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ABSTRACT

UTILIZING NATURAL AND MAN-MADE RESOURCES
FOR ECONOMIC GROWTH: WHAT ARE THE MECHANISMS AND WHY?

by

Linh Pham

The University of Wisconsin - Milwaukee, 2017
Under the Supervision of Professor Itziar Lazkano

This dissertation studies the roles of natural resources in determining economic outcomes such

as innovation, investment, profitability and economic growth.

The first chapter studies the ease of substitution between energy and other production inputs

over time and across countries. Improvements in energy efficiency over the past decades have

substantially decreased the amount of energy used per unit of capital. Yet, previous literature

often assumes a constant elasticity of substitution between capital and energy. In this chapter, we

develop a Solow growth model with a variable elasticity of substitution (VES) between production

inputs and show that the long-run growth rate directly depends on the behavior of this VES

over time. Next, using country-level data from 108 countries between 1971 and 2011, we provide

the first empirical evidence for a capital-energy VES. Specifically, the elasticity of substitution

between capital and energy positively relates to a country’s level of economic development and

environmental protection efforts. Our results imply that growth-enhancing policies can ease the

substitution between capital and energy, which in turn can foster long-run economic growth.

In the second chapter, I study the risk and return behavior of green bonds, a new financial

instrument that supports green projects around the world. Since its inception in 2007, the green

bond market has experienced a compound growth rate of 50% annually. In 2014, green bond

issuance totaled USD 36.6 billion, more than threefold its previous year’s level of USD 11 billion.

This paper is the first to analyze the volatility behavior of the green bond market using data on
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daily closing prices of the S&P green bond indices between April 2010 and April 2015. Building

on a multivariate GARCH framework, I find that compared to the “labeled” segment of the green

bond market, the “unlabeled” segment experiences smaller volatility clustering. I also found a

time-varying spillover effect between the green bond market and the overall conventional bond

market. These results are meaningful insights into this new, yet very promising market, therefore,

have important implications for asset pricing, portfolio management and risk management.

The third chapter evaluates the role of a fossil fuel tax and research subsidy in directing in-

novation from fossil fuel toward renewable energy technologies in the electricity sector. Using a

global firm-level electricity patent database from 1978 to 2011, we find that the impact of fossil fuel

taxes on renewable energy innovation varies with the type of fossil fuel. Specifically, a tax on coal

reduces innovation in both fossil fuel and renewable energy technologies while a tax on natural gas

has no statistically significant impact on renewable energy innovation. The reason is that easily

dispatchable energy sources (e.g., coal-fired power) need to complement renewable energy technolo-

gies (e.g., wind or solar) in the grid because renewables generate electricity intermittently. Our

results suggest that a tax on natural gas, combined with research subsidies for renewable energy,

may effectively shift innovation in the electricity sector towards renewable energy. In contrast,

coal taxation or a carbon tax that increases coal prices has unintended negative consequences for

renewable energy innovation.

Finally, the last chapter of my dissertation takes a closer look at the efficiency of firms in devel-

oping countries. The private sector is the primary source of employment and local development in

developing countries. Previous research in developing countries has documented a number of factors

contributing to firm-level efficiency. However, which of these factors are the most important drivers

of efficiency? This paper ranks the relative importance of the firm-level efficiency determinants

in a transitional economy, using a comprehensive firm-level panel data set in Vietnam between
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2005 and 2013. The empirical results show that firm-specific production and labor characteristics

are the most significant determinants of efficiency. In contrast, legal factors such as formalization

and government financial support play a modest role, due to the crowding-out effect of corrup-

tion. Thus, firms actively seeking to improve their own production process and labor force can be

well-rewarded. Moreover, government technical supports and human resource training programs,

combined with anti-corruption efforts, are beneficial for firm-level efficiency, thereby improving the

living standards in developing economies.
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Chapter 1

Can capital-energy substitution foster economic growth?

1.1 Introduction

The substitution of energy with other production inputs is fundamental to evade the impact of

energy crises and to meet fossil fuel reduction targets while maintaining economic growth. Yet,

the ease of substitution between energy and other production inputs is often assumed constant in

economic growth theory. However, in light of the rapid innovations in energy-efficient technologies

in recent decades,1 a constant elasticity of substitution between energy and other production inputs

seems unlikely. Instead, the relationship between energy and other inputs could be better described

by a general production function that allows for a non-constant elasticity of substitution between

production inputs. In this paper, we explore how the ease at which capital substitutes energy varies

over time and its implications for economic growth.

Empirical studies provide diverse evidence of the capital-energy relationship across both time

and geography. While in some sectors and regions, capital and energy are complements, in others,

the two inputs are easily substitutable.2 One reason for this heterogenous empirical evidence could

be that the ease of substitution between capital and energy increases with technological advance-

ments. Unfortunately, previous studies mainly focus on estimating a single constant elasticity of
1Between 1971 and 2011, energy intensity, defined as the amount of energy needed to operate one unit of capital,

has declined by 57% which implies a steady decline at an average annual rate of 8%.
2For example, capital can easily substitute energy in North America and even among major coal consumers in

China(Koetse et al., 2008; Smyth et al., 2011; Zha and Ding, 2014). In the manufacturing sectors in the OECD
countries, however, substitutability depends on the energy type; capital and fuel tend to be complements whereas
capital and electricity are substitutes (Kim and Heo, 2013). Finally, Apostolakis (1990) finds capital and energy to
be substitutes in the long run while complements in the short run.
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substitution between production inputs. To the best of our knowledge, our paper is the first to

study a non-constant capital-energy elasticity of substitution over time.

In this context, we ask two questions. Does the ease of substitution between capital and

energy increase over time? And, what are the implications of a variable capital-energy elasticity

on economic growth? We address these questions by first building a simple growth model with

energy where a general production function allows for a non-constant elasticity of substitution.

Then, we empirically test this variable elasticity of substitution (VES) hypothesis using aggregate

country-level data for 108 countries from 1971 to 2011.

Our theoretical model builds on a Solow growth model where we introduce two distinct char-

acteristics. Firstly, we account for energy in the production of goods, and secondly, the production

function exhibits a non-constant elasticity of substitution. Within this framework, we identify that

the speed at which capital and energy become more substitutable can directly foster long-run eco-

nomic growth. While the standard assumption of a constant elasticity of substitution (CES) has

allowed traditional theories to successfully explain the impact of the input mix on economic growth,

unfortunately, they have been unable to capture that changes in the elasticity of substitution can

speed up or slow down economic growth.3 Departing from the traditional CES assumption, we

are the first at identifying that the rate of change in the capital-energy substitutability can foster

economic growth.

To empirically test this VES hypothesis, we estimate a general production function using aggre-

gate country-level data on GDP, capital and energy consumption from 108 countries between 1971

and 2011. This production function features a non-linear relationship between production inputs

and can exhibit either a constant or variable elasticity of substitution.

Our empirical analysis provides evidence for a variable capital-energy elasticity of substitution
3See, for example, Solow (1974), Aghion and Howitt (1998), Di Maria and Valente (2008), or Acemoglu et al.

(2012).
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at the aggregate level. These results are consistent using both the global and regional data. In

addition, we find that capital and energy tend to substitute each other, and more interestingly,

the substitutability between capital and energy is positively correlated with a country’s income

level. Specifically, we find that a one-unit increase in energy efficiency increases the capital-energy

elasticity of substitution in high-income countries by more than 0.05 units, thereby increasing the

speed of substitution between capital and energy. In contrast, a one-unit increase in energy efficiency

will reduce the capital-energy elasticity of substitution in low income country by 0.08 units, thereby

strengthening the capital-energy complementarity. These results validate our theoretical predictions

which imply that a country’s effort toward enhancing its income level or improving its energy

efficiency can also indirectly foster long-run economic growth through the responses of the capital-

energy elasticity of substitution to such policies.

Our paper relates to three main strands of literature. First, our paper is in line with the early

macroeconomic literature investigating the ease at which production inputs can be substituted

(Revankar, 1971; Sato and Hoffman, 1968; Karagiannis et al., 2005). From this literature, our

paper is most related to Karagiannis et al. (2005) who first examine Revankar’s VES hypothesis

between capital and labor. Our paper builds on their framework but differs from this study in that

our focus is on the substitution between energy and other inputs while Karagiannis et al. (2005)

focus on capital and labor. By accounting for energy, we are able to identify the growth impact

of the capital-energy substitution relationship as well as the long-run benefits of environmental

policies directed at improving the energy intensity. Another feature that differentiates our paper

from Karagiannis et al. (2005) is that in addition to using global data, we account for economic

development levels. This allows us to not only capture the heterogeneous characteristics of countries

at different stages of development, but to also highlight how the availability of energy relative to

capital might disproportionately contribute to economic growth in different regions at the aggregate
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level. Our empirical analysis suggests that capital and energy are substitutes in highly developed

countries while they are complements in less developed countries.

Our paper also relates to the extensive literature that empirically studies the ease of substitution

between capital and energy. The earliest work by Berndt and Wood (1975) finds that energy and

capital were complements in the U.S. manufacturing sector between 1947 and 1971, while Griffin

and Gregory (1976) reversed this finding and conclude that energy and capital were substitutes.4

More recent work still provides discrepant estimates of the capital-energy substitution relationship

(see, for example, Thompson, 2006; Arnberg and Bjørner, 2007; Koetse et al., 2008; Ma et al.,

2008). These and other studies estimate a constant capital-energy elasticity of substitution, while

we focus on estimating a non-constant elasticity of substitution.

Finally, our paper contributes to the literature studying nonbalanced economic growth (e.g.,

Baumol, 1967; Acemoglu and Guerrieri, 2008). In the context of energy and natural resources,

Pittel and Bretschger (2010) study the long-run implications of heterogenous resource intensity in

different sectors, while Bretschger and Smulders (2012) point out the challenges highly innovative

sectors impose on sustainability when natural resources are complements in production. These and

other papers focus on nonbalanced growth due to uneven sectoral technological progress. We take

a simpler approach by presenting a case in which a general aggregate production function leads to

unbalanced growth. By doing so, we provide a complementary explanation to the understanding

of the role of the capital-energy substitution on long-run economic growth.

The remainder of the paper unfolds as follows. Section 3.2 presents our theoretical model,

while section 3.3 describes the data used to test our theoretical predictions. Section 1.4 presents

the identification strategy and section 3.5 discusses the estimation results. Finally, section 4.4

concludes.
4Berndt and Wood (1979) suggests that these differences are due to omitted variables while Field and Grebenstein

(1980) points out that both studies treated capital differently.
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1.2 A Solow growth model with VES

In this section, we analyze a simple growth model where the production function exhibits a variable

elasticity of substitution (VES) in production inputs. This production function, first introduced by

Revankar (1971), is a general version of the well-known constant elasticity of substitution (CES)

specification, which allows the elasticity of substitution between production inputs to vary over

time. Karagiannis et al. (2005) used Revankar’s production function in a Solow growth model to

study the capital-labor substitution. We follow the same approach but we focus instead on the

capital-energy substitution.

The CES assumption is the norm in economic growth models perhaps because it contributes to

the existence of a balanced growth path (BGP) equilibrium. Even though the empirical evidence is

not supportive of the stability of the factor shares of income,5 growth models with a CES production

function seem to be the norm. In the case of energy, large improvements in energy intensity in

recent decades imply that the ease at which capital substitutes energy at the aggregate level may

not be well-explained by a single constant elasticity of substitution. Therefore, in this paper, we

depart from the standard CES assumption to study the change in the ease at which capital and

energy are substituted. Our main interest, however, is not to quantify the capital-energy elasticity

of substitution. Instead, we are interested in analyzing how the capital-energy substitution evolves

over time with the energy-capital ratio and its role in explaining long-run economic growth.

Our framework builds on a Solow growth model without population growth and technological

progress. While the Solow growth model is often criticized because exogenous decisions drive

economic growth, in our setting, that simplicity is useful for the study of a general VES production

function. The production function is Yt = F (At,Kt, Lt, Et) where Yt, At, Kt, Lt and Et are
5See, for example, recent estimates by Karabarbounis and Neiman (2014).
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aggregate output, total factor productivity, physical capital, labor and energy. Energy is a vector

containing renewable and non-renewable sources; for example, Et = H(Rt, NRt) where Rt and

NRt denote renewable and non-renewable resources. We first describe the characteristics of the

general VES production function before we turn to its long-run growth implications.

1.2.1 The VES production function

We consider a VES production function that uses capital, energy and labor as production inputs:

Yt = AtP
a1v1
t (Lt + b1a1Pt)(1−a1)v1 , (1.1)

where t is the time subscript; Yt, At, Pt, Lt, stand for aggregate final output, total factor produc-

tivity, physical inputs and labor. a1 captures the role that physical inputs play in the production

process, v1 is the returns to scale parameter and b1 establishes the variability of the elasticity of

substitution between labor and physical inputs. We assume that the production of physical inputs

requires capital and energy according to the following VES technology:

Pt = Ka2v2
t (Et + b2a2Kt)(1−a2)v2 , (1.2)

where Kt is physical capital and Et is energy. As before, a2 reflects the importance of physical

capital relative to energy in the production of physical inputs, v2 is the returns to scale parameter

while b2 establishes the variability of the elasticity of substitution between capital and energy.

Thus, we can rewrite the general function (1.1) as:

Y = A
(
Ka2v2 (E + b2a2K)(1−a2)v2

)a1v1 (
L+ b1a1K

a2v2 (E + b2a2K)(1−a2)v2
)(1−a1)v1

. (1.3)
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Parameters b1 and b2 characterize the new feature of our production function compared to the

standard CES production functions. When b1 = 0, the ease at which we substitute physical inputs

and labor is constant over time while it is variable when b1 6= 0. Likewise, b2 = 0 implies a constant

elasticity of substitution between capital and energy while it is variable when b2 6= 0. Thus, in

our setting, parameter b1 captures the variability of the elasticity of substitution between physical

inputs and labor, while parameter b2 captures the variability of the elasticity of substitution of the

elements across physical inputs.

Table 1.1: Properties of the VES production function.

Parameter constraints Production function properties
v1 = v2 = 1 Constant returns to scale
b1 = 0; b2 = 0 CES Cobb-Douglas production function (capital, labor and energy)
a2 = 1 VES production function (capital and labor)
a2 = 1; b1 = 0 CES Cobb-Douglas production function (capital and labor)
a1 = 1; a2 = 1 AK production function

The main advantage of the VES production function described in equation (1.3) is that its

flexibility facilitates the empirical test of multiple specifications of the production function. Table

1.1 summarizes how our production function can be reduced to other already well-known production

functions. When v1 = 1 and v2 = 1, there are constant returns to scale in production. Parameters

b1 6= 0 and b2 6= 0 differentiate production function (1.3) from the standard production function

with CES. Note that when b1 = 0 and b2 = 0, the production function reduces to a Cobb-Douglas

form with CES. Moreover, when a2 = 1, this production function reduces to a standard two-input

production function with capital and labor in absence of energy. Finally, the production function

follows an AK structure when a1 = 1 and a2 = 1. We use the most general production function in

equation (1.3) as the basis for our empirical analysis in Section 3.5.

For the remainder of the theory section, we simplify our theoretical model by assuming b1 = 0 in

equation (1.1) because our main goal is to study the capital-energy substitution.6 In other words,
6This assumption is supported by our empirical finding of a constant elasticity of substitution between physical

7



we assume the elasticity of substitution between physical inputs and labor is constant. We also

set v1 = v2 = 1 in equation (1.1), which implies constant returns to scale in production. These

simplifying assumptions increase the tractability of the model, thus allowing us to identify the role

of a variable capital-energy elasticity of substitution on long-run economic growth. We return to

the validity of these two assumptions in the empirical section.

Imposing the aforementioned simplifying assumptions, the production function in equation (1.3)

simplifies to:

Yt = At
(
Ka2
t (Et + b2a2Kt)(1−a2)

)a1
L

(1−a1)
t . (1.4)

And the corresponding marginal products of capital and energy are:

MPK = ∂Yt
∂Pt

∂Pt
∂Kt

= ∂Yt
∂Pt

a2K
a2−1
t (Et + b2a2Kt)−a2(Et + b2Kt), (1.5)

MPE = ∂Yt
∂Pt

∂Pt
∂Et

= ∂Yt
∂Pt

(1− a2)Ka2
t (Et + b2a2Kt)−a2 . (1.6)

The production function satisfies standard properties; that is, Yt > 0, MPK > 0, MPE > 0 and

diminishing marginal returns if At > 0, 0 < a1, a2 ≤ 1, b2 > −1, 1/Kt ≥ b2. We show in Appendix

A-1 that the elasticity of substitution between energy and capital is:

σ (Et,Kt) = 1 + b2

(
Et
Kt

)
, (1.7)

where σ (Et,Kt) is the elasticity of substitution between energy and capital and
(
Et
Kt

)
is the energy-

capital ratio. The key feature that differentiates our paper from others is that the ease at which

capital can substitute energy varies with the energy-capital ratio. Therefore, energy-efficiency-

improving technologies can influence aggregate production both directly through total factor pro-

inputs and labor. It is also in line with the Kaldor’s fact of constant labor and capital shares in production (Kaldor,
1961).
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ductivity (At) and indirectly through the variable elasticity of substitution (σ (Et,Kt)). Moreover,

parameter b2 determines the speed at which the energy-capital ratio affects the substitutability

between energy and capital. When b2 > 0, energy and capital are substitutes in production, while

b2 < 0 implies a complementarity between them.

In addition to capturing the variable elasticity of substitution between different production

inputs, b2 also plays a role in determining the shares of capital and energy in final output. The

shares of labor, capital and energy reduce to:7

sLt = 1− a1,

sKt =
a1
(
a2 + b2a2

Kt
Et

)
1 + b2a2

Kt
Et

,

sEt = a1 (1− a2)
1 + b2a2

Kt
Et

,

where sKt , sEt , sLt denote the shares of capital, energy and labor in final output production.

Next, we turn to analyzing how the more flexible VES production function affects long-run

growth. To do so, we incorporate this production function into a Solow growth model. Subsequently,

in section 3.5, we empirically test the non-constant elasticity of substitution hypothesis.

1.2.2 The VES production function and the Solow model

In this section, we study long-run economic growth in a standard Solow model (Solow, 1956) with

no population growth and technological progress. We introduce two new features to the standard

Solow growth model. First, we account for the role of energy in production. Second, our general

production function in section 1.2.1 allows the elasticity of substitution between capital and energy
7In the most general case with b1 6= 0, we show in Appendix A-2 that the shares of labor, capital and energy are:

sKt = a1+b1a1pt
1+b1a1pt

∗
a2+b2a2

Kt
Et

1+b2a2
Kt
Et

, sEt = a1+b1a1pt
1+b1a1pt

∗ 1−a2
1+b2a2

Kt
Et

, and sLt = 1−a1
1+b1a1pt

, where sKt , sEt , sLt denote the shares

of capital, energy and labor in final output production.
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to vary with the energy-capital ratio, which implies that it varies over time.

We start by describing the evolution of energy resources in the economy. We let Zt denote the

aggregate energy stock at the beginning of each period t. Two opposing factors affect the growth

or decay speed of Zt during period t. First, the use of energy in the production of goods reduces

the energy resource stock by Et. At the same time, Zt increases through its own regeneration

process and the discovery of new resource stocks. Thus the law of motion for Zt is given by

Zt+1 = (1 + rzt )Zt − Et, where rzt is the exogenous increase in resources through regeneration and

new discoveries. We assume a constant fraction sz of the stock Zt is extracted at no cost for

production purposes in each period t. This implies that the amount of energy used in production

during period t is: Et = szZt. Therefore:

Zt+1 − Zt = (rzt − sz)Zt. (1.8)

Our assumption that both the increase in the resource stock and the extraction of resources are

exogenous implies that the aggregate energy stock in (1.8) is exogenous and independent of the

capital-energy substitution. Next, we describe the law of motion for physical capital Kt to see

in which direction the variable elasticity of substitution will affect capital accumulation, which

describes economic growth in this model.8 For analytical simplicity, we assume that there is no

depreciation and a constant exogenous fraction s of final output Yt is saved toward capital accu-

mulation. Thus, using the production function in (1.4), the capital accumulation equation is:

Kt+1 −Kt = sAtK
a1a2
t (Et + b2a2Kt)a1(1−a2) L

(1−a1)
t . (1.9)

8In this paper, we are primarily interested in specifying the direction of the impact of the VES assumption on
economic growth, therefore, we analyze the law of motion for capital. An analysis of the system of equations would
be necessary to study the exact magnitude of the impact.
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One distinguishing feature of our model is that capital accumulation depends on b2, the speed

at which the energy-capital ratio increases or decreases the substitutability between capital and

energy (cf. equation (1.7)). Since we depart from the CES assumption, the characterization of the

long-run growth rate is complex and we can no longer assume a balanced growth path. Instead, we

analyze how the elasticity of substitution affects capital accumulation. Differentiating (1.9) with

respect to b2 and simple manipulations, we analyze how the energy-capital ratio affects capital

accumulation.

∂(Kt+1 −Kt)
∂b2

= sAK1+a1a2
t L

(1−a1)
t a1a2(1− a2)Ea1(1−a2)−1

t

(
1 + b2a2

1
Et/Kt

)a1(1−a2)−1
. (1.10)

where 1
Et/Kt

is the inverse of the energy-capital ratio. When capital and energy are substitutes

(b2 > 0), improvements in energy efficiency lead to faster capital accumulation as seen by a positive

(1.10). This means that growth can be sustained in the long run when it is easy to substitute

manmade capital for energy. However, when capital and energy are complements (b2 < 0), equation

(1.10) can be negative if b2 is significantly negative and the energy-capital ratio is significantly low.

This implies that when the availability of energy for production is limited relative to the amount of

capital available (for example, an energy crisis), then ceteris paribus, a high level of complementarity

between capital and energy can slow down the rate of capital accumulation, thereby dwindling long-

run economic growth.

In a Solow growth model with a CES assumption, Klump and de La Grandville (2000) show

that the economy with the higher elasticity of substitution between capital and labor also exhibits

a higher level of per capita income.9 Departing from a CES assumption, we also find that a higher

elasticity of substitution leads to a higher level of capital accumulation.
9Technological progress and the elasticity of substitution are the primary determinants of long-run economic growth

(Stern, 2010). Our proposed generalized production function, which can exhibit a constant or a variable elasticity of
substitution, has the advantage that it allows the elasticity of substitution to interact with capital accumulation.
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To summarize, a general production function that accounts for changes in the substitutability

between capital and energy over time helps us build a simple framework to explain the interdepen-

dent role between the input mix and long-run economic growth. In our simple framework, we show

that a change in the substitutability between energy and capital influences capital accumulation,

thus determining the growth rate of the current period. In turn, present economic growth influ-

ences the energy-capital ratio, which feeds back into their substitution. Depending on its sign and

magnitude, the elasticity of substitution can further foster or dampen capital accumulation in the

next period, thereby changing future economic growth.

Is this a theoretical curiosity? Or, is there empirical evidence for a variable elasticity of sub-

stitution between production inputs? In light of the recent improvements in energy efficiency, we

expect to find empirical evidence for a capital-energy elasticity of substitution that changes over

time. We turn to this analysis next by estimating the general production function (1.3) above using

a panel data from 108 countries between 1971 and 2011. We start out by describing the dataset in

section 3.3 and turn to the empirical analysis in sections 1.4 and 3.5.

1.3 Data

The estimation of the production function in equation (1.3) requires aggregate country-level data

on output, total factor productivity (TFP), capital, labor, human capital and energy. Our dataset,

which spans 41 years (1971-2011) and 108 countries, comes primarily from two sources: the Penn

World Table (Feenstra et al., 2013) and the United Nation Environment Programme (UNEP)

database (United Nation Environmental Programme, 2013). Specifically, data for output, total

factor productivity, capital, labor and human capital are drawn from the Penn World Table and

energy data are drawn from the UNEP database.10 Table C-1 summarizes the source of data for
10Our empirical analysis does not include former Soviet Union and Yugoslavian countries, since their data are not

available before 1991.
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each variable, while Table 1.3 presents the overall descriptive statistics of the data.

Table 1.2: List of variables and sources of data.

Variable Unit of measure Source
Real GDP Constant 2005 national prices (in

millions of 2005 U.S. $ )
Penn World Table

Real total factor productivity Constant 2005 national prices
(TFP for 2005 = 1)

Penn World Table

Real capital stock Constant 2005 national prices (in
millions of 2005 USD)

Penn World Table

Population Millions of people Penn World Table
Human capital index Larger than 1 Penn World Table
Energy consumption Thousand tonnes of oil equiva-

lent (KTOE)
United Nation Environment
Programme (UNEP)

Note: The human capital index is in terms of the average years of schooling and the return to education per
person.

Aggregate output (Y ) is measured by the annual level of real GDP at constant 2005 national

prices for each country. We classify the countries into five income groups to account for the vast

income differences across countries. We adopt this classification from the World Bank database,

listed in Table A-4, which assigns each of the world’s countries into the following five groups:

high-income (OECD), high-income (non-OECD), upper middle income, lower middle income, and

low income. Column (1) of Table 1.3 lists the average real GDP for each income group during

the period of 1971-2011. High-income OECD countries experienced little change in their income

distribution between 1971 and 2011, while for other income groups, the improvement in real GDP

has been quite significant. This reflects the fact that the average growth rate of real GDP was

the lowest for high-income OECD countries during this time period, as shown in Table 1.4. On

average, real GDP grows faster in high-income non-OECD and upper-middle-income countries

between 1971-2011. This is consistent with the fact that these two income groups include many of

the well-known rapidly-growing countries such as Singapore, China, Malaysia, Botswana, to name

a few.
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Table 1.3: Summary statistics by development level, 1971-2011: means with standard deviations
in parenthesis.

(1) (2) (3) (4) (5) (6)
Income-group Log real

GDP
Log real
TFP

Log real
capital

Log pop-
ulation

Log en-
ergy

Human
capital
index

High income: OECD 12.497 -0.083 13.534 2.472 10.402 2.841
(1.561) (0.120) (1.596) (1.516) (1.455) (0.365)

High income: non-OECD 10.190 -0.024 11.174 0.066 7.882 2.319
(1.356) (0.363) (1.345) (1.222) (1.639) (0.368)

Upper middle income 11.278 0.006 12.361 2.601 9.178 2.222
(1.592) (0.194) (1.630) (1.590) (1.632) (0.381)

Lower middle income 10.484 0.018 11.494 2.879 8.733 1.915
(1.499) (0.221) (1.415) (1.462) (1.474) (0.439)

Low income 9.718 0.045 10.446 2.853 8.648 1.607
(1.069) (0.303) (1.094) (1.022) (1.226) (0.349)

Global 11.156 -0.022 12.163 2.398 9.126 2.283
(1.773) (0.217) (1.807) (1.662) (1.776) (0.566)

Table 1.4: GDP growth rates 1971-2011, by development level.

Income group Mean GDP growth rate Standard deviation
High income: OECD 2.647% 2.881%
High income: non-OECD 4.804% 7.996%
Upper middle income 4.230% 6.893%
Lower middle income 4.217% 6.292%
Low income 3.828% 4.835%
Global 3.805% 5.872%

Our energy data are drawn from the United Nation Environment Programme (UNEP). Specifi-

cally, we use total final energy consumption as a proxy for the variable E in our theoretical model,

where total final energy consumption is defined as the sum of consumption by the different end-use

sectors. Total final energy consumption is measured in thousand tonnes of oil equivalent (KTOE).

Figure 1.1 shows the global final energy consumption between 1971 and 2011 while Figure

1.2 decomposes global final energy consumption between 1971 and 2011 into six different regions:

Africa, Asia and Pacific, Europe, Latin America and Caribbean, North America, West Asia. Over-

all, global consumption energy is increasing during the period of 1971 to 2011. However, this period
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also experienced vast heterogeneity in regional energy consumption. Specifically, total final energy

consumption grows the fastest in the Asia and Pacific region. This region, together with Europe and

North America, constitutes most of the world’s energy consumption between 1971-2011. Moreover,

these regions also experienced a more volatile trend in energy consumption, compared to the other

regions of the world. The United States, China, and India are the largest consumers of energy.

In addition to a global analysis using aggregate country-level data, we estimate our general

production function at the regional level. We construct income development levels following two

classifications of countries. The first classification follows the World Bank’s income development

levels: high income (OECD), high income (non-OECD), upper middle income, lower middle income,

and low income. The second classification follows the United Nations Development Programme’s

Human Development Index (HDI). Tables A-4 and A-5 in Appendix A-4 detail the list of the

countries in each classification and group.

Finally, we consider a country’s effort to reduce energy consumption following two measures.

First, we separate countries in the Kyoto Protocol Annex B from the rest. These countries volun-

tarily choose to reduce carbon emission, and therefore, they may have stronger incentives to reduce

their energy use. Our second measure of environmental performance builds on the Yale University’s

Environmental Performance Index (EPI) where environmentally friendly countries obtain a higher

score. Table A-6 in Appendix A-4 lists the Annex B countries of the Kyoto Protocol while Table

A-7 classifies countries according to their EPI scores.
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Figure 1.1: Global total final energy consumption, 1971-2011.
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Figure 1.2: Regional final energy consumption, 1971-2011.

1.4 Identification Strategy and Testable Hypotheses

The dataset described above allows us to empirically test which specification of the production

function, CES or VES, best fits the data. From the theoretical model in section 3.2, log-linearizing

the production function (1.3) gives the baseline estimation equation:
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lnYit = lnAit + a1v1a2v2 lnKit + a1(1− a2)v1v2 ln(Eit + (b2 +
J∑
j=1

b2jDj)a2Kit)

+ (1− a1)v1 ln[Lit + (b1 +
J∑
j=1

b1jDj)a1K
a2v2
it (Eit + (b2 +

J∑
j=1

b2jDj)a2Kit)(1−a2)v2 ] + δi + δt + εit.

(1.11)

where i, j and t denote country, region and year, respectively. Dj are regional interactive dummies,

δi and δt are country and time fixed effects and εit is the error term. From this baseline specification,

we derive two main testable hypotheses: the elasticity of substitution between production inputs

is variable (b1 6= 0 and b2 6= 0) and energy is a significant input in production (a2 6= 1).11

First and foremost, the parameters b1 and b2 capture the variability of the elasticity of substitu-

tion between production inputs. We test for the variability of the elasticity of substitution both at

global and regional levels. In the global estimates, b1 captures the variable elasticity of substitution

between labor and physical inputs (a combination of energy and capital), while b2 captures the

variable elasticity of substitution between energy and capital (i.e., b2 capture the variable elasticity

of substitution across the elements of physical inputs). bh = 0 (h = 1, 2) supports a CES specifica-

tion for the production function while bh 6= 0 (h = 1, 2) supports a VES specification. Moreover,

from (1.7), bh > 0 implies substitutability between production inputs, while bh < 0 implies com-

plementarity between production inputs. In the regional estimates, we derive the marginal effects

(bh + bhj) to study the substitutability between production inputs in each region. To our knowl-
11Our focus is not to estimate the exact magnitude of the capital-energy elasticity of substitution. However, we

are primarily interested in capturing the variables that improve the ease at which capital can substitute energy,
and the implication on the long-run economic growth across countries and over time. To analyze how the elasticity
of substitution changes with changes in energy efficiency across countries, we employ aggregate country-level data.
While this aggregate dataset can provide meaningful inferences about the strength of the relationship between energy
efficiency and the capital-energy substitution effect, it is inappropriate to estimate the exact measure of the capital-
energy elasticity of substitution using this dataset. The estimation of the capital-energy elasticity of substitution is
more appropriate with more disaggregated data at the industry level, however, this is infeasible, given the large scope
of our study, which spans across 108 countries and 40 years (1971-2011).
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edge, empirical evidence for VES between labor and capital has been studied by Karagiannis et al.

(2005), while no previous work has analyzed the VES between capital and energy.

The second feature we are interested in studying is the role of energy in final production. Table

1.1 summarizes the properties of our general production function. Specifically, a2 = 1 suggests that

the role of energy is relatively negligible in the production of final output and the data fit well into

a two-input production function with capital and labor. Moreover, a1 = a2 = 1 suggests a good

fit for an AK production function. The magnitudes of a1 and a2 help us infer about the relative

importance of production inputs. In a two-input production model with capital and labor, a larger

a1 means that capital plays a more important role in the production process. In the three-input

production model we use here, with capital, labor and energy, a larger a1 means that physical

inputs, which is a combination of energy and capital, plays a larger role in production compared to

that of labor. A larger a2 implies that capital is more important in final output production than

energy.

Let us finally discuss our estimation strategy. We estimate equation (1.11) using a non-linear

least square (NLLS) regression model, where an OLS regression provides the initial parameter

values for our NLLS estimations.12

1.5 Empirical Results

In this section, we present our main estimation results followed by multiple robustness checks that

validate our results. We begin our empirical analysis by estimating a production function that

excludes energy to compare our results with previous studies; a2 = 1 in equation (1.11). Under this

assumption, our production function reduces to the special case where labor and capital are the
12Due to the complexity of the estimation equation, other methods such as Generalized Methods of Moments

(GMM) or Maximum Likelihood Estimation (MLE) are computationally infeasible even after we transform the
estimation equation using first order Taylor series expansion.
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only two inputs, which is in line with Karagiannis et al. (2005). Our baseline estimating equation

in (1.11) reduces to:

lnYit = lnAit + a1v1 lnKit + (1− a1)v1 ln(Lit + (b1 +
J∑
j=1

b1jDj)a1Kit) + δi + δt + εit. (1.12)

Table 1.5 reports the NLLS bootstrapped estimation results in (1.12) using a global panel

dataset between 1971 and 2011.13 The first specification does not include fixed effects while the

second specification controls for regional and time fixed effects. Our regressions do not converge to

a maximum likelihood if we also include country and year fixed effects. In addition, we are unable

to control for country-by-year fixed effects. To deal with this, we estimate the model with a set of

fixed effects for 17 subregions and four decades.14

Our global estimates in column (2) of Table 1.5 suggest that the VES parameter b1 is negative

and statistically significant. This suggests the existence of a non-constant elasticity of substitution

and a complementarity between capital and labor in our global sample. This result differs from

Karagiannis et al. (2005), who find b1 to be positive and statistically significant. We offer two

possible explanations. First, compared to Karagiannis et al. (2005), our sample includes a larger set

of countries and spans over a longer time frame. Second, Karagiannis et al. (2005) assumes that total

factor productivity grows at an exogenous rate, which is constant over time and across countries,

and that all countries share the same initial total factor productivity. This assumption ignores the

existing empirical evidence supporting cross-country differences in total factor productivity (see

for example Easterly and Levine, 2001; Hall and Jones, 1999). In contrast, our empirical analysis
13Appendix A-3 discusses the estimations without bootstrapping. Post-estimation analysis suggests the residuals

obtained from these analytical estimations are not white noise. The comparison between the bootstrapped and
analytical estimates show a lower significance for bootstrapped estimates.

14The 17 subregions are: Arabian Peninsula, Australia & New Zealand, Caribbean, Central Africa, Central Europe,
Eastern Africa, Mashriq, Meso America, North America, North East Asia, Northern Africa, South America, South
Asia, South East Asia, Southern Africa, Western Africa, and Western Europe. Regarding time fixed effects, we
examine several options including years, five-year periods and decades. Since five-year periods and decades provide
similar results, we settle for decade fixed effects.
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Table 1.5: Marginal effects of capital-labor VES and income levels.

Dependent variable: GDP
Global Income group HDI

(1) (2) (3) (4) (5) (6)
a1 .8961*** .8676*** .8729*** .8644*** .8794*** .8645***

(.00422) (.00333) (.00342) (.00311) (.00363) (.00337)
v1 1.005*** 1.037*** 1.026*** 1.043*** 1.021*** 1.04***

(.00332) (.00315) (.00297) (.00305) (.00302) (.00309)
b1 (Global) 2.9e-06 -1.4e-06*** – – – –

(1.8e-06) (3.9e-07) – – – –
b1 (High:OECD) – – 2.1e-05*** -4.3e-06*** – –

– – (5.8e-06) (4.9e-07) – –
b1 (High: Non-OECD) – – 1.9e-05*** 9.5e-06** – –

– – (7.3e-06) (4.7e-06) – –
b1 (Upper middle) – – -1.7e-05*** -1.7e-05*** – –

– – (1.0e-07) (1.3e-07) – –
b1 (Lower middle) – – -4.2e-05*** -4.3e-05*** – –

– – (2.0e-06) (2.0e-06) – –
b1 (Low) – – -.00028*** -.00028*** – –

– – (2.1e-06) (8.6e-06) – –
b1 (Very high HDI) – – – – 9.9e-06*** -5.0e-07

– – – (3.2e-06) (6.4e-07)
b1 (High HDI) – – – – -2.4e-05*** -2.2e-05***

– – – – (8.4e-07) (9.1e-07)
b1 (Medium HDI) – – – – -1.7e-05*** -1.7e-05***

– – – – (8.5e-08) (1.3e-07)
b1 (Low HDI) – – – – -.00015*** -.00015***

– – – – (3.3e-06) (3.3e-06)
Regional fixed effect No Yes No Yes No Yes
Time fixed effect No Yes No Yes No Yes
Number of observations 3277 3277 3277 3277 3277 3277
R-squared 0.9989 0.9992 0.9990 0.9993 0.9990 0.9993
* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors.
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utilizes country-level data on total factor productivity (TFP) to account for the differences in TFP

across time and countries and controls for regional and time fixed effects. Moreover, variations in

the production process could result in variations in the substitutability of labor and capital across

countries. It is then possible that capital and labor are substitutes in some countries while they are

complements in other countries. The complementarity of capital and labor in one country can be

offset by the substitutability of the two inputs in another country. To account for this, and also to

study the relationship between economic progress and changes in the substitution between capital

and labor over time, we estimate (1.12) using regional interactive dummies in columns (3)-(6) of

Table 1.5.

At the regional level, columns (4) and (6) of Table 1.5 report marginal effects b1 for each region.

The parameter b1 is negative and statistically significant in all regions except for high non-OECD

region, which supports our VES hypothesis between capital and labor. A negative b1 indicates that

the elasticity of substitution between capital and labor is smaller than one, that is, capital and

labor are complements in final output production. Note also that the parameter b1 increases in its

absolute value as we move from a higher income group to a lower income group. This suggests that

the complementarity between capital and labor is negatively correlated with a country’s level of

development. Furthermore, even though b1 is statistically significant, its magnitude is very close to

zero at both the global and regional level. This implies a very small role of the capital-labor ratio

in changing the capital-labor substitution relationship.

Next, we turn to the empirical study of a production function that includes energy in addition

to capital and labor. We start with the most general estimation equation (1.11). We show in

Appendix A-5 that these estimates provide supports for a production function with a constant

elasticity of substitution between physical inputs and labor (b1 = 0) and constant returns to scale

(v1 = v2 = 1). Therefore, and as we did in the theory section 3.2, we impose these restrictions on
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the analysis presented later in the paper and derive the following estimation equation:

lnYit = lnAit + a1a2 lnKit + a1(1− a2) ln(Eit + (b2 +
J∑
j=1

b2jDj)a2Kit)

+ (1− a1) ln[Lit] + δi + δt +Doil
t + εit. (1.13)

In addition to the main variables described above, we include an additional variable Doil
t to

control for the impact of an oil price shock on the capital-energy relationship. This dummy variable

equals 1 in the years oil prices soared and 0 otherwise.

Columns (1) and (2) of Table 1.6 report the NLLS bootstrapped estimation results in eq.

(1.13) using the global dataset. Column (1) does not control for any fixed effect while Column

(2) controls for regional, time and oil-price-shock fixed effects. The coefficient estimate for the

VES parameter b2 is statistically significant at 99%, which support the existence of a non-constant

elasticity of substitution between capital and energy. Moreover, since b2 is positive both before

and after controlling for the fixed effects, our results suggest that the data is best described by a

production function that allows for a variable elasticity of substitution, where capital and energy are

substitutes. Specifically, a one-unit improvement in the energy-capital ratio increases the capital-

energy elasticity of substitution by 0.05 units. More interestingly, the substitution effect between

capital and energy is stronger in the estimates that include fixed effects. Once we control for regional

and time fixed effects, the impact of the improvement in the energy-capital ratio on the capital-

energy elasticity of substitution almost doubles. These results suggest that any exogenous policy

that improves energy efficiency, and therefore the substitution between capital and energy, plays an

indirect role in shaping the patterns of long-run economic growth. Specifically, a substitutability

between capital and energy at the global level implies that in the long run, growth can be sustained
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by substituting energy and manmade capital.

1.5.1 Capital-Energy VES and Economic Progress

Next, we study how the capital-energy substitution varies with economic progress. Columns (3)-(6)

of Table 1.6 report marginal effects of our regional estimates for different income levels.

Table 1.6: Marginal effects of capital-energy VES and income levels.

Dependent variable: GDP
Global Income group HDI

(1) (2) (3) (4) (5) (6)
a1 1.062*** 1.066*** 1.042*** 1.053*** 1.051*** 1.058***

(.00692) (.0091) (.00828) (.00875) (.00898) (.00976)
a2 .4165*** .3618*** .547*** .447*** .4809*** .3925***

(.03502) (.06215) (.03231) (.04424) (.04105) (.0625)
b2(Global) .05401*** .09723* – – – –

(.01671) (.05501) – – – –
b2 (High income: OECD) – – .00903* .05022** – –

– – (.00529) (.01964) – –
b2 (High income: Non-OECD) – – .01584*** .06112*** – –

– – (.0058) (.02038) – –
b2 (Upper middle income) – – -.00078 .02898* – –

– – (.00606) (.01637) – –
b2 (Lower middle income) – – -.00397 .02349 – –

– – (.00802) (.01804) – –
b2 (Low income) – – -.08541*** -.08796*** – –

– (.00196) (.0037) – –
b2 (Very high HDI) – – – – .03351*** .08641*

– – – – (.01219) (.0464)
b2 (High HDI) – – – – .02893** .07205

– – – – (.01449) (.04423)
b2 (Medium HDI) – – – – .01958 .06589

– – – – (.01477) (.04491)
b2 (Low HDI) – – – – -.00822 .04542

– – – (.00953) (.03382)
Regional fixed effect No Yes No Yes No Yes
Time fixed effect No Yes No Yes No Yes
Oil crisis dummy No Yes No Yes No Yes
Number of observations 3277 3277 3277 3277 3277 3277
R-squared 0.9994 0.9995 0.994 0.995 0.994 0.995
* p-value < 10%, ** p-value< 5%, *** p-value<1%.
Numbers in parentheses are standard errors.

Our empirical results show that the VES parameter b2 tends to be positive and higher in

countries with high income or high level of HDI while it tends to be negative and lower in other
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countries. Hence, there is strong evidence for the substitutability between capital and energy in

the most developed countries, while this substitution effect is weaker and less significant in less

developed countries. Specifically, a one-unit improvement in the energy-capital ratio increases the

capital-energy elasticity of substitution by about 0.09 and 0.016 units, respectively, in high income

OECD and high income non-OECD countries. In contrast, for low-income countries, a one-unit

improvement in the energy-capital ratio decreases the capital-energy elasticity of substitution by

0.08541 units. This means that at the aggregate level, it is relatively easy to substitute capital for

energy in the most developed countries, whereas in less developed countries, these two inputs tend

to be complements.

After controlling for the regional and time fixed effects, and the impact of oil prices, we found

an increase in the coefficient estimates for the capital-energy substitutability. The estimate for

parameter b2 increases by more than fivefold in high income countries (both OECD and non-

OECD) after controlling for these fixed effects. We also reach similar conclusions when we use the

Human Development Index (HDI) as an economic progress indicator. Specifically, after controlling

for the fixed effects, a one-unit improvement in the energy-capital ratio increases the capital-energy

elasticity of substitution by more than 0.05 units in high income countries and by 0.09 units in

countries with very high level of HDI. However, the estimates for the VES parameter b2 in less

advanced economies are almost unchanged after controlling for the fixed effects. One possible

explanation is that the use of more advanced technology in high-income countries’ production

process accelerates the substitution speed between capital and energy.

In short, our empirical analysis suggests that the ease of substitution between capital and en-

ergy is higher in wealthier countries. Specifically, the variability of the capital-energy elasticity

of substitution tends to increase with a country’s income level. Moreover, a high level of income

accelerates the speed at which we can substitute between capital and energy, where capital and
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energy are more likely to be substitutes in highly developed countries. In less developed countries,

however, capital and energy are more likely to complement each other. As we have shown in the

theoretical part, the substitutability between capital and energy has a positive effect on economic

growth while the complementarity between capital and energy can have a negative effect. This

implies that adverse events such as an oil crisis will have asymmetric effects on economic growth,

where countries at early stages of development tend to suffer more than richer countries.15 More-

over, our results also suggest that economic growth policies not only can influence economic growth

directly through increasing income level but also indirectly through increasing the speed at which

capital can substitute energy.

1.5.2 Capital-Energy VES and Environmental Performance

Finally, we study the impact of a country’s environmental performance on the capital-energy elas-

ticity of substitution. Our goal is to analyze whether the speed of substitution between capital and

energy is faster in countries that make a bigger effort to protecting the environment. Countries

that are more proactive in their environmental efforts also have a stronger incentive to reduce en-

ergy consumption, and therefore, their environmental performance might affect the capital-energy

substitution. Thus our interactive dummy variable (
∑J
j=1 b2jDj) in estimating equation (1.13)

separates the countries in our sample following the two measures of environmental performance

described earlier instead of separating them by income levels.

Columns (3)-(6) of Table 1.7 report the NLLS bootstrapped estimates of the estimation equation

(1.13). Specifically, we use the Kyoto Protocol as an environmental performance indicator to

derive the marginal effects in Columns (3) and (4) and we use the Yale University’s EPI as an

environmental performance indicator for the estimated marginal effects in Columns (5) and (6).
15This is in line with Van der Ploeg and Poelhekke (2009) and Van der Ploeg (2011) who find evidence for a

resource curse in the presence of price fluctuations.
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Table 1.7: Marginal effects of capital-energy VES and environmental performance.

Dependent variable: GDP
Global estimates Kyoto Annex B EPI
(1) (2) (3) (4) (5) (6)

a1 1.062*** 1.066*** 1.06*** 1.075*** 1.046*** 1.054***
(.00692) (.0091) (.00767) (.00975) (.00719) (.00893)

a2 .4165*** .3618*** .4263*** .3497*** .498*** .3874***
(.03502) (.06215) (.03763) (.06257) (.03041) (.05975)

b2 (Global) .05401*** .09723* – – – –
(.01671) (.05501) – – – –

b2 (Kyoto Annex B) – – .054*** .08127 – –
– – (.01603) (.05036) – –

b2 (No Kyoto Annex B) – – .04908*** .1085* – –
– – (.01715) (.05891) – –

b2 (Very high EPI) – – – – .03462*** .1069**
– – – (.00818) (.05316)

b2 (High EPI) – – – – .03425*** .08335*
– – – – (.00929) (.04763)

b2 (Medium EPI) – – – – .01445* .06153
– – – – (.00869) (.04247)

b2 (Low EPI) – – – – .00175 .07651
– – – – (.0073) (.04825)

b2 (Very low EPI) – – – – -.01395 .06878
– – – – (.01032) (.04877)

Regional fixed effect No Yes No Yes No Yes
Time fixed effect No Yes No Yes No Yes
Oil crisis dummy No Yes No Yes No Yes
Number of observations 3277 3277 3277 3277 3277 3277
R-squared 0.9994 0.9995 0.9994 0.9995 0.9994 0.9995
* p-value < 10%, ** p-value< 5%, *** p-value<1%.
Numbers in parentheses are standard errors.
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Our results suggest that a voluntary promise to reduce carbon emission plays an insignificant role

in determining the speed of substitution between capital and energy. Even though we find the

VES parameter b2 to be positive in Kyoto Protocol Annex B countries, our post-estimation F-test

suggests that the difference in the VES parameter between Kyoto Protocol Annex B countries

and the rest of the sample is negligible. Specifically, a one-unit improvement in energy efficiency

increases the capital-energy elasticity of substitution by 0.054 units in Kyoto Annex B countries,

which is not statistically different from the estimate of 0.049 units for other countries outside of

Annex B. Our explanation relies on the fact that even though the Kyoto Protocol was adopted in

1997, it only entered into force for a very short period of time in our sample (2005-2011). This

means that countries which identify themselves in Annex B of the protocol may have started to

make stronger carbon emission reduction efforts only recently, therefore, the impacts of their efforts

have not been fully transferred into any significant change in the capital-energy relationship.

One drawback of using the Kyoto Protocol Annex B is that it only reveals the willingness to

reduce carbon emissions rather than a country’s actual environmental performance. Therefore, our

analysis also employs an alternative indicator for environmental performance, the Yale University’s

EPI. The use of the EPI has clear advantages because the index is built based on a country’s actual

performance in two broad policy areas: protection of human health from environmental harm and

protection of ecosystems. These two areas are further divided into many sub-areas, and a country’s

final score is based on how it performs in each of these sub-areas.16 Using the EPI as an indicator

for environmental performance, we divide our sample into the following groups according to their

EPI scores: Very High EPI, High EPI, Medium EPI, Low EPI, Very Low EPI. In table A-7, we

present the list of countries that are included in each group. Our empirical results in Columns

(5) and (6) of Table 1.7 show that the VES parameter b2 is positive and statistically significant in
16The subareas include: Climate and Energy, Health Impacts, Air Quality, Water and Sanitation, Water Resources,

Agriculture, Forests, Fisheries, Biodiversity and Habitat.
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countries with very high and high EPI scores. Specifically, a one-unit improvement in the energy-

capital ratio increases the capital-energy elasticity of substitution by 0.107 units in Very High EPI

countries and 0.083 units in High EPI countries. These provide strong evidence for the capital-

energy variable elasticity of substitution in countries with very high and high EPI scores, where

capital and energy tends to be more easily substitutable in these countries. This substitution effect

increases in its magnitude once we control for the regional and time fixed effects and the impacts of

oil prices. On the other hand, we observe little evidence of the same phenomenon in countries with

lower EPI scores. One explanation is that highly environmentally friendly countries make greater

efforts to reduce energy dependence, as a result, this will speed up the substitution of energy with

other production inputs.

To summarize, our empirical results suggest that the elasticity of substitution between capital

and energy varies with changes in the energy-capital ratio over time. The speed at which capital

and energy can substitute each other increases with a country’s level of income and its effort to

protect the environment. This suggests that growth policies not only influence long-run economic

growth through changes in income level but also indirectly through changes in the capital-energy

substitution effect. Moreover, a country’s effort at improving the environment also has a positive

effect on long-run economic growth as it tends to accelerate the speed of substitution between

capital and energy. This partially reverses the popular debate regarding the policy trade-off between

environmental protection and faster economic growth.

1.6 Conclusions

As countries seek to reduce their carbon emissions, policies targeted at reducing the energy intensity

in production plays an important role in reducing emissions while meeting global energy demand.

The effectiveness of such policies depends largely on the ease at which energy can be substituted
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by other manmade production inputs such as capital. Whereas previous research studying this

relationship often focuses on a constant elasticity of substitution between capital and energy, our

paper takes a new approach and analyzes the capital-energy substitutability in a framework that

allows for this substitution to vary over time. Building on a simple Solow growth model, we identify

in our theoretical model that the variable elasticity of substitution, which explicitly depends on

the energy-capital ratio, directly determines capital accumulation. Moreover, this elasticity that

changes over time can either strengthen or dampen long-run growth depending on the sign and

magnitude. Using global aggregate data between 1971 and 2011, we present evidence for this non-

constant capital-energy elasticity of substitution, which is a novel contribution to the literature

examining the capital-energy substitution.

Our results provide new insights into the policy debate looking for alternatives to reduce energy

dependency while maintaining economic growth. As the potential costs and impacts of environmen-

tal policies are largely influenced by the value of the elasticity of substitution between energy and

other production inputs (Nijkamp et al., 2005; Antimiani et al., 2013), understanding the behavior

of the elasticity of substitution at each stage of economic development is crucial in modeling the op-

timal environmental policies. Specifically, our global estimates suggest that energy and capital tend

to be substitutes, and this substitution relationship is positively related with a country’s income

level. Therefore, growth policies not only influence long-run economic growth directly through im-

proving per capita income but also indirectly through increasing the speed of substitution between

capital and energy. These results imply that in less developed countries, policy efforts towards

increasing the substitutability between capital and energy can improve the speed at which their

economies grow.
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Chapter 2

Is it risky to go green? A volatility analysis of the green

bond market

2.1 Introduction

Gandhi once said “Earth provides enough to satisfy every man’s needs, but not every man’s greed.”

Indeed, increasing amounts of greenhouse gas emissions from human activities1 are not only a major

contributor to climate change but also bring about various negative consequences on the human

society.2 The urging question of our time is how to prosper economically without impacting the

ecological systems beyond irrevocable changes. In fact, in recent years, countries and multinational

agencies across the world have made tremendous efforts to promote environmentally friendly in-

vestments. Yet, fundraising efforts to date have been inadequate to meet the immense amount of

funding required to address climate change. According to the World Bank, climate change mit-

igation efforts in developing countries could cost about USD 275 billion annually over the next

20 years, which is more than double the current level development assistance of USD 100 billion

per year (World Bank, 2015b). Therefore, new sources of financing for climate change must be

considered. In the financial world, new financial instruments have been created to facilitate the in-

creasing demand for green investing. One very promising financial instrument of that kind is green
1In 2012, greenhouse gas emissions from human activities were 47.6 metric tons of carbon dioxide equivalent,

which was a 40% increase from 1990 (World Resource Institute, 2016).
2The adverse impacts of human activities on the natural environment have been documented by many environ-

mental scientists (Stenseth et al., 2002; Oreskes, 2004). However, concerns over climate change are broader than
just a negative environmental impact. For example, Stern et al. (2006) claims that climate change can dampen
economic growth, while Portier et al. (2010) anticipates that climate change can lead to increasing risks of cancer,
cardiovascular diseases, heat-related illness and many other health disorders.
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bonds, which are debt instruments with a bonus environmental feature. Since its first appearance

in 2007, the green bond market has expanded at more than 50% compounded annual growth rate,

providing funding for environmental projects all over the world (Kochetygova and Jauhari, 2014;

World Bank, 2015a).3 Given the potential environmental and economic benefits of green bonds, it

is crucial to understand the volatility behavior of this green financial instruments in comparison

with other conventional investments as the market continues to expand. In this paper, my goal is to

provide an insight into the volatility behavior of the green bond market and study the relationship

between the green bond market volatility and the volatility of the conventional bond market.

The World Bank defines a green bond as “a debt security that is issued to raise capital specifically

to support climate-related environmental projects” (World Bank, 2015b). A green bond could either

be “labeled” or “unlabeled”. Labeled green bonds are formally marketed as “green” by the issuers,

where the issuers define the types of environmental projects they plan to support with the bond

proceeds and report back to investors on a regular basis. On the other hand, unlabeled green bonds

do not have a formal green tag, but are issued by firms whose businesses are naturally aligned with

environmental causes, for example, bonds issued by wind or solar energy companies. The range

of projects supported by green bonds is very diverse, with low-carbon transport and clean energy

projects being the two largest beneficiaries (Shankleman, 2016). From a market pioneered by

large development banks, in 2014, two-thirds of all new green bonds came from issuers that are

not multilateral development banks, attracting a broad group of investors such as asset managers,

pension funds, companies, foundations and religious organizations (Kochetygova and Jauhari, 2014;

Damutz, 2016).

The fast growth of the green bond market gives rise to the need to address its risk and return

characteristics so that to equip investors with informative insights into the market. Within this
3For example, green bonds are funding a wide variety of projects that improve agricultural productivity, energy

efficiency, forest management, and transportation. See Mathews and Kidney (2012) and World Bank (2015a) for case
studies and examples of projects funded by green bonds in various countries.
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context, this paper is the first to answer the following research questions: How does the volatility

of the green bond market behave in comparison with the conventional bond market? Are there

any spillover effects between the green bond market and the conventional bond market? How

much does a shock in the green bond market contribute to the volatility of the conventional bond

market and vice versa? To answer this question, I first build a framework to model the volatility of a

financial asset based on the multivariate Generalized Autoregressive Conditional Heteroskedasticity

(GARCH) framework, a family of statistical models originally proposed by Bollerslev (1986) and

Engle (2002) and have been widely used in the literature studying the relationship between different

financial time series’ volatilities (Bauwens et al., 2006). With this model, I am able to test not only

the pattern of volatility in the green bond market but also how the volatility in the green bond

market transmits to the broader conventional bond market.

Using time series data on daily closing prices of the S&P green bond indices between April 2010

and April 2015, the results from my analysis suggest that there is significant volatility clustering

in the green bond market, where periods of high volatility are often followed by further periods of

high volatility and periods of low volatility are followed by periods of low volatility. This volatility

clustering effect is particularly stronger for the labeled green bond sector, as compared to its

unlabeled counterpart and the broader conventional bond market, since most labeled green bonds

are of similar credit ratings while the markets for unlabeled green bonds and conventional bonds

consist of a more diverse sets of bonds. Moreover, the green bond market is also interdependent

with the conventional bond market. My empirical results show that a shock in the green bond

market tends to spill over to the conventional bond market and this spillover effect variable over

time. Furthermore, the data also suggest that there has been an upward trend in the correlation of

volatility in the labeled green bond segment with the conventional bond market. One explanation

is that there exists convergence of returns between the green bond market and the broader bond
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market as the green bond market continues to attract a broader group of investors.4 The results

are robust after accounting for the presence of extreme observations in the data.

This paper is related to three main strands of the literature. First, this paper relates to the

literature modeling volatility of the financial market. This paper follows the work of Bollerslev

(1986) and Engle (2002), who propose an econometric framework to study volatility clustering and

volatility spillover among different time series. While this framework has been applied to multiple

markets in the financial work, this paper is the first to apply the GARCH modeling techniques

to studying the volatility of the green bond market, a new investment option that can potentially

meet the growing demands for sustainable and socially responsible investing.

Second, this paper is also in line with the literature studying the fixed-income financial market

(for example, Harford and Uysal (2014); Das (1998); Beber et al. (2006)). While this line of

literature spans over a long period of time and covers multiple areas of the bond market, none

of them has addressed the role of the fixed-income market in promoting environmentally sound

investment. This paper contributes to the literature by focusing on the green fixed income market

and providing the first empirical evidence for the performance of this new, yet promising market

segment.

This paper also relates to the literature studying the characteristics of environmentally friendly

financial instruments. Ortas and Moneva (2013) study the risk and return performance of 21 Clean

Techs equity indexes using a state-space approach and found that the Clean Techs equity indexes

outperform the market portfolio in terms of returns and that their returns are highly volatile even

in uprising markets. Many other studies document the volatility spillover between the green equity

market and other sectors of the market such as the conventional equity market, the oil and carbon
4The first participants in the green bond market was large institutions like multinational development banks.

Nowadays the green bond market has attracted a broad group of investors such as asset managers, pension funds,
companies, foundations and religious organizations. Issuers and investors use green bonds as a way to communicate
their commitment to sustainability and social responsibility to their stakeholders. (Kochetygova and Jauhari, 2014;
OECD, 2015; Damutz, 2016)
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market and find that there are significant interdependence between the green equity market and

the broader financial market (for example Kumar et al. (2012); Sadorsky (2012)). Climent and

Soriano (2011) and Chang et al. (2012) study the performance of green mutual funds and find that

green mutual funds have underperformed on a risk-adjusted basis compared to conventional funds.

On the other hand, Gil-bazo et al. (2010) find that company management plays an important

role in the performance of socially responsible mutual funds. While the literature studying green

financial instruments has been well-developed, most of the emphasis so far has been on analyzing the

performance of the equity sector of the market. To the best of my knowledge, this paper is among

the first attempts in characterizing the behavior of the green fixed-income market. Understanding

the performance of the green bond market is important because together with the broader USD

100 trillion bond market, the green bond market can serve as a low-cost financing tool toward a

green economy (Caldecott, 2010; Mathews et al., 2010; Mathews and Kidney, 2012). Moreover,

for investors interested in environmentally beneficial investing, the fixed-income market is a good

starting point as it is often considered as a lower-risk market than other green investment options.

The rest of the paper is organized as follows. Section 2.2 provides an overview of the green

bond market while 2.3 specifies the framework for modeling volatility in the green bond market.

Section 3.3 describes the data and Section 4.4 presents the empirical results and analysis. Finally,

Section 4.6 provides a concluding remark.

2.2 Overview of the green bond market

According to a survey of high net worth investors in 2016 by Morgan Stanley, sustainable investing is

becoming more popular among investors, where 55% of investors reported that they are interested

in sustainable investing and 32% view sustainable investing as a good investment approach for

the future (Morgan Stanley, 2016). Yet, regardless of the growing interest among investors about
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sustainable investing, there still exists a large funding gap for low-carbon projects, which cannot

be supported by public sources alone (World Bank, 2015b). This emphasizes the role of private

funding in the transition toward a low-carbon economy.

While sustainable investing has been popular in the equity market, the green bond concept

is a relatively new development. The most fundamental distinction between green bonds and

conventional bonds is that all the proceeds from green bonds are used to finance environmentally

friendly projects. The identification and labeling of green bonds typically follow the Green Bond

Principles (GBPs), a set of voluntary standards established by industry participants including

major banks and non-profit organizations (International Capital Market Association, 2015). The

GBPs consist of four elements. First, in order to be labeled “green”, a bond’s proceeds must be

used for environmentally beneficial capital expenditures, such as investments in alternative energy,

energy efficiency, pollution prevention and control, sustainable water and green buildings. Second,

the green bonds’ documentation must include specific criteria and process for determining eligible

projects or investment. Third, a formal process that regulates the use of net proceeds must be

disclosed in the bond prospectus or supporting document. And fourth, issuers of green bonds

should report at least annually on the specific investments made from the green bond proceeds

and document the environmental impacts of the specific investments. Total “labeled” green bonds

outstanding were USD 65.9 billion in June 2015. In 2014, the issuance of the “labeled” green bond

totaled USD 36.6 billion, which was more than three times the previous year’s amount of USD 11

billion (Kochetygova and Jauhari, 2014; Damutz, 2016).

Besides bonds that follow the GBPs and are formally labeled as “green”, many bonds in the

market have been issued without a green label but having clear environmental benefits such as

financing wind farms or solar installations. According to Standard and Poor’s, this “unlabeled”

segment is potentially several times larger in size than the “labeled” green bond market segment.
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In 2015, “unlabeled” green bond outstanding totaled USD 531.8 billion, which is significantly

larger than the total outstanding amount of USD 65.9 billion in the “labeled” green bond market.

From a small market pioneered by large development banks and institutional investors, the green

bond market has attracted many different types of issuers and investors such as corporations,

mutual funds, asset managers, insurance companies, subnational and municipal government entities.

In 2014, about two-thirds of all new green bonds came from issuers that are not multilateral

development banks in more than 20 different currencies (Kochetygova and Jauhari, 2014).

The growth of the green bond market reflects the increasing interests of investors in low-carbon

projects.5 In fact, since its inception, the green bond market has attracted a diverse group of

investors, such as asset managers, pension funds, companies, foundations and religious organizations

(Kochetygova and Jauhari, 2014; Damutz, 2016).

2.3 Modeling the green bond market volatility

As the green bond market continues to grow, it is important to understand the volatility dynamics of

this market segment in relation with other sectors in the financial market. A widely used technique

to in the literature studying the volatility of financial time series is Generalized Autoregressive

Conditional Heteroskedasticity or GARCH, which uses an autoregressive structure to model the

conditional variance of a time series, thereby allowing volatility shocks to persist over time.6 Under

this framework, the volatility of an asset’s returns is given in the following set of equations:

Rt = Et−1[Rt] + εt, εt|It−1 ∼ iid(0, σ2
t ) (2.1)

where ; Et−1[Rt] denotes the conditional mean of the asset returns at time t given the infor-
5According to the Organization of Economic Co-operation and Development, between 2012 and 2014, sustainable

investments increased by 61%, where half of the investments are allocated to bonds (OECD, 2015).
6See Bauwens et al. (2006); Teräsvirta (2009) for a literature survey.
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mation set It−1; εt is the error term and σ2
t is the conditional variance of asset returns at time

t..

The specifications of Et−1[Rt] and σ2
t are of the following form:

Et−1[Rt]− µ =
r∑

h=1
φh(Rt−h − µ) +

s∑
k=1

ψkεt−k (2.2)

σ2
t = a0 +

p∑
i=1

aiε
2
t−i +

q∑
j=1

bjσ
2
t−j , a0 > 0; ai > 0∀i ∈ [1, p]; bj > 0∀j ∈ [1, q] (2.3)

where µ = E[Rt] denotes the unconditional mean of the asset returns. Altogether, parameters

ai (i = 1, ...p) and bj (j = 1, ...q) determine the extent of volatility clustering in asset returns. A

high and significant ai and bj (i = 1, ...p; j = 1...q) indicate the existence of volatility clustering,

where periods of high volatility are followed by periods of high volatility and vice versa. Finally,

the lag lengths p, q, r, s are determined using the Schwartz information criteria.

To compare the volatility of the green bond market with that of the conventional bond market,

one approach is to estimate equations (2.1), (2.2) and (2.3) for each market separately. While this

approach allows us to study the pattern of volatility of individual markets, it ignores the interactions

between the green bond market and the broader conventional bond market. To capture the possible

volatility spillovers between the green bond market and the broader conventional bond market, I

also extend the above univariate model in equations (2.1)-(2.3) to a multivariate case where the

volatility of an asset’s returns not only depends on its past values but also on the volatility of other

assets in the financial market. One feature of the multivariate GARCH model is that it allows

time-varying conditional variances of asset returns as well as covariances between the returns of

different assets. This allows the analysis of the volatility structure of individual assets as well as the
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interaction between various assets. In this paper, the specification of this multivariate model consist

of two components. First, returns are modeled using a vector autoregression (VAR) framework.

Then a multivariate GARCH model is used to model the time-varying variances and covariances.

Specifically, let RGt be the returns on the green bond market at time t and RMt be the returns on

a benchmark conventional bond market at time t. Let µG and µM be the unconditional means of

the returns on the green bond market and the benchmark market. The specification for RGt and

RMt is of the following form:

RGt − µG = φ1
11(RGt−1 − µG) + φ1

12(RMt−1 − µM )+ (2.4)

+ φ2
11(RGt−2 − µG) + φ2

12(RMt−2 − µM )+

+ ...+ φrG11 (RGt−rG − µG) + φrG12 (RMt−rG − µM ) + εGt

RMt − µM = φ1
21(RGt−1 − µG) + φ1

22(RMt−1 − µM )+ (2.5)

+ φ2
21(RGt−2 − µG) + φ2

22(RMt−2 − µM )+

+ ...+ φrM21 (RGt−rM − µG) + φrM22 (RMt−rM − µM ) + εMt

with εt|It−1 =

εGt
εMt

 |It−1 ∼ WN(0,Σt), where Σt =

 σ2
Gt σGMt

σMGt σ2
Mt

 denotes the conditional

variance-covariance matrix at time t. 7 The lag legths rG and rM are jointly determined using the

Schwartz information criteria.

To model the time-varying volatility of the return series {RGt} and {RMt}, I apply maximum
7σit denotes the standard deviation of series i while σijt denotes the covariance between series i and series j;

i, j = G,M ; i 6= j.
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likelihood estimation (MLE) techniques to Engle (2002)’s dynamic conditional correlation (DCC)

model. Under this approach, the conditional covariance matrix Σt is modeled based on the univari-

ate GARCH modeling of the individual series {RGt} and {RMt}. Compared to other approaches

which model the conditional variance-covariance matrix Σt directly, the DCC approach has clear

computational advantages because its flexibility allows for the estimation of very large correlation

matrices. 8 The estimation of the DCC model relies on the decomposition of the conditional

covariance matrix Σt into:

Σt = DtQtDt, (2.6)

where Qt =

 1 ρGMt

ρMGt 1

 is the correlation matrix and Dt =

σGt 0

0 σMt

 is a diagonal matrix

with the standard deviations of the two series on the diagonal.9.

The estimation of the DCC model’s parameters involves two steps. In the first step, the volatility

measures of each individual series are estimated under the following univariate GARCH model 10:

σ2
Gt = a0G +

pG∑
i=1

aiGε
2
Gt−i +

qG∑
j=1

bjGσ
2
Gt−j (2.7)

σ2
Mt = a0M +

pM∑
i=1

aiM ε
2
Mt−i +

qM∑
j=1

bjMσ
2
Mt−j (2.8)

Then an estimates for the standardized residuals is calculated from the above GARCH models:

ẑit = ε̂it
σ̂it

(i = G,M). In the second step, the conditional correlation between the standardized

residuals is modeled using the following GARCH (1,1) framework:
8See Bauwens et al. (2006) for a survey of multivariate GARCH models.
9ρijt = σijt

σitσjt
; i, j = G,M

10The lag lengths pG, pM , qG, qM are determined using the Schwartz information criteria
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q̂ijt = Cov(ẑit, ẑjt|It−1) (2.9)

= Ê[ẑitẑjt](1− α− β) + αẑit−1ẑjt−1 + βq̂ijt−1, i, j = G,M

Thus, the correlation estimator is: ρ̂ijt = q̂ijt√
q̂iitq̂jjt

.

Finally, the univariate volatility estimates in the first step and the bivariate conditional cor-

relation estimates in the second step are combined to estimate Σt = DtRtDt. Altogether, the

parameters ai and bj in equations (2.7) and (2.8) show the magnitude of the volatility clustering

within the returns series while the parameters α and β in equation (2.9) show the magnitude of

volatility spillover from one time series to the other. Moreover, the value of each element in the

estimated Σt will reveal about the magnitude of volatility clustering in asset returns and volatility

spillovers from one asset’s returns to another’s.

2.4 Data

To analyze the volatility behavior of the green bond market in relation to the overall conventional

bond market, this study requires time series data on the market performances of green bonds and

conventional bonds. Specifically, I use the daily closing prices of the S&P Green Bond Index (GB)

and the S&P Green Project Bond Index (GPB) as indicators of the green bond market performance.

The performance of the conventional bond market is approximated using the S&P U.S. Aggregate

Bond Index (AB). The sample period for the data spans between April 30, 2010 and April 29, 2015

The S&P Green Bond Index (GB) and the S&P Green Project Bond Index (GPB) are comple-

mentary indices that serve as a tool to track the global green bond market. The Green Bond Index

is constructed using bonds that have been independently verified to comply with the Green Bond
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Principles. The goal of the index is to track the performance of the “labeled” green bond market.

The majority of the bonds included in the Green Bond Index are of investment-grade, with 54%

of the bonds are AAA rated by Standard and Poor as of August 2014 (Kochetygova and Jauhari,

2014). Figure 2.1 shows the daily returns on the Green Bond Index in the sampling period. It can

be seen from the figure that the index is more volatile at the beginning of the sampling period.

Moreover, the index seems to exhibit mean reverting behavior in returns, which suggests the data

are stationary. In fact, results from a unit root test shows that returns on the S&P Green Bond

Index is stationary, as can be seen on Table 2.1.

Figure 2.1: Green bond index daily returns, 4/30/2010 - 4/29/2015 (Source: S&P)

(a) Returns (b) Squared returns

(c) Absolute value of returns

Sampling period: Daily 4/30/2010 - 4/29/2015

While the green-labeled bond market is growing, a significant part of the market consists of

bond issues without a green label but having obvious environmental benefits such as financing
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wind farms or solar installations. The S&P Green Project Bond Index (GPB) is constructed to

track the broader “unlabeled” green bond market. While bonds need not have a green label to be

included in the Green Project Bond Index, they must fall into one of the following categories: bonds

issued by special purpose entities to finance or refinanced a green project, asset-backed securities

to securitize cash flows from pools of green assets and corporate bonds issued by companies whose

revenues originate only from green activities. In contrast to the S&P Green Bond Index, which

is dominated by bonds with high credit rating, the S&P Green Project Bond Index include both

investment- and subinvestment-grade bonds. As of September 2014, 51% of the bonds in the Green

Project Bond index are investment-graded while 42% of the bonds in the index are subinvestment

graded, with B- being the lowest credit-rating. (Kochetygova et al., 2014). Figure 2.2 shows the

daily returns on the Green Project Bond Index between April 2010 and April 2015. A unit root

test of the index’s daily returns shows that the series is stationary (Table 2.1).

To compare the performance of the green bond indices with the broader conventional bond

market, I use the S&P U.S. Aggregate Bond Index as a benchmark index for the analysis. The

index provides an overview of the market for publicly-issued U.S. dollar denominated investment-

grade bonds, where all bonds have a minimum credit rating of BBB- or equivalent. Similar indices

that track the performance of publicly-issued U.S. dollar denominated investment-grade bonds have

been used in previous studies as a benchmark for the overall bond market (for example, Daskalaki

and Skiadopoulos (2011); Case et al. (2012)). Figure 2.3 shows the daily returns on the U.S.

Aggregate Bond Index between April 2010 and April 2015. Again, a unit root test shows that the

index’s daily returns follow a stationary process (Table 2.1).

Table 2.2 summarizes the descriptive statistics of the indices’ returns and Figure 2.4 plots

the autocorrelation functions of the returns. The autocorrelation functions show that present

returns have little correlation with their lagged values, which is consistent with the stylized fact
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Figure 2.2: Green project bond index daily returns, 4/30/2010 - 4/29/2015 (Source: S&P)

(a) Returns (b) Squared returns

(c) Absolute value of returns

Sampling period: Daily 4/30/2010 - 4/29/2015

Table 2.1: Unit root tests

ADF test statistics
Returns on green bond index -37.197***
Returns on green project bond index -37.559***
Returns on aggregate U.S. bond index -37.998***
* p-value < 10%, ** p-value < 5%, *** p-value < 1%.

that financial market returns are more or less unpredictable. Among the three indices, the Green

Project Bond Index has the highest average returns while the Green Bond Index has the highest

standard deviation. The standard deviations in all three series are larger than their mean. The

Green Bond Index has the highest Sharpe ratio. In other words, among the three indices, the Green

Bond Index provide investors with the best returns given the same amount of risk or equivalently,
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Figure 2.3: U.S. aggregate bond index daily returns, 4/30/2010 - 4/29/2015 (Source: S&P)

(a) Returns (b) Squared returns

(c) Absolute value of returns

Sampling period: Daily 4/30/2010 - 4/29/2015

the lowest risk given the same amount of returns. Specifically, the Green Bond Index offers a 2.60%

excess returns per unit of risk, which is much higher than that of the Green Project Bond Index

and the U.S. Aggregate Bond Index (0.50% and 0.54% respectively). 11 12 A closer look at the

squared returns for each index (middle panels of Figures 2.1, 2.2, 2.3) indicates that all three series

exhibit volatility clustering, where periods of high volatility tends to be followed by periods of high

volatility and vice versa.

Figures 2.5 and 2.6 show the 20-day rolling covariances and correlations between the Green

Bond Index, the Green Project Bond Index and the benchmark U.S. Aggregate Bond Index. There
11Sharpe ratio of an asset=Ra−Rf

σa
, where Ra and σa denote the returns and standard deviation of the asset in

consideration, and Rf denotes the returns on a risk-free asset.
12I use 3-month yields on U.S. Treasury bill as a proxy for the risk-free asset returns. Data for U.S. Treasury bill

yields are obtained from St. Louis FRED.
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Table 2.2: Descriptive statistics

GB Returns GPB Returns AB Returns
Mean 0.0001 0.0003 0.0001
Min -0.0308 -0.0192 -0.0089
Max 0.0257 0.0131 0.0082
Std. Dev. 0.0049 0.0027 0.0021
Skewness -0.1846 -0.5710 -0.1640
Kurtosis 3.5840 5.3900 1.1780
Sharpe ratio 0.0260 0.0050 0.0054
Weighted average maturity 6.83 years 13.94 years 6.60 years
Par weighted price 103.53 104.1 106.21
GB=Green bond index
GPB=Green project bond index
AB=U.S. aggregate bond index
Source: S&P.

are considerable variations in the rolling covariances and correlations between the indices. The

rolling covariances and correlations between the Green Bond Index and the U.S. Aggregate Bond

Index (Figure 2.5) are mostly lower than their unconditional covariance and correlation for the first

half of the sampling period and begin to rise above the unconditional measures for the second half of

the sampling period. On the other hand, the rolling covariances and correlations between the Green

Project Bond Index and the U.S. Aggregate Bond Index tends to stay above their unconditional

counterparts during the sampling period.
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Figure 2.5: Rolling covariance and rolling correlation between GB and AB indices, 4/30/2010 -
4/29/2015 (Source: S&P)

(a) Rolling covariance (b) Rolling correlation

GB=Green bond index; GPB=Green project bond index; AB=U.S. aggregate bond index.
The straight line is the unconditional covariance/ correlation between the two series.
Sampling period: Daily 4/30/2010 - 4/29/2015

Figure 2.6: Rolling covariance and rolling correlation between GPB and AB indices, 4/30/2010 -
4/29/2015 (Source: S&P)

(a) Rolling covariance (b) Rolling correaltion

GB=Green bond index; GPB=Green project bond index; AB=U.S. aggregate bond index.
The straight line is the unconditional covariance/ correlation between the two series.
Sampling period: Daily 4/30/2010 - 4/29/2015

47



2.5 Results and Discussion

2.5.1 Preliminary tests

To test the validity of the GARCH models discussed in Section 2.3 given the available data, I

first run a Box-Ljung test on the squared index returns. The Box-Ljung test is often used to

test the independence of a given time series, where the null hypothesis is that there is no serial

correlation within the series. Results from this test on squared index returns (Table 2.3) reject

the null hypothesis of no serial correlation, thereby validating the existence of volatility clustering

effect in the data where current volatility depends on the magnitudes of volatility in past periods.

Moreover, I also found that positive and negative shocks have similar impacts on the volatility of

the data, therefore, it is not necessary to incorporate a measure for the asymmetric leverage effects

into the GARCH framework in Section 2.3. 13 Finally, the Schwartz information criteria suggests

that the return equations (2.1), (2.4), (2.5) are best described by excluding all the lagged values

(i.e. r = rM = rG = s = 0) and the volatility equations (2.3), (2.7), (2.8) are best described by a

GARCH(1,1) process (i.e. p = pM = pG = q = qM = qG = 1).

Table 2.3: Box-Ljung Test of Squared Returns

GB Returns GPB Returns AB Returns
Q-statistic 380*** 17* 350***
GB=Green bond index
GPB=Green project bond index
AB=U.S. aggregate bond index
* p-value < 10%, ** p-value < 5%, *** p-value < 1%.

13Appendix B-1 discusses the methodology used to test for asymmetric leverage effects of a time series.
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2.5.2 Univariate GARCH empirical results

The preliminary test results suggest that we can reduce the univariate GARCH model in Section

2.3 to the following set of equations:

Rt = Et−1[Rt] + εt, εt|It−1 ∼ iid(0, σ2
t ) (2.10)

Et−1[Rt] = µ (2.11)

σ2
t = a0 + a1ε

2
t−1 + b1σ

2
t−1, a0 > 0; a1 > 0; b1 > 0 (2.12)

Table 2.4 shows the estimated parameters of the univariate GARCH model for the two green

bond return series (Green Bond Index (GB) and Green Project Bond Index (GPB)) as well as their

market benchmark (U.S. Aggregate Bond Index (AB)). Figure 2.7 plots the conditional standard

deviation of the three time series based on the univariate GARCH estimates.

Compared to the U.S. Aggregate Bond Index, the “labeled” segment of the green bond market,

which is characterized by the Green Bond Index, tends to exhibit higher level of volatility clustering.

The estimates for the ARCH/GARCH parameters a1 and b1 are higher for the Green Bond Index

returns than for the U.S. Aggregate Bond Index. In fact, it takes 258.6 days for a shock to the

Green Bond Index to reduce its impact by 50%. On the other hand, the half-life of a shock to

the U.S. Aggregate Bond Index is only 68.3 days. Moreover, the conditional standard deviation

for the Green Bond Index is higher and more volatile than the conditional standard deviation for

the U.S. Aggregate Bond Index. As can be seen on figure 2.7, the conditional standard deviation

of the Green Bond Index ranges between 0.00200 and 0.01120 over the sampling period, while

the conditional standard deviation of the U.S. Aggregate Bond Index ranges between 0.00130 and

0.00390 over the same period.
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The pattern of volatility clustering seems to lower significantly once we incorporate the “unla-

beled” green bond market segment into the model, as illustrated by the empirical results for the

Green Project Bond Index (Column (2) of Table 2.4). In fact, it only takes 34.41 days for a shock

to the Green Project Bond Index to reduce its impacts by 50%, which is a significant decline com-

pared to a half-life of 258.6 days for the Green Bond Index. Moreover, the conditional standard

deviation of the Green Project Bond Index returns ranges between 0.00201 and 0.00457 (figure 2.7),

which is much lower than that for the Green Bond Index. A possible explanation for the lower

volatility clustering in the Green Project Bond Index return relies on the fact that there is more

diversity in the bond portfolio used to calculate the Green Project Bond Index, which include both

investment-grade- and subinvestment-grade- bonds (Kochetygova and Jauhari, 2014). As a result,

there are lower correlations among the bonds within the Green Project Bond Index, thus reducing

the magnitude of volatility clustering in the Green Project Bond Index compared to the Green

Bond Index. Under this univariate GARCH framework, the unconditional average index return

(µ) is also the highest for the Green Project Bond Index, which is consistent with the descriptive

statistics presented in Section 3.3.

In addition to the analysis using raw data on the bond indices’ returns, I also exclude all

outliers in the estimates to account for the potentially high sensitivity of volatility measures to

extreme observations or outliers.14 This will provide a more robust and stable estimation of the

model parameters. Table 2.5 and figure 2.9, which summarize the results of the estimation with

the outlier-free data, show that the main results still hold even after we exclude outliers from the

analysis.

14I used the methodology specified in Khan et al. (2007) and Boudt et al. (2008) to clean the dataset from outliers.
Under this approach, all observations are first ranked by their extremeness, which is measured by their squared
Mahalanobis distance from the mean and variance. Then any observation with an estimated squared Mahalanobis
distance greater than the 99.9% quantile will be identified as an outlier. Under this approach, the number of extreme
values is 14 for both the Green Bond index and the Green Project Bond index, while the U.S. Aggregate Bond Index
contains 9 extreme values. Figures 2.8 show the comparison between the raw data with outliers and the cleaned data
that are outlier free.
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Table 2.4: Univariate Volatility Modelling - GARCH(1,1)

(1) (2) (3)
GB Returns GPB Returns AB Returns

µ 0.00003 0.0004*** 0.0001**
(0.00010) (0.0001) (0.0000)

a0 0.00000008*** 0.00000015*** 0.00000004**
(0.00000004) (0.0000000) (0.000000002)

a1 0.0510*** 0.0328*** 0.0483***
(0.0087) (0.0080) (0.0116)

b1 0.9463*** 0.9473*** 0.9416***
(0.0084) (0.0110) (0.0144)

Unconditional mean in
mean equation (µ)

0.00003 0.00035 0.00013

Persistence (a1 + b1) 0.9973 0.9801 0.9899

Unconditional variance
(a0/(a1 + b1))

0.00000008 0.00000015 0.00000004

Half-life (days)
(ln(0.5)/ ln(a1 + b1) 258.6 34.41 68.3

* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors
GB=Green bond index
GPB=Green project bond index
AB=U.S. aggregate bond index
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Figure 2.7: Conditional standard deviation (σt)
Model: Univariate GARCH (1,1)
Variables: GB, GPB and AB
Sampling period: Daily 4/30/2010 - 4/29/2015

(a) Green bond index (GB)

(b) Green project bond index (GPB)

(c) U.S. aggregate bond index (AB)
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Figure 2.8: Comparison of daily returns with and without outliers, 4/30/2010 - 4/29/2015 (Source:
S&P)

(a) GB index returns with outliers (b) GB index returns without outliers

(c) GPB index returns with outliers (d) GPB index returns without outliers

(e) AB index returns with outliers (f) AB index returns without outliers

GB=Green Bond; GPB=Green Project Bond; AB=U.S. Aggregate Bond
Sampling period: Daily 4/30/2010 - 4/29/2015

53



Table 2.5: Univariate Volatility Modelling - GARCH(1,1) with outlier-free data

(1) (2) (3)
GB Returns GPB Returns AB Returns

µ 0.00003 0.00037*** 0.00013***
(0.00009) (0.00007) (0.00005)

a0 0.00000006** 0.00000020*** 0.00000004**
(0.00000002) (0.00000008) (0.000000002))

a1 0.0423*** 0.0463*** 0.0453***
(0.0075) (0.0129) (0.0109)

b1 0.9547*** 0.9227*** 0.9452***
(0.0074) (0.0218) (0.0137)

Unconditional mean in
mean equation (µ)

0.00003 0.00037 0.00013

Persistence (a1 + b1) 0.9971 0.9691 0.9905

Unconditional variance
(a0/(a1 + b1))

0.00000006 0.00000021 0.00000004

Half-life (days)
(ln(0.5)/ ln(a1 + b1) 239.4 22.09 72.54

* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors
GB=Green bond index
GPB=Green project bond index
AB=U.S. aggregate bond index
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Figure 2.9: Conditional standard deviation (σt)
Model: Univariate GARCH (1,1)
Variables: GB, GPB and AB without outliers
Sampling period: Daily 4/30/2010 - 4/29/2015

(a) Green bond index (GB)

(b) Green project bond index (GPB)

(c) U.S. aggregate bond index (AB)
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2.5.3 Multivariate GARCH empirical results

While the univariate GARCH framework above can capture the pattern of volatility clustering

for a single time series, it fails to capture the potential volatility spillover from one time series to

another. In fact, Figure 2.7 shows that there are comovements between the green bond market

volatility (as characterized by the Green Bond and Green Project Bond Index) and the conventional

bond market volatility (as characterized by the U.S. Aggregate Bond Index). Therefore, it is

appropriate to analyze the volatility movement of the green bond market in relation with that of

the conventional bond market in a multivariate setting. In this section, I present the empirical

results of the bivariate GARCH model with two variables: a green bond market index and a

conventional bond market index. In this setting, the index for the green bond market is either the

Green Project Bond Index or the Green Project Bond Index while the benchmark market index

is the U.S. Aggregate Bond Index. The conditional standard deviations for each individual series

and the conditional correlations among the series are estimated using the Dynamic Conditional

Correlation (DCC) model proposed by Engle (2002). Compared to other models, this model’s

flexibility in modeling time-varying conditional correlations has clear computational advantages as

it allows for the estimation of very large correlation matrices.

According to the preliminary test results, we can reduce the bivariate GARCH model in Section

2.3 to the following set of equations:
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RGt = µG + εGt (2.13)

RMt = µM + εMt (2.14)

εt|It−1 =

εGt
εMt

 |It−1 ∼WN(0,Σt) (2.15)

Σt = DtRtDt; Rt =

 1 ρGMt

ρMGt 1

 ; Dt =

σGt 0

0 σMt

 (2.16)

σ2
Gt = a0G + a1Gε

2
Gt−1 + b1Gσ

2
Gt−1 (2.17)

σ2
Mt = a0M + a1M ε

2
Mt−1 + b1Mσ

2
Mt−1 (2.18)

q̂ijt = Cov(ẑit, ẑjt|It−1) = Ê[ẑitẑjt](1− α− β) + αẑit−1ẑjt−1 + βq̂ijt−1, i, j = G,M (2.19)

where ẑit = ε̂it
σ̂it

(i = G,M) is the standardized residuals is calculated from the GARCH models

in equations (2.17) and (2.18).15

Table 2.6 summarizes the results of the bivariate GARCH modeling for the green bond market.

Specifically, Column (1) of the table shows the results of a bivariate GARCH model for the returns

of the labeled green bond market (as captured by the Green Bond Index) and the conventional

bond market (as captured by the Green Project Bond Index). On the other hand, Column (2) of

the table shows the results of the same model for the returns of the unlabeled green bond market
15As one reviewer pointed out, one concern with using the bivariate GARCH model is the amount of overlap in

assets between the green bond indices and the U.S. Aggregate Bond Index. In this case, the overlap in assets between
the Green Bond Index and the Green Project Bond Index will not affect the results, because the two indices are used
in two separate estimates of the above bivariate GARCH model. The overlap of assets between the green bond indices
and the U.S. Aggregate Bond Index doesn’t affect the analysis of the bivariate GARCH model since the empirical
results are consistent between the univariate and the bivariate GARCH models, as shown in the subsequent discussion
of the results. Moreover, the amount of overlap in assets between the green bond indices and other bond indices that
are not sustainability-themed is small, since the green bond indices are used to track a very specialized and small
portion of the bond market. In 2015, total “labeled” and “unlabeled” green bond outstanding was USD 65.9 billion
and USD 531.8 billion respectively, which represents less than 1% of the total value outstanding of the overall bond
market (World Bank, 2015c).
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(as captured by the Green Project Bond Index) and the conventional bond market. Overall, the

labeled sector of the green bond market exhibit large volatility clustering compared to the unlabeled

green bond sector and the conventional bond market. Figures 2.10a and 2.10b show the estimates

of the conditional standard deviation of the Green Bond Index relative to the U.S. Aggregate Bond

Index while Figures 2.11a and 2.11b show the estimates of the conditional standard deviation of

the Green Project Bond Index relative to the U.S. Aggregate Bond Index. It can be seen from the

figures that the conditional standard deviation of the Green Project Bond Index is lower than that

of the conventional bond market while the conditional standard deviation of the Green Bond Index

tends to be higher than that of the conventional bond market. This is consistent with the results

obtained from the previous univariate GARCH model.

Moreover, the bivariate GARCH model also suggests that there exists volatility spillover be-

tween the green bond market and the overall fixed-income market since the parameters α and β

are both positive and statistically significant. This provides evidence for the existence of a non-

constant interaction between the green bond indices and the market benchmark index with respect

to conditional correlation. Figure 2.10c shows the conditional correlation between the Green Bond

Index and the market benchmark index while Figure 2.11c shows the conditional correlation be-

tween the Green Project Bond Index and the market benchmark index. The figures show that

there are increasing correlations between the Green Bond Index and the market benchmark over

time while there is no clear pattern of correlations between the Green Project Bond Index and the

market benchmark. However, on average, both the Green Bond Index and the Green Project Bond

Index are positively correlated with the market benchmark (i.e. the U.S. Aggregate Bond Index).

This is explained by the fact that besides the use of proceeds towards environmentally friendly

projects, green bonds are no different from conventional bonds and are often priced very close to

regular bonds (World Bank, 2015c).
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To account for the potential impacts of extreme observations on the robustness of the results, I

also repeat the above empirical analysis after cleaning the data from all outliers. Table 2.7 shows

the estimation result of the multivariate GARCH model after accounting for outliers in the data

and figures 2.12 and 2.13 show the conditional standard deviation and conditional correlation of the

two green bond indices in comparison with the benchmark U.S. Aggregate Bond index. Overall,

the main empirical results above still hold even after controlling for the impacts of outliers.
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Table 2.6: Bivariate volatility modeling - DCC M-GARCH(1,1)

(1) (2)
Green bond index = GB Green bond index = GPB

Parameter estimates for the
green bond market index:

µG 0.000035 0.000367***
(0.000101) (0.000073)

a0G 0.000000 0.000000
(0.000003) (0.000000)

a1G 0.051400 0.028907***
(0.068685) (0.008305 )

b1G 0.946498*** 0.955050***
(0.064320) (0.008399)

Parameter estimates for the
benchmark conventional bond
market (AB)

µM 0.000139*** 0.000139***
(0.000050) (0.000051)

aM 0.000000 0.000000
(0.000002) (0.000002)

a1M 0.044203 0.044203
(0.080317) (0.080279)

b1M 0.949094*** 0.949094***
(0.077196 ) (0.077158)

Estimates for the conditional
correlation parameters

α 0.022922*** 0.000000
(0.005019) (0.000006)

β 0.975484*** 0.908743***
(0.005770) (0.115694)

* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors.
GB= Green bond index; GPB=Green Project Bond Index, AB=U.S. aggregate bond index.
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Figure 2.10: Conditional standard deviation and conditional correlation
Model: Bivariate DCC M-GARCH(1,1)
Variables: Green Bond Index (GB) and Aggregate Bond Index (AB)
Sampling period: Daily 4/30/2010 - 4/29/2015

(a) GB’s conditional standard deviation

(b) AB’s conditional standard deviation

(c) GB-AB conditional correlation
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Figure 2.11: Conditional standard deviation and conditional correlation
Model: Bivariate DCC M-GARCH(1,1)
Variables: Green Project Bond Index (GPB) and Aggregate Bond Index (AB)
Sampling period: Daily 4/30/2010 - 4/29/2015

(a) GPB’s conditional standard deviation

(b) AB’s conditional standard deviation

(c) GPB-AB conditional correlation
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Table 2.7: Bivariate volatility modeling - DCC M-GARCH(1,1) with outlier-free data

(1) (2)
Green bond index = GB Green bond index = GPB

Parameter estimates for the
green bond market index:

µG 0.000033 0.000367***
(0.000099) (0.000073)

a0G 0.000000 0.000000
(0.000001) (0.000000)

a1G 0.042206* 0.028907***
(0.022859) (0.008305 )

b1G 0.954773*** 0.955050***
(0.021098) (0.008399)

Parameter estimates for the
benchmark conventional bond
market (AB)

µM 0.000128** 0.000128**
(0.000052) (0.000052)

a0M 0.000000 0.000000
(0.000007) (0.000007)

a1M 0.042728 0.042728
(0.210421) (0.210348)

b1M 0.950570*** 0.950570***
( 0.201990 ) (0.201920)

Estimates for the conditional
correlation parameters

α 0.022333*** 0.000000
(0.004981 ) (0.000002)

β 0.975925*** 0.908478***
(0.005722) (0.117834)

* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors.
GB= Green bond index; GPB=Green Project Bond Index, AB=U.S. aggregate bond index.
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Figure 2.12: Conditional standard deviation and conditional correlation
Model: Bivariate DCC M-GARCH(1,1)
Variables: Green Bond Index (GB) and Aggregate Bond Index (AB) without outliers
Sampling period: Daily 4/30/2010 - 4/29/2015

(a) GB’s conditional standard deviation

(b) AB’s conditional standard deviation

(c) GB-AB conditional correlation
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Figure 2.13: Conditional standard deviation and conditional correlation
Model: Bivariate DCC M-GARCH(1,1)
Variables: Green Project Bond Index (GPB) and Aggregate Bond Index (AB) without outliers
Sampling period: Daily 4/30/2010 - 4/29/2015

(a) GPB’s conditional standard deviation

(b) AB’s conditional standard deviation

(c) GPB-AB conditional correlation
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Using the MGARCH model to construct a hedge ratio between the green bond index

and the market benchmark index

The above estimates of the multivariate GARCH model can be used to construct hedge ratios.

Following Kroner and Sultan (1993), the hedge ratio between the green bond index G and the

bond market benchmark index M at time t is:

βGMt = σGMt

σ2
Mt

(2.20)

where σGMt denotes the covariance between the green bond index and the benchmark index

at time t and σ2
Mt denotes the variance of the benchmark index at time t. A positive hedge ratio

βGMt shows the extent to which a long position in the green bond market can be hedged by a short

position in the overall conventional bond market. On the other hand, a negative hedge ratio shows

the extent to which a short position in the green bond market can hedge by a long position in the

overall conventional bond market.

Figure 2.14 and 2.15 show the time-varying hedge ratio between the two green bond indices

(the Green Bond Index and the Green Project Bond Index) and the U.S. Aggregate Bond Index

while table 2.8 provides a summary of the hedge ratios. As can be seen on the figures and table,

the estimated hedge ratios exhibit a lot of variability, which reflects the non-constant interaction

of volatility between the green bond market and the overall broader bond market.

Table 2.8: Summary of the estimated hedge ratios

Mean Std. Dev. Min Max
GB-AB (with outliers) -0.00024 0.00152 -0.00520 0.00212
GPB-AB (with outliers) 0.00192 0.00033 0.00144 0.00322
GB-AB (without outliers) -0.00019 0.00139 -0.00398 0.00203
GPB-AB (without outliers) 0.00189 0.00031 0.00137 0.00309
GB=Green Bond Index; GPB=Green Project Bond Index; AB=U.S. Aggregate Bond Index.
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Figure 2.14: Hedge ratio computed from the bivariate GARCH model with outliers

(a) GB-AB (b) GPB-AB

GB=Green Bond Index; GPB=Green Project Bond Index; AB=U.S. Aggregate Bond Index.
The horizontal line in each graph indicates the average hedge ratio.
Sampling period: Daily 4/30/2010 - 4/29/2015

Figure 2.15: Hedge ratio computed from the bivariate GARCH model without outliers

(a) GB-AB (b) GPB-AB

GB=Green Bond Index; GPB=Green Project Bond Index; AB=U.S. Aggregate Bond Index.
The horizontal line in each graph indicates the average hedge ratio.
Sampling period: Daily 4/30/2010 - 4/29/2015

2.6 Conclusion

With the growing awareness of environmental issues among investors and the general public, the

urge to mobilize the global debt market as a low-cost financing instrument for a green economy

has been stronger than ever. The development of green bonds and other environmentally friendly

investments offer a mechanism to promote investments that can both economically and environ-

mentally sound. This paper is the first to study the volatility behavior of the green bond market
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in relation with the broader conventional bond market in the hope to provide investors with extra

insight into this new, yet promising market. The paper utilizes data on the daily closing prices of

the S&P Green Bond Index, Green Project Bond Index and U.S. Aggregate Bond Index between

4/30/2010 and 4/29/2015 and analyzes their volatility under both a univariate and multivariate

GARCH framework. Overall, both the univariate and multivariate models suggest that there exists

volatility clustering within each individual index and the multivariate model suggests that there are

also evidence for time-varying volatility spillover between the green bond market and the conven-

tional bond market, where both the “labeled” and “unlabeled” segments of the green bond market

are positively correlated with the conventional bond market. These results are robust even after

accounting for the impacts of extreme values in the data.

The paper has several implications for investors as well as policymakers. First, the estimation

results can be used to construct the optimal risk-minimizing portfolio mix between green bonds and

conventional bonds. However, the variability in the estimated hedge ratios between the green bond

market and the conventional bond market indicates that the optimal portfolio mix requires frequent

updating. Second, the results also show that there was an increase in the correlation between the

“labeled” green bond market and the conventional bond market, indicating a convergence of returns

between the the “labeled” green bond market and the conventional bond market. Therefore, as the

green bond market continues to grow, it is important to introduce stronger differentiation strategies

between green bonds and conventional bonds in order to attract a broader pool of investors. Finally,

policies aimed at standardizing the certification process of green bonds and increasing investors’

awareness can allow the green bond market to reach a broader group of investors.

The analysis in this paper provides several suggestions for future research. First, the analysis

could benefit from using a longer time series in the future to reflect the behavior of green bonds

during a full business cycle. Second, it would be interesting to investigate the role of green bonds
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in mitigating climate or environmental risk and the relationship of green bonds with other financial

markets, such as energy markets and equity markets. Third, depending on data availability, future

research could study how the behavior of green bonds changes with changes in types and locations

of issuers. Finally, a more complete understanding of the environmental impacts of the projects

funded by green bonds would play an important role in fostering the growth of this new market.
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Chapter 3

Do Fossil fuel Taxes Promote Innovation in Renewable

Electricity Generation?

3.1 Introduction

The combustion of fossil fuels to generate electricity is the largest single emitter of carbon world-

wide. In 2014, 70% of global electricity production came from fossil fuels such as coal, natural

gas, and oil, making up 40% of global carbon emissions. In the U.S. only, electricity generation

accounts for 37% of total carbon emissions and 31% of total greenhouse gas emissions (International

Energy Agency, 2015b). With increasing concerns over climate change, many economists argue in

favor of decarbonizing the electricity sector through higher use of less carbon-intensive technologies

such as solar, wind, and other clean technologies.1 For decades, an increasing number of private

research firms have been competing for new technological breakthroughs to minimize the human

carbon footprint. In addition, for at least three decades, governments throughout the world have

implemented policies to promote the invention of both efficiency-improving fossil fuel technologies

and technologies utilizing renewable energy.2 In particular, there are two types of environmental

policies that economists favor: subsidies to promote cleaner technologies and taxes to internalize
1While these technologies are commercially available, renewable energy still represents a modest share in global

electricity production. According to the World Development Indicators, 21.5% of the world’s total electricity gener-
ation comes from renewable sources, whereas only 5.4% comes from non-hydro renewable sources (see Table 3.1).

2According to the International Energy Agency (IEA), global subsidies for renewable energy totaled $112 billion
in 2014 while fossil fuel subsidies totaled $493 billion (International Energy Agency, 2015e).
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the environmental costs of burning fossil fuels.3,4 While these efforts have resulted in a range of

technological innovations, it is unclear whether there has been a shift in innovation efforts towards

cleaner technologies. In this paper, we explore the role of environmental regulations, specifically

fossil fuel taxes, in shifting innovation from fossil fuel to renewable energy.

In particular, we ask the following questions. First, are fossil fuel taxes successful at promoting

innovation in renewable technologies in the electricity sector? Second, how effective are research

subsidies in shaping global innovation in the electricity sector? Finally, what other factors shift

innovation in the electricity sector towards renewable technologies? To answer these questions, we

estimate a directed technological change model using global firm-level electricity patent data from

1978 to 2011. Past work has focused on the aggregate impact of all energy prices in fossil fuel

and renewable technologies. In contrast, we take a different approach and distinguish fuels used in

power generation (e.g., coal, natural gas, and oil) and technologies used for electricity generation

(e.g., coal-fired plants, gas plants, solar power plants).5 By doing so, we identify specific taxes that

encourage and discourage renewable energy innovation.

The directed technological change (DTC) framework of Acemoglu et al. (2012, 2016) guides our

empirical analysis. These and other DTC models predict that energy prices, taxes, subsidies and

past innovation activity affect technological advancements, and that these effects depend on the

elasticity of substitution between fossil fuels and renewable energy. Specifically, when fossil fuel and

renewable energy technologies are substitutes, higher fossil fuel prices can shift innovation towards
3See for example Acemoglu et al. (2012); Bovenberg and Smulders (1995, 1996); Goulder and Schneider (1999) for

a rigorous characterization of the role of these policies in decarbonizing the economy.
4In addition to these two policies, there are other policies like feed-in tariffs and cap and trade that promote

innovation. Since only some countries have implemented these policies and for a relatively short period of time, we
do not quantify their effect in this study. However, we do control for these policies in our empirical analysis.

5The distinction among electricity generating technologies is important because some plants are used in base-
load electricity generation while others are used in peak-load electricity generation. Base-load electricity refers to
electricity generated from power stations that operate continuously and are available 24 hours a day. In contrast,
peak-load power plants run only when demand for electricity is high, such as during summer afternoons when air
conditioning loads are high (International Energy Agency, 2015d). In 2013, coal (41.1%), hydro (16.1%), and nuclear
(10.6%) generated most global base-load power. Table 3.1 presents electricity production by source and region in
2013.
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more renewable energy technologies. However, when they are complements, a higher fossil fuel

price discourages innovation in renewable technologies. Empirical studies have presented evidence

for a substitute relationship between fossil fuel and renewable technologies in the electricity sector

(see, for example, Papageorgiou et al., 2016). While this may be true for aggregate measures of

fossil fuel technologies, the substitution between different fossil fuel and renewable technologies in

electricity generation varies with time and location. To capture this idiosyncrasy of the electricity

market, we disaggregate fossil fuel prices and technologies between coal, natural gas, and oil instead

of employing an aggregate measure for fossil fuel technologies that summarizes them into one

composite index.

In the electricity grid, renewable energy technologies are imperfect substitutes for fossil fuel-

burning technologies because they supply electricity intermittently (see, for example, Joskow, 2011).

The intermittency issue of many renewable energy sources, especially wind turbines and solar power

plants, makes them an unstable energy source for base-load power plants that supply electricity

continuously without any interruption.6 This suggests that as long as wind and solar energy cannot

be efficiently stored for later use, they cannot replace coal from base-load electricity generation and

they present an imperfect substitute for fossil fuels.7 Thus, the supply of electricity from renewable

sources must be complemented with easily dispatchable fossil fuels like coal. Then, as predicted

by the directed technological change models, we should expect a higher coal price to discourage

innovation in renewable technologies as well as coal-burning technologies. The main goal of our

paper is to empirically test this hypothesis.
6Hydropower technology is an exception. According to the International Energy Agency (2015b), 16% of the

world’s total electricity generation comes from hydroelectric power plants. The most common plants store water in a
reservoir and release water to create energy when electricity is needed, depending on water availability. Thus, hydro-
electric plants have been able to dispatch electricity since the late 19th century. Unfortunately, large hydroelectric
plants are concentrated geographically and hydroelectric capacity expansion is limited.

7Many argue in favor of electricity storage as the solution to the intermittency issue of renewable sources, but the
cost of large-scale electricity storage is the biggest roadblock for its success. See Lazkano et al. (2016) for an analysis
of the role of electricity storage in the transition from fossil fuels to renewable sources in electricity generation.
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To empirically evaluate the above hypothesis, we first construct a unique firm-level panel data

set where we use electricity patent application data to measure innovation. To mitigate the problem

that many patents have low values, our empirical analysis focuses on “triadic” patents, which are

series of patents filed at all three of the world’s most important patent offices: the European Patent

Office (EPO), the U.S. Patent and Trademark Office (USPTO), and the Japan Patent Office (JPO).

We classify these patents into the following three groups: renewable energy, base-load fossil fuel, and

peak-load fossil fuel patents. By separating fossil fuel patents into base- and peak-load technologies,

we can infer about the heterogeneity in the elasticity of substitution between renewable energy and

different types of fossil fuels. In addition to the main patent data, we collect data on coal, natural

gas, and oil prices, research subsidies, and economic indicators. Altogether, our data set includes

13,054 firms across 26 countries between 1978 and 2011, which covers 96.20% of all triadic electricity

patents globally (OECD, 2009).

Our estimation results find evidence for a mixed effect of fossil fuel prices in renewable energy

innovation. First, an increase in the price of coal discourages innovation in renewable energy.

The reason is that renewables rely of coal-fired plants to complement their supply to the grid.

Specifically, a 10% increase in the price of coal is associated with 3.4% decrease in renewable

energy innovation. In contrast, we find an insignificant impact of an increase in the price of natural

gas on the firm-level likelihood of innovation in renewable energy. These results imply that a tax on

coal and a carbon tax that increases the price of coal may create unintended effects by discouraging

the development of renewable electricity-generating technologies. In addition to energy prices, we

also find that research subsidies play a significant role in shifting the direction of innovation in the

electricity sector. Our results show that, to effectively direct innovation in the electricity sector

towards more renewable energy, a combination of renewable energy research subsidies and natural

gas taxation is desired. On the other hand, excessive reliance on a coal tax may negatively affect
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renewable energy innovation because the need of base-load fossil fuels to complement renewable

energy.

Our paper contributes to recent empirical literature that studies incentives for innovation in

the energy sector (for example, Buonanno et al. (2003); Popp (2002, 2005)).8 While the empirical

evidence from this literature is extensive, previous work has mainly focused on documenting the

factors that affect clean innovations rather than focusing on whether these factors can steer innova-

tions away from fossil fuel technologies (Newell et al., 1999; Lanzi et al., 2011). In addition, many

of these papers rely on country-level data as the basis for their analysis, and have therefore ignored

the responses of innovations to different environmental policy regimes at the firm level (Popp, 2002,

2010).

Methodologically, our paper closely relates to Aghion et al. (2016), who focuses on the direction

of technological innovation in the auto industry. The paper also relates to Noailly and Smeets

(2015) who look at innovation in the electricity sector by focusing on European firms. However,

our paper also differs from these previous studies in several aspects. First, Aghion et al. (2016)

and Noailly and Smeets (2015) focus on capturing the aggregate impact of all energy prices using a

composite fossil fuel price index; therefore, they are unable to separate the impact of different types

of energy prices on innovation. We take a different approach and distinguish between the impact

of coal and natural gas prices on innovation. By doing so, we identify the relationship between

renewables and different types of fossil fuels that previous empirical work overlooked. Our results

show that the effectiveness of fossil fuel-price regulations in fostering renewable energy innovation

varies largely with the type of fossil fuel targeted by these regulations. At the current technology

level, taxing coal may be harmful for renewable innovation in the electricity sector. In contrast,

taxing natural gas may steer innovation in the electricity sector towards more renewable energy by
8See also Calel and Dechezleprêtre (2012); Dechezleprêtre and Glachant (2014); Gans (2012); Hassler et al. (2012).

In addition, Fischer and Newell (2008); Nesta et al. (2014); Sanyal and Ghosh (2013); Klemetsen et al. (2016) focus
on the effectiveness of environmental policies to promote renewable energy technologies.
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lowering the firm-level incentive to innovate in fossil fuel technology. Second, our paper is the first

to explore the global pattern of innovation in the electricity sector. This is important because as

shown in Table 3.1, electricity generation by source varies considerably across the most innovative

regions and therefore a regional account of innovation cannot be extended to offer solutions to curb

emissions from global electricity generation.9 Finally, we are able to highlight the importance of

government policies in shifting the direction of innovation in the electricity sector, alongside market

forces like firm-level past knowledge stocks, energy prices, and other macroeconomic factors.

The paper is organized as follows. Section 3.2 summarizes our theoretical hypotheses, Section

3.3 describes the construction of our data, and Section 3.4 specifies our identification strategy.

Section 3.5 presents our empirical results and discusses their robustness and policy implications.

Finally, Section 4.6 presents our conclusion.

3.2 Theoretical background: energy taxes and innovation in the

electricity sector

In this section, we present theoretical predictions and testable hypotheses about the direction of

innovation in the electricity sector. These predictions are based on the directed technological change

framework by Acemoglu et al. (2012). Building on Acemoglu (2002); Acemoglu et al. (2012, 2016),

we apply a directed technological change model to the electricity sector. Because our theoretical

predictions are in line with previous work, we present our model in Appendix C-1 and restrict this

section to the discussion of the idiosyncrasies of the electricity sector, theoretical predictions, and

testable hypotheses.
9For example, Noailly and Smeets (2015) study electricity innovation among European firms, which covers only

38.07% of all electricity patents and uses fossil fuels to generate 50.6% of electricity. In contrast, the U.S. applies for
most electricity generating patents and uses fossil fuels to generate 61,7% of electricity. Our data set includes firms
that claim residence worldwide and covers 96.2% of all electricity patents globally (OECD, 2009). Figure C-1 shows
that most firms are located in the U.S. and Japan, followed by Germany, France, and the U.K. and as shown in Table
3.1, electricity generation by sources differs considerably in these countries.
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One distinguishing feature of electricity is that it needs to be consumed as soon as it is produced;

therefore, it is important to immediately adjust electricity supply to meet changes in electricity de-

mand to avoid blackouts or other problems. System operators resolve this issue by producing a

base electricity load available 24 hours a day in order to meet the minimum demand for electricity.

During times of high demand, such as during summer afternoons when air conditioning loads are

high, peak electricity loads are added to meet excess demand. Thus, we can separate electricity-

generating technologies in two groups: base- and peak-load technologies. There are many sources

used to generate electricity with these technologies. Generally, coal and nuclear are used to pro-

duce base-load electricity, while hydroelectric sources are used for both base-load and peak-load

electricity because it is cheap to switch them on and off. Natural gas used to meet peak electricity

load but since a new supply of natural gas from shale formations is available, natural gas is used in

both base and peak-load electricity. Renewable resources can potentially meet base-load electricity

demand since once they are installed, the marginal cost of using them is zero. These examples

show that many energy sources can be used in electricity generation but their use depends on re-

gional electricity markets. Table 3.1 summarizes the sources of electricity generation by region. At

the global level, fossil fuels are used to generate 66.4% of total electricity, followed by hydropower

(16.1%) and nuclear (10.6%). Renewable resources excluding hydro comprise a modest share of

total electricity generation. Because the expansion of hydroelectric and nuclear capacity is limited,

many argue in favor of increasing the share of other renewable sources in the energy mix as a

solution to curb emissions from burning fossil fuels. The expansion of renewables in the electricity

grid, however, presents several technological challenges.

One such challenge is that some electricity-generating sources such as fossil fuels are easily

dispatched to the grid, while others, such as renewables, are difficult to dispatch (Joskow, 2011).

For example, wind and solar technologies can only be used when the wind is blowing or the sun
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Table 3.1: Electricity production by source and region in 2013.

Region Production
Sources of electricity production (%)

Fossil fuel Renewable Nuclear
Coal Natural gas Oil Hydropower Other Ren.

East Asia and Pacific 8,427.9 62.1 13.4 2.2 13.8 3.7 3.6
Europe and Central Asia 5,305.3 25.0 24.3 1.3 16.9 9.5 21.9
Latin America and
Caribbean

1,546.0 6.4 25.6 10.9 47.1 5.3 2.1

Middle East and North
Africa

1,323.2 3.4 64.7 21.6 3.1 0.3 0.4

North America 4,940.8 36.0 24.8 0.9 13.4 5.8 18.7
South Asia 1,372.6 63.5 9.8 5.0 13.4 4.4 2.8
Sub-Saharan Africa 454.3 53.7 7.9 3.4 20.5 0.9 3.1
World 23,354.4 41.1 21.7 3.6 16.1 5.4 10.6
Note: Electricity production is measured in kilowatt hours (billions).
Source: World Development Indicators.

is shining, and in absence of large-scale electricity storage solutions, these technologies can only

supply electricity to the grid intermittently. The high variability in the supply of electricity from

renewable energy make them an unstable input for base-load electricity power stations that must

run continuously. This implies three things. First, renewable energy technologies are imperfect

substitutes for fossil fuel-burning technologies. Second, renewable energy is as of today unable to

replace coal from base-load power stations. Finally, renewable electricity relies on coal-fired plants

as a complement to meet the electricity demand.

While these idiosyncrasies are well understood, previous work has concentrated on studying the

incentives to innovate as if renewable and fossil fuels were substitutes. Thus, this previous work

has concluded that higher energy prices and taxes promote innovation in renewable technologies

with the underlying assumption that renewable energy and fossil fuels are substitutes. Indeed, the

empirical literature has included all fossil fuels into one composite price index and all fossil fuel

technologies into one group. While the assumption of a high elasticity of substitution is appropriate

for other sectors,10 this assumption is not applicable to the electricity sector. In contrast, our goal

in this paper is to analyze firm-level incentives to innovate in the electricity sector while taking into

account that some electricity-generating technologies complement each other.
10For example, Aghion et al. (2016) study innovation in the automobile sector under this assumption.

77



Our theoretical model is a general equilibrium model with two types of agents: (i) utility-

maximizing consumers who consume electricity and an aggregate consumption good, and (ii) profit-

maximizing firms who are either electricity generators or electricity retailers. There are two types

of electricity generators: renewable and nonrenewable. Renewable generators use renewable energy

to produce electricity, while nonrenewable generators use fossil fuels. At the beginning of each

period, both renewable and nonrenewable generators engage in research to develop new electricity-

generating technologies, which are later used to produce electricity. Each generator is eligible for

a research subsidy that lowers the cost of innovation. At the end of the period, electricity retailers

purchase electricity from renewable and nonrenewable generators and resell it to the end consumers.

All electricity generators and retailers take prices, subsidies and initial technologies as given.

We solve the above general equilibrium model to derive the equilibrium innovation intensity

for both renewable and nonrenewable technologies and we present the detailed solution of the

model in Appendix C-1. In line with prior work, our model shows that the equilibrium innovation

intensity depends on research subsidies, energy prices, and firms’ research history. Moreover, the

impact of energy prices on innovation depends on the elasticity of substitution between fossil fuel

and renewable energy technologies. When this elasticity of substitution is sufficiently high (i.e.,

when fossil fuels and renewable energy are easily substitutable in electricity production), then an

increase in fossil fuel prices and taxes promote innovation in renewable technologies. In contrast,

when fossil fuels and renewable energy are complements, increasing fossil fuel prices and taxes

discourage innovation in renewable technologies.

From these theoretical predictions, we derive the following hypotheses:

Hypothesis 1. A higher coal price negatively affects the development of both renewable and fossil

fuel based base-load technologies.

Hypothesis 2. A higher natural gas price negatively affects both fossil fuel based base-load and
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peak-load innovation.

In addition, in line with previous work, we expect research subsidies to increase the likelihood

of innovation in all technologies. Finally, the higher a firm’s past innovation in a particular type of

technology (knowledge stock), the more likely it is to innovate in that type of technology.

Hypothesis 3. Research subsidies increase the likelihood of innovation in all technologies.

Hypothesis 4. The larger a firm’s knowledge stock in a particular type of technology, the more

likely it is to innovate in that type of technology.

Next, we empirically test the above hypotheses using global firm-level panel data. We begin by

describing the data set in Section 3.3 and turn to the empirical analysis in Sections 3.4 and 3.5.

3.3 Data

The estimation of the drivers of innovation requires firm-level data on research output, energy

prices, taxes, research subsidies, and past innovation in addition to country-level economic data.

Specifically, we measure research output and past innovation with patents, which are drawn from

the OECD Patent Database (see OECD, 2009, for a description). Energy prices including taxes

and research subsidies, are from the IEA, and economic data are from the Penn World Tables

(International Energy Agency, 2015a,c; Feenstra et al., 2013). Altogether, our data set spans 34

years (1978-2011) across 26 countries and contains 96.2% of triadic electricity patents from all over

the world. Table C-1 in Appendix C-2 summarizes the source of data for each variable, while Table

C-2 lists countries. As follows, we describe the construction of this data set before presenting the

overall descriptive statistics.

We use data on patent applications to measure innovation.11 Each patent application contains
11Patents are a common measure of innovation in economic studies. (Popp, 2005) notes that other measures of
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detailed information about the inventor(s), applicant(s), and the specific type of technology, which

allows us to identify specific firms, while the International Patent Classification (IPC) codes assigned

to each patent make it possible to identify technologies related to electricity generation.

Individual patents differ considerably in their worth, with many patents having low values

(Aghion et al., 2016). We address this issue by only considering the most valuable patents from the

OECD’s Triadic Patent Database.12 A patent belongs to this database when the same applicant or

inventor files the same invention at the three most important patent offices: the EPO, the USPTO,

and the JPO. Triadic patents then form a highly-valued patent family, which is a collection of

patents that protect the same idea across different countries. Specifically, to qualify as a triadic

patent family member, a particular patent must have equivalent applications at the EPO, the JPO,

and the USPTO. Because triadic patents are applied for in three separate offices, they include only

the most valued patents and allow for a common worldwide measure of innovation that avoids the

heterogeneity of individual patent office administrations (Aghion et al., 2016).13

Once we have all patent information, we select patents related to electricity generation using

IPC codes. We then categorize them into two broad groups: renewable energy and fossil fuel

technologies. Renewable energy technologies are identified from the World Intellectual Property

Office’s (WIPO) IPC Green Inventory14, while fossil fuel technologies are selected from the IPC

codes used by Lanzi et al. (2011). Specifically, renewable energy patents are related to alternative

innovation, such as R&D expenditures, are generally only available at the industry level and for limited technology
types. Thus, the detailed nature of patent data proves particularly useful when examining firm-specific incentives to
innovate in selected technologies.

12One disadvantage of triadic patent families is the lag time associated with the USPTO. Legal delays for publishing
applications are 18 months after the priority date and up to 5 years between the priority date and publication
date (Dernis and Khan, 2004). As a consequence, U.S. patent grants may delay the completion of data on triadic
patent families. To mitigate this limitation, the OECD utilizes forecasts called “nowcasting” in order to improve the
timeliness of triadic patents (Dernis and Khan, 2004). Despite this difficulty, triadic patents still provide the most
inclusive measure of high-value, firm-level, innovative performance.

13Furthermore, the OECD utilizes “extended families,” which are designed to identify any possible links between
patent documents (Martinez, 2010). This is advantageous, as it provides the most comprehensive method of consoli-
dating patents into distinct families, allowing us to include an extensive number of patented ideas.

14The IPC codes listed in the IPC Green Inventory have been compiled by the IPC Committee of Experts in
concordance with the United Nations Framework Convention on Climate Change (UNFCCC). For more information,
see http://www.wipo.int/classifications/ipc/en/est/.

80



energy production, which includes fuel cells, pyrolysis, harnessing energy from manufactured waste,

wind, solar, geothermal energy, other production or use of heat, using waste heat, and devices for

producing mechanical power from muscle energy. Fossil fuel technologies combine both general and

efficiency-improving technologies. Specific descriptions of the IPC codes used to identify electricity-

generating patents are presented in Tables C-3-C-5 in Appendix C-2. Moreover, we separate fossil

fuel technologies into those used to generate base- or peak-load electricity (Tables C-6-C-7 in

Appendix C-2). We build on Voigt et al. (2009) and Lanzi et al. (2012) to identify base-load

technologies, while we create a list of peak-load technologies by searching for specific patents on

the EPO’s Espacenet patent search website.

Next, we aggregate individual patent counts at the firm level. Using OECD’s Harmonized

Applicants Names (HAN) Database and REGPAT Database (OECD, 2009), we can match each

patent applicant with a firm. Unfortunately, the HAN database does not contain firms’ information

for every patent application in our sample. Names that cannot be matched using the HAN database

are synchronized using applicant information in the Triadic Patent Families Database. Although

this allows us to match every patent to an applicant, it poses two difficulties. First, applicant names

in the Triadic Patent Database contain a number of spelling, character, and name variations. For

example, “General Electric” and “General Electric Inc” would be incorrectly treated as separate

firms in the absence of name harmonization. Second, the Triadic Patent Families Database does not

directly link patent applications to applicant names. Instead, applicant names are linked to family

identifiers. Thus, if a given family contains more than one firm name, we are unable to determine

which firm to associate with each patent. In order to minimize the complications that may result

from these challenges, we harmonize the database in three steps. In the first step, we select all firms

that contain full information from the HAN register. Second, we clean the firm-level information

in the Triadic database. Third, we manually harmonize the Triadic and HAN databases. With
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these steps, we guarantee firm-level harmonization of the entire database. In addition, we account

for multiple patent owners. Because some patents are owned by more than one firm, we allocate a

patent to a firm weighted by the number of owners.

Following Aghion et al. (2016), we construct two variables that measure past innovation for

each firm: internal and external knowledge. Internal knowledge measures past innovation by the

cumulative count of all patents a firm has applied for in the past, while external knowledge measures

the total number of patents other firms in the region have applied for. As listed in table C-2, we

have patent data available for 73 countries and we use these to construct the regional external

knowledge variables. We define five regions following the World Bank’s income classification. These

geographical regions are: Eastern Asia, Eastern Europe, Europe, Northern America, and Oceania.

In our robustness analysis, we explore alternative definitions of spillover regions.

A distinguishing feature of innovation count data is that firms are widely heterogeneous in their

success rate. While some firms make few innovations, others have a high innovation record. We

create two variables to account for this permanent unobservable heterogeneity following Blundell

et al. (1995). First, using patent data from 1963 to 1977, we construct a pre-sample research history

variable that measures the average number of patents each firm applied for in a specific technology

in the pre-sampling period. In addition, a dummy variable indicates whether a firm innovated in

the pre-sample period. These variables are used to control for the size and propensity to patent of

research firms.

Another feature of our data set is that only some firms exist during the entire sample period.

We account for this by including each firm in the data set from the first until the last year they

applied for a patent. Thus, only active firms are accounted for in our panel data set.

In addition to patent data, we include data on electricity input and output prices and taxes.

Our energy price and tax data are drawn from the IEA Energy Prices & Taxes database and are
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measured in 2005 U.S. dollars (International Energy Agency, 2015a). Specifically, we use electricity

retail prices to measure output and we proxy input with the prices of thermal coal and natural

gas used in the production of electricity, which are those paid by power generation companies

to purchase fuels for electricity production for sale. A limitation of these data is that net prices

are rarely available. To address this, we use gross (tax-inclusive) fossil fuel prices. Although this

implies that we are unable to separate net prices and taxes, we are able to infer the effect of taxes

in our estimates. Another issue we account for is that international companies are affected by the

regulations and taxes of several countries. Because we know the locations of international firms,

we address this by constructing firm-level energy prices after calculating the average energy price

across all locations for each firm.

The second environmental policy we study is public research and development subsidies for

the energy sector. Data are drawn from the IEA Energy Technology RD&D Statistics and span

34 years (1978-2011) and 26 countries (International Energy Agency, 2015c). This gives us the

total amount of subsidies to promote the development of renewable and different fossil fuel based

technologies. While our research subsidy data set contains a smaller number of countries than our

patent data set, firms in the 26 countries for which research subsidy data are available account for

96.2% of global electricity triadic patents. We convert R&D data to 2005 U.S. dollars and separate

them by technology type: renewable technologies, efficiency-improving fossil fuel technologies, and

general fossil fuel technologies. As with energy prices, we construct a firm-level subsidy variable by

calculating the average subsidies a firm is exposed to across all locations. We think of this variable

as a proxy that captures a firm’s exposure to research subsidies because we are unable to determine

if a given research firm received any subsidies. We exclude data on other environmental policies

designed to promote renewable energy, such as feed-in tariffs, due to data availability. However, we

control for country-level policies using country-level fixed effects and country-by-year dummies in
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our identification strategy.

Finally, we use economic data to measure the size and wealth of countries from the Penn World

Table (Feenstra et al., 2013). We use real GDP to measure the size of a country and real GDP per

capita to measure wealth. Both GDP and GDP per capita are at constant 2005 U.S. dollars. As

before, we construct a firm-level exposure variable by calculating the average across all locations.

(a) Renewable, fossil fuel, and efficiency-improving
patents. (b) Base- and peak-load fossil fuel patents.

Figure 3.1: Annual aggregate patent count, 1978-2011.

In total, we identify 236,605 unique triadic patent applications across 13,054 firms from 1978 to

2011. Of this total, 120,059 are designated as renewable technologies, while 116,546 are classified

as fossil fuel technologies. Our baseline estimates combine efficiency-improving and fossil fuel

technologies into one category, but once we separate these two types of technologies, we have

99,454 and 17,092 general and efficiency-improving fossil fuel technologies, respectively. In addition,

we divide fossil fuel technologies into 89,425 base-load and 27,121 peak-load technologies. Fossil

fuel base load technologies include both coal and natural gas based technologies while fossil fuel

peak load technologies include diesel and natural gas. Table C-8 presents the number of patents

by specific technology. The table shows that solar patents account for the largest share of all

renewable patents, followed by fuel cells and waste patents. On the other hand, base-load fossil fuel
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patents account for 76.7% of all fossil fuel patents over the period 1978 to 2011. Figures 3.1a and

3.1b illustrate the OECD’s trends in patent activity from 1978 to 2011. The number of renewable

and general fossil fuel patents increased considerably until the mid-2000s, while the number of

efficiency-improving fossil fuel patents enjoyed a modest increase. Our data also shows a downward

trend in the number of patent applications between 2000 and 2009.15 The reason for this downward

trend is lag from the application date to the actual granting of the patent at the USPTO which

lasts from 18 months to five years (Popp, 2005). We account for this by skipping the last 2 years

of the data set to run our estimations.

(a) Thermal coal for electricity generation (USD
per tonne).

(b) Natural gas for electricity generation (USD
per MWh).

Figure 3.2: The price of coal and natural gas in the most innovative regions, 1978-2009.

Figures 3.2 and 3.3 illustrate the evolution of coal, natural gas and electricity prices in the most

innovative countries: U.S., Japan, and OECD-Europe.16 Coal price is measured in USD per tonne

while natural gas and electricity prices are measured in USD per MWh. All inputs used in the

production of electricity followed a similar trend. Coal was the cheapest input and most heavily

used for electricity production in many countries. The price of coal stayed low and stable in the
15This trend is consistent with prior work. For example, Noailly and Smeets (2015) observe the same trend in

European patents, even though they use non-triadic patent data, and Nesta et al. (2014) find a downward trend for
German renewable patent families.

16Prices in Europe are represented by the average prices of Austria, Belgium, Denmark, Finland, France, Germany,
Greece, Iceland, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the U.K..
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Figure 3.3: Electricity retail price (USD per MWh) in the most innovative regions, 1978-2009.

U.S., while it rose considerably in Japan and Europe after 2000, peaking in 2008. Because coal

is heavily used for base-load electricity production in the U.S., it is no surprise that the price of

electricity also hit its lowest price in 2000 and its highest price in 2008. In Japan, however, the

price of electricity followed the price of natural gas, which presents a higher variation than in other

regions. Finally, the average European price showed a rapid rise after 2000. Figures 3.4, 3.5, 3.6

show a scatter plot of energy prices and the total number of patents in each type of technology for

the U.S., Japan, and OECD-Europe. The figures show a negative correlation between coal prices

and innovation in both renewable and fossil fuel technologies. On the other hand, natural gas prices

show a weaker correlation with innovation in all types of technologies.
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Figure 3.4: Renewable innovation and energy prices.
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Figure 3.5: Base-load fossil fuel innovation and energy prices.

88



Figure 3.6: Peak-load fossil fuel innovation and energy prices.

Figure 3.7 illustrates global aggregate research subsidies. Most subsidies were directed towards

general fossil fuel technologies until the early 1990s, when subsidies towards efficiency-improving

fossil fuel technologies took off. Moreover, general fossil fuel subsidies decreased from 1980 to

2000, and after reaching their lowest point in 2000, they started increasing again. On the other

hand, subsidies for renewable technologies peaked around the 1980s, and after a decade of relatively

smaller subsidies, they started increasing again in the late 1990s.
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Figure 3.7: Global RD&D subsidies in million USD in renewable, general fossil fuel and efficiency-
improving technologies, 1978-2009.

3.4 Identification strategy

This section describes the econometric approach we adopt to identify the firm-level determinants

of innovation in the electricity sector. We estimate a dynamic innovation model with fixed effects.

This model accounts for current patent applications yj,it that depend on past patent applications

yj,it−1 for firm i’s innovation in technology j in year t and it captures the feedback effects that

result from innovations in different technologies affecting each other (Cameron and Trivedi, 2013).

In particular, our baseline specification with one lag is:

E[yj,it|Xj,it,Yj,it−1, αj,i] = αj,iλj,i, (3.1)
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where Xj,it =
(
xj,it,xj,it−1, . . . ,xj,i1

)
are observable variables, Yj,it−1 = (yj,it−1, . . . , yj,i1) is a

vector of past innovations, αj,i captures individual technology-specific fixed effects, and λj,i is the

specified function of yj,it−k, xj,it, and β. We consider a linear feedback model to explain how yj,it−1

enters λj,i following Blundell et al. (2002). Specifically:

E[yj,it|Xj,it,Yj,it−k, αj,i] = ρyj,it−1 + exp(x′j,itβ)αj,i, (3.2)

where the lagged of past innovations enters linearly. The observable variables xj,it are the deter-

minants of innovation discussed in section 3.2. Thus, we estimate:

yj,it =Ait−1 + exp(ln Pit−1βj,p + ln Sj,it−1βj,s + ln EIit−1βj,e

+ γ1 lnXj,it + γ2IDit +Dnt)αj,i + µj,it, (3.3)

where j denotes the type of technology, while i, n and t represent firm, country and year. In the

baseline specification, technology type j is renewable (r) or fossil fuel (f). In addition, we consider

efficiency-improving (e), base-load (b) and peak-load (p) fossil fuel technologies. yj,it is the number

of patents in technology j that firm i applied for in year t.

One of the main determinants of current innovation is past innovation. Ait indicates the firm’s

existing stock of knowledge, which depends both on the firm’s internal cumulative stock of past

renewable and fossil fuel innovation, as well as aggregate knowledge spillovers from other firms.

More specifically, following Aghion et al. (2016), a firm’s total knowledge stock is given by internal

and external knowledge stocks following Ait = Kj,itβj,k +SPILLj,itβj,spill. The internal knowledge

stock Kj,it is a vector of firm i’s patent stock of the designated technology type j in year t. The

external knowledge stock SPILLj,it is a vector of knowledge spillover from other firms for technology

type j, calculated as the aggregate patent stocks of all other firms located in the same region as
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firm i. The baseline specification considers a 1-year lag in past innovations, but we consider other

lag structures in the robustness section 3.6.

Another main determinant of innovation is given by energy prices and taxes. Pit is a vector

that denotes a firm’s exposure to energy prices including taxes in year t. We take the prices of

both inputs and outputs in the electricity sector into account. Specifically, we use coal and natural

gas prices as a proxy for input prices in electricity generation and electricity prices to proxy for

output prices. We use alternative measures in our robustness analysis. Recall that we characterize

governments’ support for innovation, Sit, using R&D subsidies in the energy sector. We use R&D

subsidies in renewable energy as a measure of government’s support for innovation in renewable

technologies, while we use subsidies in efficiency-improving and pure fossil fuel technologies as a

measure of government’s support for innovation in fossil fuel technologies. We control for other

country-level environmental policies, such as feed-in tariffs, with country-level fixed effects.

Our empirical model also accounts for other macroeconomic factors that may impact innovation,

such as the economic environment of countries in which the firm is located. Specifically, EIit is a

vector that captures the firm-specific exposure to the economic environment, which we characterize

by its size (proxied by GDP) and wealth (proxied by GDP per capita). Note that we calculate EIit

for each firm by taking the average of all the economic indicators across the countries in which the

firm is located. This allows us to account for the fact that a multinational firm is exposed to the

macroeconomic and policy conditions of all countries in which the firm operates, not just its home

country. We consider other controls in the robustness section.

A challenge to estimate a linear feedback model with fixed effects is to get consistent estimates.

We account for this by controlling for firm-level unobserved heterogeneity using patenting in the

pre-sampling period following (Blundell et al., 1995, 1999). Specifically, we use information on

firms’ pre-sample history of successful innovation. Taking advantage of our extended patent data
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set, we include the average pre-sample patent count (Xj,it) for each firm and technology type. In

addition, we use a dummy variable (IDit) that equals 1 if the firm innovated in the pre-sample

period (1963-1977).

We control for time-varying, firm- and country-specific differences using fixed effects. Specifi-

cally, we use a set of dummy variables (Dnt), which include year, country and country–year dummies

to control for time-varying country-specific differences. Because all country-level variables, such as

energy prices and research subsidies have been converted into firm-level variables, country and

time dummies can be used to control for other unobserved variations in electricity markets and

relevant policies such as feed-in tariffs across countries over time. Finally, αj,i denotes a firm-level

fixed effect, which captures other time-invariant unobservable firm-specific characteristics, such as

differences in firm size, industry focus, and others.17

Finally, µj,it denotes the error term by technology type. We cluster standard errors at the firm

level for each technology since our data are structured at the firm level. Since some of our firms are

international and we calculate their average energy prices, subsidies and macroeconomic indicators

taking into account all their locations, there are additional correlations in the data. Following

Thompson (2011), we deal with this by using fixed effects in one dimension and clustering in the

other dimension given that our data are not nested. Thus, dummies control for country fixed effects

and the standard errors are clustered at the firm level.

We estimate the linear dynamic count data model in equation (3.3) using a fixed-effect Poisson

estimator while controlling for pre-sample history (Blundell et al., 1995, 1999). The equation

for each technology is estimated separately. We analyze alternative estimators in the robustness

analysis in Section 3.6.
17The large number of fixed effects often presents another challenge to obtain consistent estimates of dynamic

innovation models because of a potential incidental parameter problem. As Blundell et al. (1999) and Lancaster
(2002) show, a linear Poisson maximum likelihood model has no incidental problem in parameters and therefore the
maximum likelihood estimation of our model obtains consistent estimates.
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This identification strategy shows that energy prices, research subsidies, and past innovation

cause any differences in a firm’s probability to apply for a patent in each technology type after

controlling for pre-sample, macroeconomic, country and time-varying heterogeneity.

3.5 Estimation results

In this section, we present our main estimation results followed by multiple robustness tests to

validate our results. Our main objectives are to identify whether increasing fossil fuels prices

promotes innovation in renewable technologies and to quantify how research subsidies shape the

direction of technological change in the electricity sector. To do this, we estimate the innovation

equation given by equation (3.3) and we present our main results in Tables 3.2-3.5.

We use coal prices as a proxy for input prices in the electricity sector for our baseline estimation

Table 3.2. To validate our results, we present multiple robustness checks in Section 3.6. Standard

errors in all estimations are clustered at the firm level for each technology. Overall, our estimation

results show that energy prices, R&D subsidies, and past innovation significantly influence inno-

vation in the electricity sector. Therefore, policies targeting these factors can potentially direct

innovation towards renewable energy. Let us first discuss how each of these factors determines the

pattern of innovation in the electricity sector.

3.5.1 Are energy taxes successful at promoting innovation in renewable tech-

nologies?

The main estimation results in columns (1) and (2) of Table 3.2 suggest that energy prices and

taxes have a significant impact on firm-level innovation. Specifically, a 10% increase in coal prices

leads to a 3.8% decrease in the probability of applying for a renewable patent. This finding is in

line with the theoretical directed technological change literature that shows a negative effect of
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fossil fuels on renewables when renewable and fossil fuel technologies are complements. However,

our finding is in contrast to previous empirical work that concludes that fossil fuel prices promote

innovation in renewable technologies. One explanation is that in the electricity sector, intermittent

renewable sources are unable to supply electricity constantly and they rely on easily dispatchable

technologies like coal-fired plants to meet the electricity demand. Cheap fossil fuels such as coal are

typically used to generate base-load electricity that is easily dispatchable and available at all times.

On the other hand, more expensive fossil fuels such as natural gas have been typically used in the

generation of peak-load electricity that complements base-load electricity during peak hours (when

the demand for electricity is high). While it may sound counterintuitive, it is thus reasonable to

find that the number of renewable and base-load fossil fuel patents respond similarly to changes

in coal prices. Columns (3)-(5) of Table 3.2 further explore this relationship by separating fossil

fuel patents into base- and peak-load patents. We find that higher coal prices have a negative and

statistically significant effect on innovations in renewable and base-load fossil fuel technologies, but

no significant impact on peak-load fossil fuel innovations.

These results imply that making coal more expensive, for example, by increasing coal taxes

or setting a carbon tax, is an ineffective tool to encourage innovation in renewable technologies.

In absence of large-scale storage solutions, intermittent renewable sources such as wind and solar

cannot fully replace coal in electricity generation; therefore, a tax on coal produces unintended

negative effects on the development of renewable technologies.

Tables 3.3 and 3.4 further explore the relationship between coal and natural gas prices and

innovation in renewable, base- and peak-load fossil fuel patents. Specifically, we analyze: (i) Coal

and electricity prices, (ii) Coal prices only, (iii) Natural gas prices and electricity prices, and (iv)

Coal and natural gas prices.18 In the robustness analysis, we also consider the square term of
18We omit electricity prices in specifications (ii) and (iv) to address a potential endogeneity issue as electricity

output prices are affected by the prices of inputs such as coal or natural gas. Tables 3.3 and 3.4 show that the impact

95



coal prices, oil prices and the gap between electricity and coal prices. Overall, we find evidence

for a negative relationship between coal prices and innovation in renewable and base-load fossil

fuel patents, thereby confirming the complementary relationship between renewable and base-load

fossil fuel technologies in electricity generation. In contrast, increasing natural gas prices is only

associated with a decrease in base-load fossil fuel innovation; it has no statistically significant

impact on innovation in renewable energy. In addition, our estimates show that energy prices do

not significantly affect the development of peak-load fossil fuel technologies (columns (5) in Table

3.2, columns (9)-(12) in Table 3.4). We explore additional specifications in the robustness section

(3.6).

In addition to coal prices, firm-level innovation also depends on electricity prices; however, we

only find a significant impact of electricity prices on fossil fuel innovation. Column (2) of Table 3.2

suggests that a 10% increase in electricity prices increases the probability of applying for a patent

in fossil fuel by 4%. Moreover, the relationship between electricity prices and fossil fuel innovation

is primarily driven by base-load innovations. As columns (4) and (5) of Table 3.2 show, increasing

electricity prices has a positive and statistically significant impact on base-load innovations, where

a 10% increase in electricity prices leads to a 3.7% increase in the number of base-load patents.

On the other hand, the effect of electricity prices on peak-load innovations is much smaller and

statistically nonsignificant. These effects are not surprising because coal, which is used in base-load

electricity generation, contributes to 41.1% of global electricity generation (International Energy

Agency, 2015b).

In addition to separating fossil fuel patents into base- and peak-load technologies, we also classify

fossil fuel patents into general fossil fuel patents and efficiency-improving technologies.19 Columns

of energy prices on innovation is robust to alternative specifications of energy prices.
19Tables C-4 and C-5 in Appendix C-2 detail the IPC codes for efficiency-improving and pure fossil fuel technologies.

Ideally, we would like to further separate efficiency-improving and fossil fuel technologies into base- and peak-load
technologies; however, the number of observations for each sub-group is too small to produce any significant result.
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(3)-(5) of Table 3.5 report the estimation results for renewable, general fossil fuel, and efficiency-

improving fossil fuel technologies. The coefficients on coal prices are negative and significant in all

columns. Specifically, a 10% increase in coal prices decreases the number of patents in renewable,

pure fossil fuel, and efficiency improving technologies by 3.5%, 3.3%, and 6.6% respectively.

To summarize, we find evidence that increasing coal prices discourages innovation not only in

base-load electricity generation technologies, but also in renewable technologies. In addition, we

find evidence of a negative impact of coal prices on efficiency-improving fossil fuel technologies.

Therefore, our results suggest that policymakers looking for solutions to reduce the use of coal in

electricity generation should be careful when taxing coal as it may have unintended consequences

for innovation in renewables as well as efficiency-improving fossil fuel technologies. Taxing natural

gas, however, does not significantly affect innovation in renewable and peak-load technologies, but

it does discourage innovation in base-load technologies.

3.5.2 How effective are research subsidies in shaping global innovation in the

electricity sector?

In addition to energy prices and taxes, government research subsidies play an important role in

determining innovation in the electricity sector. The results from Table 3.2 show that innovation in

renewable energy technologies is significantly increased by an increase of those technologies’ research

subsidies. In particular, a 10% increase in renewable research subsidies increases the number of

patents in renewable energy by 1.4% (columns (1) and (3)). Our results also suggest that research

subsidies play a role in the development of fossil fuel technologies. While subsidies for general

fossil fuel technologies promote innovation in base-load technologies, efficiency-improving subsidies

increase the probability of successfully innovating in peak-load technologies. Specifically, increasing

subsidies for general fossil fuel technologies by 10% increases the number of base-load fossil fuel
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patents by 1.4%, while a 10% increase in subsidies for efficiency-improving fossil fuel technologies

increases the number of peak-load fossil fuel patents by 3.3%. The results are robust to alternative

specifications of energy prices (Tables 3.3 and 3.4).

In Table 3.5, we classify fossil fuel technologies into general fossil fuel and efficiency-improving

technologies. After we separate these technologies, we find that general fossil fuel technologies pro-

mote the development of efficiency-improving technologies. Specifically, a 10% increase in general

fossil fuel technologies increases the number of efficiency improving patents by 1.2%. Note, however,

that we do not find any evidence that research subsidies improve the success rate of general fossil

fuel research (column (2) in Table 3.2). One explanation for this small impact of research subsidies

on fossil fuel innovation is that market forces have created strong incentives to develop fossil fuel

technologies because the market share of fossil fuels in electricity generation has long been and

remains very large (International Energy Agency, 2015b). We turn to studying these market forces

in the next subsection.

In summary, the analysis in Sections 3.5.1 and 3.5.2 proves that environmental policies such as

energy prices, taxes, and research subsidies are effective at shifting the direction of innovation in

the electricity sector. Not surprisingly, our results in Tables 3.2 through 3.5 show that research

subsidies play a role in promoting the development of all types of technologies in electricity gen-

eration. Note, however, that as seen in Figure 3.7, the amount of subsidies directed at fossil fuels

is larger than that directed towards renewables. This implies that allocating more research sub-

sidies to renewable innovators and cutting back on research subsidies to fossil fuel innovators can

potentially shift innovation in the electricity sector towards more renewable energy. However, our

results also suggest that, at the current technology level, renewable and fossil fuel technologies are

complements in electricity production; therefore, energy price taxes may not have the expected

effect on changing the direction of electricity-related innovations towards cleaner technologies. Our
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results are consistent with Acemoglu et al. (2012)’s theoretical conclusions that the optimal policy

to promote clean innovation involves both taxes and research subsidies, and that excessive reliance

on tax policies may have some negative impacts on innovation.

3.5.3 What other factors shift innovation in the electricity sector toward re-

newable technologies?

In addition to environmental policies, a firm’s innovation is determined by its past innovation and

macroeconomic indicators. Past innovation is a combination of the firm’s internal cumulative stock

of past innovation and the aggregate knowledge spillovers from other firms within the same region.

Columns (1) and (2) of Table 3.2 indicate that a firm is more likely to innovate in fossil fuel tech-

nologies if it has a larger knowledge stock in fossil fuels. In addition, accumulated knowledge about

peak-load technologies and/or general fossil fuel technologies plays a significant role in fostering

fossil fuel innovation in the current period, as shown in columns (3)-(5) of Tables 3.2 and 3.5. On

the other hand, firms that invested in more renewable innovations in the past are less likely to

be involved in inventing renewable technologies in the current period. One possible explanation

is that unlike fossil fuels, storable forms of renewable energy are not readily available to generate

electricity at all times; therefore, the use of renewable energy in electricity production is intermit-

tent. Unfortunately, many of the storage technologies are in their early development stages, and

thus the lack of cheap and large-scale storage solutions may hinder further innovation in renewable

technologies.

Moreover, we find that a firm’s probability of successfully innovating in renewable research is

affected by spillovers from other firms’ innovation activities within the same region.20 Specifically,

a firm located in a region with a larger stock of fossil fuel innovations by other firms is less likely
20In our baseline results, we calculate regional knowledge spillovers using the World Bank income classification of

countries. We define regional spillover variables instead of country-level spillover variables because we are interested
in employing country-level fixed effects in our estimations.
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to apply for a renewable patent (Table 3.2). In addition, Table 3.4 shows that a firm located in a

region with an extensive knowledge stock of peak-load technologies is also less likely to innovate in

renewable technologies. Finally, a firm located in a country with extensive renewable research is less

likely to innovate in base-load fossil fuel technologies. Note that most coefficients on the spillover

variables are not statistically significant in most cases, and even when they are, the coefficients are

close to zero. One explanation for this phenomenon could be that regional innovation spillovers

may have two opposite effects on firm-level decisions to conduct research. First, a firm is more

willing to engage in research if it is located in a research-intense region because the firm can benefit

from the existing knowledge created by other firms (i.e., standing on the shoulders of giants). At

the same time, more intensive regional innovation activity also means tougher competition, which

makes it more difficult to devise new patents. These two effects offset each other, leading to a small

overall regional knowledge spillover effect on innovation.

In short, our estimation results suggest that a firm’s past innovation is a strong determinant of

future successful innovations. Specifically, firm-level innovation activity in renewables is negatively

impacted by firms’ internal knowledge stock, while fossil fuel innovation is positively affected by

past innovation. On the other hand, it is not necessarily true that a firm is more likely to conduct

research or to successfully create new innovations if it is exposed to a larger level of knowledge

spillover from other firms within the same region. Our results are robust to alternative price

measures, lag structures, pre-sample conditions, and to separating general fossil fuel technologies

from efficiency-improving technologies.21

Finally, we consider other determinants of innovations such as country size (proxied by GDP)

and wealth (proxied by GDP per capita). In our baseline estimates, we find that country size

negatively affects innovation in all technology types, while wealth promotes innovation in base-load
21We find similar results when we exclude energy prices from our estimation.

100



technologies in the electricity sector. When we classify fossil fuel technologies into general fossil

fuel patents and efficiency-improving technologies (Table 3.5), our results show that a 1% increase

in GDP decreases a firm’s incentive to conduct efficiency-improving research by 1.449%.
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Table 3.2: Baseline: Fixed-effect Poisson estimates of the determinants of firm-level innovation in
renewable and fossil fuel technologies using global data from 1978 to 2009.

Dependent variable: firm-level number of patents

Renewable Fossil fuel Renewable Fossil fuel
base load

Fossil fuel
peak load

(1) (2) (3) (4) (5)
Energy prices including taxes

L1.Coal price -.3864∗∗ -.2919 -.4139∗∗ -.4051∗∗ -.5788
(.1801) (.2197) (.1666) (.1695) (.3614)

L1.Electricity price .1745 .2533 .2475 .3674 -.02734
(.222) (.2845) (.1925) (.2372) (.37)

Research subsidies
L1.Renewable .1589∗∗ .04735 .1275∗ -.02836 .1749

(.07334) (.1122) (.07382) (.08402) (.2144)
L1.Fossil fuel .00146 .0569 .02102 .06796 .06561

(.03799) (.05768) (.04018) (.0585) (.08176)
L1.Efficiency-improving .01012 .06886 .0401 -.00051 .3624∗∗∗

(.04104) (.0728) (.04048) (.05797) (.1072)
Past innovation knowledge

L1.Renewable -.00055∗∗∗ -.00046 -.00045∗∗∗ 5.3e-05 -.00077
(.00013) (.00043) (.00016) (.00052) (.00062)

L1.Fossil fuel 4.9e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Baseload -.001∗∗∗ -.00076∗∗∗ .00036

(.00027) (.00023) (.00049)
L1.Peakload .00098∗∗∗ .00082∗∗∗ .00017

(.0002) (.00017) (.00031)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.0e-05 -5.8e-06 -1.4e-05 -5.2e-05
(2.0e-05) (2.7e-05) (1.8e-05) (2.1e-05) (5.1e-05)

L1.Fossil fuel -3.7e-05∗∗∗ -5.7e-06
(1.4e-05) (1.6e-05)

L1.Baseload 2.2e-05 2.3e-05 5.5e-05
(1.9e-05) (2.3e-05) (3.5e-05)

L1.Peakload -.00013∗∗∗ -9.9e-05∗ -2.7e-05
(4.8e-05) (5.5e-05) (9.4e-05)

Macroeconomic indicators
L1.GDP -.1463 -.1171 -.1941∗∗ -.1632∗ -.4785∗∗

(.08928) (.1004) (.09409) (.09283) (.1935)
L1.GDP per capita -.362 .591 .2939 1.267∗∗ .6879

(.815) (.8263) (.8069) (.644) (1.629)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39293 27233 39317 25194 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table 3.3: Fixed-effect Poisson estimates of fossil fuel price effect in renewable and fossil fuel technologies.

Dependent variable: firm-level number of patents
Renewable Fossil fuel

(1) (2) (3) (4) (5) (6) (7) (8)
Energy prices including taxes

L1.Coal price -.3864∗∗ -.3381∗ -.3385∗ -.2919 -.2275 -.2416
(.1801) (.2105) (.201) (.2197) (.183) (.1902)

L1.Natural gas price -.1464 .00125 -.03939 .04175
(.1206) (.1275) (.1146) (.1248)

L1.Electricity price .1745 .1184 .2533 .1633
(.222) (.2632) (.2845) (.2433)

Research subsidies
L1.Renewable .1589∗∗ .1505∗∗ .1175 .1507∗∗ .04735 .04613 .03395 .05016

(.07334) (.07605) (.07551) (.07337) (.1122) (.1125) (.1117) (.1121)
L1.Fossil fuel .00146 -.01132 -.02565 -.01126 .0569 .04474 .04178 .04705

(.03799) (.03848) (.04143) (.03969) (.05768) (.05448) (.06002) (.0564)
L1.Efficiency-improving .01012 .02349 .03183 .02339 .06887 .08057 .08037 .07852

(.04104) (.04398) (.0407) (.04351) (.0728) (.07036) (.06754) (.06932)
Past innovation knowledge

L1.Renewable -.00055∗∗∗ -.00056∗∗∗ -.00055∗∗∗ -.00056∗∗∗ -.00046 -.00049 -.00042 -.00049
(.00013) (.00013) (.00013) (.00013) (.00043) (.00042) (.00045) (.00042)

L1.Fossil fuel 4.9e-05 5.0e-05 6.3e-05 5.0e-05 .00025∗∗∗ .00025∗∗∗ .00025∗∗∗ .00025∗∗∗
(.00017) (.00017) (.00017) (.00017) (4.9e-05) (4.7e-05) (4.8e-05) (4.7e-05)

Past innovation spillovers
L1.Renewable -2.3e-05 -2.7e-05 -3.1e-05 -2.7e-05 -3.0e-05 -3.4e-05 -3.3e-05 -3.3e-05

(2.0e-05) (1.8e-05) (2.1e-05) (1.9e-05) (2.7e-05) (2.6e-05) (2.6e-05) (2.6e-05)
L1.Fossil fuel -3.7e-05∗∗∗ -3.6e-05∗∗∗ -3.1e-05∗∗ -3.6e-05∗∗ -5.7e-06 -4.6e-06 -4.6e-06 -6.1e-06

(1.4e-05) (1.3e-05) (1.3e-05) (1.4e-05) (1.6e-05) (1.5e-05) (1.5e-05) (1.6e-05)
Macroeconomic indicators

L1.GDP -.1463 -.1571∗ -.09257 -.157∗ -.1171 -.1473 -.07268 -.1499
(.08928) (.0882) (.09196) (.08751) (.1004) (.1003) (.1013) (.1015)

L1.GDP per capita -.362 -.1069 .1375 -.1098 .5909 .8459 .7526 .8235
(.815) (.9062) (.7839) (.7866) (.8263) (.8207) (.828) (.8104)

Pre-sample patents Yes Yes Yes Yes Yes Yes Yes Yes
Pre-sample activity Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 39293 39293 39293 39293 27233 27233 27233 27233
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.

103



Table 3.4: Fixed-effect Poisson estimates of fossil fuel price effect in renewable, base- and peak-load technologies.

Dependent variable: firm-level number of patents
Renewable Base load Peak load

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Energy prices including taxes

L1.Coal price -.4144∗∗ -.3437∗ -.3522∗ -.4051∗∗ -.2934∗∗ -.2999∗∗ -.5788 -.5825 -.5652
(.1666) (.1838) (.1862) (.1695) (.1492) (.1466) (.3614) (.3366) (.3329)

L1.Natural gas price -.1594 .0267 -.1061 .02338 -.1955 -.06678
(.1274) (.124) (.1158) (.135) (.2452) (.2031)

L1.Electricity price .2498 .1497 .3674 .2335 -.02734 -.05545
(.1925) (.2376) (.2372) (.2114) (.37) (.3948)

Research subsidies
L1.Renewable .1273∗ .1285∗ .1017 .1302∗ -.02835 -.02006 -.03171 -.02055 .1749 .1747 .1394 .1732

(.0738) (.07463) (.07427) (.07368) (.08402) (.0842) (.08214) (.08432) (.2144) (.2137) (.2059) (.2126)
L1.Fossil fuel .02175 -.00256 -.01638 -.00101 .06796 .04559 .04525 .04696 .06561 .06759 .02104 .06334

(.04014) (.04278) (.04187) (.04555) (.0585) (.05426) (.05941) (.05406) (.08176) (.08105) (.08605) (.08102)
L1.Efficiency-improving .03971 .05236 .05897 .05143 -.00051 .01431 .01779 .0136 .3624∗∗∗ .3622∗∗∗ .3746∗∗∗ .3634∗∗∗

(.04047) (.0409) (.04037) (.04201) (.05797) (.05757) (.05633) (.05767) (.1072) (.1071) (.1036) (.1057)
Past innovation knowledge

L1.Renewable -.00045∗∗∗ -.00046∗∗∗ -.00045∗∗∗ -.00046∗∗∗ 5.3e-05 2.4e-05 8.6e-05 2.2e-05 -.00077 -.00076 -.00063 -.00077
(.00016) (.00016) (.00016) (.00016) (.00052) (.00051) (.00054) (.00051) (.00062) (.00062) (.00061) (.00062)

L1.Baseload -.001∗∗∗ -.00102∗∗∗ -.00097∗∗∗ -.00102∗∗∗ -.00076∗∗∗ -.00078∗∗∗ -.00074∗∗∗ -.00078∗∗∗ .00036 .00036 .00037 .00036
(.00027) (.00027) (.00027) (.00027) (.00023) (.00023) (.00024) (.00023) (.00049) (.00049) (.00047) (.00049)

L1.Peakload .00098∗∗∗ .00102∗∗∗ .00101∗∗∗ .00101∗∗∗ .00082∗∗∗ .00086∗∗∗ .00084∗∗∗ .00085∗∗∗ .00017 .00016 .00019 .00018
(.0002) (.0002) (.00021) (.0002) (.00017) (.00018) (.00019) (.00018) (.00031) (.0003) (.00029) (.00029)

Past innovation spillovers
L1.Renewable -5.7e-06 -1.7e-05 -2.4e-05 -1.5e-05 -1.4e-05 -2.2e-05 -2.5e-05 -2.1e-05 -5.2e-05 -5.1e-05 -6.3e-05 -5.5e-05

(1.8e-05) (1.8e-05) (1.9e-05) (1.8e-05) (2.1e-05) (2.1e-05) (2.0e-05) (2.0e-05) (5.1e-05) (4.8e-05) (4.6e-05) (4.5e-05)
L1.Baseload 2.2e-05 1.4e-05 1.5e-05 1.4e-05 2.3e-05 1.8e-05 1.9e-05 1.9e-05 5.5e-05 5.6e-05 4.8e-05 5.3e-05

(1.9e-05) (2.2e-05) (1.8e-05) (2.2e-05) (2.3e-05) (2.3e-05) (2.3e-05) (2.3e-05) (3.5e-05) (3.9e-05) (3.9e-05) (3.9e-05)
L1.Peakload -.00013∗∗∗ -.0001∗∗ -8.6e-05∗ -.00011∗∗ -9.9e-05∗ -8.6e-05 -7.6e-05 -9.1e-05 -2.7e-05 -2.9e-05 2.2e-05 -1.4e-05

(4.8e-05) (5.1e-05) (4.7e-05) (5.3e-05) (5.5e-05) (5.4e-05) (6.1e-05) (6.1e-05) (9.4e-05) (9.7e-05) (.00011) (9.4e-05)
Macroeconomic indicators

L1.GDP -.1944∗∗ -.2132∗∗ -.1444 -.2111∗∗ -.1632∗ -.2097∗∗ -.1189 -.209∗∗ -.4785∗∗ -.4749∗∗ -.3556∗ -.477∗∗

(.09409) (.09119) (.09491) (.09064) (.09283) (.09458) (.09471) (.09462) (.1935) (.1869) (.189) (.1865)
L1.GDP per capita .287 .4706 .6094 .4498 1.267∗∗ 1.511∗∗ 1.409∗∗ 1.52∗∗ .6879 .6785 .78 .6797

(.8069) (.8171) (.8016) (.7814) (.644) (.6394) (.6565) (.6585) (1.629) (1.65) (1.575) (1.64)
Pre-sample history Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 39317 39317 39317 39317 25194 25194 25194 25194 9782 9782 9782 9782

Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table 3.5: Fixed-effect Poisson estimates of innovation in general and efficiency-improving nonre-
newable technologies using global data from 1978 to 2009.

Dependent variable: firm-level number of patents

Renewable Fossil fuel Renewable Fossil fuel
general

Fossil fuel
Eff.- improv.

(1) (2) (3) (4) (5)
Energy prices including taxes

L1.Coal price -.3864∗∗ -.2919 -.2829∗ -.2756 -.4781∗∗

(.1801) (.2197) (.1734) (.2306) (.2044)
L1.Electricity price .1745 .2533 .104 .2184 -.1111

(.222) (.2845) (.2284) (.2966) (.3321)
Research subsidies

L1.Renewable .1589∗∗ .04735 .1633∗∗ .06486 -.05534
(.07334) (.1122) (.07353) (.1074) (.1177)

L1.Fossil fuel .00146 .0569 -.01499 .07245 .1021
(.03799) (.05768) (.03968) (.05756) (.07579)

L1.Efficiency-improving .01012 .06886 .0225 .07435 .1242
(.04104) (.0728) (.0416) (.07893) (.1022)

Past innovation knowledge
L1.Renewable -.00055∗∗∗ -.00046 -.00055∗∗∗ -.00054 -.00016

(.00013) (.00043) (.00014) (.00045) (.00043)
L1.Fossil fuel 4.9e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Pure fossil fuel .00013 .00033∗∗∗ .00033∗∗∗

(.00034) (6.5e-05) (8.9e-05)
L1.Efficiency-improving -.00072 -.00064 -.00188∗∗∗

(.00266) (.00044) (.00053)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.0e-05 -2.9e-05 -3.8e-05 -2.6e-05
(2.0e-05) (2.7e-05) (2.3e-05) (2.7e-05) (3.0e-05)

L1.Fossil fuel -3.7e-05∗∗∗ -5.7e-06
(1.4e-05) (1.6e-05)

L1.Pure fossil fuel -5.0e-05∗∗ -5.8e-06 -2.7e-05
(2.0e-05) (2.1e-05) (2.9e-05)

L1.Efficiency-improving 7.9e-05 4.6e-05 9.3e-05
(5.9e-05) (8.9e-05) (.00013)

Macroeconomic indicators
L1.GDP -.1463 -.1171 -.1616 -.07996 -.1449∗

(.08928) (.1004) (.1012) (.09475) (.08561)
L1.GDP per capita -.362 .5909 -.1454 .6122 .6944

(.815) (.8263) (.8161) (.7438) (.5516)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39293 27233 39292 26221 10768
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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3.6 Robustness analysis

To complete our empirical analysis, we discuss potential caveats associated with our analysis.

Specifically, we investigate common estimation issues of dynamic count data models, alternative

energy tax specifications, the selection of the most innovative countries and firms, alternative

definitions of spillovers, adequate lag structures and other macroeconomic controls.

We start by considering the choice of estimator. One distinguishing feature of patent data is

that in each period, the number of patents that a firm applies for depends on two factors. First, it

depends on whether they decide to engage in research on a given technology. Second, it depends

on whether the firm’s R&D activity is successful (i.e., results in a patent application). In other

words, a firm can have a zero patent count in a given period either because its R&D activity was

not successful or simply because it chose not to enter the research market. This explains why we

typically observe a large number of zeros in patent data. To account for this over-dispersion in the

data, we employ a zero-inflated Poisson estimator, where we first use a logit model to determine

whether a firm engaged in research in a given period, i.e., the extensive margin. Then we use

a Poisson estimator to determine whether the firm is successful at innovating, conditional on a

positive R&D decision, i.e., the intensive margin.

Table C-10 presents zero-inflated Poisson estimation results for the baseline specification in

equation (3.3). We lag the explanatory variables by one period to account for the delayed responses

of firms and to reduce contemporaneous feedback effects. Columns (1) and (2) present Poisson

estimates of firm-level patent counts; i.e. the intensive margin which explains whether a firm’s

research activity successfully leads to the application of a new patent. On the other hand, columns

(3) and (4) present our logit estimates of the extensive margin which explains a firm-level likelihood
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to engage in research in a given period.22 These results confirm our main findings.

Another issue to consider when working with count panel data is the degree of over-dispersion,

a situation where the variance exceeds the mean. The negative binomial distribution is more

appropriate than a fixed-effects Poisson specification when data exhibits a high degree of over-

dispersion. Our data do not represent a high over-dispersion problem as we control for entry and

exit of firms in the market; therefore, our baseline estimates use a Poisson fixed effects estimator.

However, one might argue that firms in our unbalanced panel appear to be more productive than

in reality because we only include them in the sample after they apply for their first patent. To

address this, we consider fully balanced panel data where all firms are active from 1978 to 2009.

The fully balanced panel data exhibits an over-dispersion problem because the variance is 88 times

larger than the mean; therefore, we use a negative binomial specification. Poisson estimates are

used as a starting point for the negative binomial estimation. Table C-11 shows that our main

results are robust to a negative binomial specification.

Another potential issue to consider with a Poisson regression specification is unobserved het-

erogeneity. Our baseline estimates include technology-specific average patenting activity prior to

our sampling period of 1978-2009 (Blundell et al., 1995). These controls are not statistically signif-

icant for any technology type, which suggests that pre-sampling patenting activity is not a strong

determinant of the likelihood of innovation during the sampling period.23 However, controlling for

pre-sampling activity allows us to take the wide heterogeneity in firms’ innovation success rate into

consideration. In addition, we estimate our baseline specification with alternative definitions of

patenting activity in the sampling period. In particular, we consider the average number of total

patents prior to 1978 and the technology-specific average patenting activity only in the years a
22Because the logit estimates explain the probability of observing excess zero patent counts, a negative impact on

the likelihood of excess zero patents is interpreted as a positive probability of engaging in research.
23In Table C-22, we exclude pre-sample activity from our sample and find results consistent with our main estimation

results.
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firm was active in the pre-sampling period. Because our main results and the estimated values

are unchanged, we do not report a table with these estimates; however, they are available upon

request.

In addition to considering alternative estimators, we also choose alternative variables to repre-

sent the effect of fossil fuels, past innovations, and macroeconomic indicators. Regarding the effect

of fossil fuel prices in innovation, Table C-12 presents additional fossil fuel prices. In particular,

we consider the square term of coal prices and the gaps between electricity, coal, and oil prices.

These estimates suggest that a higher gap between electricity and coal prices promotes innovation

in renewable technologies, which implies a complementary relationship between renewable energy

innovation and base-load fossil fuel innovation. We do not find evidence for a statistically significant

effect of oil prices on innovation. We do not find this surprising because at the global level, the use

of oil in electricity generation is modest (see Table 3.1).

In addition to energy prices, we analyze past innovation in more detail. One might argue that

it takes several years before past innovation affects current innovation levels. To address this, we

include past firm-level and spillover innovations lagged by 2 and 3 years in Tables C-13 and C-14.

Our main conclusions about the impact of past innovation are still valid with these alternative lag

structures.

Another issue related to past innovations relates to the definition of spillovers. Our baseline

estimates, which include 11 regions, show that spillovers are not strong determinants of innovation.

One reason for this low significance is that we are using triadic patents, which by construction,

have a global nature. We do, however, consider alternative definitions of regions. In particular, we

consider one global innovation spillover as well as five geographical regions: Africa, Asia and the

Pacific, Europe, Latin America and the Caribbean, and North America. Overall, Table C-15 shows

that these coefficients are similar to our earlier estimates in Table 3.2; therefore, our main results
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are robust to different definitions of regional spillovers.

Finally, we consider alternative macroeconomic characteristics in addition to controlling for the

size of the economy and its wealth. Following Carlino et al. (2007), who present evidence for a

positive effect of employment density on the innovation rate, we also control for population density.

Table C-16 shows that population density is not statistically significant and that our main results

are robust. One might also argue that energy consumption could be a determinant of innovation.

Because the correlation between GDP and energy consumption is 85%, we exclude country-level

energy consumption from our estimates. We include a country fixed effect in all our specifications

to control for other macroeconomic indicators.

In addition to considering different specifications of our main equation, we categorize our data

into sub-groups to identify whether groups of firms behave differently systematically. First, we

analyze the choice of countries. While our data set contains 26 countries, the majority of patent

applications are concentrated in a small number of countries. In Table C-17, we conduct a firm-level

fixed-effect Poisson estimation using data from France, Germany, Japan, U.K. and U.S., which are

the five countries with the largest number of patents in the sample. Compared to our full sample

estimates, we find a stronger negative impact of coal prices on renewable innovation in these five

countries, which reassures our prediction about the complementarity between renewable energy and

base-load fossil fuel in electricity generation.

Our second group categorization involves firms. Our data contain a diverse set of 13,054 firms.

We separate these firms into large and small research firms in Table C-18. We consider a firm large

if they applied for more than 15 patents in total during the sampling period. These firms represent

the top 15% of innovators in our sample. We consider alternative definitions of large firms, including

20 (top 11,7%) and 10 (top 21,7%) patents per firm, but these results are consistent with those in

Table C-18, and we exclude them from the Appendix. Finally, we categorize firms as specialized or

109



mixed firms in Table C-19. We consider a firm specialized if they only apply for patents in either

renewable, base-, or peak-load technologies while mixed firms are those that applied for a patent

in more than one technology. Specialized firms represent 53% of our sample. Table C-19 shows

that firms that specialized in renewable technologies are more likely to be negatively affected by

an increase in the price of coal than other types of firms. Moreover, compared with mixed firms,

specialized firms also respond more strongly to changes in research subsidies and past innovation.

A final issue we address is the definition of renewable technologies. While most patent ap-

plications in renewable technologies involve solar and wind technologies (see Table C-8), a small

number of patents include technologies that can be used for base-load electricity generation. To

address this, we exclude patent applications from hydro, geothermal, and biomass technologies

from renewable technologies in Table C-20. These results show that our main results are robust. In

addition, we found that increasing coal prices produces a more negative impact on the innovation of

these peak-load renewable energies, which is in line with the complementary relationship between

base- and peak-load electricity. Finally, in Table C-21, we categorize all patent applications into

technologies used for base- and peak-load electricity generation, instead of renewable and fossil fuel

technologies. We found that increasing the coal price negatively affects innovation in both base-

and peak-load technologies. As explained earlier, this is due to the fact that base- and peak-load

power plants complement each other in electricity generation.

Overall, these alternative specifications show that our main results presented in Section 3.5

are robust to different assumptions and econometric specifications. This suggests idiosyncrasies

in the responses of innovation to changes in energy prices in the electricity sector. Specifically,

because renewable energies like the sun or wind complement base-load fossil fuels such as coal in

electricity generation, discouraging fossil fuel innovation through coal or carbon taxes may produce

unintended negative consequences on renewable innovation. On the other hand, taxing peak-load
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fossil fuels such as natural gas may steer the direction of innovation in the electricity sector towards

more renewable energy by lowering fossil fuel innovation. Finally, our results also suggest that

to effectively promote innovation in renewable energy, a combination of tax and research subsidy

policies is desirable.

3.7 Policy recommendations and concluding remarks

As scientists and policymakers seek options to reconcile concerns about climate change with eco-

nomic growth targets, increasing the use of renewable technologies seems crucial, particularly for

carbon-intensive sectors such as electricity generation. The idiosyncrasies in the substitution rela-

tionship between renewable technologies and various types of fossil fuel technologies imply that an

all-inclusive tax policy that raises the price of all fossil fuels may have unintended consequences in

the development of renewable technologies. In the present paper, we explore this issue by analyzing

the specific roles of various fossil fuel taxes on renewable innovation in the global electricity market.

Our study supports the idea that policymakers interested in using energy price signals to induce

renewable innovation in the electricity sector must carefully structure energy regulations and taxes.

In contrast to previous work, we are able to infer about the relationship between energy prices

and innovation in base- and peak-load fossil fuel technologies. While many expect energy taxes to

reduce the innovation gap by promoting the invention of renewable technologies, we find that coal

prices have a negative impact on the invention of renewable technologies. This implies that until we

are able to replace the use of coal from base-load electricity generation, renewable energy sources

and coal are complements in electricity generation. Thus, taxing coal and a carbon tax that raises

coal prices have negative effects not only on the development of base-load technologies, but also on

the development of renewable technologies.

We also find evidence in support of research subsidies to reduce the innovation gap between fossil
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fuels and renewables. In fact, policymakers can foster new inventions in renewable technologies by

increasing renewable research subsidies and/or reducing subsidies for general fossil fuel technologies.

Finally, a third mechanism to change the direction of innovation relates to historical research

activity. Successful past research in fossil fuel technologies encourages more fossil fuel innovation

in the future. Unfortunately, we do not observe such a relationship when we consider renewable

energy innovation, potentially due to the absence of storable forms of renewable energy given the

current state of technology. Finally, we find that economic growth policy can successfully enhance

renewable innovation in the electricity sector through discouraging the development of fossil fuel

technologies.

In short, our results suggest that regulations that raise the prices of all fossil fuels may be

ineffective at fostering the invention of new renewable technologies in the electricity sector because

of the imperfect substitution relationship between renewable energy and fossil fuels in electric-

ity production. Researchers and policymakers interested in fostering renewable innovation in the

electricity sector should consider this heterogeneity in their analysis.
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Chapter 4

What are the leading contributors to growth of private

firms in transitional economies?

4.1 Introduction

Private enterprises are known to be the main contributor to employment and local development in

developing countries. Specifically, the private sector in developing countries provides 90% of jobs,

therefore, promoting the development of the private sector is critical in alleviating global poverty.

For decades, research on firms’ performance in developing countries have identified a long list of

factors that contribute to firm-level efficiency.1 Yet, little is known about the relative importance

of these efficiency determinants, primarily due to availability of data. This makes it challenging for

policymakers to identify the most effective policy targets to promote the development of the private

sector in developing countries. For this reason, many efforts have been made to improve the quality

of the firm-level data in developing countries. In light of the recent improvements in firm-level data

for developing countries, this paper presents a comprehensive analysis on the contribution of various

internal and external factors to the profitability of private enterprises in developing countries.

Specifically, I ask the following research questions. First, how efficient are firms in developing

countries? Second, what are the most important determinants of efficiency? Finally, what policy is

the most effective at improving the firm-level efficiency? I answer these questions by combining the

stochastic frontier framework, an econometric technique commonly used in the study of productive
1For example, Tybout (2000) and Bloom et al. (2010) summarize the factors that contribute to the productivity

of firms in developing countries.
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efficiency, with a detailed firm-level panel dataset of Vietnamese firms between 2005 and 2013.

Vietnam is an interesting site to study the above research questions. First, as a transitional

economy, Vietnam shared many similarities to other developing countries. For example, small and

medium firms comprise the majority (95%) of the Vietnamese private sector and hire the largest

share of the Vietnamese labor force (Ho et al., 2014). Moreover, like other transitional economies,

Vietnam has undergone a number of reforms, which transformed the country from a closed economy

to an open market economy.2 Second, the ranking of the determinants of efficiency requires detailed

data on firms’ various internal and external characteristics such as their financial accounts, human

capital, age, size and many other factors. Unfortunately, such data are not widely available across

all developing countries. In Vietnam, since 2005, the Vietnam Central Institute for Economic

Management (CIEM) has collaborated with the University of Copenhagen to establish the Small

and Medium Enterprise survey in an effort to improve the understanding of firms’ performance

in Vietnam (Tarp and Rand, 2013).3 This comprehensive firm-level survey spans between 2005

and 2013, covers multiple industries and geographical regions and includes both formally-registered

firms and informal firms. The detailed information provided by this dataset is useful to analyze the

relative importance of various determinants of firm-level profitability in a transitional economy.

To study the relative importance of the firm-level efficiency determinants, I employ a stochastic

profit frontier framework, an econometric techniques commonly used in the study of productive

efficiency.4 Under this framework, firms maximize profits by choosing a combination of inputs and
2One of the most significant reforms is the Enterprise Law of 2000, which simplifies the business registration process

from 3 months to 15 days and removes discrimination in terms of access to resources (e.g. finance, capital, labor)
between different types of business, for example, between state-owned and private-owned firms or between domestic
and foreign firms. While these reforms provide a more level playing field in the Vietnamese business environment,
they also come with challenges, especially for private small and medium firms who are now exposed to a larger market
with tougher competition.

3This dataset has been used to answer a number of research questions. For example, Hansen et al. (2009) study
the role of government support on firm-level growth. Larsen et al. (2011) study the employment structure while Rand
(2007) studies the credit and capital structure of Vietnamese manufacturing firms.

4For example, Kumbhakar and Lovell (2003) provides an overview of stochastic frontier analysis and its applica-
tions.

114



outputs, taking as given technology and prices. Compared to the regular linear regression model,

this profit frontier model has two advantages. First, it allows the estimation of the gap between

firms’ actual profit and their maximum attainable profit. Second, the stochastic frontier model

allows the separation of firms’ deviations from the optimal profit into two categories, in contrast

to regular linear regression models which lump all deviations from a firm’s optimal profit level into

one symmetrically distributed random error term. The first type of deviation is due to randomness

in the production process such as weather or other acts of nature, therefore, it either positively or

negatively influences firm’s profitability and is modeled using the symmetrically distributed error

term, as in traditional linear regression models. The second type of deviation comes from the firms’

inability to allocate their resources efficiently, given technology, prices and the existence of random

events. This resource allocation failure negatively impacts the firm’s profitability, therefore, it is

modeled as a one-sided error that only takes negative values. In addition, the direct modeling of

this resource allocation failure is a useful tool to study the relative importance between the main

determinants of firm-level efficiency.

The estimation results show that on average, private manufacturing firms in Vietnam lose about

30.5% or approximately 285,493,400 Vietnam dongs (12,900 U.S. dollars) of annual profit due to

inefficiency.5 Moreover, the problem of inefficiency is more severe in heavy industries than light

industries. The average annual profit loss in heavy industries due to inefficiency is 336,316,300

Vietnam dongs (approximately 15,288 U.S. dollars) while the average annual profit loss in light

industries is only 245,824,100 Vietnam dongs (approximately 11,174 U.S. dollars). Previous stud-

ies in other developing countries also found similar level of inefficiency. For example, Wang and

Wong (2012) find an average efficiency score of 70% in developing countries. Tybout (2000) pro-

vides a summary of the inefficiency loss in various developing countries across different industries.
5The exchange rate between Vietnam dongs and U.S. dollars is approximately 22,000 Vietnam dongs per U.S.

dollar as of October 2016.
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Therefore, Vietnam provides a good case study for other private firms in the developing world.

In addition to estimating the efficiency gap, this paper reveals the relative importance of var-

ious efficiency determinants on the firm-level profitability. I find that firm-specific characteristics

are more important in shaping the profitability of a firm than characteristics of the external en-

vironment in which the firm operates. This may be an optimistic signal for private enterprises

in developing countries, as their active efforts in bettering their production structure can be well-

rewarded. Moreover, policies that encourage firms to improve their own internal strength are crucial

to promote the firm-level efficiency. For example, improved access to the labor market, innovation

incentives to upgrade the production process and labor training programs are found to be the most

significant policies for the development of the private sector. The results also imply the importance

of designing policies that meet the specific needs of each business segment in the private sector.

For example, the light industries are more likely to benefit from inter-business partnerships and

formalization while government support in the forms of technology and human resource training is

more beneficial for the heavy industries. Finally, the design of enterprise development policy needs

to be coupled with efforts to reduce corruption, as corruption has been found to crowd out the

positive impacts of other factors.

This paper is related to the extensive literature studying firm-level productivity growth. This

literature has identified a long list of factors that influence the firm-level productivity, however,

little has been known about the relative importance of these factors, due to the lack of a compre-

hensive firm-level dataset in developing countries (Tybout, 2000; Syverson, 2011). Therefore, while

previous studies gain useful insights into the role of individual factors in determining productiv-

ity growth, they also present a challenge for policymakers to identify the most important policy

targets. Using a detailed firm-level panel dataset in Vietnam, this paper provides practical policy

recommendations to increase productivity growth in developing countries through ranking various
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efficiency determinants by their orders of effectiveness. As the firm-level productivity is known to

be an important indicator of aggregate industry- or country-level productivity (Hopenhayn, 2014),

this paper also contributes to the literature studying the sources of aggregate productivity growth

by identifying the most important productivity drivers at the micro level.

The rest of the paper is organized as follow. Section 4.2 presents the econometric framework

while section 4.3 describes the empirical context of the study. Section 4.4 discusses the main

estimation results and section 4.5 presents the robustness analysis. Finally, a concluding remark is

provided in section 4.6.

4.2 Econometric framework

The goal of this study is to understand the relative importance of various factors in determining

productive efficiency in developing countries. The literature studying productive efficiency is exten-

sive and can be dated back to the theoretical work by Farrell (1957), who defines firms’ efficiency

as the distance between firms’ current productive status and their maximum attainable outcome

based on criteria such as production output, cost or profit. Econometric specification of firms’

production behavior that allows for the existence of inefficiency is known as stochastic frontier

analysis. This technique assumes that firms operate on or beneath a productive frontier, which

captures the optimal allocations of production activities such that firms’ production cost (profit)

is minimized (maximized). Firms who operate on the productive frontier are considered efficient

while firms who operate underneath the productive frontier are considered inefficient. The further

a firm is from its productive frontier, the more inefficient it is.

Stochastic frontier analysis assumes two factors that affect firms’ deviations from their pro-

ductive frontier. The first characterizes the randomness in the production process (for example,

weather or other acts of nature) and thus takes on both positive and negative values. The second

117



characterizes the possibility that the firm is operating inefficiently and thus takes on only negative

values. Thus, econometric specification under stochastic frontier analysis departs from the assump-

tion of a symmetric random error in traditional ordinary least squares (OLS) regressions. Instead,

it involves both a two-sided error term that captures the randomness in production and a one-sided

error term that captures firms’ inefficiency. This allows the estimation of the mean and variance of

efficiency, thereby informing policymakers about the extent to which efficiency vary among firms

(Kumbhakar and Lovell, 2003).

Many previous studies rely on the estimation of production or cost frontiers to determine the

efficiency level of a decision-making unit. Under this approach, firms choose between different com-

binations of inputs to produce an exogenous level of output. While the assumption of exogenous

output is appropriate in some settings, in most cases, producers are responsible for choosing both

the input and output quantities.6 To account for this, the estimation of firms’ efficiency measure-

ment should involve a profit frontier specification. In this paper, I employ the stochastic profit

frontier framework to estimate the profit efficiency of Vietnamese SMEs and to analyze the factors

that contribute to the performance of these firms. Following Kumbhakar and Lovell (2003), the

specification of the stochastic profit frontier model is as follow:

ln πait = ln π (pit,wit, kit) + εit − uit + ηs + ηt + ηst, (4.1)

where i denotes firm and t denotes time. πait denotes a firm’s actual short-run profit, which is cal-

culated as its revenue minus its variable costs (the sum of labor and material costs). π (pit,wit, kit)

represents the firm’s short-run profit frontier, which is the maximum attainable profit the firm

could achieve, given the variable input price vector (wit), the output price (pit) and the quantity
6See (Kumbhakar and Lovell, 2003) for examples of stochastic frontier analysis using production and cost functions.
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of fixed input (kit).7 This econometric framework assumes that firms are price-takers, which is a

reasonable assumption for small and medium firms.8

Two factors contribute to the deviation of firm’s actual profit from its profit frontier. First,

there exists randomness in the production process, due to an unusually favorable (or unfavorable)

operating environment (for example, weather or other acts of nature), which may cause firms

to perform better (or worse) than their potential. This randomness in the production process

is captured in the mean-zero error term εit. Second, a firm can deviate from its profit frontier

because it was not operating efficiently. In other words, the firm was unsuccessful in solving its

optimization problem and chose a combination of outputs and inputs that does not lead to the

maximum attainable profit. These mistakes in the production of outputs and uses of inputs are

captured in the non-negative random variable uit (hereafter, the inefficiency parameter). Finally,

ηs, ηt, and ηst capture industry-, time- and industry×time fixed effects. The fixed effects capture

the variations between industries and over time of the profit frontier.9

Estimating the model in (4.1) requires parametric specifications of the functional form of

ln π (pit,wit, kit) as well as the distributions of εit and uit. I assume that the profit frontier

ln π (pit,wit, kit) takes the form of a translog profit function.10 The translog profit function must

satisfy homogeneity of degree one in input and output prices. This can be achieved by normalizing
7Since the time frame of the data is only between 2005-2013, a short-run profit frontier seems to be a more

appropriate specification than a long-run version. In the short run, firms decide the quantity of output to produce
and the quantity of each input to use in order to produce that output taking as given prices and fixed inputs such
as machinery and equipment. Therefore, the short-run profit frontier is a function of the input and output prices,
which include the quantity of fixed inputs as a control variable.

8While firm-level data on total revenue and expenditures are available, unfortunately, firm-level price data are not
available, thus in this paper, I use input and output price indices to infer about the price level faced by each firm.
Section 4.3 describes in details the construction of these indices.

9As described later in the data section, firms enter and exit the Vietnamese SMEs dataset at various points in
time, therefore, an inclusion of a firm fixed effects may distort the results. I return to the impact of entries and exits
in the robustness check section 4.5.

10Compared to the Cobb-Douglas specification, the translog profit function is a more widely used functional form
because of its flexibility and its provision for economies of scale to vary with different output and input levels. Hence,
the translog profit function has been widely applied in various settings. For example, Fitzpatrick and McQuinn (2008)
uses the translog profit function to study bank efficiency, while Rahman (2003) and Wang et al. (1996) applies this
framework to study agricultural productivity.
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the input prices and profit by the output price.11 Let ln πit = ln π (pit,wit, kit), the normalized

translog profit frontier (ln πit
pit

) can be written as follow:

ln πit
pit

=α0 +
∑
j

αj ln wjit
pit

+ αk ln kit + 1
2
∑
j

∑
q

δjq ln wjit
pit

ln wqit
pit

+ 1
2δkk(ln kit)

2

+
∑
j

δjk ln wjit
pit

ln kit,
(4.2)

where wjit denotes the price of variable input j for firm i during period t and j is equal to m (raw

materials) or l (labor).

Combining (4.1) and (4.2) yields the following estimation equation:
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+ 1
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2

+
∑
j

δjk ln wjit
pit

ln kit + εit − uit + ηs + ηt + +ηst.
(4.3)

In addition to the homogeneity restriction, the translog profit function (4.3) also satisfies a

symmetry condition, that is δjq = δqj and δjk = δkj for all j, q, k. Finally, εit is assumed to follow

a normal distribution (ε ∼ N(0, σ2
ε )) and uit follows a truncated (at zero) normal distribution

(u ∼ N+(0, σ2
u)).

The objective of this paper is not only to estimate the level of efficiency for Vietnamese SMEs

but also to identify the factors that contribute to inefficiency. To do so, I model the distribution

function of the inefficiency parameter uit as a function of other explanatory variables. Specifically:12

σ2
u,it = exp(zTitβu), (4.4)

11One concern with this normalization process is that it may cause endogeneity issues as output price appears on
both the left-hand and right-hand sides of the estimation equation. I account for this issue in the robustness section
4.5 by estimating a non-normalized profit function.

12See Kumbhakar and Lovell (2003) for a summary of the literature.
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where zit = (z1it, z2it, ..., zkit, ..., zKit) is a firm-specific vector of variables which may influence

the efficiency of a firm and βu = (β1u, β2u, ...βku, ...βKu) is the corresponding coefficient vectors.

The efficiency explanatory vector zit includes firm-specific characteristics that determine a firm’s

success or failure at allocating their resources in a profit-maximizing manner, for example, the firm’s

age, size and various aspects of the business and legal environment that the firms operate in (e.g.,

competition, access to credit and government support). Since uit captures the amount of profit

lost due to inefficiency, a positive βku(k = 1, ...K) indicates a positive relationship between the

efficiency explanatory variable zkit, (k = 1, ...K) and a firm’s inefficiency level, thereby suggesting

a negative relationship between zkit and a firm’s profit efficiency. On the other hand, a negative

βku(k = 1, ...K) suggests a positive relationship between zkit, (k = 1, ...K) and a firm’s profit

efficiency.

To infer about the firm-level profit efficiency, I simultaneously estimate equations (4.3) and

(4.4) using a maximum likelihood estimator. The estimation results allow us to understand the

profit efficiency level of individual firms in the sample and the marginal effects of the efficiency

explanatory variables zit on firm-level profit efficiency. Specifically, profit efficiency can be defined

as:

PEit = πait
πait|uit=0

, (4.5)

where PEit measures the actual profit for firm i at time t relative to the profit of a fully efficient

firm who is subject to the same prices and fixed input quantity. Finally, following Wang (2002) and

Kumbhakar and Lovell (2003), the implied changes in expected profit from changes in the efficiency

explanatory variables (∆E[lnπait]
∆zit ) are derived from the estimated values of βu and σ2

u,it. Specifically,

the marginal effect of the kth element of zit is given by:
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∆E[ln πait]
∆zkit

= −βku
σu,it

2

[
φ(0)
Φ(0)

]
, (4.6)

where zkit denotes the kth element of zit and βku is the corresponding coefficient estimated from

equation (4.4). φ(.) and Φ(.) are the probability density and probability distribution functions of

a standard normal variable. The magnitudes of the estimated marginal effects in equation (4.6)

allows us to quantify the relative importance of various factors on the firm-level efficiency.

4.3 Data and Identification Strategy

To understand the role of different variables on firm-level efficiency in developing countries, I analyze

the stochastic profit frontier model in the context of Vietnam, an Asian developing country located

in one of the fastest growing regions of the world. As a transitional economy, Vietnam shares

a number of similarities with other developing countries. First, the structure of the Vietnamese

business sector is similar to that of other developing countries, where the private sector plays

an important role in shaping the standards of living. According to the General Statistics Office

of Vietnam, the private sector the largest employer, accounting for 85% of total employment in

Vietnam (Ho et al., 2014). In addition, this sector contributes the largest share to GDP (49% in

2013) (General Statistics Office of Vietnam, 2013).13 The majority (95%) of this private sector

consists of small and medium enterprises (SMEs). 70% of these private SMEs operate in wholesale

or retail trade, manufacturing, and construction sectors, with the manufacturing sector being the

largest contributor to local employment (Ho et al., 2014). Second, like many other transitional

economies, Vietnam has undergone a number of reforms for the last three decades, in an effort to
13The contributions of the state-owned and the foreign direct investment sectors to Vietnam GDP in 2013 were

33% and 18% (General Statistics Office of Vietnam, 2013).
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transform from a closed, centrally-planned economy to an open, market oriented economy.14

The common characteristics between Vietnam and other developing countries make Vietnam

a good case study of the business environment in developing countries. As the private sector

contributes a significant share to the standards of living, it is important to identify the policy

that contributes the most to their success. To evaluate the effectiveness of different policies in the

business sector, the first step is to understand the production structure of Vietnam and the relative

importance of various determinants of the firm-level performance. While previous studies have

documented a long list of possible determinants of firm-level efficiency in developing countries, little

has been known about the relative importance of these determinants, as well as their interaction

with one another. This is partly due to the lack of a comprehensive firm-level dataset in developing

countries. In Vietnam, since 2005, the Vietnam Center Institute for Economic Management (CIEM)

has collaborated with the University of Copenhagen to establish the Small and Medium Enterprise

(SME) survey, in an effort to better understand various aspects in the operation of SMEs, the largest

component of the Vietnamese private sector. This comprehensive dataset covers different types of

ownership, industries and geographical regions of Vietnam.15 The dataset also contains rich firm-

level information, such as their financial accounts, production and sales structure, employment and

cost structure, economic constraints and potentials. Therefore, the data collected from the Vietnam
14The first major reform in Vietnam was the launch of Doi moi (Rennovation) in 1986, whose aim was to transform

the economy from central planning to market orientation. Yet, progress was slow during the decade following Doi moi.
Before the turn of the 21st century, the Vietnamese private sector faced a number of constraints such as complicated
and time-consuming business registration process, lack of access to land, capital and credit. It was until the early
2000s that Vietnam began to implement more drastic reforms as the country entered into a number of international
trade agreements such as the ASEAN Free Trade Agreement (AFTA), the Vietnam-U.S. bilateral trade agreement,
and particularly the accession to the World Trade Organization. The participation in these trade agreements has
required Vietnam to commit to a number of reforms that promote fair competition, provide protection for intellectual
property, and improve the transparency of the legal system. The most important milestone for the development of the
private sector was the Enterprise Law of 2000 and its revision in 2005. This law simplifies the business registration
process and shortens the registration waiting time from 3 months to only 15 days. The law also eliminates all legal
discrimination between different types of enterprises, for example, between state-owned and private enterprises, or
between domestic and foreign enterprises. Since the passage of the Enterprise Law, the private sector in Vietnam has
experienced drastic growth from only 47,158 enterprises in the period of 1991-1999 to nearly 250,000 active enterprises
in 2010, accounting for 85% of total employment (Ho et al., 2014).

15Figure D-1 in Appendix D-1 shows the geographical coverage of the survey.
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SME survey are in line with the objective of this study, which is to evaluate the relative importance

of various efficiency determinants on the firm-level productivity.

Using the Vietnamese private sector as a case study and taking advantage of the rich Vietnam

SME dataset, this paper aims at ranking the contributions of various factors to the productiv-

ity of firms. Rand and Tarp (2010) provide a detailed discussion of the Vietnam SME survey

methodology.16 Table 4.1 shows the distribution of firms across types of ownership and industry.

Each round of the survey includes approximately 2,500 firms. The majority of firms in the sample

are light-industry household businesses such as food producers, textile manufacturers, furniture

manufacturers and printing and publishing businesses. Table 4.1 also shows that there has been

an increase in the share of light-industry firms in the sample between 2005 and 2013. This is in

line with the overall population statistics of all Vietnamese non-state manufacturing enterprises

and with the dominance of light manufacturing in developing and transitional economies (General

Statistics Office of Vietnam, 2013; Dinh et al., 2012).

I employ the stochastic profit frontier approach discussed in section 4.2 as the main empirical

framework. The econometric specification of a firm’s stochastic profit frontier consists of two

component: (i) the profit frontier component that describes firms’ optimal level of profits given

their input and output prices (equation (4.3)); and (ii) a component that models the sources of

inefficiency for each firm (equation (4.4)). Therefore, it requires two sets of variables. First, the

estimation of the firm-level profit frontier in equation (4.3) requires information on firms’ financial

performance measured by annual profits, fixed inputs, and firm-level prices of output and variable

inputs. Second, the estimation of the efficiency explanatory equation (4.4) and the marginal effects

of different variables on efficiency (equation (4.6)) require data on the firm-specific internal and
16The firms in the survey are selected randomly from the population of non-state manufacturing enterprises based

on the Establishment Census and the Industrial Survey conducted by the Vietnam General Statistics Office. Each
firm is followed over time for as long as it continues operation, where exiting firms are replaced using the same
sampling methods (Rand and Tarp, 2010).
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Table 4.1: Distribution of firms across ownership types and industries.

Ownership type
Survey
year

Industry Household Sole
proprietorship

Partnership/
Collective/
Cooperative

Limited
liability

Joint
stock

Total

2005
Heavy 878 171 65 246 29 1,389
Light 1,012 109 31 183 25 1,360
Total 1,890 280 96 429 54 2,749

2007
Heavy 602 86 53 177 22 940
Light 1,155 111 49 261 32 1,608
Total 1,757 197 102 438 54 2,548

2009
Heavy 535 83 40 217 40 915
Light 1,170 121 34 290 50 1,665
Total 1,705 204 74 507 90 2,580

2011
Heavy 482 86 41 231 42 882
Light 1,143 116 27 287 59 1,632
Total 1,625 202 68 518 101 2,514

2013
Heavy 453 89 29 244 55 870
Light 1,141 113 26 307 59 1,646
Total 1,594 202 55 551 114 2,516

Note: Light industries include firms producing food, beverages and tobacco products; textile
and leather-related products; paper and printing products; and furniture manufacture. Heavy-
industries include manufacturers of machinery and equipment, chemical, metal, rubber and non-
metallic products.
Source: Tarp and Rand (2013)
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external factors that potentially contribute to the discrepancy between firms’ current profit and

their optimal profit level. Next, I describe in detail the variables needed to estimate the profit

efficiency model specified in section 4.2.

4.3.1 Profit frontier variables

The analysis of the profit frontier equation (4.3) requires the construction of firm-level profit (πait),

output price (pit), variable input prices (wjit), and fixed input (kit), where variable inputs consist

of labor (l) and raw materials (m).

Profit (πait) is measured by the annual gross margin, which is the difference between a firm’s

revenue from production and its variable costs. Fixed inputs (kit) is measured by the value of all

productive physical assets, which includes the values of buildings, machinery and equipment. The

price of labor (wlit) is calculated by dividing the total wage expenditure by the number of employees

(i.e. the quantity of labor).17

While firm-level data on gross margin (πait), capital stock (kit), labor, total revenue and total

input expenditure are available, unfortunately, firm-level data are not available on the price of

raw materials and output. One approach to generate input and output price indices is to use the

industry-level price indices (e.g. Wang et al. (1996); Blancard et al. (2006); Sandleris and Wright

(2014)). To account for the price variations among firms, each price used in this study is weighed

by the transactions made during the year through different market channels. Specifically, the price
17While the wage rate per worker is a common measure of the price of labor, this approach does not account for the

specific characteristics of the labor market, such as the number of working hours or part-time work. Unfortunately,
data on the numbers of working hours are not available in the dataset, therefore, in this case, the wage rate per
worker seems to be the most appropriate proxy for labor price.
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of output (pit) and raw materials (wmit) are proxied by:

pit = sod,it ∗ Pdt + sof,it ∗ Pft, (4.7)

wmit = smd,it ∗Wdt + smf,it ∗Wft, (4.8)

where i, t denotes firm and time. sod,it (smd,it) is the share of output (raw materials) that is sold (ac-

quired) domestically, while sof,it (smf,it) is the share of output (raw materials) that is sold (acquired)

internationally through exports (imports). Pdt represents the price index of domestic goods while

Pft is the price index of exported goods. Finally, Wdt is the price index of domestic raw materials

and Wft is the price index of imported raw materials. Data for the price indices are extracted from

the Statistical Yearbook of Vietnam (General Statistics Office of Vietnam, 2013). The construction

of the prices in equation (4.7) is based on two assumptions. First, firms are price takers in the

output and input markets. And second, firms produce a single output and use only one type of raw

material in production. In this case, the price-taking assumption is reasonable because small and

medium firms in the dataset often operate industries with a large number of firms such as the food,

tobacco and beverage industry or the textile industry, therefore, given their smaller sizes, these

firms have little power over the market prices. Moreover, most firms in the dataset produce only

one type of output and the average number of products that each firm produces is 1.16, therefore,

without loss of generality, we can assume a single output price for every firm. On the other hand,

raw materials typically include a number of different items. However, it is common in the literature

to treat materials as a homogeneous input (Levinsohn and Petrin, 2003) and this paper simply

follows this tradition.

Table 4.2 reports the average profit, raw material expenditure, wage expenditure and value of

the capital stock for all SMEs over the period of 2005-2013. Overall, firms in heavy industries have
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higher profits and physical capital stock than firms in light industries. Heavy-industry firms also

spend more on raw material and labor than their light-industry counterparts. In addition, there

exists more heterogeneity in the financial accounts of light-industry firms than their heavy-industry

counterparts. This is in line with the fact that compared to the heavy industry, the light industry

consist of a diverse set of sectors, each of which possesses a distinct production structure.18 The

separation of the sample by ownership status shows that non-household firms make more profit

than household firms, possess more physical capital and spend more on raw material and labor.

These suggests that firms of different industries and ownership status may have different production

structure, therefore, it is important for the profit efficiency analysis to control for these variations

in the production structure, either through the use of interactive dummy variables or through

estimating the profit frontier model for each subset of the sample. Sections 4.4 and 4.5 discuss each

of these approaches in details.

Table 4.2: Summary statistics of profit frontier variables by industry and by ownership status

(1) (2) (3) (4)
Log profit Log raw material

expenditure
Log wage ex-
penditure

Log physical
capital

By industry:
Light industries 7.605 12.736 11.796 13.384

(1.434) (1.833) (1.516) (1.904)
Heavy industries 7.918 13.107 11.838 13.699

(1.480) (1.909) (1.489) (1.853)
By ownership status:
Household firms 7.118 12.125 11.038 12.814

(1.049) (1.443) (1.133) (1.681)
Non-household firms 8.941 14.367 12.901 14.872

(1.407) (1.722) (1.270) (1.496)
Whole sample 7.726 12.880 11.814 13.506

(1.460) (1.871) (1.505) (1.890)
Numbers in parentheses are standard deviations.
Source: Own calculation.

18Firms in the food, textile, paper and printing, and furniture sectors comprise the light industry. On the other
hand, the heavy industry consists of manufacturers of chemicals, metal, rubber, plastic, machinery and equipment.
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4.3.2 Efficiency explanatory variables

The profit frontier variables discussed above are helpful in estimating firms’ maximum attainable

profit, given the quantity of fixed inputs and the prices of output and variable inputs. The gap

between this maximum profit and the actual profit allows us to infer about the level of profit

efficiency for each firm. Possible factors that might affect this efficiency gap are modeled using the

efficiency explanatory equation (4.4). These factors are either inherent within the firms themselves

(the internal environment) or capture characteristics of the business and legal environment in which

the firms operate (the external environment). Both the internal and external factors are available

at the firm level and are discussed in detail below.

The internal determinants of profit efficiency

Internal factors such as human capital, firm’s age, size and improvements of the production process

have been known in the literature as important determinants of firm’s performance (for example,

Bloom et al. (2010); Nichter and Goldmark (2009); Tybout (2000)). In this paper, human capital

is proxied by both the characteristics of the firms’ owner-managers and labor training activity. A

firm’s effort to upgrade its production process is captured by a dummy variable which equal 1 if

the firm introduces a new product, modifies its existing product, or modify its production process

in the previous year. Firm’s age is measured as the number of years since the firm’s establishment

up until the survey year while firm’s size is measured using the number of employees.

The external determinants of profit efficiency

Besides the internal characteristics of the businesses, external environmental factors also play a

role in determining firm-level performance (Tybout, 2000; Nichter and Goldmark, 2009). These

external factors represent the business and legal environment in which the firms operate.
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Business environment. The business environment is captured by dummy variables which

show the various relationships between the firms and other business entities. Competition is mea-

sured by a dummy variable which equals 1 if the firm reports that they faced competition. A

firm’s exporting activity is measured by a dummy variable that equals 1 if the firm exports, while

a firm’s subcontracting activity is measured by a dummy variable that equals 1 if the firm is a

subcontractor. Besides competition and business partnership, the ability to obtain capital also

determines firm-level success (Fafchamps and Schündeln, 2013; Barslund and Tarp, 2008). In this

paper, a firm’s access to formal credit is measured by a dummy variable which equals 1 if the

firm has difficulty in obtaining formal credit while a firm’s use of informal credit is measured by a

dummy variable which equals 1 if the firm use informal credit as a source of financing. Finally, to

capture other characteristics of the business environment, dummy variables which indicate a firm’s

locations are also included in the analysis.

Legal environment. It is commonly agreed that poor legal systems can hinder firm’s per-

formance (Tybout, 2000; Rand and Torm, 2012; Hansen et al., 2009). In this paper, I consider

three main indicators of the legal environment, which are formalization, government assistance and

corruption. Formalization is measured by a dummy variable which equals 1 if the firm is formally

registered while government assistance is captured by a dummy variable which equals 1 if the firm

receives assistance from the government. Finally, corruption is measured by the amount of bribery

that firms pay as a percentage of total revenue.

Table 4.3 provides the description of the efficiency explanatory variables included in this study.

Column (1) of table 4.4 presents the summary statistics of each efficiency explanatory variable for

the whole sample and columns (2)-(5) provide the summary statistics by industry and ownership

status. Overall, heavy-industry firms are larger in size and younger in age and they are more likely to

face constraints in the formal credit market. Moreover, a larger fraction of heavy-industry firms are
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formally registered businesses. This may allow them to have better access to government support

while at the same time making them more vulnerable to bribery and corruption. In addition,

the characteristics of the internal and external environment faced by each firm vary by the firm’s

ownership status. Compared to household businesses, non-household businesses are younger, have

better human capital (as indicated by the owner’s level of education and the provision of labor

training), are more likely to engage in innovation, and operate on a larger scale (as indicated by

their larger size). Non-household businesses are also more actively involved in the external business

environment, as a larger fraction of them face competition or participates in subcontracting and

exporting activity than household firms. Finally, the share of formally registered firms differs vastly

between non-household and household businesses. 98.4% of non-household businesses in the sample

are formally registered, while only 54% of household businesses are formally registered. Yet, the

fraction of firms receiving government support does not vary across ownership status. In contrast,

the severity of bribery varies substantially between firms, where on average, incidence of bribery

was more popular among non-household businesses than among household businesses.
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Table 4.3: Summary of efficiency explanatory variables.

Variable Description Mean Std. Dev.
Internal environment:
Owner’s education Number of years of education by the owners 12.15338 2.96007
Labor training Equals 1 if the firm has provided training for its labor

force since the last survey
0.15322 0.36021

Production upgrading Equals 1 if the firm introduces a new product, mod-
ifies its existing product, or modify its production
process in the last survey.

0.45084 0.49760

Firm’s age Number of years since the firm’s establishment up
until the survey year.

13.70018 10.23987

Firm’s size Log of the number of workers. 2.01427 1.15766
Business environment:
Competition Equals 1 if the firm faces competition. 0.87563 0.33002
Subcontracting Equals 1 if the firm is a subcontractor. 0.10475 0.30625
Exporting Equals 1 if the firm exports. 0.06178 0.24077
Formal credit constraint Equals 1the firm has has any difficulty in obtaining

formal credit since last survey.
0.37086 0.48305

Informal credit usage Equals 1 if the firm has relied on informal credit as
a source of financing since last survey.

0.25296 0.43473

Industrial zone location Equals 1 if the firm is located inside an industrial
zone).

0.06155 0.24035

Urban location Equals 1 if the firm is located in an urban area. 0.43419 0.49567
Legal environment:
Formalization Equals 1 if the firm is formally registered. 0.68899 0.46292
Government assistance Equals 1 if the firm has received any assistance from

the government since last survey.
0.37047 0.48295

Bribery and corruption Amount of bribery as percentage of revenue. 0.14613 1.13297
Source: Own calculation.
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Table 4.4: Summary statistics of efficiency explanatory variables.

By industry By ownership status
All firms Light Heavy Household Non-household

(1) (2) (3) (4) (5)
Internal environment:
Owner’s education 12.153 12.035 12.339 11.454 13.534

(2.960) (2.995) (2.898) (3.157) (1.876)
Labor training 0.153 0.129 0.190 0.082 0.294

(0.360) (0.336) (0.392) (0.274) (0.456)
Innovation 0.451 0.409 0.517 0.389 0.573

(0.498) (0.492) (0.500) (0.488) (0.495)
Firm’s age 13.700 14.352 12.665 15.204 10.741

(10.240) (10.451) (9.816) (10.521) (8.955)
Firm’s size 2.014 1.919 2.165 1.483 3.065

(1.158) (1.169) (1.122) (0.772) (1.071)
Business environment:
Competition 0.876 0.861 0.899 0.846 0.934

(0.330) (0.346) (0.302) (0.361) (0.248)
Subcontracting 0.105 0.092 0.125 0.089 0.137

(0.306) (0.289) (0.330) (0.284) (0.344)
Exporting 0.062 0.070 0.048 0.014 0.157

(0.241) (0.256) (0.215) (0.116) (0.364)
Formal credit constraint 0.371 0.351 0.403 0.350 0.412

(0.483) (0.477) (0.490) (0.477) (0.492)
Use of informal credit 0.253 0.236 0.279 0.221 0.315

(0.435) (0.425) (0.449) (0.415) (0.465)
Industrial zone location 0.062 0.058 0.067 0.032 0.120

(0.240) (0.234) (0.251) (0.176) (0.325)
Urban location 0.434 0.373 0.531 0.319 0.661

(0.496) (0.484) (0.499) (0.466) (0.473)
Legal environment:
Formalization 0.689 0.629 0.784 0.540 0.984

(0.463) (0.483) (0.412) (0.498) (0.127)
Government support 0.370 0.346 0.408 0.363 0.385

(0.483) (0.476) (0.491) (0.481) (0.487)
Bribery 0.146 0.125 0.180 0.116 0.206

(1.133) (0.769) (1.545) (1.157) (1.082)
Observations 12,916 7,917 4,979 8,571 4,345
Numbers in parentheses are standard deviations.
Source: Own calculation.
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4.4 Main empirical results

This section presents the main estimation results. Table 4.5 reports the estimation results of the

profit frontier equation (4.3), the efficiency explanatory equation (4.4) and the marginal effects on

expected profit of each efficiency explanatory variable (∆E[lnπait]
∆zit ) for the full sample (columns(1)-

(3)), the light industries (columns (4)-(6)) and the heavy industries (columns (7)-(9)) between

2005 and 2013. Light industries include manufacturers of products such as food, beverages and

tobacco products; textile and leather-related products; paper and printing products; and furniture

manufacture. Heavy-industry firms include manufacturers of machinery and equipment, chemical,

metal, rubber and non-metallic products.

4.4.1 How efficient are private firms in Vietnam?

The estimation results for the whole sample in table 4.5 show that the average profit efficiency

of non-state manufacturing firms between 2005 and 2013 is 69.5%. In other words, on average,

firms earn 30.5% less than their estimated maximum attainable profit due to inefficiency. To

get a sense of the potential loss in profit, I compare this to the average profit of a firm in this

dataset. The average reported annual profit for a firm in the dataset is 648,101,800 Vietnam

dongs (approximately 29,450 U.S. dollars). An average efficiency level of 69.5% implies that firms

could increase their annual profit by about 285,493,400 Vietnam dongs (approximately 12,900 U.S.

dollars) if they perform at their best potentials. The industry-specific estimation results indicate

that on average, firms in the light industries are slightly more efficient than firms in the heavy

industries. The average profit efficiency is 70.11% for light-industry firms and 69.43% for heavy

industry firms. The average reported profit for firms in the light industries is 574,683,600 Vietnam

dongs (approximately 26,122 U.S. dollars), which implies that light-industry firms could increase
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their profit by 245,824,100 Vietnam dongs (approximately 11,174 U.S. dollars) if they operate

efficiently. Similarly, the average reported profit for firms in the heavy industries is 762,038,700

Vietnam dongs (approximately 34,638 U.S. dollars) and a profit efficiency level of 69.43% implies

that the average loss due to inefficiency of heavy-industry firms in the dataset is 336,316,300

Vietnam dongs (approximately 15,288 U.S. dollars).

In short, the estimation results show that firms are not operating at their full potential. This

finding is consistent with previous studies in other countries. For example, Wang and Wong (2012)

find an average efficiency score of 70% in developing countries. Tybout (2000) provides a summary

of the inefficiency loss in various developing countries across different industries.

So, what causes this efficiency gap? And more importantly, what are the largest contributors to

the firm-level efficiency in developing countries? While previous studies have identified a number

of determinants of efficiency, little has been known about the relative importance of these factors

and the results vary depending on the availability of data. In this context, the Vietnam SME

survey provides an advantage, as it contains extensive information about the firm-level internal and

external characteristics. The analysis of the efficiency explanatory equation (4.4) and the marginal

effect equation (4.6) allows us to infer about the most important determinants of efficiency.

4.4.2 What internal characteristics should an efficient firm possess?

The profit frontier model in section 4.2 not only reveals about the distance between a firm’s current

level profit and its maximum attainable profit, but also allows the identification of the determi-

nants of efficiency. The bottom half of table 4.5 presents the estimation results of the efficiency

explanatory equation (4.4) and the implied change or marginal effect of each variable that explains

efficiency on expected profit. Overall, the profit efficiency level of a firm depends on characteristics

of its internal environment, regardless of which industry it is in, therefore, a firm’s action to improve
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Table 4.5: Maximum likelihood estimation of the profit frontier and determinants of profit efficiency
between 2005 and 2013

Whole sample Light industries Heavy industries
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Coef. Std.Err. ∆E[lnπa

it]
∆zit

Coef. Std.Err. ∆E[lnπa
it]

∆zit
Coef. Std.Err. ∆E[lnπa

it]
∆zit

Profit frontier equation:
αm 0.028** (0.013) 0.052*** (0.020) 0.058*** (0.022)
αl 0.305*** (0.010) 0.287*** (0.013) 0.337*** (0.015)
αk 0.766*** (0.010) 0.688*** (0.014) 0.687*** (0.017)
δmm 0.040*** (0.004) 0.055*** (0.007) 0.032*** (0.007)
δll 0.070*** (0.009) 0.086*** (0.012) 0.038*** (0.014)
δkk 0.272*** (0.014) 0.228*** (0.018) 0.289*** (0.023)
δml 0.000 (0.008) -0.011 (0.012) 0.011 (0.015)
δmk 0.013 (0.010) -0.013 (0.014) 0.031* (0.018)
δlk 0.054*** (0.010) 0.065*** (0.012) 0.043*** (0.016)
Constant 7.972*** (0.017) 7.872*** (0.020) 8.015*** (0.027)

Average profit effi-
ciency

69.53% 70.11% 69.43%

Efficiency explanatory
equation:

Internal environment:
Owner’s education -0.023** (0.010) 0.005 -0.014 (0.011) 0.003 -0.036** (0.016) 0.008
Labor training -0.189 (0.145) 0.043 -0.358 (0.222) 0.082 -0.158 (0.158) 0.036
New product -0.065 (0.141) 0.015 0.074 (0.194) -0.017 -0.214 (0.159) 0.049
Product modification -0.330*** (0.076) 0.076 -0.364*** (0.091) 0.083 -0.295*** (0.101) 0.068
Process upgrading -0.406*** (0.135) 0.093 -0.519*** (0.168) 0.118 -0.057 (0.159) 0.013
Firm’s age 0.017*** (0.003) -0.004 0.018*** (0.003) -0.004 0.010** (0.004) -0.002
Firm’s size -1.444*** (0.059) 0.333 -1.568*** (0.074) 0.358 -1.334*** (0.083) 0.308

Business environment:
Competition -0.232*** (0.072) 0.053 -0.265*** (0.079) 0.061 -0.167 (0.122) 0.039
Subcontracting 0.271*** (0.101) -0.062 0.300** (0.127) -0.068 0.104 (0.128) -0.024
Exporting -1.527** (0.635) 0.352 -0.417 (0.528) 0.095 -1.952 (1.278) 0.451
Formal credit barrier 0.189** (0.087) -0.044 0.156 (0.100) -0.035 0.135 (0.125) -0.031
Use of informal credit -0.245** (0.104) 0.056 -0.232* (0.121) 0.053 -0.218 (0.145) 0.050
Industrial zone loca-
tion

-0.282 (0.180) 0.065 -0.294 (0.185) 0.067 -0.325 (0.316) 0.075

Urban location -0.160 (0.174) 0.036 0.064 (0.214) -0.015 -0.284 (0.204) 0.066

Legal environment:
Formalization -0.027 (0.080) 0.006 -0.177* (0.093) 0.040 -0.110 (0.111) 0.025
Financial support -0.086 (0.082) 0.020 0.003 (0.092) -0.001 -0.140 (0.123) 0.032
Technical support -0.386** (0.180) 0.089 -0.221 (0.201) 0.050 -0.502* (0.259) 0.116
Other support -0.251* (0.135) 0.058 -0.230 (0.162) 0.052 -0.136 (0.183) 0.031
Bribery 0.031 (0.023) -0.007 0.084 (0.085) -0.019 0.024 (0.021) 0.006
Constant 2.187*** (0.277) 2.479*** (0.707) 1.669*** (0.562)
Log likelihood -16263.37 -9595.62 -6159.05
Observations 12,757 7,835 4,902
Sub-industry FE YES YES YES
Year FE YES YES YES
Sub-industry*Year FE YES YES YES
Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1
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its internal environment can be beneficial for its efficiency.

The estimation results in table 4.5 show that the three most important internal determinants

of firm-level efficiency are its size, its effort to upgrade the production process or to improve its

products, with firms’ size being the most significant contributor to the firm-level profitability. The

marginal effects of a firm’s size on its profitability are 33%, followed by process upgrading efforts

(9.3%) and product modification (7.6%). Interestingly, the significance of improved human capital

on firms’ performance is modest, where an extra year of education by the owner only increases the

firm-level efficiency by 0.5% and a firm with labor training programs is only 4.3% more efficient

than other firms without labor training programs. These results are consistent when the whole

sample is divided into light-industry firms and heavy-industry firms (columns (4)-(9) of table 4.5).

One explanation is that while the benefits from expanding a firm’s size can be realized in the

short run, the impact lag of other variables on efficiency is longer. For example, it takes more

time for a new production process to be fully efficient and for new products to be accepted by

consumers. Similarly, it takes more time for human capital improvements to be translated into

higher profitability.

The analysis above suggests that in the short run, firms could improve their profitability by

expanding their labor force, therefore, policy that improves firms’ access to the labor market could

be beneficial. In the long run, firms should invest in upgrading their production structure and

improving their human resources, therefore, innovation incentives or labor training programs are

beneficial for firm-level performance in the long run.

4.4.3 How does the external environment affect the firm-level efficiency?

In addition to the firm-specific characteristics, the external environment in which the firms operate

also plays a role in shaping their efficiency. However, there exist vast differences in the extent to
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which firms in different industries respond to their environment.

In light industries (columns (4)-(6) of table 4.5), the most influential external determinants of

efficiency are subcontracting, competition, use of informal credit and formalization. Specifically,

competition increases the firm-level efficiency (6.1%) while a subcontracting relationship decreases

the firm-level efficiency (-6.8%). One explanation is that competition motivates firms to better

their operation and encourages inefficient firms to exit the market (Nickell, 1996). On the other

hand, a subcontracting relationship reduces the flexibility of firms’ operation, thereby reducing

profit efficiency. This suggests the role of policy that encourages healthy inter-business competition

and partnership on firms’ performance.

In addition to competition and subcontracting, light-industry firms can also benefit from better

access to credit. Interestingly, the estimation results from table 4.5 suggests the more important

role of informal credit, compared to formal credit, on the firm-level profitability. One explanation

is that fast growing firms require a larger amount of capital to expand their business, therefore,

they must rely on both formal and informal credit to meet their financing needs. In fact, firms who

experience faster sales growth in the dataset are less likely to face constraints in the formal credit

market while at the same time are more likely to utilize informal credit.19 Finally, formalization

also positively affect the efficiency of firms in light industries, however, compared to other factors,

the impact of formalization as well as other legal factors (e.g. government support and bribery) is

modest. More importantly, I found a stronger impact of formalization on the firm-level efficiency

when an interactive variable between formalization and bribery is included.20 This implies that

while formalization allows firms to gain access to resources such as better human resources and

technology, it also makes firms more vulnerable to bribery. In other words, the positive impact
19This finding is consistent with Rand et al. (2009) who find that informal credit is crucial for the growth of

Vietnamese SMEs.
20I did not include the estimation results with the interactive variable formalization*bribery in the paper, since

they are very similar to the baseline results in table 4.5.
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of formalization may have been crowded out by increasing incidence of bribery when the firm is

formally registered. This suggests that to be effective, formalization incentives and government

support policies have to be coupled with corruption reduction efforts.

While the profitability of firms in light industries is sensitive to changes in the external environ-

ment, the impacts of these external factors on the performance of heavy-industry firms are more

modest and less statistically significant. The most significant determinant of efficiency in the heavy

industries is technical support in the form of human resource training, trade promotion and quality

improvement programs. The marginal impact of receiving technical support from the government

on the firm-level profitability is 11.6%. Two explanations are possible. First, it is likely that chang-

ing the profit efficiency of heavy-industry firms takes more time and effort, therefore, within the

short time frame of the sampling period, we are unable to capture a statistically significant impact

of changes in the external environment in heavy industries compared to light industries. Second,

heavy-industry firms are more likely to receive government support, which lowers their vulnera-

bility to the business environment. In fact, 41% of all heavy-industry firms in the sample receive

government support, while only 34% of all light-industry firms receive government support.

In summary, the results 4.5 in table suggest that the relative importance of business and legal

environmental factors on the firm-level profitability varies largely from industry to industry, where

light industries are more sensitive to external changes than heavy industries. This implies that

it is important to develop industry-specific policy. For example, policy that encourage healthy

inter-business relationships and formalization incentives is more beneficial for the light industries.

On the other hand, the heavy industries are more likely to benefit from increasing government

technical support. Finally, targeting the light industries in the short run can boost the overall

performance of the Vietnamese private sector, as the marginal effects of the efficiency determinants

on the firm-level profitability is generally larger in light industries than in heavy industries.
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4.4.4 Summary of key findings and policy implications

The analysis in sections 4.4.2 and 4.4.3 reveals the most influential drivers of firm-level efficiency.

Overall, the profitability of a firm depends on both its internal characteristics as well as the char-

acteristics of the external environment in which the firm operates. Specifically, promoting healthy

inter-firm partnership and encouraging formalization is more beneficial for light industries while im-

proving technical support is more beneficial for heavy industries. However, as the previous analysis

suggests, the firm-level profitability is more likely to be shaped by the firms’ internal characteristics,

rather than characteristics of the external environment. In both light and heavy industries, the

marginal impacts of the firm-specific internal characteristics are larger, both in size and statistical

significance level, compared to those of the external environment. This suggests that firms are more

likely to benefit from policy that encourages firms to improve their own internal strength, such as

improved availability of labor, incentives to upgrade and expand production structure, and labor

training programs. From the policymaking standpoint, this result may be an optimistic signal, as

influencing firm-specific characteristics can be less challenging than changing the characteristics of

the whole business or legal environment.

4.5 Robustness checks

This section presents some robustness check of the main estimation results in section 4.4. Specif-

ically, I consider alternative sub-samples in the dataset and alternative specifications of the profit

frontier models.

To account for the fact the different types of firms have access to different technology, I apply

the stochastic profit frontier model in section 4.2 to various subsamples in the dataset. Specifically,

I re-estimate the profit frontier model using only incumbent firms who are present in all five rounds
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of the survey between 2005 and 2013. This is to account for the potential bias from the inclusion of

firms who are not present in all five rounds of the survey. In addition, I further classify firms into

household (family-owned) businesses and non-household businesses. Table 4.6 presents a summary

of the estimation results of the above robustness checks for the whole sample (columns (1)-(4)), the

light industries (columns (5)-(8)) and the heavy industries (columns (9)-(12)) and tables D-1, D-2

and D-3 in Appendix D-2 present the detailed estimation results.21 Overall, the main estimation

results still hold for these alternative sub-samples. However, household firms are more likely to

benefit from formalization while non-household firms are more prone to bribery. This reflects that

on average, non-household businesses pay bribery more frequently than household businesses. Thus,

this also suggests the existence of a crowding-out effect between formalization and corruption.

Next, I estimate the profit efficiency for all firms in the sample under alternative specifications of

the model described in section 4.2. This is to account for the potential correlations between closely

related variables.22 Table 4.7 shows the marginal effects of each efficiency explanatory variable

on the profit efficiency of the full sample, under alternative measures of human capital (columns

(2)-(3)), production upgrading activities (columns (4)-(6)), access to credit (columns (7)-(8)) and

firm’s location (columns (9)-(10)).23 It can be seen from the table that the main estimation results

in table 4.5 still hold under these alternative specifications.

To capture the interaction between different variables, I also incorporate interactive variables
21Note that the average profit efficiency reported in tables D-1, D-2 and D-3 measures the efficiency of each firms

compared to the best performing firm in each subsample, therefore, they are not readily comparable. Also, the
coefficients reported in tables D-1, D-2 and D-3 show the relationship between the efficiency explanatory variables
and a firm’s inefficiency level. On the other hand, the summary in table 4.6 reports the sign of the marginal effect
of each efficiency explanatory variable on the expected profit of a firm, therefore, they are of opposite signs to the
coefficients reported in tables D-1, D-2 and D-3.

22For example, owner’s education and labor training are both proxies for the firm-level human capital.
23Tables D-4-D-7 in Appendix D-2 present the detailed robustness results under each of these alternative measures.

Note that the average profit efficiency reported in these tables measures the efficiency of each firms compared to the
best performing firm in each subsample, therefore, they are not readily comparable. Also, the coefficients reported
in tables D-4-D-7 show the relationship between the efficiency explanatory variables and a firm’s inefficiency level.
On the other hand, the summary in table 4.7 reports the sign of the marginal effect of each efficiency explanatory
variable on the expected profit of a firm, therefore, they are of opposite signs to the coefficients reported in tables
D-4-D-7.
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into the analysis. Columns (11) and (12) of table 4.7 summarize the marginal effects of the efficiency

explanatory variables with interactive variables between firm’s age and size (column (11)) and

between labor training and firm’s size (column (12)).24 The marginal effects of the interaction

variable between firm’s age and size is negative and statistically significant (column (11)). This

suggests that, while larger firms are more efficient, the marginal effect of expanding a firm’s size

on profit efficiency declines as the firm ages. This is in line with the fact that older firms are

more likely to use older technology than their younger counterparts. Column (12) of table 4.7

explores the interaction between a firm’s size and whether the firm provides training to their

workers. The marginal effects of firm’s size and the labor training×size interaction variable are

positive and statistically significant, which implies that larger firms with labor training programs

are more efficient than other firms. Finally, to capture the crowding-out effect between corruption

and formalization, I also include the interactive variable in one of the robustness checks and find

evidence for a crowding-out effect.25

One of the assumption of the profit efficiency model is that firms take prices as given. Firms

who do not face competition are often price setters, therefore the inclusion of those firms may bias

the results. Table 4.8 report the estimation results, excluding firms not facing competition from the

sample. The table shows that the main estimation results still hold under this specification. This

is in line with the fact that nearly all firms in the sample report that they face some competition.

Finally, to account for the potential endogeneity issue from the normalization of the profit

function, I re-estimate the profit frontier model in section 4.2 using a non-normalized profit function,

where the estimation equation is:
24Table D-8 in Appendix D-2 shows the detailed estimation results.
25Since other results are the same as the main estimation results, I did not include the estimation table in the

paper.
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ln πait =α0 + αp ln pit +
∑
j

αj lnwjit + αk ln kit + 1
2δpp(ln pit)

2 + 1
2
∑
j

∑
q

δjq lnwjitwqit + 1
2δkk(ln kit)

2

+
∑
q

δpq ln pit lnwqit + ln pit ln kit +
∑
j

δjk lnwjit ln kit + εit − uit + ηs + ηt,

(4.9)

where the notations have the same meanings as described in section 4.2. Note that this profit

function does not impose any price homogeneity constraint, which makes it computationally difficult

to estimate the profit frontier model with the full set of time-, industry-, and time*industry- fixed

effects. Therefore, the estimation of this non-normalized profit frontier only includes time- and

industry- fixed effects. Overall, the main estimation results are still valid under this non-normalized

profit frontier, as shown in table 4.9.
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Table 4.6: Marginal effects on profit efficiency (∆E[lnπait]
∆zit ), alternative sub-samples

Whole sample Light industries Heavy industries
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
All
firms

Incumbent
firms
only

Household
firms
only

Non-
household
firms
only

All
firms

Incumbent
firms
only

Household
firms
only

Non-
household
firms
only

All
firms

Incumbent
firms
only

Household
firms
only

Non-
household
firms
only

Internal environment
Owner’s education +** +** +** + + + + + +** +* +** +
Labor training + + +** - + + +** + + + + -
New product introduction + - + + - - - + + + +* -
Product modification +*** +** +*** + +*** +* +*** - +*** + +*** +
New process introduction +*** +** +** + +*** +* +*** + + + + +
Firm’s age -*** -*** -*** -*** -*** -*** -*** -*** -** - -** -***
Firm’s size +*** +*** +*** +*** +*** +*** +*** +*** +*** +*** +*** +***

Business environment
Competition +*** +*** +*** + +*** +*** +*** + + + + +
Subcontracting -*** - -** - -** - -** - - - - -
Exporting +** +* + +** + + + + + + + +**
Formal credit constraint -** -* -* -** - - - - - - - -**
Use of informal credit +** +** +*** + +* +* +* + + + +* +
Industrial zone location + + + - + +* + - + + + -
Urban location + + +*** +** - - + +** + + +*** +

Legal environment
Formalization + + +*** - +* + +*** - + + +*** -
Financial support + + + -** - - + -* + + + -
Technical support +** +* + - + + + + +* + + -
Other support +* + + + + + +* + + + + -
Bribery - -* - -** - - - - - -*** - -*
Observations 12757 5854 8499 4258 7835 3588 5581 2254 4902 2259 2904 1998
Industry FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Industry*Year FE YES YES YES YES YES YES YES YES YES YES YES YES
The table summarizes the marginal effects of each efficiency explanatory variable on the profit efficiency ( ∆E[lnπa

it]
∆zit

) of various types of Vietnamese SMEs
between 2005 and 2013.
*** p<0.01, ** p<0.05, * p<0.1
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Table 4.7: Marginal effects on profit efficiency (∆E[lnπait]
∆zit ), alternative specifications of the profit frontier model

Baseline Alternative human
capital measures

Alternative production
upgrading measures

Alternative credit ac-
cess measures

Alternative location
measures

Interactive
variables

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Internal environment
Owner’s education +** +** +** +** +** +** +** +** +** +** +**
Labor training + + + + + + + + + + -**
New product + + + +* + + + + + +
Product modification +*** +*** +*** +*** +*** +*** +*** +*** +*** +***
Process upgrading +*** +*** +*** +*** +*** +*** +*** +*** +*** +***
Firm’s age -*** -*** -*** -*** -*** -*** -*** -*** -*** -*** + -***
Firm’s size +*** +*** +*** +*** +*** +*** +*** +*** +*** +*** +*** +***
Firm’s age*Size -***
Labor training*Size +***

Business environment
Competition +*** +*** +*** +*** +*** +*** +*** +*** +*** +*** +*** +***
Subcontracting -*** -*** -*** -** -*** -** -*** -*** -*** -*** -*** -***
Exporting +** +** +** +** +** +** +** +** +** +** +** +**
Formal credit barrier -** -** -** -** -** -** - -** -** -** -**
Use of informal credit +** +** +** +** +** +** + +** +** +** +**
Industrial zone location + + + + + + + + + + +
Urban location + + + + + + + + + + +

Legal environment
Formalization + + + + + + + + + + + +
Financial support + + + + + + + + + + + +
Technical support +** +** +** +*** +** +** +** +** +** +** +** +**
Other support +* +* +* +** +** +** +* +* +* +* +* +*
Bribery - - - - - - - - - - - -
Observations 12757 12757 12757 12757 12757 12757 12761 12757 12757 12757 12757 12757
Industry FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Industry*Year FE YES YES YES YES YES YES YES YES YES YES YES YES
The table summarizes the marginal effects of each efficiency explanatory variable on the profit efficiency ( ∆E[lnπa

it]
∆zit

) for the full sample of Vietnamese SMEs
between 2005 and 2013 under various specifications of the profit frontier model.
The baseline column (1) summarizes the marginal effects reported in column (3) of table 4.5.
*** p<0.01, ** p<0.05, * p<0.1
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Table 4.8: Profit efficiency for firms that face competition

Whole sample Light industries Heavy industries
(1) (2) (3) (4) (5) (6) (7) (8) (9)
Coef. Std.Err. ∆E[lnπa

it]
∆zit

Coef. Std.Err. ∆E[lnπa
it]

∆zit
Coef. Std.Err. ∆E[lnπa

it]
∆zit

Profit frontier equation
αm 0.031** (0.014) 0.056*** (0.021) 0.058** (0.023)
αl 0.313*** (0.011) 0.299*** (0.014) 0.337*** (0.016)
αk 0.748*** (0.011) 0.665*** (0.015) 0.696*** (0.018)
δmm 0.038*** (0.004) 0.054*** (0.007) 0.030*** (0.007)
δll 0.083*** (0.010) 0.105*** (0.013) 0.055*** (0.016)
δkk 0.294*** (0.015) 0.255*** (0.020) 0.310*** (0.025)
δml 0.001 (0.008) -0.011 (0.013) 0.013 (0.016)
δmk 0.014 (0.010) -0.012 (0.015) 0.027 (0.018)
δlk 0.039*** (0.011) 0.048*** (0.014) 0.031* (0.017)
Constant 8.012*** (0.019) 7.899*** (0.022) 8.045*** (0.029)

Average profit effi-
ciency

69.50% 70.86% 69.33%

Efficiency explanatory
equation:

Internal environment:
Owner’s education -0.021* (0.011) 0.005 -0.015 (0.013) 0.003 -0.036** (0.017) 0.008
Labor training -0.120 (0.136) 0.028 -0.171 (0.207) 0.037 -0.167 (0.155) 0.039
New product -0.050 (0.145) 0.011 -0.013 (0.207) 0.002 -0.174 (0.166) 0.040
Product modification -0.324*** (0.079) 0.075 -0.360*** (0.097) 0.079 -0.289*** (0.105) 0.067
Process upgrading -0.389*** (0.135) 0.089 -0.577*** (0.180) 0.127 -0.003 (0.159) 0.008
Firm’s age 0.016*** (0.003) -0.004 0.017*** (0.003) -0.003 0.011** (0.004) -0.003
Firm’s size -1.449*** (0.063) 0.333 -1.618*** (0.082) 0.356 -1.357*** (0.089) 0.315

Business environment:
Competition N/A N/A N/A
Subcontracting 0.293*** (0.102) 0.067 0.345** (0.134) -0.075 0.067 (0.132) -0.016
Exporting -1.697** (0.805) 0.390 -0.123 (0.549) 0.027 -1.466 (0.904) 0.339
Formal credit barrier 0.161* (0.094) 0.036 0.169 (0.113) -0.037 0.069 (0.133) -0.016
Use of informal credit -0.212* (0.110) 0.049 -0.200 (0.133) 0.044 -0.196 (0.152) 0.045
Industrial zone loca-
tion

-0.259 (0.206) 0.060 -0.379* (0.224) 0.084 -0.139 (0.307) 0.032

Urban location -0.196 (0.175) 0.045 -0.020 (0.225) 0.004 -0.214 (0.207) 0.049

Legal environment:
Formalization 0.016 (0.083) -0.004 -0.133 (0.099) 0.029 -0.121 (0.118) 0.028
Financial support -0.102 (0.088) 0.024 -0.022 (0.101) 0.005 -0.130 (0.131) 0.030
Technical support -0.382* (0.195) 0.088 -0.281 (0.223) 0.062 -0.592** (0.297) 0.137
Other support -0.207 (0.145) 0.048 -0.151 (0.176) 0.033 -0.204 (0.198) 0.047
Bribery 0.031 (0.023) -0.007 0.099 (0.075) -0.021 0.022 (0.021) -0.005
Constant 2.070*** (0.301) 2.410*** (0.708) 2.074*** (0.416)
Log-likelihood -14194.85 -8241.46 -5514.84
Observations 11,184 6,757 4,410
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES
*** p<0.01, ** p<0.05, * p<0.1
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Table 4.9: Profit efficiency using non-normalized data

Whole sample Light industries Heavy industries
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αp -12.336*** (2.795) -14.564*** (3.366) -4.280 (5.764)
αm 17.459*** (2.799) 18.109*** (3.454) 12.996** (5.651)
αl -1.629*** (0.196) -2.051*** (0.250) -0.869*** (0.323)
αk -0.422*** (0.082) -0.345*** (0.110) -0.389*** (0.123)
δpp 9.474*** (0.787) 9.967*** (1.090) 6.485*** (1.540)
δmm -0.046 (1.002) 0.254 (1.234) -0.826 (2.022)
δll 0.185*** (0.022) 0.239*** (0.029) 0.084** (0.035)
δkk 0.087*** (0.004) 0.079*** (0.005) 0.099*** (0.007)
δpm -5.024*** (0.552) -5.162*** (0.810) -3.670*** (0.913)
δpl -0.366** (0.155) -0.269 (0.192) -0.524* (0.278)
δpk -0.207*** (0.064) -0.202** (0.081) -0.234** (0.111)
δml 0.295* (0.162) 0.153 (0.204) 0.562* (0.289)
δmk 0.007 (0.067) -0.005 (0.085) 0.018 (0.116)
δlk 0.049*** (0.008) 0.055*** (0.011) 0.033** (0.013)
Constant 4.553* (2.630) 9.206*** (3.396) -6.597 (4.353)

Average profit efficiency 71.25% 71.53% 69.65%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.023** (0.010) -0.015 (0.013) -0.033* (0.018)
Labor training -0.280 (0.172) -0.480* (0.292) -0.078 (0.182)
New product 0.069 (0.137) 0.210 (0.212) -0.184 (0.177)
Product modification -0.359*** (0.077) -0.336*** (0.104) -0.283** (0.110)
Process upgrading -0.347** (0.139) -0.592*** (0.205) -0.018 (0.177)
Firm’s age 0.018*** (0.003) 0.020*** (0.003) 0.014*** (0.005)
Firm’s size -1.515*** (0.062) -1.604*** (0.084) -1.347*** (0.088)

Business environment:
Competition -0.218*** (0.074) -0.233*** (0.089) -0.174 (0.137)
Subcontracting 0.275*** (0.104) 0.310** (0.146) 0.189 (0.137)
Exporting -2.103** (1.032) -1.127 (0.826) -26.75 (745.1)
Formal credit barrier 0.179** (0.091) 0.214* (0.116) 0.171 (0.143)
Use of informal credit -0.257** (0.109) -0.284** (0.141) -0.224 (0.165)
Industrial zone location -0.426** (0.190) -0.410* (0.225) -0.486 (0.367)
Urban location -0.202 (0.188) -0.050 (0.276) -0.456* (0.241)

Legal environment:
Formalization -0.081 (0.083) -0.121 (0.110) -0.052 (0.123)
Financial support -0.095 (0.084) -0.072 (0.106) -0.158 (0.138)
Technical support -0.311* (0.180) - 0.242 (0.233) -0.388 (0.299)
Other support -0.210 (0.135) -0.228 (0.181) -0.199 (0.209)
Bribery 0.030 (0.024) 0.115** (0.053) 0.023 (0.022)
Constant -1.328 (1.177) -0.898** (0.353) -2.104*** (0.418)
Log-likelihood -16193.30 -9816.86 -6292.74
Observations 12,757 7,835 4,902
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE NO NO NO

*** p<0.01, ** p<0.05, * p<0.1
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4.6 Conclusion

As private firms play an important role in fostering local economic development, it is important

to understand which factor is the most significant at boosting their performance. Yet, few studies

have explored the relative importance of different variables on the firm-level efficiency, primarily

because of the availability of data. Using a comprehensive dataset about firms in Vietnam, a

transitional economy, this paper is among the first attempt at ranking the relative importance of

various commonly-known efficiency determinants on private enterprises’ profitability.

The results suggest that Vietnamese private firms are operating at about two-thirds of their

potential profitability. This result is in line with previous studies in other developing countries,

therefore, Vietnam provides a good case study for other private firms in the developing world. In

addition to estimating the efficiency gap, this paper also documents the marginal impact of various

commonly-known determinants of efficiency on the firm-level profitability. Specifically, firm-specific

characteristics are more important in shaping the profitability of a firm than characteristics of the

external environment in which the firm operates. This implies that policies that encourage firms to

improve their own internal strength are crucial to promote the firm-level efficiency. For example,

improved access to the labor market, innovation incentives to upgrade the production process and

labor training programs are found to be the most significant policies for the development of the

private sector.

In addition, the results also imply the importance of designing policies that meet the specific

needs of each business segment in the private sector. For example, the light industries are more

likely to benefit from inter-business partnerships and formalization while government support in

the forms of technology and human resource training is more beneficial for the heavy industries.

Finally, the design of enterprise development policy needs to be coupled with efforts to reduce
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corruption, as corruption has been found to crowd out the positive impacts of other factors.

The findings in this paper provide directions for future research on firm-level productivity. For

example, one finding suggests that the most influential policies on the firm-level profitability are

to improve the firms’ internal strength, therefore, further insights into the optimal policy mix

would be helpful. In addition, studies that compare the costs and benefits of various profitability-

enhancement investments are also needed. Finally, the paper could benefit from the inclusion of a

dataset with a longer time frame, as the SME survey will continue to be conducted in the future.
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Lanzi, E., I. Haščič, and N. Johnstone (2012). The determinants of invention in electricity generation

technologies. OECD Environment Working Papers (45).

157
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Appendices

Appendix A: Appendix to Chapter 1

A-1 Variable elasticity of substitution between energy and capital

In this part, we derive the elasticity of substitution between energy and capital in the VES pro-

duction function. Recall that the elasticity of substitution between two inputs X and Y can be

calculated using the following formula: σ(X,Y ) = δ ln(X/Y )
δ ln(MPy/MPx) , where X/Y denotes the input

mix and MPy/MPx denotes the ratio of the marginal products of the two inputs.

From equations (1.1) and (1.2) and assuming v1 = v2 = 1, we derive the marginal product of

capital and energy to be:

MPKt = ∂Yt
∂Kt

= ∂Yt
∂Pt

∂Pt
∂Kt

= ∂Yt
∂Pt

a2K
a2−1
t (Et + b2a2Kt)−a2(Et + b2Kt), (A-1)

MPEt = ∂Yt
∂Et

= ∂Yt
∂Pt

∂Pt
∂Et

= ∂Yt
∂Pt

(1− a2)Ka2
t (Et + b2a2Kt)−a2 , (A-2)

where ∂Yt
∂Pt

= Ata1P
a1−1
t (Lt + b1a1Pt)−a1(Lt + b1Pt).

Combining equations (A-1) and (A-2) yields the ratio between the marginal products of energy

and capital:

MPKt
MPEt

= a2(Et + b2Kt)
(1− a2)Kt

=
a2(1 + b2

Kt
Et

)
(1− a2)KtEt

. (A-3)

Moreover, using chain rules, we have: ∂ ln(MPKt/MPEt )
∂(Et/Kt) = 1

MPK/MPE
∗ ∂(MPK/MPE)

∂(Et/Kt)

=⇒ ∂ ln(MPKt/MPEt) = 1
MPK/MPE

∗ ∂(MPK/MPE)
∂(Et/Kt) ∗ ∂(Et/Kt)

Plugging equation (A-3) into the above expression and simplifying, we have:

∂ ln(MPKt/MPEt) = 1
Et
Kt

(1 + b2
Et
Kt

)
∂(Et/Kt). (A-4)
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Furthermore:

∂ ln(Et/Kt)
∂(Et/Kt)

= 1
Et/Kt

=⇒ ∂ ln(Et/Kt) = 1
Et/Kt

∗ ∂(Et/Kt). (A-5)

Combining equations (A-4) and (A-5) yield the elasticity of substitution between capital and

energy:

σ(Et,Kt) = ∂ ln(Et/Kt)
∂ ln(MPKt/MPEt)

= 1 + b2

(
Et
Kt

)
, (A-6)

where σ(Et,Kt) is the elasticity of substitution between energy and capital and (Et/Kt) is the

energy-capital ratio.

A-2 The shares of capital, energy and labor in a three-input VES production

function

In this section, we derive the shares of capital, energy and labor in the VES production function

described in equations (1.1) and (1.2). We assume constant returns to scale, that is v1 = v2 = 1 in

this section.26 Let sKt , sEt , sLt be the shares of capital Kt, energy Et and labor Lt in final output

Yt. Assume perfect competition in all factor markets, we can write the above shares as:

sLt = MPLtLt
Yt

,

sKt = MPKtKt

Yt
,

sEt = MPEtEt
Yt

,

(A-7)

where MPJt = ∂Yt
∂Jt

denotes the marginal product of input J at time t (J = K,E,L).

Let us first derive the share of labor sLt in final output. Using equation (1.1) and assuming
26The derivations of input shares still hold when v1 6= 1 and v2 6= 1.
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v = 1, we have: MPLt = ∂Yt
∂Lt

= At(1− a1)P a1
t (Lt + b1a1Pt)−a1 . Thus,

sLt = MPLtLt
Yt

= Lt − a1Lt
Lt + b1a1Pt

= 1− a1
1 + b1a1pt

, (A-8)

where pt denotes physical inputs per capita.

Let sPt be the share of physical inputs in final output production. Since physical input produc-

tion is a function of capital and energy, we can interpret this sPt as the combined shares of capital

and energy in final output. Thus, we have:

sPt = 1− sLt = a1 + b1a1pt
1 + b1a1pt

. (A-9)

Next we will derive the share of energy in final output. We have:

sKt = MPKtKt

Yt
=

∂Yt
∂Kt

Kt

Yt
=

∂Yt
∂Pt

∂Pt
∂Kt

Kt

Yt
=

∂Yt
∂Pt

Pt

Yt

∂Pt
∂Kt

Kt

Pt
. (A-10)

From equations (1.1) and (1.2) we have:

∂Yt
∂Pt

= Ata1P
a1−1
t (Lt + b1a1Pt)1−a1 +Atb1a1(1− a1)P a1

t (Lt + b1a1Pt)−a1 ,

∂Pt
∂Kt

= a2K
a2−1
t (Et + b2a2Kt)1−a2 + b2a2(1− a2)Ka2

t (Et + b2a2Kt)−a2 .

(A-11)

Plugging equations (1.1), (1.2) and (A-11) into equation (A-10) and simplifying gives us the

share of capital in final output as:

sKt = a1 + b1a1pt
1 + b1a1pt

∗
a2 + b2a2

Kt
Et

1 + b2a2
Kt
Et

= sPt ∗
a2 + b2a2

Kt
Et

1 + b2a2
Kt
Et

. (A-12)
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Finally, the share of energy in final output is given by:

sEt = 1− sLt − sKt = a1 + b1a1pt
1 + b1a1pt

∗ 1− a2

1 + b2a2
Kt
Et

= sPt ∗
1− a2

1 + b2a2
Kt
Et

. (A-13)

In the case of b1 = 0, that is, the elasticity of substitution between labor and physical input is

constant, the shares of labor, capital and energy reduce to:

sLt = 1− a1,

sKt = a1 ∗
a2 + b2a2

Kt
Et

1 + b2a2
Kt
Et

,

sEt = a1 ∗
1− a2

1 + b2a2
Kt
Et

.

(A-14)

A-3 Pre-bootstrapping estimations

In this section, we present the pre-bootstrapping results of equation (1.11). Our post-estimation

analysis of these analytical results suggests that the residuals are not white-noise. One solution

to this issue is to bootstrap the data and re-estimate equation (1.11). The comparison between

the bootstrapped and analytical estimates show a lower significance level for the bootstrapped

estimates.
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Table A-1: Marginal effects of capital-labor VES and income levels – pre-bootstrapping results.

Dependent variable: GDP
Global Income group HDI

(1) (2) (3) (4) (5) (6)
a1 .8961*** .8676*** .8729*** .8644*** .8794*** .8645***

(.00511) (.00479) (.00438) (.00449) (.00425) (.00466)
v1 1.005*** 1.037*** 1.026*** 1.043*** 1.021*** 1.04***

(.00412) (.00413) (.00397) (.00411) (.0038) (.00401)
b1 (Global) 2.9e-06 -1.4e-06 – – – –

(2.8e-06) (1.3e-06) – – – –
b1 (High income: OECD) – – 2.1e-05*** -4.3e-06*** – –

– – (4.3e-06) (9.4e-07) – –
b1 (High income: Non-OECD) – – 1.9e-05*** 9.5e-06* – –

– – (6.1e-06) (5.6e-06) – –
b1 (Upper middle income) – – -1.7e-05*** -1.7e-05*** – –

– – (2.9e-07) (5.1e-07) – –
b1 (Lower middle income) – – -4.2e-05*** -4.3e-05*** – –

– – (2.2e-07) (4.7e-07) – –
b1 (Low income) – – -.00028*** -.00028*** – –

– – (1.4e-06) (1.7e-06) – –
b1 (Very high HDI) – – – – 9.9e-06*** -5.0e-07

– – – – (2.8e-06) (1.6e-06)
b1 (High HDI) – – – – -2.4e-05*** -2.2e-05***

– – – – (4.0e-07) (2.2e-06)
b1 (Medium HDI) – – – – -1.7e-05*** -1.7e-05***

– – – – (3.9e-07) (6.3e-07)
b1 (Low HDI) – – – – -.00015*** -.00015***

– – – – (9.1e-07) (3.4e-06)
Regional fixed effect No Yes No Yes No Yes
Time fixed effect No Yes No Yes No Yes
Number of observations 3277 3277 3277 3277 3277 3277
R-squared 0.9989 0.9992 0.9990 0.9993 0.9990 0.9993
* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors.
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Table A-2: Marginal effects of capital-energy VES and income levels – pre-bootstrapping results.

Dependent variable: GDP
Global Income group HDI

(1) (2) (3) (4) (5) (6)
a1 1.062*** 1.066*** 1.042*** 1.053*** 1.051*** 1.058***

(.00373) (.00436) (.00382) (.00457) (.0042) (.00484)
a2 .4165*** .3618*** .547*** .447*** .4809*** .3925***

(.01961) (.02644) (.01578) (.02049) (.02013) (.0265)
b2 (Global) .05401*** .09723*** – – – –

(.01017) (.01949) – – – –
b2 (High income: OECD) – – .00903** .05022*** – –

– – (.00378) (.00979) – –
b2 (High income: Non-OECD) – – .01584*** .06112*** – –

– – (.00407) (.00972) – –
b2 (Upper middle income) – – -.00078 .02898*** – –

– – (.00364) (.00794) – –
b2 (Lower middle income) – – -.00397 .02349*** – –

– – (.00446) (.00871) – –
b2 (Low income) – – -.08541*** -.08796*** – –

– – (.00257) (.0052) – –
b2 (Very high HDI) – – – – .03351*** .08641***

– – – – (.00697) (.01658)
b2 (High HDI) – – – – .02893*** .07205***

– – – – (.0077) (.01608)
b2 (Medium HDI) – – – – .01958** .06589***

– – – – (.00785) (.01708)
b2 (Low HDI) – – – – -.00822 .04542**

– – – – (.00663) (.01969)
Regional fixed effect No Yes No Yes No Yes
Time fixed effect No Yes No Yes No Yes
Oil crisis dummy No Yes No Yes No Yes
Number of observations 3277 3277 3277 3277 3277 3277
R-squared 0.9994 0.9995 0.994 0.995 0.994 0.995
* p-value < 10%, ** p-value< 5%, *** p-value<1%.
Numbers in parentheses are standard errors.
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Table A-3: Marginal effects of capital-energy VES and environmental performance – pre-
bootstrapping results.

Dependent variable: GDP
Global estimates Kyoto Annex B EPI
(1) (2) (3) (4) (5) (6)

a1 1.062*** 1.066*** 1.06*** 1.075*** 1.046*** 1.054***
(.00373) (.00436) (.00397) (.00471) (.00387) (.00468)

a2 .4165*** .3618*** .4263*** .3497*** .498*** .3874***
(.01961) (.02644) (.02037) (.02621) (.01839) (.02696)

b2 (Global) .05401*** .09723*** – – – –
(.01017) (.01949) – – – –

b2 (Kyoto Annex B) – – .054*** .08127*** – –
– – (.00987) (.0183) – –

b2 (No Kyoto Annex B) – – .04908*** .1085*** – –
– – (.01005) (.02072) – –

b2 (Very high EPI) – – – – .03462*** .1069***
– – – – (.00664) (.01989)

b2 (High EPI) – – – – .03425*** .08335***
– – – – (.00717) (.01787)

b2 (Medium EPI) – – – – .01445** .06153***
– – – – (.00618) (.01627)

b2 (Low EPI) – – – – .00175 .07651***
– – – – (.00559) (.01878)

b2 (Very low EPI) – – – – -.01395 .06878***
– – – – (.00872) (.02322)

Regional fixed effect No Yes No Yes No Yes
Time fixed effect No Yes No Yes No Yes
Oil crisis dummy No Yes No Yes No Yes
Number of observations 3277 3277 3277 3277 3277 3277
R-squared 0.9994 0.9995 0.9994 0.9995 0.9994 0.9995
* p-value < 10%, ** p-value< 5%, *** p-value<1%.
Numbers in parentheses are standard errors.
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A-4 Classifications of countries

Table A-4: Classification of countries, by income.

High income - OECD:
Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Ger-
many, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Luxembourg, Netherlands,
New Zealand, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland, United
Kingdom, United States.
High-income - non-OECD:
Bahrain, Brunei Darussalam, Cyprus, Kuwait, Malta, Oman, Qatar, Saudi Arabia, Sin-
gapore, Trinidad and Tobago, United Arab Emirates.
Upper middle income:
Algeria, Angola, Argentina, Botswana, Brazil, Bulgaria, Chile, China, Colombia, Costa
Rica, Cuba, Dominican Republic, Ecuador, Gabon, Iran, Jamaica, Jordan, Lebanon,
Libyan Arab Jamahiriya, Malaysia, Mexico, Namibia, Panama, Peru, Romania, South
Africa, Thailand, Tunisia, Turkey, Uruguay, Venezuela.
Lower middle income:
Albania, Bolivia, Cameroon, Congo, Cote d’Ivoire, Egypt, El Salvador, Ghana,
Guatemala, Honduras, India, Indonesia, Iraq, Mongolia, Morocco, Nicaragua, Nigeria,
Pakistan, Paraguay, Philippines, Senegal, Sri Lankan, Syrian Arab Republic, Vietnam,
Yemen, Zambia.
Low income:
Bangladesh, Benin, Cambodia, Democratic Republic of Congo, Eritrea, Ethiopia, Haiti,
Kenya, Mozambique, Myanmar, Nepal, Togo, United Republic of Tanzania, Zimbabwe.

Source: World Bank.
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Table A-5: Classification of countries, by HDI level.

Very high HDI:
Argentina, Australia, Austria, Bahrain, Belgium, Brunei Darussalam, Canada, Chile,
Cuba, Cyprus, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary,
Iceland, Ireland, Israel, Italy, Japan, Kuwait, Luxembourg, Malta, Netherlands, New
Zealand, Norway, Poland, Portugal, Qatar, Saudi Arabia, Singapore, Slovakia, Spain,
Sweden, Switzerland, United Arab Emirates, United Kingdom, United States.
High HDI:
Albania, Algeria, Brazil, Bulgaria, China, Colombia, Costa Rica, Dominican Republic,
Ecuador, Iran, Jamaica, Jordan, Lebanon, Libyan Arab Jamahiriya, Malaysia, Mexico,
Oman, Panama, Peru, Romania, Sri Lanka, Thailand, Trinidad and Tobago, Tunisia,
Turkey, Uruguay, Venezuela.
Medium HDI:
Bangladesh, Bolivia, Botswana, Cambodia, Congo, Egypt, El Salvador, Gabon, Ghana,
Guatemala, Honduras, India, Indonesia, Iraq, Mongolia, Morocco, Namibia, Nicaragua,
Paraguay, Philippines, South Africa, Syrian Arab Republic, Vietnam, Zambia.
Low HDI:
Angola, Benin, Cameroon, Cote d’Voire, Democratic Republic of Congo, Eritrea, Ethiopia,
Haiti, Kenya, Mozambique, Myanmar, Nepal, Nigeria, Pakistan, Senegal, Togo, United
Republic of Tanzania, Yemen, Zimbabwe.

Source: United Nation Development Programme.

Table A-6: Kyoto Annex B countries.

Australia, Austria, Belgium, Bulgaria, Canada, Croatia, Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan,
Latvia, Liechtenstein, Lithuania, Luxembourg, Monaco, Netherlands, New Zealand, Nor-
way, Poland, Portugal, Romania, Russian Federation, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Ukraine, United Kingdom, United States of America.

Source: United Nation Framework Convention on Climate Change.
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Table A-7: Classification of countries, by EPI.

Very high EPI:
Switzerland, Luxembourg, Australia, Singapore, Czech Republic, Germany, Spain, Aus-
tria, Sweden, Norway, Netherlands, United Kingdom, Denmark, Iceland, New Zealand,
Portugal, Finland, Ireland, Slovakia, Italy, Greece, Canada, United Arab Emirates, Japan,
France, Hungary, Chile, Poland, United States of America, Malta.
High EPI:
Albania, Qatar, Tunisia, Cuba, Ecuador, Venezuela, Saudi Arabia, Mexico, Panama,
Malaysia, Syrian Arab Republic, Costa Rica, Jamaica, Brunei Darussalam, Belgium,
Turkey, Jordan, Israel, Cyprus, Bulgaria, Kuwait, Egypt.
Medium EPI:
Argentina, Thailand, Botswana, Nicaragua, Dominican Republic, Oman, Lebanon, Hon-
duras, Bahrain, Gabon, Trinidad and Tobago, Uruguay, Romania, South Africa, Algeria,
Bolivia, Iran, Guatemala, Colombia, Morocco, Sri Lanka, Brazil, Zimbabwe.
Low EPI:
Nepal, Zambia, Libyan Arab Jamahiriya, Indonesia, El Salvador, China, Ethiopia, Senegal,
Nigeria, Namibia, Kenya, Mongolia, Paraguay, Congo, Peru, Vietnam, Philippines, Cote
d’Ivoire.
Very Low EPI:
Myanmar, Yemen, Tanzania, Bangladesh, Ghana, Angola, Eritrea, Benin, Iraq, Demo-
cratic Republic of the Congo, Mozambique, Cameroon, Haiti, Togo, India, Cambodia,
Pakistan.

Source: Yale University.
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A-5 Estimations of full specifications without restrictions on b1

The estimates reported in Tables 1.6 and 1.7 in Section 3.5 are based on the restrictions that b1 = 0

and v1 = v2 = 1. One concern is that these restrictions may distort the results, thereby altering the

true capital-energy relationship. In fact, our preliminary estimations of equation (1.11) in Table A-

8 show that the imposition of these restrictions do not fundamentally affect the main results while

having clear computational advantages. Due to the complexity of our model, it is computationally

challenging to simultaneously estimate all parameters. Therefore, to test the validity of our restric-

tions, we impose the constraints on one parameter at a time in our preliminary estimations. Then

we perform a post-estimation hypothesis test to verify whether our estimates provide supports for

imposing the constraints on other parameters in the model. Specifically, Column (1) of Table A-8

shows the estimations of equation (1.11) where we impose v1 = 1, while Column (2) shows the esti-

mation results under the constraint v2 = 1. Our post-estimation hypothesis test shows that under

these restrictions, the returns-to-scale parameters v1 and v2 are not significantly different from 1.

In other words, our estimates provide support for a production function with constant returns to

scale, Therefore, in Column (3) of Table A-8, we present the estimates of equation (1.11) where

we restrict both v1 and v2 to be 1. Our results also show that parameter b1 is close to 0 and the

magnitude of parameter b1 is very small compared to that of b2. This suggests that the elasticity

of substitution between capital and energy is more likely to vary over time than the elasticity of

substitution between labor and physical inputs. Therefore, we restrict the value of b1 to be 0.
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Table A-8: Full specification without restrictions on b1.

Dependent variable: GDP
(1) (2) (3)

v1 = 1 v2 = 1 v1 = v2 = 1
a1 1.1069*** 1.1075*** 1.1134***

(0.0079) (0.0079) (0.0065)
a2 0.1873*** 0.1882*** 0.1914***

(0.0351) (0.0350) (0.0348)
b1 0.0006*** 0.0006*** 0.0006***

(0.0002) (0.0002) (0.0002)
b2 0.3230*** 0.3205*** 0.3116***

(0.0965) (0.0954) (0.0914)
v1 – 1.0039*** –

– (0.0031) –
v2 1.0041*** – –

(0.0029) – –
* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors.
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Appendix B: Appendix to Chapter 2

B-1 Testing for asymmetric leverage effects

One stylized fact in the financial world is that volatility tends to be higher in response to negative

shocks than to positive shocks. This section presents a simple framework to uncover this possible

asymmetric leverage effects in a given time series, according to Zivot (2008).

Let {Rt} be a time series of asset returns. To test for the presence of asymmetric leverage

effects in {Rt}, we first obtain the residuals from the following conditional mean regression:

Et−1[Rt] = c+
r∑

h=1
φh(yt−h) +

s∑
k=1

ψkεt−k + εt, (B-1)

where the lag lengths r and s are determined using the Schwartz information criteria.

Next, we estimate the following regression:

ε̂2t = γ0 + γ1ω̂t−1 + ζt, (B-2)

where ε̂t is the estimated residuals from equation (B-1), ω̂t is a dummy variable that equals 1

when ε̂t < 0 and 0 otherwise. A significant γ1 provides evidence for asymmetric leverage effects in

the ARCH/GARCH model.
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Appendix C: Appendix to Chapter 3

C-1 A directed technological change model of the electricity sector

In this section, we present a directed technological change model of the electricity sector where we

distinguish between innovation in renewable and nonrenewable technologies. Our goal is to derive

the equilibrium condition that explains firm-level innovation that guides our empirical analysis in

section 3.4. Aghion et al. (2016) used the directed technological change framework by Acemoglu

et al. (2012) to study innovation in the automobile industry. We follow a similar approach but

focus instead on the electricity sector.

There are two types of agents in this economy: consumers and electricity producers. Consumers

derive their utility from the consumption of goods and electricity:

U = c0 + β

β − 1

(∫ 1

0
Y

σ−1
σ

i di

) σ
σ−1

β−1
β

, (C-1)

where U denotes utility, c0 is consumption good and Yi is electricity purchased from retailer i.

β is the elasticity of substitution between electricity and the consumption good while σ is the

elasticity of substitution between electricity from different electricity retailers. Consumers allocate

their budget between the consumption goods and electricity such that their utility is maximized.

This maximization process yields the consumers’ electricity demand function:

Yi = P σ−βP−σi , (C-2)

where Yi is consumer electricity demand from retailer i, Pi is the price of electricity charged by

retailer i, while P is the market price of electricity. In this model, we consider tax-inclusive

electricity prices.
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Two types of firms participate in the electricity sector: the generators and the retailers. Elec-

tricity generators produce electricity using either renewable or non-renewable resources while elec-

tricity retailers buy electricity from the generators and deliver it to the consumers. Let us start

with electricity generators.

There are two types of electricity generators: renewable and nonrenewable. Renewable elec-

tricity generators produce electricity using renewable resources (r) while nonrenewable electricity

generators use fossil fuels (f). At the beginning of each period, they engage in research to develop

new electricity-generating technologies. Research efforts can improve firms’ existing technology by

Ai,j = (1 +xi,j)A0
i,j , where Ai,j measures generator i’s advancement in technology j and A0

i,j is the

firm’s initial knowledge in technology j for j = r, f . At the end of the period, newly developed

technologies are used to generate electricity, which is then sold to electricity retailers. All electric-

ity generators engage in research, thus there exists a continuum of renewable and nonrenewable

electricity generators with local market power, which allows them to seek monopoly rents from

electricity retailers.27

Electricity retailers buy electricity from renewable and nonrenewable generators, which are sub-

stitutes. There are multiple electricity retailers and they take the consumer demand for electricity

in equation (C-2) as given. Retailers maximize profits by choosing the amount of renewable and

nonrenewable electricity to buy. The profit function for electricity retailers is given as:

πRi = max
yi,r,yi,f

{PiYi − pi,ryi,r − pi,fyi,f}, (C-3)

27In reality, each electricity generator would be able to decide whether to conduct research at the beginning of
each period. While this distinction is important to study the impact of policies on innovation from an empirical
standpoint, note that there is no change in firms’ level of technology when they choose not to conduct research
or when they conduct unsuccessful research. In other words, from a theoretical standpoint, the economic outcome
resulting from firms’ decision not to engage in research is the same as those resulting from firms’ unsuccessful research.
Therefore, we assume that all electricity generators engage in research in our theoretical model while our empirical
model separately analyzes the impact of policies on firms’ decision to engage in research and on the probability that
the research is successful.
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where πRi are the profits of retailer i, Pi is the price of electricity that retailer i charges its consumers,

yi,j (j = r, f) is electricity purchased from renewable and nonrenewable sources, and pi,j (j = r, f)

are their corresponding prices. Electricity for final consumption, Yi, combines electricity from

renewable and nonrenewable sources:

Yi ≡
(
y
ε−1
ε

i,r + y
ε−1
ε

i,f

) ε
ε−1

, (C-4)

where ε is the ease of substitution between renewables and nonrenewables.28 Retailers maximize

profits in (C-3) and determine their demands for renewable and nonrenewable electricity: yi,j =

Yi
(
Pi
pi,j

)ε
for j = r, f . Since electricity generators earn monopoly profits from their research by

exerting their market power over the prices of electricity sold to retailers (i.e. pi,j for j = r, f),

using (C-2), we rewrite the retailers’ inverse demand function for electricity generated from source

j (j = r, f) in terms of prices as:

yi,j = P σ−βP ε−σi p−εi,j . (C-5)

We consider two types of environmental policies: energy taxes and research subsidies. Energy

taxes affect firms through the price of electricity (P ) while research subsidies (τj) affect firms by

reducing the cost of innovation.29

With the retailers’ inverse demand function in place, we can calculate the profit maximization of

electricity generators and their equilibrium level of investment in research. At the beginning of each

period, electricity generator i invest 1
2ψxi,j of the consumption goods in research for technology

28There is much debate about how ease it is to substitute renewable and nonrenewable technologies in electricity
generation. While some people argue that they are easily substitutable, others find evidence for a complementary
relationship.

29We can think of these subsidies as lowering the costs of doing research.
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type j (j = r, f). The equilibrium level of research xi,j maximizes:

max
xi,j

{
πi,j −

1
2
ψxi,j
τj

}
, (C-6)

where πi,j are generator i’s expected profits from selling electricity generated by source j to the

retailers and τj are research subsidies for technology type j (j = r, f). We calculate the equilibrium

level of research backwards. First, we calculate electricity generators’ equilibrium profits πi,j and

second, we calculate their equilibrium level of research intensity xi,j . Profit maximization becomes:

πi,j = maxyi,j{pi,jyi,j − 1
Ai,j

yi,j} where pi,j is the inverse demand function in equation (C-5). From

this maximization problem, we obtain the equilibrium demand for renewable and nonrenewable

electricity, yi,j =
(
ε−1
ε

)ε
, their corresponding equilibrium prices, pi,j = ε

ε−1
1
Ai,j

, and equilibrium

profits, πi,j =
(

(ε−1)ε−1

εε

)
P ε−σi P σ−βAε−1

i,j , for j = r, f . We use these equilibrium profits in (C-6) to

calculate the equilibrium level of innovation.

Innovation intensity for each electricity generator satisfies the first order condition:

xi,j =
(
ε− 1
ε

)ε τj
ψ
P ε−σi P σ−β

 A0
i,j(

(1 + xi,j)A0
i,j

)2−ε

 . (C-7)

Equation (C-7) describes each firm’s incentives to innovate. This equation shows that the equi-

librium innovation intensity depends on environmental policies, such as energy taxes and research

subsidies, energy prices and firms’ past research. More importantly, the impact of energy prices

and taxes on the direction of innovation depends on the ease at which firms can substitute between

electricity generated from fossil fuels and renewable energy (ε), as well as the ease at which con-

sumers can substitute between electricity and the consumption good (β) and between electricity

supplied by different producers (σ).
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C-2 Data appendix

Table C-1: Variables and sources of data.

Variable Unit of measure Source
Patents Number of applications OECD Triadic Patent Families

Database
Firms’ name and location OECD REGPAT Database
Firms’ name and location OECD HAN database

Research subsidies Constant 2005 national prices (in mil-
lions of 2005 U.S. $ )

IEA Energy Technology RD&D
Statistics

Energy prices including taxes Constant 2005 national prices (in mil-
lions of 2005 U.S. $ )

IEA Energy Prices & Taxes

Real GDP Constant 2005 national prices (in mil-
lions of 2005 U.S. $ )

Penn World Table

Population Millions of people Penn World Table
Population density People per square km of land area World Development Indicator

Table C-2: List of countries.

Patents:

Argentina, Australia, Austria, Bahamas, Barbados, Belgium, Belize, Bermuda, Brazil, Bulgaria, Canada,
Cayman Islands, Chile, China, Colombia, Croatia, Cyprus, Czech Republic, Denmark, Dominica, Fin-
land, France, Georgia, Germany, Greece, Hong Kong, Hungary, Iceland, Indonesia, India, Iran, Ireland,
Italy, Israel, Japan, Jordan, Korea, Kenya, Kuwait, Lithuania, Luxembourg, Malaysia, Mauritius, Mexico,
Netherlands, New Zealand, Norway, Panama, Philippines, Poland, Portugal, Russian Federation, Saudi
Arabia, Seychelles, Singapore, Slovak Republic, Slovenia, South Africa, Spain, Sri Lanka, St. Kitts and
Nevis, Sweden, Switzerland, Taiwan, Thailand, Turkey, Ukraine, United Arab Emirates, United Kingdom,
United States of America, Venezuela.

Energy prices and research subsidies:

Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hun-
gary, Ireland, Italy, Japan, Korea, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain,
Sweden, Switzerland, Turkey, United Kingdom, United States of America.

Countries in the estimations:

Australia, Austria, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hun-
gary, Ireland, Italy, Japan, Korea, Luxembourg, Netherlands, New Zealand, Norway, Portugal, Spain,
Sweden, Switzerland, Turkey, United Kingdom, United States of America.
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International patent classifications (IPC)

Table C-3: Patent classes for renewable electricity generation technologies.

IPC code Description

H01M 4/86-4/98, 8/00-8/24,

12/00-12/08

Fuel cells

H01M 4/86-4/98 Electrodes

H01M 4/86-4/98 Inert electrodes with catalytic activity

H01M 2/00-2/04 , 8/00-8/24 Non-active parts

H01M 12/00-12/08 Within hybrid cells

C10B 53/00, C10J Pyrolysis or gasification of biomass

Harnessing energy from manmade waste

C10L 5/00 Agricultural waste

C10L 5/42, 5/44 Fuel from animal waste and crop residues

F23G 7/00, 7/10 Incinerators for field, garden or wood waste

C10J 3/02, 3/46, F23B

90/00, F23G 5/027

Gasification

B09B 3/00, F23G 7/00 Chemical waste

C10L 5/48, F23G 5/00,

F23G 7/00

Industrial waste

C21B 5/06 Using top gas in blast furnaces to power pigiron production

D21C 11/00 Pulp liquors

A62D 3/02, C02F 11/04,

11/14

Anaerobic digestion of industrial waste

F23G 7/00, 7/10 Industrial wood waste

B09B 3/00, F23G 5/00 Hospital waste

B09B Landfill gas
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Table C-3 – continued from previous page

IPC code Description

B01D 53/02, 53/04, 53/047,

53/14, 53/22, 53/24, C10L

5/46

Separation of components

F23G 5/00 Municipal waste

Hydro energy

E02B 9/00-9/06 Water-power plants

E02B 9/08 Tide or wave power plants

F03B, F03C Machines or engines for liquids

F03B 13/12-13/26 Using wave or tide energy

F03B 15/00-15/22 Regulating, controlling or safety means of machines or engines

B63H 19/02, 19/04 Propulsion of marine vessels using energy derived from water movement

F03G 7/05 Ocean thermal energy conversion (OTEC)

F03D Wind energy

H02K 7/18 Structural association of electric generator with mechanical driving motor

B63B 35/00, E04H 12/00,

F03D 11/04

Structural aspects of wind turbines

B60K 16/00 Propulsion of vehicles using wind power

B60L 8/00 Electric propulsion of vehicles using wind power

B63H 13/00 Propulsion of marine vessels by wind-powered motors

Solar energy

H01L 27/142, 31/00 31/078,

H01G 9/20, H02N 6

Devices adapted for the conversion of radiation energy into electrical energy

H01L 27/30, 51/42-51/48 Using organic materials as the active part

H01L 25/00, 25/03, 25/16,

25/18, 31/042

Assemblies of a plurality of solar cells

C01B 33/02, C23C 14/14,

16/24, C30B 29/06

Silicon; single-crystal growth
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Table C-3 – continued from previous page

IPC code Description

G05F 1/67 Regulating to the maximum power available from solar cells

F21L 4/00, F21S 9/03 Electric lighting devices with, or rechargeable with, solar cells

H02J 7/35 Charging batteries

H01G 9/20, H01M 14/00 Dye-sensitised solar cells (DSSC)

F24J 2/00-2/54 Use of solar heat

F24D 17/00 For domestic hot water systems

F24D 3/00, 5/00, 11/00,

19/00

For space heating

F24J 2/42 For swimming pools

F03D 1/04, 9/00, 11/04,

F03G 6/00

Solar updraft towers

C02F 1/14 For treatment of water, waste water or sludge

F02C 1/05 Gas turbine power plants using solar heat source

H01L 31/058 Hybrid solar thermal-PV systems

B60K 16/00 Propulsion of vehicles using solar power

B60L 8/00 Electric propulsion of vehicles using solar power

F03G 6/00-6/06 Producing mechanical power from solar energy

E04D 13/00, 13/18 Roof covering aspects of energy collecting devices

F22B 1/00, F24J 1/00 Steam generation using solar heat

F25B 27/00 Refrigeration or heat pump systems using solar energy

F26B 3/00, 3/28 Use of solar energy for drying materials or objects

F24J 2/06, G02B 7/183 Solar concentrators

F24J 2/04 Solar ponds

Geothermal energy

F01K, F24F 5/00, F24J 3/08,

H02N 10/00, F25B 30/06

Use of geothermal heat

F03G 4/00-4/06, 7/04 Production of mechanical power from geothermal energy
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Table C-3 – continued from previous page

IPC code Description

F24J 1/00, 3/00, 3/06 Other production or use of heat, not derived from combustion, e.g. natural heat

F24D 11/02 Heat pumps in central heating systems using heat accumulated in storage masses

F24D 15/04 Heat pumps in other domestic- or space-heating systems

F24D 17/02 Heat pumps in domestic hot-water supply systems

F24H 4/00 Air or water heaters using heat pumps

F25B 30/00 Heat pumps

Using waste heat

F01K 27/00 To produce mechanical energy

F01K 23/06-23/10, F01N

5/00, F02G 5/00-5/04, F25B

27/02

Of combustion engines

F01K 17/00;23/04 steam engine plants

F02C 6/18 Of gas-turbine plants

F25B 27/02 As source of energy for refrigeration plants

C02F 1/16 For treatment of water, waste water or sewage

D21F 5/20 Recovery of waste heat in paper production

F22B 1/02 For steam generation by exploitation of the heat content of hot heat carriers

F23G 5/46 Recuperation of heat energy from waste incineration

F24F 12/00 Energy recovery in air conditioning

F27D 17/00 Arrangements for using waste heat from furnaces, kilns, ovens or retorts

F28D 17/00-20/00 Regenerative heat-exchange apparatus

C10J 3/86 Of gasification plants

F03G 5/00-5/08 Devices for producing mechanical power from muscle energy

Source: IPC Green Inventory, World Intellectual Property Organization.
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Table C-4: Patent classes for efficiency-improving electricity generation technologies.

IPC code Description

Coal gasification

C10J3 Production of combustible gases containing carbon monoxide from solid carbonaceous

fuels

Improved burners [Classes listed below excluding combinations with B60,B68,F24,F27]

F23C1 Combustion apparatus specially adapted for combustion of two or more kinds of fuel

simultaneously or alternately,at least one kind of fuel being fluent

F23C5/24 Combustion apparatus characterised by the arrangement or mounting of burners; dis-

position of burners to obtain a loop flame

F23C6 Combustion apparatus characterised by the combination of two or more combustion

chambers

F23B10 Combustion apparatus characterised by the combination of two or more combustion

chambers

F23B30 Combustion apparatus with driven means for agitating the burning fuel; combustion

apparatus with driven means for advancing the burning fuel through the combustion

chamber

F23B70 Combustion apparatus characterised by means for returning solid combustion residues

to the combustion chamber

F23B80 Combustion apparatus characterised by means creating a distinct flow path for fluegases

or for non-combusted gases given off by the fuel

F23D1 Burners for combustion of pulverulent fuel

F23D7 Burners in which drops of liquid fuel impinge on a surface

F23D17 Burners for combustion simultaneously or alternatively of gaseous or liquid or pulveru-

lent fuel

Fluidised bed combustion

B01J8/20-22 Chemical or physical processes in general, conducted in the presence of fluids and solid

particles; apparatus for such processes; with liquid as a fluidising medium
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Table C-4 – continued from previous page

IPC code Description

B01J8/24-30 Chemical or physical processes in general, conducted in the presence of fluids and solid

particles; apparatus for such processes; according to “fluidised-bed” technique

F27B15 Fluidised bed furnaces; Other furnaces using or treating finely divided materials in

dispersion

F23C10 Apparatus in which combustion takes place in afluidised bed of fuel or other particles

Improved boilers for steam generation

F22B31 Modifications of boiler construction, or of tube systems, dependent on installation of

combustion apparatus; Arrangements or dispositions of combustion apparatus

F22B33/14-16 Steam generation plants,e.g.comprising steam boilers of different types in mutual asso-

ciation; combinations of low-and high-pressure boilers

Improved steam engines

F01K3 Plants characterised by the use of steam or heat accumulators, or intermediate steam

heaters, therein

F01K5 Plants characterised by use of means for storing steam in an alkali to increases team

pressure,e.g. of Honigmann or Koenemann type

F01K23 Plants characterised by more than one engine delivering power external to the plant,

the engines being driven by different fluids

Super-heaters

F22G Steam super heating characterised by heating method

Improved gas turbines

F02C7/08-105 Features, component parts, details or accessories; heating air supply before combus-

tion,e.g. by exhaust gases

F02C7/12-143 Features, component parts, details or accessories; cooling of plants

F02C7/30 Features, component parts, details or accessories; preventing corrosion in gas-swept

spaces

Combined cycles
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Table C-4 – continued from previous page

IPC code Description

F01K23/02-10 Plants characterised by more than one engine delivering power external to the plant,

the engines being driven by different fluids; the engine cycles being thermally coupled

F02C3/20-36 Gas turbine plants characterised by the use of combustion products as the working fluid;

using special fuel, oxidant or dilution fluid to generate the combustion products

F02C6/10-12 Plural gas-turbine plants; combinations of gas-turbine plants with other apparatus; sup-

plying working fluid to a user,e.g. a chemical process, which returns working fluid to a

turbine of the plant

Improved compressed-ignitionengines

[Classes listed below excluding combinations with B60,B68,F24,F27]

F02B1/12-14 Engines characterised by fuel-air mixture compression; with compression ignition

F02B3/06-10 Engines characterised by fuel-air mixture compression; with compression ignition

F02B7 Engines characterised by the fuel-air charge being ignited by compression ignition of an

additional fuel

F02B11 Engines characterised by both fuel-air mixture compression and air compression, or

characterised by both positive ignition and compression ignition,e.g.indifferent cylinders

F02B13/02-04 Engines characterised by the introduction of liquid fuel into cylinders by use of auxiliary

fluid; compression ignition engines using air or gas for blowing fuel into compressed air

in cylinder

F02B49 Methods of operating air- compressing compression-ignition engines involving introduc-

tion of small quantities of fuel in the form of a fine mist into the air in the engine’s

intake

Co-generation

F01K17/06 Use of steam or condensate extracted or exhausted from steam engine plant; returning

energy of steam, in exchanged form,to process,e.g. use of exhaust steam for drying solid

fuel of plant

F01K27 Plants for converting heat or fluid energy into mechanical energy
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Table C-4 – continued from previous page

IPC code Description

F02C6/18 Plural gas-turbine plants; combinations of gas-turbine plants with other apparatus; using

the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power

heat plants

F02G5 Profiting from waste heat of combustion engines

F25B27/02 Machines, plant, or systems, using particular sources of energy; using waste heat, e.g.

from internal-combustion engines

Source: Lanzi et al. (2011).

Table C-5: Patent classes for general fossil-fuel technologies.

IPC code Description
C10J Production of fuel gases by carburetting air or other gases without pyrolysis
F01K Steam engine plants; steam accumulators; engine plants not otherwise provided for; engines

using special working fluids or cycles
F02C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply in air-breathing

jet-propulsion plants
F02G Hot-gas or combustion-product positive-displacement engine; use of waste heat of combustion

engines,not otherwise provided for
F22 Steam generation
F23 Combustion apparatus; combustion processes
F27 Furnaces; kilns; ovens; retorts
Source: Lanzi et al. (2011).
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Table C-6: Patent classes for base load electricity generation technologies.

IPC code Description
C10J3 Coal gassification–production from solid carbonaceous fuels
F23C1 Integrated coal gasification combined cycle (IGCC)
F23C5/24 Burners used for combustion are used in base load activities
F23C6 Burners used for combustion are used in base load activities
F23B10 Other coal-fire technology, in general
F23B30 Burners used for combustion are used in base load activities
F23B70 Burners used for combustion are used in base load activities
F23B80 Burners used for combustion are used in base load activities
F23D1 Pulverized coal combustion (PCC) in steam cycle
F23D7 Burners used for combustion are used in base load activities
F23D17 Integrated coal gasification combined cycle (IGCC)
B01J8/20-22 FBC burns coal or any combustable material. Coal is mainly used in base load operations
B01J8/24-30 FBC burns coal or any combustable material. Coal is mainly used in base load operations
F27B15 FBC burns coal or any combustable material. Coal is mainly used in base load operations
F23C10 FBC burns coal or any combustable material. Coal is mainly used in base load operations
F22B31 Used in steam generation. From p 24 ref 7 “baseload steam generating units (e.g., boilers)”
F22B33/14-16 Used in steam generation. From p 24 ref 7 “baseload steam generating units (e.g., boilers)”
F01K3 Steam engines used in base load ops
F01K5 Steam engines used in base load ops
F01K23 IGCC
F22G PCC in steam cycle
F01K23/02-10 CCGT is the dominant gas-based technology for intermediate and base-load power generation
F02C3/20-36 CCGT is the dominant gas-based technology for intermediate and base-load power generation
F02C6/10-12 CCGT is the dominant gas-based technology for intermediate and base-load power generation
Source: own calculations.

Table C-7: Patent classes for peak load electricity generation technologies.

IPC code Description
F02C7/08-105 Gas Turbines used in peak load operations
F02C7/12-143 Gas Turbines used in peak load operations
F02C7/30 Gas Turbines used in peak load operations
F02B1/12-14 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B3/06-10 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B7 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B11 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B13/02-04 Compressed-ignition engines (or diesel engines) are used in peak load production
F02B49 Compressed-ignition engines (or diesel engines) are used in peak load production
F01K17/06 Cogeneration is used dring peak load hours mainly using natural gases
F01K27 Cogeneration is used dring peak load hours mainly using natural gases
F02C6/18 Cogeneration is used dring peak load hours mainly using natural gases
F02G5 Cogeneration is used dring peak load hours mainly using natural gases
F25B27/02 Cogeneration is used dring peak load hours mainly using natural gases
Source: own calculations.
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Figure C-1: Innovating firms by country.

191



Table C-8: Total number of patents in each renewable and fossil fuel technology.

Technology Global
Renewables

Geothermal 2,123
Hydro 6,337
Natural heat 2,351
Solar 59,905
Thermal 43
Waste 17,361
Waste heat 2,351
Wind 5,770
Fuel cells 22,994
Biomass 808
Muscle energy 16
Total 120,059

Fossil fuels
Base load (coal and natural gas) 89,425
Peak load (natural gas and diesel) 27, 121
Total 116,546

Table C-9: Cross-correlation table of energy prices in the most innovative regions.

United States
Coal price Natural gas price Oil price Electricity price

Coal price 1.000
Natural gas price 0.503 1.000
Oil price 0.766 0.867 1.000
Electricity price 0.769 0.779 0.775 1.000

Europe
Coal price Natural gas price Oil price Electricity price

Coal price 1.000
Natural gas price 0.858 1.000
Oil price 0.902 0.921 1.000
Electricity price 0.961 0.913 0.902 1.000

Japan
Coal price Natural gas price Oil price Electricity price

Coal price 1.000
Natural gas price 0.376 1.000
Oil price 0.858 0.206 1.000
Electricity price -0.014 0.386 0.164 1.000
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C-3 Robustness analysis

This section presents the detailed estimation results of the robustness analysis discussed in

section 3.6. Specifically, tables C-10 and C-11 show the zero-inflated Poisson and negative

binomial estimates while Table C-12 shows additional fossil fuel prices. In tables C-13 and

C-14 we consider alternative lag structures of past innovation and table C-15 presents the

estimation results using the five geographical regions as an alternative definition of regional

spillovers. Table C-16 controls for additional macroeconomic indicators while Table C-17

considers only firms in France, Germany, Japan, United Kingdom and United States, the

five most innovative countries in the dataset. Table C-18 separates firms between large and

small firms while table C-19 separates them between specialized and mixed firms. Finally,

tables C-20 and C-21 looks at different definitions of base load and peak load technologies.
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Table C-10: Zero-inflated Poisson estimates of the determinants of firm-level innovation in
renewable and non-renewable technologies using global data from 1978 to 2011.

Dependent variable: firm-level number of patents
Probability to apply for a patent
(Poisson – intensive margin)

Probability to engage in research
(Logit – extensive margin)

Renewable Fossil fuel Renewable Fossil fuel
(1) (2) (3) (4)

Energy prices including taxes
L1.Coal price -.36010*** -.30060* -.05183 -.16450***

(.10370) (.16440) (.04318) (.04526)
L1.Electricity price -.50680*** -.72890*** -.10040* .01906

(.10470) (.18690) (.05896) (.06581)
Research subsidies

L1.Renewable .08301*** .04699 -.02661 -.06508***
(.03033) (.05693) (.01890) (.02014)

L1.Fossil fuel -.10610*** -.04926 -.01698 -.00639
(.02006) (.03995) (.01332) (.01473)

L1.Efficiency-improving .03313 .06965 .03944* .06440***
(.03131) (.06131) (.02245) (.02431)

Past innovation
L1.Renewable knowledge .00345*** .00007 -.01313*** .00055

(.00018) (.00068) (.00082) (.00049)
L1.Renewable spillovers -.00002*** -.00003* -.00002*** -.00000

(.00001) (.00001) (.00000) (.00000)
L1.Fossil-fuel knowledge .00004 .00054*** .00068*** -.00792***

(.00006) (.00007) (.00017) (.00092)
L1.Fossil-fuel spillover .00003*** .00003** .00000 .00000

(.00001) (.00001) (.00000) (.00000)
Macroeconomic indicators

L1.GDP -.00629 -.00417 .01788 .03257
(.05982) (.1028) (.02037) (.022)

L1.GDP per capita .12320 -2.8430*** -.10140 .87870***
(.35030) (.68200) (.12240) (.13720)

Constant term 55.55000* -36.84000 2.96400** -7.34800***
(29.40000) (53.14000) (1.26300) (1.38500)

Firm pre-sample FE Yes Yes Yes Yes
Country FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Observations 30597 30597 30597 30597
* p-value < 10%, ** p-value < 5%, *** p-value < 1%.
Numbers in parentheses are standard errors.
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Table C-11: Negative binomial estimates of the determinants of firm-level innovation in
renewable, base load and peak load technologies in the five most innovative countries.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Base load Peak load
Energy prices including taxes

L1.Coal price -.4939∗∗∗ -.4275∗∗∗ -.3169∗

(.06604) (.09596) (.1721)
L1.Electricity price -.00157 .0215 -.1107

(.07439) (.1032) (.1803)
Research subsidies

L1.Renewable .01648 .03532 .03243
(.0292) (.03803) (.07431)

L1.Fossil fuel .04571∗∗ .02959 -.02929
(.02059) (.02778) (.05324)

L1.Efficiency-improving .04731∗∗∗ .00883 .1616∗∗∗

(.01664) (.02333) (.04631)
Past innovation knowledge

L1.Renewable .00072∗∗∗ .00063∗∗∗ .00115∗∗∗

(5.5e-05) (.00011) (.00019)
L1.Base load .00046∗∗∗ .00135∗∗∗ .00055∗∗∗

(.0001) (.00011) (.00017)
L1.Peak load 2.8e-05 -.00048∗∗∗ 6.0e-05

(.0001) (.0001) (.00013)
Past innovation spillovers

L1.Renewable 1.2e-05 2.4e-05∗ 1.1e-05
(7.6e-06) (1.3e-05) (2.1e-05)

L1.Base load -3.6e-05∗∗∗ -6.0e-05∗∗∗ -3.1e-05
(8.9e-06) (1.4e-05) (2.5e-05)

L1.Peak load 8.1e-05∗∗∗ 7.0e-05∗∗ 4.7e-05
(1.8e-05) (2.9e-05) (4.8e-05)

Macroeconomic indicators
L1.GDP -.8157∗∗∗ -.7045∗∗∗ -.4787∗∗∗

(.04811) (.05605) (.108)
L1.GDP per capita .7797∗∗ 1.275∗∗∗ .5734

(.3149) (.4848) (.8579)
Constant term 2.69 -5.711 -1.588

(3.382) (5.33) (9.151)
Pre-sample history Yes Yes Yes
Pre-sample active Yes Yes Yes
Firm FE Yes Yes Yes
Country FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 196903 100955 31494
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-12: Fossil fuel price effect in base load and peak load technologies using global data from 1978 to 2009 (firms with
more than 10 patents – top 22% innovators).

Dependent variable: firm-level number of patents
Renewable Base load Peak load

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Energy prices including taxes

L1.Coal price -.8366 .5183 .3937
(.6063) (.5667) (.8791)

L1.Coal price squared .9411 -1.661 -1.866
(1.236) (1.151) (1.593)

L1.Oil price .03736 .1095 .2135
(.2032) (.2426) (.3715)

L1.Electricity price .03578 .1439 -.2071
(.2612) (.2195) (.3621)

L1.Elec-coal price gap .5675∗∗ .6421∗∗∗ .4826
(.23) (.2405) (.5954)

Research subsidies
L1.Renewable .1335∗ .1106 .1156 -.03796 -.03609 -.03989 .1625 .1661 .1591

(.07896) (.07847) (.0785) (.08523) (.08647) (.08577) (.2126) (.2099) (.2125)
L1.Fossil fuel .00747 -.01113 .0197 .04053 .0531 .06869 .04789 .02528 .06499

(.04556) (.04263) (.04456) (.05576) (.0606) (.05687) (.07685) (.08678) (.07989)
L1.Efficiency-improving .04536 .05442 .04606 .01864 .01824 .00855 .3811∗∗∗ .3864∗∗∗ .3819∗∗∗

(.04251) (.04163) (.04222) (.05867) (.05716) (.05868) (.1092) (.1076) (.1057)
Past innovation knowledge

L1.Renewable -.00041∗∗ -.0004∗∗ -.0004∗∗ 7.6e-05 .00012 .0001 -.00068 -.00059 -.00059
(.00017) (.00017) (.00017) (.00051) (.00053) (.00052) (.00059) (.0006) (.00062)

L1.Fossil-fuel -.00098∗∗∗ -.00096∗∗∗ -.00097∗∗∗ -.00079∗∗∗ -.0007∗∗∗ -.00074∗∗∗ .00031 .00037 .0004
(.00027) (.00028) (.00026) (.00022) (.00023) (.00023) (.00049) (.00046) (.00048)

L1.Peak load .00101∗∗∗ .001∗∗∗ .00099∗∗∗ .00088∗∗∗ .0008∗∗∗ .00083∗∗∗ .00022 .00015 .00012
(.0002) (.00021) (.0002) (.00017) (.00018) (.00018) (.00031) (.0003) (.00031)

Past innovation spillovers
L1.Renewable -1.1e-05 -1.2e-05 -4.0e-06 -2.5e-05 -1.9e-05 -1.8e-05 -6.0e-05 -5.0e-05 -4.3e-05

(1.9e-05) (2.0e-05) (1.9e-05) (2.1e-05) (2.1e-05) (2.2e-05) (5.1e-05) (5.0e-05) (5.1e-05)
L1.Base load 1.3e-05 1.3e-05 2.0e-05 1.7e-05 1.8e-05 1.8e-05 5.2e-05 5.2e-05 6.3e-05∗

(2.3e-05) (1.9e-05) (2.4e-05) (2.3e-05) (2.3e-05) (2.3e-05) (3.9e-05) (3.9e-05) (3.8e-05)
L1.Peak load -.00011∗∗ -.00012∗∗ -.00013∗∗ -8.9e-05 -9.7e-05∗ -9.5e-05∗ -2.1e-05 -2.0e-05 -4.1e-05

(5.4e-05) (4.8e-05) (5.7e-05) (5.5e-05) (5.7e-05) (5.5e-05) (9.8e-05) (.0001) (9.9e-05)
Macroeconomic indicators

L1.GDP -.2366∗∗ -.1505 -.196∗∗ -.2274∗∗ -.1188 -.1754∗ -.5012∗∗∗ -.3641∗ -.3744∗∗

(.09645) (.09981) (.09779) (.09345) (.09634) (.09547) (.1872) (.1906) (.1788)
L1.GDP per capita .5374 .5634 .4427 1.551∗∗ 1.552∗∗ 1.42∗∗ .6351 .7471 .6453

(.842) (.7767) (.8344) (.6495) (.6648) (.6434) (1.638) (1.6) (1.661)
Pre-sample history Yes Yes Yes Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 21433 21433 21433 17801 17801 17801 7730 7730 7730

Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-13: Estimates with second lags of explanatory variables.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.4123∗∗ -.3538∗ -.3801∗∗ -.4599∗∗∗ -.5508

(.1621) (.2064) (.1481) (.1652) (.3651)
L1.Electricity price .2079 .3064 .1687 .3595 -.2256

(.2098) (.2732) (.187) (.2313) (.3913)
Research subsidies

L1.Renewable .1538∗∗ .04959 .1668∗∗ -.0118 .1749
(.07187) (.113) (.06896) (.08075) (.2059)

L1.Fossil fuel .00717 .05446 -.00955 .0623 .06368
(.03757) (.05815) (.03977) (.05977) (.08687)

L1.Efficiency-improving .00229 .03965 -.0096 -.02493 .3045∗∗∗
(.03686) (.06079) (.03812) (.0544) (.09123)

Past innovation knowledge
L2.Renewable -.00104∗∗∗ -.00079 -.00095∗∗∗ -5.9e-05 -.00104

(.00014) (.00054) (.00012) (.00066) (.0007)
L2.Fossil fuel -1.8e-06 .00019∗∗∗

(.0002) (6.4e-05)
L2.Base load -.0011∗∗∗ -.00125∗∗∗ .00031

(.0003) (.0003) (.00057)
L2.Peak load .00105∗∗∗ .00114∗∗∗ .00023

(.00025) (.00022) (.00036)
Past innovation spillovers

L2.Renewable -2.3e-05 -1.4e-05 -2.9e-05∗ -3.7e-05 -7.7e-05
(1.6e-05) (2.4e-05) (1.7e-05) (2.3e-05) (5.4e-05)

L2.Fossil fuel -3.9e-05∗∗ -5.4e-06
(1.5e-05) (1.5e-05)

L2.Base load -3.5e-05∗∗ 4.9e-06 8.9e-06
(1.6e-05) (2.0e-05) (3.0e-05)

L2.Peak load -3.7e-05 -3.0e-05 7.8e-05
(4.4e-05) (5.5e-05) (8.9e-05)

Macroeconomic indicators
L1.GDP -.1764∗ -.1321 -.1792∗ -.2485∗∗∗ -.6646∗∗∗

(.09771) (.1077) (.1015) (.08802) (.1872)
L1.GDP per capita -.4653 .4265 -.6343 .7695 .4334

(.7823) (.8231) (.7311) (.6287) (1.466)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 46590 31316 46620 28779 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-14: Estimates with third lags of explanatory variables.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.4294∗∗∗ -.3924∗∗ -.4012∗∗∗ -.4787∗∗∗ -.5158

(.1496) (.1959) (.1383) (.1662) (.3949)
L1.Electricity price .2292 .3448 .2845 .3623∗ -.2149

(.199) (.2579) (.179) (.2201) (.3932)
Research subsidies

L1.Renewable .1512∗∗ .04769 .1408∗∗ .00381 .1709
(.06923) (.109) (.06488) (.07456) (.2099)

L1.Fossil fuel .01373 .05483 .00358 .06109 .07089
(.0378) (.05881) (.04003) (.05967) (.0935)

L1.Efficiency-improving -.00734 .01646 -.00943 -.04462 .2936∗∗∗
(.0357) (.06259) (.03483) (.05181) (.08994)

Past innovation knowledge
L3.Renewable -.00148∗∗∗ -.00103∗ -.00134∗∗∗ -7.6e-05 -.00093

(.00027) (.0006) (.0002) (.00078) (.00065)
L3.Fossil fuel -7.0e-05 .00015∗

(.00024) (8.1e-05)
L3.Base load -.00123∗∗∗ -.00174∗∗∗ .00018

(.00038) (.00035) (.00058)
L3.Peak load .00106∗∗∗ .00147∗∗∗ .00029

(.00032) (.00027) (.00038)
Past innovation spillovers

L3.Renewable -2.8e-05 -8.7e-06 -1.6e-05 -3.8e-05∗ -7.7e-05
(1.7e-05) (2.7e-05) (1.9e-05) (2.2e-05) (6.1e-05)

L3.Fossil fuel -3.6e-05∗∗ -9.1e-06
(1.6e-05) (1.9e-05)

L3.Base load -9.5e-06 -2.5e-06 7.1e-06
(1.7e-05) (2.2e-05) (3.5e-05)

L3.Peak load -9.4e-05∗ -9.9e-06 1.0e-04
(4.9e-05) (6.0e-05) (.00011)

Macroeconomic indicators
L1.GDP -.1981∗ -.1141 -.1734∗ -.2491∗∗∗ -.6602∗∗∗

(.112) (.1196) (.1037) (.09158) (.1985)
L1.GDP per capita -.4775 .3075 -.3941 .6358 .4153

(.7639) (.8435) (.7155) (.62) (1.498)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 53642 35200 53676 32180 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-15: Alternative definition of regional spillovers: five regions.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.3964∗∗ -.2992 -.4168∗∗ -.4081∗∗ -.5841

(.1809) (.2168) (.1664) (.1703) (.3599)
L1.Electricity price .1641 .2415 .2467 .3653 -.02527

(.2259) (.2857) (.194) (.2404) (.3832)
Research subsidies

L1.Renewable .1567∗∗ .0485 .1288∗ -.0253 .1756
(.07383) (.1129) (.07403) (.08381) (.2168)

L1.Fossil fuel .00263 .0551 .02039 .06659 .06384
(.03797) (.05722) (.03945) (.05826) (.08065)

L1.Efficiency-improving .00187 .06258 .0385 -.00404 .3642∗∗∗
(.0406) (.06928) (.04008) (.05664) (.1052)

Past innovation knowledge
L1.Renewable -.00056∗∗∗ -.00049 -.00045∗∗∗ 4.3e-05 -.00077

(.00013) (.00044) (.00016) (.00053) (.00062)
L1.Fossil-fuel 4.4e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Base load -.001∗∗∗ -.00076∗∗∗ .00036

(.00027) (.00024) (.0005)
L1.Peak load .00098∗∗∗ .00082∗∗∗ .00016

(.0002) (.00018) (.00032)
Past innovation spillovers

L1.Renewable -2.6e-05 -3.6e-05 -6.0e-06 -1.4e-05 -5.0e-05
(2.3e-05) (3.2e-05) (2.1e-05) (3.1e-05) (5.6e-05)

L1.Fossil-fuel -4.3e-05∗∗∗ -1.1e-05
(1.5e-05) (1.6e-05)

L1.Base load 2.2e-05 2.1e-05 5.9e-05
(2.3e-05) (3.0e-05) (3.8e-05)

L1.Peak load -.00013∗∗∗ -.0001∗ -3.7e-05
(5.0e-05) (6.0e-05) (9.4e-05)

Macroeconomic indicators
L1.GDP -.1662∗ -.1112 -.1941∗∗ -.1636∗ -.4713∗∗

(.09153) (.1016) (.09364) (.09356) (.1953)
L1.GDP per capita -.3539 .5974 .2637 1.255∗∗ .7033

(.8199) (.8274) (.7974) (.6389) (1.634)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39293 27233 39317 25194 9782
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-16: Baseline estimates with additional macroeconomic indicators (population
density).

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.3871∗ -.2869 -.403∗∗ -.4036∗∗ -.5892

(.1986) (.2195) (.1798) (.1695) (.347)
L1.Electricity price .1767 .2685 .2707 .3659 -.03229

(.2265) (.2847) (.1989) (.2412) (.39)
Research subsidies

L1.Renewable .1575∗∗ .04417 .126∗ -.03284 .1754
(.07461) (.1154) (.07477) (.08704) (.2151)

L1.Fossil fuel .0012 .05684 .0213 .06772 .06437
(.03916) (.05764) (.04196) (.05867) (.0804)

L1.Efficiency-improving .01003 .06804 .03807 .00048 .366∗∗∗

(.04124) (.0738) (.04069) (.0585) (.1142)
Past innovation knowledge

L1.Renewable -.00055∗∗∗ -.00046 -.00045∗∗∗ 5.4e-05 -.00077
(.00013) (.00043) (.00016) (.00053) (.00062)

L1.Fossil-fuel 4.8e-05 .00025∗∗∗

(.00017) (4.9e-05)
L1.Base load -.001∗∗∗ -.00076∗∗∗ .00036

(.00027) (.00023) (.00049)
L1.Peak load .00098∗∗∗ .00082∗∗∗ .00017

(.0002) (.00017) (.00031)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.0e-05 -5.1e-06 -1.4e-05 -5.2e-05
(2.0e-05) (2.7e-05) (1.8e-05) (2.2e-05) (5.1e-05)

L1.Fossil-fuel -3.7e-05∗∗∗ -5.7e-06
(1.4e-05) (1.6e-05)

L1.Base load 2.5e-05 2.2e-05 5.5e-05
(2.0e-05) (2.4e-05) (3.5e-05)

L1.Peak load -.00013∗∗∗ -9.9e-05∗ -2.6e-05
(5.0e-05) (5.9e-05) (9.5e-05)

Macroeconomic indicators
L1.GDP -.1374 -.1152 -.1765∗ -.1622∗ -.4801∗∗

(.09599) (.09859) (.1038) (.09144) (.1942)
L1.GDP per capita -.3662 .6039 .2445 1.287∗∗ .6931

(.8814) (.819) (.8643) (.6551) (1.53)
L1.Pop. density -.00289 -.03837 -.03412 .00132 .00953

(.07262) (.1259) (.08817) (.1257) (.2721)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39099 27020 39123 24981 9767
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-17: Five most innovative countries: France, Germany, Japan, United Kingdom,
United States.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.5212∗∗ -.0764 -.6175∗∗∗ -.3273 .02017

(.2215) (.2669) (.208) (.2093) (.4524)
L1.Electricity price .2901 .06645 .5866∗∗ .5353 -.5389

(.2539) (.3515) (.229) (.3435) (.4916)
Research subsidies

L1.Renewable .1383∗ .06597 .1274 .02422 .1783
(.08316) (.1258) (.08085) (.0935) (.2117)

L1.Fossil fuel .02769 .06799 .07531 .115∗ -.05627
(.04436) (.06448) (.04806) (.06856) (.08894)

L1.Efficiency-improving -.02535 .09217 .01101 -.00632 .4546∗∗∗
(.04325) (.06963) (.04223) (.05709) (.1068)

Past innovation knowledge
L1.Renewable -.00053∗∗∗ -.00059 -.00041∗∗ -1.7e-05 -.00086

(.00014) (.00044) (.00018) (.00051) (.00067)
L1.Fossil-fuel 4.2e-05 .00029∗∗∗

(.00017) (4.7e-05)
L1.Base load -.00101∗∗∗ -.00066∗∗ .00048

(.00028) (.00027) (.00056)
L1.Peak load .00095∗∗∗ .00078∗∗∗ .00018

(.00021) (.00022) (.00036)
Past innovation spillovers

L1.Renewable -2.4e-05 -6.1e-05∗ 1.2e-05 -1.7e-05 -8.4e-05
(2.4e-05) (3.5e-05) (2.4e-05) (4.0e-05) (6.6e-05)

L1.Fossil-fuel -4.4e-05∗∗∗ -3.1e-06
(1.5e-05) (1.7e-05)

L1.Base load 4.4e-05 3.8e-05 5.6e-05
(2.7e-05) (3.9e-05) (5.3e-05)

L1.Peak load -.00018∗∗∗ -.00012 -1.7e-05
(5.8e-05) (8.6e-05) (.00011)

Macroeconomic indicators
L1.GDP -.2038∗ -.1909 -.2624∗∗ -.1796 -.3594∗

(.1196) (.1759) (.1271) (.1184) (.1837)
L1.GDP per capita -.3636 .8395 .2975 .3559 .6358

(.9212) (.8435) (.9344) (.8418) (1.557)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 33586 23139 33652 21394 8525
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-18: Baseline estimates with large and small firms.

Dependent variable: firm-level number of patents
Large firms (> 15 total patents) Small firms (< 15 total patents)

Renewable Base load Peak load Renewable Base load Peak load
(1) (2) (3) (4) (5) (6)

Energy prices including taxes
L1.Coal price -.4436∗∗ -.4003∗∗ -.5758 .09776 .00012 -.5506

(.1832) (.1785) (.3713) (.2114) (.3373) (1.074)
L1.Electricity price .2726 .3507 -.02502 .06325 1.397∗∗∗ 1.441

(.2116) (.2488) (.3782) (.2339) (.4325) (1.312)
Research subsidies

L1.Renewable .1324∗ -.02993 .184 .01987 -.1885 .2159
(.08045) (.08819) (.2226) (.09456) (.1535) (.3421)

L1.Fossil fuel .02327 .071 .06291 .00138 -.07014 .1345
(.04323) (.06038) (.08314) (.06061) (.09505) (.2693)

L1.Efficiency-improving .04037 -.00082 .3782∗∗∗ -.08224 .064 -.1454
(.04303) (.0603) (.109) (.05443) (.09466) (.287)

Past innovation knowledge
L1.Renewable -.00039∗∗ .00012 -.00072 -.6293∗∗∗ -.2323∗∗∗ -.2383

(.00017) (.00052) (.00062) (.03314) (.08897) (.1725)
L1.Base load -.00098∗∗∗ -.00071∗∗∗ .00036 -.03261 -.9332∗∗∗ -.4581

(.00028) (.00023) (.00049) (.05756) (.07653) (.3674)
L1.Peak load .001∗∗∗ .00081∗∗∗ .00018 -.139 -.5253∗ -1.434∗∗∗

(.00021) (.00017) (.00032) (.0958) (.3102) (.2648)
Past innovation spillovers

L1.Renewable 1.1e-06 -1.3e-05 -4.9e-05 -9.4e-05∗∗ .00015∗∗ -.00024
(2.0e-05) (2.2e-05) (5.3e-05) (3.7e-05) (7.7e-05) (.00016)

L1.Base load 2.4e-05 2.0e-05 5.9e-05 .00011∗∗∗ .00038∗∗∗ .00015
(2.1e-05) (2.3e-05) (3.6e-05) (3.1e-05) (6.6e-05) (.00026)

L1.Peak load -.00014∗∗∗ -.0001∗ -3.4e-05 -2.4e-05 7.7e-05 -.00035
(5.3e-05) (5.7e-05) (9.7e-05) (.00013) (.0003) (.00207)

Macroeconomic indicators
L1.GDP -.2284∗∗ -.1731∗ -.4857∗∗ .5648 .8201∗∗ -24.85

(.1015) (.0953) (.1963) (.3449) (.3744) (111.1)
L1.GDP per capita .3592 1.344∗∗ .6504 .7158 .523 23.17

(.8471) (.6641) (1.669) (1.547) (2.657) (110.9)
Pre-sample history Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 18064 15544 7028 20736 9250 2601
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-19: Baseline estimates with specialized and mixed firms.

Dependent variable: firm-level number of patents
Specialized firms Mixed firms

Renewable Base load Peak load Renewable Base load Peak load
(1) (2) (3) (4) (5) (6)

Energy prices including taxes
L1.Coal price -.802∗∗∗ -.2684 -3.039∗ -.2009 -.3744∗∗ -.5976

(.3003) (.3301) (1.843) (.1433) (.1854) (.364)
L1.Electricity price -.5917∗ .2668 5.37∗∗∗ .4349∗∗ .3449 -.02659

(.3043) (.3646) (1.938) (.2196) (.2579) (.3743)
Research subsidies

L1.Renewable .1288 -.1609 -1.347 .1171 -.01907 .1965
(.1047) (.1403) (.9019) (.0888) (.09345) (.2183)

L1.Fossil fuel .123∗∗ -.04512 .1831 -.01608 .09057 .06972
(.0604) (.08581) (.5875) (.05007) (.06612) (.08219)

L1.Efficiency-improving -.01507 .2294∗∗ -.04686 .03205 -.01894 .3669∗∗∗

(.07171) (.1059) (.8053) (.04585) (.06322) (.1085)
Past innovation knowledge

L1.Renewable -.00315∗∗ -.00036∗ .00016 -.00076
(.0014) (.00021) (.00052) (.00062)

L1.Base load -.04717∗∗∗ -.00096∗∗∗ -.00065∗∗∗ .00036
(.01288) (.00028) (.00023) (.0005)

L1.Peak load -.327 .00098∗∗∗ .00078∗∗∗ .00018
(.2278) (.00021) (.00018) (.00031)

Past innovation spillovers
L1.Renewable -7.5e-05∗∗ 9.7e-05∗∗ -.00038 5.0e-06 -9.1e-06 -5.0e-05

(3.2e-05) (5.0e-05) (.00029) (2.3e-05) (2.4e-05) (5.1e-05)
L1.Base load .00012∗∗ .00016∗∗∗ .00026 2.4e-06 1.5e-05 5.6e-05

(5.0e-05) (4.7e-05) (.00017) (1.9e-05) (2.5e-05) (3.5e-05)
L1.Peak load -.00014 -.00031∗ 1.5e-05 -.00014∗∗ -.0001∗ -2.7e-05

(9.0e-05) (.00017) (.00107) (5.6e-05) (6.0e-05) (9.5e-05)
Macroeconomic indicators

L1.GDP .095 .2788 -10.43 -.2037∗ -.2012∗∗ -.4989∗∗

(.1785) (.7883) (81.37) (.1089) (.09996) (.1954)
L1.GDP per capita -1.713 .2664 20.45 .7907 1.316∗ .5791

(1.496) (2.998) (86.99) (.8294) (.6796) (1.651)
Pre-sample history Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Observations 21223 7187 891 18094 18007 8891
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-20: FE Poisson estimates for top five innovating countries excluding hydro, geother-
mal, and biomass from renewable technologies.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.525∗∗ -.03552 -.6438∗∗∗ -.5085∗∗ -.05094

(.2237) (.2706) (.2142) (.2105) (.4438)
L1.Electricity price .2791 .1139 .4469∗ .4667 -.6124

(.2621) (.3462) (.2359) (.3284) (.5269)
Research subsidies

L1.Renewable .1353 .0826 .1429∗ .0567 .1857
(.08524) (.1266) (.08516) (.1024) (.197)

L1.Fossil fuel .03507 .04622 .06106 .07373 -.04772
(.04678) (.06331) (.04904) (.06969) (.08827)

L1.Efficiency-improving -.04022 .05854 -.02912 -.01993 .4737∗∗∗

(.04234) (.07206) (.0424) (.05729) (.1115)
Past innovation knowledge

L1.Renewable -.00055∗∗∗ -.00068 -.00047∗∗∗ 6.4e-05 -.00087
(.00015) (.00044) (.00018) (.00057) (.00069)

L1.Fossil-fuel 7.6e-08 .00029∗∗∗

(.00018) (4.3e-05)
L1.Base load -.00108∗∗∗ -.00086∗∗ .00047

(.00028) (.00034) (.00057)
L1.Peak load .00098∗∗∗ .00097∗∗∗ .00018

(.00021) (.00025) (.00035)
Past innovation spillovers

L1.Renewable -2.3e-05 -6.0e-05∗ -1.3e-05 -5.0e-05 -6.8e-05
(2.4e-05) (3.6e-05) (2.2e-05) (3.4e-05) (5.8e-05)

L1.Fossil-fuel -4.8e-05∗∗∗ -1.4e-05
(1.6e-05) (1.6e-05)

L1.Base load 2.7e-07 -1.9e-05 7.1e-05
(2.6e-05) (3.8e-05) (5.7e-05)

L1.Peak load -.00012∗∗ -1.7e-07 -3.4e-05
(5.6e-05) (7.8e-05) (.0001)

Macroeconomic indicators
L1.GDP -.271∗∗ -.07988 -.1046 -.4305∗∗∗ -.6013∗∗

(.1292) (.1968) (.1409) (.1445) (.2375)
L1.GDP per capita -.3806 .1371 -.3618 -.2393 .6567

(.9774) (.9394) (.9623) (.851) (1.768)
Pre-sample history Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 32134 22914 32124 21167 8393

Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors. 204



Table C-21: All patents separated between base load and peak load technologies.

Dependent variable: firm-level number of patents
Base load Peak load

Energy prices including taxes
L1.Coal price -.3075∗ -.2522

(.165) (.1795)
L1.Electricity price .3366 .1447

(.2217) (.1772)
Research subsidies

L1.Renewable .0294 .149∗

(.08583) (.07837)
L1.Fossil fuel .07615 .03047

(.05487) (.03866)
L1.Efficiency-improving .02353 .09496∗∗

(.05639) (.04487)
Past innovation knowledge

L1.Base load -.00062∗∗ .00037
(.00025) (.00037)

L1.Peak load .00065∗∗∗ -.00013
(.00016) (.00021)

Past innovation spillovers
L1.Base load 8.3e-06 5.4e-06

(2.0e-05) (1.7e-05)
L1.Peak load -2.9e-05∗ -2.6e-05

(1.7e-05) (1.8e-05)
Macroeconomic indicators

L1.GDP -.1686 -.2283∗

(.1375) (.119)
L1.GDP per capita 1.359∗∗ .2075

(.665) (.6933)
Pre-sample history Yes Yes
Pre-sample active Yes Yes
Firm FE Yes Yes
Country FE Yes Yes
Year FE Yes Yes
Observations 27660 40011
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-22: Baseline estimates without pre-sample patenting activity.

Dependent variable: firm-level number of patents
Fossil fuel

Renewable Fossil fuel Renewable Base load Peak load
(1) (2) (3) (4) (5)

Energy prices including taxes
L1.Coal price -.3891∗∗ -.344∗ -.4584∗∗∗ -.4162∗∗∗ -.4352

(.1825) (.2087) (.1675) (.1539) (.3699)
L1.Electricity price .1098 .4099∗ .2111 .3791 .00688

(.2178) (.2434) (.1965) (.2337) (.4163)
Research subsidies

L1.Renewable .1465∗ .07793 .1423∗ .00574 .1372
(.07475) (.1089) (.07332) (.08518) (.1997)

L1.Fossil fuel .00359 .06335 .01328 .0859∗ .05623
(.03823) (.05416) (.03941) (.05561) (.08003)

L1.Efficiency-improving .01639 .05165 .03249 -.00465 .3396∗∗∗

(.04148) (.07135) (.04022) (.05517) (.1128)
Past innovation knowledge

L1.Renewable -.00054∗∗∗ -.00046 -.00047∗∗∗ 3.6e-05 -.00083
(.00013) (.00043) (.00016) (.00054) (.0006)

L1.Fossil-fuel 4.4e-05 .00024∗∗∗

(.00017) (4.4e-05)
L1.Base load -.00098∗∗∗ -.00075∗∗∗ .0004

(.00027) (.00023) (.0005)
L1.Peak load .00097∗∗∗ .00085∗∗∗ .00011

(.0002) (.00016) (.00031)
Past innovation spillovers

L1.Renewable -2.3e-05 -3.6e-05 -1.3e-05 -3.7e-05∗ -4.9e-05
(2.1e-05) (2.8e-05) (1.7e-05) (2.2e-05) (4.6e-05)

L1.Fossil-fuel -3.5e-05∗∗ -1.0e-05
(1.4e-05) (1.6e-05)

L1.Base load 6.3e-06 2.0e-06 6.9e-05
(2.0e-05) (2.9e-05) (5.0e-05)

L1.Peak load -.00011∗∗ -4.9e-05 -9.2e-05
(4.8e-05) (5.8e-05) (9.5e-05)

Macroeconomic indicators
L1.GDP -.1322 -.07117 -.04709 -.00821 -.1083

(.08913) (.1212) (.09775) (.1007) (.1636)
L1.GDP per capita -.03711 .8073 .3347 .6445 .7332

(.8216) (.7256) (.7642) (.65) (1.462)
Pre-sample history No No No No No
Pre-sample active No No No No No
Firm FE Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes
Observations 39303 27240 39319 25183 9774
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-23: Fossil fuel price effect in renewable, base and peak load technologies.

Dependent variable: firm-level number of patents
Renewable Base load Peak load

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Energy prices including taxes

L1.Coal price -.4144∗∗ -.4051∗∗ -.5788
(.1666) (.1695) (.3614)

L1.Electricity price .2498 .05752 .3674 .1926 -.02734 -.134
(.1925) (.2238) (.2372) (.2171) (.37) (.3591)

L1.Nat gas -.09758 -.04992 -.2119
(.133) (.1336) (.2261)

Research subsidies
L1.Renewable .1273∗ .1099 .1075 -.02835 -.0337 -.02588 .1749 .1421 .1385

(.0738) (.07479) (.07474) (.08402) (.08249) (.08222) (.2144) (.2052) (.2028)
L1.Fossil fuel .02175 -.0137 -.02473 .06796 .04855 .03606 .06561 .02525 .02358

(.04014) (.041) (.04301) (.0585) (.05952) (.05586) (.08176) (.08467) (.08698)
L1.Efficiency-improving .03971 .05677 .06301 -.00051 .01673 .02346 .3624∗∗∗ .3718∗∗∗ .3747∗∗∗

(.04047) (.04007) (.041) (.05797) (.05622) (.05651) (.1072) (.1059) (.1036)
Past innovation knowledge

L1.Renewable -.00045∗∗∗ -.00045∗∗∗ -.00046∗∗∗ 5.3e-05 7.7e-05 5.8e-05 -.00077 -.00062 -.00062
(.00016) (.00016) (.00016) (.00052) (.00054) (.00053) (.00062) (.00061) (.00062)

L1.Baseload -.001∗∗∗ -.00098∗∗∗ -.00099∗∗∗ -.00076∗∗∗ -.00073∗∗∗ -.00076∗∗∗ .00036 .00037 .00037
(.00027) (.00027) (.00027) (.00023) (.00023) (.00024) (.00049) (.00047) (.00047)

L1.Peakload .00098∗∗∗ .00099∗∗∗ .00102∗∗∗ .00082∗∗∗ .00081∗∗∗ .00085∗∗∗ .00017 .00015 .00018
(.0002) (.00021) (.00021) (.00017) (.00018) (.00019) (.00031) (.0003) (.00029)

Past innovation spillovers
L1.Renewable -5.7e-06 -1.7e-05 -2.6e-05 -1.4e-05 -2.0e-05 -2.7e-05 -5.2e-05 -5.3e-05 -6.1e-05

(1.8e-05) (1.9e-05) (1.8e-05) (2.1e-05) (2.1e-05) (2.0e-05) (5.1e-05) (4.9e-05) (4.4e-05)
L1.Base load 2.2e-05 1.3e-05 1.0e-05 2.3e-05 2.1e-05 1.7e-05 5.5e-05 5.1e-05 5.0e-05

(1.9e-05) (1.8e-05) (2.1e-05) (2.3e-05) (2.3e-05) (2.3e-05) (3.5e-05) (3.7e-05) (4.3e-05)
L1.Peak load -.00013∗∗∗ -.00011∗∗ -8.3e-05∗ -9.9e-05∗ -9.5e-05∗ -7.8e-05 -2.7e-05 -1.5e-05 2.0e-05

(4.8e-05) (4.6e-05) (4.8e-05) (5.5e-05) (5.6e-05) (6.2e-05) (9.4e-05) (9.8e-05) (.00011)
Macroeconomic indicators

L1.GDP L.firm rgdpna -.1944∗∗ -.1378 -.1567∗ -.1632∗ -.1172 -.1575∗ -.4785∗∗ -.349∗ -.348∗∗

(.09409) (.09611) (.09331) (.09283) (.09342) (.09506) (.1935) (.189) (.174)
L1.GDP per capita .287 .5262 .6477 1.267∗∗ 1.479∗∗ 1.565∗∗ .6879 .8118 .7658

(.8069) (.8107) (.7902) (.644) (.6448) (.6549) (1.629) (1.602) (1.586)
Pre-sample history Yes Yes Yes Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 39317 39317 39317 25194 25194 25194 9782 9782 9782

Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Table C-24: Country and year fixed effects in the five most innovative countries.

Dependent variable: firm-level number of patents
Renewable Base load Peak load

(1) (2) (3) (4) (5) (6)
Energy prices including taxes
L.PFuel -.6175∗∗∗ -.3613 -.3273 -.2707 .02017 -.8996

(.208) (.2288) (.2093) (.4153) (.4524) (.7334)
L.PElectricity .5866∗∗ .2084 .5353 1.113 -.5389 .6276

(.229) (.2793) (.3435) (.7796) (.4916) (.8478)
Research subsidies
L.firm RD RENEW .1274 -.01015 .02422 .3215 .1783 1.264

(.08085) (.1712) (.0935) (.2512) (.2117) (1.14)
L.firm RD EFF .01101 .05404 -.00632 -.2038 .4546∗∗∗ -.1688

(.04223) (.1092) (.05709) (.2824) (.1068) (.5013)
L.firm RD FUEL .07531 .02057 .115∗ .309∗∗ -.05627 .4451∗

(.04806) (.1158) (.06856) (.1231) (.08894) (.252)
Past innovation knowledge
L.knowledge c -.00041∗∗ -.00045∗∗ -1.7e-05 -.00016 -.00086 -.00118

(.00018) (.00019) (.00051) (.0005) (.00067) (.00078)
L.knowledge d -.00101∗∗∗ -.00093∗∗∗ -.00066∗∗ -.00063∗∗ .00048 .00095

(.00028) (.00033) (.00027) (.00028) (.00056) (.0007)
L.knowledge b .00095∗∗∗ .00098∗∗∗ .00078∗∗∗ .00117∗∗∗ .00018 .0004

(.00021) (.00024) (.00022) (.00038) (.00036) (.00065)
Past innovation spillovers
L.Regionspillover c 1.2e-05 1.3e-05 -1.7e-05 -5.6e-05 -8.4e-05 -.00025∗∗

(2.4e-05) (3.7e-05) (4.0e-05) (.00015) (6.6e-05) (.0001)
L.Regionspillover d 4.4e-05 4.4e-05 3.8e-05 -3.9e-05 5.6e-05 -6.2e-05

(2.7e-05) (3.4e-05) (3.9e-05) (.00012) (5.3e-05) (.00011)
L.Regionspillover b -.00018∗∗∗ -5.6e-05 -.00012 .00034 -1.7e-05 .00065

(5.8e-05) (9.3e-05) (8.6e-05) (.00037) (.00011) (.00047)
Macroeconomic indicators
L.firm rgdpna -.2624∗∗ -.1772 -.1796 -.505∗∗ -.3594∗ -.8915

(.1271) (.1524) (.1184) (.2416) (.1837) (.6065)
L.firm rgdpna capita .2975 -.2448 .3559 -1.392 .6358 -5.345

(.9344) (.8176) (.8418) (1.375) (1.557) (6.901)
Pre-sample history Yes Yes Yes Yes Yes Yes
Pre-sample active Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Country*Year FE No Yes No Yes No Yes
Observations 33652 33652 21394 21394 8525 8525
Significance levels: ∗∗∗: 1% ∗∗: 5% ∗: 10%
Numbers in parentheses are standard errors.
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Appendix D: Appendix to Chapter 4

D-1 Geographical distribution of the Vietnam SME survey

Figure D-1: Geographical coverage of the Vietnam SME survey. (*: Urban areas)

D-2 Robustness checks: Detailed estimation results

This section presents the detailed estimation results for the robustness checks described in

section 4.5 for both the whole sample and each industry. Specifically, table D-1 shows the
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results for incumbent firms, table D-2 shows the results for household firms and table D-3

shows the results for non-household firms. These tables are summarized in Table 4.6 of the

Section 4.5. Tables D-4-D-8 show the estimation results for the alternative specifications

summarized in Table 4.7 in Section 4.5. Note that the average profit efficiency reported in

these tables measures the efficiency of each firms compared to the best performing firm in

each subsample, therefore, they are not readily comparable. Also, the coefficients reported

in these appendix tables show the relationship between the efficiency explanatory variables

and a firm’s inefficiency level. On the other hand, the summary in tables 4.6 and 4.7 reports

the sign of the marginal effect of each efficiency explanatory variable on the expected profit

of a firm, therefore, they are of opposite signs to the coefficients reported in the tables in

this appendix.
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Table D-1: Profit efficiency among incumbent firms

Whole sample Light industries Heavy industries
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αm 0.080*** (0.021) 0.087*** (0.028) 0.048 (0.033)
αl 0.277*** (0.015) 0.232*** (0.019) 0.340*** (0.023)
αk 0.765*** (0.015) 0.766*** (0.019) 0.748*** (0.025)
δmm 0.051*** (0.006) 0.052*** (0.009) 0.039*** (0.009)
δll 0.063*** (0.013) 0.065*** (0.016) 0.010 (0.024)
δkk 0.242*** (0.020) 0.212*** (0.026) 0.290*** (0.035)
δml 0.005 (0.013) -0.002 (0.017) 0.009 (0.021)
δmk 0.002 (0.015) -0.016 (0.019) 0.039 (0.026)
δlk 0.077*** (0.014) 0.079*** (0.017) 0.053** (0.024)
Constant 7.898*** (0.025) 7.826*** (0.031) 8.053*** (0.040)

Average profit efficiency 70.21% 70.14% 69.45%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.032** (0.016) -0.025 (0.019) -0.046* (0.027)
Labor training -0.092 (0.206) -0.251 (0.352) -0.070 (0.223)
New product 0.068 (0.209) 0.148 (0.315) -0.115 (0.258)
Product modification -0.271** (0.112) -0.271* (0.157) -0.207 (0.154)
Process upgrading -0.477** (0.209) -0.503* (0.273) -0.354 (0.285)
Firm’s age 0.017*** (0.004) 0.022*** (0.005) 0.007 (0.007)
Firm’s size -1.429*** (0.089) -1.469*** (0.118) -1.309*** (0.121)

Business environment:
Competition -0.316*** (0.102) -0.355*** (0.124) -0.177 (0.188)
Subcontracting 0.232 (0.149) 0.289 (0.207) 0.120 (0.200)
Exporting -1.713* (0.893) -0.946 (0.802) -28.131 (1,723)
Formal credit constraint 0.218* (0.126) 0.162 (0.160) 0.249 (0.200)
Use of informal credit -0.307** (0.152) -0.338* (0.196) -0.183 (0.231)
Industrial zone location -0.345 (0.232) -0.465* (0.277) -0.056 (0.388)
Urban location -0.079 (0.260) 0.083 (0.415) -0.297 (0.322)

Legal environment:
Formalization -0.134 (0.118) -0.236 (0.157) -0.136 (0.183)
Financial support -0.047 (0.118) 0.064 (0.146) -0.304 (0.207)
Technical support -0.473* (0.282) -0.513 (0.375) -0.422 (0.442)
Other support -0.139 (0.201) -0.129 (0.266) -0.054 (0.310)
Bribery 0.139* (0.081) 0.078 (0.093) 0.232*** (0.086)
Constant 2.067*** (0.408) 1.188** (0.463) 2.583*** (0.541)
Log-likelihood -7197.77 -4297.11 -2837.36
Observations 5,854 3,588 2,259
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES

*** p<0.01, ** p<0.05, * p<0.1
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Table D-2: Profit efficiency among household businesses

Whole sample Light industries Heavy industries
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αm 0.146*** (0.022) 0.186*** (0.029) 0.083** (0.035)
αl 0.279*** (0.012) 0.256*** (0.015) 0.318*** (0.019)
αk 0.504*** (0.013) 0.523*** (0.017) 0.467*** (0.022)
δmm 0.069*** (0.011) 0.073*** (0.016) 0.086*** (0.017)
δll 0.058*** (0.010) 0.062*** (0.012) 0.026 (0.016)
δkk 0.091*** (0.018) 0.078*** (0.022) 0.119*** (0.031)
δml -0.035** (0.017) -0.024 (0.021) -0.057* (0.032)
δmk 0.048** (0.021) 0.030 (0.025) 0.114*** (0.041)
δlk 0.060*** (0.011) 0.062*** (0.014) 0.062*** (0.019)
Constant 7.704*** (0.016) 7.701*** (0.020) 7.706*** (0.029)

Average profit efficiency 70.10% 69.19% 72.00%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.027** (0.011) -0.018 (0.013) -0.045** (0.021)
Labor training -0.431** (0.211) -0.644** (0.327) -0.286 (0.273)
New product -0.104 (0.164) 0.117 (0.242) -0.407* (0.225)
Product modification -0.519*** (0.088) -0.508*** (0.112) -0.511*** (0.147)
Process upgrading -0.433** (0.170) -0.659*** (0.230) -0.020 (0.250)
Firm’s age 0.018*** (0.003) 0.021*** (0.003) 0.011** (0.005)
Firm’s size -1.866*** (0.073) -1.900*** (0.092) -1.790*** (0.126)

Business environment:
Competition -0.252*** (0.077) -0.287*** (0.089) -0.159 (0.158)
Subcontracting 0.256** (0.116) 0.320** (0.149) 0.137 (0.184)
Exporting -0.934 (0.825) -1.016 (0.875) -0.348 (1.711)
Formal credit constraint 0.176* (0.097) 0.170 (0.118) 0.156 (0.178)
Use of informal credit -0.323*** (0.118) -0.267* (0.143) -0.375* (0.211)
Industrial zone location -0.322 (0.196) -0.309 (0.216) -0.515 (0.508)
Urban location -0.641*** (0.213) -0.443 (0.299) -0.954*** (0.308)

Legal environment:
Formalization -0.409*** (0.090) -0.395*** (0.113) -0.387*** (0.149)
Financial support -0.062 (0.091) -0.021 (0.109) -0.164 (0.168)
Technical support -0.323 (0.199) -0.181 (0.247) -0.560 (0.354)
Other support -0.185 (0.150) -0.323* (0.196) -0.033 (0.245)
Bribery 0.032 (0.025) 0.130 (0.105) 0.027 (0.028)
Constant 2.682*** (0.298) 1.837*** (0.323) 3.018*** (0.443)
Log-likelihood -9242.19 -6044.52 -3135.41
Observations 8,499 5,581 2,904
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES

*** p<0.01, ** p<0.05, * p<0.1
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Table D-3: Profit efficiency among non-household businesses

Whole sample Light industries Heavy industries
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αm -0.018 (0.018) -0.052** (0.023) 0.024 (0.028)
αl 0.372*** (0.024) 0.409*** (0.035) 0.332*** (0.035)
αk 0.652*** (0.032) 0.627*** (0.045) 0.684*** (0.045)
δmm 0.012*** (0.004) 0.014** (0.006) -0.004 (0.007)
δll 0.058*** (0.018) 0.116*** (0.025) 0.012 (0.028)
δkk 0.297*** (0.034) 0.292*** (0.051) 0.291*** (0.047)
δml 0.008 (0.010) -0.003 (0.012) 0.025 (0.015)
δmk 0.045*** (0.012) 0.048*** (0.016) 0.048** (0.021)
δlk -0.044** (0.022) -0.042 (0.032) -0.038 (0.031)
Constant 8.733*** (0.038) 8.725*** (0.053) 8.742*** (0.055)

Average profit efficiency 62.35% 61.90% 62.79%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.025 (0.026) -0.021 (0.036) -0.021 (0.037)
Labor training 0.032 (0.111) -0.033 (0.156) 0.128 (0.156)
New product -0.025 (0.168) -0.264 (0.255) 0.077 (0.232)
Product modification -0.039 (0.101) 0.001 (0.140) -0.104 (0.149)
Process upgrading -0.090 (0.130) -0.140 (0.177) -0.036 (0.195)
Firm’s age 0.023*** (0.005) 0.022*** (0.007) 0.026*** (0.006)
Firm’s size -1.234*** (0.079) -1.217*** (0.105) -1.188*** (0.116)

Business environment:
Competition -0.245 (0.171) -0.227 (0.250) -0.276 (0.242)
Subcontracting 0.072 (0.126) 0.154 (0.188) 0.035 (0.174)
Exporting -0.446** (0.226) -0.095 (0.252) -1.660** (0.693)
Formal credit constraint 0.347** (0.152) 0.147 (0.211) 0.511** (0.221)
Use of informal credit -0.132 (0.160) -0.033 (0.227) -0.169 (0.225)
Industrial zone location 0.151 (0.164) 0.102 (0.233) 0.067 (0.254)
Urban location -0.654** (0.264) -0.671** (0.334) -0.665 (0.428)

Legal environment:
Formalization 0.483 (0.295) 0.160 (0.431) 0.504 (0.410)
Financial support 0.278** (0.122) 0.280* (0.164) 0.169 (0.188)
Technical support 0.024 (0.181) -0.061 (0.250) 0.064 (0.264)
Other support -0.004 (0.205) -0.087 (0.286) 0.007 (0.305)
Bribery 0.074** (0.033) 0.061 (0.039) 0.116* (0.065)
Constant 2.164*** (0.585) 2.490** (1.165) 1.781** (0.791)
Log-likelihood -5816.96 -3094.50 -2688.18
Observations 4,258 2,254 1,998
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES

*** p<0.01, ** p<0.05, * p<0.1
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Table D-4: Profit efficiency of the full sample under alternative measures of human capital

Baseline estimates Owner’s education Labor training
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αm 0.028** (0.013) 0.028** (0.013) 0.028** (0.013)
αl 0.305*** (0.010) 0.306*** (0.010) 0.306*** (0.010)
αk 0.766*** (0.010) 0.766*** (0.010) 0.767*** (0.010)
δmm 0.040*** (0.004) 0.040*** (0.004) 0.040*** (0.004)
δll 0.070*** (0.009) 0.070*** (0.009) 0.070*** (0.009)
δkk 0.272*** (0.014) 0.272*** (0.014) 0.270*** (0.014)
δml 0.000 (0.008) -0.000 (0.008) 0.000 (0.008)
δmk 0.013 (0.010) 0.013 (0.010) 0.013 (0.010)
δlk 0.054*** (0.010) 0.054*** (0.010) 0.054*** (0.010)
Constant 7.972*** (0.017) 7.973*** (0.017) 7.973*** (0.017)

Average profit efficiency 69.53% 69.50% 69.52%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.023** (0.010) -0.023** (0.010)
Labor training -0.189 (0.145) -0.195 (0.145)
New product -0.065 (0.141) -0.073 (0.141) -0.065 (0.141)
Product modification -0.330*** (0.076) -0.329*** (0.076) -0.336*** (0.076)
Process upgrading -0.406*** (0.135) -0.408*** (0.135) -0.415*** (0.135)
Firm’s age 0.017*** (0.003) 0.017*** (0.003) 0.017*** (0.003)
Firm’s size -1.444*** (0.059) -1.454*** (0.058) -1.452*** (0.059)

Business environment:
Competition -0.232*** (0.072) -0.234*** (0.072) -0.236*** (0.072)
Subcontracting 0.271*** (0.101) 0.268*** (0.101) 0.269*** (0.101)
Exporting -1.527** (0.635) -1.528** (0.635) -1.567** (0.643)
Formal credit barrier 0.189** (0.087) 0.194** (0.087) 0.190** (0.087)
Use of informal credit -0.245** (0.104) -0.251** (0.104) -0.241** (0.104)
Industrial zone location -0.282 (0.180) -0.277 (0.179) -0.279 (0.181)
Urban location -0.160 (0.174) -0.179 (0.173) -0.169 (0.174)

Legal environment:
Formalization -0.027 (0.080) -0.028 (0.080) -0.035 (0.080)
Financial support -0.086 (0.082) -0.088 (0.082) -0.084 (0.082)
Technical support -0.386** (0.180) -0.386** (0.180) -0.378** (0.180)
Other support -0.251* (0.135) -0.250* (0.135) -0.256* (0.135)
Bribery 0.031 (0.023) 0.031 (0.023) 0.032 (0.023)
Constant 2.187*** (0.277) 2.199*** (0.276) 2.019*** (0.266)
Log-likelihood -16263.37 -16264.26 -16265.88
Observations 12,757 12,757 12,757
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES

*** p<0.01, ** p<0.05, * p<0.1
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Table D-5: Profit efficiency of the full sample under alternative measures of production
upgrading activities

Baseline
estimates New product Product

modification
Process

upgrading
(1) (2) (3) (4) (5) (6) (7) (8)
Coef. Std.Err. Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

Profit frontier equation
αm 0.028** (0.013) 0.026* (0.013) 0.028** (0.013) 0.026* (0.013)
αl 0.305*** (0.010) 0.306*** (0.010) 0.306*** (0.010) 0.306*** (0.010)
αk 0.766*** (0.010) 0.766*** (0.010) 0.766*** (0.010) 0.765*** (0.010)
δmm 0.040*** (0.004) 0.040*** (0.004) 0.040*** (0.004) 0.040*** (0.004)
δll 0.070*** (0.009) 0.069*** (0.009) 0.071*** (0.009) 0.068*** (0.009)
δkk 0.272*** (0.014) 0.270*** (0.014) 0.271*** (0.014) 0.270*** (0.014)
δml 0.000 (0.008) -0.000 (0.008) -0.000 (0.008) 0.000 (0.008)
δmk 0.013 (0.010) 0.014 (0.010) 0.013 (0.010) 0.014 (0.010)
δlk 0.054*** (0.010) 0.055*** (0.010) 0.054*** (0.010) 0.054*** (0.010)
Constant 7.972*** (0.017) 7.975*** (0.017) 7.973*** (0.017) 7.975*** (0.017)

Average profit efficiency 69.53% 69.41% 69.51% 69.43%
Efficiency explanatory equation:

Internal environment:
Owner’s education -0.023** (0.010) -0.026** (0.010) -0.024** (0.010) -0.025** (0.010)
Labor training -0.189 (0.145) -0.185 (0.144) -0.202 (0.145) -0.184 (0.144)
New product -0.065 (0.141) -0.255* (0.138)
Product modification -0.330*** (0.076) -0.382*** (0.074)
Process upgrading -0.406*** (0.135) -0.518*** (0.131)
Firm’s age 0.017*** (0.003) 0.018*** (0.003) 0.017*** (0.003) 0.017*** (0.003)
Firm’s size -1.444*** (0.059) -1.489*** (0.059) -1.463*** (0.059) -1.466*** (0.059)

Business environment:
Competition -0.232*** (0.072) -0.253*** (0.072) -0.234*** (0.072) -0.254*** (0.072)
Subcontracting 0.271*** (0.101) 0.249** (0.100) 0.262*** (0.100) 0.252** (0.100)
Exporting -1.527** (0.635) -1.447** (0.590) -1.582** (0.654) -1.410** (0.583)
Formal credit barrier 0.189** (0.087) 0.183** (0.087) 0.176** (0.087) 0.198** (0.087)
Use of informal credit -0.245** (0.104) -0.251** (0.104) -0.237** (0.104) -0.258** (0.104)
Industrial zone location -0.282 (0.180) -0.248 (0.178) -0.273 (0.180) -0.264 (0.178)
Urban location -0.160 (0.174) -0.174 (0.174) -0.154 (0.173) -0.161 (0.174)

Legal environment:
Formalization -0.027 (0.080) -0.039 (0.080) -0.038 (0.080) -0.026 (0.080)
Financial support -0.086 (0.082) -0.096 (0.082) -0.095 (0.082) -0.087 (0.082)
Technical support -0.386** (0.180) -0.466*** (0.181) -0.444** (0.179) -0.413** (0.181)
Other support -0.251* (0.135) -0.283** (0.134) -0.263** (0.134) -0.269** (0.134)
Bribery 0.031 (0.023) 0.028 (0.022) 0.032 (0.023) 0.028 (0.022)
Constant 2.187*** (0.277) 2.158*** (0.274) 2.213*** (0.273) 2.062*** (0.273)
Log-likelihood -16263.37 -16280.69 -16268.75 -16273.67
Observations 12,757 12,757 12,757 12,757
Industry FE YES YES YES YES
Year FE YES YES YES YES
Industry*Year FE YES YES YES YES
*** p<0.01, ** p<0.05, * p<0.1
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Table D-6: Profit efficiency of the full sample under alternative measures of access to credit

Baseline estimates Formal credit barrier Use of informal credit
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αm 0.028** (0.013) 0.028** (0.013) 0.028** (0.013)
αl 0.305*** (0.010) 0.306*** (0.010) 0.306*** (0.010)
αk 0.766*** (0.010) 0.765*** (0.010) 0.765*** (0.010)
δmm 0.040*** (0.004) 0.040*** (0.004) 0.040*** (0.004)
δll 0.070*** (0.009) 0.070*** (0.009) 0.070*** (0.009)
δkk 0.272*** (0.014) 0.272*** (0.014) 0.272*** (0.014)
δml 0.000 (0.008) -0.000 (0.008) -0.000 (0.008)
δmk 0.013 (0.010) 0.013 (0.010) 0.013 (0.010)
δlk 0.054*** (0.010) 0.054*** (0.010) 0.054*** (0.010)
Constant 7.972*** (0.017) 7.972*** (0.017) 7.972*** (0.017)

Average profit efficiency 69.53% 69.51% 69.56%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.023** (0.010) -0.023** (0.010) -0.023** (0.010)
Labor training -0.189 (0.145) -0.199 (0.145) -0.202 (0.146)
New product -0.065 (0.141) -0.065 (0.141) -0.062 (0.141)
Product modification -0.330*** (0.076) -0.335*** (0.076) -0.335*** (0.076)
Process upgrading -0.406*** (0.135) -0.399*** (0.135) -0.393*** (0.135)
Firm’s age 0.017*** (0.003) 0.017*** (0.003) 0.017*** (0.003)
Firm’s size -1.444*** (0.059) -1.449*** (0.059) -1.447*** (0.059)

Business environment:
Competition -0.232*** (0.072) -0.240*** (0.072) -0.234*** (0.072)
Subcontracting 0.271*** (0.101) 0.265*** (0.101) 0.267*** (0.101)
Exporting -1.527** (0.635) -1.555** (0.645) -1.556** (0.643)
Formal credit barrier 0.189** (0.087) 0.044 (0.062)
Use of informal credit -0.245** (0.104) -0.086 (0.074)
Industrial zone location -0.282 (0.180) -0.279 (0.180) -0.277 (0.180)
Urban location -0.160 (0.174) -0.142 (0.173) -0.134 (0.173)

Legal environment:
Formalization -0.027 (0.080) -0.030 (0.080) -0.033 (0.080)
Financial support -0.086 (0.082) -0.085 (0.082) -0.093 (0.082)
Technical support -0.386** (0.180) -0.385** (0.181) -0.391** (0.181)
Other support -0.251* (0.135) -0.255* (0.135) -0.257* (0.135)
Bribery 0.031 (0.023) 0.032 (0.023) 0.032 (0.023)
Constant 2.187*** (0.277) 2.202*** (0.277) 2.223*** (0.276)
Log-likelihood -16263.37 -16270.22 -16265.69
Observations 12,757 12,761 12,757
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES

*** p<0.01, ** p<0.05, * p<0.1
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Table D-7: Profit efficiency of the full sample under alternative measures of location

Baseline estimates Industrial zone location Urban location
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αm 0.028** (0.013) 0.027** (0.013) 0.028** (0.013)
αl 0.305*** (0.010) 0.306*** (0.010) 0.306*** (0.010)
αk 0.766*** (0.010) 0.766*** (0.010) 0.766*** (0.010)
δmm 0.040*** (0.004) 0.040*** (0.004) 0.040*** (0.004)
δll 0.070*** (0.009) 0.070*** (0.009) 0.070*** (0.009)
δkk 0.272*** (0.014) 0.272*** (0.014) 0.273*** (0.014)
δml 0.000 (0.008) 0.000 (0.008) -0.000 (0.008)
δmk 0.013 (0.010) 0.013 (0.010) 0.013 (0.010)
δlk 0.054*** (0.010) 0.054*** (0.010) 0.054*** (0.010)
Constant 7.972*** (0.017) 7.972*** (0.017) 7.973*** (0.017)

Average profit efficiency 69.53% 69.55% 69.47%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.023** (0.010) -0.023** (0.010) -0.023** (0.010)
Labor training -0.189 (0.145) -0.199 (0.145) -0.184 (0.144)
New product -0.065 (0.141) -0.059 (0.141) -0.065 (0.141)
Product modification -0.330*** (0.076) -0.331*** (0.076) -0.327*** (0.076)
Process upgrading -0.406*** (0.135) -0.406*** (0.135) -0.401*** (0.135)
Firm’s age 0.017*** (0.003) 0.017*** (0.003) 0.017*** (0.003)
Firm’s size -1.444*** (0.059) -1.450*** (0.059) -1.448*** (0.059)

Business environment:
Competition -0.232*** (0.072) -0.231*** (0.072) -0.227*** (0.072)
Subcontracting 0.271*** (0.101) 0.274*** (0.101) 0.269*** (0.100)
Exporting -1.527** (0.635) -1.532** (0.635) -1.512** (0.621)
Formal credit barrier 0.189** (0.087) 0.184** (0.087) 0.187** (0.087)
Use of informal credit -0.245** (0.104) -0.240** (0.104) -0.243** (0.104)
Industrial zone location -0.282 (0.180) -0.275 (0.180)
Urban location -0.160 (0.174) -0.148 (0.173)

Legal environment:
Formalization -0.027 (0.080) -0.031 (0.080) -0.023 (0.080)
Financial support -0.086 (0.082) -0.077 (0.082) -0.085 (0.082)
Technical support -0.386** (0.180) -0.379** (0.180) -0.386** (0.180)
Other support -0.251* (0.135) -0.251* (0.135) -0.248* (0.134)
Bribery 0.031 (0.023) 0.031 (0.023) 0.032 (0.023)
Constant 2.187*** (0.277) 2.081*** (0.253) 2.162*** (0.276)
Log-likelihood -16263.37 -16263.79 -16264.65
Observations 12,757 12,757 12,757
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES

*** p<0.01, ** p<0.05, * p<0.1
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Table D-8: Profit efficiency of the full sample with interactive variables

Baseline estimates Firm’s age*Size Labor training*Size
(1) (2) (3) (4) (5) (6)
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Profit frontier
equation

αm 0.028** (0.013) 0.027** (0.013) 0.027** (0.013)
αl 0.305*** (0.010) 0.304*** (0.010) 0.304*** (0.010)
αk 0.766*** (0.010) 0.767*** (0.010) 0.764*** (0.010)
δmm 0.040*** (0.004) 0.040*** (0.004) 0.040*** (0.004)
δll 0.070*** (0.009) 0.070*** (0.009) 0.070*** (0.009)
δkk 0.272*** (0.014) 0.275*** (0.014) 0.270*** (0.014)
δml 0.000 (0.008) -0.000 (0.008) -0.000 (0.008)
δmk 0.013 (0.010) 0.014 (0.010) 0.013 (0.010)
δlk 0.054*** (0.010) 0.053*** (0.010) 0.054*** (0.010)
Constant 7.972*** (0.017) 7.972*** (0.017) 7.975*** (0.017)

Average profit efficiency 69.53% 69.55% 69.53%

Efficiency
explanatory
equation

Internal environment:
Owner’s education -0.023** (0.010) -0.022** (0.010) -0.023** (0.010)
Labor training -0.189 (0.145) -0.142 (0.143) 0.785** (0.340)
New product -0.065 (0.141) -0.049 (0.139) -0.057 (0.140)
Product modification -0.330*** (0.076) -0.331*** (0.076) -0.335*** (0.076)
Process upgrading -0.406*** (0.135) -0.398*** (0.134) -0.386*** (0.134)
Firm’s age 0.017*** (0.003) -0.002 (0.005) 0.016*** (0.003)
Firm’s size -1.444*** (0.059) -1.693*** (0.084) -1.403*** (0.059)
Firm’s age*Size 0.017*** (0.003)
Labor training*Size -0.580*** (0.193)

Business environment:
Competition -0.232*** (0.072) -0.223*** (0.071) -0.234*** (0.071)
Subcontracting 0.271*** (0.101) 0.277*** (0.100) 0.273*** (0.100)
Exporting -1.527** (0.635) -1.424** (0.591) -1.289** (0.562)
Formal credit barrier 0.189** (0.087) 0.185** (0.087) 0.185** (0.087)
Use of informal credit -0.245** (0.104) -0.231** (0.104) -0.242** (0.104)
Industrial zone location -0.28 (0.180) -0.288 (0.178) -0.275 (0.180)
Urban location -0.160 (0.174) -0.151 (0.172) -0.167 (0.173)

Legal environment:
Formalization -0.027 (0.080) -0.040 (0.080) -0.040 (0.079)
Financial support -0.086 (0.082) -0.087 (0.082) -0.085 (0.082)
Technical support -0.386** (0.180) -0.377** (0.179) -0.377** (0.179)
Other support -0.251* (0.135) -0.257* (0.135) -0.243* (0.134)
Bribery 0.031 (0.023) 0.031 (0.023) 0.031 (0.023)
Constant 2.187*** (0.277) 2.486*** (0.283) 2.162*** (0.275)
Log-likelihood -16263.37 -16263.79 -16253.66
Observations 12,757 12,757 12,757
Industry FE YES YES YES
Year FE YES YES YES
Industry*Year FE YES YES YES

*** p<0.01, ** p<0.05, * p<0.1
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