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ABSTRACT 

INTERACTION WITH NITRIC OXIDE OF THE NITROSOMONAS EUROPAEA 
TETRAHEME PROTEIN CYTOCHROME C554, AND TWO OF ITS VARIANTS, IN 

INCREASINGLY REDUCING ENVIRONMENTS  

by 

Jennifer McGarry 
 

The University of Wisconsin-Milwaukee, 2017 
Under the supervision of Professor A. Andrew Pacheco 

 

A re-investigation of the interaction with NO of the small tetraheme protein cytochrome 

c554 (C554) from Nitrosomonas europaea has shown that the 5-coordinate heme II of the 2-

electron or 4-electron reduced protein will nitrosylate reversibly.  The nitrosylation process was 

found to be first order in C554, first-order in NO, and second-order overall. The rate constant for 

NO binding to the heme was determined to be 3000 ± 140 M−1s−1, while the rate constant for 

dissociation was 0.034 ± 0.009 s−1; the degree of protein reduction does not appear to 

significantly influence the nitrosylation rate.  In contrast to a previous report, [ Upadhyay, A. K., 

et al. (2006), J. Am. Chem. Soc. 128, 4330-4337] this study turned up no evidence of C554-

catalyzed NO reduction, either with C554
2− or with C554

4−.  Some sub-stoichiometric oxidation of 

the lowest potential heme IV was detected when C554
4− was exposed to an excess of NO, and this 

could in principle be part of a process that yields N2O, though alternative explanations are 

equally plausible. 

 The vacant heme II site of C554 is sterically crowded by three non-bonding hydrophobic 

amino acids, Thr 154, Pro 155 and Phe 156.  Replacing Phe156 with a protonatable but still 

bulky histidine residue did not significantly alter the reactivity of the F156H mutant with NO, 

though the NO binding rate appeared to increase 10-fold.  On the other hand, when Phe156 was 
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replaced with the smaller but still hydrophobic alanine, the 6-coordinate low-spin hemes of the 

4-electron reduced mutant oxidized over the course of several minutes after exposure to NO.  

Two-electron reduced F156A2− nitrosylated, but did not oxidize, upon exposure to NO.  Notably, 

the nitrosylation rate for F156A2− and F156A4− was about 400× faster than for the wild type or 

for the F156H mutant, though the rate of the reverse denitrosylation process was almost the same 

for the three C554 variants. 

 The midpoint potentials of C554, and of the F156A and F156H variants, were determined 

for all the hemes in these tetraheme proteins, using spectropotentiometric analysis.  The heme II 

midpoint potential of F156H was profoundly altered from the wild type value, shifting about 170 

mV to the negative.  This is taken as evidence that the histidine ligand in the variant binds to the 

erstwhile vacant ferric heme II axial site, thus stabilizing the oxidized state.  Consistent with this 

interpretation, the UV/Visible spectrum of fully oxidized F156H exhibited increased absorbance 

at 409 nm relative to the wild type, which suggests that the mutant protein has 4 low-spin 

ferrihemes, rather than three low-spin and one high-spin as seen in the wild type.  Upon 

reduction of heme II though, the spectrum of F156H exhibited a band at 430 nm characteristic of 

high-spin ferrohemes, which suggests that His156 dissociates from the heme when this reduces. 

 In contrast to the case with F156H, the midpoint potentials of hemes I and II in F156A 

were only slightly shifted relative to the wild type.  On the other hand, the midpoint potentials of 

the low-potential hemes III and IV were shifted about 100 mV to the negative by mutating 

Phe156 to Ala, whereas mutation of Phe156 to His had minimal impact on these hemes.  It 

appears that the substitution of bulky Phe by the small Ala significantly alters the conformation 

of the protein backbone, which in turn affects the environment of distant hemes enough to 

substantially alter their midpoint potentials.  The lower heme III and IV midpoint potentials of 
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F156A, together with the increased solvent access to the heme II vacant site in this variant, may 

work together in changing its reactivity to bound NO.  The more strongly reducing hemes could 

more readily reduce bound NO, while increased solvent access could now allow protonation to 

accompany reduction of the bound nitrogen moiety.  
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Chapter 1 
Introduction 

 

1.1. The nitrogen cycle and cytochrome c554’s purported roles in it 

Nitrogen is an essential element to all forms of life.  However, the vast majority of 

terrestrial nitrogen (79% of air) is in the form of dinitrogen, which is inert and unusable to most 

organisms.  Specialized microorganisms called “nitrogen fixing” bacteria and archaea are 

capable of converting nitrogen to ammonia (Fig. 1.1), and until the Haber-Bosch process was 

developed in the early 20th century, this was the only significant route by which nitrogen could 

become bioavailable to the vast majority of life forms.1-5 

 

 

Figure 1.1.  The biological nitrogen cycle, with the reactions discussed in this chapter 
highlighted in red.  Abbreviations: AMO, ammonia mono-oxygenase; HAO, 
hydroxylamine oxidase; ccNiR, cytochrome c nitrite reductase; Nir, nitrite reductase; 
NOR, nitric oxide reductase. 
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Once ammonia has been generated it is readily interconverted with a variety of other so-

called “reactive nitrogen” species, as shown in Fig. 1.1.  Ammonia oxidizing microbes use 

ammonia as an electron source in aerobic respiration, generating nitrite in the process.  Nitrite in 

turn can be oxidized to nitrate by nitrite oxidizers, a separate group of aerobically respiring 

bacteria.  The net conversion of ammonia to nitrate is known as nitrification.  In the absence of 

air nitrate and nitrite can act as electron acceptors for many anaerobically respiring microbes.  

Nitrite reduction can take two paths.  Denitrifying microbes close the nitrogen cycle loop by 

reducing nitrite stepwise back to dinitrogen, generating nitric oxide and nitrous oxide as isolable 

intermediates.  Nitrite ammonifiers reduce nitrite to ammonia in one single 6-electron step, with 

no release of intermediates.1-5  In one other respiratory process, known as “anammox”, certain 

microorganisms can extract energy from the comproportionation of ammonia and nitrite.  

Hydrazine is an intermediate in this process.8, 9 

It should be noted that plants can also reduce nitrite and nitrate to ammonia.  In this case 

nitrate and nitrite are not being used as electron sinks in respiration, but rather as sources of 

biomass nitrogen.  Thus, although nitrogen-fixing microbes provide the only natural entry point 

to reactive nitrogen, nitrate initially generated from fixed ammonia by ammonia oxidizers is an 

important store of biomass nitrogen in the biosphere.  Nitrite reduction as a respiratory process is 

sometimes referred to as “dissimilatory”, while nitrite reduction to generate biomass is known as 

“assimilatory”.3, 5 

The protein cytochrome c554 (C554) that is the subject of this dissertation is an electron 

transport protein from the ammonia oxidizing bacterium Nitrosomonas europaea.   In ammonia 

oxidizers such as N. europaea ammonia oxidation to nitrite is a two-step process (Figs. 1.1, 1.2).  

In the first step, catalyzed by the enzyme ammonia monooxygenase (AMO), ammonia is 
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oxidized to hydroxylamine, a process that is coupled with reduction of dioxygen to water.  In the 

second step, catalyzed by hydroxylamine oxidase (HAO), hydroxylamine is oxidized by four 

electrons to nitrite.  It has been proposed that C554 accepts the electrons released from 

hydroxylamine oxidation two at a time, and passes them on to cytochrome cm552, an electron 

transporter anchored to the periplasmic side of the cytoplasmic membrane (Fig. 1.2). 10, 11  

Until eleven years ago C554 was assumed to be purely an electron transport protein as just 

described.  However, in 2006 Upadhay and coworkers published a paper in which they reported 

that C554 was capable of binding nitric oxide and catalytically reducing it to nitrous oxide,7 which 

raised the prospect of an ancillary role as an NO reductase for the protein.  Exploration of this 

possibility was the major objective of the project described herein.   

 We became interested in C554’s purported NO reductase activity for two reasons.  At the 

most fundamental level we were curious about the reaction mechanism, which would have to be 

 

 

Figure 1.2.  Proposed pathway for ammonia oxidation to nitrite, catalyzed by HAO 
and AMO.  The substrates and products are shown in blue, the electron flow in green. 
C554 is believed to transfer electrons from HAO to membrane-bound cytochrome cm552 
two at a time, after which the electrons enter the membrane-associated quinone pool.  
Note that two electrons ultimately end up at terminal oxidases, but the other two are 
needed for the AMO process. 
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very different from that of NO reductases from denitrifying bacteria, given that these are 

structurally very different from C554.  The basic mechanistic question also led us to wonder about 

the factors that determine the direction of nitrate and nitrite reduction in the nitrogen cycle.  As 

can be seen in Fig. 1.1, NO sits at the branch point for two reduction options, back to dinitrogen 

by way of the denitrification pathway, or to ammonia via ammonification.  The fact that a protein 

as simple as C554, with a very small hydrophobic binding pocket, could catalyze NO reduction to 

N2O, raised the possibility of using the protein as a simple model for probing the structural 

factors that determine the direction taken at the branch point.  For example, if C554 could be 

tailored to reduce NO to either N2O or NH4
+ simply by making judicious changes to the NO 

binding pocket, this could provide valuable mechanistic information.  What makes such an idea 

particularly attractive is the fact that the mechanisms of nitrification and ammonification 

enzymes are already a central area of study for the Pacheco research group.  Section 1.7 briefly 

returns to the NO branch point question; however, the scope of the dissertation is narrower, 

focusing strictly on better understanding C554’s basic interactions with NO.  The ecological 

importance of NO reduction, and of reactive nitrogen species control in general, is further 

discussed in Sections 1.4 – 1.6.   Sections 1.2 and 1.3, immediately below, provide an overview 

of C554’s structure and chemical properties, as they are currently understood. 

1.2. Structure and properties of N. europaea C554  

C554 is a small (26 kDa) monomeric soluble periplasmic protein containing four c-type 

hemes.  The protein derives its name from a characteristic absorbance band at 554 nm that 

appears in the UV/Vis spectrum of the reduced state.12  Reduced c-type hemes typically have a 

band, referred to as the α-band, in the region around 550 nm, and it is fairly common to name the 

proteins according to the exact wavelength of this band.  C554 has a very different amino acid 
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sequence from other c-type hemes, including other tetrahemes, and is considered to be in its own 

class.13 

As is characteristic of c-hemes, each of the four hemes of C554 is attached to the protein 

by two thioether linkages with cysteines that have a characteristic binding motif C-X-Y-C-H 

(Fig. 1.3).  In this motif, the histidine residue that ends the sequence is one of the heme axial 

ligands (Fig. 1.3).  As shown in Fig. 1.4, three hemes (I, III, and IV) are six-coordinate with bis-

histidine axial ligation, while the fourth (heme II in Fig. 1.4) is five-coordinate with a single 

histidine axial ligand.14, 15  The three 6-coordinate hemes are all low-spin ferric in the as-isolated 

protein, while the 5-coordinate heme II is high-spin ferric.16  Notice that hemes I and IV have  

 

 

Figure 1.3.  Typical c-heme, showing the covalent attachments to cysteine residues and 
bis-histidine coordination to the iron center.  Notice that one of the histidines is adjacent 
to one of the cysteines, forming part of a characteristic C-X-Y-C-H motif. 
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histidine imidazole planes in a perpendicular orientation whereas heme III has histidine 

imidazole planes in the parallel orientation (Fig. 1.4).14, 15  This is important because the two 

arrangements give rise to distinct EPR spectra, a fact that can be used to assign heme midpoint 

 

 

Figure 1.4. (a) Arrangement of the hemes within C554, with the midpoint potentials 
reported in ref. 7.  The numbering system is that used in in the text. (b) The hemes in 
relation to the surrounding protein. 
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potentials to specific hemes (Chapter 2).17-20  Another notable feature in the heme coordination 

environment is the unusual distal histidine attachment to Heme I (Fig. 1.4).  His 102 is 

covalently attached through Nδ instead of the more common Nε.  In turn Nε forms a hydrogen 

bond network to Glu 126 through water to Nδ of His 96, which is the proximal ligand of heme 

III.  This could be a stabilizing factor for His 102 in an otherwise sterically unfavorable 

conformation.14  A final notable feature in the heme coordination environment, which is 

particularly relevant to this work, is the vacant coordination site of heme II (Fig. 1.4).  Though 

vacant, this open site is shielded by three residues Thr 154, Pro 155 and Phe 156.  These residues 

are not close enough to coordinate to the iron, but leave only a small hydrophobic pocket, which 

is not large enough to readily accommodate common heme ligands (Fig. 1.5).16  Nonetheless this 

is the site of NO coordination in the reduced protein,7 as will be discussed in more detail 

throughout this document.  

 

 

Figure 1.5.  (a) The vacant site of heme II, with the bulky Thr154, Pro155, Phe156 
labeled.  Note that the iron in pulled out of the heme plane in the opposite direction by 
the histidine ligand.  (b) Same as (a), but with Thr154, Pro155, and Phe156 rendered in 
space-filling model.  
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The crystallographic studies of C554 revealed the hemes to be stacked into two parallel but 

offset pairs (Fig. 1.4).14, 15  Thus, heme III is adjacent to heme I in a parallel-offset packing motif, 

and this heme pair is perpendicular but adjacent to the parallel-offset heme II - heme IV pair.  All 

adjacent hemes are within Van der Waals contact, with the distance between heme edges of each 

heme pair being 3.5-3.8 Å.  The distance between the iron centers of any given heme pair is 

roughly 9 Å.14  Interestingly, the two heme pairs of C554 overlay remarkably well on heme pairs 

in other multi-heme proteins, notably HAO, despite the total lack of primary sequence similarity 

between C554 and these proteins.14, 15 

C554 and HAO have complementary isoelectric points (pIs), 10.7 and 3.4, respectively.12, 

21  This, plus the fact that the genes for the two proteins form identifiable gene clusters,13 

provided an early basis for the hypothesis that C554 is the physiological electron acceptor for 

HAO (Fig. 1.2).  This hypothesis is further supported by the crystallographic data.14  There is a 

large positively charged ridge above the solvent-exposed C554 heme I, which could potentially be 

the site of docking to a large acidic patch that surrounds HAO heme 1.  Both the positively 

charged region of C554 and the negatively charged cavity of HAO are roughly 30 Å wide.  In 

simulated docking the iron of solvent-exposed C554 heme I is 20 Å from the iron of the solvent-

exposed HAO heme 1, while the closest distance of the heme rings is 8 Å.  In an early study of 

N. europaea c-hemes a small monoheme protein with pI of 3.7, cytochrome c552, was proposed 

to be the electron acceptor for C554.12  A role for cytochrome c552 can’t be entirely discounted;14 

however, there is no crystallographic evidence of complementary surfaces between the 

proteins,14 and the cytochrome c552 gene is not part of the same gene cluster as HAO and C554.22  

For this reason more recent reports have suggested that the tetraheme cytochrome cm552 , which is 

a part of the same gene cluster, is C554’s accepting partner, as shown in Fig. 1.2.10, 11  As this 
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protein is anchored to the periplasmic side of the cytoplasmic membrane, it would provide a 

plausible electron transfer pathway to the intramembrane quinone pool. 

The midpoint potentials of the C554 hemes have been determined by UV/Vis 

spectropotentiometry,23 and correlated to specific hemes in the structure through EPR and 

Mossbauer spectroscopy.16  The midpoint potential assignations are +47, +47, −147, and −276 

mV, as shown in Fig. 1.4.  During HAO’s catalytic cycle C554 is only reduced by two electrons, 

and the generation of a one- or three-electron reduced C554 is prevented.24  Though the midpoint 

potentials of hemes I and II appear to be degenerate in spectropotentiometric titrations, a more 

recent protein film voltammetry study by the Elliot group of Boston University showed that they 

are in fact distinct though very similar, with hemes II and I having values of +32 mV and +50 

mV, respectively.25  The electrochemistry of C554 and its variants is described in more detail in 

Chapter 2. 

1.3. The reported interaction of N. europaea C554 with NO 

As mentioned above, many aspects of the heme arrangement in C554 are replicated in 

other multi-heme proteins.  Notably, the parallel-offset heme II-heme IV pair overlays 

remarkably well on the P460-heme 6 pair in HAO.14  P460 is the active site of HAO where NH2OH 

binds and is oxidized, and like C554 heme II it is a 5-coordinate iron complex.  P460 is heme-like, 

but it has an sp3 center at one of the meso carbons of the macrocycle.26, 27  In C554 the vacant site 

is shielded by Thr 154, Pro 155 and Phe 156 as shown in Fig. 1.5, which prevents it from 

accommodating common heme ligands such as CO or CN−.  Surprisingly though, a 2006 paper 

reported that not only will reduced C554 bind NO at heme II, but under certain conditions it will 
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catalyze its reduction to N2O.7  This section summarizes the results of the previous report, which 

provided the starting point for the work presented in this dissertation. 

The first evidence for C554 nitrosylation came from experiments in which the protein was 

2-electron reduced by hydroxylamine in the presence of catalytic amounts of HAO.  X- and Q-

band EPR spectra of the reduced C554 showed frequency-dependent signals that could be 

assigned to antiferromagnetically coupled low-spin hemes (S1 = ½, S2 = ½).  Simulation of these 

signals in turn showed that the g values for one of the coupled hemes were characteristic of 

nitrosyl species referred to as {Fe(NO)}7, which can also be described by the two resonance 

structures shown in Scheme 1.1.6  Mössbauer analysis of the 2-electron reduced C554 supported 

the presence of an {Fe(NO)}7 moiety.  Furthermore, the same species could be generated in the 

absence of hydroxylamine and HAO by first reducing C554 electrochemically, and then adding an 

equivalent of NO.   The authors of the study concluded that, in the HAO-catalyzed process, NO 

generated from hydroxylamine oxidation bound to heme II of C554.7  Though the product for 

HAO-catalyzed hydroxylamine oxidation is commonly assumed to be nitrite, there is substantial 

evidence that, under anaerobic conditions, NO is the actual product released.28-30 

Upadhay et al. reported that addition of a second equivalent of NO to the 

electrochemically-generated two-electron reduced C554 resulted in nearly complete oxidation of 

heme I, but left heme II in the {Fe(NO)}7 state.  From these results they surmised that a 

 

Scheme 1.1. Fe-NO species is represented in terms of two resonance structures, depicted 
by the corresponding Enemark-Feltham description {Fe(NO)}n. In this notation, the 
superscript n is the sum of the d electrons from the Fe, and the π* electrons from the NO 
moiety. 6 

 

7 II III{Fe(NO)} Fe (NO) Fe (NO) = ←→ 

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bimolecular reaction between bound and free NO was giving rise to N2O production, with the 

electrons for NO reduction coming from oxidation of the C554 heme I.7  When fully reduced C554 

was exposed to one equivalent of NO heme II was once again nitrosylated, but the nitrosylated 

product was re-reduced in the presence of excess reductant (dithionite).  Conversely, if excess 

NO was added to fully reduced C554 in the absence of excess reductant, then hemes I, III, and IV 

were rapidly oxidized.  Again, these results were consistent with NO reduction by the C554 

hemes, and/or excess dithionite reducing agent.  Based on rough single-turnover kinetics 

experiments, Upadhyay et al. estimated the turnover number for reduction of NO by C554 to be at 

least 16 s−1, which is on the same order of magnitude as known nitric oxide reductases 

(NORs).31-33  Based on these results Upadhyay et al. concluded that, in addition to its electron 

transport role, C554 also functions as an NO reductase.7 

1.4. The ecological importance of nitrite reduction path control 

As mentioned in Section 1.1, until the early 20th century the only significant route by 

which nitrogen could become bioavailable for the vast majority of life forms was through 

nitrogen fixation by nitrogen fixing microorganisms.  The invention of the Haber-Bosch process 

for making ammonia industrially changed the situation dramatically, to the point where more 

ammonia is now produced artificially than by biological nitrogen fixation.4  This development 

has been essential for feeding the growing global population, but it hasn’t been without negative 

consequences.  Indeed, by producing such enormous amounts of ammonia humans have, over the 

last 50, years significantly shifted the balance between the components of the nitrogen cycle 

(Fig. 1.1) in favor of reactive nitrogen species such as NH4
+ and NO3−.3-5, 34, 35  This shift is 

having many unintended negative consequences that arise primarily from the currently 
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inefficient use of ammonia fertilizer; for the good of the planet, these consequences will have to 

be mitigated in the coming years.3-5, 34, 35  

The two biggest problems that have arisen from the massive increase in reactive nitrogen 

availability have been the concomitant increases in nitrate and N2O concentrations.  Though both 

ammonium and nitrate are bioavailable, the positively charged ammonium species tends to bind 

to negatively charged soils, whereas negatively charged nitrate tends to wash through the soils 

and end up in aquifers.  Once there it can be used as fertilizer by algae, which proceed to grow in 

an uncontrolled way that consumes all dissolved oxygen, killing aerobic organisms.  This 

process, called “eutrophication”, is creating huge “dead zones” in the Gulf of Mexico’s 

Mississippi delta, and in other waterways heavily affected by agriculture.4, 5  Unlike nitrate, N2O 

is not a viable fertilizer, and is eventually converted to dinitrogen by a subset of denitrifying 

bacteria.  However, because of its comparative inertness, N2O can persist in the atmosphere for 

prolonged periods of time.  This is a problem because N2O is a potent greenhouse gas (about 

300× more potent than CO2),3  and also an ozone depleter; indeed, a recent study showed that 

N2O is now the single most important ozone depleting emission, and is likely to remain as such 

throughout the 21st century.36, 37 

Clearly a better understanding of the interplay between the various chemical processes in 

the nitrogen cycle, in particular in the vicinity of the NO branch-point (Fig. 1.1), could greatly 

aid microbial physiologists and ecologists, and ultimately farmers, to find more efficient and 

ecologically friendly ways of using fertilizer.  The next two sections summarize what is currently 

known about biological reduction of NO to N2O.  Section 1.5 focuses on the classic NO 

reductases of anaerobic denitrifiers, while Section 1.6 centers on alternative N2O forming 

pathways, particularly those mediated by ammonia oxidizing bacteria under moderately anoxic 
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conditions.  Section 1.7 briefly looks at some factors that might determine whether NO is 

reduced to NH4
+ or N2O in a given circumstance, and then summarizes the scope of the 

dissertation. 

1.5. Nitric oxide reduction during dissimilatory denitrification 

Nitric oxide reductases (NORs) are heme containing enzymes that catalyze the reduction 

of nitric oxide to nitrous oxide in denitrifying bacteria (Fig. 1.1, Scheme 1.2).31  In 1994 NORs 

were classified into the heme-copper containing oxidase superfamily based on the similarity of 

their amino acid sequences with the catalytic subunits of cytochrome oxidases, which reduce 

oxygen to water as the terminal step in aerobic respiration.38  All NORs are integral membrane 

proteins.  Three types have been characterized, cNORs, qNORs and qCuANOR, with the major 

difference between them being the source of electrons that they utilize.39  For cNORs the 

electron donors are small electron transport proteins such as c-cytochromes or blue copper 

proteins, whereas qNORs and qCuANOR use ubihydroquinone or menahydroquinone.  The one 

example of a qCuANOR discovered so far is further distinguished in having a copper center that 

is absent from the other two classes.  The cNOR class has been most extensively characterized, 

and will be the focus of the rest of this section. 

The cNORs are cytochrome bc heterodimers purified from gram negative bacteria.39, 40  

The NorC subunit is relatively small (ca. 17 kDa), and contains a c-heme that is coordinated by 

His and Met axial ligands.  Physiologically it is reduced by soluble c-hemes or blue copper 

proteins, and passes the electrons on to the much larger (ca. 53 kDa) NorB subunit, which is the 

 

 Scheme 1.2.  

 

+
2 22NO( ) 2H +2e N O( ) H ONORg g−+ → +
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catalytic center.  NorC is membrane-anchored, while NorB is a highly hydrophobic integral 

membrane protein that contains twelve transmembrane α-helices.38-41  NorB contains three iron 

centers: two b-hemes and one non heme iron referred to as FeB.  One low spin b-type heme 

mediates electron transfer from the c-heme in NorC to the catalytic center, which contains the 

second b-type heme (heme b3, high-spin), and FeB. 

The crystal structure of Pseudomonas aeruginosa cNOR has been solved to 2.7 Å 

resolution for the resting enzyme,41 and also for the reduced enzyme in the presence of a variety 

of ligands.42  Inspection of the fully oxidized cNOR active site reveals that the FeB iron is 

coordinated by three His residues and a Glu, that the heme b3 and FeB iron centers are 3.8 Å 

apart, and that they are bound together by an oxo bridge. Such an arrangement is too crowded to 

accommodate two NO molecules, and Hino et al. initially suggested that the glutamate might 

dissociate from FeB during the catalytic cycle, thus making more space for the incoming NO 

moieties.41  However, the later crystallographic investigation showed that the active site is quite 

elastic, so that after reduction it expands to the point where it can accommodate two CO 

molecules (one at each iron center), and even the bulky ligand acetaldoxime.42  Other than a 

lengthening of the Fe-Fe separation (from 3.8 Å to 4.4 Å), and protonolysis of the oxo bridge, no 

significant ligand rearrangements were observed around the active site metals.  These results 

showed that two NO molecules would fit readily into the active site, without the need to change 

the metal coordination environments. 

Based on the available crystallographic data,41, 42 and on earlier spectroscopic analyses,39, 

43-45 Figure 1.6 shows a plausible catalytic cycle for reduction of NO to N2O by cNOR, likely the 

most plausible of three that have been proposed over the years.41, 44  The first step in the cycle 

would be protonolysis of the oxo bridge between the two iron centers.  This could be coupled to 



15 
 

the next step, metal reduction, but there is EPR evidence for the existence of the unbridged 

oxidized moiety as well.44  After reduction of the two iron centers, one NO molecule would bind 

to each.  EPR and Resonance Raman experiments suggest that NO binding to heme b3 is 

accompanied by dissociation of the proximal histidine, as shown in Figure 1.6,45 though this was 

not observed in the crystallographic studies with reduced cNOR.42  At this point both the heme 

b3 and the FeB nitrosylated sites would be in the {Fe(NO)}7 state (Scheme 1.1),6 which has 

substantial radical character centered on the nitrogen;46 positioning two such sites in close 

proximity would promote formation of an N-N bond.  The exact steps that follow are unclear; 

 

 

Figure 1.6.  Proposed steps in the cNOR-catalyzed reduction of NO to N2O. 
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however formally at least, N2O formation to complete the cycle would require transfer of two 

electrons from the irons to one of the nitrogens, followed by protonolysis of a N-O bond.  The 

crystal structure of cNOR reveals two possible hydrophilic channels that could transport protons 

to the active site, as well as a hydrophobic channel that could act as a conduit for NO.41 

1.6. N2O generation by way of nitric oxide – hydroxylamine comproportionation 

Autotropic ammonia oxidizing bacteria (AOB) have been identified as major contributors 

of N2O.47  Two distinct pathways have been identified so far for N2O production by AOB .47  

The first pathway, often referred to as the “nitrifier denitrification (ND)” pathway, is really the 

same process described in Section 1.5, but carried out by nitrifying rather than denitrifying 

bacteria.48  The pathway involves initial reduction of NO2− to NO by the copper containing 

nitrite reductase NirK, followed by NO reduction to N2O by a NOR protein analogous to that 

described in the previous section.  The second pathway to N2O in AOB is often referred to as the 

“hydroxylamine” pathway, because it has long been known to require the combined presence of 

both hydroxylamine and NO.47, 49  Both nitrifier denitrification and the hydroxylamine pathway 

from AOB are reviewed in this section.  In addition, a N2O-producing pathway seen in fungi, 

which bears some relation to the AOB hydroxylamine pathway, is also briefly discussed. 

The nitrifier denitrification pathway is promoted under O2-limiting conditions when 

nitrite concentrations are high.50  During entry into strict anaerobic conditions NH3 and NH2OH 

oxidation nearly cease, and NO2− is reduced to NO by NirK.  This reduction is speculated to be 

supported by the cytochrome pool, cytochromes C554 and Cm552, the latter of which has been 

shown to exchange electrons with the membrane-associated quinone/quinol pool.51  Interestingly, 

genetic and whole-cell studies suggest that the activities of NirK and NOR don’t wax and wane 
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in tandem.  Increased production of NO is observed in AOB cultures that are made anaerobic, 

but there is no corresponding increase in N2O production under these conditions.  

Correspondingly, mRNA studies show that norB mRNA concentrations actually decrease under 

anaerobic conditions along with mRNA concentrations of the genes encoding HAO and AMO, 

whereas nirK mRNA concentrations increase.50  N2O formation is seen upon recovery to aerobic 

conditions, and appears to parallel renewed availability of NH3.  Under these conditions mRNA 

studies show that nirK mRNA concentration decreases, while the concentrations of norB mRNA, 

and the mRNA for HAO and AMO production, all increase.49.  

Surprisingly, knockouts in N. europaea of nirK and norB suggest that nirK is not 

essential for the nitrifier denitrifier pathway; however, no other genes for nitrite reductases have 

been identified.52  The norB gene was shown to be essential for production of N2O in the nitrifier 

denitrifier pathway, as no measurable amount of N2O was observed in norB knockouts.  A c-

terminally truncated HAO has been suggested as a possible candidate for nitrite reductase,53 but 

much still remains to be clarified about these systems. 

The hydroxylamine pathway for N2O production seems to peak when there is incomplete 

oxidation of NH2OH to NO2− under aerobic conditions.47, 54  Though long known to be distinct 

from nitrifier denitrification, the first truly convincing mechanistic analysis of this pathway was 

only recently published in 2016.54  The 2016 paper by Caranto et al. described NO – NH2OH 

comproportionation catalyzed by the protein cytochrome P460 (cyt P460) from N. europaea.  

Cyt P460 is a 36 kDa homodimeric protein in which each subunit has a single c-heme like 

prosthetic group, the P460, that differs from a true c-heme by having an N – C crosslink from 

one of the porphyrin meso carbons to a lysine residue.55  The iron in the P460 is 5-coordinate, 

and comproportionation at the vacant site is proposed to proceed as shown in Figure 1.7.54  
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According to this mechanism NH2OH first binds to the resting enzyme, and is then oxidized by 3 

electrons to generate the {Fe(NO)}6 species.6  As shown by the lower resonance form in Figure 

1.7 the bound nitrosyl in {Fe(NO)}6 is electrophilic,56-60 and in the rate determining step it is 

proposed to undergo nucleophilic attack by free NH2OH, which ultimately results in release of 

N2O.  One-electron oxidation of the P460 then regenerates the resting enzyme.  Notice that 

{Fe(NO)}6 can also be generated by direct addition of free NO to the resting enzyme. 

 

 

Figure 1.7.  Proposed steps in the cyt P460-catalyzed comproportionation of NO and 
NH2OH.  This comproportionation is often known as the “hydroxylamine pathway” for 
N2O formation in AOB. 
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Though the paper of Caranto et al. focused on the chemistry of Cyt P460, it is important 

to note that the active site of HAO is also a P460-type moiety, with many of the same 

properties.26, 27  Moreover, it is known that under anaerobic conditions the product of NH2OH 

oxidation by HAO is NO rather than NO2−.28, 29  Thus it will not be surprising if future studies 

demonstrate that HAO can also catalyze NO – NH2OH comproportionation by a mechanism 

analogous to that proposed in Figure 1.7 for Cyt P460. 

 

 

Figure 1.8.  Proposed steps in the fungal cyt P450nor-catalyzed comproportionation of 
NO and NH2OH.  Note the similarities with the scheme proposed in Fig. 1.7 for the 
bacterial P460 enzyme.  In both cases the primary mechanistic evidence is 
spectroscopic, but it is easy to imagine that the enzymes and proposed mechanisms 
could switch depending on reaction conditions. 
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Finally, it should be noted that a mechanism very similar to the hydroxylamine pathway 

of AOB has been proposed to explain fungal N2O production.  In the fungal denitrification 

system, initial reduction of nitrate and nitrite are catalyzed by enzymes analogous to those seen 

in prokaryotes; however, N2O production is catalyzed by a unique P450 enzyme known as 

P450nor.  The proposed mechanism for P450nor is shown in Figure 1.8.61  In the first step of the 

catalytic cycle NO binds to the resting enzyme to produce an {Fe(NO)}6 species.  A 2-electron 

reduction of this species by NADH yields a hydroxylamine radical bound to FeIII (detected by 

EPR); this species can interact with free NO, itself a radical, to ultimately release N2O.  In 

support of the hydroxylamine radical intermediate proposed in Figure 1.8, our group detected a 

similar species within 15 ms of rapidly mixing free NH2OH with the nitrite ammonifying 

enzyme cytochrome c nitrite reductase.62 

1.7. Ammonification vs. denitrification 

The 6-electron reduction of nitrite to ammonia is catalyzed by the periplasmic, decaheme 

homodimeric enzyme cytochrome c nitrite reductase (ccNiR), which also catalyzes the 5-electron 

reduction of NO, or the 2-electron reduction of NH2OH, to ammonia.  Under physiological 

conditions ccNiR catalyzes nitrite reduction to ammonia without release of intermediates.  

However, in vitro the Pacheco group has found it possible to trap putative intermediates, or to 

release partially reduced nitrogen species such as nitric oxide, by controlling the electrochemical 

potential at which reduction takes place.63, 64  Thus, for example, when the weak reductant 

ferrocyanide is used as the electron source, S. oneidensis ccNiR catalyzes the one-electron 

reduction of nitrite to nitric oxide.64  In a separate study the Pacheco group showed that ccNiR 

will oxidize stoichiometric amounts of a large excess of NH2OH to nitrite, but won’t catalyze 

NH2OH disproportionation to NH4
+ and NO2−, despite a very favorable driving force (Scheme 
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1.3).62  On the basis of these accumulated results, our group has developed the working 

hypothesis shown schematically in Fig. 1.9.  According to this hypothesis there is a large 

activation barrier between NH2OH and NH4
+ that makes the thermodynamically favorable 

reduction of NO2−, NO or NH2OH to NH4
+ slow, unless a significant overpotential is supplied.  

Thus, for example, electrochemical reduction of NO2− that is thermodynamically favorable at 

applied potentials of 0 mV vs SHE, does not occur at appreciable rates at applied potentials 

above −200 mV vs SHE.65   

The Fig. 1.9 hypothesis could also be predicting the conditions under which NO 

reduction to N2O will be favored over reduction to NH4
+; in essence the latter could only occur at 

applied potentials low enough to overcome the activation barrier.  At higher applied potentials, 

and in the presence of a suitable catalyst, reduction of NO will generate N2O instead.  The last 

two sections of this chapter presented two distinct strategies for generating N2O enzymatically.  

In the classic NORs reviewed in Section 1.5 a dinuclear iron active site aligns two NO molecules 

in such a way as to first promote NO – NO dimerization, then reduction of the dimer, and finally 

protonolysis of one N – O bond (Fig. 1.6).  The second strategy, seen in AOB and fungi, utilized 

mononuclear iron active sites, and relied on NO and NH2OH being available together so that 

they could undergo comproportionation (Figs. 1.7 and 1.8).  The Fig. 1.9 hypothesis suggests the 

intriguing possibility that ccNiR could be induced to generate N2O in the presence of a reducing  

 

Scheme 1.3. Energetics of hydroxylamine disproportionation. 
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agent that takes NO (or NO2−) to NH2OH but not to NH4
+, while an enzyme such as cyt P460 

that has been shown to generate N2O might also produce NH4
+ in the presence of a sufficiently 

powerful reducing agent.  The former conjecture has yet to be tested experimentally; however 

the Pacheco group demonstrated some years ago that HAO, and even myoglobin and catalase, 

were capable of reducing NO and NH2OH to ammonia.29, 66  HAO will even catalyze the 

reduction of NO2− to NH4
+ in the presence of the strong reductant methyl viologen monocation 

radical.29 

 

 

Figure 1.9.  Schematic view of the putative activation barrier that makes enzyme-
catalyzed reduction of hydroxylamine to ammonia slow, unless an overpotential is 
supplied to overcome it. 
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Experiments to test the Fig. 1.9 hypothesis with ccNiR and HAO are ongoing in the 

Pacheco group, but the purported NO reductase activity of C554 (Section 1.4)7 poses an apparent 

challenge to this hypothesis.  In their paper Upadhyay et al. reported that C554-catalyzed 

reduction of NO to N2O occurred at potentials poised by dithionite,7  which has a midpoint 

potential comparable to, or lower than that of the methyl viologen monocation radical.  Under 

such conditions, we’d have predicted reduction of NO to NH4
+ instead, based on Fig. 1.9.  

Presumably C554 – catalyzed reduction of NO would have to proceed by a mechanism more akin 

to those of Figs. 1.7 and 1.8 than that shown in Fig. 1.6, since the protein’s 5-coordinate heme II 

is a monovalent site.  Based on the Fig. 1.9 hypothesis we’d predict that C554 would catalyze NO 

reduction to N2O when provided with comparatively weak reducing agents that could reduce NO 

only as far as NH2OH, but would reduce NO to NH4
+ when provided with more powerful 

reducing agents.  However C554 is unusual because the heme II vacant site seems too small to 

allow NO and NH2OH to be present simultaneously, and furthermore it has a hydrophobic 

pocket devoid of possibly essential proton donors (Fig. 1.5).†  All of these considerations made 

the interaction of NO with C554 worthy of further study. 

Chapter 3 of this dissertation presents a rigorous re-evaluation of the interaction between 

NO and wild type C554 at various stages of reduction.  Chapters 4 and 5 extend the investigation 

to C554 mutants in which the vacant site is expanded by substituting a phenylalanine by an 

alanine (Chapter 4), or is provided with the protonatable residue histidine in the place of 

phenylalanine (Chapter 5).  Chapter 2 provides an electrochemical characterization of the wild 

type and mutant C554 moieties, as well as a description of the methods for preparation of all the  

†A third possible mechanism would involve release of NO− or HNO from C554, which would then 

spontaneously dimerize and dehydrate in solution.67, 68  
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protein species, and their spectroscopic properties.  The Chapter 2 results proved essential for 

interpreting the results of Chapters 3-5. 
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Chapter 2 
Spectropotentiometric analysis of cytochrome c554  

and selected variants 
 

2.1. Introduction 

 In the initial account of C554’s interactions with NO Upadhyay et al. noted that the nature 

of the interaction depended strongly on the extent of protein reduction, as well as the amount of 

NO present.  Thus, for example, fully oxidized C554 didn’t interact with NO at all, 2-electron 

reduced protein was nitrosylated by one equivalent of NO but also slowly oxidized by excess 

NO, and fully reduced protein was virtually fully oxidized by excess NO.1  Given the reported 

importance of C554’s oxidation state to its reactivity with NO, it is clear that knowing the extent 

of protein reduction at all times during a reaction is critical to fully understanding that reaction.  

The midpoint potentials of wild-type C554 were previously obtained using UV/Vis 

spectropotentiometry and protein film voltammetry.2, 3  This chapter presents UV/Vis 

spectropotentiometric investigations of the F156A and F156H mutants of C554, as well as a re-

investigation of the wild type redox chemistry.  UV/Vis spectropotentiometry is a combination of 

potentiometric titration and UV/Vis spectroscopy,4, 5 that we have found very useful for the 

deconvolution of midpoint potentials in multi-heme systems.6, 7  The primary goal of these 

studies was to obtain the heme midpoint potentials of the mutant proteins, but an important 

additional goal was to acquire full extinction coefficient spectra of the mutants and the wild type 

for use in future mechanistic investigations (Chapters 3-5).  As will be seen, the experimental 

results also provide interesting insights about how hemes in a multi-heme system interact with 

each other during the reduction process. 
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2.2. Materials and Methods 

 2.2.1. General materials.  Gallocyanine, phenazine methosulfate, indigo tetrasulfonate, 

indigo carmine, hexammineruthenium(III) chloride, anthraquinone 1,5 disulfonic acid and 

methyl viologen were obtained from Acros.  Safranine O and Anthraquinone sulfonic acid were 

obtained from Sigma-Aldrich.  Diquat (6,7-dihydrodipyrido[1,2-a:2',1'-c]pyrazinediium 

dibromide, Table 2.1) was synthesized using the method described by Homer and Tomlinson.8  

All experiments were performed in solutions buffered at pH 7.0 with 50 mM N-(2-hydroxyethyl) 

piperazine-N-ethanesulfonic (HEPES), which also contained 150 mM sodium choloride as an 

electrolyte.  All solutions were prepared daily and manipulated in a nitrogen- filled glovebox. 

Table 2.1.  Mediators used for spectropotentiometry 
    

Mediator εο (V vs SHE) Concentration (µM)  

Phenazine methosulfate 0.08 25  

Gallocyanin −0.020 25  

Hexaammineruthenium(III) chloride −0.020 100  

Indigo tetrasulfonate −0.030 25  

Indigo trisulfonate −0.080 25  

Indigo carmine −0.125 25  

Anthraquinone 1,5-disulfonic acid −0.175 25  

Anthraquinone 2-sulfonic acid −0.255 25  

Safranine O −0.289 25  

Diquata −0.390 25  

Methyl viologen −0.449 25  

a   

N N

Diquat:
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2.2.2. Protein purification and handling.  The gene for wild-type C554 was synthesized 

for optimal codon usage by Genscript, and included a ribosomal binding site, the leader sequence 

for the signal peptide of S. oneidensis small tetraheme c, and restriction enzyme digest sites (SacI 

+ XbaI).  The gene was cloned into the pUC-type vector pHSG299 (Takara), which confers 

kanamycin resistance, before being transformed into competent 5-alpha Escherichia coli (New 

England Biolabs) for verification of correct sequence.  The C554 construct was then 

electroporated into S. oneidensis tsp-c cells, which exhibit rifampicin resistance, for expression. 

The construct was also conjugated into S. oneidensis MR-1 as an alternative expression vehicle. 

 The phenylalanine at the 156 position of C554 was mutated to alanine using site directed 

mutagenesis.  The PCR was performed using phusion hotstart high fidelity DNA polymerase 

(Finnzymes).  The primers for C554F156A-F (GCTACCCCCGAAGTGGATGCAAAG) and 

C554F156A-R (TGGGGTATAGGGTGCTTTGGCAC) were purchased from Integrated DNA 

technologies with phosphorylated 5' ends.  The mutated PCR construct was ligated with T4 DNA 

ligase (New England biolabs) and transformed into competent WM3064 E. coli cells (gift from 

Coats lab UC-Berkeley).  The WM3064 cells were used to transfer the mutated plasmid via 

conjugation into S. oneidensis MR-1 cells. The mutation for phenylalanine in the 156 position of 

C554 to histidine was performed using the same protocol.  The primers for C554F156H-F 

(CATACCCCCG-AAGTGGATGCAAAG) and C554F156H-R 

(TGGGGTATAGGGTGCTTTGGCAC) were purchased from Integrated DNA technologies 

with phosphorylated 5' ends.  

Bacterial cultures were grown overnight at 30° C in 45 L batches of LB growth medium 

for wild type C554.  Attempts to scale the mutant cultures to 45 L proved unsuccessful, and these 

were grown in five 1 L cultures overnight at 30° C.  The following purification protocol was 
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used for all forms of C554.  The bacteria were sedimented by centrifugation at 4400 rpm for 10 

minutes, after which the cell pellet was re-suspended in a minimal volume of 20 mM HEPES 

buffer pH 7, containing 1 mM EDTA, 10 µM leupeptin, and 500 µM 4-(2-aminoethyl) 

benzenesulfonyl fluoride hydrochloride as protease inhibitors.  The concentrated cell suspensions 

were stored at −80° C until needed.  Cells were lysed using a sonic dismembrator (model CL-

334) to release cell contents for purification, after which the solid cell debris was sedimented by 

centrifugation at 52k rpm for 30 minutes, and the clarified supernatant was decanted and kept for 

further purification steps.   

Purification was effected in a two-step process.  In the first step the cell lysate 

supernatant was loaded onto a 5 ml HiTrap SP cation exchange column (GE Healthcare) 

equilibrated with a 20 mM HEPES pH 7 loading buffer containing 1 mM EDTA (Buffer A).  

Once the protein was loaded and all non-bound proteins were washed off with Buffer A, a 200 

ml linear gradient that started with Buffer A, and ended with 100% of an elution buffer 

consisting of 0.2 M NaCl in Buffer A (buffer B), was used to elute the protein.  The C554 

fractions were desalted using dialysis in Buffer A, and concentrated to 1-2 mL using centrifugal 

concentration devices (Amicon Ultra-15 Centrifugal Filter Units Millipore).  The protein was 

then passed through a G-50 (83 cm length, 26 mm diameter) size exclusion column equilibrated 

with Buffer A containing 0.15 M NaCl adjusted to pH 7.0.  The purity of C554 was assessed by 

the ratio of A406nm/A280nm in the UV/visible spectra; samples exhibiting ratios above 5 were 

pooled.  The final purity of the pooled sample was assessed by gel electrophoresis using a 

sodium dodecyl sulfate polyacrylamide gel.   

The purified stock solution concentrations of C554 wild type, F156A and F156H were 

initially determined using a pyridine hemochrome assay,9 after which the extinction coefficient 
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spectrum of each protein could be determined, and used to assess the concentrations of further 

samples.  The λmax at 406 nm is 3.97×105 M−1cm−1 for wild type C554, 3.81×105 M−1cm−1 for 

F156A and 5.00×105 M−1cm−1 for F156H (Fig. 2.1).  Concentrated aliquots of purified C554 wild 

type, F156A and F156H (typically 100-500 µM), buffered with 50 mM HEPES pH 7 containing 

1 mM EDTA, were flash frozen with liquid nitrogen and stored at −80 C until needed.  

 2.2.3. UV-Vis spectropotentiometric titrations of C554 and its variants.  UV/vis 

spectropotentiometry experiments were performed using a BASi Epsilon EC potentiostat to set 

the potential, and a CARY Bio 50 UV/vis spectrophotometer to collect spectra at 10 mV 

 

 

Figure 2.1.  UV-Vis extinction coefficient spectra for wild-type C554, and for the F156A 
and F156H mutants.  The values at the 406 nm maximum were determined to be 
3.97×105 M−1cm−1 for wild type C554, 3.81×105 M−1cm−1 for F156A, and 5.00×105 
M−1cm−1 for F156H, by cross-reference to a pyridine hemochrome assay (see text for 
details). 
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intervals of applied potential.  The complete apparatus was housed in an anaerobic glovebox. 

Controlled potentiometric electrolysis of the solution was performed in an optically transparent 

thin layer electrode (OTTLE) cuvette (Fig. 2.2), which was adapted from previously described 

designs.4, 5  Solutions containing protein (typically 50-100 µM) and mediators (Table 2.1) were 

prepared in 50 mM HEPES, 150 mM NaCl, pH 7.0.  The mediator concentrations were all 25 

µM, except hexammineruthenium (III) chloride concentrations which were 100 µM.  UV/Vis 

spectra were collected from +50 mV to −500 mV at 10 mV intervals (vs SHE).  An Ag/AgCl 

 

 

Figure 2.2. UV/Vis cell used for the spectropotentiometric titration of C554 and its 
variants.  The quartz cuvette is a short pathlength (nominally 0.2 mm) demountable flow 
cell available comercially from Starna.  The optically transparent gold mesh was 
obtained from Precision E-Forming, was sandwiched between the cuvette plates, and 
was connected to a copper wire using a conductive silver-containing glue (from GC 
Electronics).  The edges of the cuvette were sealed with silicone adhesive (RTV108, 
Momentive).  The cuvette could be filled from its lower filling port using a syringe.  A 
small cup connected to the upper port by silicone tubing was partially filled with the 
protein solution, and provided a spot where the reference and auxiliary electrodes could 
make electrical contact.  The actual pathlength of the cell with the gold foil in place was 
determined using a cytochrome c solution of known concentration.  Note: for very long 
experiments the cup at the top should be covered to minimize evaporation of the protein 
solution. 
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electrode (BASi, Model RE-5B) was used as a reference, and a spiral platinum wire was used as 

the auxiliary electrode (Fig. 2.2).  To correct for possible drift in the reference electrode, a cyclic 

voltammogram of methyl viologen (midpoint potential of −449 mV vs SHE 10) was performed 

before collecting data sets.  Data were also collected for solutions containing identical mediator 

concentrations but no protein, and these were subtracted from corresponding protein data sets to 

correct for any spectral changes contributed by the mediators during the titration.  The corrected 

data sets were analyzed with programs written in commercially available software packages 

Mathcad 15 (PTC software) and Origin 9.0 (Microcal Software), as described below and in 

Appendix 1.  

2.3. Results  

 2.3.1. A spectropotentiometric study of wild type C554.  The blue traces in Fig. 2.3a 

show selected spectral changes observed when a solution initially containing 100 µM C554, and 

the mediator mixture of Table 2.1, was subjected to successively more negative applied 

potentials.  Though C554 has four hemes, analysis by singular value decomposition (SVD) 11, 12 

shows that these spectra are linear combinations of just two component spectra. This result can 

be attributed to two causes.  The first is that the two high potential hemes have identical (or 

nearly indistinguishable) midpoint potentials, so they reduce simultaneously, as has previously 

been reported. 2, 3 This leads to spectral changes that are indistinguishable from those that would 

accompany one-electron reduction of a single heme.  To account for this fact we model our 

system with the reduction steps shown in Scheme 2.1.  In this scheme C1app is the concentration 

of what appears to be a 1-electron reduced C554 species that accumulates as the applied potential 

is lowered, but is in fact a 2-electron reduced species.  Thus, overall, the reduction of C554 

appears to take place in three 1-electron steps. 
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 The second factor that reduces the number of SVD components contributing to the Fig. 

2.3a spectra is that the two lowest potential hemes appear to make identically-shaped 

contributions to the extinction coefficient difference spectra of the 3- and 4-electron reduced C554 

species, though they reduce with different midpoint potentials.  Based on this hypothesis, and the 

hypothesis of Scheme 2.1, we fit the Fig. 2.3a data using Eqs. 2.1 – 2.3, which are derived in 

Appendix 1, following a procedure similar to one used by our research group in the past. 6, 7  

 

Scheme 2.1.  Reduction of fully oxidized wild type C554 (Ox) to the apparently 3-electron 
reduced form (C3) in 1-electron steps (see text for details). 
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Figure 2.3. (a) SVD-processed difference spectra obtained for 100 µM wild-type C554 
at applied potentials of 102, 62, 22, −58, −138, −198, −238, −278, −318, and −358 mV 
versus the standard hydrogen electrode (SHE).  Solid blue lines show the experimental 
data, whereas the dashed red lines show the calculated fits obtained using Eqs. 2.1 – 
2.3. (b) A slice through the spectra from (a) taken at 424 nm, where the biggest changes 
in absorbance were observed; the solid blue trace represents the experimentally obtained 
data, the dashed red one the least-squares best fit using Eqs. 2.1 – 2.3.  
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Collectively, equations 2.1a – 2.1c are simply Nernst equations in exponential form for each of 

the reduced species Cn from Scheme 2.1 (the first reduced species being C1app).  In these 

equations CT is the total C554 concentration in solution (determined apriori from the initial 

spectrum), εo
n is the midpoint potential associated with one-electron reduction of the (n−1)th 

reduced species, and εapp is the applied potential.  In Eq. 2.2 ∆Aλ,εapp is the absorbance change at 

a given wavelength and applied potential, ∆εHP(λ) is the extinction coefficient difference at a 

given wavelength corresponding to the two high-potential hemes combined, ∆εLP(λ) is the 

extinction coefficient difference at a given wavelength corresponding to the two low-potential 

hemes combined, and l is the pathlength of the cuvette.  The concentrations of the reduced 

species C1app, C2 and C3 in Eq. 2.2 are those specified by Eqs. 2.1, in which the midpoint 

potentials are adjustable parameters to be experimentally determined.6  Thus, for a given trial set 

of midpoint potentials one generates a corresponding set of concentrations C1app, C2 and C3 for 

Eq. 2.2.  Because the concentration matrix generated for Eq. 2.2 is not square, and thus has no 

inverse, for each trial set of midpoint potentials the pseudoinverse of the concentration matrix is 

constructed to obtain trial extinction coefficient spectra, as shown in Eq. 2.3.6, 13  In this equation 

the first column of the ∆ε matrix is the extinction coefficient difference spectrum for the high 

potential hemes, and the second column is for the low potential hemes.  The two columns of the 

matrix Cred are as defined in Eq. 2.3b.  Once ∆ε has been obtained for a trial set of midpoint 

potentials, a theoretical matrix of absorbances ∆Acalc can be obtained as the product ∆ε⋅CT⋅l; the 

sum of squares corresponding to ∆A−∆Acalc is then used as the figure of merit to obtain the best 

midpoint potential parameter set. 

The red traces in Fig. 2.3a are examples of the best fits to the experimentally acquired spectra, 

and were obtained by manually adjusting the trial set of midpoint potentials until the sum of 
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squares was minimized.  Figure 2.3b shows a ΔA versus εapp slice through all of the collected 

spectra at 424 nm, the wavelength at which the largest absorbance change was detected.  Fits at 

other wavelengths were equally good.  The best midpoint potential parameter set obtained from 

the fitting routine is recorded in Table 2.2 (page 54).  Figure 2.4a provides the calculated 

extinction coefficient difference spectra ΔεHP and ΔεLP (the columns of matrix Δε) obtained by 

the fitting procedure.  By adding ΔεHP and ΔεLP to the extinction coefficient spectrum of fully 

oxidized C554, one can generate absolute extinction coefficient spectra for 2- and 4-electron 

reduced protein (Fig. 2.4b). 

 2.3.2. A spectropotentiometric study of the F156A C554 mutant.  A challenge of 

running spectropotentiometric experiments with proteins that contain multiple redox-active 

centers is that they can take a very long time, even when using thin low-volume cuvettes.  

During this time unwanted processes such as buffer evaporation can take place, which then must 

be corrected for.  This can be done when necessary, but if possible it is more convenient to split 

 

Figure 2.4.  (a) Extinction coefficient difference spectra obtained by fitting the Fig. 2.3 
data using Eqs. 2.1 – 2.3.  (b) Absolute extinction coefficient spectra obtained by adding 
∆εHP and ∆εLP to the previously obtained extinction coefficient spectrum of fully 
oxidized C554 (Fig. 2.1). 
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the experiment into two steps.  Both the C554 wild type and the F156A mutant have two sets of 

two reduction events that are well separated from each other, which makes it easy to split their 

spectropotentiometric titrations into two separate experiments.  The experiment with wild type 

described in Section 2.3.1 was done in two steps, but the spectra were then combined and fitted 

as one set.  The experiments with the F156A mutant were also done in two steps, but the two 

datasets so obtained were treated separately, as will now be described. 

 The blue traces in Fig. 2.5a show selected spectral changes observed when a solution 

initially containing 60.8 µM of F156A, and the mediator mixture of Table 2.1, was subjected to 

successively more negative applied potentials in the range from 92 to −68 mV.  SVD analysis11, 

12 shows that these spectra are linear combinations of two component spectra, which were 

hypothesized to correspond to the isolated first two reduction events in the tetraheme system 

(Scheme 2.2).  Based on Scheme 2.2, one can readily derive (Appendix 1) the fitting equations 

2.4 and 2.5, which are analogous (though simpler) to the Eqs. 2.1 and 2.2 used to fit the wild 

type spectra.  The Fig. 2.5a spectra could then be fit with Eqs. 2.4 and 2.5 in a manner 

completely analogous to that used in fitting the Fig. 2.3 spectra.  The red traces in Fig. 2.5a are 

 

 

Scheme 2.2. First two steps in the reduction of fully oxidized F156A mutant (Ox) in 1-
electron steps. 
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Figure 2.5. (a) SVD-processed difference spectra obtained for 60.8 µM of the F156A 
C554 mutant at applied potentials of 92, 72, 52, 32, 12, −8, −28, −48, and −68 mV versus 
SHE.  Solid blue lines show the experimental data, whereas the solid red lines show the 
calculated fits obtained using Eqs 2.4 and 2.5.  (b) A slice through the spectra from (a) 
taken at 430 nm, where absorbance changes due to the high-spin 5-coordinate heme 
predominate.  The solid blue trace represents the experimentally obtained data, the 
dashed red one the least-squares best fit using Eqs. 2.4 and 2.5.  
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examples of the best fits to the experimentally acquired spectra obtained using Eqs. 2.4 and 2.5.  

Figure 2.5b shows a ΔA versus εapp slice through all of the collected spectra at 430 nm, the 

wavelength at which the absorbance changes due to the high-spin 5-coordinate heme 

predominate.  Fits at other wavelengths were equally good.  The best midpoint potential 

parameter set εo
1 and εo

2 obtained from the fitting routine is recorded in Table 2.2. (page 54).    

Figure 2.6a provides the calculated extinction coefficient difference spectra Δε1 and Δε2 obtained 

by the fitting procedure.  By adding Δε1 and Δε2 to the extinction coefficient spectrum of fully 

oxidized F156A mutant, one can generate absolute extinction coefficient spectra for 1- and 2-

electron reduced protein (Fig. 2.6b). 

 The midpoint potentials of the low-potential F156A hemes were obtained in a separate 

experiment, in which an applied potential of −80 mV vs SHE was first used to reduce the protein 

by two electrons in a single step.  The assumption, justified below, was that at this potential the 

 

Figure 2.6.  (a) Extinction coefficient difference spectra associated with formation of 
C1 and C2 (Scheme 2.2), obtained by fitting the Fig. 2.5 data using Eqs. 2.4 and 2.5.  (b) 
Absolute extinction coefficient spectra of C1 and C2, obtained by adding ∆ε1 and ∆ε2 to 
the previously obtained extinction coefficient spectrum of fully oxidized F156A C554 
mutant (Fig. 2.1). 
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2-electron reduced species was the only one present in significant quantities.  The spectral 

changes obtained relative to the spectrum at −80 mV applied potential, as the potential was 

further decreased to −500 mV, are shown as blue traces in Fig. 2.7a; the reaction mixture for this 

experiment initially contained 60.5 µM of F156A, and the mediator mixture of Table 2.1.  SVD 

analysis11, 12 showed that these spectra are linear combinations of two component spectra, which 

were hypothesized to arise from the final two reduction events in the tetraheme system (Scheme 

2.3).  Based on Scheme 2.3 one can readily derive (Appendix 1) the fitting equations 2.6 and 2.7, 

which are analogous Eqs. 2.4 and 2.5 above, except that now ∆εn=εn – ε2.  The red traces in Fig. 

2.7a are examples of the best fits to the experimentally acquired spectra obtained using Eqs. 2.6 

and 2.7.  Figure 2.7b shows a ΔA versus εapp slice through all of the collected spectra at 423 nm, 

 

the wavelength at which the largest spectral changes are observed.  Fits at other wavelengths 

were equally good.  The best midpoint potential parameter set εo
3 and εo

4 obtained from the 

fitting routine is recorded in Table 2.2.  Figure 2.8a provides the calculated extinction coefficient 

difference spectra Δε3 and Δε4 obtained by the fitting procedure.  By adding Δε3 and Δε4 to the  

 

Scheme 2.3.  Reduction of 2-electron reduced F156A mutant (C2) to the 4-electron reduced 
moiety (C4) in 1-electron steps. 
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Figure 2.7. (a) SVD-processed difference spectra obtained for 60.5 µM of the F156A 
C554 mutant at applied potentials of -80 (flat line), −120, −160, −200, −240, −280, −320, 
−400, and −480 mV versus SHE.  Solid blue lines show the experimental data, whereas 
the solid red lines show the calculated fits obtained using Eqs 2.6 and 2.7.  (b) A slice 
through the spectra from (a) taken at 423 nm, where largest absorbance changes are 
observed.  The solid blue trace represents the experimentally obtained data, the dashed 
red one the least-squares best fit using Eqs. 2.6 and 2.7.  
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extinction coefficient spectrum of 2-electron reduced F156A mutant (Fig 2.6b), one can generate 

absolute extinction coefficient spectra for 3- and 4-electron reduced protein (Fig. 2.8b). 

Figure 2.9 shows the fractional abundance of C1 – C4 calculated using Eqs. 2.4 and 2.6, 

and the experimentally calculated parameter set from Table 2.2 (page 54).  Note that at the 

applied potential of −80 mV virtually all (94%) of the F156A is present as the 2-electron reduced 

species, thus justifying the decision to generate the Fig 2.7a difference spectra using the −80 mV 

spectrum as the reference.  In retrospect, an even better choice would have been εapp = −140 mV, 

where ~99% of the protein is present as the 2-electron reduced species; however, the extinction 

coefficient spectra obtained with the −80 mV choice proved adequate for our experiments. 

  

 

Figure 2.8.  (a) Extinction coefficient difference spectra associated with formation of 
C3 and C4 of F156A (Scheme 2.3), obtained by fitting the Fig. 2.7 data using Eqs. 2.6 
and 2.7.  (b) Absolute extinction coefficient spectra of C3 and C4, obtained by adding 
∆ε3 and ∆ε4 to ε2 (shown in Fig. 2.6b). 
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2.3.3. A spectropotentiometric study of the F156H C554 mutant.  The blue traces in 

Fig. 2.10a show selected spectral changes observed when a solution initially containing 52 µM 

of the F156H C554 mutant, and the mediator mixture of Table 2.1, was subjected to successively 

more negative applied potentials.  The entire spectropotentiometric titration had to be done in a 

single experiment because, unlike the situation encountered with F156A, there was no applied 

potential at which a single species of the F156H mutant predominated.  Analysis by singular 

value decomposition (SVD)11, 12 showed that the Fig. 2.10a spectra are linear combinations of 

four component spectra, as would be expected if each reduction event in the tetraheme system 

resulted in formation of a spectrally and electrochemically distinguishable species.  The  

 

 

Figure 2.9.  Fractional abundance of each reduced F156A species as a function of 
applied potential, calculated using Eqs. 2.4 and 2.6, and the midpoint potential 
parameter set from Table 2.2.  Based on the calculations, the 2-electron reduced species 
will constitute ~94% of the total C554 at εapp = −80 mV, with the remaining 6% being 1-
electron reduced 
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Figure 2.10.  (a) SVD-processed difference spectra obtained for 52 µM of the F156H 
C554 mutant at applied potentials of 38.5, −2.5, −122.5, −162.5, −202.5, −242.5,   
−285.5, −322.5, −362.5 and −482.5 mV versus SHE.  Solid blue lines show the 
experimental data, whereas the solid red lines show the calculated fits obtained using 
Eqs 2.8 and 2.9.  (b) A slice through the spectra from (a) taken at 424 nm, where the 
largest absorbance changes are observed.  The solid blue trace represents the 
experimentally obtained data, the dashed red one the least-squares best fit using Eqs. 
2.8 and 2.9. 
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experiment was thus modelled using Scheme 2.4 and Eqs. 2.8 and 2.9.  This is the most 

straightforward of the cases encountered so far, and the required equations are derived in  

detail in Appendix 1.  The red traces in Fig. 2.10a are examples of the best fits to the 

experimentally acquired spectra obtained using Eqs. 2.8 and 2.9.  Figure 2.10b shows a ΔA 

versus εapp slice through all of the collected spectra at 424 nm, where the largest absorbance  

 

changes are observed.  Fits at other wavelengths were equally good.  The best midpoint potential 

parameter set εo
1 − εo

4 obtained from the fitting routine is recorded in Table 2.2.  Figure 2.11a 

provides the calculated extinction coefficient difference spectra Δε1 − Δε4 obtained by the fitting 

procedure.  By adding these to the extinction coefficient spectrum of fully oxidized F156H 

mutant one can generate absolute extinction coefficient spectra for 1- to 4-electron reduced 

protein (Fig. 2.11b). 

 

Scheme 2.4.  Reduction of fully oxidized F156H mutant (Ox) to the 4-electron reduced 
moiety in 1-electron steps. 
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2.4. Discussion 

2.4.1. Wild type C554.  The midpoint potentials of wild type C554 were previously obtained by 

UV/Vis spectropotentiometric analysis at selected wavelengths,2 and by protein film 

voltammetry (PFV).3  Table 2.2 (page 54) shows that the results from this work are in reasonable 

agreement with both sets of prior results.  One does see variations of up to 35 mV in the 

midpoint potentials of the lowest potential heme obtained by the different methods, but such 

variations are comparatively minor given the complexity of the system being analyzed.  Similar 

variations were found when various methods were used to extract the midpoint potentials of the 

decaheme enzyme cytochrome c nitrite reductase (ccNiR),6, 7 and the variations appear to arise 

primarily from experimental biases introduced by the various measuring techniques.6 

 

Figure 2.11. (a) Extinction coefficient difference spectra associated with formation of 
C1 − C4 of F156H (Scheme 2.4), obtained by fitting the Fig. 2.10 data using Eqs. 2.8 
and 2.9.  (b) Absolute extinction coefficient spectra of C1 − C4, obtained by adding ∆ε1 
− ∆ε4 to the mutant’s εox spectrum.  Note that the split Sorets seen in the Fig. 2.4a and 
2.8a difference spectra are not seen in (a) above.  This is because ∆ε3 and ∆ε4 in this 
case are obtained by subtraction of the fully oxidized spectra, whereas in the earlier 
cases the reduced difference spectra were relative to partially reduced intermediates. 
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Table 2.2. Midpoint potentials of wild type and variant C554 hemes (in volts vs. the standard 
hydrogen electrode) obtained in this work, and in previous investigations. 

 

Midpoint 

potential 

Wild type C554 F156A mutant F156H mutant 

UV/Vis 
spectropotentiometry 

Protein film 
voltammetryc 

UV/Vis spectropotentiometrya 

εo
1 0.059a 0.047b 0.050 0.042 −0.006 

εo
2 0.059a 0.047b 0.032 −0.009 −0.111 (heme II) 

εo
3 −0.164a −0.147b −0.183 −0.277 −0.187 

εo
4 −0.248a −0.276b −0.283 −0.420 −0.301 

a. This work 
b. Reference2 

c. Reference3 
 

Though the two high potential hemes give rise to a single SVD component and midpoint 

potential in the spectropotentiometric titration, their extinction coefficient spectra show distinct 

contributions from the low-spin heme I and the high-spin heme II (Fig. 1.4a).  Reduced low spin 

c hemes typically display absorbance maxima below 430 nm, whereas the maxima for high-spin 

c-hemes are always above 430 nm.2, 6, 14  Thus, in the Fig. 2.4a difference spectrum ∆εHP, the 

main maximum at 422 nm is assigned to the low-spin heme I, and the prominent shoulder at 431 

nm to the high-spin heme II.  The shoulder due to the high-spin heme also appears at 431 nm in 

the absolute spectrum of Fig. 2.4b, but the main peak attributable to the low-spin heme is slightly 

shifted to 420 nm relative to the difference spectrum.  It should be noted that even though hemes 

I and II appear to reduce with identical midpoint potentials in UV/Vis spectropotentiometric 

titrations, in PFV experiments heme I reduces slightly before heme II (50 mV vs 32 mV, Table 

2.2).3  This result is also in agreement with a prediction from a theoretical study of C554 

reduction.15 



55 
 

 Mössbauer and EPR spectroscopic analyses also show that hemes I and II reduce 

simultaneously in the first C554 reduction event.16  Both the oxidized and reduced states of the 

high-spin heme stand out clearly in the Mössbauer spectrum, so the reduction process can be 

directly monitored by this method.  The EPR spectrum of fully oxidized C554 shows that hemes (I 

and III) and (II and IV) form two weakly antiferromagnetically coupled pairs.  Following the 

first reduction event both couplings disappear, leaving signals typical of two magnetically 

isolated low-spin ferric hemes that can be assigned as hemes III and IV.  The reduction order of 

the low potential hemes was also assigned by EPR because they give rise to distinct signals.  The 

aromatic rings of histidine axial ligands for heme III are nearly parallel to each other, and give 

rise to a rhombic EPR spectrum, while those of heme IV are closer to perpendicular and give rise 

to a so-called HALS (highly axial low spin) signal.  In EPR spectropotentiometric titrations, the 

rhombic signals disappear at higher potential.16 

 A notable feature of the component spectra obtained from the spectropotentiometric 

titration is the split Soret observed in the difference spectrum ∆εLP that arises from the two low 

potential hemes (Fig. 2.4a, the Soret band displays distinct maxima at 416 and 424 nm).  This 

feature was documented but not discussed in an earlier study of C554 electrochemistry.2  Unlike 

hemes I and II, hemes III and IV exhibit distinct midpoint potentials, and the earlier EPR 

studies16 clearly showed that heme III reduces before heme IV.  Yet our SVD analysis showed 

that reduction of each low potential heme made spectroscopically identical contributions 

(Section 2.3.1), so each heme individually must be contributing to both the 416 nm and the 424 

nm bands.   

 Prior to its observation in C554, a split Soret spectrum was documented for a 

Desulfovibrio desulfuricans c-heme protein that was in fact named the “split-Soret cytochrome” 
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(SSC).17  The SSC is a homodimer in which each protomer contains two c-hemes; as with C554, a 

split Soret with maxima at 415 and 424 nm appeared upon heme reduction.18  The only similarity 

between C554 and the SSC is that both proteins contain pairs of parallel but offset hemes that 

come within Vander Waals contact (see Fig. 1.4a for the C554 case); indeed, C554 hemes I and III 

overlay quite nicely on the heme pair from a SSC protomer.19  C554 Hemes II and IV don’t 

overlay on the SSC pair, but their arrangement is similar in that they too are offset parallel, and 

within Vander Waals contact.19  We therefore propose that the necessary condition for generating 

a split Soret is to have a pair of offset but parallel reduced hemes in Vander Waals contact.  In 

C554 two such pairs are available under reducing conditions: hemes I-III and II-IV (Fig. 1.4a).  

Thus, as heme III reduces, the heme I-III pair makes a first contribution to the split Soret of Fig. 

2.4a.  At lower applied potentials heme IV reduces, at which point the heme II-IV pair makes a 

second contribution.  The fact that the heme I-III and II-IV pairs provide spectroscopically 

indistinguishable contributions (Fig. 2.4a) suggests that geometric constraints other than having 

the hemes parallel offset and within Vander Waals contact have minimal importance. 

 2.4.2. F156A mutant of C554.  As noted in Chapter 1, the likely physiological role of C554 

is to accept electrons from hydroxylamine oxidase (HAO).19  HAO and C554 each possess a pair 

of nearly equipotential hemes, with the HAO pair having midpoint potential values of ~0mV,15, 

20, 21, and the C554 pair having them at ~45 mV (Table 2.2).2, 3, 15, 16  Based on this observation it 

has been suggested that HAO is primed to accept electrons from the substrate hydroxylamine 

two at a time, and C554 is optimized to accept these electrons from HAO pairwise as well.3, 15  

This hypothesis is supported by PFV studies that demonstrate some cooperativity in reduction of 

the high-potential C554 hemes, and perhaps also some rectification behavior, which speeds 

electron transfer from HAO to C554 relative to the reverse process.3  The F156A mutation 
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somewhat perturbs the delicate balance between hemes I and II so that the first and second 

reduction events are now about 50 mV apart instead of roughly isopotential (Table 2.2). 

 Interestingly, the spectral changes that accompany the first two reduction events are not 

consistent with sequential reduction of first one discrete heme and then another.  Though the 1- 

and 2-electron reduced species now display discrete extinction coefficient spectra (Fig. 2.6), both 

species exhibit overlapping bands attributable to reduction of distinct hemes in the Soret region 

of their difference spectra (Fig. 2.6a).  One band has an absorbance maximum near 422 nm 

characteristic of low-spin ferrous heme, while the other peaks near 430 nm, which is more 

characteristic of high-spin hemes (see Section 2.4.1).  Figure 2.5a shows that in the early stages 

of heme reduction the 430 nm band is slightly higher than the 422 nm one, but that as the 

reduction progresses the 422 nm band becomes more prominent.  This is reflected in the 

component extinction coefficient difference spectra of Fig. 2.6a.  We interpret this to mean that 

in the 1-electron reduced species the single electron is delocalized between hemes I and II, but 

exhibits a slight preference for residing on the high-spin heme II.  When C554 is reduced further 

to the 2-electron reduced species both hemes I and II will be reduced equally, at which point the 

422 nm band predominates as it does in the high potential component of the wild type (Fig. 

2.4a).  This interpretation should be further tested in the future using EPR spectropotentiometry.  

Evidence for electron delocalization similar to that described here was previously observed 

during spectropotentiometric reduction of the homodimeric decaheme enzyme cytochrome c 

nitrite reductase,6, 7 and in computational studies of HAO reduction.15  The phenomenon may 

prove to be widespread in multi-heme proteins.   

 A final notable feature of the first two F156A reduction events is that the midpoint 

potential associated with 1-electron reduced F156A generation very nearly matches εHP
o 
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attributable to simultaneous reduction of hemes I and II in the wild type (Table 2.2), while the 

midpoint potential for generating the 2-electron reduced species is shifted 50 mV down to 

−9mV.  At first glance this result seems counterintuitive.  In the 1-electron reduced species the 

electron appears to have a preference for residing on heme II, which is the one affected by the 

mutation, and yet the midpoint potential of the first reduction event is very close to that of the 

wild type.  On the other hand the midpoint potential of the second reduction event is more 

profoundly influenced by the mutation, even as more electron density is being added to heme I, 

which is far from the mutated site.  The observation highlights the complexity of interactions in 

multi-heme systems, and is worthy of further study. 

 As is the case for the wild type, the extinction coefficient difference spectra of the F156A 

mutant low potential hemes both exhibit split Soret bands, with maxima at 417 and 424 nm (Fig. 

2.8a).  Though SVD analysis shows distinct spectral changes associated with the two reduction 

events, the difference spectra for the 3- and 4-electron reduced species in Fig. 2.8a are visually 

quite similar, and it is quite possible that some of the differences are due simply to varying 

admixtures of noise into the two components.  Interestingly, the midpoint potentials for F156A’s 

third and fourth reduction events are significantly more affected by the mutation than the high-

potential hemes, despite the fact that the mutation was in the vicinity of the high-potential heme 

II (Table 2.2).  In both cases the midpoint potentials shifted more than 100 mV to the negative.  

Thus, εo
3 shifted from −166 mV in the wild type to −277 mV in the mutant, while εo

4 shifted 

from −276 mV to −420 mV.  Once again this demonstrates the significant global effects that 

local changes can have on midpoint potentials in multi-heme proteins.  Crystallographic analysis 

of wild type C554 showed that structural changes accompanying heme reduction are relatively 

minor.22  Notably though, the most pronounced changes take place in the vicinity of hemes III 
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and IV.  The biggest changes occur in a loop between residues 175 and 179 that terminates at 

one of the heme III axial histidine ligands (His 179), and in the rearrangement of one of the heme 

IV propionates.22  His 179 is not so far from residue 156, and it is possible that the 156 mutation 

affects the loop.  Similarly, the proximity between Hemes II and IV (Fig. 1.4) could allow any 

structural changes at heme II that accompany the H156A mutation to influence the arrangement 

of the heme IV propionate in the redox process.  These possibilities should be explored in future 

structural studies of the mutant. 

  2.4.3. F156H mutant of C554.  Unlike the F156A change, mutation of F156 to a histidine 

has a profound effect on the heme II midpoint potential, which shifts from 45 mV in the wild 

type to −111 mV in F156H (Table 2.2).  Histidine is a potential ligand for heme II, and we 

propose that in oxidized F156H it binds to the metal center, thus stabilizing the higher oxidation 

state.  In keeping with this hypothesis the spectral changes associated with loss of oxidized heme 

II display maximum amplitude at about 400 nm (Figs. 2.10a and 2.11a), which is consistent with 

the oxidized species now being low-spin.2  By contrast, for both the wild type and the F156A 

mutant the spectral changes associated with loss of oxidized heme II have maximum amplitudes 

at around 390 nm, which is characteristic of high-spin oxidized hemes.2  Note however that the 

new band that appears as heme II is reduced is at 430 nm (Figs. 2.10 and 2.11), which as 

mentioned before is characteristic of high-spin ferrous hemes.2  Thus it seems that while the 

ferric heme II of F156H is low-spin and 6-coordinate, the ferrous form reverts back to high-spin 

5-coordinate like the wild-type and F156A.   

 Two factors could drive a 5-coordinate to 6-coordinate transition during heme oxidation.  

First, donation of electron density by formation of an additional covalent bond to the ferric heme 

would help to dissipate the extra formal charge associated with the higher oxidation state.  
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Second, the porphyrin rings of ferric hemes are typically easier to distort from planarity,22 and 

this in turn might make it easier for ferric heme II to adopt a conformation amenable to 

establishing an iron-histidine bond with a comparatively distant ligand.  In the converse case, as 

the heme II of F156H reduces from the ferric to ferrous form, one could envision the porphyrin 

ring becoming more rigid, and pulling the iron away from the H156, at the same time that 

additional stabilizing electron density became less desirable.  Future crystallographic studies of 

the F156H mutant, in oxidized and reduced states, will be needed in order to test the proposed 

hypothesis. 

 Interestingly, the midpoint potentials of the two low-potential hemes of F156H are much 

closer to those of the wild type than they are to those of F156A.  Histidine is much closer in size 

to phenylalanine than is alanine, so it seems quite reasonable that the F156A substitution would 

lead to larger structural changes at remote locations near hemes III and IV than the F156H 

switch; this in turn would lead to greater changes in the midpoint potentials. 

2.5 Summary 

  The midpoint potentials of all the hemes in C554, and in the F156A and F156H variants, 

were determined using spectropotentiometric analysis.  The midpoint potentials obtained for the 

wild type protein were comparable to those obtained in earlier studies,2, 3 which provided 

validation for the methodology used herein.  By taking complete spectra at each applied potential 

and then analyzing the data globally, we were also able to obtain full extinction coefficient 

spectra for the protein species at varying stages of reduction. 

 The heme II midpoint potential of F156H was profoundly altered from the wild type 

value, shifting about 170 mV to the negative.  This may be showing that the histidine ligand in 
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the variant binds to the previously vacant ferric heme II axial site, thus stabilizing the oxidized 

state.  Consistent with this interpretation, the UV/Visible spectrum of fully oxidized F156H 

exhibited increased absorbance at 409 nm relative to the wild type, which suggests that the 

mutant protein has 4 low-spin ferrihemes, rather than three low-spin and one high-spin as seen in 

the wild type.  Upon reduction of heme II though, the spectrum of F156H exhibits a band at 430 

nm characteristic of high-spin ferrohemes, which suggests that His 156 dissociates from the 

heme when this reduces. 

 In contrast to the case with F156H, the midpoint potentials of hemes I and II in F156A 

were only slightly shifted relative to the wild type.  On the other hand, the midpoint potentials of 

the low-potential hemes III and IV were shifted about 100 mV to the negative by mutating 

Phe156 to Ala, whereas mutation of Phe156 to His had minimal impact on these hemes.  It 

appears that the substitution of bulky Phe by the small Ala significantly alters the conformation 

of the protein backbone, which in turn affects the environment of distant hemes enough to 

substantially alter their midpoint potentials.   

 To summarize, the midpoint potential values obtained in this chapter for the hemes of 

C554 and its variants, together with the corresponding full extinction coefficient spectra, provided 

a level of understanding of these multi-heme systems that was only obtainable from a global 

analysis.  The following chapters rely heavily on the insights obtained herein to explore the 

interaction with NO of C554 and its variants. 
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Chapter 3 

The reaction of wild type cytochrome c554, at various stages of 

reduction, with photo-generated nitric oxide 

3.1. Introduction 

 As was reviewed in Chapter 1 (Section 1.3), a 2006 paper reported that under certain 

conditions C554 exhibits NO reductase activity, in addition to acting as an electron transport 

protein.2  The Pacheco group was intrigued by this result for two reasons.  First, it seemed 

surprising that such reactivity could be catalyzed in a heme vacant site that appears barely large 

enough to bind a single NO molecule (Fig. 1.5).  All other known NO reductases either have di-

iron active sites with enough space for two NO molecules (Section 1.5), or a mono-iron site that 

can accommodate NO and NH2OH in close proximity (Section 1.6).  Second, Upadhyay et al. 

reported that C554-catalyzed reduction of NO to N2O occurred most rapidly at very low applied 

potentials.2 Such an observation appears to contradict a paradigm that has been developing in the 

Pacheco group for some years now, according to which NO is predicted to reduce to NH4
+ in the 

presence of powerful reductants, and to N2O only in the presence of less powerful ones (Section 

1.7).  Given these apparent contradictions, we decided to re-examine the purported NO reductase 

activity of C554. 

 A major challenge in studying the reactivity of NO under reducing conditions is that NO 

reacts directly with many commonly used reducing agents such as dithionite or methyl viologen 

monocation radical.  This can make it difficult to deconvolute NO reduction catalyzed by a 

species such as C554 from the direct interaction, which is often rapid.  Furthermore, except at 

very low concentrations, NO gas reacts rapidly with even trace oxygen, which can easily 
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confound experimental results unless oxygen is rigorously excluded.  In the past the Pacheco 

group has found the light-activated NO precursor [Mn(PaPy2Q)NO]ClO4 (species 1, Scheme 

3.1,3 where PaPy2Q is the pentadentate ligand N,N-bis(2-pyridylmethyl)-amine-N-ethyl-2-

quinoline-2-carboxamide) to be extremely useful for investigating reactions of proteins with 

NO.4, 5 This species releases NO within less than 1µs of being irradiated with a laser pulse, and is 

thus ideally suited for investigating fast reactions of this gas.  Furthermore, by quickly generating 

an aliquot of NO in situ, the method often allows the reaction of interest to be investigated before 

unwanted side reactions of NO, with residual oxygen or reducing agents, can proceed to a 

significant extent.  In this chapter we re-evaluate the reactivity of NO with C554 under rigorously 

anaerobic conditions, exploiting the properties of 1 to minimize interference from unwanted side 

reactions. 

3.2. Materials and Methods 

3.2.1. General materials.  Common chemicals were obtained from Fisher Scientific, 

VWR or Sigma-Aldrich unless specified otherwise.  Hexammineruthenium(II) chloride 

(Ru(NH3)6Cl2), hexammineruthenium(III) chloride (Ru(NH3)6Cl3), and methyl viologen were 

obtained from Acros.  Zinc powder was from Fisher Scientific.  The light-activated NO precursor 

 

                                1. 

Scheme 3.1.  Photolytic cleavage of 1 to produce an aquo species and free NO.  

 



67 
 

1 (Scheme 3.1) was prepared by the method of Eroy-Reveles et al.3  The pH-jump activated NO 

precursor 1-(N,N-diethylamino)diazene-1-ium-1,2-diolate (DEANO) was prepared as described 

by Drago and Paulik.6, 7   

3.2.2. General instrumentation.  Routine UV/vis spectra were obtained using one of 

three Cary 50 (Varian) spectrophotometers available to the Pacheco group.  Two of these 

spectrophotometers are housed in gloveboxes for obtaining spectra of air-sensitive samples.  

Bulk electrolysis was carried out using a BASi Epsilon EC potentiostat to set the appropriate 

potential.  An Ag/AgCl electrode was used as a reference (BASi model RE-5B), and was 

periodically standardized by comparison with the methyl viologen couple as described in 

Chapter 2.  

3.2.3. Protein handling.  The C554 purification protocol can be found in Chapter 2.  All 

experiments with purified C554 were performed in solutions buffered with 50 mM HEPES pH 7, 

containing 1 mM EDTA.  Solutions were prepared and manipulated in a nitrogen-filled 

glovebox.  Stock solutions were prepared daily in the glovebox, and stored in a refrigerator at 4° 

C until needed.   

In addition to C554 and buffer, solutions for use in laser-initiated time-resolved 

spectroscopy also contained a suitable reducing agent as described below, and varying 

concentrations of the NO-generating photosensitive species 1.  Such solutions had to be prepared 

and kept in a darkened room at all times; a red safe-light was used to provide the minimal 

illumination needed to prepare the samples.   

Stock solutions of two-electron reduced C554 for laser-initiated time resolved 

spectroscopy were prepared in a bulk electrolysis cell by applying potentials of −50 mV vs SHE 
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to solutions initially containing 200 µM Ru(NH3)6
3+, 150 mM NaCl (as supporting electrolyte) 

and oxidized protein stock in standard HEPES buffer.  Stock solutions containing only 

Ru(NH3)6
3+/2+ mixtures were prepared separately in a bulk electrolysis cell by applying potentials 

of −50 mV vs SHE to solutions initially containing 200 µM Ru(NH3)6
3+ and 150 mM NaCl (as 

supporting electrolyte) in standard HEPES buffer.  Finally, stock solutions of species 1 were 

prepared by adding aliquots of the stock 200 µM Ru(NH3)6
3+/2+ mixtures to solid 1.  Reaction 

mixtures for each given experiment all contained the same volumes of stock C554 solution, but 

varying volumes of the stock 1 and 200 µM Ru(NH3)6
3+/2+ solutions. 

Four-electron reduced C554 for laser-initiated time resolved spectroscopy was generated 

by gently stirring solutions containing the diluted oxidized protein stock, species 1 and methyl 

viologen (MVox, 3 µM) in a buffered suspension of zinc powder.  The MVox was added to the 

suspension to act as a mediator between the solid zinc and the dissolved protein.  After 30 min 

stirring was stopped, and the solid Zn was allowed to settle out in preparation for spectroscopic 

experiments.  At this point the methyl viologen was fully reduced to the monocation radical 

(MVred), as verified by UV/Vis spectroscopy.   

Concentrations of C554, as well as the extent of the protein’s reduction, in the reaction 

mixtures used for laser spectroscopy and stopped-flow experiments, were assessed by UV/Vis 

spectroscopy using the independently obtained extinction coefficient spectra of the fully 

oxidized, 2-electron and 4-electron reduced C554 (see Chapter 2). 

3.2.4. Laser-initiated time-resolved spectroscopic experiments.  Samples for laser-

initiated time-resolved experiments were prepared in the glovebox, in 1.5 × 1.5 mm flourometer 

cuvettes (Starna) stoppered with greased ground glass caps.  Nitric oxide was generated 
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photochemically in the cuvettes by irradiating species 1 with 5 ns, 500 nm laser pulses from an 

OPO tunable laser (Opotec Rainbow Vis); NO release from the complex occurred in less than 1 

µs.  The laser pulse was delivered through a fiber optic cable, and was focused to a spot of 5 mm 

diameter that homogeneously irradiated the entire cuvette window; this arrangement minimized 

artifacts due to irradiated solution diffusing out of the volume being probed.  The laser pulse 

energies were measured daily before experiments were started using a Scientech AC2501 

bolometer.  The laser was tuned to deliver roughly 3 mJ/pulse (with ~10% variability from shot 

to shot), which for a 5 mm spot amounted to energy intensity of about 15 mJ/cm2.  Such laser 

pulses were found to release NO in concentrations of approximately 10% of [1] at low 

concentrations of 1, but the NO yield decreased progressively due to self-screening in the cuvette 

as [1] increased towards 1 mM and beyond.8  The Mn product formed after release of NO is 

unreactive on the time scale recorded.3  Time resolved UV/vis spectra following the laser pulse 

were collected on an OLIS RSM 1000 spectrophotometer in rapid-scanning mode 1, which 

allowed complete spectra in the range from 361.9 nm – 587.2 nm to be collected at a rate of 62 

scans/sec.  The laser pulse entered a cuvette window perpendicular to the spectrophotometer’s 

probe beam.  Because the laser pulse irradiated the full window, the pathlength through the 

irradiated solution was 1.5 mm, equal to the cuvette’s pathlength. 

 3.2.5. Data analysis.  All data were analyzed using programs written within the 

commercially available software packages Origin version 6.0 or later (Microcal Software), or 

Mathcad 13 or later (PTC Software).  The analysis strategies used in our laboratories have been 

previously described in general terms in references 9-13.  Strategies more specific to analyzing 

kinetic data, including the background for the equations appearing in the Results and Discussion 

below, can be found in references 4,5,14. 
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3.3. Results 

3.3.1. The reaction of photo-generated NO with two-electron reduced C554.  Figure 

3.1 shows the spectral changes observed after a solution initially containing 0.9 mM of the NO 

generating species 1 (Scheme 3.1), 6 µM C554 and 200 µM Ru(NH3)6
2+ was exposed to a 500 nm, 

5 ns laser pulse, which fragments 1 to release NO (Scheme 3.1).  Under these conditions the 

hemes of C554 with the highest potential (Fig 1.4a, hemes I and II) are reduced, while the lower 

potential hemes (Fig 1.4a , hemes III and IV) remain oxidized.  The raw time-resolved UV/vis 

spectra were first subjected to singular value decomposition (SVD) to determine the number of 

spectral components and smooth out noise.15, 16  The SVD analysis showed that only three 

components were needed to faithfully reconstruct a noise-reduced absorbance matrix.  The SVD-

treated data were then fit to Eq. 3.1 using a global fitting routine.4, 5  In Eq. 3.1 spectral 

component Λ0 is present immediately after the laser pulse (taken as t0), component Λ1 grows in 

exponentially in a process governed by the rate constant kobs, and component Λ2 grows in linearly 

with time.  The data were fit to Eq. 3.1 with a Mathcad program that allowed kobs to be manually 

adjusted, after which a pseudoinverse could be calculated to generate trial values of a matrix Λ 

(3.1) 

that contained the spectral components.4, 5  The value of kobs was adjusted until the least-squares 

difference between the experimental absorbance values and the matrix of ΔAλ,t values obtained 

from Eq. 3.1 was minimized.   
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Figure 3.1. (a) Spectral changes at selected times observed when a solution initially 
containing 0.9 mM of the NO generating species 1, 6 µM C554 and 200 µM Ru(NH3)6

2+ 
was exposed to a 500 nm, 5 ns laser pulse, which fragments 1 to release NO.  The purple 
traces track the first 1500 ms at 100 ms intervals, the blue traces are at one-second 
intervals, the orange traces are at two-second intervals, and the green traces are at 10-
second intervals. The red traces are the least-squares best fits using Eq. 3.1.  (b) Changes 
in absorbance vs time are plotted for 415 nm, 430 nm and 500 nm, where individual 
species make significant contributions; the red traces are from the least-squares best fits 
using Eq. 3.1.  
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Figure 3.2. The spectral components Λ0-Λ2 generated by fitting the SVD-processed Fig. 
3.1 data to Eq 3.1(blue traces).  The red traces were generated with the independently 
known extinction coefficient spectrum of species 1 and small admixtures of Λ1.  From 
the fit of Λ0 (a) one can calculate that 31 µM of NO were generated by the laser pulse 
in this experiment.  The fit of Λ2 (c) mainly reflects the amount of 1 photolyzed per 
second due to the spectrophotometer probe beam; the NO so generated then nitrosylates 
additional C554. 
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Figure 3.2 shows the spectral components obtained from the fitting process.  The 

component Λ0 (Fig. 3.2a) arises from the denitrosylation of species 1 within the dead-time of the 

experiment.  This component was fit with the independently known extinction coefficient 

spectrum of species 1, and the amount of NO generated by the laser pulse in the experiment was 

determined to be 31 µM from this fit.  The component Λ1 (Fig. 3.2b) grows in exponentially, and 

is attributed to nitroslyation of the reduced 5-coordinate heme II of C554.2  Finally, component Λ2 

(Fig. 3.2c) grows in linearly, and arises from the release of NO from species 1 caused by the 

spectrophotometer probe beam irradiation during the experiment (similar linear components are 

seen when collecting UV/Vis time series of solutions containing only species 1).  The Λ2 

component was fit using the independently known extinction coefficient spectrum of species 1, 

with an admixture of component Λ1 attributable to the extra C554 nitrosylation that accompanied 

the continued slow addition of NO.  Small admixtures of the C554 nitrosylation spectrum Λ1 are 

also seen in the Λ0 component, but this is probably an artifact of the data reduction procedure, 

based on observations obtained by subjecting synthetic data of similar intensity and noisiness to 

the same procedure (including SVD analysis). 

 The analysis described in Figs. 3.1 and 3.2 was repeated with solutions containing 

varying concentrations of 1 and a nominally constant concentration of C554.  These experiments 

showed that kobs varied linearly with the amount of NO generated by the laser pulses (Fig. 3.3).  

A least-squares fit of the data provided a non-zero intercept (red trace, Fig. 3.3), which suggests 

that exposure of 2-electron reduced C554 to photo-generated NO results in establishment of an 

equilibrium between the reduced C554 and its nitrosylated form (C554
2− and C554

2−(NO), 

respectively, Scheme 3.2, page 81), whose position and rate of establishment depend visibly on 
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the amount of NO present.  Accordingly, the value of kobs at a given NO concentration will be 

given by Eq. 3.2 (Appendix 2).  Note that in all cases the amount of NO generated by the laser 

pulse exceeded the amount of C554 nitrosylated by a sufficient amount to maintain pseudo 

(3.2) 

first-order conditions.  From the linear fit to the Fig. 3.3 data, rate constant values of 3000 ± 140 

M−1s−1 and 0.034 ± 0.009 s−1 were obtained for kon and koff, respectively.  An equilibrium 

constant Keq of (9 ±2)×104 M−1 for the Scheme 3.2 nitrosylation was subsequently calculated 

from the ratio kon/koff.  In addition to predicting a linear dependence of kobs on [NO] as shown in 

Eq. 3.2, the Scheme 3.2 (page 81) reversible nitrosylation model also predicts (Appendix 2) that 

 

 

Figure 3.3.  Plot of kobs associated with appearance of the exponential component Λ1 
(Eq. 3.1), versus NO concentration obtained by fitting the corresponding t0 component 
Λ0.  Red trace: least-squares fit of the data to a straight line (Eq. 3.2).  Slope = 3000 ± 
140 M−1s−1; Intercept = 0.034 ± 0.009s−1; these are assigned as kon and koff, respectively 
as defined in Scheme 3.2 and Eq. 3.2. 

 

 [NO]obs off onk k k= +
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the amplitude of the Λ1 component should depend hyperbolically on [NO], as shown in Eq. 3.3.  

In principle, this relationship provides an independent method for obtaining Keq; however,  

(3.3) 

in practice this proved unworkable due to large spectrum-to-spectrum scatter, which could not be 

completely corrected for.  In attempts to analyze the amplitude information the values of Λ1(λ) 

obtained by fitting data to Eq. 3.1 were first converted to apparent extinction coefficient values 

by dividing the original Λ1(λ) values (in absorbance units) by the total C554 concentrations and 

cell pathlength.  In addition, because the Λ1 spectra showed pronounced baseline swings from 

experiment to experiment, the differences Λ1(415) – Λ1(433), in which baseline variations should 

cancel out, were obtained from the Λ1 spectra to be used in their place (415 nm and 433 nm are 

the wavelengths at which maximum absorbance positive and negative deflection was observed in 

Fig. 3.2b).   

 Figure 3.4 shows the differences Λ1(415) – Λ1(433) obtained from each apparent extinction 

coefficient spectrum as a function of the NO present in solution.  These data were fit to Eq. 3.4, 

which has the same hyperbolic form as Eq. 3.3.  The Fig. 3.4 data were fit in two ways.  The 

(3.4) 

Fig. 3.4 red trace was obtained by fixing Keq at the value obtained from the Fig. 3.3 fit, (9 

±2)×104 M−1 (see above).  Despite the scatter in the Fig. 3.4 data, the red trace at least looks 

plausible.  Furthermore, one can use the ∆Λ1max parameter obtained from the fit to then calculate 

reasonable estimates of the full extinction coefficient difference spectrum, Λ1max (Eq. 3.3), which 

should accompany conversion of all available C554
2− to the nitrosylated C554

2−(NO) (Scheme 3.2, 

 

 

1max
1(415) 1(433) 1

[NO]
[NO]eqK −

∆Λ
Λ − Λ =

+
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page 81).  The green trace in Fig. 3.4 was obtained by allowing both Keq and ∆Λ1max to be 

automatically adjusted by the fitting program.  Surprisingly this trace was not much different 

from the red one, showing that convergence was still possible despite the data scatter, though the 

error in the Keq value obtained from the fit was enormous: (2±3)×105 M−1.  Thus, while the 

amplitude data do not provide reliable estimates of the Keq value, they are at least consistent with 

the results obtained by plotting kobs vs [NO] (Fig. 3.3). 

3.3.2 The reaction of photo-generated NO with four-electron reduced C554.  Figure 

3.5 shows the spectral changes observed after a solution initially containing 4 µM C554, 0.75 mM 

of the NO generating species 1 (Scheme 3.1), and 3 µM of methyl viologen reduced by zinc  

 

 

Figure 3.4.  Blue circles: Λ1(415) – Λ1(433) differences obtained from the Λ1 components, 
plotted against the NO concentrations obtained by fitting the corresponding t0 
components Λ0 (see text for details).  The red and green traces were least-squares best 
fits to Eq. 3.4.  For the red trace the value of Keq−1 was fixed using the koff/kon ratio 
obtained from the Fig. 3.3 fit to Eq. 3.2, while for the green trace both Keq−1 and ∆Λ1max 
in Eq. 3.4 were treated as adjustable parameters. 
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Figure 3.5. (a) Spectral changes at selected times observed when a solution initially 
containing 0.75 mM of the NO generating species 1, 4 µM C554 and 3 µM MVred was 
exposed to a 500 nm, 5 ns laser pulse which fragments 1 to release NO.  The purple 
traces are at 100-ms intervals for the first 1000 ms, the blue traces are at one-second 
intervals, and the green traces are at 10-second intervals.  The red traces are the least-
squares best fits using Eq. 3.5.   (b) Changes in absorbance vs time are plotted for 398 
nm, 409 nm, 420 nm, 434 nm and 500 nm, where individual species make significant 
contributions; the red traces are from the least-squares best fits using Eq. 3.5. 
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powder (see Materials and Methods Section 3.2.3), was exposed to a 500 nm, 5 ns laser pulse, 

which fragments 1 to release NO (Scheme 3.1).  Under these conditions all of the C554 hemes 

(Fig. 1.4) are initially reduced.  SVD analysis of the data showed that four components were 

needed to faithfully reconstruct a noise-reduced absorbance matrix.  The SVD-treated data were 

fit to Eq. 3.5 using a global fitting routine.4, 5  In Eq. 3.5 spectral component Λ0 is present 

(3.5) 

immediately after the laser pulse (taken as t0), components Λ1 and Λ3 grow in exponentially in 

processes governed by the rate constants k1obs and k2obs, respectively, while component Λ2 grows 

in linearly with time.  As before with the 2-electron reduced case, the data were fit to Eq. 3.5 

with a Mathcad program that allowed the two first-order rate constants to be manually adjusted, 

after which a pseudoinverse could be calculated to generate trial values of a matrix Λ that 

contained the spectral components.4, 5  The values of the rate constants were adjusted until the 

least-squares difference between the matrix of experimental absorbance values and the matrix of 

ΔAλ,t values obtained from Eq. 3.5 was minimized.   

 Figure 3.6 shows the spectral components obtained from the fitting process.  As with the 

2-electron reduced case, the component Λ0 (Fig. 3.6a) arises from the denitroslyation of species 1 

within the deadtime of the experiment, and could be fit with the independently known extinction 

coefficient spectrum of species 1.  This revealed the amount of NO generated by the laser pulse 

to be 66 µM for the experiment portrayed.  The component Λ3 (Fig. 3.6d) that grows in 

exponentially could be fit (red trace) using the independently known extinction coefficient of the 

methyl viologen monocation radical (MVred), and showed that 3.3 µM of this species was 

consumed upon exposure to NO; the rate constant k2obs obtained for the process was 1.5 s−1.  The 

 
1 2
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component Λ2 (Fig 3.6b) that grows in linearly is once again attributed to the spectrophotometer 

probe-beam induced nitric oxide release from species 1, and as before it can be fit primarily with 

the extinction coefficient spectrum for species 1, with some admixture of component Λ1 from the 

2-electron reduced analysis of the previous section.  The final component Λ1 (Fig. 3.6c), which 

grows in exponentially with a kobs of 0.097 s−1, exhibits features characteristic of changes at the 

C554 c hemes.  In particular, the absorbance decreases at 554 nm and in the region 420 – 440 nm, 

and concomitant absorbance increase near 405 nm, at first sight appear to be diagnostic of 

 

 

Figure 3.6. The spectral components Λ0-Λ3 generated from the cleaned SVD 
absorbance matrix when fit to Eq. 3.5 (blue traces).  The red traces in (a) and (b) were 
fit with the known extinction coefficient of species 1 and small admixtures of Λ1 from 
Fig. 3.2b. The red trace in (d) was fit with the known extinction coefficient spectrum 
for MVred. The red trace in (c) was fit with the difference spectrum ∆εLP obtained in 
Section 2.3.1. 
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straightforward c-heme oxidation.  However, more careful analysis revealed that more complex 

changes were occurring.  The decrease at 554 nm is especially characteristic of low-spin heme 

oxidation (hemes I, III and IV).  However, the largest net absorbance decrease occurs at 434 nm, 

which is diagnostic of changes at the single high-spin 5-coordinate heme II.  Qualitative 

consideration of the relative magnitudes of high-spin and low-spin features suggested that 

component Λ1 is a composite spectrum of all four hemes, and needs to be deconvoluted.  To do 

this the contribution at 554 nm was subtracted out completely using the previously obtained (see 

Chapter 2) extinction coefficient difference spectrum ∆εLP for the low potential hemes III and IV 

of C554.  In Fig. 3.6c the contribution from ∆εLP that resulted in elimination of the 554 nm signal 

is shown by the dashed red line.  The residual spectrum after the subtraction is shown in the 

bottom panel of Fig. 3.6c, and is comparable to the nitroslyated spectrum of two-electron 

reduced C554 (Fig. 3.2b).  Thus, we conclude that the primary spectral change seen in Fig. 3.6c is 

due to nitrosylation of the high-spin heme II, just as it was when 2-electron reduced C554 was 

exposed to photogenerated NO.  Some oxidation of the low-spin, low-potential c hemes occurred 

in tandem with the nitrosylation; however, quantitative analysis shows that this amounted to only 

~0.8 µM of the 4 µM available low-potential heme pool (which comprises hemes III and IV; see 

Section 2.3.1 and Appendix section A1.2).  Assuming that the lowest-potential heme IV oxidizes 

first, this would amount to ~40% oxidation of heme IV, leaving hemes I, II and III fully reduced 

(with heme II of course also being nitrosylated).  This is a very different result to that reported by 

Upadhyay et al., who saw rapid oxidation of all low-spin hemes upon exposure of fully reduced 

C554 to excess NO.2 
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3.4. Discussion 

3.4.1. The reaction of photo-generated NO with two-electron reduced C554.  The 

results presented in Section 3.3.1 above are inconsistent with the results published earlier by 

Upadhyay et al.2 that were summarized in Section 1.3.  For 2-electron reduced C554 the earlier 

work reported immediate oxidation of heme I upon addition of excess NO, though heme II 

remained nitrosylated.  We saw no evidence of heme I oxidation, which would have resulted in 

loss of signal at 420, 554 and 524 nm in the Fig. 3.1 difference spectra.  This was true even in the 

presence of as much as 100 µM photogenerated NO (a 25× excess relative to the C554 

concentrations).  The only changes observed in Fig. 3.1 and analogous spectra collected with 

other photogenerated NO concentrations was the absorbance decrease at 430 nm and 

concomitant increase at 414 nm, which could be attributed to high-spin ferrous heme I 

nitrosylation, as reported in the earlier paper.2  The nitrosylation process is summarized in 

Scheme 3.2, in which the heme II center would be in the {Fe(NO)}7 state (Scheme 1.1).17 

Our experiments were carried out in the presence of 200 µM Ru(NH3)6
2+, so we could not 

immediately rule out C554-catalyzed reduction of NO to N2O by the Ru(NH3)6
2+.  Only about half 

of the RuII would potentially be oxidized by the highest concentrations of photogenerated NO 

 

 

Scheme 3.2.   Equilibrium between two-electron reduced C554 and its nitrosylated form.  
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2 2 24NO O 2H O 4HNO+ + →

(~100 µM), and this would poise the solution at approximately −20 mV vs SHE (the midpoint 

potential for Ru(NH3)6
3+; Table 2.1).  As the midpoint potential of C554 heme I is ~50 mV (Table 

2.2), very little heme oxidation would be expected, even if all of the available NO was reduced to 

N2O by Ru(NH3)6
2+.  To test for this possibility, we used the thermally activated NO precursor 

DEANO (Section 3.2.1)6, 7, 12 to expose the C554/Ru(NH3)6
2+ solutions to NO concentrations as 

high as 500 µM (data not shown).  No C554 oxidation was observed at NO concentrations up to 

300 µM.  Such concentrations would have consumed all of the RuII, and subsequently all C554
2−, 

if this species had been catalyzing NO reduction by Ru(NH3)6
2+.  Hence, this possibility could be 

ruled out.   

It should be noted that at NO concentrations higher than ~300 µM we did begin to see 

oxidation of both hemes I and II in the 2-electron reduced C554, and this oxidation rate increased 

as the NO concentration was further increased (data not shown).  Though such heme oxidation at 

very high NO concentrations could be due to direct interaction between NO and protein, the 

steep dependence on [NO] instead suggests the involvement of residual oxygen.  In aqueous 

solution NO and O2 react to ultimately give NO2−, according to the stoichiometry shown in Eq. 

3.6, but producing strongly oxidizing intermediates on the way.18, 19  The reaction is second order 

(3.6) 

in NO and first-order in O2, which gives it a very steep dependence on [NO], much as we are 

seeing in the present case.  In our experiments, we went to great lengths to exclude oxygen by 

using a glovebox, submitting all stock solutions to bulk electrolysis, and providing a high 

concentration of Ru(NH3)6
2+ that would tend to scrub out residual oxygen.  Such precautions 
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may explain why we saw no C554
2− oxidation at NO concentrations up to 300 µM, whereas 

Upadhyay et al. did.2 

C554
2− does nitrosylate at the heme II vacant site as reported earlier,2 and our work now 

shows that this nitrosylation is discernibly reversible (Scheme 3.2, Section 3.3.1).  Furthermore, 

by investigating the dependence of the nitrosylation rate kobs on NO concentration, we were able 

to obtain the kinetic parameters kon and koff, as defined in Scheme 3.2, and the associated 

equilibrium constant Keq = kon/koff (Section 3.3.1).  The Keq value obtained from this analysis, (9 

±2)×104 M−1 (Section 3.3.1), is considerably lower than is typical for ferrous hemes; for 

example, the value for sperm whale myoglobin is estimated to be ~ 1011 M−1.12, 20  Indeed, the 

measured Keq is more comparable to those obtained for ferric heme nitrosylations, which tend to 

be in the range 104 – 107 M−1.12, 21, 22  A low binding constant is understandable given the steric 

crowding of the ostensibly vacant heme II site where the NO is binding (Fig. 1.5).   

Horse heart ferrocytochrome c, which will bind NO despite having no vacant heme sites 

available, displays a similarly low binding constant (2.9×105 M−1).21  The comparison between 

the behavior towards NO of the two crowded hemes, that of the horse heart protein and heme II 

in C554, is noteworthy.  The kon value for C554 is substantially higher than that for 

ferrocytochrome c (3000±140 M−1s−1 compared to 8.3 M−1s−1, a factor of 360× greater), but the 

difference in koff values is even higher (0.034 ± 0.009 s−1 compared to 2.9×10−5 s−1, a factor of 

1200× greater).21  Unlike in the case of C554, for NO to bind to ferrocytochrome c the iron center 

must first dissociate a ligand, which likely explains the comparatively low kon value.  However, 

the much lower koff value seen for ferrocytochrome c indicates that, once bound, the Fe-NO bond 

is better stabilized in this protein than in C554. Indeed, the NO koff value for ferrocytochrome c is 
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actually 10× smaller than that seen for ferromyoglobin (2.9×10−5 s−1 vs. 1.2×10−4 s−1), though the  

far higher kon for ferromyoglobin makes the net binding much tighter for the latter.21  

Interestingly, NO will also bind to ferricytochrome c, with a Keq value only slightly smaller than 

that seen for the ferrous heme (1.8×105 vs 2.9×105),21 whereas it will not bind at all to fully 

oxidized C554.2  This may reflect the fact that the Fe-NO bonds in ferric {Fe(NO)}6 species tend 

to be linear instead of bent as is typically the case for ferrous {Fe(NO)}7 species,23 and a linear 

Fe-NO species would be much more hindered in the constrained pocket of C554 (Fig. 1.5) than a 

bent one. 

  3.4.2. The reaction of photo-generated NO with four-electron reduced C554.  As 

mentioned earlier, one of the difficulties in studying reactions with NO under strongly reducing 

conditions is that this species reacts directly with many potential reducing agents, including the 

commonly used dithionite or methyl viologen monocation radical (MVred).  In the experiments 

presented in Section 3.3.2 solid Zn powder was used as the reducing agent.  On its own this 

reagent was found to react very slowly with C554 (over the course of a day; data not shown); 

however, in the presence of a small amount of methyl viologen as mediator, C554 could be fully 

reduced in about half an hour.  An advantage of our experimental setup, in which NO is 

photogenerated in less than a µs, is that it allowed us to deconvolute the reaction of residual 

MVred with NO from that of C554
4− with NO.  Thus, from the Figs. 3.5 and 3.6d analyses, one can 

determine quantitatively that the concentration of the MVred mediator was only about 3 µM, and 

that this was consumed within a few seconds by the photogenerated NO (with an observed first-

order rate constant of 1.5 s−1).  In contrast C554
4− nitrosylation and oxidation took tens of seconds, 

and was readily resolved from the MVred reaction (Figs. 3.5 and 3.6c). 
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The results presented in Section 3.3.2 above are once again at odds with the results 

published earlier by Upadhyay et al.2 that were summarized in Section 1.3.  In the earlier work it 

was reported that the three low-spin hemes of C554
4− are fully and rapidly oxidized upon 

exposure to excess NO, with a single turnover rate exceeding 16 s−1.2  In our case we observed 

that exposure of 4 µM C554
4− to 66 µM of photogenerated NO resulted in oxidation of only about 

40% of the available low-potential heme IV, leaving the remaining hemes reduced.  Furthermore, 

heme IV oxidation was concomitant with heme II nitrosylation, and proceeded with an observed 

rate constant kobs of 0.097 s−1.  This rate constant is comparable to those observed for heme II 

nitrosylation in 2-electron reduced C554, and considerably below 16 s−1. 

Scheme 3.3 suggests one possible explanation for the partial oxidation of heme IV that 

accompanies heme II nitrosylation (Figs. 3.5 and 3.6c).  According to this mechanism, the 

{Fe(NO)}7 species generated by nitrosylation of heme II is reversibly reduced to {Fe(NO)}8 by 

intramolecular electron transfer (IET) from the low potential heme IV.  In this scenario, the 

nitrosylation would be rate-limiting, and occur at roughly the same rate as it does for C554
2− 

(Scheme 3.2), after which the IET equilibrium would be established rapidly.  If the Scheme 3.3 

mechanism is assumed to be correct, it can be used to extract the midpoint potential for 

{Fe(NO)}7 reduction from Fig. 3.6c (Appendix 2).  As explained above, fitting Fig. 3.6c with the 

C554 low-potential extinction coefficient difference spectrum obtained in Chapter 2 allows one to 

 

Scheme 3.3.  One proposed mechanism for the reaction of NO with fully reduced C554.  
IET, intramolecular electron transfer. 
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estimate that heme II nitrosylation of C554
2− is accompanied by ~40% oxidation of heme IV.  

According to Scheme 3.3 this would correspond to an equilibrium constant of ~0.67 governing 

IET from ferrous heme IV to {Fe(NO)}7 heme II, which in turn would translate to a cell potential 

of -0.0102 V for net reduction of {Fe(NO)}7 heme II by ferrous heme IV.  Given that the 

midpoint potential for heme IV is −0.25 V (Table 2.2), we find that the midpoint potential for 

{Fe(NO)}7 heme II reduction would be ~ −0.260 V according to the Scheme 3.3 mechanism 

(Appendix 2). 

Scheme 3.3 is a minimalist mechanism, which invokes no further reactivity for the bound 

NO.  Though its simplicity is attractive, it requires the implicit assumption that the heme II 

{Fe(NO)}7 and {Fe(NO)}8 moieties have virtually identical extinction coefficient difference 

spectra, since the residual spectrum of Fig. 3.6c after the heme oxidation contribution is 

subtracted looks essentially the same as the {Fe(NO)}7 spectrum observed upon nitrosylation of 

C554
2− heme II (Fig. 3.2b).  This is not impossible; to our knowledge pure {Fe(NO)}8 heme 

species have not been previously reported for proteins, but the protonated {Fe(HNO)}8 species 

has been characterized for myoglobin, and its UV/Vis spectrum is similar to that of myoglobin 

{Fe(NO)}7.24  Nevertheless, an alternative mechanism is proposed in Scheme 3.4, which would 

result in heme II ending up as {Fe(NO)}7.  The first two steps of this mechanism are the same as 

for Scheme 3.3, but in this case {FeII(NO)}8 is proposed to release nitroxyl (NO−), which is 

known to dimerize rapidly in aqueous solution to generate N2O.1, 24, 25  Release of NO− from 

{FeII(NO)}8 would leave heme II in the ferrous state, and this species could then react with a 

second equivalent of NO.  The final heme II product would thus be {Fe(NO)}7, just as it was 

after nitrosylation of C554
2−.  Further oxidation of the C554 heme pool would be prevented if 

neither hemes I or III were strong enough reducing agents to once again reduce {FeII(NO)}7 to 
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{FeII(NO)}8.  This is supported by the {FeII(NO)}7 midpoint potential estimate of −0.21 V 

obtained above for Scheme 3.3 mechanism; the heme III midpoint potential of −0.150 V (Table 

2.2) would yield an unfavorable cell potential of -0.11 V for reduction of {FeII(NO)}7 by ferrous 

heme III, and an even more unfavorable potential for reduction by ferrous heme I. 

3.5. Summary 

  Our results indicate that C554
2− and C554

4− will both nitrosylate at heme II; however, we 

saw no evidence of the previously reported C554-catalyzed NO reduction,2 either with C554
2− or 

with C554
4−.  Some sub-stoichiometric oxidation of the lowest potential heme IV is detected when 

C554
4− is exposed to an excess of photogenerated NO, and Scheme 3.4 shows how this could be 

leading to formation of small amounts of N2O.  In principle such reactivity could be exploited to 

yield a catalytic system, if a reducing agent potent enough to re-reduce heme IV were provided; 

however, our results show that in such a system heme II nitrosylation would likely be rate 

limiting with a rate constant in the range of ~0.1 s−1.  Since NO typically reacts directly with 

strong reducing agents at much faster rates (see for example above for NO + MVred), it is 

 

 

Scheme 3.4. An alternative mechanism for the reaction of NO with fully reduced C554, 
which allows for sub-stoichiometric production of N2O.  Note that free nitroxyl anion 
is expected to be in the triplet state.1 
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difficult to see how a catalytic system would be devised in practice.  Finally, one should 

remember that Scheme 3.4 is proposed on the basis of the observed heme spectral changes, 

without any evidence that N2O is in fact being generated.  The original report of C554 NO 

reductase activity was similarly based on the observed heme spectral changes, and provided no 

direct measurements of N2O generation.  Whether N2O is in fact produced, even in the sub-

stoichiometric amounts proposed here, will have to be tested for in future studies. 

3.6. References 

[1] Shafirovich, V., and Lymar, S. V. (2002) Nitroxyl and its anion in aqueous solutions: spin 

states, protic equilibria, and reactivities toward oxygen and nitric oxide, PNAS 99, 7340-

7345. 

[2] Upadhyay, A. K., Hooper, A. B., and Hendrich, M. P. (2006) NO reductase activity of the 

tetraheme cytochrome c(554) of Nitrosomonas europaea, J. Am. Chem. Soc. 128, 4330-

4337. 

[3] Eroy-Reveles, A., Leung, Y., Beavers, C. M., Olmstead, M. M., and Mascharak, P. K. (2008) 

Near-Infrared Light Activated Release of Nitric Oxide from Designed Photoactive 

Manganese Nitrosyls: Strategy, Design, and Potential as NO Donors, J. Am. Chem. Soc. 

130, 4447-4458. 

[4] Koebke, K. J., Pauly, D. J., Lerner, L., Liu, X., and Pacheco, A. A. (2013) Does the oxidation 

of nitric oxide by oxyMyoglobin share an intermediate with the metMyoglobin-catalyzed 

isomerization of peroxynitrite?, Inorg. Chem. 52, 7623-7632. 

[5] Koebke, K. J., Waletzko, M. T., and Pacheco, A. A. (2016) Direct monitoring of the reaction 

between photochemically generated nitric oxide and Mycobacterium tuberculosis 



89 
 

truncated hemoglobin N wild type and variant forms: an assessment of theoretical 

mechanistic predictions., Biochemistry 55, 686-696. 

[6] Drago, R. S., and Paulik, F. E. (1960) The Reaction of Nitrogen (II) Oxide with 

Diethylamine, J. Am. Chem. Soc. 82, 96-98. 

[7] Maragos, C. M., Morley, D., Wink, D. A., Dunams, T. M., Saavedra, J. E., Hoffman, A., 

Bove, A. A., Isaac, L., Hrabie, J. A., and Keefer, L. K. (1991) Complexes of NO with 

Nucleophiles as Agents for the Controlled Biological Release of Nitric-Oxide - 

Vasorelaxant Effects, J. Med. Chem. 34, 3242-3247. 

[8] Koebke, K. J. (2015) Mechanistic study of heme protein-mediated nitric oxide dioxygenation 

using photolytically produced nitric oxide In Department of Chemistry and Biochemistry, 

University of Wisconsin-Milwaukee. 

[9] Cabail, M. Z., Moua, V., Bae, E., Meyer, A., and Pacheco, A. A. (2007) Quantifying the 

photoinduced release of nitric oxide from N,N'-bis(carboxymethyl)-N,N'-dinitroso-1,4-

phenylenediamine. Effect of reducing agents on the mechanism of the photoinduced 

reactions, J. Phys. Chem. A 111, 1207-1213. 

[10] Kostera, J., Youngblut, M. D., Slosarczyk, J. M., and Pacheco, A. A. (2008) Kinetic and 

product distribution analysis of NO reductase activity in Nitrosomonas europaea 

hydroxylamine oxidoreductase, J. Biol. Inorg. Chem. 13, 1073-1083. 

[11] Kostera, J., McGarry, J. M., and Pacheco, A. A. (2010) Enzymatic Interconversion of 

Ammonia and Nitrite: the Right Tool for the Job, Biochemistry 49, 8546-8553. 

[12] Purwar, N., McGarry, J. M., Kostera, J., Pacheco, A. A., and Schmidt, M. (2011) Interaction 

of nitric oxide with catalase: structural and kinetic analysis, Biochemistry 50, 4491-4503. 



90 
 

[13] Youngblut, M., Judd, E. T., Srajer, V., Sayyed, B., Goelzer, T., Elliott, S. J., Schmidt, M., 

and Pacheco, A. A. (2012) Laue crystal structure of Shewanella oneidensis cytochrome c 

nitrite reductase from a high-yield expression system, J. Biol. Inorg. Chem. 17, 647-662. 

[14] Youngblut, M., Pauly, D. J., Stein, N., Walters, D., Conrad, J. A., Moran, G. R., Bennett, B., 

and Pacheco, A. A. (2014) Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) 

does not disproportionate hydroxylamine to ammonia and nitrite, despite a strongly 

favorable driving force., Biochemistry 53, 2136-2144. 

[15] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007) Numerical 

Recipes the art of scientific computing,  3rd ed., pp 65-75, Cambridge University Press, 

New York, NY. 

[16] Henry, E. R., and Hofrichter, J. (1992) Singular Value Decomposition: Application to 

Analysis of Experimental Data, In Meth. Enzymol. (Brand, L., and Johnson, M. L., Eds.), 

pp 129-192, Academic Press, San Diego. 

[17] Enemark, J. H., and Feltham, R. D. (1974) Principles of Structure, Bonding and Reactivity 

for Metal Nitrosyl Complexes, Coord. Chem. Rev. 13, 339-406. 

[18] Goldstein, S., and Czapski, G. (1995) Kinetics of nitric oxide autoxidation in aqueous 

solution in the absence and presence of various reductants.  The nature of the oxidizing 

intermediates, J. Am. Chem. Soc. 117, 12078-12084. 

[19] Goldstein, S., and Czapski, G. (1996) Mechanism of the nitrosation of thiols and amines by 

oxygenated NO solutions: the nature of the nitrosating intermediates, J. Am. Chem. Soc. 

118, 3419-3425. 



91 
 

[20] Hoshino, M., Maeda, M., Konishi, R., Seki, H., and Ford, P. C. (1996) Studies on the 

reaction mechanism for reductive nitrosylation of ferrihemoproteins in buffer solutions, J. 

Am. Chem. Soc. 118, 5702-5707. 

[21] Hoshino, M., Ozawa, K., Seki, H., and Ford, P. C. (1993) Photochemistry of Nitric-Oxide 

Adducts of Water-Soluble Iron(III) Porphyrin and Ferrihemoproteins Studied by 

Nanosecond Laser Photolysis, J. Am. Chem. Soc. 115, 9568-9575. 

[22] Laverman, L. E., Wanat, A., Oszajca, J., Stochel, G., Ford, P. C., and van Eldik, R. (2001) 

Mechanistic studies on the reversible binding of nitric oxide to metmyoglobin, J. Am. 

Chem. Soc. 123, 285-293. 

[23] Ford, P. C., and Lorkovic, I. M. (2002) Mechanistic aspects of the reactions of nitric oxide 

with transition-metal complexes, Chem. Rev. 102, 993-1017. 

[24] Lin, R., and Farmer, P. J. (2000) The HNO adduct of myoglobin: synthesis and 

characterization, J. Am. Chem. Soc. 122, 2393-2394. 

[25] Shafirovich, V., and Lymar, S. V. (2003) Spin-forbidden deprotonation of aqueous nitroxyl 

(HNO), J. Am. Chem. Soc. 125, 6547-6552. 

 

 

 

 

 

 

 

 

 



92 
 

Chapter 4 

The reaction of the cytochrome c554 mutant F156A, at various stages 

of reduction, with photo-generated nitric oxide 

4.1. Introduction 

 The results from Chapter 3 showed that 2-electron reduced C554 will bind NO but not 

reduce it, while the 4-electron reduced protein will partially reduce bound NO by transferring an 

electron from its lowest potential heme.  This is intriguing because ongoing studies by the 

Pacheco group are showing that many non-specialized proteins, such as HAO, are capable of 

reducing NO to ammonia in the presence of sufficiently powerful reducing agents.1, 2  Two 

possible explanations for why reduced C554 will not reduce bound NO are that the NO binding 

pocket at heme II is very crowded, or that the pocket is very hydrophobic, and devoid of 

hydrogen bonding amino acids capable of acting as proton donors.  This chapter explores what 

happens when the bulky amino acid Phe 156 is replaced by an alanine, thus opening up more 

space in the vicinity of the heme II vacant site.  Chapter 5 reports on the consequences of 

replacing Phe 156 with a nearly equally bulky, but protonatable, histidine. 

4.2. Materials and Methods 

4.2.1. General materials. The provenance of most of the common chemicals used in this 

chapter’s experiments was summarized in Chapter 3.  Methods for preparing the complex 

K[Ru(EDTA)Cl]⋅2H2O and its precursors were found in articles by Wanat et al,3 Chatterjee et 

al,4 and references therein. 
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4.2.2. General instrumentation.  The instrumentation available for routine 

measurements was previously described in Chapter 3. 

4.2.3. Protein handling.  The construction of the F156A expression system, as well as 

the purification protocol for the mutant, were described in Chapter 2.  Solutions of F156A for 

experiments in which the protein was exposed to NO photogenerated from 1 by laser photolysis 

were prepared and handled as described in Chapter 3. 

Stock NO for stopped-flow experiments was prepared from the precursor DEANO 

(Chapter 3)5-7 in a two-step process.  In the first step a concentrated (20 mM) solution of 

DEANO was prepared in 0.01 M NaOH (pH 12), where it is stable for extended periods. When 

needed the DEANO was diluted to 200 µM with the standard pH 7.0 HEPES buffer and allowed 

to stand for 15 minutes, during which time it decomposed to yield two equivalents of NO.5, 6  In 

preparation for the stopped-flow experiments the F156A was 2-electron reduced in the glovebox 

by bulk electrolysis, in solutions containing 200 µM Ru(NH3)6
3+ in 1 M NaCl in addition to the 

standard HEPES buffer, as described in Chapter 3.  The two-electron reduced F156A was then 

nitrosylated by adding enough pH 7.0 DEANO stock to give 50 µM of NO in the reaction 

mixture.  The final solution contained 1.5 µM nitroslyated two-electron reduced F156A, and was 

housed in a tonometer for anaerobic transport to the stopped flow system.  All other anaerobic 

solutions used in stopped-flow experiments were prepared by purging with nitrogen streams. 

Experiments involving wild type C554 were prepared following the same procedure, using 2.1 

µM of nitroslyated two-electron reduced C554 in the tonometer. 

Concentrations of F156A in the reaction mixtures used for laser spectroscopy and 

stopped-flow experiments, as well as the extent of the protein’s reduction, were assessed by 
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UV/Vis spectroscopy using the extinction coefficient spectra of F156A at various stages of 

reduction, obtained independently by spectropotentiometry, as described in Chapter 2. 

4.2.4. Laser-initiated time-resolved spectroscopic experiments.  The instrumentation 

used for laser-initiated time resolved spectroscopic laser experiments was as described in 

Chapter 3.  Over timescales of seconds to tens of seconds, UV/vis spectra following the laser 

pulse were collected with the OLIS RSM 1000 spectrophotometer in rapid-scanning mode 1, 

which allowed complete spectra in the range from 387 nm – 612 nm to be collected at a rate of 

62 scans/sec.  The very fast nitrosylation of F156A was monitored with the OLIS RSM 1000 

single wavelength mode. 

4.2.5. Denitroslyation stopped-flow experiments.  Stopped-flow experiments were 

done on a SF-61 DX2 stopped-flow system (Hi Tech Scientific), which was made anaerobic by 

scrubbing the system overnight with a solution containing 2 U/ml glucose oxidase (MP 

biomedicals) and 1 mM glucose (Fisher Scientific).  The apparatus was used in single-mixing 

mode, with one drive syringe containing the 2-electron nitrosylated C554 or F156A described 

above, and the other containing a 200 µM anaerobic solution of [Ru(EDTA)OH2]− in the 

standard HEPES buffer. The protein solution was rapidly mixed with the [Ru(EDTA)OH2]−, and 

spectral changes were monitored at 430 nm using photomultiplier tubes (Hi Tech Scientific) for 

300 seconds for C554, and 160 seconds for F156A.  

4.2.6. Data analysis. All data were analyzed using programs written within the 

commercially available software packages Origin version 6.0 or later (Microcal Software), or 

Mathcad 13 or later (PTC Software).  The analysis strategies used in our laboratories have been 

previously described in general terms in references 1,2,7-9.  Strategies more specific to analyzing 
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kinetic data, including the background for the equations appearing in the Results and Discussion 

below, can be found in references 10-12. 

4.3. Results 

 4.3.1. The reaction of photo-generated NO with two-electron reduced F156A.  Figure 

4.1 shows the spectral change observed immediately after a solution initially containing 900 µM 

of the NO generating species 1, 5 µM F156A and 200 µM Ru(NH3)6
2+ was exposed to a 500 nm, 

5 ns laser pulse, which fragments 1 to release NO (Scheme 3.1).  Under these conditions the 

hemes of F156A with the highest potential (hemes I and II, Fig. 1.4) are reduced, while the lower 

potential hemes (hemes III and IV, Fig 1.4) remain oxidized (Table 2.2).  The Fig. 4.1 spectrum 

shows absorbance decreases centered around 432nm and 500 nm, and an absorbance increase 

 

 

Figure 4.1.  Blue trace: Spectral change observed immediately (within 16 ms) after a 
solution initially containing approximately 900 µM of the NO generating species 1, 5 
µM F156A and 200 µM Ru(NH3)6

2+ was exposed to a 500 nm, 5 ns laser pulse, which 
fragments 1 to release NO.  Red trace: least-squares best fit using the independently 
known extinction coefficient spectrum of 1 and the extinction coefficient difference 
spectrum for wild type C554

2− nitrosylation obtained as described in Chapter 3.  From 
the fit one can estimate that the laser pulse photogenerated about 48 µM NO. 
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centered around 413 nm.  Least-squares fitting of this spectrum with the independently known 

extinction coefficient spectrum of 1, and the extinction coefficient difference spectrum for wild 

type C554
2− nitrosylation obtained as described in Chapter 3, gave a reasonably good fit (red 

trace, Fig. 4.1).  This shows that 2-electron reduced F156A nitrosylates much faster than wild 

type, within milliseconds instead of tens of seconds (Section 3.3.1).  Further minor spectral 

changes were seen in the minutes following the laser pulse (data not shown).  These could be 

attributed to additional photolysis of 1 in the spectrophotometer probe beam, and associated 

C554
2− nitrosylation.  No evidence was seen in this experiment for F156A2− oxidation. 

 

 

Figure 4.2.  Change in absorbance at 430 nm over 1 s observed after a solution initially 
containing 12 µM F156A, 200 µM Ru(NH3)6

2+ and 48 µM of the NO generating species 
1 was irradiated with a 500 nm, 5 ns laser pulse.  Red trace: least-squared best fit to an 
exponential function. 
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 F156A2− nitrosylation proved too fast to follow reliably with the spectrophotometer in 

rapid scanning mode, so quantitative kinetic measurements were made with the instrument in 

fixed-wavelength mode.  Figure 4.2 shows the change in absorbance at 430 nm over 1 s after a 

solution initially containing 12 µM F156A, 200 µM Ru(NH3)6
2+ and 48 µM of the NO generating 

species 1 was irradiated with a 500 nm, 5 ns laser pulse.  The data were well fit with a single 

exponential function (red trace, Fig. 4.2).  The analysis described for Figure 4.2 was repeated 

with solutions containing varying concentrations of two-electron reduced F156A and a constant 

concentration of species 1.  The values of the rate constant kobs obtained from the exponential fits 

varied linearly with concentration of F156A2−, as seen in Fig. 4.3. 

 

 

Figure 4.3.  Blue circles: plot of kobs associated with the exponential absorbance 
decrease at 430 nm vs F156A2− concentration.  Red trace: least-squares fit of the data 
to a straight line (Eq. 4.1).  Slope = (1.23±0.09)×106 M−1s−1; Intercept = 0.5 ± 1 s−1.  
Note that the intercept is zero within the precision of the measurement. 
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 Presumably, by analogy with the wild type case, F156A2− nitrosylation is reversible as 

shown in Scheme 4.1, so that kobs should vary linearly with [NO] as shown in Eq. 4.1.  However, 

the intercept in Fig. 4.3 is zero within the precision of the measurements, so koff can’t be obtained  

(4.1) 

from this method.  From the slope of the Fig. 4.3 line, kon was estimated to be (1.23±0.09)×106 

M−1s−1, which is about 400× higher than the kon value obtained for the wild type (Fig. 3.3). 

4.3.2. Stopped-flow investigation of C5542-(NO) and F156A2-(NO) denitroslyation.  As 

the koff value could not be obtained from the Fig. 4.3 results, an alternative strategy was 

developed to measure this parameter directly, using a well-known NO trapping method.3, 4, 13  In 

this method, NO released from a labile nitrosylated protein of interest is rapidly and irreversibly 

trapped by [Ru(EDTA)OH2]−, as shown in Scheme 4.2.  Assuming that dissociation of NO from 
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the protein of interest is rate limiting, the method is readily used to measure the dissociation rate 

constant.  The method was first tested with wild type C554, for which the dissociation rate 

constant had been previously determined (Chapter 3); the denitrosylation was monitored by 

UV/Vis stopped-flow spectroscopy.  C554
2− was first fully nitrosylated by adding an excess of 

NO, obtained from decomposition of the precursor DEANO,5-7 as described in Section 4.2.3.   

Figure 4.4a shows the change in absorbance at 430 nm observed after a solution initially 

containing 2.1 µM wild type C554
2−(NO) and about 50 µM free NO was mixed by stopped-flow 

with a second solution containing 200 µM of the NO trapping compound [Ru(EDTA)OH2]−.  

The data were fit using a two-exponential function (red trace Fig. 4.4a), which gave rate constant 

values of 0.0178 ± 0.0001 s−1 and a 0.090 ± 0.004 s−1.  The amplitude associated with the first 

rate constant is 4× that of the second, and that rate constant value matches the koff value obtained 

in the Chapter 3 experiments (0.034 ± 0.009 s−1, Fig. 3.3) fairly closely.  The minor exponential 

component is believed to arise from heme oxidation, either directly or indirectly by residual 

oxygen.  This will have to be confirmed in future experiments where spectral changes are 

monitored at more than one wavelength; however, in support of the conjecture, the UV/Vis 

spectrum taken after stopped-flow mixing did show that some heme oxidation had accompanied 

denitrosylation. 

The stopped flow experiment was repeated using F156A in place of C554 to determine the 

koff for F156A2−(NO) denitroslyation (Scheme 4.1).  The blue trace in Fig. 4.4b shows the 

corresponding change in absorbance at 430 nm when 1.5 µM of F156A2−(NO) (pre-nitrosolyated 

with 50 µM NO as described in the Section 4.2.3) was rapidly mixed with 200 µM of 

[Ru(EDTA)OH2]−.  As before, the data were fit using a two-exponential decay equation (red 
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trace Fig 4.4b), which in this case gave rate constant values of 0.021 s−1 and 0.070 s−1.  Once 

again, inspection of the spectrum obtained after stopped-flow mixing showed that some heme 

oxidation had accompanied denitrosylation.  In this case the amplitudes associated with the two 

rate constants were very similar (the higher-valued one had an amplitude about 1.4× larger than 

the lower-valued one), which makes it difficult to be sure of which rate constant is associated 

with denitrosylation and which is tied to oxidation.  However, given that the two rate constants 

are within a factor of 4 of each other, the salient fact is that the koff values for C554
2−(NO) and 

F156A2−(NO) must be in the same ballpark, whereas the kon value for NO binding to F156A2− is 

400× higher than the kon value obtained for the wild type.  Using the two rate constants obtained 

from the Fig. 4.4b fits, one can estimate the equilibrium constant Keq = kon/koff for F156A2− 

nitrosylation to be about (4±2)×107 M−1.   This represents an NO affinity about 440× stronger for 

 

Figure 4.4.  (a) Blue trace: change in absorbance at 430 nm observed after a solution 
initially containing 2.1 µM wild type C554

2−(NO) was mixed by stopped-flow with a 
second solution containing 200 µM of the NO trapping compound [Ru(EDTA)OH2]−.  
Red trace: least-squares fit of the data with a two-exponential function.  (b) Similar to 
(a), but syringe 1 contained 1.5 µM nitrosylated F156A instead of wild type protein.  In 
both cases the concentration of [Ru(EDTA)OH2]− was sufficient to remove free NO as 
well as NO being released from nitrosylated protein. 
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the F156A2− mutant compared to the wild type C554
2−, which is almost entirely due to the higher 

kon value for the former.  

 4.3.3. The reaction of photo-generated NO with four-electron reduced F156A.  

Figure 4.5 shows the spectral changes observed after a solution initially containing 7 µm F156A, 

570 µM of species 1, and 3 µM of methyl viologen reduced by zinc powder (see Section 3.2.3), 

was exposed to a 500 nm, 5 ns laser pulse, which fragments 1 to release NO (Scheme 3.1).  

Under these conditions all of the F156A hemes are initially reduced.  SVD analysis of the data 

showed that three components were need to faithfully reconstruct a noise-reduced absorbance 

matrix.  The SVD-treated data were fit to Eq. 4.3, which has the same form as Eq. 3.1, using a 

global fitting routine.  As before with the wild type two-electron case (Chapter 3) the data were 

(4.3)    

fit to Eq. 4.3 with a Mathcad program that allowed the first order rate constant to be manually 

adjusted, after which a pseudoinverse could be calculated to generate trial values of a matrix Λ 

that contained the spectral components.10, 12  The value of the rate constant was adjusted until the 

least-squares difference between the matrix of experimental absorbance values and the matrix of 

ΔAλ,t values obtained from Eq. 4.3 was minimized.  

 Figure 4.6 shows the spectral components obtained from the fitting process.  As with the 

wild type two-electron reduced case, a major contributor to the component Λ0 (Fig. 4.6a) comes 

from the denitroslyation of species 1 within the deadtime of the experiment; however, now the 

component also has a contribution from F156A4− nitrosylation, which is taking place on the ms 

timescale, as previously seen for the 2-electron reduced protein (Section 4.3.1).  The component 

is well fit using the independently known extinction coefficient spectrum of 1, and the extinction  

 , 0( ) 1( ) 2( )(1 )obsk t
tA e tλ λ λ λ

−∆ = Λ + Λ − + Λ
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Figure 4.5.  (a) Spectral changes at selected times observed when a solution initially 
containing 0.57 mM of the NO generating species 1, 7 µM F156A and 3 µM MVred was 
exposed to a 500 nm, 5 ns laser pulse which fragments 1 to release NO.  The purple 
traces are representative of the first second, the blue traces are taken at 1-s intervals, 
and the green ones at 10-s intervals.  The red traces are the least-squares best fits using 
Eq. 4.3.  (b) Changes in absorbance vs time at the representative wavelengths stated, 
with the least-squares best fits using Eq. 4.3 overlaid as red traces. 
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coefficient difference spectrum of F156A2−(NO), obtained by analyzing nitrosylation of the 2-

electron reduced protein (red trace, Fig. 4.6a).   

 Unlike in cases encountered earlier in this work, the major contributions to the linearly 

increasing component Λ2 (Fig. 4.6c) are no longer from photolysis of 1 in the spectrometer probe 

beam.  Instead, the major changes are now clearly due to c-heme oxidation; the absorbance 

decreases at 526 and 554 are particularly diagnostic of low-spin c-heme oxidation in general, and 

the decreases at 416 and 426 are reminiscent of the split-Soret spectral changes seen when hemes 

III and IV were electrochemically reduced in the Chapter 2 experiments.  With this in mind, the 

Λ2 component was reasonably well fit using the Δε3 and Δε4 extinction coefficient difference 

spectra obtained for the low potential hemes III and IV of F156A by UV/Vis 

spectropotentiometry (Section 2.3.2), as well as the extinction coefficient difference spectrum of 

F156A2−(NO) obtained by analyzing nitrosylation of the 2-electron reduced protein, and the 

extinction coefficient spectrum of 1.  The least-squares best fit is shown as a red overlay on Fig. 

4.3. 

 The final component Λ1 (Fig. 4.6b), which grows in exponentially with a kobs of 0.05 s−1, 

also exhibits features characteristic of low-spin c-ferroheme oxidation, in particular the 

absorbance decreases at 554 nm, 526 and 423 nm, with concomitant absorbance increase at 409 

nm.  Recall that when 4-electron reduced wild type was exposed to photogenerated NO heme II 

nitrosylation over tens of seconds was accompanied by concurrent partial oxidation of heme IV 

(Section 3.3.2).  With F156A4− nitrosylation after laser initiation occurs in ms, without attendant 

c-heme oxidation (component Λ0, Fig. 4.6a), and subsequent oxidation appears to be much 

slower, on the same timescale as observed for the wild type.  The separation of the two processes 

can also be seen visually in Fig. 4.7, where the first ten SVD-cleaned spectra after the laser pulse  
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Figure 4.6.  The spectral components Λ0-Λ2 generated from the SVD-cleaned 
absorbance matrix when fit to Eq. 4.3 (blue traces).  The red traces in (a) were fit with 
the known extinction coefficient of species 1 and the extinction coefficient difference 
spectrum of F156A2−(NO), obtained by analyzing nitrosylation of the 2-electron 
reduced protein. The red trace in (c) was fit with the F156A2−(NO) extinction coefficient 
difference spectrum, and admixtures of the Δε3 and Δε4 extinction coefficient difference 
spectra obtained for the low potential hemes III and IV of F156A by UV/Vis 
spectropotentiometry (Section 2.3.2). 

 



105 
 

were averaged to give the black trace, and the first 50 spectra were averaged and overlayed  as 

the green trace.  Both averaged spectra have more or less that same contributions from 1 

photolysis (at ~500 nm) and from F156A4− nitrosylation (at 432 and 414 nm), but in the longer 

average one can also begin to see appearance of the 554 band, and shifts in the Soret difference 

spectrum attributable to c-heme oxidation.  To date, attempts to fit Λ1 using extinction coefficient 

difference spectra obtained by UV/Vis spectropotentiometry (Chapter 2) have proved 

unsuccessful, presumably because heme II nitrosylation has changed the system to the point 

where the spectral components obtained from protein reduction in the absence of NO are no 

longer a sufficient basis.  Why this is the case for component Λ1 but not for Λ2 is not yet clear. 

 

 

Figure 4.7.  Plot of the first 10 (black trace) and first 50 (green trace) averaged SVD-
cleaned spectra after the laser pulse from experiment shown in Fig 4.5a 
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4.4. Discussion    

 4.4.1. The reaction of photo-generated NO with two-electron reduced F156A.  

Mutating the bulky hydrophobic amino acid Phe(156) to a smaller but still hydrophobic alanine 

profoundly increased the NO binding affinity (Scheme 4.1) of the 2-electron reduced mutant 

relative to wild type C554.  Thus, the equilibrium constant Keq for NO binding went from (9 

±2)×104 M−1 for the wild type to (4±2)×107 M−1 for F156A2−.  This is understandable given that 

Phe(156) sits right over the vacant site of heme II, restricting access to it (Fig. 1.5).  

 Interestingly, the increased NO affinity is due almost exclusively to an increase in kon 

(Scheme 4.1), from 3000 ± 140 M−1s−1 in the wild type to (1.23±0.09)×106 M−1s−1 in F156A.  

The new rate constant is now within an order of magnitude of the kon values typical of ferrous 

heme proteins such as myoglobin (1.7×107 M−1s−1) or hemoglobin (2.5×107 M−1s−1).14-16  On the 

other hand the rate constant for NO dissociation, koff, remains virtually unchanged in 

F156A2−(NO) (~0.05 s−1) relative to that of the wild type C554
2−(NO) (0.034 ± 0.009 s−1).  It 

appears that the less crowded pocket in F156A allows NO to more easily access and bind heme 

II, but that the bulky phenylalanine doesn’t significantly destabilize the Fe-NO bond once the 

NO has bound metal.   

 We had originally speculated that NO bound to the crowded pocket in wild type C554 

might be forced to adopt a Fe-N-O bond angle more bent than is ideal in {Fe(NO)}7 species, and 

that this would weaken the Fe-NO bond.  The results presented herein suggest otherwise, though 

in the absence of structural data on the mutant we can’t rule out the possibility that the Fe-N-O 

bond in F156A is still distorted, but by Thr 154 and Pro 155, which also crowd the heme II 

vacant site (Fig. 1.5).  The koff values of both wild type and F156A are both quite high compared 

to those of most ferroheme proteins, and even to those of synthetic water-soluble proteins, which 
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tend to fall in the range 10−4 – 10−5 s−1.13-16  This might be due to the hydrophobic character of 

the C554 pocket, where the bound NO would have no opportunity for stabilization by H-bonding 

from neighboring amino acids.  However, koff for NO from FeII(TPP) (TPP = 

tetraphenylporphyrin) in toluene has been measured at 4.17×10−5 s−1, though other synthetic 

porphyrin complexes denitrosylate with rate constants as high as 47 s−1 in toluene.16  These 

results suggest that the factors governing the C554 koff value may be complex, and will require 

further investigation.  

 4.4.2. The reaction of photo-generated NO with four-electron reduced F156A.  As 

was seen for wild type C554
4−, exposure of F156A4− to photogenerated NO results in heme 

oxidation as well as heme II nitrosylation.  However, there are important differences between the 

two cases.  First, the nitrosylation rate observed for F156A4− was much faster than that observed 

for the wild type, yet the rate of heme oxidation was comparable.  Second, the extent of heme 

oxidation that followed exposure to NO was substantially greater for the mutant.  In the case of 

C554
4− wild type it was estimated that about 40% of the low-potential heme IV was oxidized at 

the same time as heme II was being nitrosylated (Sections 3.3.2 and 3.4.2).  Efforts to quantify 

the extent of c-heme oxidation after F156A4− nitrosylation have thus far been thwarted, because 

we haven’t been able to fit one of the spectra associated with the oxidation events (spectrum Λ2, 

Fig. 4.6b).  Nevertheless, it is clear from a visual comparison of Figs. 3.6 and 4.6 that the extent 

of c-heme oxidation is substantially greater for the mutant. 

 Scheme 4.3 suggests a possible minimal mechanism that could explain the observed 

results.  According to this mechanism, the initial rapid heme II nitrosylation is followed by a 

series of intramolecular electron transfers (IETs) from ferrohemes IV, III and I to the FeII-NO 
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moiety.  Each IET event would be fast but unfavorable on its own, but would be coupled to a 

slow protonation of the bound NO that would drive the reaction forward.  After three successive 

proton-coupled IETs NH2OH would be released, leaving the protein in a 1-electron reduced state 

(F156A−).  This species would then bind NO to once again leave heme II in an {Fe(NO)}7 state.  

According to this mechanism, the difference in reactivity between the wild type and F156A 

mutant would be explained as follows.  First, substitution of Phe by Ala would open up the heme 

II region to allow more facile access for protons.  Second, the heme III and IV midpoint 

potentials are substantially lower than those of the wild type (Table 2.2), making heme III in 

particular a stronger electron donor.  Though in F156A2− heme I will not reduce nitrosylated 

heme II, it might effect the final reduction that would allow free NH2OH to be released; in that 

case the overall reaction would likely be driven forward by the final re-nitrosylation of heme II 

in Scheme 4.3. 

4.5. Summary 

 Heme II of the 2- or 4-electron reduced F156A C554 mutant has an affinity for NO that is 

about 400× higher than heme II in the wild type, a difference that is almost exclusively due to a 

greater kon association rate constant.  As was the case for C554
2−, the 2-electron reduced F156A 

mutant will not oxidize in the presence of photogenerated NO.  However, rapid nitrosylation of 

F156A4− heme II is followed by substantial oxidation of the remaining C554 low-spin hemes, 

 

Scheme 4.3 
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whereas in the case of wild type C554
4− only partial oxidation of the lowest potential heme IV 

accompanied heme II nitrosylation.  Scheme 4.3 provides a possible minimal mechanistic 

scheme to rationalize the results, but in future this will have to be backed up with more detailed 

studies.  EPR studies of reactive intermediates, and mass spectrometric analysis of the reaction 

products, should be particularly useful in this regard. 
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Chapter 5 

The reaction of the cytochrome c554 mutant F156H, at various stages 

of reduction, with photo-generated nitric oxide 

5.1. Introduction 

 The analysis from Chapter 3 showed that 2-electron reduced C554 will bind NO but not 

reduce it, while the 4-electron reduced protein will partially reduce bound NO by transferring an 

electron from its lowest potential heme.  The results from Chapter 4 showed that the 2-electron 

reduced C554 mutant F156A nitrosylates about 400× more rapidly than the wild type in the 

presence of excess NO, but bound NO is still not reduced, even in the presence of excess 

reducing agent.  On the other hand, the low-spin hemes of 4-electron reduced F156A were 

oxidized in the presence of excess NO in the span of several minutes.  The F156A mutation 

opened up more space in the vicinity of the heme II vacant site, but left the pocket environment 

hydrophobic and devoid of protonatable amino acids.  This chapter looks at the consequences of 

replacing Phe 156 with the nearly equally bulky, but protonatable, histidine. 

5.2. Materials and Methods 

5.2.1. General materials.  The provenance of the common chemicals used in this 

chapter’s experiments was as summarized in Chapters 1 – 4.   

5.2.2. General instrumentation.  The instrumentation available for routine 

measurements was previously described in Chapters 1 – 4. 

5.2.3. Protein handling.  The construction of the F156H expression system, as well as 

the purification protocol for the mutant, were described in Chapter 2.  Solutions of partially 
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reduced F156H were prepared by bulk electrolysis approximately as described in Chapter 3, 

except that for many experiments the dyes indigo carmine or indigo tetrasulfonate were used in 

place of hexaammineruthenium(III/II) as electrochemical mediators.  The midpoint potential of 

heme II in the F156H mutant is much lower than that of the wild type (Table 2.2), so the more 

powerful electron donors (Table 2.1) were required to reduce it.  Solutions with F156H at the 

desired stage of reduction were thus prepared by bulk electrolysis in the presence of the mediator 

most appropriate for the required applied potential.  Subsequent experiments were performed by 

mixing the reduced protein solution with solutions containing either the NO photoprecursor 1, or 

NO generated from DEANO as described in Section 4.2.3.  In order to maximize anaerobicity, 

both solutions of 1 and solutions of DEANO-generated NO were made up in buffers containing 

the same electrolytically-reduced mediators as were present in the corresponding F156H stock 

solution.  The next paragraph briefly summarizes the specific steps used to make up stock 

solutions for each type of experiment. 

To obtain one electron reduced F156H for experiments with NO coming from DEANO 

decomposition, a stock solution of 10 mM hexaammine-ruthenium(III) chloride was prepared in 

50 mM HEPES, 150 mM NaCl buffer at pH 7.0. For bulk electrolysis this solution was diluted to 

200 µM with the same buffer, and then used to reduce 1 µM F156H by applying a potential of 

−50 mV vs SHE.  In order to obtain two-electron reduced F156H for similar experiments, a 

saturated stock solution of indigo carmine was first prepared in 50 mM HEPES, 150 mM NaCl 

buffer at pH 7.0, and filtered using a 0.22 µm syringe filter.  The actual indigo carmine 

concentration was then determined to be 0.8 mM by UV/Vis spectroscopy, using the 

independently known extinction coefficient spectrum of indigo carmine.  For bulk electrolysis, 

the filtered indigo carmine stock was diluted to 30 µM and mixed with F156H in 50 mM Hepes, 
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150 mM NaCl buffer at pH 7.0, giving a final solution that contained 1 µM F156H.  This 

solution was reduced by applying a potential of −150 mV vs SHE.  In both cases above the 

contents of the bulk electrolysis cells were directly mixed with sufficient decomposed DEANO 

stock solution to give 40 µM NO concentrations for the experiments.  

Two sets of photochemical experiments were performed with species 1 as NO precursor.  

One-electron reduced F156H was first generated by mixing in a bulk electrolysis cell 25 µM 

potassium indigo tetrasulfonate and oxidized protein stock, then applying a potential of −70 mV 

vs SHE.  Species 1 stock was prepared independently by dissolving a minimal amount of the 

solid in 25 µM potassium indigo tetrasulfonate, pre-reduced by bulk electrolysis at an applied 

potential of −70 mV vs SHE, in standard HEPES buffer with 150 mM NaCl.  The solutions for 

the laser experiments were made by mixing the one-electron reduced F156H with the solution of 

1 in the reduced indigo tetrasulfonate buffer.  Four-electron reduced F156H for laser-initiated 

time resolved spectroscopy was prepared as described in Chapter 3, whereby Zn powder was the 

reducing agent, and 3 µM methyl viologen acted as a mediator. 

In all experiments the concentrations of F156H, as well as the extent of the protein’s 

reduction, were assessed by UV/Vis spectroscopy using the independently obtained extinction 

coefficient spectra of the protein at various stages of reduction (see Chapter 2). 

5.2.4. Experiments with DEANO-generated NO.  Samples with one and two-electron 

reduced F156H were prepared in the glovebox, in 1 cm pathlength quartz cuvettes (Starna). 

Spectral changes that followed exposure to NO were monitored with a Cary 50 

spectrophotometer (Varian).  
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5.2.5. Laser-initiated time-resolved spectroscopic experiments.  Samples for laser-

initiated time-resolved experiments were prepared in the glovebox and data were collected with 

the Olis RSM-1000 spectrophotometer in rapid-scanning average mode 1, as described in 

Chapter 3. 

5.2.6. Data analysis.  Data analysis strategies were similar to those used in Chapters 3 

and 4, as described in more detail below. 

5.3. Results 

5.3.1. Net reaction of NO with two-electron reduced F156H.  Figure 5.1 shows the 

spectral changes seen upon mixing a solution initially containing 1 µM F156H electrochemically 

reduced with 30 µM indigo carmine with 40 µM nitric oxide.  The black trace in panel (a) shows 

the protein spectrum in the absence of NO, and the red one shows the effect of adding NO.  

Figure 5.1b shows the difference spectrum obtained by subtracting the black trace from the red.  

 

Figure 5.1. (a) Black trace: spectrum of 1 µM F156H reduced by two electrons with 30 
µM indigo carmine; red trace: after the two-electron reduced F156H is exposed to 40 
µM NO.  (b) The difference spectrum obtained by subtracting the black trace from the 
red trace from (a). 
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The solution was reduced by applying a potential of −150 mV vs SHE, and under these 

conditions the two higher potential hemes of F156H (hemes I and II) are reduced, while the low 

potential hemes (III and IV) remain mostly oxidized (see Table 2.2).  The Fig. 5.1b difference 

spectrum gives the peaks characteristic of heme II nitrosylation seen for wild type and F156A 

(Chapters 2 and 3): an absorbance decrease at 430 nm, and an increase at 414 nm.  

 5.3.2. Net reaction of NO with one-electron reduced F156H.  Figure 5.2 shows the 

spectral changes seen upon mixing a solution initially containing 1 µM F156H electrochemically 

reduced with 200 µM Ru(NH3)6
2+ with 40 µM nitric oxide.  The black trace in panel (a) shows 

the protein spectrum in the absence of NO, and the red one shows the effect of adding NO.  

Figure 5.2b shows the difference spectrum obtained by subtracting the black trace from the red.  

The solution was reduced by applying a potential of −50 mV vs SHE, which would only be low 

 

 

Figure 5.2. (a) Black trace: spectrum of 1 µM F156H reduced by one electron with 200 
µM Ru(NH3)6

2+; red trace: after the one-electron reduced F156H is exposed to 40 µM 
NO.  (b) The difference spectrum obtained by subtracting the black trace from the red 
trace from (a). 
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enough to reduce heme I in F156H (see Table 2.2).  Now the Fig. 5.2b difference spectrum 

shows an absorbance decrease at 400 nm and an increase at 418 nm.  The decrease at 400 nm 

would normally be taken as evidence of c-heme reduction; however, no concomitant absorbance 

increase is seen at 554 nm, meaning that the oxidation states of the low-spin hemes I, III and IV 

remain unchanged.  We therefore attribute the observed difference spectrum to simultaneous 

reduction and nitrosylation of heme II, by the process outlined in Scheme 5.1.  This scheme 

allows for partial reduction of heme II by the mediator even at −50 mV vs SHE, as represented 

by the equilibrium in the first step.  This equilibrium will lie well to the left; however, if ferrous 

heme II binds NO to make an {Fe(NO)}7 species (second step in Scheme 5.1), that is expected to 

shift its midpoint potential dramatically higher,1 thus shifting the equilibrium to the right. 

5.3.3. The reaction of photo-generated NO with one-electron reduced F156H.  Figure 

5.3 shows the spectral changes observed after a solution initially containing 25 µM indigo 

tetrasulfonate reduced at −0.07 mV vs SHE, 5 µM F156H and 0.3 mM NO generating species 1 

was irradiated with a 5 ns, 500 nm laser pulse, which fragments 1 to give NO (scheme 3.1).  The 

raw time-resolved UV/vis spectra were first subjected to singular value decomposition (SVD) to 

determine the number of spectral components and smooth out noise.2, 3  The SVD analysis 

showed that only three components were needed to faithfully reconstruct a noise-reduced 

absorbance matrix.  The SVD-treated data were fit to Eq. 5.1 using a global fitting routine.   

 

Scheme 5.1.  Red is the reducing agent present in excess, Ru(NH3)6
2+ or reduced indigo 

tetrasulfonate. 
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Figure 5.3. (a) Spectral changes observed when a solution initially containing 0.3 mM 
of the NO generating species 1, 5 µM F156H and 25 µM indigo tetrasulfonate reduced 
at a potential of −70 mV vs SHE, was exposed to a 500 nm, 5 ns laser pulse which 
fragments 1 to release NO. The purple traces are representative of the first second, the 
blue traces are taken at 1-s intervals, and the green ones at 10-s intervals. The red traces 
are the least-squares best fits using Eq. 5.1. (b) Changes in absorbance vs time at the 
representative wavelengths stated, with the least-squares best fits using Eq. 5.1 overlaid 
as red traces.  
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(5.1) 

Equation 5.1 is the same as Eqs. 3.1 and 4.3.  It has a component present at t0, one that grows in 

exponentially, and a third that grows in linearly.  The fitting routine was the same as that 

described in Chapter 3. 

Figure 5.4 shows the spectral components obtained from the fitting process. The  

 , 0( ) 1( ) 2( )(1 )obsk t
tA e tλ λ λ λ

−∆ = Λ + Λ − + Λ

 

 

Figure 5.4 The spectral components Λ0-Λ2 generated from the SVD-cleaned 
absorbance matrix when fit to Eq. 5.1 (blue traces).  The red traces in (a) were fit with 
the known extinction coefficient of species 1.  The red trace in (c) was fit with the known 
extinction coefficient spectra of species 1 and admixtures of Λ0 and Λ1.  

 



120 
 

component Λ0 (Figure 5.5a) arises from the denitroslyation of species 1 within the deadtime of 

the experiment. This component can be fit with the known extinction coefficient spectrum of 

species 1 to determine the amount of NO generated by the laser pulse.  For Fig. 5.4a the fit 

revealed that 30 µM NO were generated in the experiment shown. The component Λ1 (Figure 

5.4b) grows in exponentially with a kobs of 0.151 s−1, and is attributed to reduction of the 5-

coordinate heme II of F156H as heme II is nitroslyated, as discussed in Section 5.3.2 (scheme 

5.1).  Finally, component Λ2 (Figure 5.4c) grows in linearly, and arises from the release of NO 

from species 1 caused by the spectrophotometer probe beam irradiation during the experiment, as 

seen in Chapters 3 and 4.  The Λ2 component was fit using the independently known extinction 

coefficient spectrum of species 1, with an admixture of component Λ1. 

5.3.4. The reaction of photo-generated NO with four-electron reduced F156H.  

Figure 5.5 shows the spectral changes observed after a solution initially containing 3 µM F156H, 

0.1 mM of the NO generating species 1 (Scheme 3.1), and 3 µM of methyl viologen reduced by 

zinc powder (see Section 5.2.3), was exposed to a 500 nm, 5 ns laser pulse, which fragments 1 to 

release NO (Scheme 3.1).  Under these conditions all of the F156H hemes are initially reduced.  

SVD analysis of the data showed that three components were needed to faithfully reconstruct a 

noise-reduced absorbance matrix.  As with the 1-electron reduced data, the SVD-treated data of 

Fig. 5.5 could be fit to Eq. 5.1 (red traces, Fig. 5.5). 

Figure 5.6 shows the spectral components obtained from the fitting process.  As with the 

1-electron reduced case, the component Λ0 (Fig. 5.6a) arises from the denitroslyation of species 1 

within the deadtime of the experiment, and could be fit with the known extinction coefficient 

spectrum of species 1.  This revealed the amount of NO generated by the laser pulse to be 10 

µM.  The component Λ2 (Fig 5.6c) that grows in linearly is once again attributed primarily to the  
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Figure 5.5. (a) Spectral changes observed when a solution initially containing 0.1 mM 
of the NO generating species 1, 3 µM F156H and 3 µM of Zn-reduced methyl viologen 
was exposed to a 500 nm, 5 ns laser pulse which fragments 1 to release NO.  The purple 
traces are representative of the first second, the blue traces are taken at 1-s intervals, 
and the green ones at 20-s intervals. The red traces are the least-squares best fits using 
Eq. 5.1. (b) Changes in absorbance vs time at the representative wavelengths stated, 
with the least-squares best fits using Eq. 5.1 overlaid as red traces.  
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spectrophotometer probe-beam induced nitric oxide release from species 1., though the negative 

features at 554 nm and 425 nm indicate that a slow low-spin ferroheme oxidation is also taking 

place.  The final component Λ1 (Fig. 5.6b), which grows in exponentially with a kobs of 0.5 s−1, 

 

 

Figure 5.6. The spectral components Λ0-Λ2 generated from the SVD-cleaned 
absorbance matrix when fit to Eq 5.1 (blue traces).  The red trace in (a) is a fit with the 
known extinction coefficient of species 1. The red trace in (b) is a fit with 4-3 electron 
reduced extinction coefficient spectrum obtained by UV/Vis spectropotentiometry 
(Chapter 2).  
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exhibits features characteristic of changes at the F156H c hemes that are reminiscent of those 

seen after exposure of 4-electron reduced wild type C554 to NO (Chapter 3).  As with the wild 

type, subtraction of a contribution from a small amount of heme IV oxidation (~0.11 µM), 

determined by zeroing out the 554 signal, left behind the signals at 414 and 430 nm characteristic 

of heme II nitrosylation (Fig. 5.6b).  

5.4. Discussion 

5.4.1. The reaction of NO with one and two-electron reduced F156H.  The Chapter 2 

analysis showed that theF156H heme II midpoint potential is shifted dramatically to the negative 

(to −111 mV) compared to the heme II midpoint potentials of wild type C554 and the F156A 

mutant.  This made it more challenging to find a reducing agent that could poise F156H in its 

two-electron reduced form for laser experiments, but wouldn’t react directly with NO.  

Fortunately, the indigo dyes were found to react only slowly with NO, and indigo carmine has 

low enough potential to reduce F156H by two electrons.  Solutions of two-electron reduced 

F156H mixed with DEANO show evidence of heme II nitroslyation only, with a characteristic 

increase at 415 nm and decrease at 430 nm in the UV/Vis spectrum.   

Laser experiments to obtain kinetics were still complicated by the slow reaction of the 

indigo dyes with NO.  For example, in the experiment with one-electron reduced F156H (Figs. 

5.3, 5.4) the Soret region of component Λ1 is nicely fit with reduction of heme II, but the region 

where indigo tetrasulfonate absorbs (500-600 nm) shows a change that is not readily fit with the 

known extinction coefficient spectra of the oxidized and reduced dye.  This may be due to an 

additional interaction of the dye with NO.  Notably, though spectral changes in the Soret region 

that accompanied nitrosylation of the 1-electron reduced protein were characteristic of heme 
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reduction, there was no accompanying change at 554 nm that is characteristic of low spin heme 

reducing.  We attribute the aggregate spectral changes to concomitant heme II nitrosylation and 

reduction, and it appears that reduced and nitrosylated heme II does not exhibit the characteristic 

peak at 554 nm.  When 2-electron reduced F156H is nitrosylated, the spectral change is 

completely analogous to that seen for wild type and F156A nitrosylation (Fig. 5.1). 

A kobs was obtained from the laser-initiated nitrosylation experiments with one-electron 

reduced F156H.  This rate constant was attributed to coupled nitrosylation and reduction of heme 

II as shown in Scheme 5.1.  It is in the same order of magnitude as the nitrosylation rate obtained 

for 2-electron reduced wild type C554, showing that NO access to the active site is hindered to a 

comparable extent.  Future studies will be needed to establish the dependence of kobs on [NO] but 

we expect this dependence to be very comparable to that seen in the wild type. 

 5.4.2. The reaction of photo-generated NO with four-electron reduced F156H. The 

interaction of NO with four-electron reduced F156H gives results comparable to those seen in 

the wild type experiments (Chapter 3), though notably the rate constant obtained for F156H (0.5 

s−1) is much higher for the amount of NO produced by the laser pulse (10 µM) than was seen for 

the wild type.  Thus, for 2-electron reduced wild type C554 the kobs seen at the highest amount of 

NO tested (110 µM, Fig. 3.3) was 0.35 s−1, while the rate constant obtained when four-electron 

reduced wild type was exposed to 66 µM NO was 0.097 s−1.  At present, we can’t explain the 

unusually fast nitrosylation rate, but it may point to a role in His156 stabilizing a bound NO−, 

possibly through hydrogen bonding.  More complete studies will be needed in future to 

determine histidine’s role in increasing kobs. 
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5.5. Summary 

   Heme II of F156H2− and F156H4− is seen to have similar reactivity with NO as wild type 

C554.  As with wild type, two-electron reduced F156H will not oxidize upon exposure of 

photogenerated NO.   Interestingly, when F156H is poised in a one-electron reduced state and 

exposed to NO, the nitrosylation of heme II is coupled to its reduction.  Further investigation of 

F156H4− interaction with NO will be needed to explain the higher nitrosylation rate constant 

observed for the mutant.  EPR and pH-dependence studies of F156H and its reduced forms, with 

and without NO, should be particularly valuable in future investigations of this C554 variant. 
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Chapter 6 
Conclusions and suggestions for further study 

 A re-investigation of the interaction of C554 with NO has shown that the 5-coordinate 

heme II of the 2-electron or 4-electron reduced protein will nitrosylate reversibly.  The 

nitrosylation process is first order in C554, first-order in NO, and second-order overall. The rate 

constant for NO binding to the heme was determined to be 3000 ± 140 M−1s−1, while the rate 

constant for dissociation was 0.034 ± 0.009 s−1; the degree of protein reduction does not appear 

to significantly influence the nitrosylation rate.  In contrast to a previous report, [Upadhyay, A. et 

all. (2006), J. Am. Chem. Soc. 128, 4330-4337] this study turned up no evidence of C554-

catalyzed NO reduction, either with C554
2− or with C554

4−.  Some sub-stoichiometric oxidation of 

the lowest potential heme IV is detected when C554
4− is exposed to an excess of photogenerated 

NO, and this could in principle be part of a process that yields N2O, though alternative 

explanations are equally plausible, as discussed in Chapter 3.  Further studies will be needed to 

test for N2O formation directly. 

 The vacant heme II site of C554 is sterically crowded by three non-bonding hydrophobic 

amino acids, Thr 154, Pro 155 and Phe 156.  Replacing Phe156 with a protonatable but still 

bulky histidine residue did not significantly alter the reactivity of the F156H mutant with NO, 

though the binding rate appears to increase 10-fold.  On the other hand, when Phe156 was 

replaced with the smaller but still hydrophobic alanine, the 6-coordinate low-spin hemes of the 

4-electron reduced mutant oxidized over the course of several minutes after exposure to NO.  

Two-electron reduced F156A2− nitrosylated, but did not oxidize, upon exposure to NO.  Notably, 

the nitrosylation rate for F156A2− and F156A4− was about 400× faster than for the wild type or 
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for the F156H mutant, though the rate of the reverse denitrosylation process was almost the same 

for the three C554 variants. 

 The midpoint potentials of C554, and of the F156A and F156H variants, were determined 

for all the hemes in these tetraheme proteins, using spectropotentiometric analysis.  The heme II 

midpoint potential of F156H was profoundly altered from the wild type value, shifting about 170 

mV to the negative.  This is taken as evidence that the histidine ligand in the variant binds to the 

erstwhile vacant ferric heme II, thus stabilizing the oxidized state.  Consistent with this 

interpretation, the UV/Visible spectrum of fully oxidized F156H has increased absorbance at 409 

nm relative to the wild type, which suggests that the protein now has 4 low-spin ferrihemes, 

rather than three low-spin and one high-spin as seen in the wild type.  Upon reduction of heme II 

though, the spectrum of F156H exhibits a band at 430 nm characteristic of high-spin ferrohemes, 

which suggests that His 156 dissociates from the heme when this reduces. 

 In contrast to the case with F156H, the midpoint potentials of hemes I and II in F156A 

are only slightly shifted relative to the wild type.  On the other hand, the midpoint potentials of 

the low-potential hemes III and IV are shifted about 100 mV to the negative by mutating Phe156 

to Ala, whereas mutation of Phe156 to His has minimal impact on these hemes.  It appears that 

the substitution of bulky Phe by the small Ala significantly alters the conformation of the protein 

backbone, which in turn affects the environment of distant hemes enough to substantially alter 

their midpoint potentials.  The lower heme III and IV midpoint potentials of F156A, together 

with the increased solvent access to the heme II vacant site in this variant, may work together in 

changing its reactivity to bound NO.  The more strongly reducing hemes could more readily 

reduce bound NO, while increased solvent access could now allow protonation to accompany 

reduction of the bound nitrogen moiety. 
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 While C554 itself is now shown not to catalyze NO reduction, the experiments with the 

F156A and F156H mutants show that this protein could be a useful model system for 

determining the minimal requirements of an NO reducing catalyst.  Thus, opening up the vacant 

heme II site in F156A appears to make the 4-electron reduced protein competent to reduce bound 

NO, which in addition binds to the protein much more rapidly.  Changing Phe156 to His did not 

appreciably change F156H’s reactivity towards NO in the experiments tried so far; however, to 

accelerate NO reduction a histidine would probably have to be protonated in order to facilitate 

coupled proton-electron transfer.  Thus, an obvious future experiment should be to determine the 

His pKa in F156H, and then investigate the reactivity of F156H with NO as a function of applied 

pH.   

 In addition to studying the pH-dependence of the C544 wild type and variant reactions 

with NO, future studies should focus first on characterizing the various oxidation states of 

F156A and F156H by EPR and possibly Mossbauer.  EPR in particular would be an excellent 

technique for testing whether or not heme II of F156H is in fact coordinated by histidine as it 

appears to be from the evidence so far, and also for determining the order of reduction of hemes 

III and IV in F156A, where this order may have been switched.  EPR would also be valuable for 

determining the nature of the Fe-NO bond in the various nitrosylated species generated for C554 

and its variants at various stages of reduction.  Finally, some methodologies such as GC/mass 

spectrometry will need to be developed to directly measure what, if any reduced nitrogen species 

are released when F156A4− is exposed to NO. 
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Appendix 1 
Supplementary Material for Chapter 2 

A1.1. Spectropotentiometric analysis for a generic four heme system 

 A1.1.1. Derivation of Equation 2.8.  This derivation is analogous to that described in 

reference 1.  Using the terminology presented in Scheme A1.1, we can write the Nernst 

equations that relate two given heme species Cn and Cn-1, as shown in Eqs. A1.1-A1.4. 

 

Scheme A1.1.  

(A1.1) 

  

(A1.2) 

 

(A1.3) 

 

(A1.4) 

In exponential form these equations can be re-written as shown in Equations A1.5 and A1.6,  

(A1.5) 

(A1.6) 
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where En is defined by Equation 2.1c from Chapter 2: 

           (2.1c) 

The total concentration of protein, CT, is defined by the sum of the various species present at any 

given applied potential (Eq. A1.7).  All of the species except Ox can be eliminated from Eq. A1.7 

by substituting each Cn value with the expressions A1.5, and A1.6. The result is shown in 

Equation A1.8.  

(A1.7) 

 

(A1.8) 

Solving for Ox gives Eq. A1.9, where the term in the denominator has been abbreviated as 

“denom” (Eq. 2.8b from Chapter 2).  Finally, by performing successive substitutions into Eqs. 

A1.5 and A1.6, the Cn species can be rewritten in terms of CT, as shown in Eq. 2.1a of Chapter 2. 

(A1.9) 

 

(2.8b) 

 

(2.8a) 

A1.1.2. Beer’s law for difference spectra.  Equation A1.10 gives the Beer’s law 

expression for a tetraheme system in which each additional added electron results in a distinct 

spectral change.  By solving for Ox in Eq. A1.7 (which yields Eq. A1.11), this term can be 

eliminated from the Beer’s law expression to give Eq. A1.12.  In Eqs A1.10 – A1.12 Aλ is the  
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(A1.10) 

(A1.11) 

(A1.12) 

absorbance at a given wavelength λ, εoxλ and εnλ are the extinction coefficients of the oxidized 

and nth reduced species at that wavelength, and l is the cell pathlength.  In the absence of applied 

potential the protein is in the fully oxidized form, and Eq. A1.12 simplifies to Eq. A1.13, where 

A0λ is the absorbance of fully oxidized protein at λ.  Using Eq. A1.13 to substitute for εoxλCT in 

Eq. A1.12 we get, after rearrangement, Eq. A1.14.  Rearrangement of the summations then 

yields the desired Eq. A1.15, in which ∆Aλ = Aλ − A0λ and ∆εnλ = εnλ − εoxλ.  Equation 2.9 is 

analogous to Eq. A1.15, except for a slight modification in notation that emphasizes the 

      

dependence of Cn on the applied potential. 

 Equations 2.4 – 2.7, which were used to analyze the F156A data, could be readily derived 

in a manner analogous to the one described in this section.  Derivation of expressions to describe 

the wild type C554’s behavior upon reduction required a somewhat different approach, as 

described in the following section. 

 

(A1.13) 

 

(A1.14) 

 

(A1.15) 
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A1.2. Special case: wild type C554 

 A1.2.1. Derivation of the Nernstian equations in exponential form.  Although C554 has 

four hemes, SVD analysis 2, 3 of the wild type UV/Vis spectra obtained in spectropotentiometric 

titrations showed that these are linear combinations of just two component spectra (Chapter 2).  

This result can be attributed to two causes.  The first is that the two high potential hemes have 

identical midpoint potentials, so they reduce simultaneously.  This leads to spectral changes that 

are indistinguishable from those that would accompany one-electron reduction of a single heme.  

The second factor that reduces the number of components is that the two low potential hemes 

make identically-shaped contributions to the extinction coefficient difference spectra of the 3- 

and 4-electron reduced C554 species.  Thus, although the third and fourth reduction events require 

two Nernstians to model them, they give rise to a single spectral component.  The simultaneous 

reduction of the two high-potential hemes is tackled in this section, while the reduction of the 

two low-potential hemes is confronted in Section A1.2.2 below. 

 To account for the fact that the two high-potential hemes reduce simultaneously, and 

generate spectral changes that are indistinguishable from those that would accompany one-

electron reduction of a single heme, we replace Scheme A1.1 from Section A1.1.1 with Scheme 

A1.2.  In this scheme C1app is the concentration of what appears to be a 1-electron reduced C554 

species that accumulates as the applied potential is lowered, but is in fact a 2-electron reduced  

 

 

Scheme A1.2 
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species.  Overall, the reduction of C554 appears to take place in three 1-electron Nernstian steps, 

as summarized in Scheme A1.2.  The corresponding Nernstian equations in exponential form are 

Eqs. 2.1 from Chapter 2.  These are completely analogous to Eqs. 2.8, except that there appear to  

 (2.1a) 

 (2.1b) 

be only three reduced species, the first being C1app. 

 A1.2.2. Beer’s law for difference spectra.  We begin by defining ∆εHP as the extinction 

coefficient difference spectrum of the two high-potential hemes combined, so that the spectral 

contribution of these hemes to the total absorbance change at a given wavelength and applied 

potential will be given by Eq. A1.16, where the value of C1app is specified by Eq. 2.1.  If we now 

(A1.16) 

assume that the two low-potential hemes make identically-shaped contributions to the extinction 

coefficient difference spectra of the apparently 2- and 3-electron reduced species C2 and C3, we 

can define ∆εLP as the extinction coefficient difference spectrum of the two low-potential hemes 

combined.  With this definition, Eqs. A1.17 and A1.18 give the spectral contributions  

(A1.17) 

(A1.18) 

attributable to the second and third reduction events, respectively.  Equation A1.17 takes into 

account the fact that the two high-potential hemes contribute to the spectrum of the apparent 2-

electron reduced species, and the next heme to reduce will contribute half of the total for the two 

low-potential hemes.  The two high-potential hemes similarly contribute to the spectrum of the 
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apparent 3-electron reduced C554, and the lowest potential heme contributes the second half of 

the total for the low-potential hemes (Eq. A1.18).  The observed absorbance change at a given 

wavelength and applied potential will be the sum of the contributions from the  

 

(A1.19) 

1-, 2-, and 3-electron reduced species present in solution, as shown in Eq. A1.19.  This equation 

can be rearranged to Eq. 2.2, used to fit the data in Chapter 2. 

Eq. 2.2 
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Appendix 2 
Supplementary Material for Chapter 3 

 

A2.1 Derivation of rate law for C5542- nitroslyation  

 .  

(A2.1) 

 

At time t,  

(A2.2) 

 

Substitute A2.2 into A2.1, 

 

(A2.3) 

 

 

Rearrange A2.3, 

 

(A2.4) 

 

 

 

Scheme 3.2.  
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In these experiments, we set up pseudo first order conditions: 

 

[NO] >> [C554NO] total generated during the reaction. 

 

So, [NO] will not vary significantly during the reaction.  

 

Define,  

 

(constant under pseudo first order conditions)                       (A2.5) 

 

(constant under pseudo first order conditions)                        (A2.6) 

 

Note that Eq. A2.6 is Eq. 3.2 of main text.  

 

(A2.7) 

 

 

Rearrange A2.7, 

 

(A2.8) 

 

 

Integrate A2.8, 
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Solve using substitution (page 138),  

 

 

(A2.10) 

 

Rearrange A2.10, 

 

(A2.11) 
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Substitute for A and kobs in the pre-exponential term of A2.14, 

 

(A2.15) 
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(A2.16a) 
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This is the characteristic exponential equation for a species, here C554
2-NO approaching 

equilibrium. The expression can be written more compactly as follows: 

(A2.16b) 

 

 

(A2.16c) 

 

 

(A2.16d) 

 

(A2.6) 

 

Equation A2.16 can be expressed in terms of absorbance changes using the Beer’ law 

relationship outlined in Appendix 1.  

As a reminder of freshman calculus, the integral of A2.9 can be solved by method of 

substitution as follows: 

(A2.9) 
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Rearrange, 

 

 

Now the entire integral can be expressed in terms of u, 

 

 

This readily integrates to,  

 

 

Back-substitute for u to obtain the integral for the original expression,  

(A2.10) 

 

A2.2 Derivation of ε0cell for Scheme 3.3 

∆εLP corresponds to two low potential hemes changing oxidation state.  

∆A = ∆εLP●CT●Frac          

 

For example, when Frac = 0.5, half of the low-potential heme pool has been reduced, equivalent 

to one low-potential heme.  

 

2
554[ ]
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dud C NO
k

− = −
−

 

1

obs

du
k u

− ∫

 

1 ln
obs

u
k

= −

 
( )2

554
1 ln [ ]obs
obs

A k C NO
k

−= − −

Frac is the fraction of low potential heme pool oxidized  

CT is the total C554 concentration  
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In the laser experiment for Section 3.4.2, 

Where Frac = 0.2,  20 percent of two low-potential 
hemes are oxidized therefore, 40 percent of first low-
potential heme is oxidized where CT = 4x10-6 M 

From Scheme 3.3, 

 

 

 

 Fit from Figure 3.6d gives, 

 

 

 

 

 

Equilibrium for Scheme 3.3, 

 

 

Equilibrium can be related to the ε0
cell for Scheme 3.3,  

 

Substituting KIET value for Scheme 3.3 into above equation gives, 

 

 

 

60.8x10 MTC frac −= ⋅ =
LP

ΔA
Δε

 
2 7 3 8,{ ( )} ,{ ( )}IET
IV IVFe Fe NO Fe Fe NO+ +→←

 

3 8

2 7

,{ ( )} 0.67
,{ ( )}

IV
IET

IV

Fe Fe NOK
Fe Fe NO

+

+= =

 
0ln cellG RT K nFε∆ = − = −

 
0 ln ln 0.67 0.0102Vcell

RT RTK
nF nF

ε = = = −

  60 % of 4.6x10-6 = 2.4x10-6 M  

 

   40 % of 4.6x10-6 = 1.6x10-6 M 

          

2 7,{ ( )}IVFe Fe NO+

3 8,{ ( )}IVFe Fe NO+
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Determine the ε0 value for the equilibrium between {Fe(NO)}7 and {Fe(NO)}8 

  

 

 

Solve for ε0 
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