
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

December 2017

Evaluating Item Selection Methods for Adaptive
Tests with Complex Content Constraints
Logan Rome
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Educational Assessment, Evaluation, and Research Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Rome, Logan, "Evaluating Item Selection Methods for Adaptive Tests with Complex Content Constraints" (2017). Theses and
Dissertations. 1687.
https://dc.uwm.edu/etd/1687

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/796?utm_source=dc.uwm.edu%2Fetd%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1687?utm_source=dc.uwm.edu%2Fetd%2F1687&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


  

 

EVALUATING ITEM SELECTION METHODS FOR ADAPTIVE TESTS WITH COMPLEX 

CONTENT CONSTRAINTS 

 

by 

Logan Rome 

 

 

 

 

A Dissertation Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

 

Doctor of Philosophy 

in Educational Psychology 

 

at 

The University of Wisconsin-Milwaukee 

December 2017 

 

 

 

 



ii 

ABSTRACT 

EVALUATING ITEM SELECTION METHODS FOR ADAPTIVE TESTS WITH COMPLEX 
CONTENT CONSTRAINTS 

 
by 
 

Logan Rome 
 

 
The University of Wisconsin-Milwaukee, 2017 
Under the Supervision of Professor Bo Zhang 

 
Adaptive testing designs have become go-to methods for large-scale test administration 

due to their ability to provide more accurate scores with fewer items. In recent years, new 

designs have been introduced, such as on-the-fly multistage testing (OMST), that combine the 

advantages of the well-established computerized adaptive testing (CAT) and multistage testing 

(MST) designs. While adaptive testing has attracted a tremendous amount of research, most 

studies have used only one set of test specifications to constrain the content of the test. Through 

Monte Carlo simulation, this study evaluated the effectiveness of CAT, MST, and OMST under 

varying levels of test specification complexity. Specifically, the constrained item selection 

methods of the maximum priority index (MPI) and weighted penalty model (WPM) were 

examined in CAT and OMST while the normalized weighted absolute deviation heuristic 

(NWADH) was used to assemble MST forms. In addition to the complexity of the test 

specifications, the representation of each content category in the pool and on the test, size of the 

item pool, length of each stage, and number of preassembled MST difficulty levels were also 

varied. The performance of each test design was evaluated by three outcomes: content alignment, 

measurement precision, and test security. Results show that increasing the complexity of test 

specifications leads to worse content alignment across all test designs and item selection 

methods. The WPM item selection method performs better than the MPI and NWADH under 
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increased constraint complexity. Moreover, CAT and OMST provide higher measurement 

precision than MST, especially for the large item pool. Finally, CAT is the most secure among 

the three test designs and the security of MST benefits most from the larger item pool. 
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CHAPTER 1 
 

INTRODUCTION 
 

Over the last several decades, adaptive testing designs, such as computerized adaptive 

testing (CAT; Lord, 1971b) and multistage testing (MST; Lord, 1971a), have arisen as 

mainstream methods for large-scale test administration. These designs adjust the difficulty of the 

test to the ability of the examinee during test administration. Consequently, compared to the 

traditional paper-and-pencil linear tests, adaptive tests can provide more precise measurement 

with fewer items (Stocking, 1994). The traditional CAT is a fully-sequential adaptive design in 

that items are selected one-at-a-time and ability is estimated after each item. On the other hand, 

MST is a group-sequential adaptive design where sets of items, known as modules, are 

preassembled at target ability levels and the examinee is routed to the next module based on the 

ability estimate obtained from responses to the previous module(s).  

Both CAT and MST have been successfully implemented in large-scale assessment. Over 

time, some notable drawbacks of each design have come to light. In CAT, early item responses 

lead to large changes in estimated ability, as little is initially known about the examinee. Later in 

the test, changes in estimated ability from one item to the next become smaller. This attribute of 

CAT makes it difficult for high-ability test takers to recover from early mistakes (Rulison & 

Loken, 2009). MST is less prone to this issue, as the initial ability estimate is delayed until after 

a set of items has been completed. As a tradeoff, final ability estimates in MST are often not as 

precise as those in CAT, as MST modules are designed to be of optimal difficulty only at a 

limited number of target ability levels (e.g., three levels at low, medium, and high ability). For an 

examinee whose ability falls between any two target levels (e.g., between low and medium), 
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difficulty of the modules will not be optimal, and subsequently, ability estimation will not be as 

accurate as in the CAT design. 

To address these issues, researchers have continued to develop new adaptive testing 

designs. Han and Guo (2014) introduced MST by shaping (MST-S) while Zheng and Chang 

(2015) proposed “on-the-fly” MST (OMST). Both methods utilize a group-sequential design 

similar to MST, except that the items are selected during administration, as in CAT. Thus, MST-

S and OMST represent a compromise between CAT and MST. These new methods still possess 

many of the advantages of MST but with the additional benefit that final ability estimates can be 

nearly as precise as CAT. While MST-S and OMST present a promising new direction for 

adaptive testing, they are relatively new, and more research needs to be done to determine their 

performance in various testing situations.  

Together, CAT, MST, MST-S, and OMST present testing organizations with a myriad of 

options to achieve precise ability estimation efficiently. However, challenges still exist. For 

instance, inherent in adaptive testing is a large number of unique test forms. With as many as one 

unique form per examinee, ensuring that all test forms are equivalent in terms of content can be 

challenging. Wise, Kingsbury, and Webb (2015) contend that the degree of content alignment for 

an adaptive test is related to the extent that the test items (1) present an optimal challenge for the 

examinee, and (2) represent the desired content domain. With respect to the first goal, matching 

the difficulty of the test to the ability of the examinee is central to adaptive testing. This goal, on 

its own, can be met in CAT, MST-S, and OMST, and to a somewhat lesser extent in MST. The 

second goal can be readily accomplished when test forms are created and closely examined 

before administration, as in linear testing. The challenge in adaptive testing then becomes 

meeting both goals simultaneously in a test form that is created during administration.  
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The key to meeting the content alignment standards of adaptive testing lies in the item 

selection algorithm. Methods that consider item content, in addition to item statistical properties 

(i.e., information), have been developed for linear testing and preassembled MST (Swanson & 

Stocking, 1993; Luecht, 1998) as well as CAT (Cheng & Chang, 2009; Shin, Chien, Way, & 

Swanson, 2009) and OMST (Zheng & Chang, 2015). While these methods have been shown to 

be effective in many testing situations (He, Diao, & Hauser, 2014), they have not yet been 

studied for tests with complex content specifications. One example of such constraints comes 

from the Programme for International Student Assessment (PISA). Its mathematics test uses four 

indices – content, cognitive process, context, and format type – for each item (OECD, 2012). 

Each of these categories has 3 or 4 levels and the levels of each category are not exclusive (i.e., 

items from each content area could be of any cognitive process, context, and format type). 

Ensuring that each of the levels of each category is adequately represented on every test while 

also selecting items of optimal difficulty for the examinee can be extremely challenging. 

 Cheng and Chang (2009) introduced the maximum priority index (MPI) as an item 

selection method for CAT, which has since been extended to OMST (Zheng & Chang, 2015). 

The MPI calculates a priority index for each item in the pool based on item content and statistical 

characteristics. The item with the highest priority index is then selected for administration at 

each step. The weighted penalty model (WPM; Shin et al., 2009) and normalized weighted 

absolute deviation heuristic (NWADH; Luecht, 1998) use similar logic to consider both 

statistical and non-statistical attributes. The WPM also considers the prevalence of each content 

area in the item pool in order to account for the quality of the pool while the NWADH aims to 

assemble multiple test forms that are equivalent in terms of both content and statistical 

properties. So far, the WPM has only been applied to CAT while the NWADH has been used to 
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select items for both linear tests and MSTs. All three methods show potential for assembling 

tests with very complex content constraints, due to their ability to accommodate situations where 

items have multiple content indices.  

While originally proposed as item selection methods for CAT, the MPI and WPM can be 

applied to OMST (as in Zheng & Chang, 2015). MST-S, on the other hand, does not use an index 

to select items; instead, a fixed number of items are randomly selected from each content area at 

each stage. This random selection process is repeated a predetermined number of times in order 

to achieve a desired level of measurement precision and item exposure control. So far, MST-S 

has only been studied for tests with simple test blueprints (Han & Guo, 2014), as the random 

nature of MST-S makes it challenging to consider multiple content indices at once. 

 The main goal of this study is to investigate the effectiveness of item selection methods 

for adaptive tests with varying levels of test specification complexity. The following five 

combinations of item selection method and test design will be studied: MPI and WPM for CAT, 

NWADH for MST, and MPI and WPM for on-the-fly MST. Evaluation of these methods will be 

based on the following three criteria: accuracy of ability estimation, satisfaction of test content 

constraints, and item exposure and test overlap rates. The importance of accurate ability 

estimation is self-evident. Many score-based decisions depend on the accuracy of latent trait 

measurement. Satisfaction of test constraints is directly related to the content validity of test 

scores. Violations of the constraints make the test scores invalid for the target construct and thus 

difficult to compare across examinees. Item exposure and test overlap rates are test security 

concerns. Overexposed items and high test overlap rates may result in a testing program that is 

vulnerable to compromised items due to question sharing between examinees. These three 

criteria are clearly related and tradeoffs will have to be made among them. For instance, 
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increasing ability estimation accuracy is likely to come at the expense of item exposure control, 

as the best items will be administered more frequently.  

The effectiveness of the competing item selection methods may vary by the features of 

the item pool and test design; hence, these features will be closely examined in this study. 

Specifically, the size of the item pool, complexity of the test blueprint, representation of each 

content category in the item pool, number of items in each MST stage, and number of difficulty 

levels in each preassembled MST stage may all play a role.   
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CHAPTER 2 
 

LITERATURE REVIEW 

Item Response Theory 

Item Response Theory (IRT) has been the dominant model in large-scale testing since at 

least the 1970s (Hambleton & Swaminathan, 1985). Different from Classical Test Theory (CTT), 

which uses number-correct scoring to produce scores that are dependent on the particular set of 

items included on the test (van der Linden, 1986), IRT focuses on modeling the response 

probabilities to individual items. Examinee abilities are scored based on the probability of the 

response pattern instead of the number of correct responses. IRT has many advantages over CTT, 

such as latent trait estimation that is not dependent on the test and item parameter calibration that 

is not dependent on the sample. 

 Dichotomous IRT models. The dichotomous IRT models aim to predict the probability 

of a correct response to an item. The three-parameter logistic (3PL) model, the most general 

form, can be expressed as (Birnbaum, in Lord & Novick, 1968): 

                       
 

                   
   (1) 

The outcome,               or    , is the conditional probability of a correct response to item   

by examinee   (     ), given the examinee ability parameter,   , and item parameters   ,   , 

and   .   is a scaling constant used to approximate the normal ogive function by the logistic 

function, and is usually set equal to 1.702. The probability of an incorrect response,         

      or    , is simply      .  

In Equation (1), the item difficulty parameter,   , represents the point on the ability ( ) 

continuum at which the probability of a correct response is 0.5. The item discrimination 

parameter,   , measures how well the item discriminates between examinees of different ability 
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levels and is related to the maximal slope of the item response function. The guessing parameter, 

  , represents the probability of a correct response for an examinee of very low ability (i.e.,    

approaching   ) (de Ayala, 2009). If     , the 3PL model reduces to the two-parameter 

logistic (2PL) model. Further nested IRT models are the one-parameter logistic (1PL) model, in 

which    is restricted to be equal across all items, and the Rasch model, a special case of the 1PL 

model where      for all items. 

The item response function can be examined visually using the item characteristic curve 

(ICC). Figure 1 shows the ICCs for three example items. 

 
Figure 1. Item Characteristic Curves for three items with varying parameters.  

Figure 1 demonstrates how the item parameters impact the predicted response probabilities. All 

three items differ in difficulty, as can be seen by the location on the   continuum of the inflection 

points of the curves. Item 1 is the easiest item, so at        the curve for this item is further to 

the left than that of the other items. The items also differ in their discriminating power; this is 

evidenced by the slope of the curves (de Ayala, 2009). More discriminating items, or items with 

higher values of   , have ICCs that are steeper near the inflection point. Finally, differences in 
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the guessing parameters can be seen by examining the lower asymptote. The ICC for Item 3 is 

nearly flat around          , meaning that even very low ability examinees have a nonzero 

chance of answering the item correctly by guessing. It should be noted that the presence of a 

nonzero guessing parameter shifts the entire ICC upward. Thus, the probability of a correct 

response at      under the 3PL model is not 0.5, but instead can be computed by 
      

 
. 

Assumptions. IRT models carry strong assumptions. First, traditional IRT models assume 

unidimensionality, which states that all items measure only one latent trait. While it might seem 

impossible for this assumption to be met in practice, due to nuisance factors such as motivation 

or test-taking skill, this assumption does not need to be met strictly. Generally, it is instead 

required that there exists one “dominant” trait that accounts for test performance more so than 

any other trait (Hambleton & Swaminathan, 1985).  

The second assumption is local independence, which requires that the response of an 

examinee to any given test item be independent of all other item responses in the test for any 

examinee (Birnbaum, in Lord & Novick, 1968). Local independence will be violated when the 

responses to two or more items are still related after accounting for the target ability. This may 

occur in situations where several items are related to a common stimulus or responses to later 

items are made based on responses to earlier items (de Ayala, 2009).  

Another important assumption is monotonicity. This assumption requires that the ICC is 

monotonically increasing and somewhat S-shaped (Hambleton & Swaminathan, 1985). 

Monotonicity is important as it demonstrates that the latent trait is being measured by the item(s). 

If an examinee has a higher value of  , they should have a higher probability of answering the 

item correctly.  
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In general, the form of the ICC should be close to what is specified by the model. The 

3PL model thus provides the most relaxed assumptions; items may vary in their difficulty, 

discrimination, and guessing parameters. For the 2PL model, items may vary in difficulty and 

discrimination, but should possess a common guessing parameter of 0. Finally, the 1PL and 

Rasch models have the most stringent assumptions; items must have a guessing parameter of 0 

and equal discrimination parameters.  

When the above assumptions are met, IRT has the properties of sample-free calibration 

and test- free measurement. Sample-free calibration means that the values of the item parameters 

do not depend on the sample of examinees used to calibrate the parameters (Rupp & Zumbo, 

2006). Thus, item parameters are invariant across test-takers. The property of test- free 

measurement indicates that examinee ability estimates do not depend on the particular set of 

items administered (Hambleton & Swaminathan, 1985). Therefore, unlike in CTT, examinees 

who respond to different sets of items can still be given comparable scores. These properties are 

extremely important in adaptive testing, where item parameters are treated as known and 

examinees typically see different test forms. 

IRT scoring. Ability estimation can be accomplished using maximum likelihood (ML) 

methods. ML estimation aims to find the model parameters that are most likely to have produced 

the observed responses. Given local independence, the likelihood of a response pattern is simply 

the product of the conditional probability of each item response (Hambleton & Swaminathan, 

1985): 

                  
 

   
 

     
               (2) 
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where    is the response to item j and  
 

   
 

     is the Bernoulli distribution for the probability of 

an item response. For a correct response,      and  
 

   
 

     simplifies to   . For an incorrect 

response,      and  
 

   
 

     becomes   . 

 The probability in Equation (2) is conditional on  , meaning each unique value of   will 

result in a different likelihood for the response pattern. The ML ability estimate is the value of   

that maximizes the likelihood. One standard method for obtaining the estimate is to set the first 

derivative of the log of the likelihood function equal to zero and solve for  . As the form of this 

derivative is irregular, numerical methods, such as the Newton-Raphson, are often applied 

(Hambleton & Swaminathan, 1985).  

 ML estimation can be enhanced by the Bayesian approach that utilizes prior information 

about the ability distribution in addition to the likelihood function of the response pattern. 

Specifically, Bayesian methods multiply the likelihood of the response pattern, given  , by the 

prior distribution of   to obtain the posterior density of  . This is expressed as: 

                           (3) 

Here        is the posterior density of  ,      is the prior distribution,      is the marginal 

distribution, and        is equivalent to                 in Equation (2). The estimated a 

posteriori (EAP) and maximum a posteriori (MAP) estimators, defined as the mean and mode of 

the posterior distribution, respectively, are commonly used ability estimators in IRT (Hambleton 

& Swaminathan, 1985).  

 Bayesian estimation has the distinct advantage of being able to provide an estimate no 

matter the response pattern. ML estimation will not find a solution if the response pattern is non-

mixed (i.e., all 0s or all 1s), as the likelihood function will not have a maximum. A constant 
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concern with Bayesian estimation, however, is the accuracy of the prior information. In general, 

research has shown that differences between ML and Bayesian estimates are negligible when 

items are well-matched to examinee ability, as is the goal in adaptive testing (Wang & Vispoel, 

1998; Kim, Moses, & Yoo, 2015). 

Information and standard error. Under CTT, measurement accuracy is represented by 

reliability and the standard error of measurement at the test level. Thus, it is assumed that all 

examinees are measured to the same degree of accuracy, regardless of ability level. This is rarely 

true in practice. IRT, on the other hand, provides more localized estimates of measurement error 

in the form of test information and the standard error of estimate (Embretson, 1996). 

 Information can be calculated along the   continuum at both the item and test levels by 

taking the second derivative of the likelihood function with respect to  . The formulas for 

computing item and test information under the 3PL model, given estimated ability    , are given 

in Equations (4) and (5), respectively. 

          
  

        
 

      
   

   

   
      (4) 

               
 
             (5) 

In Equation (4), item information,        , is calculated using the probabilities of a correct and 

incorrect response,     and    , and item parameters    and   . Equation (5) shows that the test 

information,       , is simply the sum of item information. Item and test information can also be 

examined visually, as shown in Figure 2.  
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Figure 2. Item and test information curves for three items with varying parameters.  

Figure 2 clearly shows that item information peaks near the item difficulty parameter while the 

discrimination parameter determines the amount of information. Guessing introduces noise into 

the measurement process, thus reducing information (de Ayala, 2009). Accordingly, one way to 

effectively increase test information is to add items with high discriminating power and difficulty 

near the examinee’s ability level.  

The IRT equivalent of the standard error of measurement is the standard error of 

estimate,        . Much like the standard error of measurement,         represents the uncertainty 

associated with the ability estimate and can be used to build confidence intervals for    . Equation 

(6) shows the relationship between test information and the standard error of estimate 

(Hambleton & Swaminathan, 1985). 

        
 

       

      (6) 

As         is inversely related to test information, the more information that a test provides at  , 

the more certain one is about the ability of examinees at  . This relationship between 

measurement uncertainty and information is critical to item selection in adaptive testing. 
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Computerized Adaptive Testing 

 Computerized adaptive testing (CAT) aims to select and administer only the most 

appropriate items for each examinee (Parshall et al., 2002). CAT was originally conceptualized 

by Lord (1971b) as a method to tailor the test to the examinee by administering items whose 

difficulties are closely matched to examinee ability. Thanks to increases in computing power, a 

myriad of options are currently available for CAT administration. Unique design issues, such as 

the response model, item pool attributes, ability estimation and item selection methods, starting 

point, and stopping criterion, must be considered when developing a CAT (Weiss & Kingsbury, 

1984).  

 In a CAT administration, items are selected sequentially in a process that can be 

described in the following steps: 

 1. Administer the first item from the item pool. 

 2. Estimate examinee ability based on all item responses.  

 3. Use the provisional ability estimate to select the best item from the item pool. 

 4. Administer the item selected in step 3. 

 5. Repeat steps 2 through 4 until a preset stopping criterion has been reached. 

In step 1, the first item can be chosen using the mean of a proposed ability distribution (Mills & 

Stocking, 1996) or some known information about the examinee (Weiss & Kingsbury, 1984). 

One can also start the test by simply selecting a relatively easy item to reduce test anxiety 

(Wainer & Kiely, 1987). Both ML and Bayesian methods can then be used to estimate ability 

(Wang & Vispoel, 1998). Bayesian methods are typically used at least until a mixed response 

vector is obtained. In step 3, several algorithms exist for identifying the “best” item. 

Traditionally, when test specifications and item exposure are not of concern, the “best” item is 
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the item with the highest information at the provisional ability estimate. Algorithms that consider 

more than just item statistical properties will be discussed in great detail later. Finally, the 

stopping criterion can be a fixed number of items, which guarantees an equal test length for all 

test-takers, an acceptable standard error of estimate, which ensures equal measurement precision 

for all examinees (Weiss & Kingsubry, 1984), or simply a fixed testing time. 

While extremely popular for large-scale testing (Chang, 2015), CAT has received its fair 

share of criticism. One disadvantage is that ability estimation may be inaccurate at early points in 

the test, when little information is known about the examinee. These errors in estimation are 

compounded by the fact that the item selection method depends on the provisional ability 

estimate. Another downside of CAT is the infeasibility of test form review. In testing, forms are 

typically reviewed to ensure that test specifications are met and that undesirable characteristics, 

such as item order or context effects, are not present (Wainer & Kiely, 1987). This is not possible 

in CAT, as forms are assembled during administration and most examinees will see very 

different sets of items, resulting in a large number of unique forms. Finally, examinees are not 

able to skip items or modify answers to earlier items (Parshall et al., 2002). The issues presented 

here arise because of the fully-sequential nature of CAT, and can be addressed by a group-

sequential adaptive design. 

Multistage Testing 

 Lord (1971a) proposed a two-stage testing design that has since been expanded upon by 

researchers (e.g., Wainer & Kiely, 1987; Kim & Plake, 1993) and become known as multistage 

testing (MST). MST adapts in stages, such that ability is estimated only after a set of items has 

been administered and the next set of items is chosen based on this estimate. In this sense, MST 

can be considered a compromise between CAT and linear testing, in which all examinees 



15 

respond to the same or equivalent test forms. MST utilizes the advantage of tailored testing, 

adjusting test difficulty to match examinee ability, while also allowing for test form review. 

These advantages have prompted some testing programs, such as the Graduate Record 

Examination (GRE), to move completely from CAT to MST (Zheng & Chang, 2014).  

In MST, the item sets of differing difficulty levels within each stage are referred to as 

modules. The basic design of an MST can be simply described by the number of stages and the 

number of modules at each stage. Figure 3 shows a 1-3-3 MST design; that is, a 3-stage MST 

with one difficulty level in stage 1, and three difficulty levels in both stages 2 and 3. 

Stage 1  Stage 2  Stage 3 

  Hard  Hard 

     

Medium  Medium  Medium 

     

  Easy  Easy 

Figure 3. Three stage 1-3-3 MST design. 

Each box in Figure 3 represents a module and the arrows show the possible routes that an 

examinee can take through the test. Some routes are not permitted; for example, there is no path 

moving from the hard module in stage 2 to the easy module in stage 3. Such a path would have 

indicated an aberrant response pattern. Each route in Figure 3 is called a pathway. Multiple 

parallel test forms are usually assembled for each pathway, where each form is called a panel. 

Typically, a panel is randomly selected before the first stage (Zheng, Nozawa, Gao, & Chang, 

2012). This random assignment helps to ensure even exposure of items in the bank, thus 

increasing test security. However, since modules at the later stages are chosen based on the 

provisional ability estimate, examinees of similar ability assigned to the same panel will likely 

see the same items, increasing the test overlap rate. 
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 MSTs usually begin with a module of medium difficulty, as shown in Figure 3 (stage 1). 

After the first module, also known as a routing test, examinees are assigned to the next module 

using either number-correct or IRT scoring (Weissman, Belov, & Armstrong, 2007). Typically, 

routing is accomplished by setting cut points, either by finding the point where the two adjacent 

module information curves cross (e.g., Zheng et al., 2012) or by using assumptions about the 

ability distribution to route a certain percentage of examinees to each module (e.g., Jodoin, 

Zenisky, & Hambleton, 2006). Using the crossing point of the module information curves often 

results in more precise measurement, as this is akin to choosing the most informative module for 

the examinee, while routing based on the ability distribution allows for better test security, as 

each module can be exposed to a set proportion of examinees. Examinees with     (or number-

correct score) below the first cut point,   , are routed to the easiest module while examinees with 

          receive the second easiest module, and so on. 

MST presents many advantages over both CAT and linear testing. Compared to CAT, 

provisional ability estimates are more accurate at early stages, as more items are administered 

between each estimation point. Second, MST forms can be preassembled and each possible 

pathway can be carefully reviewed with context and item order effects in mind (Wainer & Kiely, 

1987). Third, the MST design allows examinees to skip and review items within a stage (Zheng 

et al., 2012). Finally, since MST is still adaptive, it provides more precise ability estimation than 

linear testing. Compared to CAT, one obvious disadvantage of MST lies in having fewer 

adaptation points. While CAT adapts after each item, MST adapts only after each stage. Also, as 

each module maximizes information at only one   point, examinees whose abilities are far from 

the target abilities will receive modules that are not of ideal difficulty. This mismatch reduces the 

accuracy of final ability estimation. 
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On-the-fly MST. Two methods have been proposed to increase the measurement 

precision of MST: MST by shaping (MST-S; Han & Guo, 2014) and “on-the-fly” MST (OMST; 

Zheng & Chang, 2015). Like MST, MST-S and OMST are administered in stages and examinee 

ability is estimated only after the completion of each stage. However, in MST-S and OMST, 

there are no panels, no preassembled modules at fixed difficulty levels, and no routing rules. 

Instead, items within each stage are chosen during administration, based on the provisional 

ability estimate. MST-S accomplishes this by randomly selecting items iteratively for inclusion 

in the next stage. The set of items that minimizes the distance from the target information value 

is then chosen for administration. OMST, on the other hand, utilizes sequential item selection 

methods developed for CAT to build MST stages on-the-fly. Both methods have been shown to 

result in measurement precision close to that of CAT and considerably better than MST (Han & 

Guo, 2014; Zheng & Chang, 2015).  

Test Specifications  

 Over the last two decades, educational policy, such as No Child Left Behind and Every 

Student Succeeds, has focused on holding schools accountable via assessments that are aligned 

to certain content standards. This alignment between educational standards and test content is 

critical to ensuring that inferences made from test scores are valid. Webb (2006) described four 

criteria that can be used to judge the alignment of an assessment. Categorical concurrence 

describes the degree to which topics or categories (e.g., algebra, geometry) within the broader 

category (e.g., mathematics) are represented both in the standards and on the test. Depth-of-

knowledge relates to the cognitive demand, or complexity, of what students are required to do. 

Finally, range-of-knowledge and balance of representation refer to the span of knowledge 

required and the distribution of topics on the test, respectively. As they relate to the test content 
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specifications, the first two criteria describe what levels of content and complexity are to be 

assessed while the last two criteria define the distribution of these levels across the test. 

Evaluation of these criteria are based on judgments made by subject matter experts and are not 

the same as item statistical properties, which are usually based on the actual testing data. 

 Content specifications are one aspect of the overall test specifications, which may also 

include item format, context, or other traits important to the goal of measurement (Webb, 2006). 

The complexity of test specifications can vary greatly by assessment. For example, the test 

blueprint for the National Assessment of Educational Progress (NAEP) reading assessment 

includes two levels of passage type and three levels of cognitive targets (National Assessment 

Governing Board, 2015b). In comparison, the NAEP mathematics assessment specifies five 

levels of item content, three levels of cognitive complexity, and two levels of item format 

(National Assessment Governing Board, 2015a). Thus, the specifications for the mathematics 

assessment are much more complex than that of the reading assessment, even within the same 

testing program. 

 In adaptive tests, content alignment is defined by the agreement between the ability of the 

examinee and the difficulty of the test form, as well as the representation of the desired content 

domain (Wise et al., 2015). While the adaptive designs outlined previously were created with the 

intention of tailoring the test difficulty to match examinee ability, representation of the content 

domain is not inherent in these designs. That is to say, features like categorical concurrence, 

depth-of-knowledge, and balance of representation are not explicitly addressed. Additionally, 

further test specifications, such as item context or format, are also not automatically controlled 

by the test design. If test forms are to be created during administration, the item selection 
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algorithm will need to ensure that each test is aligned to the content standards and other criteria 

expressed by the test blueprint.  

Item Selection in Adaptive Testing 

The item selection algorithm arguably plays the most important role in adaptive testing. 

This algorithm must balance three elements: measurement precision, test specifications, and item 

exposure. Unfortunately, these often work against one another. For instance, high measurement 

precision requires selecting highly informative items, but repeated selection of those items will 

lead to their overexposure. Additionally, ignoring content specifications may result in tests that 

differ in content validity (Mills & Stocking, 1996; Wise et al., 2015). Thus, the goal of the item 

selection algorithm is threefold: to achieve maximum measurement precision, to satisfy test 

specifications, and to reduce item overexposure and test overlap.  

 In early versions of adaptive testing, item selection focused only on item information 

while content balancing was seen as a fairly simple problem. Kingsbury and Zara (1989) 

described a mathematics test where addition and subtraction problems were required to make up 

30% of the test each while the remaining 40% was divided equally between multiplication and 

division items. The authors’ proposed solution was simply to select the maximally informative 

item from the content category that was furthest from meeting its desired percentage. However, 

as outlined previously, test blueprints often categorize items by more than just the content area. 

When more than one categorical label is assigned to each item, the simple methods proposed in 

early CAT studies (e.g., Kingsbury & Zara, 1989) will not suffice.  

Item selection in tests with many constraints is typically accomplished using one of two 

methods: 0-1 linear programming and heuristics. Linear programming methods attempt to 

maximize information across the test, subject to the test constraints; constructing the entire test 
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form at once. The shadow test approach (van der Linden & Reese, 1998) is an example of a 0-1 

linear programming approach that can be applied to adaptive testing. Heuristic methods, on the 

other hand, build the test one- item-at-a-time by treating test construction as a series of local 

optimization problems (Zheng & Chang, 2014). Unlike linear programming methods, heuristics 

do not attempt to find a perfect solution, but they are generally faster, computationally simpler, 

and will at the very least minimize constraint violations. When the test blueprint is complex, 

heuristics can be very useful, as linear programming methods may encounter infeasibility issues, 

where no test is created because no perfect solution can be found (Cheng & Chang, 2009). 

Accordingly, this study focuses on heuristic methods. 

 Maximum priority index. The maximum priority index (Cheng & Chang, 2009) 

combines the statistical and non-statistical attributes of test items by multiplying item 

information by a value that measures the item’s contribution toward meeting the test constraints. 

The item that maximizes this product is chosen for administration. The priority index for item  , 

   , given the provisional ability estimate    , can be calculated as: 

                  
    

        (7) 

Here, each constraint is represented by   and is dummy coded such that     is 1 when constraint   

is relevant for item   and 0 otherwise. The weights,   , are part of the test blueprint and are 

assigned based on the importance of each constraint, with larger weights associated with major 

content areas. Finally, for each constraint,    measures the proportion of the constraint that still 

needs to be met. This is calculated by:  

                     (8) 

where    represents the number of items required from constraint category   and    is the 

number of items administered from   so far. 



21 

 Oftentimes, the test blueprint will specify a lower (  ) and upper (  ) bound for each 

constraint. These bounds represent the minimum and maximum number of items allowed from 

category  . In these cases, the MPI requires a two-phase selection procedure, where phase one 

focuses on meeting the lower bounds and phase two tries not to exceed the upper bounds. In 

phase one, items may be selected from content area   until      , or     . Once all content 

areas have satisfied their lower bounds (all     ), phase one ends. In phase two, items can be 

selected from content area   until      . The two-phase MPI ensures that all lower bounds 

will be met as long as the test length is sufficient and upper bounds will not be exceeded unless 

the test is too long (Cheng & Chang, 2009). 

 The MPI presents several options for controlling item exposure. Cheng and Chang (2009) 

suggested specifying a desired exposure rate as a constraint. To do this,    in Equation (8) is 

replaced by the desired exposure rate and    is updated to represent the current exposure rate, 

which is the number of times item   has been administered divided by the total number of tests. 

Items with current exposure rates higher than the desired rate will have negative values of   , 

making them unlikely to be selected. He et al. (2014) applied a randomesque method similar to 

that of McBride and Martin (1983) in which the administered item is chosen randomly from a 

group of items with the highest    . All items in the group, including the unselected items, are 

then eliminated from the pool for the remainder of the test. Introducing randomness into the 

selection process ensures that the “best” item is not selected every time, reducing the chance of 

item overexposure. 

 The MPI is a very straightforward item selection method that considers all three aspects 

of item selection. Measurement precision is addressed through the presence of item information, 

deviations from the content constraints consider the test specifications, and exposure control can 
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be incorporated as outlined above. Cheng and Chang (2009) likened the MPI to a simple 

modification of the maximum information method that instead considers the overall 

“attractiveness” of the item in terms of both statistical and non-statistical properties. The content 

weights,   , can be adjusted to control the scale of the priority index. That is, larger weights can 

be used if test specifications are deemed to be more important than item information. 

 Weighted penalty model. Similar to the MPI, the weighted penalty model (Shin et al., 

2009) assigns a unique penalty value to each item at each selection point. The item with the 

smallest penalty value is then selected for administration. The penalty value for item  ,   , is 

calculated as: 

                         (9) 

where     and      represent the standardized penalty values for item content and information, 

respectively. The weights associated with content and information,    and    , control the trade-

off between non-statistical and statistical item properties and can be updated throughout the test. 

Shin et al. suggested changing the information weight throughout the test based on a logistic or 

quadratic function so that item selection focuses on meeting test constraints early in the test 

before giving larger weight to information near the end. 

 The constraint penalty value,    , is computed in five steps. The first step is to compute 

   , the proportion of items from category   that would be administered by the end of the test if 

items from   were selected in proportion to their prevalence in the remaining item pool. This can 

be written as: 

                         (10) 
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Here,   and    are the number of items administered so far and the number of items administered 

from constraint category   so far, respectively. The prevalence,     , is the proportion of items 

from   in the complete item pool and   is the test length (Shin et al., 2009).  

Next, the difference between the projected proportion of items to be administered from   

and the midpoint of the lower and upper bounds is calculated by: 

                  (11) 

where    is the midpoint between the lower and upper bounds. For the WPM, the lower and 

upper bounds,    and   , are expressed as proportions; thus,    represents the midpoint between 

the lowest and highest acceptable proportion of test items from category  . The deviation from 

the midpoint,   , is then used in one of Equations (12) through (14) to calculate   , the penalty 

value specific to category  . 

If        then    
 

        
  

  
     

 
    (12) 

If        then    
 

        
  

  
     

 
    (13) 

If           then               (14) 

Shin, Chien, and Way (2012) defined    as the quadratic distance between the number of items 

administered from   so far and the midpoint of the lower and upper bounds of  . It can be seen 

that when       ,    will be lower, as       is always negative. On the other hand, 

categories with        will have positive values of   . Thus, penalty values are lower for items 

from categories that may not meet their lower bounds and higher for items from categories that 

may exceed their upper bounds. 



24 

In the third step, the total content penalty value for item   is calculated using the content-

specific penalties and weights,    and   , respectively, and the dummy code for item   belonging 

to category  ,    : 

           
 
        (15) 

Here,    is the unstandardized content penalty value and consists of the product of the content 

penalty value and its associated weight, summed across all content categories relevant to item  . 

The weights,   , are defined by the test blueprint, as in the MPI (Equation (7)). The final step for 

computing     is to standardize the penalty value using the minimum (       ) and maximum 

(       ) content penalty values across all items remaining in the pool (Shin et al., 2009):  

  
  

          

               
        (16) 

Similarly, the standardized information penalty value,     , is calculated using the 

information at     for item   and the maximum information at     across all items remaining in the 

pool,             : 

  
     

       

            
 

 

         (17) 

Note that the standardized information value is multiplied by negative one. Thus, items with 

more information will have smaller (negative with larger absolute value) penalty values, making 

them more likely to be selected (Shin et al., 2009). After computing     and     , these values are 

substituted into Equation (9) to determine   . The item that minimizes    is chosen for 

administration. 

 The techniques used to control item exposure with the WPM are similar to those applied 

to the MPI. Shin et al. (2009) recommended using a conditional randomesque procedure where 

the item is randomly selected from a group of items and the group size varies based on the ability 
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estimate. Conditioning the item selection group size on ability, as proposed by Kingsbury and 

Zara (1989), accounts for the fact that the item pool may have more items available at some 

difficulty levels than others. An unconditional randomesque procedure (i.e., McBride & Martin, 

1983) can also be used, or the desired exposure rate could be specified as a constraint, as 

recommended for the MPI by Cheng and Chang (2009).  

 The WPM is not as a simple and straightforward as the MPI. There are, however, some 

notable advantages to this method. First, the WPM uses the prevalence of the content area in the 

item pool to project the number of items that will be administered. It is this projection, rather 

than the current deviation from the bounds, that determines which items will be given more 

preference. This helps account for any differences in the representation of each content category 

in the item pool. Second, since the WPM uses the quadratic distance from the midpoint (  
  in 

Equations (12) and (13)), a relatively larger penalty is assigned to items that violate content 

constraints and more preference is given to items that do not (Shin et al. 2012). Finally, the 

WPM standardizes both the content and information penalty values. Thus, these values are on a 

similar scale and the content and information weights,    and    , can more readily be 

manipulated to control the tradeoff between statistical and non-statistical attributes. 

Both the MPI and WPM have performed well in CATs with simple constraints. They are 

capable of meeting test specifications and minimizing item overexposure with minimal sacrifices 

in measurement precision. He et al. (2014) showed that the WPM was able to meet constraints 

more consistently than the MPI. The two methods did not differ in measurement precision or 

exposure control. Computationally, the MPI is much simpler than the WPM. However, the WPM 

possesses many theoretical advantages over the MPI, as discussed above.  



26 

MST Module Assembly 

The group-sequential nature of MST lends itself to several options for module assembly. 

Preassembly of MST forms allows for each module and pathway to be reviewed by content area 

experts and test specialists at the possible expense of measurement precision, as items may not 

be of optimal difficulty for all examinees. On-the-fly assembly, on the other hand, prioritizes 

measurement precision over test form review and thus relies more heavily on the item selection 

algorithm. Item selection methods for both preassembled and on-the-fly assembled MST are 

discussed next. 

 Preassembled MST. When modules are preassembled, MST design aspects, such as the 

number of stages, the number of difficulty levels within each stage, and the number of parallel 

panels, will greatly impact measurement precision and item exposure rates. In general, greater 

precision can be achieved by including more stages, or adaptation points. Designs with more 

than two stages are recommended, as this gives the test an opportunity to recover from any 

inappropriate routings that may occur after the initial stage (Zheng & Chang, 2014). 

Measurement precision can be greatly impacted by the number of difficulty levels within each 

stage. Research has shown that a maximum of four difficulty levels at the final stage is desired 

while three difficulty levels will usually suffice (Armstrong, Jones, Koppel, & Pashley, 2004). 

Aspects such as the number of items included in each stage can also impact measurement 

precision. Longer routing tests achieve more accurate routing with the tradeoff of decreased 

precision by including fewer items in later stages when more is known about the examinee (Kim 

& Plake, 1993). Finally, it can easily be seen that the number of stages, difficulty levels in each 

stage, and panels will all impact item exposure and test overlap rates; more stages, difficulty 

levels, and panels will lead to lower item exposure and test overlap. These features of the MST, 
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which need to be decided on before assembling the test forms, can be just as important as the 

item selection method.  

Once the details of the MST design have been established, the test assembly method has 

three goals: (1) to make the information functions of different modules within a stage distinct 

enough to provide appropriate adaptation; (2) to make the information functions of 

corresponding pathways similar across all panels; and (3) to meet all test specifications in every 

pathway and panel (Zheng, Wang, Culbertson, & Chang, 2014). The first two goals concern the 

target information function (TIF) of the modules and panels, respectively, while the third goal 

considers the test blueprint. These goals can be met using either a bottom-up or top-down 

approach (Luecht & Nungester, 1998). In the bottom-up approach, module- level TIFs and 

constraints are specified and each module is assembled individually to meet these criteria. Thus, 

any combination of modules should result in a pathway that meets the test-wide TIF and content 

constraints. Top-down assembly, on the other hand, focuses only on test-wide TIFs and 

constraints and attempts to meet these criteria in each pathway and panel. While top-down 

assembly may be easier when constraints are specified at the test level, bottom-up assembly 

allows for modules to be mixed and matched, resulting in lower test overlap rates. Since heuristic 

item selection approaches focus on local optimization, these methods often utilize a bottom-up 

strategy (Zheng et al., 2012). 

Normalized weighted absolute deviation heuristic. While the MPI and the WPM have 

not been applied to MST preassembly, the normalized weighted absolute deviation heuristic 

(Luecht, 1998), a similar method, has been used successfully (Zheng et al., 2012). The NWADH 

can be used to select items one-at-a-time for inclusion in a stage (Zheng & Chang, 2015). The 

    item selected for inclusion is the item that maximizes: 
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           (18) 

where    is the normalized weighted absolute deviation. The normalized absolute deviation from 

the TIF is represented by     while each     represents the normalized absolute deviation from 

constraint  . Once again,     is a dummy code representing whether or not item   belongs to  . 

The weights,    and   , are specified for the TIF and each content constraint, respectively 

(Luecht, 1998). 

 At each selection point, the normalized absolute deviation from the TIF is calculated for 

every item remaining in the pool as: 

      
   

          

      (19)  

where        represents all items in the pool except for the     items already included on the 

test. The     are computed as: 

     
              

   

     
            (20) 

where      represents the target test information at  . Subtracted from   is the sum of the item 

information at   for the     items included on the test so far. The denominator is the number 

of items remaining on the test, where   is the total test length. Thus,     represents the absolute 

deviation for item   from the average information required over the remaining test items (Luecht, 

1998).  

 To compute    , the normalized absolute deviation from constraint  , Luecht (1998) 

suggested assigning weights to each constraint,   , such that: 

if       then                (21) 

if          then          (22) 

if       then                (23) 
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Note that these weights are not the same as the    used in Equation (18). Items that have not yet 

met their lower bounds will be given more weight than those that have and items that have met 

their upper bounds will be given no weight. A complement to   , Wc, is then computed as: 

Wc           
 

 
   

 
        (24) 

where          is the maximum    out of the   constraints. Finally, the     used in Equation 

(18) are calculated by first finding    : 

                 Wc              (25) 

then normalizing to     by: 

    
   

          

        (26) 

 The NWADH is similar to the MPI and the WPM in that item information and deviations 

from the content constraints are combined into one index. The differences between the NWADH 

and the other two heuristics reflect the differences between the goals of CAT item selection and 

those of MST assembly. First, rather than focusing on information at a provisional estimate, the 

NWADH computes information at predetermined target  s. This allows for adaptation in the 

preassembled test form. Second, the NWADH aims to minimize deviations from the target 

information function instead of simply maximizing information. This needs to be done to ensure 

that all modules within a stage and across panels have similar information functions. Finally, 

when the bottom-up assembly approach is used, the NWADH focuses on meeting content 

constraints at the module level, rather than across the entire test. Meeting constraints within each 

module helps to ensure that each pathway meets the test constraints. 

The NWADH has been successfully applied to both linear (Luecht, 1998) and MST 

(Zheng et al., 2012; Zheng & Chang, 2015) assembly. Both MST studies used bottom-up 
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assembly. Zheng et al. (2012) found that backward assembly of MST modules, where later 

modules are assembled first, led to higher classification accuracy compared to forward assembly. 

This was attributed to the fact that the later stages are more complex, in that there are more 

modules of differing difficulty levels. Assembling these modules may require access to the full 

item pool. If assembled later, when the pool has shrunk considerably, estimation accuracy may 

suffer. Zheng and Chang (2015) found that MSTs assembled using the NWADH led to lower 

measurement precision than CAT and OMST with item selection via the MPI. This, however, is 

likely an effect of differences in the test design, rather than a deficiency in the test assembly 

heuristic.  

On-the-fly MST. When MST stages are built on-the-fly, CAT item selection methods 

can be used to choose items for each stage. Zheng and Chang (2015) demonstrated this with the 

MPI. In their method, items are added to each stage one-at-a-time. Thus, the formulas are the 

same as those outlined in Equations (8) and (9); however, item information only needs to be 

calculated once for each item at each stage, since the entire stage is based o n the same 

provisional ability estimate. The content constraint deviations (  ), on the other hand, must be 

updated after each selection, due to the change in the number of items administered from the 

content area(s).  

After a stage of items is selected, an item replacement step can be added where test 

specifications for the stage are evaluated and items are replaced as needed. Zheng and Chang 

(2015) outlined the steps for item replacement when a lower bound violation exists for the stage-

specific content constraints. These steps are as follows: 

1. For every lower bound violation of constraint   , identify a constraint    that is above its 

lower bound. 
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2. Replace a randomly selected item from    in the current set with the item from    with 

maximum information at     in the item pool. 

3. Evaluate the constraints for the current set of items and repeat steps 1 and 2 until a set has 

been found that meets all constraints. 

By utilizing an item replacement step, it is guaranteed that every test will meet the constraints, 

provided that meeting all constraints is possible given the test or stage length, test blueprint, and 

item pool characteristics. Zheng and Chang reported zero constraint violations in their study, but 

their test specifications were very simple and the authors did not report how often the item 

replacement step was needed. 

The MPI has been shown to result in similar measurement precision when applied to 

OMST, compared to CAT, while also minimizing constraint violations (Zheng & Chang, 2015). 

Research on OMST, however, has been limited to tests with very simple constraints. Zheng and 

Chang’s (2015) study only required that one item be administered per stage from each of eight 

content areas. As each stage included 15 items, these constraints could be met fairly easily. It is 

not clear how item selection will work when each item belongs to several categories that must be 

constrained. Additionally, situations where constraints are specified only at the test level, where 

the number of constraints may exceed the number of items in each stage, have yet to be 

discussed. Finally, other heuristic item selection methods, such as the WPM, have not yet been 

applied to OMST.  

 MST by shaping. Han and Guo (2014) proposed MST by shaping, a different method for 

assembling MST stages during administration. This method aims to create stages that will help 

meet the test specifications and TIF. Specifically, after a stage of items has been completed, the 

provisional ability estimate and current test information at this estimate are calculated. Next, the 
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difference between the current information and the TIF is used to develop a TIF mold, which 

represents the ideal information function for the next stage. In the item selection step, the number 

of items required from each category is determined from the test specifications and items are 

randomly selected in accordance with these constraints. 

 After the initial set of items is selected, the difference between the information function 

for the current set of selected items and the TIF mold is calculated as:  

             
      (27) 

Here,       is the information at   for the currently selected items and    
 is the information at   

for the TIF mold for stage  . After calculating    for the current set, the first item in the set is 

replaced with another random selection from the same content area and    is recalculated. If the 

new item leads to a decrease in   , this item is kept in the stage. If not, the new item is discarded 

from the pool for the current stage and the initial item is kept in the stage. This random item 

replacement is repeated for each item in the stage, and then the entire process is repeated for a 

fixed number of iterations. The set of items that comprises the stage after the final iteration is 

then administered to the examinee (Han & Guo, 2014).  

 MST-S attempts to meet test constraints by selecting the appropriate number of items 

from each content area in each stage. The tradeoff between measurement precision and item 

exposure is controlled by the number of iterations in the item selection, or shaping, process. For 

example, if the item selection process does not iterate, the resulting test will be a random set of 

items from each content area. Thus, measurement precision will be poor but item exposure will 

be ideal. On the other hand, if the number of iterations is 100, the resulting stages will likely 

feature items of near optimal difficulty for the examinee. However, the randomness of the 
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selection process will be greatly reduced and items with high    (i.e., high information) may be 

selected too frequently. 

 Results of Han and Guo’s (2014) initial study on MST-S are promising. When the 

shaping process iterated only three times, the standard error of the resulting ability estimates 

were comparable to those in a preassembled MST. As the number of iterations increased, results 

approached the precision levels of CAT. In terms of item exposure, MST-S had more even 

exposure rates than both preassembled MST and CAT when up to six iterations were used in the 

shaping process. Predictably, as the number of iterations increased to 100, items with high    

became overexposed. This overexposure, however, was still not as extreme as in CAT with 

maximum information item selection. MST-S is still very new; Han and Guo’s study is the lone 

demonstration of this method. While this method is ideal for controlling the tradeoff between 

measurement precision and item exposure, MST-S can only be applied to tests with simple 

content constraints. When items are classified on more than one variable, the random selection 

required by MST-S does not allow for the consideration of multiple indices for each item. Thus, 

this method will not be examined in this study. 

Research Questions  

The main purpose of this study is to evaluate the performance of heuristic item selection 

methods on adaptive tests with various levels of test specification complexity. Specifically, the 

following research questions are of interest: 

1. How does on-the-fly MST compare to preassembled MST and CAT on tests with 

complex constraints? 

2. How do the different heuristic item selection methods compare within and between 

adaptive testing designs with complex constraints? 
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The test designs to be compared will be: CAT with MPI item selection, CAT with WPM item 

selection, MST preassembled with the NWADH, OMST with MPI item selection, and OMST 

with WPM item selection. 
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CHAPTER 3 

METHODOLOGY 

A Monte Carlo simulation study was conducted to evaluate the effectiveness of the 

aforementioned item selection methods and adaptive testing designs. Complexity of the test 

specifications, representation of each content category, item pool size, the number of items in 

each stage, and number of difficulty levels in the preassembled MSTs were varied to simulate 

typical testing conditions. The outcomes of interest were alignment with test specifications, 

measurement precision, and item exposure and test overlap rates.  

The simulation began by randomly generating examinee abilities, item parameters, and 

item content categorizations. Next, MST forms were preassembled from the item pool. 

Responses were then generated for each examinee on each of the testing designs. Each test 

contained 36 items. Final ability estimates were recorded, along with the items administered on 

each test and their corresponding content categorizations. This information was used to calculate 

root mean square error (RMSE) and bias for ability estimation, the number and type of constraint 

violations, a general index of content alignment, and item exposure and test overlap rates.  

Item Pool Construction 

Previous MST studies have typically used a fixed item pool of moderate size, ranging 

from 420 to 600 items (Routo, Patsula, Manfred, & Rizavi, 2003; Zheng et al., 2012; Han & 

Guo, 2014). In this study, the item pool size was varied at two levels – 360 and 720 items – to 

represent a small and large pool. To make the item pools realistic, item parameters were 

generated using real item pools. As described in Table 1, the means and standard deviations were 

based on the pool used in Zheng et al. (2012) while the distributions followed Edwards, Flora, 

and Thissen (2012). In both studies, the item parameters came from operational tests. 
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Table 1 Means, standard deviations, and distributions for item parameter generation 

Parameter Mean Standard Deviation Distribution 

  1.196 0.329 Lognormal 

  0.060 1.430 Normal 

  0.153 0.072 Logit-normal 

 

For the   and   parameters, the means listed in Table 1 represent the means of the parameters 

after transforming to the appropriate distribution. Compared to the mean of 1 and standard 

deviation of 0.5 often used in simulation studies, the   parameters used in this study are larger 

and more centered. In other words, the items are better. This is due to the fact that adaptive tests 

are very dependent on the quality of the items. The same case can be argued for the   parameter 

distribution. Similar to most IRT simulation studies, the   parameter distribution has a mean 

close to 0, but the standard deviation in this study is larger than 1. This distribution has a wide 

spread in order to better cover the entire   distribution. Examinee abilities were generated from a 

standard normal distribution. Sample size was set at 1,000. This size and distribution are similar 

to those used in Kim, Chung, Dodd, and Park (2012) and Zheng et al. (2012).  

 Test specifications. Test specification complexity was based on real large-scale test 

blueprints. The complexity of the test specifications can be summarized by the number of indices 

associated with each item. Each item is characterized by one, two, three, or four categories for 

the baseline, simple, medium, and complex specifications, respectively. The baseline condition 

was based on the blueprint described by Kingsbury and Zara (1989) and is shown in Table 2.  

Table 2 Test blueprint for the baseline content constraint condition 

Constraint Category Level % of items in pool 

Content 

Addition 30% 

Subtraction 30% 
Multiplication 20% 

Division 20% 

 



37 

The simple blueprint, shown in Table 3, simulates the one used for the NAEP 12th grade reading 

test (National Assessment Governing Board, 2015b). 

Table 3 Test blueprint for the simple content constraint condition 

Constraint Category Level % of items in pool 

Passage type 
Literary 30% 

Informational 70% 

Cognitive targets 

Locate/recall 20% 

Integrate/interpret 45% 
Critique/evaluate 35% 

 
The medium complexity blueprint simulates the one used in the NAEP 12th grade mathematics 

test (National Assessment Governing Board, 2015a). This blueprint is shown in Table 4. 

Table 4 Test blueprint for the medium content constraint condition 

Constraint Category Level % of items in pool 

Content 

Number properties and operations 10% 

Measurement 15% 
Geometry 15% 

Data analyses, statistics, and probability 25% 

Algebra 35% 

Complexity 
Low 25% 

Moderate 50% 

High 25% 

Format 
Multiple choice 50% 

Constructed response 50% 

 

Table 5 shows the most complex test blueprint condition. These specifications are akin to those 

used in the PISA mathematics assessment (OECD, 2012).  

Table 5 Test blueprint for the complex content constraint condition 

Constraint Category Level % of items in pool 

Content 

Change and relationships 27% 

Quantity 26% 
Space and shape 24% 

Uncertainty and data 23% 

Cognitive process 
Formulate 25% 
Employ 44% 
Interpret 31% 

Context 

Occupational 23% 

Personal 29% 
Public 25% 

Scientific 23% 
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Format 

Simple multiple choice 27% 
Complex multiple choice 11% 

Constructed response (expert) 35% 

Constructed response (manual) 27% 

 
In addition to the four levels of test blueprint complexity, the percentage of items in the 

pool from each category was also varied. The percentages listed in Tables 2 through 5 represent 

the realistic case, where categories vary in their representation in the item pool and on the test. 

This may present challenges in item selection, as categories with low representation in the pool 

may not have a wide variety of item difficulties to choose from. The realistic condition was 

contrasted with an even condition where each category was represented equally in the item pool 

and on the test. For example, in the even condition, each content area from Table 5 would make 

up 25% of the item pool.  

Each item in the pool was assigned to each category randomly, using the percentages in 

Tables 2 through 5 for the realistic conditions and the average percentage for the even 

conditions. Thus, items from each content area could belong to any type of cognitive process, 

item format, etc. Also inherent in random assignment is that no relationship is assumed between 

the item parameters and item content categorizations. 

The exact number of items required from each content category is simply the product of 

the total number of items on the test (36 in this case) and the proportion of items required by the 

given content area. As this product does not always produce a whole number, lower and upper 

bounds were set for each content constraint, as is often done in practice. For instance, the first 

row of Table 5 specifies that 27% of test items should be “Change and relationship” items. The 

desired number of items from this category is 9.72 (36x0.27), so the lower and upper bounds 

were set to 9 and 10, respectively. 
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Test Design  

Test length was fixed at 36 items, a moderate test length in adaptive testing (Rotou, 2003; 

Edwards et al., 2012). Each MST and OMST consisted of 3 stages, as is common in research and 

practice (Hendrickson, 2007). The number of items in each stage was varied at three levels, as 

shown in Table 6. 

Table 6 Number of items in each stage across conditions 

Stage length Items per stage 

Equal 12, 12, 12 

Decreasing 15, 12, 9 
Increasing 9, 12, 15 

 

MST Preassembly  

After the item pool was generated, MST modules were preassembled using the NWADH. 

The MST module design was varied at two levels – 1-3-3 and 1-4-4 – to examine how the 

number of difficulty levels impacts the outcome variables. Each module was assembled using a 

bottom-up, backwards assembly approach. That is, modules were assembled one at a time 

starting with the final stage modules. Target difficulty values were set at         and   and 

                 and     for the 1-3-3 and 1-4-4 designs, respectively. The number of panels 

was determined based on the test design and size of the item pool. The 1-3-3 design yields a total 

of 7 modules with an average of 12 items per module. To exhaust the item pool to the fullest 

extent possible in this design, 4 and 8 panels were created for the 360 and 720 item pool 

conditions, respectively. For the 1-4-4 design, 3 and 6 panels were created for the two different 

item pool sizes. 

A preliminary simulation study was conducted in order to determine appropriate TIFs for 

each condition. The NWADH was used to assemble MST modules in the preliminary simulation 

and the item pool and test specification conditions were the same as those in the final study. 
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Deviation from the TIF,     in Equation (20), was replaced by the item information at the target 

 . Thus, module assembly focused on maximizing information, rather than minimizing the 

deviation from the TIF. After each MST assembly, information at the target   was averaged 

across all modules within each stage. Assembly was replicated 100 times for each condition and 

stage-specific module information was averaged across all replications of each condition. These 

average information values were used as the TIFs for MST preassembly in the final study. This 

method for developing TIFs was described by Zheng et al. (2014).  

Item Response Generation  

Unique item responses were generated for each testing design in each replication, using 

the same examinee abilities and item pool. For each item, the probability of a correct response, 

given the “true” examinee   and the item parameters, was calculated based on the 3PL IRT 

model shown in Equation (1). This probability was then compared to a random number from the 

standard uniform distribution. If the probability was greater than or equal to the random number, 

the response was marked as correct; otherwise the response was scored as incorrect. After each 

stage, or each item for the CATs, an EAP ability estimate was calculated, as shown in Equation 

(3). EAP was chosen for this study as it always finds a solution and performs similarly to ML 

estimation in adaptive tests (Wang & Vispoel, 1998). Each testing format was simulated as 

outlined in the following sections. 

 CAT simulation. Two CATs were simulated in each condition, differing only in the item 

selection method: MPI or WPM. The purpose of the CAT simulations was twofold: (1) to 

compare the MPI and WPM item selection methods in a CAT with varying levels of constraint 

complexity; and (2) to set a baseline for the other conditions, as CAT has been well researched 
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and implemented in a number of testing programs. It is also known that CAT is able to achieve 

better measurement precision than MST and OMST under the baseline test blueprint condition.  

The starting   estimate was randomly drawn from a uniform distribution between -0.5 

and 0.5. This is consistent with using the average ability as a starting estimate (Mills & Stocking, 

1996), but item overexposure is reduced by ensuring that the initial “best” items are not the same 

for every examinee. To further control item exposure, each item chosen for administration was 

randomly selected from the five items with the highest priority index or lowest penalty value. 

The four items not selected for administration were eliminated from the pool for the remainder of 

the current test. This is similar to the method proposed by McBride and Martin (1983) and used 

with the MPI and WPM by He et al. (2014).  

Early in the test, little is known about examinee ability, while the content specifications 

are well known. Hence, Shin et al. (2009) recommended giving more weight to item content at 

this stage and increasing the information weight throughout the test. However, He et al. (2014) 

compared various weighting schemes for the WPM in CAT and found that item exposure and 

content coverage results were best when constant weights of 6 and 2 for content and information 

penalties were used across the test. Thus, these weights were adopted for    and     in this study. 

In their examination of the MPI, Cheng and Chang (2009) used content area-specific weights 

(  ) ranging from 0.5 to 20, with an average weight of     . The same    were used with the 

WPM by Shin et al. (2009). He et al. examined both the MPI and WPM and used content-

specific weights ranging from 1 to 11 with an average weight of     . In the current study, all 

constraints were treated as equally important and were assigned constraint-specific weights of 8, 

similar to the average value used in previous studies.  
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Preassembled MST simulation. Each preassembled MST simulation began by randomly 

selecting a module from the parallel forms of the stage 1 modules. After the stage 1 responses 

were simulated, ability was estimated and the next module was chosen based on this estimate. 

Specifically, cut values were defined as the midpoint between the target  s of two adjacent 

modules (e.g., if the target  s were 0 and 1, examinees with         were assigned to the more 

difficult module), as in van der Linden and Diao (2014). Examinees did not follow panels, but 

were instead assigned randomly to a module of appropriate difficulty at each stage. Since MSTs 

were assembled via a bottom-up procedure, modules could theoretically be mixed and matched 

to form parallel pathways. This routing method was thought to help minimize test overlap by 

introducing randomness at each routing point.  

 On-the-fly MST simulation. Two OMSTs were simulated at each stage length in every 

condition, based on the method described by Zheng and Chang (2015). Items were selected via 

either the MPI or WPM. As with the CAT simulations, OMSTs started by randomly generating a 

number between -0.5 and 0.5 as the initial ability estimate. Items in the first stage were chosen 

based on this estimate. Item exposure was controlled by randomly selecting an item from the five 

items with the highest priority index or lowest penalty value at each item selection point. The 

MPI and WPM utilized the same weights as in the CAT design: constraint-specific weights were 

set to 8 and, for the WPM,    and     were fixed across the test at 6 and 2, respectively. No item 

replacement phase was used for OMST, as this study focused on evaluating the item selection 

indices; the replacement phase serves as a correction for inadequate initial selection and would 

thus make comparison difficult. 

 Summary. The simulation design varied the size of the item pool (2 levels), complexity 

of the content constraints in the test blueprint (4 levels), and representation of each category in 
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the item pool (2 levels) for a total of (2x4x2) 16 conditions. In each condition, MSTs varied in 

the number of difficulty levels (2 levels) while OMSTs varied in the item selection method (2 

levels). Both of these designs were simulated at each stage length (3 levels). Thus, 6 MSTs and 

OMSTs were simulated in each of the 16 conditions. Two CAT designs, varying in the item 

selection method, were simulated per condition. All conditions were replicated 100 times, with a 

new item pool and examinee abilities generated for each replication. Results were averaged 

within each test design and condition. 

Analyses 

 Content coverage. Content alignment is a key focus of this study and was measured in 

two ways. Descriptively, the average number of constraint violations per test,   , was calculated 

as in Cheng and Chang (2009): 

   
   

 
   

 
      (30) 

Here,    is the number of constraints violated on examinee  ’s test and   is the number of 

examinees. Of particular interest in this study was the average number of lower (   ) and upper 

(   ) bound violations. These rates were also calculated using Equation (30), where    was 

replaced with the number of lower and upper bound violations on examinee  ’s test. 

 A second more general measure was the content alignment index proposed by Wise et al. 

(2015).     measures the deviation from the test specifications for examinee  ’s test and is 

computed as: 

      
         

   

 
     (31) 

where    is the number of items actually administered from content area  ,    is the number of 

items required to be administered by the test specifications, and   is the length of the test. A     

of 1 represents perfect content alignment while lower values indicate the degree of misalignment. 
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Since this study used lower and upper bounds, rather than fixed constraints, deviation from 1 was 

expected. The degree of content misalignment for a given test design was examined relative to 

other designs.     was averaged across all examinees to find the average content alignment,   . 

 Due to the lack of a known minimum value, the scale of the    index is not clear. To 

make    more interpretable, it was transformed to     using Equation (32). 

    
          

               
     (32) 

Here,         and         are the minimum and maximum    across all tests in the 

simulation. Thus,     has a minimum of 0, representing the worst content alignment among all 

tests, while the maximum value is 1, indicating the best alignment in the simulation. 

Measurement precision. Measurement precision was investigated by calculating root 

mean square error (RMSE) and bias for final ability estimates. RMSE provides a relative 

measure of the amount of error in ability estimation. Bias, on the other hand, is used to examine 

whether or not there exists any systematic error in ability estimation. These two statistics were 

calculated as: 

        
         

  
   

 
    (28) 

       
         

 
   

 
     (29) 

where     is the estimated ability for examinee  ,    is the “true” ability, and   is the total number 

of examinees. 

 Item exposure and test overlap. As with content coverage, a combination of descriptive 

measures and overall indices was used to measure item exposure and test overlap. Item exposure 

counts the number of times an item is administered across all examinees. An ideal exposure rate 

for items from a given item pool,       , is defined as the test length divided by the number of items 
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in the pool (Chang & Ying, 1999). Moyer, Galindo, and Dodd (2012) defined overexposure as an 

exposure rate greater than 0.30. Given that the ideal exposure rate in their study was  0.1, 

overexposure in this study was defined as 3 times        for the given condition. Descriptively, the 

proportion of overexposed items was calculated for each test along with the proportion of unused 

items, as the latter indicates underutilization of the item pool.  

 Moreover, the    statistic described by Chang and Ying (1999) was also reported. This 

statistic measures the similarity of the observed and ideal exposure rates across all items and can 

be written as: 

   
             

   

   

      
      (33) 

where     is the exposure rate for item   and    is the number of items in the pool. Lower values 

indicate more even item exposure across the pool. 

 The test overlap rate can be calculated by counting the number of overlapping items for 

each pair of examinees and averaging across all pairs. As the number of possible pairs increases 

exponentially with increasing sample size, this calculation can be extremely tedious. Chen, 

Ankenmann, and Spray (2003) showed that, as the number of examinees increases, the test 

overlap rate,   , approaches: 

   
           

  

   

       
     (34) 

where     represents the number of tests on which item   appears, and   ,  , and   represent the 

number of items in the pool, the test length, and the number of examinees, respectively. In 

general, low test overlap rates are desired as higher overlap may indicate weakened test security. 

The item exposure statistics and test overlap rate were calculated for each simulated test in each 

replication. 
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CHAPTER 4 

RESULTS 

 Results are presented in the following order. First, content alignment results are 

presented, as content specifications are the main interest of the current study. Next, measurement 

precision is examined. Finally, the results on test security are given by item pool usage and test 

overlap. For each outcome measure, ANOVAs were conducted to examine the effects of the 

design variables. Because the sample sizes are so large in this study, effect size (  ) was reported 

in place of the ANOVA F tests and p-values. All ANOVAs were significant at an  -level of 0.05 

unless stated otherwise. The effect size guidelines outlined by Cohen (1988) were used to 

interpret the size of the effects. Specifically,    of 0.01, 0.06, and 0.14 were used to define small, 

medium, and large effects, respectively. A summary is included at the end of each section to 

highlight the major findings. 

Content Alignment 

 ANOVAs were conducted on the standardized content alignment index,    , as this was 

the most general measure of content alignment. For some ANOVAs, the within-group 

distribution of     deviated from normality. However, the homogeneity of variance assumption 

was always met. Since ANOVA is robust against non-normality (Maxwell & Delaney, 2004) and 

effects sizes, rather than p-values, were of interest, the analyses were deemed appropriate. First, 

the effects of test design (CAT, MST, and OMST) and item selection method (MPI, WPM, and 

NWADH) were examined. Test design and item selection method were found to explain 8 and 9 

percent of the variability, respectively, in    . These are both considered medium effect sizes. 

Tables 7 and 8 show the mean    , as well as the average number of lower and upper bound 

constraint violations per test,     and    , by test design and item selection method.  
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Table 7 Mean content alignment and lower and upper bound violations by test design 

Test Design             

CAT 0.86 0.18 0.21 
MST 0.78 1.43 1.36 

OMST 0.86 0.18 0.20 

 

Table 8 Mean content alignment and lower and upper bound violations by item selection method 

Test Design             

MPI 0.844 0.356 0.400 
WPM 0.875 0.001 0.006 

NWADH 0.780 1.429 1.361 

 

 Among the test designs, shown in Table 7, CAT and OMST performed similarly and 

considerably better than MST. For the item selection methods, Table 8 shows that the WPM 

performed the best, followed by the MPI, with the NWADH in a distant third. As a follow-up 

comparison between the MPI and WPM, Cohen’s D showed an effect size of 0.30. Thus, the 

average     for the WPM was almost one-third of a standard deviation greater than that of the 

MPI. This is considered a small effect (Cohen, 1988); however, the number of constraint 

violations displays a clear advantage for the WPM. 

The poor content alignment of the MST design and NWADH item selection method was 

further investigated by counting the number of lower and upper bound violations for each 

preassembled MST module. On average, there were 0.21 and 0.19 lower and upper bound 

violations per module. As each examinee was administered three modules, this should result in 

0.63 and 0.57 violations per test. While these numbers are still higher than those for the MPI and 

WPM, they are not as large as the results for MST in Table 7. This discrepancy comes from the 

fact that lower and upper bounds were module-specific and it was possible to meet the 

constraints in each module but violate constraints at the test level. For instance, if 10 to 11 items 

were required from content area  , each module would require 3 to 4 items. An examinee who 

receives three modules with 3 items from   would violate a lower bound constraint at the test 
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level, while an examinee who receives three modules with 4 items from   would violate an upper 

bound. Hence, while the NWADH did not perform as well as the MPI or WPM, additional 

deviation from the constraints appeared to be inherent in the MST design. 

ANOVAs were conducted to examine the effects of item pool size, test specification 

complexity, and content representation. Item pool size and content representation accounted for a 

small amount of the variability in    ; just 2 and 1 percent, respectively. On the other hand, test 

specification complexity had an    of 0.55; a large effect. Figure 4 shows the average number of 

total violations across item selection methods and item pool sizes.

 

Figure 4. Average number of constraint violations by item selection method and item pool size.  

Not surprisingly, access to a larger pool resulted in fewer constraint violations for all selection 

methods, as there were more items to choose from at each selection point. The larger pool size 

seemed to especially benefit the MPI, which saw a four-fold decrease in total constraint 

violations from the 360 to 720 item pools. The effect looked smaller for MSTs (with the 

NWADH). This can be explained by the increase in the number of parallel panels that coincided 

with increasing item pool size. The panels assembled later had a similar number of items to 
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select from in both pool size conditions. For the WPM, the effect of pool size was barely 

noticeable, as very few violations were committed using either pool. 

Table 9 shows the average number of lower and upper bound violations across the 

selection methods and levels of test specification complexity, separated by the two levels of 

content representation: realistic and even. 

Table 9 Average number of constraint violations by item selection method, constraint 
complexity, and content representation 

 Realistic Representation 

Constraint 

Complexity 
        

MPI WPM NWADH MPI WPM NWADH 

Baseline 0.001 0.000 0.660 0.000 0.000 0.642 

Simple 0.006 0.000 1.041 0.005 0.000 0.801 
Medium 0.104 0.001 1.706 0.107 0.000 1.727 

Complex 0.889 0.003 2.700 1.011 0.021 2.893 

 Even Representation 

Baseline 0.000 0.000 0.559 0.000 0.000 0.523 
Simple 0.001 0.000 0.601 0.001 0.000 0.659 

Medium 0.177 0.000 1.776 0.173 0.000 1.133 

Complex 1.671 0.001 2.393 1.905 0.024 2.512 

  
As expected, increasing complexity of the test specifications resulted in more constraint 

violations for all selection methods. This increase was most prominent for the NWADH, 

followed by the MPI. The WPM was highly robust to the increasing complexity; although, it 

seemed to be more prone to upper than lower bound violations.  

The effects of content representation were intriguing. They were dependent on the 

selection method and the complexity of the constraints. The MPI performed better in the baseline 

and simple constraint conditions when content categories were evenly distributed and better in 

the medium and complex conditions when the distribution was realistic. The opposite was true 

for the NWADH. While it is not clear why this pattern emerged, it is worth more investigation in 

the future. The WPM had very few constraint violations regardless of test specification 

complexity or content representation. 



50 

Next, the effect of stage length was examined for MSTs and OMSTs. An ANOVA 

revealed that stage length accounted for 6 percent of the variability in    , a medium effect. 

Table 10 shows the average number of lower and upper bound violations across item selection 

methods and stage lengths. 

Table 10 Average number of constraint violations by item selection method and stage length 

Stage 

Length 
        

MPI WPM NWADH MPI WPM NWADH 

Equal 0.355 0.001 1.203 0.400 0.006 1.177 
Decreasing 0.349 0.001 1.067 0.394 0.006 1.015 

Increasing 0.358 0.001 2.019 0.402 0.005 1.893 

 
For the MPI and WPM, stage length had little effect on content alignment. For the NWADH, 

more constraint violations were committed when the stage length was increasing. One possible 

explanation is the backwards assembly used to build MST modules. Because modules were 

assembled in reverse stage order, the routing modules, assembled last, faced a highly depleted 

item pool. The design with increasing stage length had a shorter routing stage. In general, shorter 

modules are harder to assemble, as there is less room for error. Thus, shorter routing stages, 

coupled with a depleted item pool, resulted in more constraint violations.  

For MSTs, the module design (1-3-3 or 1-4-4) had a very small impact on content 

alignment. Module design accounted for less than 1 percent of the variability in    . On average, 

2.94 and 2.64 total constraint violations were committed for the 1-3-3 and 1-4-4 designs, 

respectively. The fact that the simpler design resulted in slightly more violations may come as a 

surprise. However, this can be explained by the fact that the 1-3-3 design featured more parallel 

panels, making assembly slightly more difficult and increasing the opportunity for violations. 

 Summary. Examination of the content alignment results revealed that the CAT item 

selection methods, the MPI and WPM, did a better job of meeting content constraints than the 

NWADH. The WPM performed best of all. It committed very few violations even under the 



51 

most complex test specification conditions. For preassembled MSTs, extra deviation from the 

test constraints appeared to be introduced by randomly selecting panels at each stage, due to the 

flexible module-specific constraints. There were no apparent differences in content alignment 

between CAT and OMST. 

 The complexity of the test specifications played an important role in content alignment. 

All selection methods deteriorated when content specifications became more complex. Item pool 

size had a medium impact on content alignment, with better alignment for larger pools. Content 

alignment was also impacted by the length of each MST stage such that fewer violations were 

committed when the earlier stages were longer. This effect likely resulted from the backwards 

assembly method used to build MST modules and thus was not present in OMST. 

Measurement Precision 

 Separate ANOVAs were conducted using RMSE and bias as outcome variables. RMSE 

was not normally distributed within test design and item selection method groups. However, the 

variances were equal, so the ANOVAs were examined. Both the normality and homogeneity of 

variance assumptions were met for all ANOVAs with bias as the outcome. The first sets of 

ANOVAs found that test design and item selection method each accounted for 92 percent of the 

variability in RMSE and 23 percent of the variability in bias. Thus, test design and item selection 

method had large effects on both measures of precision. Table 11 shows the average RMSE and 

bias across test designs and item selection methods. 

Table 11 RMSE and bias by test design and item selection method 

 CAT OMST MST 

Outcome MPI WPM MPI WPM NWADH 

RMSE 0.219 0.223 0.226 0.230 0.420 

Bias -0.001 -0.001 -0.001 -0.000 -0.013 
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Overall, MST was the least precise while CAT was slightly more precise than OMST. Within 

both CAT and OMST designs, the MPI resulted in slightly lower RMSE than the WPM. In 

general, RMSE and bias were both quite low, particularly for the CAT and OMST designs. 

 To further examine the differences between CAT and OMST and their item selection 

methods, Cohen’s D was computed for the pairwise comparisons of CAT vs. OMST and MPI vs. 

WPM. The effect sizes for the comparison of CAT and OMST were 0.32 and 0.03 for RMSE and 

bias, respectively. For the MPI vs. WPM comparison, the effect sizes were 0.21 and 0.01. Thus, 

RMSE was about one-third of a standard deviation higher for OMST than for CAT and one-fifth 

of a standard deviation higher for the WPM than the MPI. These are both small effects (Cohen, 

1988). Differences in bias between the methods were negligible. 

 Given the large differences in measurement precision between MST and the other test 

designs, another set of ANOVAs was conducted to examine the effects of test des ign with CAT 

and OMST grouped together. These ANOVAs had    of 0.92 and 0.23 for RMSE and bias, 

respectively, indicating that nearly all of the variance in measurement precision between test 

designs was accounted for by differences between MST and the other two designs. Therefore, for 

the remaining simulation conditions, MST measurement precision results were examined 

separately from those of CAT and OMST. 

  Separate ANOVAs for the effect of item pool size on measurement precision revealed 

differential effects for MST, compared to CAT and OMST combined. For MST, item pool size 

did not affect RMSE; even with a sample size of over 9,000, the ANOVA was not significant. 

However, for CAT and OMST together, item pool size explained approximately 74 percent of 

variability in RMSE, a very large effect. The effects on bias were minimal for all test designs. 

Figure 5 shows the effects of item pool size on RMSE across test designs. 
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Figure 5. RMSE by test design and item pool size.  

As expected, the larger item pool led to lower RMSE for CAT and OMST, as the item 

selection method had more items to choose from. For MST, the increase in item pool size 

appeared to be negated by the increase in the number of panels created. That is, because MSTs 

utilized most of the item pool by creating as many parallel modules as possible, the number of 

modules increased but the quality of the modules did not increase with the size of the pool. This 

hypothesis can be examined by looking at the information targets obtained from the preliminary 

simulation and used to assemble MST modules in the final simulation. The average module 

information targets across stages and item pool size conditions are shown in Table 12.  

Table 12 Average information target by stage and item pool size  

 Item Pool Size 

Stage 360 Items 720 Items 

1 0.63 0.60 
2 1.88 1.90 

3 4.05 4.09 

Test 6.56 6.59 
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Table 12 shows that target information was quite similar at each stage for the two item pool 

conditions. As measurement precision is a direct function of the target information, RMSE and 

bias were also similar for MSTs of varying pool sizes.  

 Similar to item pool size, complexity of test specifications showed differential effects for 

MST, compared to CAT and OMST. Complexity of test specifications accounted for 10 percent 

of the variability in RMSE for CAT and OMST, a moderate effect, but less than 1 percent of the 

variability in RMSE for MST. These effects are shown in Figure 6. 

 

Figure 6. RMSE by test design and test specification complexity.  

As expected, increasing constraint complexity resulted in higher RMSE for CAT and OMST. 

More complex constraints limit item selection, which in turn lowers measurement precision. 

Surprisingly, this was not observed for MST. One possible reason is that MSTs often failed to 

meet their content constraints. Thus, item selection appeared to have focused more on precision 

than on balancing precision and content alignment.  

Separate ANOVAs for MST and CAT and OMST together revealed that bias did not 

differ significantly by content complexity while neither RMSE nor bias was affected by content 

representation. Another set of ANOVAs revealed differences between MST and OMST in the 
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effects of stage length on measurement precision. Stage length accounted for approximately 87 

and 1 percent of the variability in RMSE and bias, respectively, for MST. For OMST, the effect 

of stage length was very small for RMSE and non-significant for bias.  

 

Figure 7. RMSE by test design and stage length.  

Figure 7 shows the effects of stage length on RMSE separately for MST and OMST. For 

MST, the highest precision was achieved when a shorter routing stage was used. The order of 

performance was reversed from the content alignment results (Table 7), providing more evidence 

of a tradeoff between precision and alignment. The absence of an effect for OMST is consistent 

with this explanation, as stage length did not appear to affect either content alignment or 

measurement precision. 

For preassembled MSTs, the effect of module design was examined through ANOVAs 

on RMSE and bias. Module design accounted for 1 and 3 percent of the variability in RMSE and 

bias, respectively. These are both small effects. Surprisingly, the 1-4-4 design had slightly higher 

RMSE and bias (0.42 and -0.02) than the simpler 1-3-3 design (0.42 and -0.01). The direction of 

this effect once again points to the trend of better content alignment leading to worse 

measurement precision. 
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 Considering the results of both content alignment and measurement precision, it is clear 

that the WPM outperformed the MPI. To further investigate this finding, the     and    values of 

selected items were inspected for two examinees: one from a CAT with simple constraints and 

one of similar ability from a CAT with complex constraints. Table 13 shows the     and    for 

the selected items at five positions in the test. 

Table 13 Selected     and    values throughout the test for two average ability examinees 

 Simple Constraints Complex Constraints 

Item Number               

1 87.90 -0.29 2536.01 -0.08 
9 9.20 -1.11 426.44 -0.43 
18 2.88 -0.92 43.30 -0.11 

27 0.47 -0.90 1.40 -0.01 
36 0.07 -0.80 0.01 -0.23 

 

 For the MPI, the values in Table 13 demonstrate an unclear scale for the     statistic. 

Because the content priority values are not standardized, extremely large     occur at the 

beginning of the test when the deviations from the bounds are large, while very small values are 

seen at the end of the test. This effect is amplified under complex constraints, as several content 

indices and their associated weights are multiplied together. The WPM, however, standardizes 

the information and content penalty values based on the minimum and maximum values found in 

the item pool. Therefore,    for all items at a given selection point are on a similar scale and 

selection considers the desirability of administering item   relative to other items remaining in 

the pool. Thus, while the MPI performs worse as content complexity increases, the WPM 

handles increasing complexity well. 

 While the WPM clearly possessed an advantage in content alignment, it performed 

slightly worse than the MPI in terms of RMSE. This could be explained by the tradeoff between 
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content alignment and measurement precision. To examine this hypothesis, Table 14 shows the 

average RMSE for the MPI and WPM across test specification conditions. 

Table 14 RMSE for the MPI and WPM by test specification complexity 

Constraint Complexity MPI WPM 

Baseline 0.220 0.220 

Simple 0.221 0.221 

Medium 0.225 0.228 

Complex 0.230 0.244 

 
In the baseline and simple constraint conditions, no difference was observed between the two 

methods. As constraints became more complex, slight advantages in RMSE were evident for the 

MPI. Recall that the MPI was prone to more constraint violations under the more complex test 

specification conditions. Hence, the additional measurement precision achieved by the MPI came 

at the cost of content alignment. Given the importance of content validity, the slightly lower 

RMSE associated with the MPI in the medium and complex constraint conditions should not be 

taken to indicate an advantage of the MPI over the WPM. 

Summary. The examination of measurement precision results revealed very small bias 

across all conditions, with few notable effects. However, many simulation fac tors had sizeable 

effects on RMSE. RMSE was most impacted by the test design, with MST displaying lower 

precision than CAT and OMST. CAT was slightly more precise than OMST. These results are 

consistent with those of Zheng and Chang (2015). Within CAT and OMST, the MPI and WPM 

performed similarly. 

 Item pool size and content complexity impacted measurement precision for CAT and 

OMST such that larger item pools and simpler content constraints resulted in better precision. 

For MST, measurement precision was affected by the stage length. Shorter routing stages 

resulted in the lowest RMSE. Finally, the module design of MSTs had a slight impact on both 

RMSE and bias, with the 1-3-3 design outperforming the 1-4-4 design. 
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Test Security 

 Test security was examined through a series of ANOVAs with the item exposure    

statistic and the test overlap statistic,   . Within-group distributions of both statistics deviated 

slightly from normality but the within-group variances were equal for all analyses. Therefore, 

examination of effect sizes were deemed appropriate. Test design accounted for 16 and 6 percent 

of the variability in item exposure    and test overlap, respectively, while item selection method 

accounted for 15 and 4 percent. Both of the effects on the    statistic are large, while the effects 

on test overlap are small to moderate. Much of the variability accounted for by the item selection 

method appeared to be due to differences in test design. When only CAT and OMST were 

considered, selection method accounted for less than 1 percent of the variability in item exposure 

and test overlap. This is not surprising, given that the MPI and WPM utilized the same method 

for exposure control in this study. Table 15 shows the average    and    statistics, as well as the 

proportion of overexposed and unused items across test designs.  

Table 15 Average item exposure   , test overlap rate, and proportion of overexposed and 

unused items by test design 

Test Design       Overexposed Unused 

CAT 0.002 0.104 0.007 0.021 
MST 0.004 0.127 0.048 0.084 

OMST 0.003 0.117 0.033 0.050 

  
CAT was more secure than both MST and OMST in every measure. Although CAT and 

OMST utilized the same item selection and exposure control methods, OMST had fewer ability 

estimation points; each stage of items was based on one ability estimate. The initial stage was 

selected based on a similar estimate (between -0.5 and 0.5) for all examinees, causing items with 

medium difficulties and high discriminations to become overexposed. The effects of stage length 

for OMST, discussed below, support this hypothesis. The high overlap rates and large 

proportions of overexposed and unused items are not surprising for MST. Items not included in 
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any module had no chance of being administered while items in a given routing module were 

administered to as many as 1 of every 3 examinees. These results reiterate that test security is 

often a major disadvantage for MST. 

 Because test security measures clearly differed between test designs, the effects of the 

remaining simulation variables were examined separately by test design. Separate sets of 

ANOVAs revealed that item pool size accounted for 62, 82, and 28 percent of the variability in 

item exposure    and 96, 91, and 82 percent of the variability in test overlap for CAT, MST, and 

OMST, respectively. These are all quite large effects. Figures 8 and 9 show the average    and 

test overlap, respectively, across the three test designs and two item pool sizes.  

 
Figure 8. Average item exposure    by test design and item pool size. 
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Figure 9. Average test overlap rate by test design and item pool size.  

 

 When the pool contained 360 items, MST had higher item exposure    and test overlap 

rates than the other designs, indicating worse security. However, when the pool contained 720 

items, MST was nearly as secure as CAT. This is likely attributable to the large number of panels 

(6 or 8 parallel modules for the 1-4-4 and 1-3-3 designs, respectively) and the fact that 

examinees were randomly assigned a module at each stage, rather than following a set panel. 

OMST consistently had worse exposure distributions and test overlap rates than CAT and, 

surprisingly, was also worse than MST when the item pool was large. The increase from 3 or 4 

parallel modules in the 360 item pool to 6 or 8 parallel modules in the 720 item pool appeared to 

be enough to push MST ahead of OMST in terms of test security. 

 ANOVAs were also conducted to examine the impact of content complexity on test 

security. Content complexity explained 19 and 42 percent of the variability in item exposure    

and 2 and 11 percent of the variability in test overlap rates for CAT and OMST, respectively. 

The effects of content complexity on test security measures were non-significant for MSTs. 

Figure 10 shows the average item exposure    by content complexity and test design. 
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Figure 10. Average item exposure    by test design and test specification complexity.  

 

Item pool usage consistently improved as the test specifications increased in complexity. 

This makes sense intuitively. When constraints are simple, items with desirable statistical 

properties (i.e., high discrimination) may be selected too frequently. However, when constraints 

are complex, items with low information may still be desirable due to the need to fulfill content 

constraints. The effect of content complexity was not present in MSTs. This is because MSTs 

used the same number of items and assigned examinees to modules the same way regardless of 

the test specifications. 

 Another set of ANOVAs revealed that content representation did not significantly affect 

either item exposure or test overlap for any test design. Stage length had very small effects 

(       ) on the two outcomes for MST. For OMST, however, stage length explained 10 

percent of the variability in item exposure    and 3 percent of the variability in test overlap rate, 

a medium and small effect, respectively. Figure 11 shows the average proportion of overexposed 

and unused items across stage length conditions for OMST.  
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Figure 11. Proportion of overexposed and unused items across stage lengths for OMST.  

 

Figure 11 supports the earlier hypothesis that test security is worse in OMST than in CAT 

because the entire first stage is based on a similar ability estimate for all examinees. All test 

security indices, including    and   , seemed to favor OMSTs with shorter first stages, indicating 

that the length of the initial OMST stage impacts test security. This was also true for MST, but 

the effect was much smaller. For MSTs, each parallel version of the first stage is exposed to 

more examinees than the later stages, as there is only one stage 1 difficulty level. Thus, 

shortening the first stage leads to slight improvements in test security measures.  

 A final set of ANOVAs revealed that module design had a moderate effect on both 

general measures of test security. Specifically, module design explained 10 and 6 percent of the 

variability in item exposure    and test overlap rate, respectively. This effect was such that the 

1-3-3 design was more secure than the 1-4-4 design. This can be explained by the difference in 

the number of total modules created for each design. The 1-3-3 design featured 28 and 56 total 

modules in the 360 and 720 item pool conditions, while the 1-4-4 design contained 27 and 54 

modules. Thus, fewer items from the pool were required for the 1-4-4 design, resulting in more 

unused items and higher exposure rates for those items that were included. 
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 Summary. The test security results demonstrated the advantages of CAT. Despite 

utilizing the same item selection and exposure control techniques, CAT performed better than 

OMST in every measure of test security. By selecting items one-at-a-time and updating the 

ability estimate after each item, CAT used a wider variety of items than the multistage designs. 

 Item pool size had a large effect on item exposure and test overlap across all test designs. 

The larger item pool was consistently associated with more even item exposure and lower test 

overlap. This effect was largest for MSTs, where increasing the number of parallel panels 

improved test security considerably. Increasing complexity of test specifications helped to 

improve test security in CATs and OMSTs, as a wider variety of items were required to meet 

content constraints. Stage length impacted all measures of test security for OMSTs. Longer 

initial stages resulted in repeated selection of the same items, increasing test overlap and skewing 

the item exposure distribution. For MST, module design had a moderate effect on test security, 

due to differences in the number of items required for the 1-3-3 and 1-4-4 designs.  
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CHAPTER 5 

DISCUSSION 

 This study evaluated item selection methods for three adaptive testing designs with 

varying levels of content constraint complexity. Specifically, computerized adaptive, multistage, 

and on-the-fly multistage tests were studied. The normalized weighted absolute deviation 

heuristic was used to assemble MST modules while the maximum priority index and weighted 

penalty model were used to select items for CAT and OMST. For all tests, the complexity of the 

test specifications, representation of each content category, and size of the item pool were varied 

at 4, 2, and 2 levels, respectively. For the multistage designs, the length of each stage was varied 

at 3 levels: equal, decreasing, and increasing. Finally, the number of preassembled difficulty 

levels at each MST stage was manipulated by studying both 1-3-3 and 1-4-4 designs. All tests 

were evaluated based on measures of content alignment, measurement precision, and test 

security. The results were investigated by looking at ANOVA effect sizes and further exploring 

the effects descriptively. A discussion of the key findings and practical implications follows.  

Content Alignment 

 The content alignment index of Wise et al. (2015) was computed as a general measure of 

content alignment and the average number of lower and upper bound violations per test were 

examined as a descriptive measure. The complexity of the test blueprint has a large effect on 

content alignment. As the number of content categories associated with each item increases from 

1 to 4, the content alignment index lowers (indicating worse alignment) and the number of 

violations increases. This effect is present across all test designs and item selection methods. 

Content representation, on the other hand, does not impact content alignment in a consistent way. 

The effect appears to depend on the item selection method used and the complexity of the 
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constraints. Finally, a larger item pool consistently results in fewer constraint violations than a 

smaller pool. Thus, test specification complexity and item pool size are key factors in the ability 

to create content-aligned tests. 

 The test design and item selection method also have a considerable impact on content 

alignment. CAT and OMST consistently perform better than MST. The poor alignment of MST 

results from a combination of the NWADH, which performs worse than the other item selection 

methods, and the MST module selection method. When modules have flexible content 

constraints, randomly selecting a module of the desired difficulty at each stage can sometimes 

lead to test- level constraint violations even when no module- level violations are committed. 

Among the item selection methods, the WPM performs the best, which is consistent with 

previous research (He et al., 2014) under the simple constraint conditions. The advantage of the 

WPM over the MPI actually grows with increasing constraint complexity. This is likely due to a 

combination of three characteristics of the WPM: the standardization of content and information 

values, the summing, rather than multiplying, of these values, and the consideration of the 

number of items available from each content area in the pool.  

 The length of each MST stage has a small effect on content alignment, such that fewer 

violations are committed when the earlier stages are longer. When MST modules are assembled 

backwards, as in this study, the stage 1 modules have access to fewer items from the pool and are 

thus more difficult to assemble. This effect is most extreme for designs with a short routing test. 

Finally, the number of difficulty levels in preassembled MSTs has a small impact on content 

alignment. This only occurs because of differences in the number of panels that can be created . 

In this study, the 1-3-3 design allows for more panels and is thus more difficult to assemble than 

the 1-4-4 design, resulting in more constraint violations.  
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Measurement Precision 

 Much of the variability in measurement precision is accounted for by test design. MST is 

much less precise than CAT and OMST. This occurs because CAT and OMST select items 

specifically for each examinee while MST modules are preassembled at limited fixed difficulty 

levels. CAT is slightly more precise than OMST. The advantage of CAT comes from the fact 

that it updates the ability estimate at each item selection point, making each selected item 

optimal for assessing the examinee’s ability. OMST, on the other hand, updates the ability 

estimate only after a set of items has been administered. The MPI appears to have a slight 

advantage over the WPM. However, this difference is explained by the MPI’s inability to meet 

complex content constraints. As content alignment helps to validate the interpretations of test 

scores, this improved measurement precision has little importance when coupled with the 

deteriorating content alignment. 

 For CAT and OMST, the effect of item pool size is noticeable. Measurement precision 

increases with the larger item pool, as more items are available for selection. For MST, however, 

this effect is absent. This occurred in this study because the increase in the item pool size 

coincided with an increase in the number of MST panels assembled. Thus, the number of 

modules increased while the quality of the modules stayed the same. The effect of test 

specification complexity on measurement precision is also somewhat large for CAT and OMST, 

but negligible for MST. CAT and OMST see increased RMSE and bias as content constraints 

become more complex and item selection attempts to balance precision and content alignment. 

For MST, however, measurement precision does not suffer as a result of increasing content 

complexity because the content constraints are often not met. Therefore, MST assembly appears 

to focus more on precision than content alignment.  
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 Stage length and module design appear to impact the measurement precision of MSTs. 

Both of these results provide evidence of a tradeoff between content alignment and measurement 

precision, as the conditions with the best alignment result in the least precise measurement. 

Specifically, tests with increasing stage lengths and tests with 1-3-3 module designs displayed 

the most precise ability estimation in this study. 

Test Security 

 Test security was examined via the item exposure    statistic outlined by Chang and 

Ying (1999), the average test overlap rate, and the proportion of overexposed and unused items. 

One major finding is that CAT consistently outperforms both MST and OMST. Because CAT 

updates the ability estimate after each item, there is opportunity for greater variability in item 

selection and response patterns. The advantage of CAT is so great that, despite utilizing the same 

item selection and exposure control methods as CAT, OMST still has test security results that are 

much closer to those of MST than to those of CAT. There is no difference between the MPI and 

WPM selection methods. 

 For all three test designs, the larger item pool is associated with a more secure test in 

every measure. This effect is particularly prominent for MST in this study, as the number of 

parallel panels doubled from the 360 to the 720 item pool conditions. For CAT and OMST, item 

pool usage and test overlap improve as test specification complexity increases. This occurs 

because more complex constraints require a wider variety of items and items with undesirable 

statistical properties are more likely to be used, as they may help satisfy content constraints. The 

effect on test specification complexity, however, is absent for MSTs, since MSTs use a set 

number of items regardless of the test specifications. 
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 Stage length has a large effect on test security measures for OMST. This helps explain 

the test security differences between CAT and OMST. OMSTs are less secure because the initial 

stage is created based on a similar ability estimate for each examinee. Longer initial OMST 

stages generally lead to higher exposure    and test overlap rates, indicating that the length of 

the first stage is critical to the test security results of OMST. Longer MST routing stages are also 

associated with slightly worse security. Because only one difficulty level is used for the first 

stage, the probability of an examinee seeing a given stage 1 module is greater than that of a given 

stage 2 or 3 module. Thus, longer routing stages are associated with slightly worse test security. 

Finally, the 1-3-3 MST design in this study was more secure than the 1-4-4 design. This occurred 

because of the difference in the number of panels. If the number of panels were held equal 

between the two designs, the 1-4-4 condition would be more secure, as this design would require 

more modules overall. 

Conclusions 

 The results of this study have significant implications for testing programs that currently 

use, or are considering adopting, an adaptive testing design. One major contribution is the 

comparison of CAT, MST, and OMST under varying levels of test specification complexity. 

While previous research has often utilized one specific test blueprint, this study varied the 

content constraints to provide more general guidelines for practical application. There are clearly 

some major differences between the adaptive testing designs. CAT and OMST appear better than 

MST in just about every measurable way. Advantages in measurement precision are inherent in 

the CAT and OMST designs, while the MPI and WPM item selection methods help create a 

large advantage in terms of content alignment. An advantage of MST that could not be measured 

in the simulation, however, is that modules can be reviewed ahead of time and necessary changes 
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can be made before administration. Thus, while CAT and OMST outperform MST in simulation, 

MST may still have an important place in practice. 

 OMST holds up well against the well-established CAT design. While CAT is slightly 

more precise than OMST, this difference, as well as differences in content alignment, is quite 

small. However, CAT has a noticeable advantage over OMST in test security, which may be 

reduced by using a shorter first stage in OMST. OMST has its advantages over CAT, such as 

delaying the first ability estimate and allowing examinees to move freely between items within a 

stage. But, if test security is a high priority, other designs or alternative methods for selecting the 

initial stage should be considered. 

 Another key contribution of this study is the comparison of the CAT and OMST item 

selection methods, the MPI and WPM, under varying levels of content complexity. While the 

two methods are comparable when the test specifications are relatively simple, the WPM is able 

to meet complex constraints more consistently without sacrificing measurement precision. 

Generally, the WPM should be recommended over the MPI, especially when three or more 

content categories are associated with an item. This was the case in this study despite the fact 

that the WPM did not place items into color groups, as recommended by Shin et al. (2009). 

Placing items into groups would have provided additional protection against constraint 

violations; but it appeared as though it was not entirely necessary.  

 This study provides some general recommendations for implementing adaptive testing. 

Before deciding on a test design, the testing organization must carefully consider the importance 

of content alignment, measurement precision, and test security. If content alignment is of great 

importance, the complexity of the test specifications should be closely examined. Either CAT or 

OMST should be generally preferred over MST, particularly as constraint complexity increases. 
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If precise measurement is desired, examinee-specific item selection with many adaptation points 

is essential. That is to say, CAT should be preferred, with OMST as a close second option. CAT 

should also be preferred for testing programs concerned with test security. However, it should be 

kept in mind that test security is highly dependent on the size of the item pool. No test design or 

item selection method can make up for a pool lacking in quality items. 

 Once a decision has been made regarding the test design, additional steps may be taken to 

get the most out of the selected design. For CAT and OMST, the choice of item selection method 

is of most importance when content constraints are complex. Specifically, the WPM should be 

used whenever three or more content indices are associated with an item. Additionally, the 

content weights of the WPM and MPI can be manipulated to achieve greater control between 

content alignment and measurement precision. For MST, methods for selecting modules that 

consider the content of each module may need to be implemented in order to meet the test 

specifications. Additionally, the number of difficulty levels and parallel panels is crucial to the 

content alignment, precision, and security of MSTs. Finally, if test security is of high priority, 

alternative methods for creating the first OMST stage may be considered. For instance, the 

starting ability estimate could utilize information from prior administrations or other test scores 

for the given examinee. If no such information is available, the initial estimate could come from 

a wider range of abilities. 

Limitations and Future Directions 

 There are a number of limitations in this study. One major limitation is that item pools 

were randomly generated and there was no relationship between item parameters and conte nt 

categories. In practice, they are likely to be related. For instance, in the NAEP mathematics test, 

items from the high cognitive complexity category are likely to have higher item difficulties than 
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those from the low complexity category. Another disadvantage to working with a randomly 

generated pool is the correspondence between content representation in the pool and on the test. 

In this simulation, there was an approximately one to one relationship between the proportion of 

items from each content category in the pool and the proportion on the test. In practice, this is 

hardly the case. One pool is often used to design different tests. The correspondence between the 

item pool and the test can be quite disproportional.  

 Because this study examined varying test blueprints and item pools, the item selection 

methods could not be finely tuned to match the requirements of each test. The content weights of 

the MPI, WPM, and NWADH were kept constant. In practice, if a testing organization is 

interested in using the MPI, they may consider manipulating the size of the content weights to 

potentially achievement better content alignment. Finally, the randomization technique used to 

increase test security in this study was very straightforward and is certainly not the only method 

available. Other exposure control methods may be utilized based on the security needs of the 

testing program. 

 The findings from this study point to a number of lines of future research. One can 

continue to examine the performance of the relatively new OMST, compared to the well 

researched CAT and MST designs. For instance, this study shows that randomly selecting the 

initial ability estimate between -0.5 and 0.5 does not provide enough variability to alleviate item 

overexposure concerns. Future research can be conducted on the development of a more optimal 

initial OMST stage. Additionally, the MST-S design of Han and Guo (2014) was described in 

detail, but preliminary simulation results indicated that this method works well only when 

content constraints are simple. It may be interesting to look into how to apply MST-S for tests 

with complex specifications. Finally, another promising line of research is to investigate new 
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testing designs that combine CAT and MST. A good example of such research is the hybrid 

design of Wang, Lin, Chang, and Douglas (2016) that starts off as an MST before morphing into 

a CAT. Designs like these may increase in practical relevance and importance as more testing 

programs move their assessments online and embrace the advantages of computerized testing 

and adaptive testing designs.   
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