Co, Japan) that secures the area for DEP force effect was 

embedded between the ITO layer and the chrome microelectrode on the microscope slide glass. 

The spacer plays an important role by maintaining the gap between ITO electrode and chrome 

microelectrodes, which results in stable and constant particles’ flow inside the microchannel. The 

spacer was tested many times and no fluid leakage was found.  

Figure 9. A schematic diagram of the LOC device with electrical DEP traps. The coated ITO 

glass and chrome function as electrode. The spacer provides the gap between ITO electrode and 

chrome microelectrodes ensuring constant particles’ flow inside the microchannel.  
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Several groups of an array of DEP traps were fabricated on the chrome microelectrode as 

shown in Figure 10. Each square shaped array consists of 80 ~ 100 same sized circular DEP 

traps. From 10 μm to 40 μm circular DEP traps were fabricated with from 10 μm to 50 μm gap 

between each circular DEP trap to compare the difference depending on the size of DEP traps. In 

this thesis, from 10 μm to 40 μm circual traps with 20 μm gap and 40 μm circular traps with 40 

μm gap were used.  

 

Figure 10. Arrays of DEP traps with different sizes of traps and gaps. The first column consists 

of 20 μm, 30 μm, 40 μm circular DEP traps with 20 μm gap from the top. The second column is 

30  μm gap and the last column is 40 μm gap with the 20 ~ 40 μm DEP traps. 
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 Material and dimension of each component in the LOC device are described in Table 2. 

The ITO coated glass was cut longer than the bottom glass to connect to a copper conductive 

adhesive tape that also functions as a counter electrode. In the thesis, 30 μm spacer was used to 

verify the difference of the DEP force field depending on the thickness of the spacer.  

 

Table 2. Specifications of each component of the proposed LOC device with the electrical DEP 

traps. One side of the ITO coated slide glass is longer than the bottom sidle glass to be used as a 

ground electrode.  

 

 2.3.2 Electrical DEP trap setup 

 The ITO electrodes and chrome microelectrodes of the LOC device with the circular DEP 

traps were to the function generator (NO. 33220A, Agilent Technologies, USA) through flexible 

wires. Then, the LOC device was placed on the microscope (NO. BX53, Olympus, Japan) with 

two cameras for observation and digital image acquisition respectively. The microscope was 

connected to two cameras as shown in Figure 11; one is equipped in the microscope for live time 

Component Material 
Dimension 

Length Width Thickness 

ITO Layer Indium tin oxide 35.4 mm 25.4 mm 1 mm 

Spacer Polyester 20.5 mm 2.5 mm 30  μm 

Chrome 

Microelectrode 
Chrome 18.0 mm 18.0 mm 100 nm 

Microscope 

Slide Glass 
Glass 25.4 mm 25.4 mm 1 mm 
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observation, and the other one is the high-speed camera for accurate analysis of particles’ 

movements.  

 

Figure 11. The experimental setup for capturing single particles and measuring its movements 

on the array of circular DEP traps. 

The function generator was used to control applied frequencies and voltages to the DEP 

trap system. Positive and negative DEP depends on the applied AC electric field. In this thesis, 1 

MHz frequency was mostly used to induce negative DEP force to particles, which move particles 

towards the center of the circular DEP traps where the electric field gradient is low.  
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Figure 12. The inlet and outlet of the suggested LOC device: (A) using osmotic pressure; (B) 

using syringe pump 

 

Figure 13. A syringe pump 

 To control the flow of particles, both osmotic pressure and syringe pump were used. The 

inlet and outlet were located each side of the DEP traps that were not blocked by the spacers as 



29 

 

shown in Figure 12. Even though both methods were used, the inlet and outlet locations were 

directed to the same way. Especially, the syringe pump (KDS 200, KD scientific, USA) in Figure 

13 was used for particle separation experiments in this thesis due to the advantage of maintaining 

the same pressure.  

 2.3.3 Digital image acquisition 

The high-speed camera (CL-400, Allied Vision, USA) was used to measure exact 

movements and velocities of each single particle with the digital image acquisition program 

(XCAP™ Image Processing Software, EPIX Inc). In this thesis, each particle’s velocity was 

measured based on the travel distance of a single particle and the travel time. Travel distance was 

obtained by two consecutive pictures using the image processing program (Image J, National 

Institutes of Health) and travel time was acquired based on the frame duration. The mode was set 

up as shown in Figure 14. Most importantly, the frame duration was set up and controlled from 10 

frames / second to 50 frames / second depending on the particles’ velocity.  
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Figure 14. The mode setup of the digital image acquisition program (XCAP™ Image Processing 

Software, EPIX Inc). The setups were consistent throughout the experiments except for Frame 

duration and Exposure which were controlled depending on the particles’ velocity. 

 

2.4 Numerical simulation of DEP trap 

Dielectrophoresis has been studied numerically using commercial FEM software to 

analyze electrical fields and dielectrophoretic forces. Especially, COMSOL Multiphysics which 

is one of the well-established commercial FEM software have been used in many studies for 

analyzing Dielectrophoresis [42, 43].  

In this thesis, each experimental operation condition was generated by finite element 

method (FEM) using computer software (COMSOL Multiphysics V5.2, COMSOL Inc) as 

shown in Figure 15 to evaluate a particle’s physical properties at the single particle level. 

Governing equations were analyzed and interconverted to conduct desired simulations in 

COMSOL. Physical and boundary conditions were also considered and tested to match the 

results of simulation to general traits of DEP trap. 
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Figure 15. The finite element analysis, solver, and simulation software, COMSOL Multiphysics 

V5.2. 

Direction and magnitude of the force field inside and outside circular traps were analyzed 

to find the optimum condition for single particle trapping. The movement of a particle in both 

outside and inside a trap was predicted based on the simulated force field. The magnitude of 

DEP force applied on a 4 μm polystyrene particle was ranged from 0 to 0.285 nN when from 0 to 

8 V was applied. The particles that have identical physical and electrical properties can be 

simultaneously separated from the mixture using a developed method. 

 2.4.1 Physics and governing equations 
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Proper physics and governing equations are the most important factors to analysis a 

system numerically. In this thesis, 3D space demention was selected to simulate length, width, 

and depth of the LOC device. Then, the electrostatics interface was used to compute the electric 

field which causes the DEP force field with polarized particles. In COMSOL software, the 

physics interface solves Gauss' Law for the electric field using the scalar electric potential as the 

dependent variable.  

To derive a DEP force which exerts on a particle in non-uniform electric field, the 

governing DEP Equation 1 was transformed as follows for x component:  

2 ∗ pi ∗ ((𝜀𝑜)[F/m]) ∗  𝜀𝑚 ∗ ((r[m])^3) ∗  Re[K(ω)] ∗ (2 ∗ es. Ex ∗ d(es. Ex, x) + 

2 ∗ es. Ey ∗ d(es. Ey, x) + 2 ∗ es. Ez ∗ d(es. Ez, x))                                                          (4) 

Especially, the electric field gradient, ∇𝐸2, in Equation 1 was properly modified in Equation 4 

for compatibility with the computer software. Equation 2 and 3 were also transformed as follows 

for y and z components to enable those governing equations to be applied in the COMSOL 

software.  

2 ∗ pi ∗ ((𝜀𝑜)[F/m]) ∗  𝜀𝑚 ∗ ((r[m])^3) ∗  Re[K(ω)] ∗ (2 ∗ es. Ex ∗ d(es. Ex, y) + 

2 ∗ es. Ey ∗ d(es. Ey, y) + 2 ∗ es. Ez ∗ d(es. Ez, y))                                                          (5) 

2 ∗ pi ∗ ((𝜀𝑜)[F/m]) ∗  𝜀𝑚 ∗ ((r[m])^3) ∗  Re[K(ω)] ∗ (2 ∗ es. Ex ∗ d(es. Ex, z) + 

2 ∗ es. Ey ∗ d(es. Ey, z) + 2 ∗ es. Ez ∗ d(es. Ez, z))                                                          (6) 
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 The value of the permittivity of the free space, 𝜀𝑜, and the relative permittivity of the 

surrounding medium, 𝜀𝑚, which is DI water in this case were used from an earlier paper [44] 

using the value 8.854-12  and 80.1 respectively. The real part of the Clausius-Mossotti factor, 

𝑅𝑒[𝐾(𝜔)], was also derived from the earlier paper [44] that has been studied by a co-worker in 

the Dr. Chang’s lab. The real part of the Clausius-Mossotti factor was – 0.4763 on the condition 

of polystyrene bead, 1 MHz applied frequency, and 2 ~ 4 μS /cm conductivity, which was the 

same condition in the experiments for this thesis.  

 2.4.2 Geometry and boundary conditions 

The simplest geometry is required in most numerical methods to get proper and concise 

simulation results by avoiding unnecessary errors which may occur due to its complex geometry. 

Periodic conditions were applied in this numerical analysis by taking the advantage of the DEP 

traps’ repeated circular shapes. The application of periodic conditions was beneficial for 

avoiding unnecessary computation and guaranteed less effort for the simulation.  

To simulate the array of the circular DEP traps as shown in Figure 3, one circular DEP 

trap was designed at the center of the geometry. Then, eight half circular DEP traps were 

designed around the center circular trap as shown in Figure 16.  
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Figure 16. Geometry of the suggested LOC device with the circular DEP traps. The device has 

20 μm DEP traps with 20 μm gap between each trap. Periodic condition was applied to every 

side of the device to express its continuity. 

The depth of the first bottom block was 100 nm that was the same depth as the deposited 

chrome metal on the bottom microscope slide glass. The depth of the second block above the 

bottom block was 30 μm as the depth of the spacers. The third and top block of the LOC device 

was 600 nm which is the depth of coated ITO on the slide glass. The circular DEP trap sizes and 

the gap between two DEP traps varied according to the sizes of the array. The overall simulation 

parameters for the one of the most used geometries in this thesis is as shown Table 3.  
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Simulation 

geometry 
Actual materials 

Dimension 

Length Width Thickness 

Bottom layer Chrome 80 μm 80 μm 100 nm 

Middle layer Medium (DI water)  80 μm 80 μm 30 μm 

Top layer ITO 80 μm 80 μm 600 nm 

Trap circle None 20 μm 20 μm 0 nm 

Gap Chrome 20 μm 100 μm 

 

Table 3. Simulation parameters for the array of the 20 μm circular DEP traps with 20 μm gap. 

Thickness parameters were set consistently throughout the experiments, while length and width 

varied according to the trap size and gap. Thickness of trap is 0 because the trap itself is hollow 

and the surrounding area was deposited with 100 nm depth chrome metal. 

 2.4.3 Materials  

Three materials were used in simulating the LOC device; chromium, water, and ITO. 

Applied values of each material’s properties for the simulation were based on the default 

material properties in COMSOL Multiphysics except for relative permittivity. Relative 

permittivity of chromium, water, and ITO are not loaded in COMSOL Multiphysics. These 

values were previously studied and cited from the published articles [44, 45]. The important 

property values of those materials are listed in Table 4.  

Materials Electrical conductivity Relative permittivity 

Chromium 7.9 × 106 S/m 12 

Water 5.5 × 10-6 S/m 80.1 

ITO 1.3 × 106 S/m 3.3378 
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Table 4. Electrical properties of materials for the LOC device. Electrical conductivity is one of 

the main factors that is involved in generating electric field. For a given electric field, a material 

with high conductivity produces more current flow. Relative permittivity was used to calculate 

electric displacement field. 

 

Electric displacement field, D, means the influences of an electric field, E, to the 

organization of electric charges in a given medium in conjunction with charge migration and 

electric dipole reorientation. The relationship between an electric displacement field and an 

electric field is as follows;  

D =  𝜀0𝜀𝑟𝐸                                                                (7) 

where 𝜀𝑜 is the permittivity of free space, 𝜀𝑟 is the relative permittivity. Equation 7 was applied 

in the Electrostatic section in the simulation. The values of the relative permittivity were used 

from the material properties and the value of 8.854 × 10-12 was used for 𝜀𝑜, which is the ratio 
𝐷

𝐸
 

in free space.  

 2.4.4 Mesh 

Mesh is important in obtaining reliable numerical simulation results. In most cases, the 

finer the mesh is, the more exact data can be achieved. In this thesis, a physics-controlled mesh 

was used for the experiments with 30 μm spacer.  
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Figure 17. Mesh of the array of 20 μm DEP traps with 30 μm spacer. 

The array of DEP traps with 30 μm spacer was meshed using a physics-controlled mesh 

with the finest element size among the options, which is Extremely fine as shown in Figure 17. 

Even though it was simulated under the finest mesh option, some element size was bigger than 

0.2 μm, which was proved to be reliable for a micro scale observation [44]. It was due to its 

enormous volume and the limited performance of the simulation computer. However, the 

analyzed area for acquisition of data -around and inside the circular traps- was mostly smaller 

than 0.2 μm in size.  

To enhance the accuracy of the analysis of the simulation, each derived graph’s 

resolution was adjusted from Normal resolution to Extra fine resolution, which led into shorter 

girds between each date value in the graphs. In addition to that, whole obtained data sets from 
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the simulations were interpolated up to 0.01 μm accuracy to differentiate a particle’s traveled 

distance inside the DEP traps.  
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Chapter 3 
 

DEP Force Simulation 
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3.1 Overview 

Each case of experiment in this thesis was numerically simulated to confirm the location 

and force of the captured microparticle inside the trap based on the direction and amplitude of 

the DEP force field. The extracted data from the simulation was also used to explain the unique 

properties of the DEP traps.  

The graphics of the DEP force field was acquired as a part of analysis to visualize the 

directivity and the relative magnitude of the DEP force. Secondly, the applied DEP force on a 

particle was extracted and made into a line graph to quantify the exact force strength. To 

simulate force field and make a line graph of force, particles were assumed to be close enough to 

the bottom of the LOC device and the force applied on those particles were extracted based on 

particle’s radius. According to simulation, particles’ proximity to the bottom of the device affects 

the strength of the DEP force; the closer particles are to the chrome electrodes, the more strength 

they have.  

In this section, two main results from the simulation are introduced with explanations, 

and differences of the DEP force based on applied voltages are illustrated. The differences of the 

DEP force based on a size of particle, a size of DEP trap, and a thickness of spacer were also 

analyzed and those results are discussed in the next chapter in conjunction with experimental 

methods.  

 

3.2 DEP force data analysis 
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The DEP force field in this simulation represents both the directivity and relative 

magnitude of the DEP force which enable to predict the detailed properties of the DEP traps 

before actual experiments. Based on the graphical results from the simulation as shown in Figure 

18, there are two significant characteristics of the suggested circular DEP traps that facilitate 

capturing a particle at a required position and capturing a particle selectively depending on a 

speed or force of a particle. Polystyrene beads (Spherotech, USA) were used as particles 

throughout the both experimental and numerical analyses in this thesis.  

Figure 18. The graphical results of circular DEP traps from the numerical computer simulation: 

(A) the DEP forces inside the trap exert toward the center of trap; (B) the strongest forces are 

generated at the rim of trap and the repulsive forces are observed outside the rim. It is also 

discovered that Z-axis force exists as well as X-axis and Y-axis forces.  

First of all, it is observed that the DEP forces on a particle converge at the center of the 

DEP trap as shown in Figure 18A. This convergence of the DEP force field is the main property 

of this trap that facilitates capturing a particle under negative DEP force. Each arrow represents 
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the negative DEP force that affect a particle when a particle is located at the same position as the 

arrow. Arrow length was set logarithmic so that the length of each arrow could also represent a 

relative strength of DEP force. Every circular trap shows the same force field due to its 

omnidirectional and symmetric characteristics.  

Secondly, it can be predictable that the strongest forces are generated at the rim of trap 

considering the length of arrows in Figure 18B. In addition to that, the repulsive forces are 

observed outside the rim which can be used to capture a particle selectively depending on a 

speed or force of a particle. Z-axis force is also observed as X-axis and Y-axis forces. Z-axis 

forces pointing upward are mostly around and outside the rim and Z-axis pointing downward and 

the center of the trap are observed inside the trap. This trait plays an important role in this thesis 

and the detailed explanations will be discussed at the next chapter in conjunction with the 

experimental results.  

The negative DEP force field on the graphical results in Figure 18 was extracted and 

converted into a line graph to quantify the exact force strength which helps analyze the 

properties of the traps more thoroughly. The DEP force strength of each axis is as shown in 

Figure 19. Since a particle was approaching and trapped along the extended line that penetrates 

the center of the trap in all experiments, Y-axis force component was negligible compared to X-

axis and Z-axis force components.  

In case of X-axis force, negative value represents the X-axis force that exerts towards left 

direction, while positive value represents the X-axis force that exerts towards right direction. As 

expected from Figure 18, X-axis forces is repulsive outside the circular trap and converged at the 

center inside the trap. This characteristic of repulsive force enables to separate different sizes’ 
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particles by repelling particles that are under stronger DEP force due to its size. The strongest X-

axis force is generated at the right inside of the rim as 2.5 × 10-10 N. The reason that the 

strongest force doesn’t take place at the rim is because the location that was used to derive the 

graph is particle’s radius. If the graph is simulated at the location of the bottom, the strongest 

force is generated at the exact location of the rim.  

Figure 19. X-axis and Z-axis force field line graph. In case of X-axis force, positive force 

represents the force exerting towards left as opposed to negative force that represents the force 

exerting towards right. In case of Z-axis force, positive force represents the force exerting 

upward as opposed to negative force that represents the force exerting downward.  

In case of Z-axis force, negative value represents the Z-axis force that exerts downward, 

while positive value represents the Z-axis force that exerts upward. It is noteworthy that Z-axis 
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forces are almost the strongest around the rim and towards upside. The reason the strongest force 

is not generated at the rim is the same as the strongest X-axis forces. In the opposite, Z-axis 

forces are less strong inside the trap and towards downside. This Z-axis downward force 

facilitates trapping a particle inside a trap by seizing a particle at the bottom of the trap.  

 

3.3 DEP force with different applied voltages 

The graphics of the DEP force field and its line graphs are one of the most important 

factors to comprehend the effect of the DEP traps and quantify particle’s physical properties. The 

numerical simulation was conducted changing trap sizes, particle sizes, applied voltages and 

even spacer sizes to fully understand the characteristics of the suggested DEP traps. In this 

section, the computer simulation results about the DEP force field depending on the applied 

voltages from 5 V to 8 V are demonstrated. The other numerical simulation results such as 

different particle sizes, trap sizes and spacer sizes are analyzed in conjunction with the 

experimental methods in the next chapter.  

The graphic results of the DEP force field were generated changing the applied voltage 

from 5 V to 8 V to demonstrate the differences depending on the applied voltages. In all cases 

including this case, the applied frequency was set as 1 MHz because the applied frequency 

determines whether the system can be under negative DEP or positive DEP. It is not related to 

the strength of DEP force field. Besides the voltages and frequency, 20 μm trap with 20 μm gap 

between the traps were simulated. The depth of spacer was set as 30 μm.  

The DEP force field increased as the applied voltages increased as shown in Figure 20. 

The direction of each arrow represents the direction of negative DEP force that exerted on a 
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particle at the same location of an arrow and the length of each arrow represents the strength of 

negative DEP force on a particle. The scale factor of arrow in the pictures was set as the same 

value to be compared objectively. The length of arrow gets longer as the applied voltage 

increases up to 8 V. It can be predictable that a higher voltage is more efficient in capturing and 

trapping a particle inside the trap.  

 

Figure 20. Direction and strength of negative DEP force that exerts on a particle depending on 

the applied voltage: (A) 5 V; (B)6 V; (C) 7 V; (D) 8V. The strength of DEP force increases as the 

applied voltage increases, while the direction of DEP remains the same.  
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The direction and strength of negative DEP force in Figure 20 were converted to a line 

graph as shown in Figure 21. Each graph shows the exact values of DEP force in X-axis and Z-

axis. In accordance with the graphic results of the DEP force field, it is confirmed that the higher 

voltage was applied, the stronger DEP force field was generated. In particular, it is notable that 

the strongest X-axis force of the trap where 8 V was applied to is 4.56 × 10-10 N and the 

strongest X-axis force of the trap with 5 V is 1.78 × 10-10 N. The trap with 8 V is 2.56 times 

stronger than the trap with 5 V. The difference of Z-axis force between 5 V and 8 V can be 

measured in the same way and their difference is 2.96 × 10-10 N in positive values and 5.45 × 10-

11 N in negative value.   

The direction of DEP force can be analyzed by checking if the force has positive or 

negative value. As mentioned before, positive X-axis force represents the force exerting towards 

left as opposed to negative force that represents the force exerting towards right. In case of Z-

axis force, positive force represents the force exerting upward as opposed to negative force that 

represents the force exerting downward.   

By converting the graphic results of the DEP force field into the line graphs, numerical 

analysis became possible. Each force factor either in X-axis or Z-axis can be compared based on 

objective numerical data. This numerical method plays an important role in quantifying a 

particle’s physical properties such as speed and moving force when it is conducted with 

experimental methods.  
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Figure 21. Line graphs of negative DEP force in X-axis and Z-axis that exerted on a 

particle depending on the applied voltage: (A) 5 V; (B)6 V; (C) 7 V; (D) 8V. The transparent 

circle represents the size of the trap. The forces in both X-axis and Z-axis increase as the applied 

voltage increases from 5 V to 8 V. It is notable that each objective force value can be measured 

and compared, which facilitates quantifying a particle’s physical properties such as speed and 

moving force when it is conducted with experimental methods. 
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Chapter 4 
 

Trapping Experiment 
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4.1 Overview 

In this chapter, more complex experiments and analyses are presented than the previous 

chapter using both experimental and numerical methods. First, trapping beads with various sizes 

of traps such as 10 μm, 20 μm, 30 μm, 40 μm traps are demonstrated. A concept of work is 

introduced to compare each trap’s efficiency in relation to particles’ speed. Correlation between 

X-axis and Z-axis DEP force is thoroughly analyzed to illustrate the unique properties of the 

suggested DEP traps. In particular, diverse behaviors of a particle under the Z-axis force effect 

are diagramed and proved with the actual experimental pictures.  

Secondly, trapping various sizes of beads from 2 μm to 10 μm under the same trap is 

presented. Due to X-axis repulsive force around the rim of the trap, the results of this experiment 

suggests the possibility of separation of various sizes’ particles. Repulsive force at the rim that 

enables to separate different sizes’ particles is analyzed to find an optimized trap for separation 

depending on particle’s size. Experimental pictures are also presented to prove the actual 

repulsive force effect.  

Lastly, separation of 4 μm and 6 μm particles from the mixture of 2 μm, 4 μm, and 6 μm 

particles is demonstrated. This separation technique requires thorough understanding of every 

property of the circular DEP traps such as the repulsive force and the Z-axis force effect. This 

work also suggests the application of the DEP trap as a microparticle’s filter.  

 

4.2 Trapping beads with various sizes of traps 
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Numerical method was first applied to analyze the general traits of the circular DEP traps 

depending on the trap size in prior to the experimental method and analysis. The same 

experimental conditions were applied throughout the whole experiment’s procedures in this 

thesis. Particles were assumed to be close enough to the bottom of the LOC device and the 

yielded DEP force field represented the force that exerts on a particle when it moves along the 

bottom of the electrodes. In this case, the height of the center of a particle was considered as 2 

μm because its diameter is 4 μm. The applied frequency was set as 1 MHz, which resulted in 

generating negative DEP in the LOC device. The 10 μm, 20 μm, 30 μm, and 40 μm traps with 

20 μm gaps between the traps were simulated. The depth of spacer was set as 30 μm. 

The acquired graphics of the DEP force field visualized the directivity and the relative 

magnitude of the DEP force as shown in Figure 22. Unlike the results of the previous experiment 

with different applied voltages, it was observed that each trap had its own characteristic 

depending on the trap size and the strength of DEP force didn’t simply increase linearly in 

accordance with the trap size. Considering the length and directivity of the arrows in the result of 

simulation, the 10 μm trap had less powerful combined forces than other size traps. However, the 

strongest force that was generated at the rim reached to the center of the trap, which was 

predicted to be an important factor to capture a particle inside the trap. In the opposite, the 

repulsive force around the rim was barely observed. In the 20 μm trap, the overall combined 

DEP force was observed to be stronger than the 10 μm trap. The DEP force was still generated at 

the center of the trap. However, the strength of force at the center was not as strong as the 10 μm 

trap even though the strongest force at the rim was observed to be stronger than the 10 μm trap. 

The repulsive force was witnessed, but the strength was predicted to be still insignificant. The 
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difference between the 10 μm trap and the 20 μm trap had a similar tendency to the difference 

between the 20 μm trap and the 30 μm trap.  

The strongest combined force at the rim was stronger in the 30 μm trap than the 20 μm 

trap. In addition, the repulsive force around the rim was also observed to be stronger in the 30 

μm trap. However, the DEP force at the center in the 30 μm trap was not observed as effective as 

the 20 μm trap to capture and immobilize a particle at the center of the trap. It showed 

insignificant strengths compared to strengths of the forces at the rim. In case of the 40 μm trap, 

the strength of force at the rim was the highest. The repulsive force around the rim was also 

observed to be the strongest force among the 10 μm ~ 40 μm traps. Especially, this repulsive 

force was considered to be a significant amount of strength that could affect particles by 

repelling away from the trap. The DEP force at the center was simulated to have minor effect 

showing almost no force. It suggested that a captured particle could not be located at the center 

even though the trap has enough force to trap a particle inside the trap.  
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Figure 22. Direction and strength of negative DEP force that exerts on a particle depending on 

the size of the trap: (A) 10 𝜇𝑚; (B) 20 𝜇𝑚; (C) 30 𝜇𝑚; (D) 40 𝜇𝑚. The strongest DEP force 

occurs at the rim towards the center of the trap in all sizes. However, The DEP force at the 

center decreases as the trap size increase, while the repulsive force around the rim increases as 

the trap size increase.  

The direction and strength of negative DEP force in Figure 22 were converted to a line 

graph as shown in Figure 23. Each graph shows the values of DEP force in X-axis and Z-axis 

according to the location of the trap. These Force-Distance line graphs explain the several unique 

properties of the DEP trap such as the repulsive force, the strongest force at the rim, and the 

weak force at the center in more detail.  
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First of all, the repulsive force around the rim was more developed as the trap size 

increased. It could be examined considering the X-axis forces that exert towards the opposite 

direction of the X-axis forces in the trap. For example, X-axis force in the 10 μm trap was almost 

equal to zero until it became to have a meaningful value near the rim and it meant the trap didn’t 

have any repulsive force. In the opposite, X-axis force in the 40 μm trap reached to about -4.0 × 

10-10 N outside the rim and this force exerts outwards the rim.  

 Secondly, the strongest force occurred at the rim and it increased as the trap size 

increased. The strongest X-axis force in the 10 μm ~ 40 μm trap was measured as 3.5 × 10-10 N, 

4.6 × 10-10 N, 5.9 × 10-10 N, and 8.3 × 10-10 N respectively.  

 Lastly, both X-axis and Z-axis force at the center decreased as the trap size increased. It 

was notable that the bigger traps had weaker forces inside the trap even though these traps had 

stronger forces around the rim. To be specific, X-axis force was zero in all traps. However, Z-

axis force was not zero even at the center of the trap and it was supposed to drag particles 

downwards considering that the value was negative.  
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Figure 23. Line graphs of negative DEP force in X-axis and Z-axis depending on the size 

of the trap: (A) 10 𝜇𝑚; (B) 20 𝜇𝑚; (C) 30 𝜇𝑚; (D) 40 𝜇𝑚. The transparent circle represents the 

size of the trap. Both X-axis and Z-axis force around the rim increase as the trap size increases 

from 10 𝜇𝑚 to 40 𝜇𝑚. However, the absolute value of Z-axis force and the effect of X-axis force 

at the center decease as the trap size increases. It also demonstrates that the repulsive force 

around the rim increases according to the size of trap.  
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Trapping experiment on the same condition as the numerical method was performed to 

match the numerical results to the experimental results. Applied frequency was set as 1MHz to 

generate negative DEP. Applied voltage and trap size were changed from 5 V to 8 V and from 10  

𝜇𝑚  to 40 𝜇𝑚 respectively to see differences of the DEP force field according to the applied 

voltage and the trap size. The gap between adjacent traps was fixed as 20 𝜇𝑚 and the gap 

between the bottom electrodes and the upper ITO was kept as 30 𝜇𝑚 using a 30 𝜇𝑚 thickness 

double-sided tape. 4 𝜇𝑚 polystyrene bead was used as a particle and the conductivity of the bead 

solution was controlled between 3 𝜇S/cm to 5 𝜇S/cm to minimize a difference of each 

experimental condition. To acquire reliable data, the high-speed camera’s frame duration was set 

from 30 frame/sec to 50 frame/sec depending on the speed of particles.  

16 sets of experiment in total were conducted varying applied voltages and trap sizes. 

First, a distance between the edge of trap and the center of captured particle was measured to 

analyze correlation between velocity and captured location. In each experimental set, the velocity 

of 20 particles was obtained. The velocity was acquired by calculating traveled distance and 

consumed time for the travel. As shown in Figure 24, the trapped location inside the trap showed 

a close relation with particle’s velocity. Particles with lower velocity were captured closer to the 

center of trap in all sizes, while particles with higher velocity were trapped closer to the rim of 

trap. This experimental results proved that high speed particles needed much forces that exert 

opposite the direction of moving particle until they were fully stopped. The relationship between 

captured location and particle’s velocity showed a linear relationship.  
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Figure 24. Correlation between trapped location and velocity and correlation between 

work and velocity when 8 V is applied. Both type of graphs shows a linear relationship. Particles 

with lower velocity are captured closer to the center of trap in all sizes, while particles with 

higher velocity are trapped closer to the rim of trap. In the same way, more work is needed to 

capture a faster particle. It is worth noting the transition of graphs from A-1, B-1, C-1, and D-1 

to A-2, B-2, C-2, and D-2 enables to quantifying the DEP trap properties to measure a particle’s 

kinetic energy in terms of force and work. 

The graphs of A-1, B-1, C-1, and D-1 in Figure 24 were transferred to A-2, B-2, C-2, and 

D-2 respectively combining the numerical method results with the experimental method results. 

In particular, the concept of “work” was applied to analyze the correlation between the particle’s 

velocity and the trap’s influence because the DEP force at the location of trapped particle didn’t 

mean that the particle was captured due to the DEP force itself. However, work could explain 

how much a total force was needed to fully stop the moving particle. For example, one moving 

particle that was captured at the 2.0 𝜇𝑚 from the edge of trap needed the integrated force from 

the center of trap to the point where it was trapped as shown in Figure 25, which was the concept 

of “work”.  
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 Figure 25. Introduction of work to analyzing the relation of particle velocity and DEP 

trap effectiveness. When the moving particle is captured at the 2.0 𝜇𝑚 from the edge of trap, the 

needed work to fully stop the moving particle is calculated by integrating the forces from the 

center of trap to the captured location as the area marked yellow in the graph. 

Interestingly, the relation of the needed work and the particle velocity showed a linear 

relationship too as shown in Figure 24. To capture a faster particle, more work was needed. 

Above of all, the transition of graphs from A-1, B-1, C-1, and D-1 to A-2, B-2, C-2, and D-2 

enabled to quantifying the DEP trap properties to measure a particle’s kinetic energy in terms of 

force and work.  

 All velocity-work graphs under 5 V ~ 8 V was combined into one graph for further 

analysis. Figure 26 shows the correlation between work and velocity in the 10 𝜇𝑚, 20 𝜇𝑚, 30 

𝜇𝑚, and 40 𝜇𝑚 trap. Each line graph showed linear relation between velocity and work. 

However, any of these lines overlapped resulting in different values of work to capture the same 

speed particle. For example, 2.0 × 10-10 N × m was needed to capture a particle with 300 𝜇𝑚 / s 
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in the 10 𝜇𝑚 trap, while 3.9 × 10-10 N × m, 5.1 × 10-10 N × m, and 7.0 × 10-10 N × m were 

needed in the 20 𝜇𝑚, 30 𝜇𝑚, and 40 𝜇𝑚 trap respectively. This result could be demonstrated 

with the combination of X-axis and Z-axis force in the trap. As mentioned above in Figure 23, 

each size trap had different kinds of graph shape in terms of X-axis and Z-axis force. The 10 𝜇𝑚 

trap had the strongest Z-axis force inside the trap even though it showed the weakest X-axis 

force. In the opposite, the 40 𝜇𝑚 trap had the weakest Z-axis force inside the trap even though it 

showed the strongest X-axis force. It suggested that Z-axis played an important role by seizing a 

moving particle to the bottom of trap leading to a higher efficiency of trapping particle.  

Figure 26. Work-Velocity graphs of each size of trap. The 10 𝜇𝑚 trap needs the smallest work to 

capture the same speed particle, while the 40 𝜇𝑚 trap needs the largest work. The effectiveness 

of trap is related to Z-axis force inside the trap. In terms of the velocities of captured particle, 
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the 20 𝜇𝑚 trap captures the highest velocity particle up to 620 𝜇𝑚 / s. This characteristic is also 

related to the interaction between X-axis and Z-axis force inside the trap.  

Since the gap between the bottom electrodes and the upper ITO was kept as 30 𝜇𝑚 using 

a 30 𝜇𝑚 thickness double-sided tape, the center of 4 𝜇𝑚 bead had enough space to be located 

from 2 𝜇𝑚 to 28 𝜇𝑚 in terms of the Z-axis. It meant that Z-axis forces in Figure 23 could affect 

a moving particle by lifting and pulling it. Z-axis force in each trap tended to lift a particle 

around the rim, while it tended to pull the particle inside the trap according to the graphs 

generated by the numerical method. This phenomenon was also observed in the experiments.  
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Figure 27. Four consecutive particle trapping pictures. When the particle inside the white circle 

was levitated by Z-axis that exerted upwards, it became blurry. In contrast, when the particle 

was traveled right above the electrode by Z-axis that exerted downwards, it showed clear shape 

with white circular center. It demonstrated that the moving particle was affected not only X-axis 

force but also Z-axis force. This experiment showed a great agreement with the computer 

simulation. 

Four consecutive particle trapping pictures were taken with the high-speed camera as 

shown in Figure 27. One particle inside the white circle moved through the circular traps without 

being trapped due to its high speed exceeding the limit to be captured. The microscope focused 

on the bottom layer. When the particle traveled along the bottom electrodes, it showed clear 

shape of the particle and white center inside the particle. In the opposite, when the particle 

traveled floating from the bottom, it shoed blurry shape and the white center inside the trap 

became unnoticeable. This resolution-related micro scope technique for observing levitation of 

particles has been studied and proved [44]. In Figure 27, it was observed that the particle kept 

repeating to be blurry and clear. When the particle was located around the rim, it became unclear 

and the white center disappeared, which meant the particle was levitated. In contrast, when the 

particle was located inside the trap, it became clear and the white center appeared again. It 

demonstrated the particle was attached to the bottom electrodes because of Z-axis that exerted 

downwards.  

X-axis force played a major role to trap a moving particle and the required work to 

capture the particle was derived from the integration of X-axis force. At the same time, Z-axis 

force played a supportive role to seize the particle towards the bottom electrodes leading to a 
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higher trapping efficiency. In Figure 26, the 10 𝜇𝑚 trap showed the highest trapping efficiency 

by trapping a 300 𝜇𝑚 / s particle with only 2.0 × 10-10 N × m due to its strongest Z-axis force 

inside the trap among the 10 𝜇𝑚 ~ 40 𝜇𝑚 trap. In contrast, the 40 𝜇𝑚 trap showed the lowest 

trapping efficiency by trapping a 300 𝜇𝑚 / s particle with only 7.0 × 10-10 N × m due to its 

weakest Z-axis force inside the trap. After all, it was concluded that the efficiency of trap was 

arranged from 10 𝜇𝑚 to 40 𝜇𝑚 in accordance with the strength of Z-axis force inside the trap.  

 One of the most important and notable results was that the fastest velocity of the captured 

particles in each trap was not in order of trap size. The fastest velocity of the captured particles in 

the trap of 10 𝜇𝑚 to 40 𝜇𝑚 was 481 𝜇𝑚 / s, 615 𝜇𝑚 / s, 410 𝜇𝑚 / s, and 308 𝜇𝑚 / s respectively. 

This velocity data could be put in order of trap size resulting in the sequence of 20 𝜇𝑚 → 10 𝜇𝑚 

→ 30 𝜇𝑚 → 40 𝜇𝑚. This sequence didn’t reflect simply either the power of X-axis force inside 

the trap or the efficiency of the trap originated from Z-axis force. The strength of X-axis force 

that played a major role in trapping a particle was in order of the 40 𝜇𝑚 → 30 𝜇𝑚 → 20 𝜇𝑚 → 

10 𝜇𝑚 trap. On the contrary, the strength of Z-axis force that enhanced the efficiency of trapping 

particles was in order of the 10 𝜇𝑚 → 20 𝜇𝑚 → 30 𝜇𝑚 → 40 𝜇𝑚 trap.  

 The new sequence of the traps that were arranged in order of the fastest velocity of the 

captured particles was the result of the interaction between X-axis and Z-axis force inside the 

trap. Figure 28 shows how much X-axis force exerted on a particle at the location where Z-axis 

force became negative to positive. This location was the spot where a particle started to levitate 

under the effect of Z-axis force. In the analysis of “Work-velocity graphs of each size of trap” in 

Figure 26 and “Four consecutive particle trapping pictures” in Figure 27, it was already 

demonstrated that particle traveled up and down under the effect of Z-axis force. In case of the 
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20 𝜇𝑚 trap, Z-axis force became negative to positive at 2.1 𝜇𝑚 from the edge of the trap, which 

was 7.1 𝜇𝑚 distance in the graph of B in Figure 28. At the location, 3.6-10 N of X-axis force 

exerted on a particle. Since no particle was captured beyond this point, it could be concluded that 

particles were no longer captured once it started to levitate and 3.6-10 N was the strongest X-axis 

force that was used to capture the moving particle. Theoretically, DEP force on a particle 

drastically drops when the particle is away from electrodes and that’s the reason no particles was 

captured right after the particle started to be lifted. It was both numerically and experimentally 

proved using the same design of the DEP trap in this thesis. In this case, the most adjacent 

captured particles near the 7.1 𝜇𝑚 distance were 7.412 𝜇𝑚 and 7.340 𝜇𝑚 distance, which were 

0.414 𝜇𝑚 and 0.340 𝜇𝑚 closer to the center of trap compared to the levitation location. At the 

location of 3.2 𝜇𝑚 from the edge of the trap, Z-axis force became negative to positive in the 30 

𝜇𝑚 trap. It was 8.2 𝜇𝑚 distance in the graph of C and 3.0-10 N X-axis force was supposed to 

push back a moving particle to stop. In this case, 8.2877 𝜇𝑚 and 8.5396 𝜇𝑚 distance were the 

closest location of the captured particles to 8.2 𝜇𝑚 distance. No particle was captured beyond 

this levitation point. In case of the 40 𝜇𝑚 trap, 2.6-10 N was the strongest X-axis force that could 

be used to trap a particle in accordance with the levitation point.  

 The 10 𝜇𝑚 trap showed a unique property compared to other size traps. The levitation 

point was 5.7 𝜇𝑚 distance in the graph of A in Figure 28 and X-axis force at the point was 3.5-10 

N. However, the fastest particles were captured at 6.403 𝜇𝑚 and 6.467 𝜇𝑚 distance, which 

didn’t show good agreement with the properties of the rest sizes of trap. In this case, particles 

couldn’t be captured around the levitation point because a big portion of particle was already out 

of the trap even before the particle reached the levitation point. The particle’s radius was 2 𝜇𝑚 

and the levitation point was only 0.7 𝜇𝑚 inside the edge of the 10 𝜇𝑚 trap. As a result, the 
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particles could be captured in the 10 𝜇𝑚 trap when a large portion of particle was still inside trap 

and the last point was 6.403 𝜇𝑚 distance according to experiment. At the point, the exerted X-

axis force was 3.1-10 N.  

 When the exerted X-axis force at each levitation point and at the location where the 

fastest particles were trapped in case of the 10 𝜇𝑚 trap were put in order of strength, the 

sequence was 3.6-10 N, 3.1-10 N, 3.0-10 N, and 2.6-10 N in conformity with the order of trap size 

from 20 𝜇𝑚 to 10 𝜇𝑚 to 30 𝜇𝑚 to 40 𝜇𝑚. This sequence exactly conformed to the result of 

“Work-velocity graphs of each size of trap” in Figure 26.  

 This trapping experiment with various sizes of traps proved that X-axis force was the 

main factor to capture a moving particle and it could be quantified using the concept of work. In 

addition, Z-axis force affected to the efficiency of the trap by pulling a particle closer to the 

electrodes where a particle could be under the strongest DEP force. The order of traps that could 

trap the fastest particles could be explained through the combination effect of X-axis and Z-axis 

force. It was notable that the levitation point was the important factor deciding a location where 

was the fastest particle could be captured in case a particle was still inside a trap.  
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Figure 28. Levitation point of a particle and corresponding X-axis force in each size trap: (A) 10 

𝜇𝑚 trap; (B) 20 𝜇𝑚 trap; (C) 30 𝜇𝑚 trap; (D) 40 𝜇𝑚 trap. The fastest particles are captured 

around the levitation point where Z-axis force becomes negative to positive. In case of the 10 𝜇𝑚 

trap, the fastest particles are captured before the levitation point because a large portion of 

particle is out of the trap before it reaches the point. The order of the strength of X-axis force at 

the levitation point decides which trap can capture a faster particle.  
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4.3 Trapping various sizes of beads 

Experiment of trapping various sizes of beads was conducted to see the effect of particle 

size under the same trap and condition. Computer simulation was also conducted to quantify 

work that was needed to trap a particle. Applied frequency was set as 1MHz to generate negative 

DEP. Applied voltage and trap size were set as 8V and 40 𝜇𝑚 respectively to control the rest of 

conditions except particle sizes. The gap between adjacent traps was fixed as 40 𝜇𝑚 and the gap 

between the bottom electrodes and the upper ITO was kept as 30 𝜇𝑚 using a 30 𝜇𝑚 thickness 

double-sided tape. 2 𝜇𝑚, 4 𝜇𝑚, 6 𝜇𝑚, and 10 𝜇𝑚 polystyrene beads were used as a particle and 

the conductivity of the bead solution was controlled between 3 𝜇S/cm to 5 𝜇S/cm to minimize a 

difference of each experimental condition. To acquire reliable data, the high-speed camera’s 

frame duration was set for 50 frame/sec.  

 4 sets of experiment in total were conducted varying particle size. In a similar way to the 

previous experiment, the velocity was acquired by calculating traveled distance and consumed 

time for the travel. In each experimental set, the velocity of 20 particles was obtained. Required 

work to trap a particle was derived by matching a trapped location inside trap with corresponding 

numerical force data from computer simulation. Needed work to fully stop a moving particle was 

calculated by integrating forces from the center of trap to a captured location in the same way as 

the previous experiment.  

Work-velocity graph was made from the velocities of particle and required work to trap a 

particle as shown in Figure 29. Bigger particles could be captured with higher velocities. 10 𝜇𝑚 

particle could be trapped with the velocity of up to 1494 𝜇𝑚/s, while 6 𝜇𝑚 particle, 4 𝜇𝑚 

particle, and 2 𝜇𝑚 particle could be captured with the velocity of up to 814 𝜇𝑚/s, 442 𝜇𝑚/s, and 
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147 𝜇𝑚/s respectively. In a similar trend, trapping bigger particles needed more work to be 

captured due to their high velocity. 8.7-8 N was required to trap the fastest 10 𝜇𝑚 particle and 

2.14-8 N, 9.4-9 N, 9.2-10  N were required to capture the fastest 6 𝜇𝑚, 4 𝜇𝑚, 2 𝜇𝑚 particle 

respectively. This result was in great agreement with a second-degree polynomial equation line 

resulting in 0.93997 of R-Square value. It could be explained with the fact that DEP force has a 

close association with particle radius. As mentioned in Equation 1, DEP force increases in 

connection with the third power of particle radius.  

 

Figure 29. Work-velocity graph of various sizes of beads. Bigger particles are captured with 

higher velocities. Consumed work to trap bigger particles are also greater than consumed work 
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to trap smaller particles. It shows good agreement between the experiment and the governing 

equation of DEP force.  

 In this experiment, different sizes of particle were captured in different velocity areas. 

Velocity of captured 10 𝜇𝑚 particles ranged from 900 𝜇𝑚/s to 1600 𝜇𝑚/s, while velocity of 

captured 6 𝜇𝑚, 4 𝜇𝑚, and 2 𝜇𝑚 particles ranged from 500 𝜇𝑚/s to 800 𝜇𝑚/s, 200 𝜇𝑚/s to 450 

𝜇𝑚/s, and 50 𝜇𝑚/s to 150 𝜇𝑚/s respectively. None of each area overlapped and this result 

suggested a possibility of different sized particle separation using velocity difference, which will 

be discussed in the following section.  

 

4.4 Separation of various sizes of beads 

Combination effect of X-axis, Z-axis force, and the thickness of spacer offers several 

ways for particles to travel.  Figure 30 shows how a particle can be captured inside the trap or 

avoid the trap. Particles were trapped in two cases. One case was that a particle was lifted by Z-

axis force at the edge avoiding the repulsive force around the rim and dragged down once it 

entered the trap as A in Figure 30. The other case was when a particle traveled at the proper 

height to avoid the repulsive force. The particle could be dragged down by Z-axis force at the 

rim without any effect of repulsive force as B in Figure 30.  

Untrapped particles also showed two kinds of movements. When a particle didn’t even 

have enough velocity to approach to the rim, the repulsive force pushed it around and the particle 

passed along the circular trap as C in Figure 30. The other case was that a particle traveled too 

far from the electrodes as D in Figure 30. Since DEP force power decrease as a particle is away 
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from electrodes, any X-axis and Z-axis force can affect a particle. The last and most simple 

reason was a particle was so fast to pass through the trap.  

  

Figure 30. Schematic diagram of particle’s movements around and inside the trap: (A) A 

particle moves up and down by Z-axis force; (B) A particle are dragged down by Z-axis force; 

(C) A particle is repelled from the trap by repulsive X-axis force; (D) A particle is not affected by 

any DEP force due to its height. 

In particular, the repulsive X-axis force played a major role in separating different sizes 

of particles. Since bigger particles are affected by stronger DEP force, it is possible for smaller 

particles to enter the trap as opposed to bigger particle that are repelled from the trap by 

repulsive X-axis force when these two different sized particles travel with the same speed. This 

phenomenon is well observed in Figure 31. In these consecutive pictures, several particles 

approach the trap with a slow velocity that is not enough to get to the edge of trap. When 
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particles are located near the edge, the repulsive force that occurs around the rim repels particles 

away and these particles move along the edge of trap.  

  

Figure 31. Four consecutive pictures of the effect of repulsive force around the edge. Particles 

with not enough velocity to approach the edge of trap are repelled away by repulsive X-axis 

force around the rim.  

Using these particles unique movements, 4 𝜇m and 6 𝜇m particles were successfully 

separated as shown in Figure 32. 4 𝜇m and 6 𝜇m particles were mixed together in the same 

medium and flowed with different flow rate and applied voltages to match an optimized 
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condition for trapping each size of particles. When 4 𝜇m particles were separated from 6 𝜇m 

particles, the flow rate was set as 4 𝜇ml/min and 11 V was applied. In a similar way, 6 𝜇m 

particles were separated from 4 𝜇m particles when the flow rate was set as 7 𝜇ml/min and 14 V 

was applied. These conditions varied depending on a size of channel of LOC. However, the 

higher flow rate and voltages were required to separate bigger particles. It was because bigger 

particles could be trapped by a greater DEP force due to its radius even though smaller particles 

just pass through traps.  

When 4 𝜇m particles were separated, 6 𝜇m particles couldn’t be captured because of two 

reasons. One reason was that 6 𝜇m particles were not fast enough to overcome the repulsive 

force around the rim and get to the edge of trap like C in Figure 30. The other reason was that 6 

𝜇m particles traveled too high to be dragged down like D in Figure 30. White circle in A in 

Figure 32 showed a 6 𝜇m particle traveled above the trap since it was out of the effect of DEP 

force. Since the focus of a microscope was at the electrodes, particles that traveled away from the 

electrodes were observed blurry as opposed to trapped particles that were distinct.  

In case of 6 𝜇m particle separation, the mechanism was different from the 4 𝜇m particle 

separation even though it also had two reasons 4 𝜇m couldn’t be trapped. First reason was the 

same as one of the reasons of 4 𝜇m separation. When 4 𝜇m particles traveled too high away from 

the electrode, it couldn’t be trapped as shown in the yellow circle in B in Figure 32. The other 

reason was that 4 𝜇m particles were too fast to be captured. A enough amount of velocity was 

required for 6 𝜇m particles to overcome the repulsive force around the rim and get inside the 

trap. Since 4 𝜇m particles also traveled with the same flow rate as 6 𝜇m particles, this velocity 

was fast enough for 4 𝜇m particles to pass through the traps.  
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Figure 32. 4 𝜇m and 6 𝜇m particle separation from the mix of 4 𝜇m and 6 𝜇m particles: (A) 4 

𝜇m particle separation; (B) 6 𝜇m particle separation. In the left picture, 4 𝜇m particles can be 

separated because either 6 𝜇m particles are too slow or travel too high from the electrodes. 

White circle shows a 6 𝜇m particle that is traveling far from the bottom. In the right picture, 6 

𝜇m particles can be separated because either 4 𝜇m particles are too fast or travel too high from 

the electrodes. Yellow circle shows a 4 𝜇m particle traveling too fast and passing through trap. 

Blue circle shows the size comparison between 4 𝜇m and 6 𝜇m particle.  
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Chapter 5 
 

Conclusion 

  



74 

 

5.1 Overall summary 

 

In the thesis, an array of circular dielectrophoresis (DEP) traps was developed and tested 

to manipulate population of microparticles in single particle level. The circular DEP traps 

enabled more precise control of the force field than conventionally used interdigitated electrodes 

due to its omnidirectional and symmetric properties. The location of the captured microparticle 

inside the trap was confirmed by both of numerical and experimental approaches, based on the 

direction and amplitude of the force field generated by numerical simulation.  

 A single particle was successfully captured inside the suggested DEP trap and a particle’s 

physical properties such as speed and required work to be captured were also derived based on 

both of numerical and experimental approaches. In particular, particle’s movement inside the 

trap system was thoroughly analyzed and several different types of capturing mechanism were 

established. Due to the comprehensive understanding of the particle movements, different sizes 

of mixed particles were successfully separated. The individual microparticle captured in separate 

trap can be further tested or treated by follow up treatments. 

 

5.2 Future direction 

 

The suggested DEP trap can be applied to living cells for further experiments and the 

success of follow up experiments and treatments will result in two novel techniques. One 

technique is separation of cells. As a separation of mixed particles was already proven, living 
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cells are expected to be filtered or separated. For example, a specific type of cell can be 

segregated from whole blood due to a different permittivity or size of cell.  

Secondly, the motility of the biological cells such as sperm and E. coli will be measured. 

Each sperm in separate trap can be analyzed for each cell’s specific motility including speed and 

force to capture. The operation condition, applied frequency and voltage will be optimized to 

quantitatively compare the sperm motility. Trapped sperm’s moving and swimming force 

required to escape a trap can be derived based on the measurement of applied DEP force. 

Consequently, this can contribute clinical fertility treatments by supplying standardized tool to 

quantitatively sort strong sperm. Similar concept can be combined with chemotaxis to provide 

strong driving force of motility to many living cells. For example, E. coli has a tendency to move 

toward favorable locations with high concentrations of attractants (amino acids and sugars) and 

avoid repellents (commonly poisons). The change of the concentration of attractants and 

repellents around trap is expected to control motility of E. coli. The results can be used to 

quantitatively compare the attractants and repellents. 
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