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ABSTRACT 

RESCUING AGE-RELATED PROTEOLYSIS DEFICITS WITH METHYLENE BLUE  

by 

Shane Pullins 

University of Wisconsin – Milwaukee, 2017 
Under the Supervision of Professor Fred Helmstetter 

  

 The average lifespan is constantly increasing with the advent of new medical techniques, 

and age-related cognitive decline is becoming a prevalent societal issue. Even during healthy 

aging, humans and rats exhibit progressive deficits in episodic/declarative memory.  In 

laboratory rats, age-related memory impairment can be assessed with trace fear conditioning 

(TFC). Recent research implicates ubiquitin proteasome system-mediated protein degradation in 

the synaptic plasticity supporting memory formation and retrieval. In rats, aging leads to 

decreased basal proteolytic activity in brain structures known to support the acquisition and 

retrieval of trace fear memories, and our preliminary data suggests activity-dependent 

proteasome activity declines in a similar fashion. The proposed experiments sought to rescue 

age-related decreases in plasticity-related protein degradation during memory consolidation via 

proteasome stimulation with the compound methylthioninium chloride (methylene blue [MB]). 

Intraperitoneal post-training MB administration at 1, 4, or 16mg/kg did not improve memory 

performance, chymotrypsin-like, or trypsin-like proteasome activity in young or aged rats in any 

of the four brain structures examined. Additionally, dietary treatment with MB for four months 

did not enhance memory, chymotrypsin-like, or trypsin-like proteasome activity in young or 

aged animals. These results suggest that MB may not be well suited to augment fear learning or 

to upregulate general proteasome activity. Future work should investigate other means of 

proteasome stimulation and subsequent rescue of cognitive decline during aging.  
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INTRODUCTION 

Normal Aging and Memory in Humans 

 Aging is common to all organisms; lifespans are finite, and typically a number of 

biological processes go awry with increasing age. The past century has yielded a remarkable 

increase in life expectancy, and one notable burden of this newfound longevity is a decline in 

cognitive ability (Hedden & Gabrieli, 2004). Senescence-related effects exist on a continuum 

ranging from pathological aging, wherein myriad pathologies including Alzheimer’s and 

Parkinson’s diseases may develop, to successful aging, wherein individuals do not display 

significant age-related deficits in cognitive ability (Rowe & Kahn, 1987). Most individuals 

qualitatively age somewhere between pathological and successful aging, in a pattern termed 

normal cognitive aging (Roberson et al., 2012). Even during normal cognitive aging, mnemonic 

function declines and these impairments often negatively affect societal function, independent 

living, and overall health (Petersen, Smith, Kokmen, Ivnik, & Tangalos, 1992). The proportion 

of the U.S. population aged over 65 years is projected to more than double by the year 2050 and 

one out of five individuals will be classified as aged (Ortman, Velkoff, & Hogan, 2014). With an 

increasing number of aged individuals, and subsequent increased prevalence of cognitive aging, 

our healthcare system will undoubtedly experience severe strain. As such, combatting age-

related cognitive decline is one of the most important issues facing the neuroscientific 

community. 

 Normal aging does not globally affect mnemonic processes, rather, certain types of 

memory are more susceptible to age-related impairments (Drag & Bieliauskas, 2010). Memory 

can be broadly divided into four distinct memory systems including procedural memory, 

semantic memory, working memory, and episodic memory (Tulving, 1987). Procedural memory 

pertains to the acquisition and retention of behavioral skills, and seems to remain largely intact 

during normal aging, although age-related motor and coordination deficits may interfere with 

performance (Smith et al., 2005). Semantic memory, or “knowledge”, involves the learning and 

retention of factual information, and results from the Berlin Longitudinal Study suggest that this 
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form of memory remains intact until ~90 years of age (Singer, Verhaeghen, Ghisletta, 

Lindenberger, & Baltes, 2003). Working memory, or the system that facilitates processing and 

mentally manipulating information over short periods of time, does seem to uniformly decline 

during normal aging (Gilinsky & Judd, 1994; Park et al., 2002). However, the focus of this 

proposal will be on episodic memory, which displays consistent and robust age-related deficits 

(L. Nilsson, Bäckman, & Erngrund, 1997). 

 The episodic memory system is responsible for the encoding of personal experiences and 

the conscious recollection of occurrences passed; as such, use of this memory system is largely 

dependent on contextual and spatial cues for proper recall of a previous episode (Nilsson, 2003; 

Tulving, 1987). Numerous reports suggest a global age-related decline in episodic memory 

performance, even during healthy aging (Craik & Rose, 2012; Koen & Yonelinas, 2014; 

reviewed in Rönnlund, Nyberg, Bäckman, & Nilsson, 2005). Specifically, healthy aging impairs 

episodic associative memory involving verbal, written, and pictorial cues (Cabeza et al., 1997; 

Craik & McDowd, 1987; Daselaar, Fleck, Dobbins, Madden, & Cabeza, 2006; Daselaar, 

Veltman, Rombouts, Raaijmakers, & Jonker, 2003; Monti et al., 1996; Naveh-Benjamin, 2000; 

Naveh-Benjamin, Hussain, Guez, & Bar-On, 2003; Provyn, Sliwinski, & Howard, 2007), and 

these deficits seem to consistently manifest after ~60 years of age. Some of the strongest 

evidence for a decline in spatial episodic memory in humans comes from an experiment in which 

participants of various ages were brought into a science exhibit center and allowed to examine a 

number of displays (Uttl & Graf, 1993). After exploring the center, one component of testing 

involved asking participants to place the various items they saw on a map. Performance on this 

component sharply declined after the 6th decade of life, adding support to the notion that, even in 

normally aging participants, episodic memory performance declines after age 60 (Uttl & Graf, 

1993).  

 Collectively, it seems that normal aging is accompanied by an episodic, associative 

memory deficit wherein individuals have difficulty mentally binding elements or cues together in 

time (Golomb, Peelle, Addis, & Kahana, 2008; Monti et al., 1996) and/or space (Driscoll et al., 
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2003; Newman & Kaszniak, 2000; Uttl & Graf, 1993). Together, these patterns of inability have 

problematic implications, which give impetus for appropriately modeling these forms of memory 

in laboratory animals for investigating and correcting age-related memory decline. 

Animal Models of Memory and Aging 

 Fear conditioning is a powerful tool to model human episodic memory processes in 

nonhuman animals. As typically performed in rodents (which will henceforth be the focus of this 

proposal), this paradigm involves repeated pairings of an innocuous conditioned stimulus (CS) 

with an aversive unconditioned stimulus (UCS - footshock) in order to elicit a measurable fear 

response (e.g. freezing behavior). Following successful training, exposure to either the CS (a 

tone in the case of auditory fear conditioning) or the training context is sufficient to elicit 

freezing behavior in absence of the UCS allowing for an index of associative memory strength 

(Gilmartin & Helmstetter, 2010).  

 Numerous variants of Pavlovian fear conditioning have been characterized. Traditionally, 

in auditory fear conditioning the UCS is presented at the offset of the CS in a form of 

conditioning called “delay” fear conditioning (DFC). This training paradigm can model implicit 

memory in that it depends largely on subcortical structures like the amygdala (AMY) in rats and 

humans, and does not require sustained attention or contingency awareness in humans (Bailey, 

Kim, Sun, Thompson, & Helmstetter, 1999; Clark & Squire, 1998; Knight, Nguyen, & 

Bandettini, 2006). In contrast, when the CS and UCS are separated in time by a stimulus-free 

“trace interval” (TI), in a paradigm deemed trace fear conditioning (TFC), the association 

between them is thought to weaken, as successful training requires a greater number of training 

trials (Beylin et al., 2001; Pavlov, 2010). Importantly, the inclusion of this interval is proposed to 

model explicit or episodic memory, as learning this association recruits additional brain 

structures that are known to support episodic associative memory in humans (Connor & Gould, 

2016). Similar to DFC, successful TFC requires the AMY, but TFC also engages the 

hippocampus (HPC), prefrontal cortex (PFC), anterior cingulate cortex (ACC), and retrosplenial 

cortex (RSC) due to the presumed requirement for sustained attention during the trace interval 
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and contingency awareness (Gilmartin, Miyawaki, Helmstetter, & Diba, 2013; Han et al., 2003; 

Knight, Cheng, Smith, Stein, & Helmstetter, 2004; Kochli, Thompson, Fricke, Postle, & Quinn, 

2015; Kwapis, Jarome, Lee, & Helmstetter, 2015; Kwapis, Jarome, Schiff, & Helmstetter, 2011; 

Quinn, Oommen, Morrison, & Fanselow, 2002; Steenland, Li, & Zhuo, 2012; Weike, Schupp, & 

Hamm, 2007). Finally, associative fear conditioning may also be conducted without the use of 

discrete cues in a paradigm called contextual fear conditioning (CFC), which engages a similar 

set of brain structures as TFC (Cowansage et al., 2014; Einarsson & Nader, 2012; Fanselow, 

1980; Gilmartin & Helmstetter, 2010; Kwapis et al., 2015; Quinn, Loya, Ma, & Fanselow, 2005; 

Zelikowsky, Hersman, Chawla, Barnes, & Fanselow, 2014). These various forms of fear 

conditioning have yielded a greater understanding of normal memory formation and retrieval, 

but importantly, they have also been applied to the problem of age-related deficits in learning 

and memory. 

 The pattern of cognitive decline during healthy aging seems to be conserved across 

species (Erickson & Barnes, 2003). Moreover, this pattern seems to implicate dysfunction within 

brain structures critical to memory that comprise the medial temporal lobe (MTL - Barnes, 

1998). Support for this comes from investigations of memory performance in tasks that are 

known to be MTL-dependent (Driscoll & Sutherland, 2005). Relative to young rats, aged rats 

exhibit deficits when tested on the Morris water maze in the fixed position task (which assesses 

spatial memory), the repeated acquisition task (which assesses spatial working memory), as well 

as in discrimination procedures (Driscoll et al., 2006; Frick, Baxter, Markowska, Olton, & Price, 

1995; Gallagher, Burwell, & Burchinal, 1993). Importantly, these deficits are not due to general 

age-related performance effects, and seem to arise from specific hippocampal dysfunction 

(Driscoll et al., 2006; Gallagher et al., 1993). Similarly, age-related spatial memory impairments 

extend to deficits for contextual memory in CFC procedures, which are also sensitive to 

manipulations of the MTL (Houston, Stevenson, McNaughton, & Barnes, 1999; Moyer & 

Brown, 2006; Oler & Markus, 1998; Stoehr & Wenk, 1995; Ward, Oler, & Markus, 1999). 
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 While aged rats seem to be impaired in navigation and fear conditioning paradigms that 

do not involve discrete cues (i.e. CFC procedures), an interesting dichotomy arises within cued 

auditory fear conditioning.  Following DFC, aged rats display reduced memory for the training 

context, but normal memory for the training tone (Houston et al., 1999; Oler & Markus, 1998; 

Stoehr & Wenk, 1995; Ward et al., 1999). However, in TFC procedures, aged rats exhibit 

deficits to the training context and the training tone (McEchron, Cheng, & Gilmartin, 2004; 

Moyer & Brown, 2006; Villarreal, Dykes, & Barea-Rodriguez, 2004). Moyer and Brown (2006) 

examined this selective deficit in TFC and incorporated a control for differences in inter-stimulus 

interval lengths between the two training procedures. Aged rats were trained in either TFC, 

consisting of a 15s tone and a 30s TI prior to each footshock, or long-DFC, consisting of a 45s 

tone co-terminating with a footshock. They found that aged rats had no difficulty learning about 

the training tone in long-DFC procedures, relative to TFC. Additionally, they performed 

important control experiments to determine that this deficit in TFC was not due to decreased 

shock perception or differences in activity levels between young and aged rats (Moyer & Brown, 

2006). Thus, aged rats display reduced associative memory for the tone and footshock only when 

the two are separated in time, a feature that makes this learning paradigm a good model of 

episodic memory. This finding corroborates the previously mentioned idea that MTL dysfunction 

in humans and rodents leads to deficits in memory processing. 

 The details of age-related MTL dysfunction are complicated but some specific cellular 

processes have been investigated.  Numerous reports indicate a reduction in synaptic plasticity, 

especially within the HPC. One of the principle mechanisms underlying synaptic strengthening 

within the HPC is long-term potentiation (LTP). Hippocampal LTP is reduced with increasing 

age (reviewed in Burke & Barnes, 2006). Two main culprits in age-related aberrant LTP are 

imbalances in calcium homeostasis and N-methyl-D-aspartate receptor (NMDAR) dysfunction 

(reviewed in Foster & Kumar, 2002). Additionally, LTP impairments have been attributed to 

reduced surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor (AMPAR) subunit GluR1, reduced dendritic αCamKII expression, imbalances in 
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kinase/phosphatase activity, reduced spine density and atuophosphorylated CamKII, and reduced 

levels of CREB and phosphorylated CREB (Almaguer, Estupinan, Frey, & Bergado, 2002; Chen 

et al., 2015; Davis et al., 2000; Jouvenceau & Dutar, 2006; Long et al., 2009; Morris & Gold, 

2012). Driscoll and colleagues (2006) examined the aging hippocampus in female rats crossed 

between F344 and Brown Norway hybrid strains. They found reduced hippocampal volume 

when normalized to intracranial volume and reduced neuron density in aged rats. Additionally, 

they quantified dividing cells with BrdU labeling, immature cells with DCX labeling, and 

cycling cells with Ki67 labeling – there were significant age-related reductions in all 

immunohistochemical analyses. Further, these reductions in cellular division and integrity of 

mitosis, correlated with age-related deficits in performance on Morris water maze tasks 

(described above). While their spectroscopy data examining metabolic health in the HPC 

suggests no age related decline in this particular strain of rat, other investigations using solid 

state high-resolution magic angle spinning nuclear magnetic resonance imaging have shown 

decreases in concentrations of various metabolites in Long Evans rats (Driscoll et al., 2006; 

Paban, Fauvelle, & Alescio-Lautier, 2010). However, it may be the case that metabolic deficits 

arise during periods of increased activity or stress, as would be the case during fear learning and 

subsequent memory retrieval (Galeffi, Shetty, Sadgrove, & Turner, 2015). 

 In conclusion, aged humans and aged rats exhibit memory deficits in tasks known to 

depend on the MTL. In tandem with declines in working memory, complex associative memory 

(episodic in humans, TFC in rats) seems to deteriorate with increasing age. Fear conditioning 

procedures like TFC in rats provide a good model for further investigation of aberrant cellular 

function in normal aging. Much is known about the neural mechanisms of HPC dysfunction with 

increasing age, but an exhaustive examination of age-related effects on cellular processing 

remains incomplete. 
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Protein Degradation and Memory 

 There is currently general agreement about the idea that synaptic plasticity related to 

forming new memories requires altered gene expression and de novo protein synthesis in 

neurons (Chen & Tonegawa, 1997; Helmstetter, Parsons, & Gafford, 2008; Kandel, 2001). More 

recently, attention has shifted to the role of protein degradation through the ubiquitin proteasome 

system (UPS) (Ehlers, 2003; Hegde et al., 1997; Mabb & Ehlers, 2010). Within this system, 

proteins are tagged with ubiquitin polypeptides and are subsequently degraded by the 26S 

proteasome complex, which is comprised of a proteolytic core (20S) and two 19S regulatory 

caps (Hegde, 2010). During periods of synaptic activity calcium influx through NMDARs 

increases CamKII signaling, which directly activates the proteasome by phosphorylating serine 

120 on the RPT6 subunit of the 19S cap (Jarome, Kwapis, Ruenzel, & Helmstetter, 2013). This 

phosphorylation activates the proteasome in an ATP-dependent manner, and allows for the 26S 

complex to deubiquitinate, unfold, and degrade substrates (Jarome & Helmstetter, 2013). 

 Once the proteasome complex is activated, it contributes to synaptic destabilization 

which is critical for the consolidation of new memories and following the retrieval of old ones 

(Lee et al., 2008). Known targets of the UPS that contribute to synaptic destabilization include 

AMPAR-associated scaffolding proteins SHANK and GKAP (Hung, Sung, Brito, & Sheng, 

2010; Lee et al., 2008). Once degraded, calcium permeable AMPARs can be dissociated from 

the post-synaptic density allowing for the insertion of calcium impermeable AMPARs, 

ultimately stabilizing long term potentiation and presumably memories (Henley & Wilkinson, 

2013). 

 UPS-mediated proteolysis is required for the synaptic plasticity contributing to the 

formation of many different types of memories in structures including the AMY, DH, and PFC 

(reviewed in Jarome & Helmstetter, 2013). Within the AMY, fear conditioning leads to increased 

lysine 48 (K48)-linked ubiquitin tagging of SHANK and proteins involved in translational 

control, as well as increased proteasome activity evidenced chymotrypsin and trypsin-like 20S 

activity assays (Jarome et al., 2013; Jarome, Werner, Kwapis, & Helmstetter, 2011). Moreover, 
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post-training inhibition of the proteasome with the compound clasto-Lactacystin ß-lactone (ß-

lac) impairs long-term memory formation in a manner similar to protein synthesis inhibition. The 

upregulation of UPS activity following consolidation occurs following auditory or contextual 

memory retrieval as well (Jarome et al., 2011). Interestingly, while inhibition of protein synthesis 

following memory retrieval (with anisomycin) normally produces amnesia, this effect can be 

rescued via co-inhibition of proteolytic activity – an effect that suggests UPS activity triggers the 

need for protein synthesis and directly regulates the destabilization of memory traces.  

 The UPS-mediated processes in the AMY seem to occur in other brain structures as well. 

Inhibitory avoidance training increases ubiquitination of high molecular weight proteins in the 

hippocampus four hours after training (Lopez-Salon et al., 2001). In line with this, proteasome 

inhibition in the CA1 of DH one hour, four hours, or 7 hours following inhibitory avoidance 

training impairs memory. Additionally, following memory retrieval amnestic effects of 

anisomycin may be mitigated via co-infusion of a proteasome inhibitor, suggesting there are 

conserved mechanisms of plasticity between the AMY and the HPC (Lee et al., 2008). Similar to 

the AMY and HPC, Reis and colleagues (2013) found that UPS involvement in mnemonic 

processes is not limited to subcortical structures, as proteolysis in the PFC is critical for trace 

fear memory formation. Following TFC, the PFC displays increased ubiquitination on a similar 

time scale as that of the AMY (Reis et al., 2013). 

 With regard to contributions of the UPS to the plasticity required for TFC in particular, 

there is only one investigation published to date Reis and colleagues (2013). However, given the 

previously documented role of the AMY and the HPC in TFC, it is likely that UPS-mediated 

degradation contributes TFC in these structures (reviewed in Jarome & Helmstetter, 2014). 

Additionally, pilot data from an experiment wherein ß-lac was infused into the AMY of F344 

rats prior to TFC suggests that amygdalar UPS activity is necessary for learning in the trace 

procedure as well (Figure 1). There was no difference in pre-training freezing between the two 

groups (t=0.436 df=7, p=0.67), and there was a modest, but significant, increase in post-training 

freezing in animals that received ß-lac (t=2.515 df=7, p=0.04; Figure 1a). Proteasome inhibition 
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impaired memory formation as evidenced by a reduction in freezing at retrieval during the 

average of the two CS presentations (t=2.139 df=7, p=0.06), during the average of the two TIs 

(t=3.727 df=7, p<0.01), and during the average of the two ITIs (t=5.391 df=7, p<0.01; Figure 

1b). Thus, it seems that neurons within these brain structures that are critical to TFC undergo 

plastic changes during learning, and these cell-level changes depend on the UPS. 

 

 

Age-related Changes in UPS Activity 

 One of the hallmarks of aging is a loss of proteostasis, or an imbalance in the interplay 

between protein synthesis and protein degradation (López-Otín, Blasco, Partridge, Serrano, & 

Kroemer, 2013; Martinez-Vicente, Sovak, & Cuervo, 2005; Saez & Vilchez, 2014). This 

imbalance, initially reviewed more than 30 years ago, usually tips towards an age-related 

decrease in clearance of damaged, misfolded, or normally short-lived proteins resulting in their 

accumulation (Ding & Zhu, 2015; Löw, 2011; Makrides, 1983). Age-related decreases in basal, 

or homeostatic, proteasome activity have been characterized in a number of bodily tissues 

including adipose, kidney, liver, heart, and lung (Baraibar & Friguet, 2012; Keller, Hanni, & 

Markesbery, 2000). These decreases in basal proteasome activity are not limited to somatic 

tissues; they also manifest in aging areas of the central nervous system including the cerebral 
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cortex, HPC, spinal cord, and cerebellum (Chondrogianni, Sakellari, Lefaki, Papaevgeniou, & 

Gonos, 2014; Chondrogianni et al., 2015; Giannini et al., 2013; Keller et al., 2000). 

 There is much debate regarding whether the activity of 20S or 26S proteasome 

complexes is reduced independently from the capacity for degradation. Some work from 

Giannini and colleagues (2013) suggests that, in Sprague Dawley rats, aged 20S and 26S 

proteasomes may be decreased in their activity when quantified via fluorogenic substrate 

degradation (e.g. chymotrypsin [Suc-LLVY-AMC] or trypsin [Bz-VGR-AMC]), but not when 

tested in a way that measures their capacity in requiring the 19S regulatory cap to deubiquitinate 

and unfold the substrate prior to degradation. However, it should be noted that the authors of that 

study did not sufficiently justify the reduction in aged proteasomal activity they observed when 

using the most commonly used proteasome activity assays in the field, and instead focused on 

the artificial substrate they designed to be more physiologically relevant. One other investigation 

of GFP reporter mice claims no age-related impairment in proteasome function, however the 

authors never directly test proteasome activity and instead quantify UPS-related mRNA and 

protein levels during aging (Cook et al., 2009). It may be the case that regulation of 20S core 

activity, either by means of 19S input or an age-related attenuation of 20S catalytic properties, 

underlies the frequently observed loss of proteostasis with increasing age. Indeed, transgenic 

mice engineered to display global reduced chymotrypsin proteasome activity have reduced life 

spans and develop age-related phenotypes suggesting that an age-related reduction in proteasome 

activity is likely involved in cellular and organismal senescence (Tomaru et al., 2012). 

 While substantial evidence exists for a reduction in homeostatic proteasome activity in 

the central nervous system with increasing age, no studies to date have investigated age-related 

changes in UPS function contributing to the synaptic plasticity underlying learning and memory, 

also known as activity-related UPS activity. If the deficits in basal proteolysis extend into 

activity-dependent proteolysis, then age-related impairments in UPS function could be 

responsible for memory decline during normal aging. In order to directly test this, we trained 

young (3 months) and aged (22 months) F344 rats in TFC and brought them back for a retrieval 
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session the following day. The two age groups showed no differences in freezing during the 

training session either before (t=0.1974 df=18, p=0.84) or after the tone-shock pairings (t=0.1845 

df=18, p=0.85; Figure 2a). At retrieval, however, aged rats showed reduced CS freezing (t=2.678 

df=18, p=0.02), TI freezing (t=9.246 df=18, p<0.01), and ITI freezing (t=6.968 df=18, p<0.01; 

Figure 2b). All rats were sacrificed 90 minutes following TFC retrieval for western blot analysis 

of activity-related UPS function, as this time point has been shown to maximally activate the 

UPS following auditory memory retrieval (Jarome et al., 2011). The amygdala and dorsal 

hippocampus were dissected and crude synaptosomal fractions were obtained from both 

structures as previously described (Jarome et al., 2011). Within the amygdala, western blotting 

revealed decreased levels of phosphorylated RPT6 at Serine 120 (t=2.381 df=17, p=0.02; Figure 

2c), no differences in total RPT6 (t=2.002 df=17, p=0.06; Figure 2d), increased K48-linked 

ubiquitin levels (t=2.305 df=17, p=0.03; Figure 2e), and no differences in total actin (t=1.642 

df=17, p=0.12; Figure 2f). This pattern of decreased UPS activation in aged rats following 

memory retrieval was also present in synapses of the dorsal HPC, where we observed decreased 

phosphorylated RPT6 (t=2.028 df=17, p=0.05; Figure 2g), no differences in total RPT6 

(t=0.0076 df=17, p=0.99; Figure 2h), increased levels of K48-linked ubiquitin (t=2.704 df=17, 

p=0.01; Figure 2i), and no differences in actin (t=1.17 df=17, p=0.25; Figure 2j). These results 

suggest decreased activation of the UPS following memory retrieval, evidenced by decreased 

phosphorylated RPT6 and decreased clearance of K48-linked ubiquitin, accompany the age-

related memory deficit observed in aged rats. Thus, stimulation of this activity-dependent UPS 

activity underlying memory formation and retrieval may serve as a novel and therapeutic way to 

treat cognitive decline in normal aging. 
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Methylene Blue and Proteasome Activity Upregulation 

 One potential way of stimulating proteasome activity, and rescuing the aforementioned 

age-related decline, is via methylthioninium chloride or methylene blue (MB), administration 

(Medina, Caccamo, & Oddo, 2011). MB is an FDA-grandfathered tricyclic phenothiazine that 

was first synthesized in 1876 as a textile dye, and has since been used as a redox indicator in 

chemical reactions, a supravital/neuroanatomical stain, and a cancer chemotherapy agent (Peter, 

Hongwan, Kupfer, & Lauterburg, 2000; Wainwright & Crossley, 2002). Additionally, MB is 

effective in treating disorders ranging from methemoglobinemia, urinary tract infections, 

malaria, mental disorders (e.g. schizophrenia), and hypoxic effects on the central nervous system 
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resulting from cardiac arrest (Bruchey & Gonzalez-Lima, 2008; Howland, 2016; Oz, Lorke, 

Hasan, & Petroianu, 2010; Schirmer, Adler, Pickhardt, & Mandelkow, 2011).  

 A large portion of MB’s therapeutic effects can be attributed to its unique auto-oxidizable 

properties conferred by the presence of a thiazine ring system and an imine group (Wainwright 

& Crossley, 2002). The thiazine ring system allows for a high reduction potential in the presence 

of oxygen, while the imine group confers antioxidant properties. Combined, these functional 

groups allow MB to participate in electron cycling without incurring any lasting changes in its 

net reduction (Schirmer et al., 2011). This participation in electron cycling allows MB to aid in 

aerobic respiration, particularly during periods of increased bioenergetic demands, stress, or 

disease (Rojas, Bruchey, & Gonzalez-Lima, 2012). 

 Medina and colleagues (2011) administered MB to 3xTg-AD transgenic mice, which 

develop age-related accumulation of Aß and tau and cognitive decline, for four months in their 

diet. Twenty-five milligrams of MB was mixed with every 100 milligrams of food powder, and 

the mice had access to food ad libitum. Unfortunately, this method lacks specificity in terms of 

dosage, but Rojas and colleagues (2012) calculated an approximate dose of 30mg/kg in this 

experiment. Nonetheless, MB treatment successfully prevented the strain-associated decline in 

performance on the spatial reference version of the Morris water maze task. Additionally, MB 

treatment reduced the accumulation of Aß, but not hyper-phosphorylated tau. While previous 

work suggests MB upregulates mitochondrial function, four months of dietary MB 

administration does not affect mitochondrial function in any way (Bruchey & Gonzalez-Lima, 

2008; Medina et al., 2011). MB treatment did not alter amyloid precursor protein processing 

either, which lead the authors to hypothesize that MB-mediated prevention of Aß accumulation 

must occur after Aß has been produced, directly implicating the UPS in clearance of Aß. 

Interestingly, mice that were administered MB displayed higher levels of trypsin-like and 

chymotrypsin-like, but not caspase-like, 20S proteasome activity in whole brain homogenates 

(Medina et al., 2011). Thus, dietary MB administration significantly upregulates two of the three 

types of proteasome activity that are inherent to the UPS, and could possibly rescue the deficits 
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reported in Figure 2, although the brain structures and cellular compartments in which 

proteasome activity is upregulated remain to be elucidated.  

 While there is only one study to date on MB and proteasome upregulation, a number of 

other investigations have demonstrated a role for MB in enhancing mitochondrial function and 

general memory performance (reviewed in Rojas et al., 2012). Collectively, these studies 

revealed that MB displays hormetic properties wherein very low doses do not affect cellular or 

behavioral processes and high doses actually produce deficits in mitochondrial function and 

behavior. The vast majority of these investigations employed acute intraperitoneal (IP) MB 

administration. The first investigation to document MB-mediated memory enhancement showed 

a 1mg/kg IP injection immediately after inhibitory avoidance conditioning enhances retention of 

the avoidance memory (Martinez, Jensen, & Vasquez, 1978). A number of other studies show 

acute and low (i.e. 1-4mg/kg) doses of MB enhance memory in holeboard spatial search 

appetitive tasks, conditioned fear extinction, object recognition, open field habituation, and 

discrimination learning (Callaway, Riha, Bruchey, Munshi, & Gonzalez-Lima, 2004; Callaway, 

Riha, Wrubel, McCollum, & Gonzalez-Lima, 2002; Gonzalez-Lima & Bruchey, 2004; Riha, 

Bruchey, Echevarria, & Gonzalez-Lima, 2005; Riha, Rojas, & Gonzalez-Lima, 2011; Telch et 

al., 2014; Wrubel, Barrett, Shumake, Johnson, & Gonzalez-Lima, 2007a; Wrubel, Riha, 

Maldonado, McCollum, & Gonzalez-Lima, 2007b). 

 The acute and low dose manipulations that improve memory performance reliably 

upregulate cytochrome oxidase activity, and have contributed to the idea that MB participates in 

electron shuttling within the mitochondria and aids in upregulating the aerobic capacity of active 

neurons (Rojas et al., 2012). Unfortunately, no study to date has investigated the effects of acute, 

low dose MB on UPS function and it is possible that the field may have overlooked an additional 

effector for MBs unique memory enhancing properties. Indeed, there exists substantial interplay 

between the mitochondria and the UPS, wherein the UPS serves as a quality control mechanism 

for mitochondrial health especially in aging and disease (Lehmann, Udasin, & Ciechanover, 

2016; Livnat-Levanon & Glickman, 2011; Ross, Olson, & Coppotelli, 2015). Thus, an 
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interaction between these two organelles when MB is administered at low doses still needs to be 

investigated. 

 
Summary and Aims 

 An age-related decline in episodic memory performance in humans is evident, and this is 

analogous to the decline in TFC performance observed in aged rodents. While the UPS normally 

functions to aid in the formation and consolidation of memory, preliminary data suggests age-

related aberrant UPS processing following memory retrieval. Moreover, preventing UPS activity 

in young rats mimics deficits observed in aged rats in TFC. The compound MB offers a novel 

and potentially therapeutic means to rescue age-related proteasome dysfunction, and 

subsequently abolish age-related impairments in TFC. Thus, the overarching aim of the present 

thesis was to address whether MB administration could improve memory in young rats and 

rescue memory impairments in aged rats via upregulation of activity-related UPS activity. 

Specific aims included determining age-appropriate intraperitoneal dosages of MB for peak 

proteasome activity upregulation and memory enhancement (Aim 1) and to use MB in a more 

translational and chronic dietary approach to enhance memory performance and prevent age-

related cognitive decline (Aim 2). In Aim 1, it was predicted that aged rats would require a 

higher acute dose of MB (4 mg/kg) in order to stimulate UPS activity and rescue age-related 

memory impairments, and that young rats would require a lower dose of MB (1 mg/kg) for 

memory enhancement and UPS upregulation. In Aim 2, it was predicted that chronic dietary 

administration of MB would enhance memory and UPS function in young rats, and that aged rats 

receiving the MB diet would display enhanced memory and UPS function relative to aged rats 

receiving the control diet.  

 

MATERIALS & METHODS   

Subjects. Subjects were 100 male F344 rats obtained from Charles River (Raleigh, NC). Aim 1 

consisted of 64 animals, 32 of them were 3 months old and 32 of them were 22 months old at the 

time of delivery. One aged rat died of natural causes after training but before retrieval, and thus 
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produced no data. Aim 2 consisted of 36 animals, 18 of them were 3 months old and 18 of them 

were 18 months old at the time of delivery. Two aged rats died of natural causes during the four-

month feeding period and thus no data was gathered from them. Animals were housed 

individually in shoebox cages with food and water available ad libitum. The colony room was 

maintained under a 14:10 hour light/dark cycle. The University of Wisconsin-Milwaukee 

Institutional Animal Care and Use Committee approved all procedures prior to commencement 

of experimentation. 

 

Conditioning Apparatus. Fear conditioning occurred in a set of four identical chambers (Context 

A). The floor of Context A was composed of stainless steel rods through which footshocks were 

delivered. Each chamber was illuminated by an overhead incandescent bulb and was connected 

to its own shock generator-scrambler (Coulbourn, Whitehall, PA). Ventilation fans provided 

constant background noise (~60 dB). Chambers in Context A were cleaned with a solution of 5% 

ammonium hydroxide between animals. A second set of chambers (Context B) was used to 

conduct auditory CS testing. Context B differed from Context A in a number of ways, including 

infrared lighting, a solid and opaque textured floor panel, and a different cleaning solution (5% 

acetic acid). 

 

Behavioral Procedures. All animals were handled for three days prior to behavioral 

manipulation. This consisted of transport to the behavior room and gentle restraint in a towel. 

Fear conditioning was conducted in Context A while auditory CS testing was conducted in 

Context B. All animals were trace fear conditioned on day 1 with 10 CS-US pairings. The CS 

was a 10s white noise cue (72 dB) and the UCS was a 1s footshock (0.5 mA). Note: the weaker 

shock used in this paradigm was chosen to be sensitive to behavioral enhancements in freezing 

stemming from MB treatment. The CS and UCS were separated by an empty 30s trace interval, 

and CS-USC pairings were separated by an ITI of six minutes. One day following conditioning, 

rats received underwent a retrieval session consisting of two 15s CS presentations following a 2 
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minute baseline period. The two CS’s were separated by 175 seconds allowing for measurement 

of freezing behavior. 

 

Methylene Blue Administration. In Aim 1, USP-grade MB (Sciencelab.com, Houston, TX) was 

dissolved in 0.9% saline to create two stock concentrations, one at 2mg/ml and one at 10mg/ml. 

Rats were weighed the night before behavioral manipulations/injections and received the 

appropriate volume of MB solution corresponding to dosages of 1, 2, 4, and 16 mg/kg injected 

IP. Control rats in both age groups received a similar amount of saline as rats in other conditions 

(0.5mL) to control for volume of IP injections. In Aim 2, control rat chow was ground into a 

fine powder using a food processor and 2g of sucrose was added per 100g of food powder. The 

experimental rat chow was prepared in a similar manner, except 25mg of USP-grade MB was 

added per 100g of control diet. The control and experimental diets were placed in feeding dishes 

in rat cages and replaced every other day during the four-month feeding period. 

 

Conditional Fear Responses. In all cases, the average percent time spent freezing was calculated 

using the FreezeScan 1.0 software (CleverSys, Reston, VA). In Aim 1, two-way ANOVAs (Dose 

x Age) were used to compare group means within each behavioral epoch analyzed (i.e. baseline, 

CS, TI, ITI). In Aim 2, two-way ANOVAs (Diet x Age) were used to compare group means 

within each behavioral epoch analyzed (i.e. baseline, CS, TI, ITI). In both aims, Dunnett’s 

method was used to perform post-hoc comparisons of each group to the 3-month control group 

(Aim 1-control diet, Aim 2-0mg/kg MB) if the interaction term was significant (p<0.05). 

 

Crude Synaptosomal Membrane Fractionation. Animals were sacrificed with an overdose of 

isoflurane. This occurred 90 minutes following TFC retrieval in all experiments. Brains were 

rapidly removed and flash frozen on dry ice. Using a rat brain matrix (Harvard Apparatus, MA) 

incubated on dry ice, structures of interest were dissected from the brains. Synaptosomal 

membrane fractions were obtained using methods previously described, but with minor 
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alterations (Jarome et al., 2011). Tissue samples were homogenized in TEVP buffer with 320 

mM Sucrose and centrifuged at 1000 x g for 10-minutes at 4°C. The supernatant was collected 

and spun at 10,000 x g for 10-minutes at 4°C. The resulting pellet, containing the synaptosomal 

fraction, was resuspended in phospho-homogenization buffer (50 mM Tris-HCl, 6 mM sodium 

deoxycholate, 150 mM NaCl, 1mM NaF, two mini EDTA-free cOmplete protease inhibitor 

tablets (Roche), 0.1% SDS, 1 mM sodium orthovanadate) and measured using a 660nm protein 

assay (Pierce).  

 

20S Proteasome Activity Assay. Brains were removed, frozen on dry ice, and stored at -80°C 

until use. Following dissection, synaptic fractionation, and protein measurement 10μg of sample 

was diluted in distilled water. Diluted samples were then mixed with reaction buffer (250 mM 

HEPES, pH 7.5, 5 mM EDTA, 0.5% NP-40, 0.01% SDS, 20 mM ATP). The fluorogenic 

peptides LLVY-AMC (Millipore, MA) and Bz-VGR-AMC (Enzo Life Sciences) were added to 

samples to assess chymotrypsin-like and trypsin-like activities of the proteasome complex. 

Reactions were incubated at 37°C for two hours and fluorescence was recorded every five 

minutes in a 96-well microplate reader (Synergy H1; Biotek, VA) at 360nm/460nm. Protein-free 

blanks were used to assess auto-hydrolysis of flourogenic peptides and activity was determined 

via interpolation to an AMC standard curve produced following manufacturer instructions. The 

normalized 20S activity assay data was then analyzed using two-way ANOVAs (Dose x Age in 

Aim 1, and Diet x Age in Aim 2). In both aims, Dunnett’s method was used to perform post-hoc 

comparisons of each group to the 3-month control group (Aim 1-control diet, Aim 2-0mg/kg 

MB) only if the interaction term was significant (p<0.05). 

 

Procedure: Aim 1. Male F344 rats aged 3 and 22 months were administered 0, 1, 2, 4, or 16 

mg/kg of MB IP immediately after TFC. Twenty-four hours later, all rats underwent memory 

retrieval and were sacrificed 90 minutes following the retrieval session. Brains were collected 

and the PFC, AMY, DH, and RSC were dissected. After which, samples underwent 
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synaptosomal fractioning and subsequent trypsin-like and chymotrypsin-like 20S proteasome 

activity assays to measure raw UPS activation resulting from MB treatment and memory 

retrieval. Multiple doses of MB were used in order to determine the optimal MB dose for both 

UPS activation as well as for memory enhancement in acute procedures commonly employed in 

the field. 

 

Procedure: Aim 2. This experiment attempted to recapitulate the findings from Medina and 

colleagues (2011) in order to determine if their effects extend to F344 rats and to determine in 

which brain structures and neuronal compartments proteasome activity is upregulated following 

dietary treatment with methylene blue. Male F344 rats aged 3 and 18 months were administered 

a control diet or a diet consisting of 25mg of MB per 100 grams of food powder for four months. 

After four months, all rats were trained in TFC procedures and underwent memory retrieval 24 

hours after conditioning. Ninety minutes following retrieval, rats were sacrificed and brains were 

collected. The PFC, AMY, DH, and RSC were dissected and samples underwent crude 

synaptosomal fractionation prior to trypsin-like and chymotrypsin-like 20S proteasome activity 

assays. The aim of these procedures was to extend findings previously documented by Medina 

and colleagues, and importantly, to give better resolution into the effects of dietary 

administration of MB on memory performance and proteasome activity upregulation in both 

young and aged rats. 
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RESULTS 

Aim 1 

Behavior 

 

 Rats aged 3 months (n=32) or 22 months (n=31) were split into groups to receive 0, 1, 4, 

or 16mg/kg MB IP immediately following TFC. All groups had eight subjects per group except 

for the 22-month 4mg/kg group, which had seven subjects. All rats were trained in TFC. During 

the baseline epoch of training there was a main effect of age on freezing behavior in that aged 

rats froze significantly higher than young animals (F (1,55)=11.22, p<0.01; Figure 3a-b). 

However, during the last TI of training there were no differences in freezing between young and 

aged rats (F (1,55)=0.156, p=0.69; Figure 3a-b). Thus, both age groups behaved similarly at the 

end of training, and there were no age-related deficits in displaying freezing behavior that could 

obfuscate interpretation of freezing behavior at retrieval. Main effects of dose and interaction 

terms were not examined as IP MB administration occurred post-training. 
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 In order to determine the age- and dose-dependent effects of IP MB administration 

immediately following TFC on subsequent memory performance, all rats underwent memory 

retrieval 24 hours after training. During the baseline epoch of retrieval, there was a main effect of 

age on freezing behavior in that aged rats froze significantly less (F (1, 55)=7.911, p<0.01; 

Figure 3c-d). There was no main effect of dose of MB on freezing behavior (F (3, 55)=0.6376, 

p=0.59; Figure 3c-d), and no interaction between dose and age (F (3, 55)=1.79, p=0.16; Figure 

3c-d). Average freezing during the CS presentations at retrieval was lower in aged animals (F (1, 

55)=9, p<0.01; Figure 3c-d), but there was no effect of MB dose (F (3, 55)=1.834, p=0.15; 

Figure 3c-d) and no interaction (F (3, 55)=0.2098, p=0.89; Figure 3c-d). Additionally, aged rats 

froze significantly less than young rats during the two TIs (F (1, 55)=13.51, p<0.001; Figure 3c-

d), but there was no effect of MB dose (F (3, 55)=0.5744, p=0.63; Figure 3c-d) and no 

interaction (F (3, 55)=0.5402, p=0.66; Figure 3c-d). Finally, freezing during the ITIs of retrieval 

was lower in aged rats regardless of MB dose (F (1, 55)=11.95, p<0.01; Figure 3c-d). However, 

there was no effect of dose on memory performance (F (3, 55)=0.5612, p=0.64; Figure 3c-d) and 

no interaction between age and MB dose (F (3, 55)=0.7813, p=0.51; Figure 3c-d). 
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20S Activity Assays 

 

 In order to determine age- and MB dose-dependent differences in plasticity-associated 

20S activity, tissue was collected 90 minutes post-retrieval. Chymotrypsin-like and trypsin-like 

20S activities were measured in synaptic and cytosolic fractions from the PFC, RSC, DH, and 

AMY (Figures 4 and 5).  

 Chymotrypsin-like activity was not consistently upregulated after memory retrieval in 

response to post-training MB administration (Figure 4). In the synaptic fraction of the PFC there 

was no main effect of MB dose (F (3,55)=0.5944, p=0.62; Figure 4a), age (F (1,55)=0.3783, 

p=0.54; Figure 4a), or interaction between the two (F (3,55)=0.7712, p=0.51; Figure 4a). Aged 

rats displayed less chymotrypsin-like 20S activity in the cytosolic fraction of the PFC (F 

(1,55)=13.77, p<0.001; Figure 4e), but there was no effect of MB dose (F (3,55)=1.631, p=0.19; 

Figure 4e), or an interaction (F (3,55)=1.129, p=0.35; Figure 4e).  
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 In the synaptic fraction of the RSC, there was an age related decrease in chymotrypsin-

like activity (F (1,55)=11.05, p<0.01; Figure 4b), a main effect of dose (F (3,55)=5.9, p<0.01; 

Figure 4b), and an interaction between dose and age (F (3,55)=7.345, p<0.001; Figure 4b). 

Furthermore, 16mg/kg MB seems to maximally upregulate proteasome activity in young animals 

and this group was significantly higher than the 0mg/kg 3-month group (p<0.001). In the 

cytosolic fraction of the RSC, there was an age-related reduction in chymotrypsin-like activity 

independent of dose (F (1,55)=39.68, p<0.0001; Figure 4f). There was no main effect of MB 

dose (F (3,55)=2.729, p=0.052; Figure 4f) and no significant interaction between age and dose (F 

(3,55)=1.918, p=0.14; Figure 4f).   

 Within the DH, MB administration seems to differentially affect chymotrypsin-like 20S 

in the synaptic versus the cytosolic cellular compartments. In the synaptic fraction there was a 

significant interaction between dose and age (F (3,55)=4.142, p=0.01; Figure 4c). It seems that as 

the dose of MB increases, proteasome activity decreases in young animals and increases in aged 

animals, although no follow-comparisons of each group to the 0mg/kg 3-month group were 

significant. Additionally, there were no main effects of age (F (1,55)=0.1292, p=0.72; Figure 4c) 

or dose ((F (3,55)=0.6982, p=0.56; Figure 4c). In contrast, cytosolic chymotrypsin-like activity 

changed in an age- and dose-dependent manner. There was a significant interaction between MB 

dose and age ((F (3,55)=3.918, p=0.01; Figure 4g), and follow up comparisons revealed that, for 

aged animals, as the dose increased chymotrypsin-like activity decreased relative to the 0mg/kg 

3-month group (22 month-0mg/kg, p=0.01; 22-month-1mg/kg, p<0.0001; 22-month-4mg/kg, 

p<0.0001; 22-month-16mg/kg, p<0.0001; Figure 4g). Additionally, there was a main effect of 

age (F (1,55)=130.4, p<0.0001; Figure 4g) and dose (F (3,55)=4.708, p<0.01; Figure 4g), 

although these effects are more difficult to interpret given the significant interaction between 

them.  

 There was a dichotomy in the pattern of 20S activation in the AMY between the synaptic 

and cytosolic fractions. In the synaptic portion of the AMY, there was an age-related decrease in 

20S activity regardless of dose (F (1,55)=7.802, p<0.01; Figure 4d), but no main effect of dose 
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(F (3,55)=0.8212, p=0.49; Figure 4d) or interaction (F (3,55)=0.588, p=0.63; Figure 4d). In 

contrast, 20S activity in the cytosolic fraction was higher in aged animals regardless of MB dose 

((F (1,55)=31.07, p<0.0001; Figure 4h). The main effect of dose approached significance (F 

(3,55)=2.53, p=0.067; Figure 4h) and there was no significant interaction (F (3,55)=0.9417, 

p=0.43; Figure 4h).  

 

 Similar to chymotrypsin-like activity, trypsin-like activity was not consistently 

upregulated following memory retrieval in response to post-training MB administration (Figure 

5). In the synaptic fraction of the PFC, there was no effect of age (F (1,55)=2.32, p=0.13; Figure 

5a), dose (F (3,55)=1.028, p=0.39; Figure 5a), or interaction between them (F (3,55)=0.4575, 

p=0.71; Figure 5a). However, in the cytosolic portion of the PFC, dose significantly influenced 

trypsin-like activity and higher doses of MB produced less 20S activity regardless of age (F 

(3,55)=3.829, p=0.01; Figure 5e). There was no main effect of age (F (1,55)=0.841, p=0.36; 
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Figure 5e), or interaction between dose and age (F (3,55)=0.4821, p=0.70; Figure 5e) on 20S 

activity.  

 MB administration greatly affected trypsin-like proteasome activity in the synaptic 

fraction of the RSC. An interaction between age and MB dose was evident (F (3,55)=7.297, 

p<0.001; Figure 5b), and follow-up comparisons to the 3-month 0mg/kg group revealed that 

16mg/kg MB treatment in 3-month animals significantly upregulates 20S activity (p<0.01; 

Figure 5b), while 1mg/kg MB treatment in 22-month animals significantly upregulates 20S 

activity (p<0.01; Figure 5b). Aside from the interaction, there was a general age related increase 

in trypsin-like activity (F (1,55)=15.02, p<0.001; Figure 5b) and a main effect of MB dose (F 

(3,55)=3.406, p=0.04; Figure 5b). In the cytosolic portion of the RSC, there was only an age-

related reduction in 20S activity that was independent of MB dose (F (1,55)=47.15, p<0.0001; 

Figure 5f), and there was no significant effect of MB dose alone (F (3,55)=1.26, p=0.30; Figure 

5f) or an interaction (F (3,55)=1.928, p=0.14; Figure 5f). 

 Much like chymotrypsin-like activity, a similar pattern of trypsin-like activity emerged in 

the DH following MB administration. There were no significant main effects in the synaptic 

fraction (age: F (1,55)=1.353, p=0.25; Figure 5c; dose: F (3,55)=1.34, p=0.27; Figure 5c), or an 

interaction between them (F (3,55)=2.593, p=0.06; Figure 5c). In contrast, data from the 

cytosolic fraction of the DH indicate an age-related reduction (F (1,55)=177.8, p<0.0001; Figure 

5g), and dose-related reduction (F (3,55)=7.378, p<0.001; Figure 5g) in trypsin-like 20S activity. 

However, because the interaction term was not significant (F (3,55)=2.494, p=0.07; Figure 5g), 

follow-up tests were not possible. Nonetheless, it appears that as dose increases, proteasome 

activity in the cytosolic fraction of the DH decreases.  

 Finally, the pattern of trypsin-like proteasome activity in the AMY was the opposite of 

that observed for chymotrypsin-like activity. In the synaptic fraction there was a general age-

related increase in 20S activity (F (1,55)=84.71, p<0.0001; Figure 5d), but no effect of dose (F 

(3,55)=0.8653, p=0.46; Figure 5d) or interaction (F (3,55)=0.3271, p=0.81; Figure 5d). In stark 

contrast, the cytosolic fraction showed an age-related decrease in 20S activity that was 
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independent of MB dose (F (1,55)=57, p<0.0001; Figure 5h). However, dose alone (F 

(3,55)=2.536, p=0.07; Figure 5h) or an interaction between age and dose (F (3,55)=0.2416, 

p=0.87; Figure 5h) did not affect trypsin-like activity in the cytosolic fraction of the DH.  

 

Aim 2 

Behavior 

 

 Rats aged 3 months (n=18) or 18 months (n=18) were split into groups to receive either a 

control diet or an MB-containing diet for a four-month period. All groups had nine subjects per 

group except for the 22-month MB group, which had seven subjects. In order to examine the 

mnemonic effects of dietary treatment with MB on young and aged rats and to extend the 

findings from Medina and colleagues (2011), all rats were trained in TFC at the end of the 4-

month feeding period. During the baseline epoch of training, there were no effects of age (F 

(1,30)=3.681, p=0.06; Figure 6a), diet (F (1,30)=0.0396, p=0.84; Figure 6a), and no age by diet 

interaction (F (1,30)=0.0005, p=0.98; Figure 6a). Importantly, there were also no differences 

between groups in freezing during the last TI of training as a function of age (F (1,30)=1.477, 

p=0.23; Figure 6a), diet (F (1,30)=0.0475, p=0.82; Figure 6a), or an interaction between the two 

(F (1,30)=0.6396, p=0.43; Figure 6a). Thus, it can be concluded that there were no differences in 
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acquisition of freezing behavior between age groups or diet condition during training that may 

confound freezing behavior analysis at retrieval.  

 All rats underwent memory retrieval 24 hours post training in order to examine the 

effects of dietary MB administration on learning and memory processes. During the baseline 

period of retrieval there was no main effect of age (F (1,30)=0.2518, p=0.62; Figure 6b), diet (F 

(1,30)=0.0191, p=0.89; Figure 6b), or an interaction (F (1,30)=1.696, p=0.20; Figure 6b) on 

freezing behavior. Similarly, freezing behavior averaged across the two CS presentations did not 

differ as a function of age (F (1,30)=0.0103, p=0.92; Figure 6b), diet (F (1,30)=2.771, p=0.11; 

Figure 6b), or an interaction between the two (F (1,30)=2.471, p=0.13; Figure 6b). However, 

average freezing during the two TIs was lower in aged animals regardless of diet (F 

(1,30)=7.117, p=0.01; Figure 6b). Diet type did not influence TI freezing (F (1,30)=2.49, p=0.13; 

Figure 6b) and there was no significant interaction between age and diet (F (1,30)=0.8256, 

p=0.37; Figure 6b). ITI freezing was also lower in aged rats regardless of diet type (F 

(1,30)=13.85, p<0.001; Figure 6b), but there was no effect of diet independent of age (F 

(1,30)=2.764, p=0.11; Figure 6b) or significant interaction (F (1,30)=0.2739, p=0.60; Figure 6b).  
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20S Activity Assays 

 

 In order to examine the effects of four months of dietary MB administration on plasticity-

associated 20S proteasome activity in young and aged rats, brain tissue was collected 90 minutes 

post-retrieval. Chymotrypsin-like and trypsin-like 20S activities were measured in synaptic and 

cytosolic fractions from the PFC, RSC, DH, and AMY (Figures 7 and 8).  

 In a manner much similar to IP MB administration in Aim 1, dietary administration of 

MB did not consistently upregulate 20S proteasome activity throughout the brain regions and 

cellular compartments investigated. Dietary treatment with MB significantly upregulated 

chymotrypsin-like activity in the synaptic fraction of the PFC (F (1,30)=5.111, p=0.03; Figure 

7a), but there was no main effect of age (F (1,30)=0.0797, p=0.78; Figure 7a) or an interaction 

between the two (F (1,30)=0.106, p=0.75; Figure 7a). In contrast, the cytosolic fraction of the 

PFC showed an interaction effect between diet and age on chymotrypsin-like activity (F 

(1,30)=6.834, p=0.014; Figure 7e), and follow up tests revealed that MB treatment in young 
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animals significantly reduces 20S activity (p<0.01; Figure 7e). Additionally, there were main 

effects of age (F (1,30)=4.697, p=0.04; Figure 7e) and diet (F (1,30)=7.821, p<0.01; Figure 7e), 

but these are likely driven by the sharp decrease in proteasome activity in young animals that 

received the MB-containing diet.  

 The pattern of chymotrypsin-like 20S activity in the RSC was different between the 

synaptic and cytosolic fractions. Animals that received the MB-containing diet showed higher 

chymotrypsin-like activity in the synaptic fraction of the RSC regardless of age (F (1,30)=34.47, 

p<0.0001; Figure 7b). There was, however, no age-related change in activity (F (1,30)=0.2983, 

p=0.59; Figure 7b) or interaction between age and diet (F (1,30)=1.161, p=0.29; Figure 7b). In 

the cytosolic fraction of the RSC there was an interaction between the effects of age and diet on 

chymotrypsin like activity (F (1,30)=8.293, p<0.01; Figure 7f), and follow up tests showed a 

significant reduction in the 22-month MB group relative to the 3-month control group (p<0.01; 

Figure7f). There was no main effect of age (F (1,30)=0.1761, p=0.68; Figure 7f), but there was a 

main effect of diet (F (1,30)=17.94, p<0.001; Figure 7f) that was likely driven by the sharp 

decrease in proteasome activity in the MB treated aged animals.  

 Dietary treatment with MB did not affect chymotrypsin-like 20S activity in the synaptic 

fraction of the DH. There was no main effect of diet (F (1,30)=1.301, p=0.26; Figure 7c), age (F 

(1,30)=1.665, p=0.21; Figure 7c), or an interaction between them (F (1,30)=0.0045, p=0.95; 

Figure 7c). In contrast, MB treatment significantly increased proteasome activity in the cytosolic 

fraction of the DH regardless of age (F (1,30)=17.08, p<0.001; Figure 7g). There was no main 

effect of age on 20S activity (F (1,30)=0.0273, p=0.87; Figure 7g), but there was an interaction 

between diet and age (F (1,30)=4.82, p=0.04; Figure 7g). Dunnett’s follow up comparisons to the 

3-month MB group showed significant increases in the 3-month MB group (p<0.001; Figure 7g) 

and the 22-month MB group (p=0.02; Figure 7g).  

 Tissue from the AMY, regardless of the cellular compartment, did not show any age-

related or diet-related changes in chymotrypsin-like activity. In the synaptic fraction there was no 

effect of diet (F (1,30)=1.836, p=0.19; Figure 7d), age (F (1,30)=2.939, p=0.10; Figure 7d), or 
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age by diet interaction (F (1,30)<0.0001, p=0.99; Figure 7d). Similarly, in the cytosolic fraction 

of the AMY there was no main effect of diet (F (1,30)=1.095, p=0.30; Figure 7h), age (F 

(1,30)=0.4088, p=0.53; Figure 7h), or interaction between them (F (1,30)=2.216, p=0.15; Figure 

7h) on chymotrypsin-like 20S activity.  

 

 

 Similar to chymotrypsin-like activity, trypsin-like activity was not consistently 

upregulated following memory retrieval in response to four months of dietary MB administration 

(Figure 8). In the synaptic fraction of the PFC, there was no effect of diet (F (1,30)=0.0154, 

p=0.90; Figure 8a), age (F (1,30)=1.194, p=0.28; Figure 8a), or an interaction between them (F 

(1,30)=0.1148, p=0.74; Figure 8a) on 20S activity. In contrast, tissue from the cytosolic fraction 

of the PFC showed MB diet-related increases in trypsin-like activity (F (1,30)=7.778, p<0.01; 

Figure 8e). Age did not significantly affect 20S activity (F (1,30)=0.0584, p=0.81; Figure 8e), 

and there was not an interaction between diet and age (F (1,30)=0.1978, p=0.66; Figure 8e).  
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 Patterns in trypsin-like 20S activity were not consistent between the synaptic and 

cytosolic cellular compartments of the RSC. In the synaptic fraction dietary MB significantly 

upregulated proteasome activity (F (1,30)=11.43, p<0.01; Figure 8b), while age (F 

(1,30)=0.5833, p=0.45; Figure 8b), or an interaction between age and diet (F (1,30)=1.531, 

p=0.23; Figure 8b) did not. Tissue from the cytosolic fraction of the RSC showed clear age-

related decreases (F (1,30)=8.622, p<0.01; Figure 8f) that were independent of dietary treatment 

(F (1,30)=0.1516, p=0.70; Figure 8f) or an age by diet interaction (F (1,30)=3.177, p=0.08; 

Figure 8f).  

 Dietary treatment with MB has opposite effects on trypsin-like proteasome activity in the 

synaptic and cytosolic fractions of the DH. In the synaptic fraction, MB treatment produced a 

modest reduction in 20S activity that did not quite reach significance (F (1,30)=3.806, p=0.06; 

Figure 8c). However, age (F (1,30)=0.0054, p=0.94; Figure 8c) or an interaction between diet 

and age (F (1,30)=0.3884, p=0.54; Figure 8c) had no significant effect on proteolysis. In an 

opposite pattern, MB treatment increased proteolysis in the cytosolic fraction of the RSC (F 

(1,30)=9.702, p<0.01; Figure 8g). There were no significant effects of age (F (1,30)=1.67, 

p=0.21; Figure 8g) or a Diet x Age interaction (F (1,30)=0.1705, p=0.68; Figure 8g).  

 In the synaptic fraction of tissue from the AMY, dietary MB treatment significantly 

reduced trypsin-like 20S activity (F (1,30)=17.41, p<0.001; Figure 8d). Additionally, there was 

an age-related reduction in proteolysis regardless of diet type (F (1,30)=15.2, p<0.001; Figure 

8d), but there was no interaction between dietary and age-related effects (F (1,30)=0.0041, 

p=0.94; Figure 8d). Contrastingly, the MB-containing diet had no effect on 20S activity in 

cytosolic 20S activity in the AMY (F (1,30)=0.0005, p=0.99; Figure 8h). There was, however, an 

age-related reduction in trypsin-like activity that was independent of diet type (F (1,30)=11.79, 

p<0.01; Figure 8d), but the interaction term was not significant (F (1,30)=1.532, p=0.23; Figure 

8d).  
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DISCUSSION 

 Acute MB administration immediately post-training at doses of 1, 4, or 16mg/kg had no 

effect on subsequent memory performance at retrieval in young or aged rats. There was no clear 

MB effect in any of the analyzed epochs, which was unexpected given that we administered 

doses of MB that extended throughout its hormetic curve (Rojas et al., 2012). Our lack of an 

enhancement in young animals given 1mg/kg IP is in contrast to previously published memory 

enhancements with 1mg/kg of MB given IP to adult rats immediately post-inhibitory avoidance 

training (Martinez et al., 1978). Additionally, MB doses above 10mg/kg are known to exert 

deleterious effects on memory performance (for review see Rojas et al., 2012). However, we did 

not see decreased freezing in young or aged animals that received 16mg/kg. The lack of memory 

enhancement or impairment cannot be attributed to general performance deficits between groups, 

as all groups behaved similarly at the beginning and end of training (i.e. all rats displayed 

elevated freezing behavior over time). It is possible that memory enhancing effects of MB do not 

extend to TFC procedures, and may not extend to fear conditioning in general (Rojas et al., 

2012). It is true that no study to date has reported MB-driven enhancement of classical auditory 

fear conditioning, and the majority of MB enhancements are in fear extinction retention, 

decreased fear renewal after extinction, better performance in spatial tasks, or better performance 

in object recognition tasks (Rojas et al., 2012).  

 Although there were no effects of acute MB administration on freezing behavior during 

retrieval in either age group, we did replicate our preliminary finding of an age-related deficit in 

TFC. Aged rats froze significantly less than young rats during all analyzed epochs of retrieval, 

and these results are congruent with previously published age-related deficits in TFC (Moyer & 

Brown, 2006; Villarreal et al., 2004).  

 The lack of a behavioral enhancement with IP MB administration makes the 

interpretation of post-retrieval 20S activity less meaningful. However, there were a few patterns 

of MB-driven upregulation of 20S activity that were conserved between the types of proteasome 

activity examined. Together, it appears the most consistent effects of post-training IP MB 
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administration on proteasome activity measured post-retrieval are in the synaptic fraction of the 

RSC and the cytosolic fraction of the DH. In synapses of the RSC, 16mg/kg seems to 

consistently upregulate general 20S (i.e. chymotrypsin- and trypsin-like) activity in young 

animals, whereas 1mg/kg upregulates general proteasome activity in aged animals. In the 

cytosolic fraction of the DH, general 20S activity is lower in aged animals and MB treatment 

lowers this activity linearly with increasing dose. Apart from these two clear patterns, data from 

the PFC and AMY do not show any consistencies between the types of proteasome activity 

examined.  

 Similar to results with acute MB administration, we did not see any memory 

enhancement with chronic MB administration. There were no age-related or diet-related 

differences in freezing behavior at the beginning or end of training that could have complicated 

our interpretation of freezing behavior at retrieval. During retrieval, the only group differences 

were age-related reductions in average freezing behavior during the TI and ITI periods. While it 

is important that the age-related deficit in TFC was reproduced once again, it is unfortunate that 

MB did not enhance memory performance as reported by Medina and colleagues (2011). There 

are few potential sources for our lack of replication. There were discrepancies in the type of 

memory task used; they saw enhancements in performance on the spatial references version of 

the Morris Water Maze, whereas we were seeking enhancements in fear conditioning. As 

previously mentioned, no study to date has demonstrated an MB-related enhancement in auditory 

fear conditioning and it’s possible that fear conditioning procedures are too robust to observe an 

enhancement. It is also possible that enhancements they observed were species and strain 

specific; they used 3xTg-AD transgenic mice, whereas we used inbred F344 rats (Medina et al., 

2011). Future work should examine if dietary treatment with MB, at the dose of 25mg per 100 

grams of food powder, for four months can enhance spatial memory in non-transgenic rats in 

order to situate our results and extend their findings.  

 The lack of dietary MB-driven memory enhancement makes interpreting post-retrieval 

proteasome activity more difficult. We did not replicate the previously published global 
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upregulation in 20S activity in animals that received the MB-containing diet (Medina et al., 

2011). They measured 20S activity in whole brain homogenates, whereas we had structural and 

cellular compartmental resolution. It is possible that by isolating certain brain structures, we may 

have overlooked other brain regions that drove their observed global increase. However, chronic 

MB administration did increase 20S activity in the synaptic fraction of RSC, much similar to 

acute MB administration. MB also increased 20S activity in the cytosolic fraction of DH when 

administered chronically, which opposed the reductions in 20S activity observed with acute MB 

administration. Nonetheless, given that learning during TFC procedures is dependent on the RSC 

and DH, it is unclear why upregulating proteasome activity in these structures did not enhance 

memory (Kwapis et al., 2015; McEchron, Bouwmeester, Tseng, Weiss, & Disterhoft, 1998). 

While there is evidence for proteasome activity in the DH being involved in CFC, no studies to 

date have investigated the role of the UPS in either the RSC or the DH during TFC (Lee et al., 

2008). Though unlikely, it is possible that these structures do not depend on UPS function in 

TFC procedures.  

 Another possibility is proteasome upregulation does not necessarily correlate with better 

learning, and that previously documented memory enhancements with MB were attributable to 

enhanced mitochondrial function (Rojas et al., 2012). If this were true, MB should have affected 

electron transport in mitochondria, and resulted in some measurable change in behavior. By 

administering MB acutely at doses that cover the hormetic curve, and chronically at a ~30mg/kg 

dose known to be harmful to mitochondria, we should have either positively or negatively 

impacted cellular respiration. The lack of any change in behavior, positive or negative, suggests 

that the changes caused by MB (whether they be on proteolysis or cellular respiration) do not 

affect learning and memory processes in TFC.  

 Given that we have a clear age-related reduction in UPS activity following trace fear 

memory retrieval (Figure 2), work towards stimulating UPS activity should continue. Our results 

suggest that MB may not be well suited for rescue of age-related cognitive decline via 

proteasome activity upregulation. Another promising option for upregulating proteasome activity 
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is proteasome-activating peptide 1 (PAP1). PAP1 incubation in cell cultures from C. elegans and 

H. sapiens increases chymotrypsin-like proteasome activity (Vechio, Cerqueira, Augusto, Lopes, 

& Demasi, 2014).  Additionally PAP1 confers resistance to oxidative stress, and attenuates 

protein accumulation in a cellular model of amyotrophic lateral sclerosis (Vechio et al., 2014). 

PAP1 could be locally infused into structures critical for TFC and could counteract the age-

related decline in UPS function, ultimately rescuing age-related cognitive decline. Nonetheless, 

findings reported here rule out MB as a promising option and allow for advancement of the field 

towards more promising therapeutic options.  
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