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ABSTRACT 

A STUDY OF DEVELOPMENT OF A MICRO HYDRO TURBINE 

SYSTEM WITH A RIM DRIVE AND AIR INJECTION TREATMENT 

FOR CAVITATION. 

 

by 

Tomoki Sakamoto 

 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Ryoichi Amano 

 

 

This thesis presents the study of Kaplan hydro turbines system at a very low head and 

air injection treatment to reduce cavitation happening around a turbine. Regarding the study 

of Kaplan hydroturbine system, optimization of hydro turbine system with a rim generator to 

gain a better performance was conducted by CFD and experiment. E-Motors, the partner of 

this research, is developing an integrated design to simplify manufacturing and installation. The 

integrated design includes a rim in the outside of the turbine runner to house the electrical 

generator rotor, namely rim drive. This approach enables a compact and simple assembly 

without having shafts and outside generators, thus improving efficiency and facilitating 

assembly. Output power is limited due to experimental conditions, but CFD calculations showed 

good efficiency potential of this design. About the air injection treatment, the effect of air 

injected into a hydraulic system was investigated regarding power and reduction of cavitation. 

It was found that the air injection treatment can decrease cavitation over the blade and hub 

at most by 96.1% and 98.7%, respectively. 
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1. Introduction 

Hydro-electric power, using the energy of rivers has become one of the highly reliable 

renewable energy sources especially in countries with many water sources. Hydropower 

supplies 16% of worldwide electricity production presently [1]. In addition to that, 86% of the 

renewable energy is generated from hydropower [2]. Since most large rivers have already been 

equipped with power stations, more and more attention is turning to small hydropower. Even 

though the power from each station is low, they can generate a tremendous amount of power 

aggregately. For this reason, making an efficient hydroelectric power system for small river  

or low heads is necessary. 

 

Hydro-turbines are set to take advantage of head differences between water levels 

and to derive the power from the energy of falling water. In this study, since the aim is to make 

an efficient hydroelectric power system for low heads, a Kaplan turbine, which is capable of 

working efficiently with low heads and high flow rates has been selected as the turbine of the  

system. 

 

Easy assembly and durability of the scheme have to be considered in terms of minimum 

maintenance of hydroelectric power system. To make installation easy and straightforward, the 

integrated design developed under the DOE STTR/SBIR grant [3], which includes a rim in the 
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outside of the turbine runner to house the electrical generator rotor, was used in this study.  

Regarding durability, air injection treatment for cavitation was also investigated in this study. 

 

Cavitation is a transforming phenomenon from liquid to vapor when it is subjected to 

reduced pressures at constant ambient temperature. Cavitation is the process of boiling a 

liquid as a result of pressure reduction rather than heat addition. Figure 1 visually shows the 

difference between boiling and cavitation.  When cavitation bubble collapse in liquid, the vapor 

is compressed rapidly by liquid phase, which has larger inertia and causes very high 

temperature and high pressure locally and instantaneously. In addition to that, cavitation 

bubbles can easily change their shape to non-spherical with affected ambient force and flow 

fields. In the process of transforming the shape of bubbles, it induces a liquid jet, whose velocity 

can be the order of the sound velocity of the liquid. When the liquid jet penetrates the bubble 

interface, and the bubbles become toroidal, it causes a high-pressure shock wave. These liquid 

jets and destructive shock wave due to the collapse of cavitation bubbles are the cause of 

performance degradation of fluid machinery and material damages. Figure 2 shows a picture of 

cavitation damage on turbine blades. Various studies on cavitation have been conducted for a 

long time to prevent deteriorating performance and erosion due to cavitation [4]. 

 

Cavitation is problematic not only because it causes erosion but also because it is a 

restriction for designing fluid machinery such as pumps and turbines to prevent erosion 

happening [4]. As a method to mitigate cavitation around hydro turbines, Arndt et al. proposed 
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air injection treatment [5]. Zhi-yong et. al. investigated experimentally and theoretically the 

cavitation control by aeration. The experimental results show that aeration remarkably 

increases the pressure in cavitation region [6]. Revetti et al. did research on the means of air 

injection to mitigate tip vortex cavitation of a Kaplan turbine and found that air injection can 

decrease the level of vibration of the system and damages due to tip vortex cavitation [7]. 

However, the effect of air injection when hydro turbines are cavitating with cloud or sheet 

cavitation have not studied enough. Hence, in this study, the effect of air injection when hydro 

turbines have strong cavitation such as cloud and sheet cavitation are investigated by CFD. 

 

 

 

 
Figure 1: Sketch of the water phase diagram [8] 
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Figure 2: Cavitation damage on the blades at the discharge from a Francis turbine [9] 
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2. Approach 

2.1. CFD 

Turbulent flow is such familiar phenomena which one can see in one’s daily life that 

many industrial products are designed by considering the effects of turbulent flow. For example, 

to make an aircraft of which wings can enhance the fuel efficiency and to produce a car with 

reduced aerodynamic drag, it is necessary to consider the effects of turbulent flow. Since the 

turbulent flow is a complicated phenomenon, it is often difficult to predict the fluid flow 

experimentally, especially when the geometry where the fluid is flowing complexly. Hence, it is 

required to run simulations to predict the turbulent fluid flow and to get the optimized design 

of industrial products, utilizing a Computational Fluid Dynamics (CFD) [10]. In this study, CFD 

was conducted by using the commercial codes of the multidisciplinary STAR CCM+. The 

Volume of Fluid (VOF) and Large Eddy Simulation (LES) models were chosen to solve the 

unsteady multi phase turbulent flow. As an eddy viscosity model, the WALE (Wall-Adapting 

Local-Eddy Viscosity) subgrid scale model was chosen in this study. 

 

2.2. Large Eddy Simulation 

There are various eddies in the range of large scales to small scales in a turbulence 

field. To simulate the significantly small eddies directly, it is necessary to use an extremely 

fine mesh which can resolve the small-scale eddies. However, resolving all kinds of scales of 

eddies is unrealistic in industry due to the high computational cost because it is required to 
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use at least more than 𝑅𝑒
9
4⁄  grids to capture the smallest eddies, namely Kolmogorov scale. 

Moreover, a time step must be smaller as the mesh size becomes smaller in order to make the 

simulation stable and meet the Courant-Friedrichs-Lewy requirement, which results in the 

extremely high computational cost. Hence, using the fine mesh which can resolve all kinds of 

eddies is not suitable for industrial applications. 

 

To solve this problem, LES decomposes the turbulent flow into Grid Scale (GS) eddies 

which are larger than the grid size and Sub-Grid Scale (SGS) eddies which are smaller than 

the grid size. Modeling the SGS eddies, which are independent of the geometry, and calculating 

the GS eddies directly can make it possible to simulate turbulence precisely with a relatively 

coarse mesh. This method is called the Large Eddy Simulation (LES). 

 

 

 

 

 

 

 

 

 

 
Figure 3: The decomposition into the GS eddies and SGS eddies 
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2.3. Governing Equations of LES [11] 
The LES needs to classify eddies into GS eddies and SGS eddies as shown in Figure 3. 

This operation is called a filtering operation. The velocity u is separated in this way by 

employing the filtering operator ⟨ ⟩. 

The governing equations for LES can be derived by applying box filtering operation to the 

continuity equation and Navier-Stokes equations. 

These equations include filtering averaged value ⟨ ⟩ and the unknown third term on the right-

hand side of Eq. (3), which is the first derivative of SGS stress 𝜏𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉 − 〈𝑢𝑖〉〈𝑢𝑗〉. Hence, 

this equation is not closed. The physical model for SGS stress, namely SGS model, is needed 

to be introduced in order to close these governing equations. SGS stress is separated in the 

following way.  

where, 

•  𝐿𝑖𝑗：Leonard term 

This term expresses a part of stress given to GS eddies because of the interaction with SGS 

eddies. The Lenard term controls a part of energy dissipation of GS eddies. 

 𝑢(𝑥) = 〈𝑢(𝑥)〉⏟  
𝐺𝑆 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

+  𝑢(𝑥)̃⏟  
𝑆𝐺𝑆 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

 (1) 

  
𝜕〈𝑢𝑖〉

𝜕𝑥𝑖
= 0   (2) 

 
𝜕〈𝑢𝑖〉

𝜕𝑡
+ 〈𝑢𝑗〉

𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
= −

1

𝜌

𝜕〈𝑝〉

𝜕𝑥𝑖
+
𝜕

𝜕𝑥𝑗
(𝜈
𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
) −

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
    

(3) 

 𝜏𝑖𝑗 = 〈𝑢𝑖𝑢𝑗〉 − 〈𝑢𝑖〉〈𝑢𝑗〉   

= 〈(〈𝑢𝑖〉 + 𝑢�̃�)(〈𝑢𝑗〉 + 𝑢�̃�)〉 − 〈𝑢𝑖〉〈𝑢𝑗〉  

       = 〈〈𝑢𝑖〉〈𝑢𝑗〉〉 − 〈𝑢𝑖〉〈𝑢𝑗〉⏟            
𝐿𝑖𝑗

+ 〈〈𝑢𝑖〉𝑢�̃� + 〈𝑢𝑗〉𝑢�̃�〉⏟          
𝐶𝑖𝑗

+ 〈𝑢�̃�𝑢�̃�〉 ⏟  
𝑅𝑖𝑗

   

 

 

(4) 
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•  𝐶𝑖𝑗：Cross term 

𝐶𝑖𝑗 also controls a large part of energy dissipation of GS eddies with 𝐿𝑖𝑗 . In the case where 

box filter is applied, 〈𝑢𝑖𝑢𝑗〉 − 〈𝑢𝑖〉〈𝑢𝑗〉   is directly modeled because 𝐶𝑖𝑗 becomes zero. 𝐶𝑖𝑗 and 

𝐿𝑖𝑗  both have almost the same values and the effect of these two terms are normally neglected 

because they cancel out each other. 

 

•  𝑅𝑖𝑗：Reynolds stress term 

SGS modeling refers to the modeling for SGS Reynolds stress term 𝑅𝑖𝑗 . This term controls a 

large part of the effect on GS eddies by SGS eddies and have to include the effect of the 

energy dissipation. The eddy viscosity model, which defines the stress caused by turbulence 

eddies from the analogy of molecular viscous stress, is widely used for RANS and Reynolds 

stress is defined as the following: 

The model which applies the same idea as that of eddy viscosity model for RANS is called SGS 

eddy viscosity model. Since the parameter which has to be modeled is SGS Reynolds stress, 

this is modeled by SGS turbulence kinetic energy 𝑘𝑆𝐺𝑆 and SGS eddy kinematic viscosity 𝜈𝑆𝐺𝑆 

as shown in Eq. (6). 

 

 

  𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ =
2

3
𝛿𝑖𝑗𝑘 − 2𝜈𝑡 (

𝜕𝑢�̅�
𝜕𝑥𝑗

+
𝜕𝑢�̅�

𝜕𝑥𝑖
) 

(5) 

𝜏𝑖𝑗 = 〈𝑢�̃�𝑢�̃�〉 =
2

3
𝛿𝑖𝑗𝑘𝑆𝐺𝑆 − 2𝜈𝑆𝐺𝑆 (

𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
+
𝜕〈𝑢𝑗〉

𝜕𝑥𝑖
)   

(6) 
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2.4. WALE subgrid scale model [12] 
The WALE (Wall-Adapting Local-Eddy Viscosity), Subgrid Scale model, is an eddy 

viscosity model, of which length scale is filtered width Δ.  In WALE model, the SGS eddy 

viscosity ν𝑆𝐺𝑆 is defined as following by using the filter width Δ: 

, where the strain rate tensor 𝑆𝑖𝑗, 𝑔𝑖𝑗 and the tensor 𝑆𝑖𝑗
𝑑  are respectively defined as following; 

In this study, the model coefficient 𝐶𝑤 is set as 𝐶𝑤 = 0.544. 
 

2.5. Volume of Fluid (VOF) 

The Volume of Fluid (VOF) method has been given by Noh and Woodward in 1976 

[13], where fraction function α (see Eq.(11)) appeared, although the first publication by Hirt 

and Nichols in 1981 [14]. The VOF model assumes that all immiscible fluid phases present in 

a control volume share velocity, pressure, and temperature fields. Therefore, the same set of 

basic governing equations describing momentum, mass, and energy transport in a single-phase 

flow is solved. The properties solved by this method are defined as following by using the (i)th 

phase volume fraction (α𝑖) 

  𝜈𝑆𝐺𝑆 = 𝐶𝑤Δ
2

(𝑆𝑖𝑗
𝑑𝑆𝑖𝑗

𝑑)
3 2⁄

(𝑆𝑖𝑗
𝑑𝑆𝑖𝑗

𝑑)
5 4⁄

+ (𝑆𝑖𝑗𝑆𝑖𝑗)
5 2⁄
  

(7) 

 𝑆𝑖𝑗 =
1

2
(
𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
+
𝜕〈𝑢𝑗〉

𝜕𝑥𝑖
)    

(8) 

  𝑔𝑖𝑗 = 
𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
   (9) 

𝑆𝑖𝑗
𝑑 =

1

2
(𝑔𝑖𝑗

2 + 𝑔𝑗𝑖
2 ) −

𝛿𝑖𝑗

3
𝑔𝑘𝑘
2   , 𝑔𝑖𝑗

2 = 𝑔𝑖𝑘 𝑔𝑘𝑗    
(10) 

α𝑖 =
∀𝑖
∀𝑐
  (11) 

https://en.wikipedia.org/wiki/Volume_of_fluid_method#cite_note-Noh76-1
https://en.wikipedia.org/wiki/Volume_of_fluid_method#cite_note-2
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where 𝜙 is any equivalent property. The conservation equation that describes the transport of 

volume fractions is: 

where 𝑆α𝑖 is the source or sink of the i th phase. The equation considers the phase motion 

relative to the reference frame motion (u − urf). 

 

The fluid interface is found by rapic change of the value of volume fraction α. When a 

cell is empty with no traced fluid inside, the value of α is zero. When the cell is full, α = 1.0. 

When there is a fluid interface in the cell, 0 < α < 1.0. α is a discontinuous function. In other 

words, its value jumps from 0 to 1 when the argument moves into the interior of traced phase. 

Hence, the fluid interface is found where the value of α changes most rapidly. 

 

2.6. Experiment setup 

The hydro turbine loop is designed to run a horizontally oriented 0.0762m Kaplan 

turbine from a relatively low water height (3m maximum level) between the head and sink. The 

system is a closed system. Water flows from the head tank to the turbine, discharging to the 

sink tank, and then the system pumps the water again from the sink tank to the head one. The  

3D CAD of the system is shown in Figure 4. 

𝜙 =∑α𝑙  𝜙𝑙

𝑛

𝑙=1

 (12) 

∂

∂t
∫α𝑖  d∀
.

∀

+∫α𝑖 (u − urf) dA
.

A

= ∫(𝑆α𝑖 −
α𝑖
ρ𝑖
 
Dρ𝑖
Dt
) d∀

.

∀

  (13) 
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The experiment system is composed of a tank, a pump to circulate the water, two flow 

meters (one before the tank and one in the overflow pipe), and a turbine. Although Rim-drive 

generator usually does not have any shaft, the runner in this experiment system has a shaft 

for measuring the speed and torque.  As seen in Figure 5, this shaft was connected to a Magtrol 

torque-meter and a DC generator.  Electric power dissipates in a resistive load bank. The flow 

rate was measured by a Badger-Meter electromagnetic flow-meter, Model M-2000 M-Series 

Mag meter. The rotational speed of the runner was measured by Omega HHT13 Tachometer. 

  

 
Figure 4 : 3D CAD of the experimental system 

 
Figure 5 : The experiment system 
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2.7. Turbine design 

The 3-inch diameter turbine design was developed by Turbine Builder design software 

[15] and then 3D CAD was built and exported to the CFD model. The rotor blade has an aspect 

ratio of 1.0, the thickness-chord ratio of 0.07, and count of 5 blades. The geometrical layout 

of the turbine is shown in Figure 6. The turbine and stator for the experiment were 3D printed. 

As shown in Figure 7, the runner has a slot to slide the electrical generator. The material 

selected for the runner and stator manufacturing was Eastman Amphora 3D Polymer AM3300 

marketed by ColorFabb as nGen [16].  

 

 
Figure 6 : Geometrical layout of the turbine 
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Figure 7 : Turbine and stator made by 3D printer 
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3. CFD development for Rim-Drive 

3.1. Mesh size 

Three kinds of polyhedral meshes were initially tested around the turbine to examine 

the effect of the mesh size. The detail of these meshes is shown in Table 1. Figure 8 shows 

the mesh resolution around the runner in each case.  The power output was chosen as the 

parameter to check the mesh independence. As shown in Figure 9, The difference of power 

output is 6.4% between 0.8 million and 1.5 million setups and 10.4% between 1.5 million and 4.4 

million setups.  Considering the time management and the accuracy of the CFD, a mesh  

with 1.5million cells was selected for this study.  

 

It is important to have fine enough mesh near the wall to get precise simulation results 

because the amount of change of physical value such as velocity is significantly big there. To 

check if the mesh near the wall is fine enough, dimensionless distance 𝑌+, defined by Eq.(14),  

is checked. Figure 10 shows the mesh around the rotor and stator. Although the maximum of 

𝑌+ was 25, 𝑌+was kept less than 2.5 almost all over the stator and turbine. 

 

Table 1 : Mesh conditions for cases (a), (b) and (c) 

 

𝑌+ =
𝑢𝜏𝑦
𝜈
  (14) 

Number of Cells 0.8 Million 1.5 Million 4.4 Million 

Computational Time 1.0x 1.9x 5.5x 

Simulation Detail Coarse Fine Very Fine 
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Figure 8 : Mesh resolution ; (a) coarse 0.8 M  (b) fine 1.5M  (c) very fine 4.4M 

 
Figure 9: Power output versus mesh size 
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3.2. Time step 

A time step ∆t = 10−4(s) was chosen for the simulation of the entire system. In order 

to verify the condition of the mesh, and the time step, the Convective Courant Number C 

around the runner and stator were checked. The Convective Courant Number C  is the 

dimensionless transport per time step and defined as Eq.(15) in the one-dimensional case. This 

number is widely used to check if the size of the time step is proper or not. For example, if the 

courant number is 1, the flow of a certain point advances to the next element at the next 

moment as shown in the upper diagram of Figure 11. Therefore, the original analysis accuracy 

 
Figure 10 : 𝑌+ around the stator and runner when the rotational speed is 3000 rpm 
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of the mesh can be obtained. On the other hand, if the Courant number is 10, the flow goes 

forward by the 10 elements at the next moment as shown in the lower diagram of Figure 11, 

passing through the nine elements during that time. Therefore, the accuracy will be as same 

as simulations with 10 times coarse mesh. As Figure 12 shows, the Convective Courant Number 

is less than 2.0 over almost all area on the stator and runner.  

 

 

 

𝐶 =
𝑢Δ𝑡

Δ𝐿
  (15) 

 
Figure 11 : The image of flow with different Courant number 
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3.3. Draft tube design 

 It is well known that the draft tube has a substantial impact on the performance of 

hydro turbines [17]. Hence, in this study, the shape of the draft tube was investigated to get 

the best power output. The equations for power output is shown in Eq. (16). The angle of the 

intake tube and the rotational speed of the turbine were set as constant, 30 degrees and 4000 

rpm, respectively. The computational condition is shown in Figure 13. 

 

 
Figure 12 : Convective Courant Number when the rotational speed is 3000 rpm 

W =
𝐿 ∙ 𝜋 ∙ 𝑁

30
  (16) 
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Five kinds of draft tube angles were tested in this study. Figure 14 shows the profile 

of the power output with different draft tube angle. For the greater value of the draft tube 

angle, it is seen that the flowing water leave the boundary and cause separations, which bring 

down the efficiency of draft tubes (see Figure 15). Hence, there is a tendency that less draft 

tube angle gives more power output (see Figure 14).  Considering the limitation of the lab space 

of the room, a 15-degree draft tube angle was selected at the end. 

 
Figure 13 : Computational condition for the rim-drive 

 
Figure 14 : Power output with for different draft tube angles 
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3.4. Investigation of guide vanes at the 90-degree elbow 

The experimental system includes a 90-degree elbow just upstream of the turbine 

(see Figure 4). Such an elbow causes flow skewness and eddies due to the sudden change in 

flow direction when the flow enters the elbow. Of course, the best policy is to avoid or minimize 

such discontinuities, but this is not always practical. One of the ways to minimize the problem 

caused by the sudden change of the flow direction is the use of guide vanes. Hence, in this 

study, four kinds of guide vanes in the elbow, shown in Figure 16, were examined.   

 
Figure 15 : Velocity profiles with 12 deg. tube (top) and 36 deg. tube (bottom) 
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Figure 17 illustrates the ability of the guide vanes to straighten the flow in the elbow. 

As the disadvantage of the guide vane, it was found that the guide vanes caused an energy 

loss due to the friction between the flow and the guide vanes.  

 
Figure 16 : Cross sectional view of the guide vanes in the elbow. Case (a): Without guide 

vane. Case (b): Two flat guide vanes. Case (c): One flat guide vane. Case (d): One curved 

guide vane. 
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Firstly, Optimization study for the Case(c) was conducted. To consider the effect of 

the position of the guide vane, a new dimensionless parameter (L) was defined for the flat guide 

vanes to express the guide vane position concerning the center of the elbow: 

 

where 𝑟 is the distance between the guide vane and the center of the pipe, and 𝑟0 is the radius 

of the pipe, which is constant at 0.0762m in this case. Also, the angle θ is defined as the ending 

point of the guide vane as shown in Figure 18.  

 
Figure 17 : Pressure distribution (a) without guide vanes  (b) with two flat guide vanes 

𝐿 = 𝑟 𝑟0⁄  (17) 
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Three values of θ (30, 60 and 90 degrees) and three values of L (0.33, 0.50 and 0.67) 

were used for the flat guide vane, and the mass flow rate and the pressure drop were checked 

(Figure 19). From this result, the position of the guide vane (L) does not affect the mass flow 

rate and pressure drop. Besides, there is a tendency of more mass flow rate and less pressure 

drop with larger θ. Hence, 90-degree is the best among of 30, 60 and 90-degree guide vanes. 

 

 
Figure 18 : 2D sketch for the elbow with one flat guide vane 

 
Figure 19: Mass flow rate (left) and pressure drop (right), flat guide vane 
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Secondary, an optimization study for the Case(d) was conducted. Two other 

dimensionless parameters (𝑅 and 𝐷) were defined for the curved guide vane case. The details 

are shown in Figure 20 and Eq. (18) and Eq. (19). In the case of the one flat guide vane, it was 

discovered 90-degree guide vane was the best in terms of maximizing mass flow rate and 

minimizing pressure drop. Hence, in the study of  Case(d), θ was set as constant as 90 degrees. 

The profile of mass flow rate and pressure drop are shown in Figure 21. There is a tendency 

that larger D and smaller R gives more mass flow rate and less pressure drop because of less 

wet area of the guide vane which cause friction loss. 

 

 

 
Figure 20: 2D sketch for the elbow with a curved guide vane 

𝑅 =
𝑟0
𝑟1⁄  (18) 

𝐷 = 𝑙 𝑟0⁄  (19) 
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According to these different guide vane cases, regarding energy, the best choice is not 

to install any guide vane. However, another factor needs to be considered, particularly for a 

hydro turbine which is to operate on a continuous basis with minimum maintenance. The 

pressure fluctuations observed in the pipe could induce vibrations and cause turbine wear. 

While the standard derivation of pressure drop in the case of without any guide vane was 7.9 

Pa, as Figure 22 shows, any guide vane at the elbow can reduce the pressure fluctuation in 

the pipe. If this is a concern, some guide vanes can be implemented in the system, benefiting 

maintenance needs at the cost of a small energy loss due to the friction on guide vane surfaces.  

 
Figure 21: Mass flow rate (left) and pressure drop (right), curved guide vane 
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Figure 22 : Standard derivation of pressure drop; one flat guide vane(left), curved guide 

vane (right)  
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4. Result and discussion on Rim-Drive 

4.1. Initial data 

Considering the study of draft tubes and guide vanes, a 15-degree draft tube and 

elbow without any guide vane were selected for the experiment and CFD setup. The 

configuration of the system is shown in Figure 23. The CFD and experiment were conducted 

with 2.0m water head and the result is shown in Figure 24 and Figure 25. As Figure 24 and 

Figure 25 show, there is significant disagreement between CFD and experiment. In the next 

section, the causes of these disagreements are discussed. 

 

 
Figure 23 : Configuration of the system 
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Figure 24: Mass flow rate of the CFD and experiment 

 
Figure 25 : Power output of the CFD and experiment 
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4.2. Presence of air 

Figure 24 shows that the mass flow rate was less in the experiment than CFD. The 

flow observed during the experiment contained air, and it is the reason why the mass flow rate 

in the experimental test is less than CFD. Both the experimental and calculated flow rates are 

linear with rotational speed and can be approximated from the curves by linear approximation 

as following; 

where N is the rotational speed, and fCFD and fEXP are the calculated and experimental flow 

rates, respectively. Defining the coefficient Cr as the ratio of mass flow rate with ideal condition 

(CFD) and mass flow rate from the experiment: 

and assuming that the power output is proportional to the mass flow rate, we can obtain a 

corrected CFD power output, Wb, as taking into account the effect of air in the system.  The 

correction is expressed in the equation below, and the results are plotted in Figure 26: 

 

fCFD = 0.0035N + 15.546 (20) 

fEXP = 0.0027N + 14.20 (21) 

𝐶𝑟 =
fEXP

fCFD
⁄  (22) 

Wb = 𝐶𝑟×WCFD (23) 
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4.3. Effect of friction 

The part holding the shaft is so tight that the shaft could not rotate smoothly (see   

Figure 27) in the experiment. The friction here is considered as the cause of the energy loss. 

Assuming the friction force F is constant, the energy loss 𝐸loss(W) is defined as; 

where 𝑅𝑠ℎ𝑎𝑓𝑡 (m) is the radius of the shaft (0.0079m) and N is the rotational speed per minute 

(rpm). The constant force F can be determined from the experimental point where there is no 

output, 3,000 rpm, when all the energy is dissipated by friction. Hence, the friction force F can 

be estimated as following; 

 
Figure 26: Comparison CFD corrected for presence of air with the experiment 

𝐸𝑙𝑜𝑠𝑠 = F×(𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑) = 𝐹×(
𝑁

60
2𝜋𝑅𝑠ℎ𝑎𝑓𝑡) 

(24) 

(𝑊𝑏)3000𝑟𝑝𝑚 = 𝐹×(
3000

60
2𝜋×0.0079) 

(25) 

⇔ F = 80.6 (N)  (26) 
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By substituting Eq. (26) into Eq. (24), the energy loss 𝐸loss can be obtained. Then, the power 

output 𝑊𝑓 corrected for friction can be obtained as; 

The profile of 𝑊𝑓  is shown in Figure 28. 

 

 

𝑊𝑓 = 𝑊𝑏 − 𝐸𝑙𝑜𝑠𝑠 (27) 

 
Figure 27 : The part causing friction 
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4.4. Error analysis 

Table 2 sums up the measurement technique, measuring range and accuracy of 

various instruments used in the experiment for various parameters. Errors in experiments can 

rise from instrument conditions, calibration, environment, observation, and reading. The 

accuracy of the experiment has to be validated with the aid of error analysis using the method  

described by Moffat [18] 

 

Table 2: Range and accuracy of tools used for the experiment 

Quantity Measuring range Accuracy 

Torque meter 0-10 (N ∙ m) ±0.01(N ∙ m) [19] 

Tachometer 1-20,000 (rpm) ±0.05% [20] 

Flow meter 4.7-1400 (
kg
s⁄ ) ±0.25% [21] 

 

 
Figure 28 : Comparison CFD corrected for presence of air and friction with the experiment 
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When the measurement value is described as ϕ ± U(ϕ), the fractional uncertainty is defined 

by Eq. (28). The fractional uncertainty gives a dimensionless number that shows the relative 

size of the uncertainty compared to the measurement. The torque from the experiment and 

its uncertainty and fractional uncertainty is shown in Table 3.  The rotational speed N (rpm) 

from the experiment and its uncertainty and fractional uncertainty is shown in Table 4. The 

mass flow rate from the experiment and its uncertainty and fractional uncertainty is shown in  

Table 5.   

 

 

 

Table 3: Data from the experiment, uncertainty and fractional uncertainty of torque 

Experiment Number Torque (N ∙ m) Uncertainty (N ∙ m) Fractional uncertainty 

1 0.000 ±0.010  
2 0.066 ±0.010 ±15.09% 

3 0.127 ±0.010 ±7.85% 

4 0.144 ±0.010 ±6.92% 

5 0.200 ±0.010 ±5.01% 

6 0.278 ±0.010 ±3.60% 

7 0.359 ±0.010 ±2.78% 

8 0.410 ±0.010 ±2.44% 

9 0.477 ±0.010 ±2.09% 

 

  

(Fractional uncertainty of E) =
U(ϕ)

ϕ
 

  

(28) 
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Table 4: Data from the experiment, uncertainty and fractional uncertainty of rotational speed 

Experiment Number Rotational speed N (rpm) Uncertainty (rpm) Fractional uncertainty 

1 3000 ±1.500 ±0.05% 

2 2450 ±1.225 ±0.05% 

3 2100 ±1.050 ±0.05% 

4 1950 ±0.975 ±0.05% 

5 1650 ±0.825 ±0.05% 

6 1375 ±0.688 ±0.05% 

7 1090 ±0.545 ±0.05% 

8 920 ±0.460 ±0.05% 

9 660 ±0.330 ±0.05% 

 

 

Table 5: Data from the experiment, uncertainty and fractional uncertainty of rotational mass 

flow rate 

Experiment Number Mass flow rate (kg/s) Uncertainty (kg/s) Fractional uncertainty 

1 22.087 ±0.055 ±0.25% 

2 21.436 ±0.054 ±0.25% 

3 20.388 ±0.051 ±0.25% 

4 18.944 ±0.047 ±0.25% 

5 18.604 ±0.047 ±0.25% 

6 17.755 ±0.044 ±0.25% 

7 17.018 ±0.043 ±0.25% 

8 16.905 ±0.042 ±0.25% 

9 16.084 ±0.040 ±0.25% 

 

If the measured quantities ϕ1 ± U(ϕ1), ϕ2 ± U(ϕ2), …,  ϕ𝑛 ± U(ϕ𝑛) are used to 

compute the result E which has the form expressed by Eq. (29), then the fractional uncertainty 

in E is given by Eq. (30). Since the power output (W) is calculated by Eq. (31), the fractional 

uncertainty of the power output can be calculated by Eq. (32). The fractional uncertainty of 

the power output was calculated by substituting the fractional uncertainty of torque and 

rotational speed from Table 3-Table 4 into Eq. (32), and Table 6 sums up the fractional 

uncertainty and uncertainty of power output. The power output considering the uncertainty is  
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showed in Figure 29. 

 

 

Table 6: Data from the experiment, fractional uncertainty, and uncertainty of power output 

Experiment Number Power output (W) Fractional uncertainty Uncertainty (W) 

1 0   
2 17 ±0.151 ±2.57 

3 28 ±0.079 ±2.20 

4 29.5 ±0.069 ±2.04 

5 34.5 ±0.050 ±1.73 

6 40 ±0.036 ±1.44 

7 41 ±0.028 ±1.14 

8 39.5 ±0.024 ±0.96 

9 33 ±0.021 ±0.69 

 

E = C𝜙1
𝑎 ∙ 𝜙2

𝑏… ∙ 𝜙𝑛
𝑑 

  
(29) 

U(E)

E
= ±√[𝑎

U(ϕ1)
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4.5. Summary of experimental study 

Test results from the experiment were initially far below CFD calculations.  However, 

the difference can be explained by the presence of air in the system and friction.  The presence 

of air could be reduced or eliminated with a redesign and would be expected to be less in a 

larger system.  Friction is due mostly to the shaft, which is not necessary for the rim-drive 

system. Ultimately, with proper flow input and under the conditions set in the lab, a rim-drive 

turbine should, therefore, be able to produce 250 W with very low water head: 2.04. 

  

 
Figure 29 : Corrected power output Wf and experimental results with the error bar 
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5. Cavitation treatment by air injection 

5.1. Phenomenon Description 

Cavitation is caused by local vaporization of the fluid when the local static pressure 

of liquid falls below the vapor pressure of the liquid. Small bubbles or cavities filled with vapor 

are formed, which suddenly collapse on moving forward with the flow into regions of high 

pressure. These bubbles collapse with tremendous force, giving rise to as high a pressure as 

1GPa [22]. In turbines, cavitation is most likely to occur at the suction side of blades. When 

cavitation occurs, it causes the undesirable effects such as local pitting of the metal surface, 

severe erosion [23-25], the vibration of the machine [26-28] and a drop of efficiency due to 

vapor formation, which reduces the effective flow areas [29-30]. The avoidance of cavitation 

in conventional designs is regarded as one of the essential tasks of turbine designers. 

Cavitation imposes a limitation on the design and working condition such as speed of rotations 

of the turbines [31]. In this study, the aeration treatment was investigated regarding the 

reduction of cavitation and improvement of the range of rotational speed that the system can 

run safely. 

 

5.1.1. Cavitation number 
The cavitation number σ is used to characterize the potential of the flow to cavitate. 

It is a dimensionless number defined by Eq. (33). It expresses how close the pressure in the 

liquid flow is to the vapor pressure (and therefore the potential for cavitation). 
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𝑈∞, 𝑃∞ and 𝑃𝑉 are respectively a reference velocity, reference pressure and vapor pressure 

in the flow, respectively. (usually upstream quantities), and ρLis the liquid density. In this study, 

the velocity and pressure entering the rotor were chosen as 𝑈∞and 𝑃∞ respectively. 

 

5.1.2.  Type of cavitation 
Vortex cavitation 

Many high Reynolds number flows seen in industry contain a region of concentrated 

vorticity where the pressure in the vortex core is often considerably smaller than in the rest 

of the flow. Tip vortex cavitation is the form of cavitation inception occurs when a bubble is 

trapped into the low-pressure region located in the center of the tip vortex [32].  The tip 

vortices of ship's screws or pump impellers are a typical example of this (see Figure 30).  

Cloud cavitation 

With a further reduction in the cavitation number, it follows that the entire core of the 

vortex is filled with vapor and becomes continuous due to the accumulation of individual 

babbles, as illustrated by the picture in Figure 31, namely cloud cavitation.  

Sheet cavitation 

Another class of large-scale cavitation structures is that which occurs when a wake 

or region of separated flow fills with vapor. Cavitation took place while a single vapor-filled 

separation zone as illustrated in Figure 32 is called sheet cavitation.  

𝜎 =
P∞ − Pv
1
2 ρLU∞

2
  (33) 
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Figure 30: Tip vortex cavitation on a propeller [b] 

 

 

 
Figure 31: Cavitation cloud on the suction surface of a hydrofoil [3] 
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5.2. Computational Fluid Dynamics (CFD) model setting up 

5.2.1. Modeling 
Same as the study for the hydro turbine system with a low head, CFD approach was 

performed by using the commercial codes of the multidisciplinary STAR CCM+, choosing 

Volume of Fluid (VOF) and Large Eddy Simulation (LES) to solve the unsteady multi phase 

turbulent flow in this study, too. The vapor pressure of water was set as 3.2 kPa, assuming the 

temperature of the water is 298(K). The time step was set as 4×10−5 (s).  As Figure 33 shows, 

the Convective Courant Number is less than 1.0 almost all over the area of the runner, so the 

time step is small enough. The rotational speed N was set in the range of 1000-4000rpm. The 

stator, runner, intake and outlet tube are the same as those used in the study on rim-drive. 

 
Figure 32: Sheet cavitation on the suction surface of a hydrofoil [34] 
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5.2.2. Configuration and mesh  

Since cavitation is a complex phenomenon which includes the formation, separation 

and collapse of the cavitation bubble, it is necessary to use very fine mesh to capture the 

characteristics of the flow phenomenon. Hence, to make the number of cells for the simulation 

smaller, just the intake tube, stator, turbine and draft tube were selected as calculation domain 

(see Figure 34). Figure 35 shows the VVF over the suction side of the turbine blade when the 

rotational speed is 1000rpm, and these value of VVF were used for the mesh independent 

study. The 3.6Million cells case was selected as the mesh for the latter work because of the 

 
Figure 33 : Convective Courant Number on the stator when it runs at 3000rpm without any 

air injection 
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minimum deviation from the average (1.3 %), the better Y+representation than the 1.9 million 

case, and the 67% less time consuming compared to the 5.2Million case. The Y+ was kept  

less than 2.0 with using 3.6 million cells (see Figure 36) 

 

 

 

 
Figure 34 : Computational domain and the mesh around the system 

 
Figure 35 : VVF in different mesh conditions; 1.9M, 3.6M, 5.2M 
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5.2.3. Design of air injection holes 
Since the turbine used in this study has a rim, it is difficult and not practical to make 

air injection holes right above the turbine blade. Hence air injection holes were made at 

upstream of the turbine. In this thesis, two kinds of design of air injection holes were investigated. 

Firstly, air injection holes were set between blades of the stator (Design A). The diameter of 

each hole is 1mm. Since the stator has nine blades, nine air injection holes were set (see Figure 

37). Secondly, air injection holes were made on the blades of the stator (Design B). In this 

design, each blade has three injection holes at the 0.015m, 0.025m and 0.035m from the center 

 
Figure 36 : Wall Y+ on the turbine when it runs at 1000rpm 
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of the stator respectively. The position of these holes can be described by the dimension less 

parameter La, which is defined by Eq. (34) (see Figure 38). The diameter of these holes is  

1mm. 

 

 

 

La =
Da
Rt
  (34) 

 
Figure 37: Configuration of the air injection hole of Design A 
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5.2.4. Boundary conditions 
82.7 (kPa) was applied at the inlet as the boundary condition. As the outlet condition, 

atmospheric pressure outlet was used. Non-slip boundary condition was applied on the wall.  

 

5.3. Result and Discussion 

5.3.1. No air injected case 

No air injected case was first investigated to get the baseline data. The rotational 

speed of the turbine was changed in the range of 1000rpm to 4000rpm. The quasi-steady state 

is reached at 0.18(s), and data later than this time was used to get time averaged properties. 

The cavitation number in each rotational speed case, calculated from the mean velocity and 

pressure entering the turbine, are shown in Table 7. The patterns of cavitation are shown in 

Figure 39 and Figure 40. As Figure 39 shows, stronger type of cavitation (sheet cavitation) was 

 
Figure 38: Configuration of the air injection hole of Design B 
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found for the higher rotational speed of the turbine, corresponding to the decrease of cavitation 

number. The difference of cloud cavitation and sheet cavitation can be seen in Figure 40. When 

the rotational speed is 1000rpm, the behavior of cavitation is randomly fluctuating due to the 

vapor cloud cycle (formation, separation, and collapse). However, when the turbine is rotating 

at higher speed (3000rpm or 4000rpm),  the vapor volume fraction (VVF) on the suction side 

of the blade is more stable, and more than 75% of the area of the suction side is covered with 

vapor. As the baseline data, the VVF over the blade and hub, power output and mass flow rate 

of water were obtained (see Table 8) 

 

Table 7 : Cavitation number in different rotational speed 

 

 

  1000rpm 2000rpm 3000rpm 4000rpm 

Cavitation number 2.71 2.05 1.55 1.17 

 
Figure 39: Contour plots of VVF without air injection when the rotational speed is 1000rpm 

– 4000rpm, real time is 0.3 (s) 
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Figure 40 : Time history for the surface averaged VVF over the suction side of the blade 
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Table 8:VVF, power, and mass flow rate for No air injected case 

No Air  1000rpm 2000rpm 3000rpm 4000rpm 

VVF (blade) 0.363 0.692 0.810 0.817 

VVF (hub) 0.343 0.321 0.295 0.225 

P(W) 612.9 1103.4 1414.2 1511.7 

Mass Flow Rate (kg/s) 35.23 39.14 42.99 46.55 

 

5.3.2.  Fluctuation of pressure on the air injection hole 

Firstly, 51.7(kPa) gauge pressure was applied on the air injection holes with turbine 

rotating at 2000rpm in the Design A, and VVF over the blade and hub, Power output and mass 

flow rate of water were obtained (Table 9). In this case, the surface and time averaged 

cavitation over the suction side of the blade is 0.652, while that of baseline data is 0.692 

(percentage of reduction is 5.8%). The aeration treatment could not eliminate cavitation over 

the suction side of the blade well because of the fluctuation of pressure on the air injection 

holes. As Figure 41 shows, the pressure on the air injection hole fluctuates when the blades 

of turbine pass the hole because of the difference in pressure between the suction side and 

pressure side of the blade (see Figure 42). The pressure reaches the peak right after the 

passage of the blade and going down as the suction-side of the next blade get closer to the 

hole. The amount of air injected into the system is determined by the difference in pressure 

between the air injection hole and liquid water around the air injection hole. Since constant 

pressure is applied to the air injection holes, the mass flow rate of air from the hole also 

fluctuates corresponding to the fluctuation of pressure on that (see Figure 43).  In order to 

clear the correlation between the pressure and the mass flow rate of air, both pressure and 

mass flow rate of air were normalized by their mean values, which are 122.6kPa and 0.178g/s, 
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respectively. Profile of them is shown in Figure 44, denoting the correlation of them. When the 

pressure of liquid water near the hole is high (time 0.271s), the mass flow rate of air from the 

hole is small. On the other hand, when the pressure is low (time 0.275), the mass flow rate of 

air is significant. Figure 45 visualize how the injected air travels in the system. The air injected 

during time 0.273s to 0.276s, which makes an enormous cloud of air, goes through the system 

without contacting the blades of the turbine. Hence, the aeration treatment, in this case, could 

not eliminate cavitation over the blades well. If it is possible to control the position of the air 

injection holes to make the cloud of air injected during the pressure of water near the holes 

are small contact the blades of the runner, it would be a way to utilize aeration efficiently. 

However, since this study focuses on the effect of air on cavitation around the turbine, enough 

amount of air (68.9kPa and 137.9kPa for the Design A and 103.4kPa and 137.9kPa for the 

Design B) were injected in the following chapter.  

 

Table 9: VVF, power, and mass flow rate; Design A, 51.7(kPa) on air injection holes 

VVF (blade) VVF (hub) Power (W) Mass flow rate (kg/s) 

0.652 0.317 1102.1 38.72 
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Figure 41: Profile of pressure on the air injection hole 

 
Figure 42 : Contour plots of time averaged absolute pressure over the turbine 
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Figure 43 : Profile of mass flow rate of air from the air injection hole when the applied 

pressure on the holes is 51.7kPa and the turbine runs at 2000rpm 

 
Figure 44 : Profile of mass flow rate of air from the air injection hole when the applied 

pressure on the holes is 51.7kPa and the turbine runs at 2000rpm 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.269 0.27 0.271 0.272 0.273 0.274 0.275 0.276 0.277

M
as

s 
fl

o
w

 r
at

e 
o

f 
ai

r 
(g

/s
)

Real time (s)

Profile of mass flow rate of air on the air injection hole

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.269 0.27 0.271 0.272 0.273 0.274 0.275 0.276 0.277

Real time (s)

Profile of normalized pressure and mass flow rate of air

Normalized pressure on the air
injection hole

Normalized mass flow rate of air
from the air injection hole



 

52 

 

 

5.3.3. Design A 

In this design, two kinds of inlet pressure, 68.9kPa, and 137.9kPa gauge pressure, on 

the air injection holes were tested. Air volume fraction (AVF) at the outlet, vapor volume 

fraction (VVF) over the suction side of the blade and hub, mass flow rate of water, and power 

output were investigated with comparison with the baseline data (No-air case).  

 

5.3.3.1. Movement of air injected from the upstream of the turbine 

In the study of aeration treatment for tip vortex cavitation, the air injection holes were 

made above the turbine blade, and the air was injected directly to the area cavitation happens 

[7]. However, the turbine used in this study has a rim around the turbine blades. Hence, it is 

difficult and not practical to make air injection holes above the turbine blade. That is why the 

air injection holes were made upstream of the turbine. Hence, it is necessary to investigate 

 
Figure 45: Traveling air injected into the system 
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the movement of air injected from the upstream of the turbine to check if air can eliminate 

cavitation.  

 

The surface and time averaged VVF, AVF and pressure on seventeen cross sections, 

shown in Figure 46, were investigated to examine the movement of air injected from upstream 

of the turbine. The seventeen cross sections were set from 0.01m (x Rt⁄ =0.263) to 0.09m 

(x Rt⁄ =2.37) in x direction.Figure 47 shows the VVF over these cross sections. Cavitation 

starts to happen at x=0.01m (x Rt⁄ =0.263), which is the starting position of turbine blade, and 

the volume of vapor increases due to cavitation happening on the turbine blades and the VVF 

reaches the maximum value at x=0.025m (x Rt⁄ =0.658), which is the ending position of the 

turbine blades. Then, the VVF decreases after x=0.025m (x Rt⁄ =0.658) due to the collapse of 

cavitation bubbles (see Figure 47). The pressure profile over the cross sections is shown in 

Figure 48. Due to the cavitation bubble, which has less pressure than liquid water, the value of 

pressure reaches the minimum at x=0.025m (x Rt⁄ =0.658). Because of the pressure gradient 

shown in Figure 48, the air injected into the system from upstream of the turbine stayed or 

sucked at around x=0.025m (x Rt⁄ =0.658) and eliminate cavitation (see Figure 47 and Figure 

49). 

 

The movement of air at the cross section at x=0.01m ( x Rt⁄ =0.263) was also 

investigated to verify that air from the upstream can eliminate cavitation. Figure 50 shows 

volume fraction scenes of the three fluids (air: blue, liquid water: green, vapor: red) by 
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introducing 𝑓𝑐 , which is defined by Eq. (30). This figure shows the movement of air getting 

sucked into the suction side of the blade and reducing cavitation. 

 

 

 

 

 

 

 

 

 

𝑓𝑐 = 𝑓𝑊 + 2𝑓𝑉 (35) 

 
Figure 46: 17 cross sections over the runner and draft tube 
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Figure 47 : profile of surface and time averaged VVF when the rotational speed is 3000rpm 

 
Figure 48 :  Profile of surface and time averaged absolute pressure at each cross section 

when the rotational speed is 3000rpm, No-air case 
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Figure 49 :  Profile of surface and time averaged AVF when the rotational speed is 

3000rpm 

 

 
Figure 50:   Contour plots of 𝑓𝑐 at cross section of the turbine (the rotational speed is 

3000rpm and pressure on the air injection holes is 137.9kPa) 
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5.3.3.2. Cavitation over the blade and hub 

The results of each rotational speed are shown in Table 10- Table 13, respectively. The 

percentage change (VVF increase, Mass flow rate increase and Power increase) is based on 

the No-air result as a reference. As Table 10-Table 13 show, while 137.9kPa case can eliminate 

cavitation at most 50.4% over the blade, 68.9kPa case is just able to reduce cavitation at most 

11.9%. Especially when the rotational speed is 1000rpm, the percentage of reduction of VVF 

over the blade is small; 1.1% by 68.9kPa air injection. The reason why 68.9kPa case cannot 

reduce cavitation over the blade can be explained by the depth of air penetration and cavitation 

pattern. When the rotational speed is 1000rpm, cavitation happens around the joint of the 

turbine blades and the hub, not around the tip of the turbine blades. However, as Figure 51 

visualizes, air injected into the system by 68.9kPa can not penetrate deep enough to reach 

around the joint. Hence, pressurized air by 68.9kPa is not able to eliminate cavitation over the 

blade well. On the other hand, air injected by 137.9kPa can penetrate deep enough to cover 

the whole suction side of the blade; therefore Missing subject can eliminate cavitation more 

than 68.9kPa case (see Figure 51). When the rotational speed is higher than 1000rpm, cavitation 

can be seen near the tip of the turbine blades too. Hence, 68.9kPa case can also reduce 

cavitation more than it can when the rotational speed is 1000rpm. However, as mentioned 

before, the depth of penetration of air by 68.9kPa injection is just around the tip of the blade. 

That’s why the area  aeration treatment by 68.9kPa can eliminate cavitation is limited around 

the tip of the blades, while 137.9kPa pressure inlet can inject air deeper and eliminate cavitation 

more (see Figure 52). 
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While aeration eliminated cavitation over the blade, cavitation over the hub was 

increased in some cases (see Figure 53 and Figure 54). Figure 55 is the contour plots of the 

time averaged AVF over the runner and the cross sections of it when the rotational speed is 

1000rpm, and the air is injected by 137.9kPa. These four cross sections a, b, c and d were set 

at 0.01m, 0.015m, 0.02m, 0.025m in x direction respectively. This figure shows that air could 

reach to the blade only. Hence, cavitation over the blade was directly reduced by pressurized 

air, but cavitation over the hub was changed not by pressurized air but by the change of fluid 

flow pattern caused by the aeration.  

 

Table 10: Air injection Design A compared to No-air case when the rotational speed is 1000rpm 

1000rpm No-air 68.9kPa 137.9kPa 

AVF at outlet 0 0.031 0.082 

VVF (blade, hub) 0.363, 0.343 0.359, 0.376 0.215, 0.344 

% VVF increase 0, 0 -1.1, 9.6 -40.8, 0.3 

Mass flow rate (kg/s) 35.23 34.65 33.93 

% Mass flow rate increase 0 -1.7 -2.1 

Power (W) 612.9 611.2 602.6 

% Power increase 0 -0.3 -1.7 
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Table 11: Air injection Design A compared to No-air case when the rotational speed is 2000rpm 

2000rpm No-air 68.9kPa 137.9kPa 

AVF at outlet 0 0.035 0.081 

VVF (blade, hub) 0.692, 0.321 0.609, 0.317 0.457, 0.297 

% VVF increase 0, 0 -11.9, -1.3 -54.3, -7.5 

Mass flow rate (kg/s) 39.14 38.36 37.60 

% Mass flow rate increase 0 -2.0 -3.9 

Power (W) 1103.4 1099.2 1085.3 

% Power increase 0 -0.4 -1.6 

 

Table 12: Air injection Design A compared to No-air case when the rotational speed is 3000rpm 

3000rpm No-air 68.9kPa 137.9kPa 

AVF at outlet 0 0.040 0.081 

VVF (blade, hub) 0.810, 0.229 0.730, 0.187 0.498, 0.100 

% VVF increase 0, 0 -9.9, -36.6 -38.5, -56.3 

Mass flow rate (kg/s) 42.99 41.92 40.92 

% Mass flow rate increase 0 -2.5 -4.8 

Power (W) 1414.2 1412.9 1408.2 

% Power increase 0 -0.1 -0.4 

 

Table 13: Air injection Design A compared to No-air case when the rotational speed is 4000rpm 

4000rpm No-air 68.9kPa 137.9kPa 

AVF at outlet 0 0.048 0.073 

VVF (blade, hub) 0.817, 0.225 0.741, 0.106 0.569, 0.115 

% VVF increase 0, 0 -9.3, -52.9 -30.4, -48.9 

Mass flow rate (kg/s) 46.55 45.49 44.69 

% Mass flow rate increase 0 -2.3 -4.0 

Power (W) 1511.7 1510.5 1488.0 

% Power increase 0 -0.1 -1.6 
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Figure 51 :  Comparison of 68.9kPa and 137.9kPa air injection in terms of depth of air 

penetration and reduction of cavitation when the rotational speed is 1000rpm 

68.9kPa 137.9kPa 

137.9kPa 137.9kPa 
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Figure 52 :  Comparison of 68.9kPa and 137.9kPa air injection in terms of depth of air 

penetration and reduction of cavitation when the rotational speed is 3000rpm 
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Figure 53: Profile of surface and time averaged VVF over the suction side of blade 

 

 

 

 
Figure 54:  Profile of surface and time averaged VVF over the hub 
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5.3.4. Design B 

Since Design A could not eliminate cavitation around the hub and the joint of the 

blades and the hub, because air could not penetrate deep enough into the flow regions to 

reduce cavitation around these areas (see Figure 55), three air injection holes were made on 

each blade in different depth. As the boundary condition on the injection holes, 103.4kPa and 

137.9kPa gauge pressure were applied. The results of each rotational speed case are shown in 

Table 14-Table 17, respectively. Since the air injection holes are set at different depths, air 

injected into the system covers all over the turbine. Figure 56 is the contour plots of the time 

averaged VVF and AVF over the turbine of the Design A and the Design B when the turbine 

 
Figure 55:  Contour plots of time averaged AVF over the turbine and cross sections a, b, c 

and d when the rotational speed is 1000rpm and pressure on the air holes is 137.9kPa. 
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rotates at 1000rpm. It shows that the air injected from the Design B can cover around the hub 

and the joint of the hub and blades. Hence, the pressurized air from Design B could eliminate 

more area than the air injected from the Design A (the area circled by red circles in Figure 56). 

Likewise, in every rotational speed case, the aeration from the Design B reduced cavitation 

more than the aeration from the Design A, as shown in Table 14-Table 17. The ability of 

aeration treatment by the Design B to eliminate cavitation can be seen in Figure 57 and Figure 

58 as well. The reduction of cavitation is remarkably large especially when the rotational speed 

is 1000rpm or 2000rpm, and the maximum reduction percentage is 96.1% over the blade, and 

98.7% over the hub. 

 

Due to the presence of air in the system, the mass flow rate and power output were 

dropped at most by 6.7% and 16.1%, respectively. The pressure at the inlet (82.7kPa) is 

equivalent to 8.43m water head. Hence the efficiency drop can be calculated by Eq. (36) and 

Eq. (37), using the date from Table 14-Table 17. The efficiency drop of each rotational speed 

case with air injected from the Design B is summarized in Figure 59. Considering the significant 

reduction of cavitation (at most 96.1% over the blade and 98.7% over the hub), the aeration 

treatment by Design B is useful regarding preventing erosion and vibration caused by cavitation 

even though the air injection treatment reduces the power output and the efficiency of the 

turbine. 
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Table 14: Air injection Design B compared to No-air case when the rotational speed is 1000rpm 

1000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.20 0.23 

VVF (blade, hub) 0.363, 0.343 0.079, 0.043 0.021, 0.0056 

% VVF increase 0, 0 -78.2, -98.7 -94.2, -98.4 

Mass flow rate (kg/s) 35.23 33.70 33.20 

% Mass flow rate increase 0 -4.3 -5.8 

Power (W) 612.9 548.7 514.5 

% Power increase 0 -10.5 -16.1 

 

Table 15 : Air injection Design B compared to No-air case when the rotational speed is 2000rpm 

2000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.20 0.23 

VVF (blade, hub) 0.692, 0.321 0.090, 0.088 0.027, 0.0094 

% VVF increase 0, 0 -87.0, -72.6 -96.1, -97.1 

Mass flow rate (kg/s) 39.14 37.12 36.50 

% Mass flow rate increase 0 -5.2 -6.7 

Power (W) 1103.4 1021.8 926.2 

% Power increase 0 -7.4 -16.1 

 

  

𝜂 =
(Power output)

QgH
 (36) 

(Efficiecny drop) =
𝜂𝐴𝑖𝑟 − 𝜂No−air
𝜂No−air

×100 [%] (37) 
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Table 16 : Air injection Design B compared to No-air case when the rotational speed is 3000rpm 

3000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.18 0.22 

VVF (blade, hub) 0.810, 0.295 0.385, 0.200 0.139, 0.108 

% VVF increase 0, 0 -52.5, -32.2 -82.9, -63.2 

Mass flow rate (kg/s) 42.99 40.49 40.45 

% Mass flow rate increase 0 -5.8 -5.9 

Power (W) 1414.2 1316.1 1285.0 

% Power increase 0 -6.9 -9.1 

 

Table 17: Air injection Design B compared to No-air case when the rotational speed is 4000rpm 

4000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.18 0.21 

VVF (blade, hub) 0.817, 0.225 0.544, 0.154 0.22, 0.031 

% VVF increase 0, 0 -33.4, -31.6 -73.1, -86.5 

Mass flow rate (kg/s) 46.55 44.35 44.41 

% Mass flow rate increase 0 -4.7 -4.6 

Power (W) 1511.7 1352.8 1345.0 

% Power increase 0 -10.5 -11.0 
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Figure 56:   Contour plots of time averaged AVF and VVF over the turbine when the 

rotational speed is 1000rpm; air injected by 103.4kPa from the Design B(top), air injected 

137.9kPa from the Design A (bottom) 
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Figure 57 :   Profile of surface and time averaged VVF over the hub, Design B 

 
Figure 58 :   Profile of surface and time averaged VVF over the suction side of blade, 

Design B 
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Moreover, the improvement of the working condition of hydro turbine has to be 

regarded as the benefit of air injection treatment. As Avellan reported, hydro turbines have a 

limitation of the range of rotational speed because high rotational speed may cause intense 

cavitation, which results in erosion of turbines [31].  If the system has to be run with the 

turbine covered by cavitation less than 10% of are of the suction side of the blade, for instance, 

the system used in this study cannot run with a higher rotational speed than 300rpm, which 

just gives 195W (see Table 18; the result of 300rpm with No-air case was added). However, 

aeration from Design B enables the system to run even when the rotational speed is 1000rpm 

or 2000rpm because it eliminates cavitation over the blade till less than 10% of the area of the 

 
Figure 59:  Efficiency drop of the turbine when air is injected from the Design B 
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suction side of the blade (see Figure 60). In another word, aeration treatment can expand the 

range of rotational speed which the system can run safely. 

 

Table 18: VVF over the blade and hub, Mass flow rate and Power when the turbine rotates at 

300rpm 

VVF (blade) VVF (hub) Mass flow rate (kg/s) Power (W) 

0.098 0.273 32.5 195.3 

 

 

 

5.3.5. Constant Head Case 

In the previous study, the inlet boundary conation was set at a constant pressure 

(82.7kPa), assuming the water head was constant. In this section, the constant mass flow rate 

of water as inlet boundary condition at the inlet is applied in each rotational speed for Design 

 
Figure 60:  Profile of VVF over the blade 
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B (see Figure 61). The inlet mass flow rate of each rotational speed is set as the same as the 

baseline data (No-air case). The results of each rotational speed are shown in Table 19-Table 

22. The difference between these results from previous results with the constant head 

condition can be found in power output (see Figure 62). The power output of constant mass 

flow rate cases increased in every rotational speed case, while the power output of constant 

pressure inlet cases decreased due to the drop in mass flow rate because of the existence of 

air in the system. The increase in power output can be explained by examining the pressure at 

the inlet. Since constant mass flow rate boundary condition is applied, the pressure at the inlet 

increased to maintain the same mass flow rate as the baseline data. The surface and time 

averaged gauge pressure at the inlet are shown in Figure 63. As this figure shows, the pressure 

at the inlet increase from 82.7kPa at most by 25kPa which is equivalent to 2.54m rise of water 

head. Although the power output was increased in the constant mass flow case, the efficiency 

of the turbine was dropped if the increase of water head is considered (see Table 23). 

 

Figure 64 and Figure 65 are generated from the data of VVF in Table 19-Table 22, and 

showing the profile of the surface and time averaged VVF over the suction side of the blade 

and hub, respectively. Although the aeration treatment reduced cavitation in every case both 

over the blade and hub, it can be found that the percentage of reduction of cavitation is less 

than constant head cases in both blade surface and the hub surface by comparing Figure 58 

and Figure 64, and Figure 57 and Figure 65 for each section. The reason why the aeration 

treatment with constant mass flow rate condition could not eliminate cavitation well compared 
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with the aeration treatment with constant pressure inlet condition can be explained by the 

velocity around the turbine. When air is injected, the water volume fraction is smaller than No-

air case due to the presence of air, which means the effective flow area is smaller (see Figure 

66). In order to maintain the same mass flow rate as the base line data with less effective flow 

area, the velocity around the turbine has to be bigger than baseline data in the constant mass 

flow case. For example, the mean velocity at the cross section x=0.01m was 11.23 (m/s) when 

the rotational speed was 1000rpm and the air was injected by 137.9kPa, while the mean 

velocity at the cross section x=0.01m was 9.73 (m/s) when the rotational speed was 1000rpm 

and No-air was injected. Due to the increase of the velocity, the cavitation number was 

decreased from 2.71 to 2.1. Hence, the cavitation which the aeration is treating in the constant 

mass flow case is stronger than the cavitation with No-air case. That is why the reduction 

percentage of cavitation in the constant mass flow case is smaller than the constant pressure  

case. 

  

 

 
Figure 61 :  Configuration of the computational domain and the inlet Boundary Condition 
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Table 19 : Air injection Design B compared to No-air case when the rotational speed is 

1000rpm and the inlet mass flow rate is 35.23kg/s 

1000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.21 0.24 

VVF (blade, hub) 0.363, 0.343 0.284, 0.311 0.179, 0.279 

% VVF increase 0, 0 -21.8, -9.3 -50.7, -18.6 

Power (W) 612.9 635.3 648.7 

% Power increase 0 3.7 5.8 

 

 

Table 20 : Air injection Design B compared to No-air case when the rotational speed is 

2000rpm and the inlet mass flow rate is 39.14kg/s 

2000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.22 0.24 

VVF (blade, hub) 0.692, 0.321 0.612, 0.302 0.523, 0.291 

% VVF increase 0, 0 -11.6, -5.9 -24.4, -9.35 

Power (W) 1103.4 1160.5 1197.2 

% Power increase 0 5.2 8.5 

 

Table 21 : Air injection Design B compared to No-air case when the rotational speed is 

3000rpm and the inlet mass flow rate is 42.99kg/s 

3000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.20 0.23 

VVF (blade, hub) 0.810, 0.295 0.752, 0.280 0.719, 0.276 

% VVF increase 0, 0 -7.2, -5.1 -11.2, -6.4 

Power (W) 1414.2 1514.4 1570.0 

% Power increase 0 7.1 11.0 
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Table 22 : Air injection Design B compared to No-air case when the rotational speed is 

4000rpm and the inlet mass flow rate is 46.55kg/s 

4000rpm No-air 103.4kPa 137.9kPa 

AVF at outlet 0 0.20 0.23 

VVF (blade, hub) 0.817, 0.225 0.773, 0.225 0.742, 0.2185 

% VVF increase 0, 0 -5.4, -0 -9.2, -2.9 

Power (W) 1511.7 1694.6 1727.9 

% Power increase 0 12.1 14.3 

 

 

 

 

 

 
Figure 62 : Power output with different inlet condition 
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Table 23: Efficiency drop (%) of the turbine in different rotational speed cases 

 1000rp 2000rpm 3000rpm 4000rpm 

103.4kPa 4.8 4.9 5.7 4.8 

137.9kPa 10.4 10.4 11.1 12.2 

 

 

 

 
Figure 63 :  Surface and time averaged pressure at the inlet 
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Figure 64 :  Surface and time averaged VVF over the suction side of the blade with 

constant mass flow rate inlet condition 

 
Figure 65 :   Surface and time averaged VVF over the blade with constant mass flow rate 

inlet condition 
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Figure 66 :   Surface and time averaged WVF over the blade with constant mass flow rate 

inlet condition at the each cross section; 1000rpm and 137.9kPa air injection 
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6. Conclusions  

 In this study, the development of Kaplan hydro turbine with a rim suited for the low 

head was conducted, firstly, in the process of optimization of the design of the system, it was 

found that separations after the turbine can be eliminated by adjusting the angle of the draft 

tube. It was also found that the guide vanes are beneficial in reducing pressure fluctuation that 

may be caused by the sudden change of flow direction at the elbow, in exchange for energy 

loss due to the friction on the vanes. Although the experimental result did not much with the 

result of CFD, the experimental results showed a good agreement with the corrected CFD 

results after adopting the correction of Wf, which takes the energy loss due to the friction of 

the shaft and air in the system into account. Since the presence of air could be reduced or 

eliminated with a redesign and would be expected to be less in a larger system and the shaft 

is not necessary for the rim-drive system, it was computationally proven that the rim-drive 

turbine could produce 250 W with the 2.04m head. 

 

As a method to eliminate cavitation around the turbine, aeration treatment was 

investigated regarding the reduction of cavitation and for improvement of the range or 

rotational speed in which the system can run without having much cavitation. Design A, which 

injects air from the housing around the stator, was first investigated. Although the pressurized 

air from Design A was able to reduce cavitation, it was found that cavitation around the joint 

of the blades and hub were not quite well reduced because the air from Design A could not 
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penetrate deep enough to reach around the joint. Hence, a different design, Design B, was 

modeled through CFD and investigated its performance. Unlike Design A, Design B could inject 

air to cover whole the turbine including the joint and the hub. Therefore, aeration treatment 

from Design B reduced cavitation significantly (at most 96.1% of the blade and 98.7% over the 

hub) in exchange of decrease of efficiency of the turbine. In addition to the reduction of 

cavitation to prevent erosion of the turbine and vibration due to cavitation, it was concluded 

that the aeration from Design B could reduce cavitation enough to expand the range of 

rotational speed in which the system can run without having strong cavitation.  

 

The aeration treatment employing Design B with the constant mass flow rate was also 

examined. It was found that the power output was increased, and the increase can be explained 

by the rise of water head. The reduction percentage of cavitation is smaller than the constant 

pressure inlet case, and it can be explained by the decrease of cavitation number. Although 

the reduction percentage of cavitation is lower than the constant pressure inlet case, the 

aeration treatment could reduce cavitation in exchange of efficiency drop of the turbine. 

 

The results emerged from the study are summarized as follows: 

1. The rim-drive turbine system suited for low head, which can be installed easily due to  

its shaft-less design was proved to be able to generate 250W with the 2.0m head. 
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2. A new air injection design, Design B, can inject air all over the blade and reduce 

cavitation more than the Design A which inject air from the housing. 

 

3. The percentage of reduction of cavitation by the aeration from Design B is at most 96.1% 

over the blade and 98.7% over the hub respectively, and this reduction of cavitation is good 

enough to expand the range of rotational speed in which the system can run safely. 

 

4. In the constant mass flow rate case, the power output was increased, but the reason of 

the increase can be explained by the rise of water head. The efficiency is reduced when 

the increase of water is considered. 

5. The difference of reduction percentage of cavitation between the constant pressure 

case and constant mass flow rate case can be explained by the decrease of cavitation 

number in the constant mass flow rate case.  
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