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ABSTRACT

MODELING GRAVITATIONAL-WAVE SOURCES
FOR PULSAR TIMING ARRAYS

by

Joseph J. Simon

The University of Wisconsin–Milwaukee, 2017

Under the Supervision of Professor Xavier Siemens

The recent direct detections of gravitational waves (GWs) from merging black holes

by the Laser Interferometer Gravitational-wave Observatory (LIGO) marks the begin-

ning of the era of GW astronomy and promises to transform fundamental physics. In

the coming years, there is hope for detections across the mass scale of binary black holes.

Pulsar Timing Arrays (PTAs) are galactic-scale low-frequency (nHz - µHz) GW observa-

tories, which aim to directly detect GWs from binary supermassive black holes (SMBHs)

(& 107M�). The frequency and black hole mass range that PTAs are sensitive to is or-

ders of magnitude different from those LIGO is observing, making PTAs a comparable

observatory on the GW spectrum. Understanding the link between binary SMBHs and

the gravitational radiation detected by PTAs is crucial to the community’s capability of

making meaningful scientific statements using PTA observations. This dissertation dis-

cusses the creation of a state-of-the-art observational-based simulation framework built

to provide critical answers to many open questions surrounding the link between PTA

data and binary SMBHs.

Binary SMBHs are predicted products of galaxy mergers, and are a crucial step in

galaxy formation theories. Recent PTA upper limits on the gravitational radiation in the

nanohertz frequency band are impacting our understanding of the binary SMBH popu-

lation. But as upper limits grow more constraining, what can be implied about galaxy

evolution? In this dissertation, I will provide insights into this question by investigating
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which astrophysical parameters have the largest impact on GW predictions, developing

direct translations between PTA limits and measured values for the parameters of galaxy

evolution, and exploring how the use of different galaxy evolution parameters effects the

characterization of the GW signal.

During the extended interaction between SMBHs and their host galaxy throughout

inspiral, there is the potential for many electromagnetic tracers to accompany the binary’s

evolution. This dissertation also incorporates models of electromagnetic radiation from

binary SMBHs to investigate the potential for jointly detecting a binary’s electromagnetic

and gravitational radiation. The detection of a single ‘multi-messenger’ source would

provide a unique window into a pivotal stage of galaxy evolution, and would revolutionize

the understanding of late-stage galaxy evolution.
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Chapter 1

Introduction

1.1 The dawn of gravitational-wave astronomy

In 1916, Albert Einstein predicted the existence of gravitational waves: ripples in the cur-

vature of spacetime. Gravitational waves propagate through spacetime, stretching and

squeezing the actual fabric of space. They are radiated by massive objects with changing

non-spherically symmetric accelerations. However, the influence of gravitational waves

was predicted to be so microscopic that Einstein himself declared them ‘un-detectable’.

Yet in September of 2015, less than a hundred years after being predicted, the Laser

Interferometer Gravitational-Wave Observatory (LIGO), which currently consists of two

interferometers in Washington and Louisiana, made the first direct detection of gravita-

tional waves (Abbott et al. 2016). The passing gravitational wave changed the length of

each interferometer ‘arm’ – the orthogonal vacuum chambers that house the split laser

beams – by less than the size of a proton. The observed gravitational radiation originated

from a pair of merging black holes, each with a mass of approximately thirty times the

mass of the sun. This discovery marked the dawn of gravitational-wave astronomy.

Just as the electromagnetic spectrum describes a multitude of frequencies of light

with corresponding wavelengths and energies, the gravitational-wave spectrum covers

frequencies which primarily describe binary systems of celestial compact objects with

different orbital periods and masses. Specialized gravitational-wave detectors are needed

to cover the full spectrum, in the same way that different telescope apparatus are needed
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to observe the sky across the electromagnetic spectrum. Each specialized gravitational-

wave detector is only sensitive to a certain range of gravitational-wave frequencies, which

is based on the various noise characteristics of each instrument. LIGO is sensitive to

gravitational wave frequencies of tens to thousands of hertz. Compact object binaries,

e.g. neutron stars and black holes, with total masses ranging from a few to a few hundred

times the mass of the sun, emit gravitational waves in this frequency range. However,

detection of gravitational waves at other frequencies, which are expected to be emitted

by black hole binaries with total masses in the thousands to millions to billions of times

the mass of the sun, requires other instruments.

Currently, there are two other types of gravitational wave observatories actively being

developed. The Laser Interferometer Space Antenna (LISA) is a joint project between

NASA and the European Space Agency to develop and operate a space-based gravita-

tional wave detector which will be sensitive to gravitational wave frequencies in the micro-

to milli-hertz range. The LISA detector is of a similar design to the LIGO detectors, but

in space the noise characteristics of the interferometer are vastly different. Thus, LISA can

detect gravitational waves from more massive black hole binaries than LIGO, which emit

gravitational waves at a lower frequency than LIGO’s sensitivity range. There is a limit

to the size and sensitivity of a space-based interferometer, and other kinds of instruments

are needed to access sensitivities at even lower gravitational wave frequencies.

Pulsar Timing Arrays (PTAs) are nano-hertz gravitational wave observatories, which

are sensitive to the most massive black hole binaries in the universe. PTAs are not inter-

ferometers, but instead rely on accurately monitoring a collection of pulsars, which are

a special class of neutron star, spread across our Milky Way galaxy. The distance from

Earth to these pulsars is much longer than any interferometer arm, and the light only

travels one direction. PTAs are unique instruments with superior sensitivity to supermas-

sive black holes. Gravitational waves from the beginning of the universe are not easily

directly detected. Instead, the effect of these primordial gravitational waves can be ob-

served by studying the polarization of light in the cosmic microwave background (CMB).

These four main classes of gravitational wave observatories cover the full frequency range

of gravitational waves. Fig. 1 shows the relative sensitivities of these instruments across

2



Figure 1: The complete spectrum of gravitational wave astronomy is shown in the above figure. LIGO

is an example of a ground-based interferometer. LIGO made a direct detection of gravitational waves

from two merging black holes in September 2015. LISA is an example of a space-based interferometer.

LISA is currently under development and is expected to launch in the early-2030s. NANOGrav, the

North American Nanohertz Observatory for Gravitational Waves, is an example of a pulsar timing array.

PTAs are sensitive to the most massive black hole binaries in the universe. The effects of the first

gravitational waves in the Universe are observable by the effect they have on the polarization of the light

in the cosmic microwave background (CMB). BICEP2 (results shown above) is an example of this kind of

experiment. The amplitude (h) of the expected gravitational waves that are measurable by each type of

observatory are indicated by the vertical placement of the images in the figure, and the expected sources

of gravitational waves are listed under each observatory. Credit: NANOGrav
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gravitational wave frequency. This dissertation will focus on PTAs and the gravitational

radiation from supermassive black holes.

1.2 How do pulsar timing arrays detect gravitational waves?

Pulsars are highly-magnetized, rapidly-rotating neutron stars that emit a constant trail of

radio beams. Due to their rotation, this emission appears to be pulsating to a stationary

observer, much like the light emitted by a lighthouse. Neutron stars are the remnants

of massive stars (10− 30 M�), which as a result of their supernovae explosion, condense

the core of the star to one of the densest states of matter in the universe. Neutron stars

tend to have masses around 1.4 times the mass of the sun with radii of a few tens of

kilometers (the approximate size of most large urban cities), which gives them densities

where a single teaspoon of neutron star material would weigh a billion tons. For pulsars,

the typical rotation speeds are around once per second, but some have been detected

spinning as fast as a kitchen blender (Hessels et al. 2006). These are truly exotic objects.

Pulsars appear to come in two distinct varieties. Canonical pulsars are those with

periods larger than a few tens of milliseconds, while millisecond pulsars (MSPs) are those

with periods less than a few tens of milliseconds. In addition to faster spin periods, MSPs

have smaller period derivatives meaning that the rate of change of the period is small.

MSPs have been monitored for decades and are incredibly stable. In fact, the precision

and stability of the pulses from MSPs rivals those of terrestrial atomic clocks.

Pulsar timing is the observational technique used to determine the rotation parameters

of a pulsar. While an individual pulse shape will vary considerably from one pulse to the

next, the observed pulsations from several thousand rotations average to form a very

stable pulse shape, which is a unique signature for each pulsar. The average pulse profile

is used as a model for pulse arrival times for subsequent observations, and deviations

from this model, called timing residuals, are tracked over a long period of observations.

Each pulsar has a unique set of parameters that will cause deviations over short and long

timespans. These include changes in the pulsar clock (i.e., the period, period derivative,

and higher order spin rate terms), the proper motion of the pulsar through the galaxy,

any binary motion parameters if the pulsar has a companion star (which almost all MSPs
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do) and the motion of the Earth around the sun. Appropriately modeling all of these

terms for an individual pulsar is a large active area of research, which pulsar timing arrays

are built upon.

A passing gravitational wave will cause a time-varying change in the proper distance

between the pulsar and the Earth, which will introduce an additional deviation in the

observed pulse arrival times. The change in proper distance appears to an observer on

the Earth like a change in the pulsar’s frequency, or spin period. This apparent change

in frequency incorporates information about the gravitational wave amplitude at two

locations: where the pulse is emitted (the pulsar) and where it is received (the Earth).

The change in frequency due to the gravitational wave amplitude at the Earth will affect

each pulsar in a certain way based on the relative distance on the sky between the pulsar

and the direction the passing gravitational wave is traveling. The entire array of pulsars

has a time-varying change that is correlated due to a gravitational wave, and it is this

correlated signature that makes the passing gravitational wave distinguishable from the

other timing parameters, which tend to change individual pulsars instead of the entire

array.

While the effects of a passing gravitational wave will be present in each individual

pulsar’s timing residuals – the difference between when each pulse is predicted to arrive,

given the known set of parameters of an individual pulsar system, and when the pulse

actually arrives – it is only when comparing the timing residuals for a large number of

pulsars that the detection of a gravitational wave can confidently be made. Thus, an

ideal pulsar timing array would contain many MSPs spread evenly across the sky. In

addition to a large number of pulsars, PTAs need long observations since the periods for

waves in the nanohertz regime are years to decades. Groups like NANOGrav, along with

the other members of the International Pulsar Timing Array, already have more than a

decade of PTA observations for a few dozen MSPs and will continue to grow with time

(Arzoumanian et al. 2015; Lentati et al. 2015; Shannon et al. 2015).
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1.3 What are the gravitational wave sources that pulsar timing

arrays can detect?

Prior to LIGO’s detection of gravitational waves from a pair of merging black holes, the

best evidence for the existence of black holes came from the massive object at the center

of our own Milky Way galaxy. By monitoring the orbits of stars in the center of our

galaxy, astronomers have estimated that a single object with a mass of over four million

solar masses lies at the center of the Milky Way. Extremely massive objects, assumed to

be supermassive black holes, appear at the center of almost every other galaxy that has

been observed. In the local universe, astronomers have observed a relationship between

the masses of these supermassive black holes and the large-scale observables of their host

galaxies (e.g., stellar velocity dispersion, galaxy luminosity, galaxy mass, etc.). Figure

2 shows some of these observations and indicates a strong trend line where larger, more

massive galaxies host more massive central black holes (Gültekin et al. 2009). Given that

the gravitational influence of a central black hole cannot reach the entire galaxy, even for

the most massive black holes, it was not expected that the mass of the central black hole

would associate so strongly with larger galaxy properties.

The simplest explanation of the trend shown in Figure 2 is a shared growth history,

which implies that the seed of a central black hole is present when the galaxy is first

formed and grows through cosmic time with the galaxy. Galaxies grow by merging with

each other and by gathering gas from the intergalactic medium. If the central black hole

was present throughout all of these events, then its properties would be comparable to the

larger galaxy properties. Figure 2 also shows that the most massive central black holes

appear in elliptical galaxies, which are thought to be the end-products of spiral galaxy

mergers. In addition to growth from mergers, supermassive black holes are seen accreting

gas onto themselves creating active galactic nuclei (AGN). AGN release energy back into

the outer reaches of the galaxy through large jets. This type of feedback process transfers

energy from the center of the galaxy to the outer edges and can also regulate the growth

of both objects. While there are still open questions around the specifics of how a central

supermassive black hole co-evolves with its host galaxy, it is clear from observations that
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Figure 2: This figure shows the observed relation between the mass of a central supermassive black

hole, plotted on the vertical axis in solar mass units (M�), and a galaxy’s stellar velocity dispersion (σ),

plotted on the horizontal axis in kilometers per second. The stellar velocity dispersion is a measure of the

variations in stellar velocities in a galaxy and tends to grow with the mass of a galaxy. The plot shows

a strong correlation between central supermassive black hole mass and stellar velocity dispersion, which

may imply that both the central black hole and the galaxy have grown through cosmic time together with

a shared history. The black solid line shows the line of best fit for this relationship. The red diamonds

indicate elliptical galaxies, which tend to be more massive and are thought to be the products of spiral

galaxy mergers, while the blue circles indicate spiral galaxies, which tend to be less massive. The green

marks indicate S0 galaxies, which appear to be the intermediate between spirals and ellipticals. All of

the data for the plot above was taken from Gültekin et al. (2009).
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this is a key part of galaxy formation and evolution.

Astronomers observe many different types of galaxy interactions. Some of the most

violent occur when galaxies collide. While galaxies are diffuse enough that no stars or solar

systems run into each other during this process, the large-scale features, like spiral arms

and central bulges, get distorted and twist around each other in a long and complicated

dance as they merge into a new object. However, this process is estimated to take

hundreds of millions of years, so each observation that we take is only a single snapshot.

Understanding the galaxy merger process requires combining all of those scattered images

into a coherent story, and there are still come gaps in our understanding. The large sample

of interacting galaxy pairs implies that most galaxies will undergo numerous merger events

in their lifetime. If each galaxy hosts a supermassive black hole and galaxies merge on a

regular basis, then it is likely that there exists a population of binary supermassive black

holes resulting from the combination of the central regions of merging galaxies. Each

binary supermassive black hole will emit strong gravitational radiation when the binary

spirals close together and eventually merges into a single supermassive black hole. PTAs

are searching for this gravitational radiation.

The emission of strong gravitational radiation, which drives the binary to merge, is the

last phase of the merger process. Astronomers observe the beginning stage of the merger,

when the two central regions of a merging galaxy combine, but there are other steps

between the formation of a central region with two supermassive black holes, where the

black holes are separated by large distances, and the emission of strong gravitational waves

from the binary, which only happens at much smaller black hole separations. These steps

involve interactions between the two supermassive black holes and the stars and gas in

the central region of the galaxy and they are not easily observable with telescopes as they

typically take place on smaller scales than a telescope can resolve. If these interactions

between the the stars and gas and the binary supermassive black hole are strong enough,

they have the potential to effect the level of gravitational radiation detected by PTAs.

PTAs may be the only tool that can disentangle the various effects that move a binary

supermassive black hole from large to small separations.

Unlike the gravitational waves that LIGO has detected, which pass through LIGO’s
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frequency band in fractions of a second, the gravitational radiation in the PTA band

is basically constant over human lifetimes. Thus, all of the gravitational radiation at

a specific gravitational wave frequency from all of the binary supermassive black holes

spread across the universe combines together to form a constant background. Due to

the homogeneity of the universe, the gravitational wave background is different than an

individual source, because it is not coming from one direction, but from all directions.

PTAs are able to disentangle near-by, loud individual systems from the background, but

it is most likely that the first thing detected in the PTA band will be the background.

PTA measurements of the gravitational wave background, formed from the population

of binary supermassive black holes, will improve our understanding of the co-evolution

process of these central black holes and their host galaxies.

1.4 Dissertation Outline

This dissertation describes the creation of a state-of-the-art observational-based simula-

tion framework built to understand the link between PTA data and binary supermassive

black holes. In the next chapter, I set out to describe the model parameters that go into

building an observational-based simulation for a population of binary supermassive black

holes. This requires understanding how to apply the observations of galaxy properties

and galaxy mergers, as well as, how to understand the evolutionary processes that drive

binary supermassive black holes to radiate gravitational waves in the PTA band. Once all

of the model parameters are described and understood, Chapter 3 goes into detail about

the observational constraints of various model parameters culminating in predictions on

the amplitude of the gravitational wave background. These predictions are then used as

a tool to understand and interpret PTA data in Chapter 4. This includes taking PTA

limits on the gravitational wave background and placing limits on various model param-

eters, specifically the parameters that describe the relation shown in Figure 2, known as

the M − σ relation. Most of the interpretation of PTA limits to date has focused on

individual parameters, setting limits one at a time. Some of my recent work has been

used to simultaneously fit the density of stars in the central region of a merging galaxy

and the initial eccentricity of the binary, which are two parameters that effect the shape
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of the gravitational wave background across the PTA frequency band. This is also dis-

cussed in Chapter 4. In Chapter 5, we change gears a little bit and move away from

the gravitational wave background to explore the potential for incorporating electromag-

netic signatures from the active galactic nuclei. These luminous objects are caused by

the accretion of matter onto supermassive black holes, which is a process that might be

intensified during a galaxy merger. Finally, I present a brief summary of the results of

this dissertation and lay-out a series of potential next steps in the final chapter.
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Chapter 2

Building A Model for the

Gravitational Wave Background

from Binary Supermassive Black

Holes

This chapter covers a detailed derivation and explanation of the various parameters that

are used in modeling a stochastic background of gravitational waves from binary super-

massive black holes (SMBHs). As explained in Ch. 1, binary SMBHs are expected to be

by-products of galaxy mergers. Thus, observational surveys of galaxy properties can be

used as proxies for determining population statistics of binary SMBHs. The following

assumes a basic understanding of general relativity and gravitational wave generation,

which can be found in Hartle (2003), Creighton & Anderson (2011) and Maggiore (2008).

If you would like a more thorough derivation specifically of stochastic backgrounds from

gravitational waves, please see Allen (1997) and section 7.8 of Maggiore (2008). See also

Phinney (2001) and Jaffe & Backer (2003) for relevant discussions.
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2.1 The Gravitational Wave Background

The intensity of a stochastic background of gravitational waves is described by the di-

mensionless energy spectrum, ΩGW (f), which is the present-day energy density of gravi-

tational waves carried by the stochastic background, ρGW (f), per logarithmic frequency

interval d(ln f) = df/f normalized to the critical energy density of the universe, ρc.

ΩGW (f) ≡ 1

ρc

ρGW (f)

d(ln f)
, (2.1.1)

where f is the Earth-observed gravitational wave frequency. In an FRW (Freedman-

Robertson-Walker) universe,

ρc =
3H2

0

8πG
, (2.1.2)

where H0 is Hubble’s constant (Ryden 2016). In this work, we use H0 = 71 km s−1

Mpc−1. The characteristic gravitational wave amplitude in a given frequency interval,

hc(f), is related to ΩGW by

ΩGW (f) =
2π2

3H2
0

f 2 h2
c(f). (2.1.3)

A stochastic background is produced by the superposition of the radiation from a

population of gravitational wave sources. While each individual source is not resolvable,

they contribute to the characteristic amplitude of the background by adding a power

spectral density Sh(f), characterized by the mean squared strain fluctuations h2
s,

h2
s =

∫
dfSh(f). (2.1.4)

The observed characteristic squared strain spectrum h2
c(f) is the integral over all the

sources emitting in some strain interval multiplied by the mean squared strain fluctuations

of each source.

h2
c(f) = f

∫
dh h2

s

d2N

dh dfr

, (2.1.5)

here d2N/dhdfr is the number density of sources in a given strain and source rest-frame

frequency interval, where fr = (1 + z)f is the frequency of gravitational wave emission in

the rest-frame of the source.

We characterize a population of gravitational wave sources by a comoving number

density of sources per unit redshift dn/dz. The sources that we are specifically interested
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in are a population of binary SMBHs, so the number density of sources can be described

as the rate of merger events. The number of merger events in a given redshift bin dz

and observational time bin dt is equal to the number of sources in a related strain and

rest-frame frequency interval.

d2N

dh dfr

=
dn

dz
dz dt (2.1.6)

Thus, the characteristic strain spectrum can be written as

h2
c(f) = f

∫
dh h2

s

dn

dz

dz

dh

dt

dfr

. (2.1.7)

The number of merger events throughout cosmic history depends on the SMBH

masses, meaning

dn

dz
=

∫ ∫
dM• dq•

d3n

dz dM• dq•
. (2.1.8)

We define the SMBH masses with the mass of the primary black hole, M•, and the

binary’s mass ratio, q• = M•,2/M•, where we explicitly define q• ≤ 1. d3n/dz dM• dq•

is the comoving number density per unit redshift, primary black hole mass, and binary

mass ratio. Given the discrete nature of the source population, the comoving rate can be

expressed as the number of mergers per unit observational time, d4N/dz dM• dq• dt:

d4N

dz dM• dq• dt
=

d3n

dz dM• dq•

dVc
dz

dz

dtr

dtr
dt
, (2.1.9)

where dtr/dt = 1/ (1 + z), dVc/dz is the co-moving volume element and dz/dtr is the

rest-frame time element per redshift. These are as derived by Phinney (2001):

dVc
dz

= 4π
c D2

c

H0E(z)
, (2.1.10)

dz

dtr
=

1

H0 (1 + z)E(z)
, (2.1.11)

where Dc is the co-moving distance to the source defined by

Dc =

∫ z

0

c

H0E(z′)
dz′ , (2.1.12)

and E(z) =

√
ΩM (1 + z)3 + Ωk (1 + z)2 + ΩΛ . (2.1.13)
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In this work, we use ΩM = 0.27, ΩΛ = 0.73, and Ωk = 0. The characteristic strain

spectrum can now be written as

h2
c(f) = f

∫ ∫ ∫
dz dM• dq• h

2
s

d4N

dz dM• dq• dt

dt

dfr

. (2.1.14)

Finally, for a convenient notation, we can absorb dt/dfr into the d4N term and can

translate from the rest-frame frequency, fr, to the present day, observed frequency of each

source, f to end up with an equation for the characteristic strain spectrum which has a

simple interpretation: the observed characteristic squared amplitude of the gravitational

wave background is given by the integral over all the sources emitting in an observed

gravitational wave frequency bin df multiplied by the square strain of each source in that

bin.

h2
c(f) = f

∫ ∫ ∫
dz dM• dq• h

2
s

d4N

dz dM• dq• df
(2.1.15)

Implicit in this derivation is the assumption that the binary formation rate changes

slowly relative to the length of a PTA observation and that the binary rapidly enters a

regime where it’s evolution is dominated by the radiation of gravitational waves, which

allows the merger rate to simply be a function of redshift. The dynamics of binary SMBHs

is discussed in more depth in Sec. 2.4.

2.2 Determining The Merger Rate

Next, we focus on how the number density of binaries is calculated. The number density

of binary SMBHs is a combination of two functions: the SMBH mass function Φ•(z,M•)

and the binary merger rate R•(z,M•, q•).

d3n•
dz dM• dq•

= Φ•(z,M•) R•(z,M•, q•) (2.2.1)

There are currently no direct observational constraints on the demographics of binary

SMBHs, so these functions are not explicitly known. Instead, assuming that the number

of binaries is directly related to the number of galaxy mergers, the galaxy merger rate

is used as a proxy and each galaxy in a merger is populated with a central SMBH using

the observed relationship between SMBHs and their host galaxies (e.g., M•-σ relation,
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M•-Mbulge relation, etc.). Below, we use (Gal 7→ •) to denote where the black hole mass

- host galaxy relation is applied.

d3n•
dz dM• dq•

=

∣∣∣∣ d3nGal

dz dMGal dqGal

∣∣∣∣
Gal 7→•

(2.2.2)

The galaxy merger rate, RGal, is the redshift-dependent rate at which a galaxy of

mass M is involved in a major merger (q > 1
4
) with a second galaxy with mass qM :

RGal(z,M, q) =
d2nGal

dz dq
=
dfpair(z)

dq

1

τGal(z,M)

dtr
dz

. (2.2.3)

One way to calculate this is by combining the galaxy pair fraction, fpair(z), and the merger

timescale, τ(z,M). The galaxy pair fraction is an astronomical observable derived by

counting the number of dynamically closer pairs of galaxies in a given galaxy survey. The

merger timescale, which approximates the dynamical friction timescale for a dynamically

bound pair of galaxies, must be determined through simulations. τ(z,M) is calculated in

the rest-frame of the source and converted to a redshift timescale by multiplying τ with

the factor dtr/dz.

2.3 Inferring the Black Hole Mass Function

Now, let us focus on how the SMBH mass function, Φ•, is inferred by populating each

galaxy with a central SMBH (Eqn. 2.2.2). One of the results of this work, as seen in Ch. 4,

shows that the most important factor in accurately modeling the characteristic strain

spectrum of a gravitational wave background is correctly determining the supermassive

black hole mass function.

The correlation between the mass of a central supermassive black hole (M•) and a

host-galaxy has been generally parameterized as a power-law relation:

M• = A×Xβ (2.3.1)

where X is the specific host-galaxy parameter, β is the spectral index of the power-law

relation, and A is the scaling factor between the two parameters. For most observed

relations, β ≈ 1, which leaves A as the crucial variable to describe the relation. However,

in addition to A and β, there is another important measurable quantity, the intrinsic
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scatter in M• for a fixed galaxy property (ε). The scatter is a useful tool for quantifying

how tight a given correlation is and gives a relative measure of value to each category of

M• prediction.

Most specific host-galaxy parameters have been observed with large galaxy surveys

and have an observed distribution function, Φ(z), which quantifies the number density of

galaxies at a given redshift with a given value of a certain host-galaxy parameter. This

observed function gives the underlying redshift distribution of the black hole mass function

and when coupled with an appropriate M• to host-galaxy relation gives an inferred black

hole mass function.

The M• to host-galaxy relation has been seen across a number of host galaxy pa-

rameters, but the most commonly used scaling relations are M• verses stellar velocity

dispersion (σ) and M• verses stellar bulge mass (Mbulge). The corresponding distribution

functions for those galaxy parameters are the velocity dispersion function (VDF) and the

galaxy stellar mass function (GSMF), respectively.

Each pair of distribution function and host-galaxy relation includes a specific set of

assumptions and has a different set of calculations needs to get from the observed host-

galaxy parameter distribution function to the inferred black hole mass function. We

explore these two approaches in greater detail below.

2.3.1 GSMF and M•-Mbulge

The GSMF is an astronomical observable, and is typically parametrized in terms of a

double Schechter function:

Φgsmf(z,M) =
dn

dM

∣∣∣∣
z

=
e−

M
M∗

M∗

[
Φ∗1

(
M

M∗

)γ1

+ Φ∗2

(
M

M∗

)γ2
]
.

(2.3.2)

Observations find that quiescent (generally elliptical/early-type) galaxies tend to be more

present at higher masses (both for stellar mass and black hole mass) than star-forming

(generally spiral/late-type) galaxies (Gültekin et al. 2009; Ilbert et al. 2013). These two

distinct galaxy species are also observed to have different internal mass distribution,

with the quiescent galaxies having a larger percentage of mass in central bulges than
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star-forming galaxies. As such, we classify galaxies as being either quiescent or star-

forming, and use accordingly separate Schechter parameters for these when drawing our

distributions. Observations of the GSMF bin in redshift, meaning that an observed value

of Schechter parameters is only valid over a certain redshift range. We do not assume any

kind of clustering effect on mergers, so a quiescent galaxy’s likelihood of merging with

another quiescent is only based on the fraction of quiescent galaxies in a given redshift,

mass, and mass ratio range. There is some evidence that quiescent galaxy’s are more likely

to be found in dense galaxy cluster environments (Baldry et al. 2006), and so there may

be a higher probability of a merger containing a quiescent galaxy then what is accounted

for in this work.

The fraction of the total stellar mass of the galaxy contained in the bulge, fbulge, is

different for each galaxy type. For quiescent galaxies, we assume fbulge = 0.9 for M >

1011M�, declining log-linearly to fbulge = 0.25 at M = 1010M� with an uncertainty of 0.1

dex. These are the dominant producers of gravitational wave power in the PTA band. For

star-forming galaxies, which contribute a minor fraction of gravitational wave power to

the background regardless of this factor, fbulge is assumed to be 0.25, with an uncertainty

of 0.1. This prescription follows that of Sesana (2013b); Ravi et al. (2014) considered a

similar prescription with similar results.

The mass of each black hole in a merger is calculated using the M•-Mbulge relation

that has been observed in the local Universe, which is often displayed in log-space so

Eqn. 2.3.1 takes the form

log10M• = α + β log10

(
Mbulge

1011M�

)
+N (ε), (2.3.3)

where Mbulge = fbulgeM , N is the normal distribution with a mean of zero and a standard

deviation of ε, and ε is the intrinsic scatter.

17



2.3.2 VDF and M•-σ

Like the GSMF, the VDF is also an astronomical observable, however, it is typically

parameterized in terms of a modified Schechter function:

Φvdf(z, σ) =
dn

dσ

∣∣∣∣
z

= Φ∗e(−
σ
σ∗ )

β ( σ
σ∗

)α β

Γ (α/β)
.

(2.3.4)

Similar trends between the relative abundances of quiescent and star-forming galaxies at

higher and lower masses found in the GSMF are found at higher and lower σ in VDFs.

σ is a spectroscopic measurement, while M is fundamentally a luminosity measurement.

They are complementary measurements, with their own types of uncertainty, allowing for

two independent probes of the black hole mass function.

The mass of each black hole in the merger is then calculated directly using the M•-σ

relation that has been observed in the local Universe, which takes the form

log10M• = α + β log10

(
σ

200km s−1

)
+N (ε), (2.3.5)

where N is the normal distribution with a mean of zero and a standard deviation of ε,

and ε is the intrinsic scatter. One advantage of the VDF is that a direct measurement of

σ allows for a single step to calculate M•, bypassing the need to assume something about

the relationship between the central bulge and the galaxy like is needed when using the

GSMF.

2.4 Binary Black Hole Dynamics

The merger of two galaxies is a messy and complicated process that takes many millions

of years to complete.

The evolution of a binary SMBH proceeds in three stages. First, the two galaxy cores

plunge towards each other, driven by dynamical friction, and form a common single core.

This stage proceeds on a timescale of

tDF ≈
(

4× 106 yr

log N∗

)( σ

200 km s−1

)( rc
100 pc

)2(
m•

108M�

)−1

(2.4.1)
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Figure 3: The above plot shows the typical timescales involved in the evolution of a binary SMBH

for an equal mass binary around 108M�. The binary separation is plotted on the x-axis in parsecs and

amount of time that the binary spends at each separation is plotted on the y-axis in years. The green

line shows the dynamical friction stage of evolution. The purple solid line shows the typical evolution

from stellar scattering from a moderately dense stellar environment for a constantly refilled loss cone.

The shaded purple area shows other evolutions for different stellar densities. If the loss cone did not

refill, then at around a separation of a parsec the timescale would spike up to the top of the plot, and

the binary would stall, never reaching the gravitational radiation dominated evolution. The blue line

shows the evolution of the binary due to radiation of gravitational waves. Once the binary reaches the

blue evolutionary track, it coalesces into a single object relatively quickly.
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where m• is mass of the smaller black hole and the common core has radius rc, stellar

velocity dispersion σ, and contains N∗ stars (Begelman et al. 1980). The forces of dynam-

ical friction become inefficient as the binary approaches the so-called hardening radius,

defined as (Quinlan 1996)

ah ≈
Gm•
4σ2

= 2.8 pc
( σ

200 km s−1

)−2
(

m•
108M�

)
. (2.4.2)

This is where the second stage of the evolution starts. The third and final stage is driven

by gravitational radiation. However, GW emission does not become efficient to drive

a binary SMBH to coalescence in less than the age of the Universe until the binary is

at a separation of a . 0.1 pc. There are various other dynamical mechanisms that

may effectively bridge the gap between the hardening radius and the radius needed for

a GW-driven prompt coalescence. One of the most commonly cited mechanisms is the

interaction of the binary with a core of unbound stars (Quinlan 1996; Sesana et al. 2006).

This mechanism is expected to play the largest role in the second phase for galaxy mergers

that include elliptical galaxies due to the relatively high density of stars compared to the

density of gas in the core of these galaxies (Kormendy et al. 2009). However, other

mechanisms such as gas accretion onto one or both SMBHs can play a major role during

this stage of evolution (Mayer et al. 2007; Kocsis & Sesana 2011).

A subset of the stars in the core are on trajectories that will carry them past the

binary in such a way that the binary will slingshot the star out of the core. The angular

momentum transfer from binary to star ‘hardens’ the binary. One of the largest uncer-

tainties regarding the interaction with unbound stars is the relative speed with which the

reservoir of unbound stars on trajectories which interact with the binary, called the ‘loss

cone’, is refilled. This issue was first discussed in Begelman et al. (1980), and has become

known colloquially as the ‘final parsec problem’, since the initial depletion of the reservoir

of unbound stars typically occurs when the binary is at parsec separation. Many studies

have shown various mechanisms for promptly refilling the loss cone (Khan et al. 2013;

Vasiliev et al. 2015). Fig. 3 shows an example of the three stages of binary evolution and

includes uncertainties on the second stage. However, the plot does assume that the loss

cone refills. If the loss cone never refills then the binary will not coalesce within a Hubble
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time. Thus, the binary never enters a GW-dominated energy loss regime, and ‘stalls’ well

outside the range of detectability by LISA and PTAs.

2.4.1 Stellar Environments

The distribution of unbound stars is characterized by a density ρ and a velocity dispersion

σ. The binary evolution can be expressed as a function of the dimensionless hardening

rate H and eccentricity growth rate K (Quinlan 1996):

da

dt
=
a2Gρ

σ
H , (2.4.3)

de

dt
=
aGρ

σ
HK . (2.4.4)

In the above equations, a is the semi-major axis of the binary. When calculating the

characteristic strain spectrum (Eqn. 2.1.15) for a stochastic background, we need a form

of these equations describing the evolution over orbital frequency, which can then be

related to the gravitational wave frequency of the radiation from each binary at a given

stage of evolution. Kepler’s Third Law relates the orbital frequency (forb) and the semi-

major axis of any binary using the total mass (Mtot) of the binary system.

f 2
orb =

GMtot

(2π)2

1

a3
, (2.4.5)

Kepler’s Law can be applied in this case because each binary is effectively non-evolving

over the timeframe of the PTA observation given the relative time lengths of binary

evolution and human lifetimes. The binary can therefore be treated as on a stationary

orbit, and so Eqn. 2.4.3 becomes

dforb

dt
=

3 (2π)5/6G4/3

2

ρH

σ
M

1/3
tot f

1/3
orb , (2.4.6)

while Eqn. 2.4.4 becomes

de

dforb

=

√
2π

3

K

forb

. (2.4.7)

Eqn. 2.4.7 is effectively only a function of orbital frequency, which means that the

eccentricity at any frequency can be calculated in a straight forward manner given some
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initial eccentricity (e0) at some starting frequency (forb,0).

e(forb) =

√
2πK

3
ln

(
forb

forb,0

)
+ e0 (2.4.8)

In practice, K depends on e among other things. Both H and K are calculated from

scattering simulations and will differ depending on the conditions for those simulations.

The specific set of simulations for H and K used in this work are discussed in detail in

Sec. 3.3.1.

2.4.2 Gravitational Radiation

During the third and final stage of binary evolution, gravitational radiation is the dom-

inant mechanism of energy loss. These binaries are still at cosmological distances, so

linearized, plane-wave approximations of gravitational waves are sufficient to describe

the effects of gravitational radiation on the system. These equations are given by Peters

& Mathews (1963):

da

dt
= −64

5

G3

c5

M•,1M•,2Mtot

a3

(
1− e2

)7/2
(

1 +
73

24
e2 +

37

96
e4

)
= −64

5

G3

c5

M•,1M•,2Mtot

a3
F (e)

(2.4.9)

de

dt
= −304

15

G3

c5

M•,1M•,2Mtot

a4

(
1− e2

)5/2
e

(
1 +

121

304
e2

)
. (2.4.10)

Again it is useful to use Kepler’s Third Law to re-write these in terms of the binary’s

orbital frequency, so that Eqn. 2.4.9 becomes

dforb

dt
=

96

5

(
GMc

c3

)5/3

(2π)8/3 f
11/3
orb F (e) . (2.4.11)

and Eqn. 2.4.10 becomes

de

dforb

=
19

18

1

forb

(1− e2)
5/2

F (e)
e

(
1 +

121

304
e2

)
. (2.4.12)

Above I have introduced a new parameter called the chirp mass of the binary,

Mc =

(
M•,1M•,2

M
1/3
tot

)3/5

, (2.4.13)

which is a useful parameter to combine the mass terms into a single parameter which scales

simply with both gravitational wave strain, which will be shown below in Eqn. 2.5.1, and

binary frequency evolution, as shown above.
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Eqn. 2.4.12 has a similar functional form for orbital frequency, but is also a complex

function of eccentricity. However, as shown in Enoki & Nagashima (2007), it is still

possible to calculate the eccentricity at any frequency given some initial eccentricity (e0)

at some starting frequency (forb,0):

forb

forb,0

=

{
1− e2

0

1− e2

(
e

e0

) 12
19
[

1 + 121
304
e2

1 + 121
304
e2

0

] 870
2299

}−3/2

. (2.4.14)

Yunes et al. (2009) find an accurate fit (< 1% fitting error) for the numerical solution

to e(forb) derived from Eqn. 2.4.14, which is the functional use that we desire from the

above formula. The fit takes the form of the following fraction (Eqn. 3.12 in Yunes et al.

(2009)):

e(forb) =
16.83− 3.814β0.3858

16.04 + 8.1β1.637
, (2.4.15)

where β = χ2/3/σ0(e0), χ = forb/forb,0, and

σ0(e0) =
e

12/19
0

1− e2
0

(
1 +

121

304
e2

0

) 870
2299

. (2.4.16)

More will be discussed about the implementation of these formulae to calculate the strain

spectra in Sec. 2.6, but first we will review the amplitude of gravitational wave emission

from an individual binary SMBH.

2.4.3 Binary Stalling

If the loss cone does not refill efficiently, then the binary will ‘stall.’ Different amounts of

stalling will impact GW signals in different ways. Let’s recall that the number density of

galaxy mergers is being used as a proxy for the number density of binary SMBH mergers

(Eqn. 2.2.2). This assumes that the binary SMBH merger happens promptly following

the galaxy merger. Practically this means that the redshift unit used to describe d3n•

is assumed to be equivalent to the redshift unit describing d3nGal. Once an appreciable

amount of cosmological time passes as the binary travels between the first stage of evolu-

tion, where the galaxy merger rate is calculated, and the final stage of evolution, where

the galaxy is emitting gravitational radiation in the pulsar timing array band, then we

need to adjust the model by accounting for this time.
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Let us introduce a variable Tstall, the time between the galaxy merger and the bi-

nary SMBH entering the PTA band. This stalling timescale variable creates a redshift

offset between the galaxy merger and the binary SMBH’s PTA band gravitational wave

emission. This is incorporated into Eqn. 2.2.2 by setting z1 as the redshift of the galaxy

merger, and z2 as the redshift at which the binary is emitting in the PTA band. Tstall is

the proper time between z1 and z2. The total effect of Tstall on the number of mergers

per observational time is incorporated in the cosmological parameters in Eqn. 2.1.9 by

moving the binary closer since z2 < z1.

d4N

dz2 dM• dq• dt
=

∣∣∣∣ d3nGal

dz1 dMGal dqGal

∣∣∣∣
Gal 7→•

dVc
dz2

dz2

dt
. (2.4.17)

The effect of Tstall on the predictions from this model are discussed in Sec. ??.

2.5 Gravitational Radiation from Binary SMBH

The polarization and sky-averaged strain from one circular binary system is (Peters &

Mathews 1963; Thorne 1987)

hs =

√
32

5

(
GMc

c3

)5/3
c

Dc

(2πforb)2/3 , (2.5.1)

where Mc is the chirp mass of the binary (described in Eqn. 2.4.13), Dc is the proper

distance to the binary (Eqn. 2.1.12), and forb is the orbital frequency of the system. The

rest-frame frequency of the gravitational waves emitted by a circular system, fr, are at

the second harmonic, fr = nforb where n = 2.

An eccentric source emits gravitational waves across many harmonics depending on

the value of the eccentricity. The more eccentric a binary, the more harmonics it emits

in. The strain emitted at each harmonic is then

hn,s(e) =

√
32

5

(
GMc

c3

)5/3
c

Dc

(
2π
fr

n

)2/3

g(n, e) , (2.5.2)

where g(n, e) is the gravitational wave frequency distribution function (Peters & Mathews

1963)

g(n, e) ≡n
4

32

{[
Jn−2(ne)− 2eJn−1(ne) +

2

n
Jn(ne) + 2eJn+1(ne)− Jn+2(ne)

]2

+
(
1− e2

)
[Jn−2(ne)− 2eJn(ne) + Jn+2(ne)]2 +

4

3n2
[Jn(ne)]2

}
.

(2.5.3)
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Figure 4: The above plot shows the relative power radiated into the nth harmonic for three specific

values of eccentricity, e = 0.2, 0.5, and 0.7. For a circular source (e = 0) all of the power is radiated at

n = 2.

Above, Jn represents the nth-order Bessel function. Figure 4 illustrates how larger values

of eccentricity radiate power across cumulatively more GW frequency harmonics.

The attenuation factor, F (e), that first appears in Eqn. 2.4.9, accounts for all of the

radiation emitted by an eccentric binary across all harmonics. It is related to g(n, e) like

so (Peters & Mathews 1963):
∞∑
n=1

g(n, e) = F (e) . (2.5.4)

For circular sources, F (e) = 1. As the eccentricity of a source increases, it not only

radiates gravitational waves at higher harmonics, but due to that extra radiation, the

source evolves more rapidly. However, the radiation of gravitational waves works quickly

to circularize the binary, as seen in Eqn. 2.4.10. The implications of these dynamical

effects for our models are discussed in depth in Sec. 3.3.1.

2.6 The PTA Strain Spectrum

Now we return to the h2
c(f) function (Eqn. 2.1.15) and incorporate all of the ingredients

explained in Sections 2.2 - 2.5 into a useable model for the characteristic strain power

spectrum. First, let us focus just on the d4N•/dzdM•dq•df term and incorporate that

with Eqn. 2.1.9 to get

d4N•
dz dM• dq• df

=
d3n•

dz dM• dq•

dVc
dz

dz

dt

dt

df
. (2.6.1)
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Incorporating Eqn. 2.2.1 with the change from black hole parameters to galaxy merger

parameters in Eqn. 2.2.2, the d4N• term expands to become

d4N•
dz dM• dq• df

= |ΦGal(z,MGal) RGal(z,MGal, qGal)|Gal 7→•
dVc
dz

dz

dt

dt

df
. (2.6.2)

Then we insert the definition of RGal from Eqn. 2.2.3 to obtain

d4N•
dz dM• dq• df

=

∣∣∣∣ΦGal
dfpair

dq

1

τGal

dtr
dz

∣∣∣∣
Gal 7→•

dVc
dz

dz

dt

dt

df
(2.6.3)

Finally, since dz/dt is a cosmological term that does not depend on the mass of either the

galaxy or the black hole, and we are holding to the assumption that the galaxy merger

and the black hole merger occur at the same redshift, we can move to cancel those terms

leaving

d4N•
dz dM• dq• df

=

∣∣∣∣ΦGal

τGal

dfpair

dq

∣∣∣∣
Gal 7→•

dVc
dz

dtr
df

. (2.6.4)

This will hold for any appropriate combination of ΦGal and black hole – host galaxy

relation (Gal 7→ •), two of which are described in detail in Sec. 2.3.

When Eqn. 2.6.4 is inserted into Eqn. 2.1.15 the variables of integration can be changed

to galaxy merger parameters since the only parameters that need black hole masses are

h2
s and dtr/df which gives rise to the complete h2

c(f) formula:

h2
c(f) = f

∣∣∣∣∫ ∫ ∫ dz dMGal dqGal
ΦGal

τGal

dfpair

dq

∣∣∣∣
Gal 7→•

dVc
dz

dtr
df

h2
s . (2.6.5)

In the above equation, the only two terms that contain factors of f are dtr/df and h2
s.

For the simplest case, a circular binary with gravitational radiation dominated evolution,

we see from Eqn. 2.4.11 and Eqn. 2.5.1 that there is a simple power-law expression for

h2
c(f) which can be described by a dimensionless amplitude Ayr (Jenet et al. 2006):

h2
c(f) = A2

yr

(
f

fyr

)− 4
3

. (2.6.6)

The reference frequency of f = fyr = yr−1 is chosen as a common convention. However,

it has the benefit of being at a high enough frequency that even if the binary enters

the PTA band under some other kind of evolutionary forces and/or is eccentric, by the

time the typical binary reaches a gravitational wave frequency of f = yr−1 it may have

circularized due to gravitational radiation and it’s evolution will be dominated by that
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same radiation. This allows Ayr to be used as a high frequency anchor when exploring

different parameters of binary dynamics.

PTA constraints are therefore often quoted as an upper limit on Ayr using this basic

hc ∝ f−2/3 model for the expected stochastic background in the PTA band, extrapolated

from the actual limit at some lower frequency around f = 2/Tobs. For this reason, models

of the background often quote predictions on Ayr. By combining Eqns. 2.6.6 & 2.6.5,

predictions for Ayr can be calculated by:

A2
yr =

∣∣∣∣∫ ∫ ∫ dz dMGal dqGal
ΦGal

τGal

dfpair

dq

∣∣∣∣
Gal 7→•

dVc
dz

(
dtr

d (ln) f
h2
s

)∣∣∣∣
fyr

. (2.6.7)

To obtain the full strain spectra, one can simply integrate Eqn. 2.6.5 across the de-

sired observed frequency band. However, numerical integration will produce the mean

strain distribution, but fails to capture the effects of cosmic variance. In our Universe, the

stochastic background is made up of discrete sources, where the actual number of sources

present in a given redshift range (z, z + ∆z), galaxy mass range (MGal,MGal + ∆MGal),

galaxy mass ratio range (qGal, qGal + ∆qGal), and observational gravitational wave fre-

quency range, (f, f + ∆f) is

N∆z∆MGal∆qGal∆f = Pois

(
d4N•

dz dM• dq• df
∆z ∆MGal ∆qGal ∆f

)
, (2.6.8)

where Pois(x) indicates a Poisson sampled distribution. Thus, the characteristic strain

spectra from a discretely sampled distribution in some frequency bin with central value

fc is equal to the weighted quadrature sum of the strain from the sources emitting in that

frequency bin, or

h2
c(fc) =

N∆f∑
i=1

h2
i,s(fi)

fi
∆f

, (2.6.9)

where fi ∈ (fc − (∆f/2) , fc + (∆f/2)).

For an individual PTA, the frequency range and spectral resolution are set by the total

observation time and the cadence of observations. The spectral resolution, or frequency

bin size, is the inverse of the total observation length. This is also a good approximation

for the minimum value of the frequency range that a PTA observation is sensitive to.

∆f = fmin =
1

Tobs

(2.6.10)
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The maximum frequency is the inverse of the cadence of observations. On average, most

PTA have a cadence of three weeks, which puts fmax ≈ 100 nHz. While current PTA

observational lengths are slightly over a decade (fmin ∼ 2 − 3 nHz), in order to project

out over the next decade of PTA observations, it is common to set fmin ∼ 1− 2 nHz.

The calculation of Eqn. 2.6.9 becomes slightly more complicated when considering

eccentric binaries and/or non-gravitational radiation evolution. When dealing with non-

gravitational radiation evolution, the form of dtr/df changes accordingly. For example,

when the evolution of the binary is dominated by interactions with an unbound stellar

core, Eqn. 2.4.6 is used which makes h2
c(f) ∝ f . For some population of binaries which

are dominated by stellar interactions at low-frequency (larger separations), there will be

some bend frequency (fbend) where the effects of stellar slingshots and gravitational ra-

diation are equal, and above that frequency gravitational radiation will be the dominant

evolutionary mechanism. The bend frequency gets its name from the fact that the char-

acteristic strain changes from being proportional to a positive power of the frequency at

lower frequencies to being proportional to a negative power of the frequency at higher

frequencies, which will create an actual bend in the strain spectra. A simple approxima-

tion for a spectral shape of this kind is derived in Sampson et al. (2015). When a model

is incorporating multiple evolutionary forces, the dtr/df for each is calculated for each bi-

nary, and the mechanism that gives the smallest value is the dominant mechanism. Since

dtr/df is typically also a function of other galaxy parameters, the dominant mechanism

may be different for all binaries across the studied frequency range.

For eccentric sources, one not only needs to keep track of the frequency evolution of the

binary, but also the eccentricity evolution of the binary. Additional complications arise

when trying to use a formula like Eqn. 2.6.11 because each binary is now no longer emitting

at a single gravitational wave frequency. While there have been some derivations of a

straight forward formula to describe the characteristic strain spectra from a population

of eccentric binaries (see (Enoki & Nagashima 2007; Huerta et al. 2015)), in this work we

have chosen to instead obtain h2
c(f) without using numeric approximations. To calculate

an eccentric characteristic strain spectra, we first replace the observed gravitational wave

frequency range in Eqn. 2.6.8, with an orbital frequency range (forb, forb + ∆forb). Then
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we calculate the the strain distribution for each source from Eqn. 2.5.2. Finally, we

calculate the characteristic strain from the quadrature sum of each part of the strain

from any binary that is emitting in a given frequency bin.

h2
c(fc) =

∑
i

h2
i,n,s(e, niforb)

niforb

∆f
, (2.6.11)

where niforb ∈ (fc − (∆f/2) , fc + (∆f/2)).

In Chapter 3, predictions made using the models described above will be discussed,

and Chapter 4 will show how these predictions and models can be used to interpret PTA

data.
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Chapter 3

Predictions for the Gravitational

Wave Background from Binary

Supermassive Black Holes

This chapter builds on the models derived in Chapter 2 and lays out various predictions

for both the amplitude and the spectral shape of the gravitational wave background in

the PTA band. We start by investigating a fiducial model, which combines galaxy stellar

mass functions (Φgsmf), galaxy merger rates (RGal), and the M•-Mbulge relation. Next,

we compare those predictions to ones made using a velocity dispersion function (Φvdf)

and the M•-σ relation in an attempt to more accurately predict the SMBH mass function

(Φ•, described in Sec. 2.3). Finally, models for stellar scattering and eccentricity are used

to create a full distribution of spectra shapes for use in Chapter 4.

3.1 Predictions for Ayr: Fiducial Model

Sesana (2013b) presented the first systematic investigation of the gravitational wave back-

ground using a similar method as the one derived in Chapter 2 to calculate Ayr and utiliz-

ing the mean values of many different observations. The following section seeks to update

that investigation in a complimentary way to what was done in Ravi et al. (2015), which

used fewer, but more complete observations and focused closely on the uncertainties in

the galaxy merger rate as well as other uncertainties inherent to the specific observations
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used to determine the GSMF. This work attempts to find a balance between these two

approaches, using multiple current and complete observations, while also attempting to

parse which details are more relevant to Ayr predictions.

3.1.1 RGal Constraints

The observed galaxy merger rate (RGal) is a combination of the observed galaxy pair

fraction fpair, and an analytically calculated merger timescale τGal (see Eqn. 2.2.3). The

galaxy pair fraction, fpair is fairly well constrained in the local universe (z ∼ 0.1), but is

less constrained with increasing redshift (Keenan et al. 2014). For our purposes, fpair is

well described as a simple redshift power-law,

fpair = Apair (1 + z)m , (3.1.1)

where Apair is the value of fpair at z ≈ 0, and m describes the redshift evolution of fpair

out to z ∼ 2 − 3, where fpair is expected to peak and turn-over for the most massive

galaxies, which we are interested in (Conselice 2014). This work utilizes the galaxy pair

fraction from the GAMA survey (Robotham et al. 2014) and the combined value resulting

from analysis of the RCS1, UKIDSS, and 2MASS surveys (Keenan et al. 2014). While

these two papers agree on the pair fraction in the local universe (z ∼ 0.1), they differ by

a factor of two on the redshift dependence of the pair fraction, with Keenan et al. (2014)

showing a lower value.

Neither observation goes to high enough redshift to observe a turn-over, so we do

not include one. By keeping the slopes of fpair constant out to z = 3, we find that the

values of fpair reached are approximately at both the high and low ends of predictions,

respectively (Conselice 2014). While both Sesana (2013b) and Ravi et al. (2015) use the

fpair measurement from Xu et al. (2012), it is not used in this work because the authors of

Robotham et al. (2014) note that a local pair fraction observation from Xu et al. (2012),

which sets both the low fraction at z = 0 and the high slope of the redshift dependence of

the presented fpair relation, has been shown to be unrealistic. The revised measurement

of Xu et al. (2012) calcuated in Robotham et al. (2014) is consistent with Robotham et al.

(2014), so we do not feel any additional fpair measurement is required to give a robust

prediction.
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For self-consistent comparisons, recent observations of the galaxy pair fraction use one

of two formulas for τGal (Lotz et al. 2011; Kitzbichler & White 2008), which differ by a

factor of two. The Kitzbichler & White (2008) timescale is a lower limit for the galaxy

merger timescale because it is derived by a dark matter halo merger timescale from the

Millennium Simulation. Lotz et al. (2011) calculates τGal from a set of hydrodynamical

simulations, which incorporates gas and dust into the galaxy merger, unlike Kitzbichler

& White (2008). Xu et al. (2012) combined the mass and redshift dependence from

Kitzbichler & White (2008) with the results from Lotz et al. (2011) to give a description

of the major-merger timescale for z < 1

τGal = 0.3 Gyr

(
M

1010.7 M�

)−0.3 (
1 +

z

8

)
, (3.1.2)

which is combined with the pair fractions described above to give the two different galaxy

merger rates used in this work. Since one of the main focuses of this work is the effects

of observable galaxy evolution parameters on the gravitational wave background, we do

not investigate different formulations of tau. However, in Ravi et al. (2015) the removal

of the mass and redshift dependence in τGal was found to produce a slightly higher value

for Ayr.

3.1.2 Φgsmf Observations

The total GSMF is fairly well-constrained by observation out to z = 1.5 (Tomczak et al.

2014; Ilbert et al. 2013), however there is still debate over how the total GSMF breaks

down by galaxy type (star-forming vs. quiescent). Quiescent galaxies dominate the

gravitational radiation that PTAs are sensitive to because they host larger black holes

than star-forming galaxies. Therefore, the break-down of galaxy type as a function of

mass and redshift has a large impact on the overall signal. This work does not assume

any kind clustering effect on mergers, so a quiescent galaxy’s likelihood of merging with

another quiescent is only based on the fraction of quiescent galaxies in a given redshift,

mass, and mass ratio range. Ravi et al. (2015) shows that while there is some possibility

for contamination of colour-selected GSMFs, the overall effect on the amplitude of the

GWB is negligible compared to other contributions.
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This work utilizes the GSMF measured by the CANDELS/ZFOURGE survey (Tom-

czak et al. 2014), and the full UltraVISTA survey (Ilbert et al. 2013) for z > 0.2. The

ZFOURGE survey provided the deepest GSMF measurements at the time of this work

(Tomczak et al. 2014), while the UltraVISTA survey covers a wide field, so they compli-

ment each other well. These two surveys show consistent results with the updated GSMF

from Muzzin et al. (2013) used by Ravi et al. (2015). For z < 0.2, the SDSS/GALEX

observations of the local universe GSMF from Moustakas et al. (2013) are utilized.

3.1.3 The M•-Mbulge Relation

In the past few years, some observations have found a steeper relationship than previously

observed for the correlation between bulge mass and the mass of the resident SMBH.

The steeper values are largely due to the recent measurements of the high-mass end

of Mbulge, which in turn house the most massive SMBHs that will contribute to the

gravitational wave signal in the PTA band (Scott et al. 2013; Kormendy & Ho 2013;

McConnell & Ma 2013). As we aim to predict the most realistic stochastic background

signal as relevant to PTAs, our simulation only considers the M•-Mbulge relations that

include these massive galaxy measurements. Figure 5 shows a demonstration of how the

parameters of Eqn. 2.3.3 vary with the inclusion or exclusion of measurements at the

high-mass end, and various other considerations. It is unclear whether a single power-law

best describes this relationship over the full mass range (Graham 2016), but it appears

to be sufficient for the most massive systems, and so in this work we do not consider the

broken power-law prescriptions in Scott et al. (2013). Additionally, we note that the high

mass relation in Scott et al. (2013) is almost identical to the relation in Kormendy & Ho

(2013).

Measurements of the M•-Mbulge relation also include ε, the “intrinsic scatter”, which

is the natural scatter of individual galaxies around the trend line described by α and

β in Eqn. 2.3.3, as discussed in Section 2.3. This parameter plays a critical role in

Ayr predictions as a way accounting for the outliers in the distribution. The galaxies

containing over-massive black holes will contribute more to the gravitational wave signal

in the PTA band than other galaxies of similar mass and thus are a necessary inclusion
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Figure 5: Demonstration of the variation in M•-Mbulge correlations in the literature. The intrinsic

scatter parameter, ε, is shown as a ± vertical bar for each relation. The points are given by the mea-

surements in the review of Kormendy & Ho (2013). The differences in α and β measurements depend on

a number of effects including: 1) mass range considered; 2) inclusion of pseudobulges/other subsample

effects; and 3) how bulge mass is determined (dynamical vs. stellar luminosity). The major difference

between the KH13/MM13 fit and the Sani et al. (2011)/Beifiori et al. (2012) fits is the inclusion of new

measurements of galaxies at the highest-mass end for KH13/MM13.

into any prediction of Ayr.

3.1.4 Ayr Distribution: Fiducial Model

Combining all of the observational constraints from Sections 3.1.1 - 3.1.3 into the model

from Eqn. 2.6.7, we calculate a range of predictions for Ayr. The inputs are allowed to

vary within the reported observational errors for each combination of GSMF, fpair, and

M•-Mbulge relation described above. Each combination is run 500 times for a total of 4000

predictions of Ayr. Figure 6 shows a plot of this distribution for major-mergers, qGal > 1/4,

of primary galaxies with a stellar mass in the range MGal ∈ (1010M� − 1012M�) and lying

in the redshift range z < 3. Additionally, we include the predictions from Sesana (2013b)

and Ravi et al. (2015), and find that all ranges on Ayr are similar. Fig 6 also indicates

where recent PTA upper limits fall in respect to this model’s predictions. The most

recently published upper limit at the time of this work comes from 11 years of data

taken by the Parkes Pulsar Timing Array (PPTA Shannon et al. 2015), which quotes
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Figure 6: The solid black line is the total distribution calculated using the errors reported with

the measurements we have chosen to use, described in Sections 3.1.1 - 3.1.3. Additionally, the total

distribution is broken down by M•-Mbulge relation, with Kormendy & Ho (2013) shown in magenta,

which is understood to predict higher values of Ayr because the measurement is weighted strongly by

large mass observations, as seen in Fig. 5, while McConnell & Ma (2013) shown in blue is not, and thus

creates slightly smaller black hole masses. The breadth of the distributions results from the observed

variance in our input parameters, and also from the fact that we use multiple formulations for the

GSMF and fpair. The most recent upper limits from each PTA are shown as points directly above the

distribution of Ayr.
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Figure 7: Each prediction of Ayr is the quadrature sum of many binaries. The solid black line shows

the fraction of Ayr that comes from binaries with a given Mc. The gray region shows the one sigma error

region for this distribution. The value of Ayr is dominated by binaries with Mc > 108M�, as expected.

an upper limit on Ayr of 1.0 × 10−15. The North American Nanohertz Observatory for

Gravitational Waves (NANOGrav) has released nine years of data which produce an

upper limit of Ayr < 1.5 × 10−15 (Arzoumanian et al. 2015), and the European Pulsar

Timing Array (EPTA) quoted an upper limit of Ayr of 3.0× 10−15 (Lentati et al. 2015).

PTA upper limits are typically shown to “rule out” some portion of the predicted range

on Ayr. However, it is often unclear what that means in terms of limits on the input

SMBH evolution parameters. Below, we aim to provide clarity by determining how, and

how much, each parameter effects the resulting prediction of Ayr.

As expected for each prediction, Ayr is dominated by binary sources with chirp masses

larger then 108 M� as seen in Figure 7, which shows how the cumulative contribution to

Ayr from increasing chirp masses. Figure 8 shows that the majority of the signal is

produced at z . 1.5, also as expected, but there is a lot of variance at lower redshift,

which is discussed further in Section 3.1.5. Figure 8a shows the contribution from binaries

at different redshifts for both GSMFs used in this paper. While the general trend is the

same for each, the differences in them directly follow the way that each GSMF handles

the abundance of massive early-type galaxies, specifically between 0.5 < z < 1.5.
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Figure 8: The above plots show the fractional contributions to Ayr, plotted in Figure 6, as a function

of redshift for various observational measurements. (a) The redshift distribution of Ayr of the GSMF

from Ilbert et al. (2013) is plotted as blue triangle points, while the GSMF from Tomczak et al. (2014) is

plotted as the green circular points.The GSMF provides the mass distribution of galaxies as a function

of redshift, and thus affects how each redshift bin will contribute to the total value Ayr. Both GSMFs

are plotted with error bars, which indicate the root-mean-squared value from all simulation runs. While

the majority of the contribution to Ayr comes from binaries at z . 1.5, there is a large amount of

variance which is dominated by the uncertainty in the amount of massive galaxies in this redshift range.

We discuss the relative contributions from variance in the GSMFs on the variance of Ayr predictions in

Section 3.1.5. (b) fpair is the fraction of galaxy pairs in a certain mass, redshift and mass ratio range

that are undergoing a merger. This parameter sets the number of sources that will be contributing to

Ayr. While both measurements have the same value at z = 0, the redshift dependencies vary by a factor

of two. The higher slope fpair from Robotham et al. (2014), shown above in red circles, contributes less

at lower redshifts then the lower slope fpair from Keenan et al. (2014), shown above in green triangles,

which is directly related to the number of binaries contributing to Ayr at higher redshifts.
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At higher redshifts the amount of signal is dominated by the total number of binaries,

which is set in part by fpair. The effect of different fpair on the redshift distribution of the

contribution to Ayr is shown in Figure 8b. While both values of fpair used in this paper

have the same value at z = 0, the redshift dependencies vary by a factor of two. However,

as described in Section 3.1.1, the two values trace the upper and lower ends of predictions

for fpair at high redshift. An interesting feature of Figure 8b is that the higher slope fpair

from Robotham et al. (2014) contributes less at lower redshifts than the the lower slope

fpair from Keenan et al. (2014). This trend is directly related to the number of binaries

contributing to Ayr at higher redshifts.

3.1.5 Relative effects of GSMF, fpair, and M•-Mbulge on Ayr

Each parameter in Eqn. 2.6.7 that has an observational constraint also has an associated

error. These errors obviously effect the variance in the final strain spectrum prediction.

In Fig. 9, we show the 1σ range of predictions for Ayr given by each combination of

observational parameters. The percentage contribution to the total error is broken down

for each parameter in a given combination, and shown underneath the predicted range of

Ayr. Below, we discuss the breakdown of the errors in individual observational parameters

impact on the final range of Ayr.

Given that A2
yr ∝ M

5/3
c , the parameters which affect the binary chirp mass should

have substantial impact on the prediction of A2
yr (Sesana & Vecchio 2010). Accordingly,

we find the M•-Mbulge relation sets the mean value for A2
yr predictions, as can be seen by

the breakdown in Figure 6. This is the relation that provides the translation from galaxy

population to BH mass and therefore sets the mean value of the Mc distribution.

The GSMF plays a large role in determining the variance of a certain prediction. All

mass functions used in this paper are parametrized using a double Schechter function (Eqn

2.3.2) for z < 1.5, so there are a lot observed parameters included in each calculation.

Looking at each Schechter parameter and the error bars associated with it reveals that

uncertainty in M∗ has the largest effect A2
yr predictions, contributing 45% of the GSMF

error for both observations used in this paper. M∗ is the mass at which the Schechter

function transitions between the high-mass exponential decay and the lower-mass slopes
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Figure 9: In the top portion of this graph, the error bars show the one sigma region of predictions

for Ayr for each combination of galaxy evolution parameters used in the model. The bottom portion

of the graph shows the stacked error contributions from each parameter. The black region is from the

M•-Mbulge relation, while the gray region is from the GSMF, and the white region is from fpair. The

label on each combination shows which measurement was used: KH13 - (Kormendy & Ho 2013), MM13

- (McConnell & Ma 2013), T+14 - (Tomczak et al. 2014), I+14 - (Ilbert et al. 2013), R+14 - (Robotham

et al. 2014), K+14 - (Keenan et al. 2014). Clearly the error from the GSMF measurements dominate the

error budget of each prediction, followed by the error from the M•-Mbulge relation. The errors in fpair

are minimal as there is barely a hint of white in each stacker bar graph. The implications of this plot

are discussed in Section 3.1.5.
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Figure 10: fbulge describes the fraction of a galaxy’s total mass contained in the central bulge. This

parameter is used to estimate a black hole’s mass using the host galaxy’s total stellar mass. For quiescent

galaxies there are two parameters used to set fbulge, a value for massive galaxies, M > 1011M�, which

is plotted on the y-axis, and a value for the less massive galaxies, M = 1010M�, which is plotted on

the x-axis. For galaxies with masses between MGal ∈
(
1010M� − 1011M�

)
, fbulge is assumed to follow

a log-linear line between the set values. Both of these values were allowed to vary and the resulting

fractional change in Ayr is shown on the z-axis in color. In this paper we use the values (0.25, 0.9), which

is the point used for comparison in the fractional change shown in the color bar. Overall there is not a

strong dependence on Ayr from the parameterization of fbulge.

α1 and α2. The error from the local GSMF, z < 0.2 (Moustakas et al. 2013), is minimal

at 2% of the GSMF error, but the next redshift bin, 0.2 < z < 0.5, in both GSMF

observations used in this paper provides the largest influence by redshift on GSMF error

contribution to A2
yr at 55% for Tomczak et al. (2014) and 72% for Ilbert et al. (2013).

The host galaxy’s mass is used to estimate each black hole’s mass using fbulge. fbulge

for quiescent galaxies is described with two values, one that sets the fraction of mass in

the central bulge for massive galaxies, MGal > 1011M�, and one that sets the fraction of

mass in the central bulge for galaxies with stellar masses of 1010M�. Given the dominance

of the signal from binaries with chirp masses above 108M�, the effect of the quiescent

galaxy’s fbulge on Ayr was calculated. Fig. 10 demonstrates the dependence of Ayr on

fbulge for quiescent galaxies, making it clear that there is not a strong dependence (less

than a factor of ∼
√

2).
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The pair fraction, fpair, has the least impact on A2
yr. Although the parameter itself has

a large range, it only impacts the number of sources (A2
yr ∝ N), rather than the masses

of those sources. The error in fpair primarily comes from the error on the local universe

measurement of the fpair rather than m. The significant difference in errors between the

two observations of this parameter comes from their fact that their reported errors on the

local universe measurement are a factor of two different, however, the measurement they

make is within 5% of each other, so overall this parameter is fairly well constrained.

3.1.6 Conclusions: Fiducial Model

The Ayr predictions plotted in Fig. 6 are consistent with other published predictions which

use similar methods, and appear in some tension with published PTA limits. We will

discuss this tension in Chapter 4. The mean and range of the predictions are dominated

by two parameters: the M•-Mbulge relation, which appears to be the dominant parameter

in setting the mean value for a set of predictions, and the uncertainty in the GSMF,

which dominates the range covered by a given prediction. The GSMF and the M•-Mbulge

relation are combined and used as a proxy for the underlying supermassive black hole

mass function (Φ•), given that the uncertainty in these proxies dominate the uncertainty

in predictions, it is worth exploring if there are other proxies that could be used to predict

Φ•. This would not only be a useful exercise for comparing results, but if the uncertainty

could be significantly lowered that would open up the possibility to place constraints on

τ (Eqn. 3.1.2), which is currently not well constrained.

3.2 Predictions for Ayr: Φvdf vs. Φgsmf

Recent work has increasingly suggested that the stellar velocity dispersion (σ) is a more

fundamental property of a galaxy than the stellar mass (Wake et al. 2012; van den Bosch

2016), and that the M•-Mbulge relation is just an extension of the more fundamental

M•-σ relation. Given the desire, described above, to find another method to infer the

supermassive black hole function (Φ•), this led me to pursue a way of describing the

number density of galaxy’s directly by σ. In addition to using a different black hole

mass - host galaxy relation, using σ instead of Mbulge minimizes the number of steps

41



and assumptions used by removing the need for estimating the fraction of stellar mass

contained in the bulge (fbulge).

Inserting σ for MGal and Mbulge in the hc(f) calculation is fairly straight forward.

Φvdf is swapped for Φgsmf and the M•-σ relation is swapped for the M•-Mbulge relation.

RGal is almost identical, except that τGal as constructed in Eqn. 3.1.2 has a dependence

on MGal, which is no longer a parameter being drawn for each galaxy, so we remove

the galaxy mass dependence and use a simpler form of τGal which only has the redshift

dependence. To make sure that the new predictions are comparable to the fiducial model,

the range of parameter space covered by the number density integral should be similar.

To cover a similar range of galaxies, we use σ ∈ (100, 500), which is comparable to

MGal ∈ (1010M�, 1012M�).

The definition of a major merger was based on MGal, so the range of qGal needs to

be replaced by a comparable range in qσ. To do this we use the virial theorem assuming

that stellar mass is proportional to dynamical mass (Taylor et al. 2010):

σ ∝
√
MGal

re
, (3.2.1)

where re is the effective radii, which can be related to the galaxy stellar mass by re ∝M0.56
Gal

(Shen et al. 2003), combining these together, one gets

σ ∝M0.22
Gal . (3.2.2)

Therefore 1 > qGal > 1/4 translates to 1 > qσ > 0.74.

3.2.1 Φvdf Constraints

The extensive study of the local velocity dispersion function (VDF) in the SDSS, which

covers z < 0.3, gives a strong anchor from which to extend a study of VDFs to higher

redshifts (Sheth et al. 2003; Bernardi et al. 2010). However, measuring a complete VDF

using dynamical measurements would require an extremely large spectroscopic survey,

which does not exist at the moment. Instead, work has been done to estimate an inferred

velocity dispersion (σinf) for galaxies at higher redshift (0.3 < z < 1.5) using a combina-

tion of stellar mass (MGal), effective radii (re), and Sèrsic index (n). The inferred velocity

dispersion is then related to the intrinsic velocity dispersion (σ) using the SDSS sample
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of galaxies. This method was first attempted by Bezanson et al. (2011), which calculated

the evolution of the total VDF out to z ∼ 1.5.

For z < 0.3, this work uses the VDFs reported in Bernardi et al. (2010). Sheth et al.

(2003) made the first measurement of the quiescent VDF in the SDSS fitting it with a

modified Schechter function (shown in Eqn. 2.3.4). Other quiescent and total VDFs have

been fit using the same functional form. For 0.3 < z < 1.5, this work utilizes the VDF

from Bezanson et al. (2012), which takes the same method from Bezanson et al. (2011)

and using a large uniform sample makes morphological cuts to create a separate VDF for

quiescent and star-forming galaxies. These cutes are similar to the morphological cuts

made in GSMFs, however σinf does not appear to have the same level of confusion with

morphological color-selection as MGal, as discussed for GSMFs. Like σ, σinf is a better

predictor of quiescence than stellar mass (Wake et al. 2012; Bezanson et al. 2012). While

quiescent VDFs take the form of a modified Schechter function , star-forming VDFs in

Bezanson et al. (2012) stay mostly flat in log-log space before falling off quickly at high

σinf , so a double power-law is used to describe those functions (Bezanson 2016).

3.2.2 The M•-σ Relation

Similar to the M•-Mbulge relation, recent observations have found more black holes at the

most massive end of this relation (McConnell & Ma 2013). However, unlike the M•-Mbulge

relation, the M•-σ relation does differ with galaxy morphology. There is a different fit

for the quiescent and star-forming galaxy populations, while both take the same form

(Eqn. 2.3.5). In this work, the M•-σ relations from McConnell & Ma (2013) are paired

with the Φvdf from Bezanson et al. (2012). The predictions from this pairing are discussed

in Sec. 3.2.4, where they are also contrasted with the Φgsmf and M•-Mbulge predictions

described in Section 3.1.4.

3.2.3 Variations in M• from M•-σ vs. M•-Mbulge

Before comparing the predictions of Ayr from Φvdf and Φgsmf , let us first look at com-

parisons for predicting M• in quiescent galaxies from M•-Mbulge vs. M•-σ. Using the

measured scaling relation for MGal and σ for the SDSS from (Zahid et al. 2016) and the
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Figure 11: A direct comparison between using MGal and σ as a proxy for the mass of a quiescent

galaxy’s central SMBH is plotted above, with the M• from MGal on the x-axis and from σ on the y-

axis. The dotted line follows a direct one-to-one matching, and the solid line shows the mean value of

comparison. While the scatter around the relationship is large, due to the intrinsic scatter ε in both

the M•-Mbulge and the M•-σ relations, the values given are relatively consistent with each other. For

massive black holes (¿ 109M�) σ appears to infer slightly larger M• than MGal.

measured M•-Mbulge and quiescent M•-σ from McConnell & Ma (2013), we can create a

direct comparison of these two methods, derived from observational constraints.

Figure 11 shows the results for quiescent galaxies with MGal ∈ (109M� − 1012M�).

The intrinsic scatter ε in both the M•-Mbulge and M•-σ relation translates to a large

scatter in M• predictions, but the mean relation shows each method giving approxi-

mately the same result. They diverge slightly from each other for high black hole masses

(M• > 109M�) with the M• inferred using the M•-σ relation being larger than that given

by the M•-Mbulge relation. At high M• for the MGal method, fbulge is set to 0.9, and a

similar trend is seen if fbulge is set to 1 for MGal > 1011M�. The implications of this are

seen and discussed further in the rest of this section.

3.2.4 Ayr Distribution: Comparing Φvdf vs. Φgsmf

Predictions for Ayr are calculated from Eqn. 2.6.7 in a similar matter to that described

in Sec. 3.1.4, but Φvdf , as described in Section 3.2.1, is swapped for Φgsmf and the M•-σ

relation, as described in Section 3.2.2 is swapped for theM•-Mbulge relation. The predicted
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Figure 12: The blue line is the Ayr distribution prediction using a velocity dispersion function (VDF)

as a proxy for the black hole mass function, described above in the first portion of Section 3.2. The

green line is an Ayr distribution prediction from the fiducial model which uses a galaxy stellar mass

function (GSMF), described in Section 3.1. Both distributions utilize a modified τGal so that the results

are comparable, and both use black hole mass - host galaxy relations measured from the same set of

observations, McConnell & Ma (2013). The Ayr distribution from the VDF is larger than that from the

GSMF, which is consistent with the direct comparison shown in Figure 11 and can be understood as the

effect of higher mass binaries. This effect is seen more clearly in the Ayr vs. Mc plot (Figure 13).
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Figure 13: The solid green lines shows the fraction of Ayr that comes from binaries with increasing

chirp mass, Mc, for the Ayr predictions that use galaxy stellar mass functions (GSMFs), while the solid

blue line shows the fraction of Ayr for the predictions that use velocity dispersion functions (VDFs).

The shaded regions around the solid lines indicate the one sigma error region for these distributions.

The green line is comparable to the distribution shown for the fiducial model in Figure 7. The VDF

distribution is roughly 0.5 dex larger, on average, with a slightly smaller offset at lower chirp mass and

a slightly larger offset at high chirp mass. This trend may follow from the larger black hole masses

predicted using σ in comparison to MGal.

distribution of Ayr is plotted in Figure 12 along side a distribution of Ayr from the fiducial

model, which uses the GSMF from Ilbert et al. (2013), fbulge from Robotham et al. (2014),

and M•-Mbulge from McConnell & Ma (2013), the one difference in this distribution from

the fiducial model is the use of a modified τGal to not skew the comparison results. The

GSMF distribution is slightly lower than what was shown in the fiducial model (compare

the green distribution in Figure 12 to the [MM13, I+14, R+14] column of Figure 9),

which is expected with the removal of the mass dependence in τGal. The VDF distribution

predicts a higher value of Ayr, which may be caused by higher mass black holes being

predicted by σ relative to Mbulge, as seen in Figure 11.

The difference in predicted black hole masses is most clearly seen in Figure 13, which

plots the fractional contribution to Ayr as a function of binary SMBH chirp mass, Mc. The

VDF distribution, shown in blue, is about 0.5 dex higher than the GSMF distribution,

shown in green. As discussed in Section 3.1.5, Ayr ∝ N1/2M
5/3
c . For an average Mc
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increase of 0.5 dex, the predicted Ayr should increase by 0.4 dex if nothing else changes,

since an average Mc increase will automatically decrease the average N given that more

massive binaries evolve faster (dt/df ∝M
−5/3
c , see Eqn. 2.4.11). However, Figure 12 only

shows a mean Ayr increase of 0.2 dex between the VDF and the GSMF distributions.

Thus, the VDF predictions must have an even smaller mean number of sources at each

chirp mass, particularly the most massive, than the GSMF. Fewer sources in the VDF

distribution must then come from the different black hole mass function proxies used in

each prediction, Φvdf or Φgsmf .

In conclusion, σ predicts a gravitational wave background of comparable amplitude

to that from MGal. However, the population of binary SMBHs predicted using σ is built

up from fewer, more massive sources than the MGal predictions. While these populations

might look similar when comparing Ayr predictions, the underlying demographics should

reveal different strain spectra across the PTA band. The assumptions of stochasticity and

isotropy of the background require a large number of sources at relatively equal strain

evenly distributed across the sky.

3.2.5 Spectral Shape: Comparing Φvdf vs. Φgsmf

Full strain spectra are obtained using Equation 2.6.9. The biggest difference between

creating a full spectra from a population and predicting Ayr values is that the full spectra

is made up of discrete sources, which allows the results to incorporate cosmic variance, the

sample variance from different realizations of the Universe. The effects of cosmic variance

have been shown to cause the stochastic background to deviate from the expected power

law behavior (Equation 2.6.6) at high frequencies (f & 20 nHz) (Sesana et al. 2008;

Roebber et al. 2016). Figure 14 contains the mean and standard deviation from 500

realizations of the strain spectra predicted using VDFs (shown in blue) and GSMFs

(shown in green). The dashed line shows the expected power-law behavior of a stochastic

background from binaries which have evolution dominated by gravitational radiation.

The GSMF spectra deviates from that power law around the expected frequency range

due to cosmic variance. The VDF spectra deviates from the power law model at a much

lower frequency of f ∼ 3 nHz.
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Figure 14: The green solid line shows the mean strain spectra from 500 realizations of the binary

SMBH population using GSMFs, while the blue solid line shows the mean strain spectra for a population

made using VDFs. The shaded region around both solid lines represent the one sigma error bar region

associated with the mean spectra values. The dashed lines show the expected power-law behavior for

a stochastic background (Equation 2.6.6). The GSMF populations deviate from the power law at high

frequencies (f & 10 nHz) as expected, while the VDF populations start to deviate at a lower frequency

of f ∼ 3 nHz. This deviation is due to cosmic variance.

The populations used to make Figure 14 assume that gravitational radiation will be

the dominant form of binary evolution across the entire PTA band. However, as discussed

in Section 2.4, there is the possibility that different mechanisms of binary evolution may

be dominant at the lower end of the PTA band. Given that the VDF populations show

strong cosmic variance at lower frequencies than previously thought, we produce another

set of populations that are evolved in a dense distribution of unbound stars in the galactic

cores. The evolutionary equations for this type of binary dynamics are described in

Section 2.4.1, with ρ set to 1000M� pc−3, which is a relatively high value that is expected

to cause a low-frequency turnover in the spectrum in the PTA band. Figure 15 shows the

resulting spectra from these populations. The frequency where the spectra turns over for

the VDF population is at a lower frequency than that in the GSMF population, which

again matches the expectation for the binary’s hosting more massive black holes, as the

bend frequency (the frequency where the turn-over occurs) is inversely proportional to

the total mass of the binary (Sampson et al. 2015). The level of cosmic variance in the
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Figure 15: Again the green and blue solid lines show the mean strain spectra from 500 realizations

of the binary SMBH population using GSMFs and VDFs, respectively. The difference between these

spectra and those seen in Figure 14 is the incorporation of a low-frequency turn-over due to interactions

with a dense (ρ = 1000M� pc−3) distribution of unbound stars in the galaxy core (discussed in Section

2.4.1). The shaded regions represent the one sigma error regions associated with the mean spectra values,

and the dashed lines are the same as those in Figure 14. The effects of stellar scattering deplete the signal

at lower frequencies, however due to the more massive systems in the VDF population, the frequency

at which the turn-over happens is lower than for the GSMF population. Even so, the effects of cosmic

variance cause the VDF populations at this level of stellar density in galactic cores to never actually

reach the expected power-law.

VDF populations coupled with this low-frequency turnover means that these populations

never reach the expected power law behavior of a stochastic background.

In conclusion, the VDF populations consist of fewer total sources contributing a large

amount to the stochastic background than the GSMF populations. The systems that

significantly contribute to the background the most are very massive. Since these massive

systems are so few in number, they are more susceptible to the effects of cosmic variance.

The implications for detection of spectra like those created by the VDF population has

yet to be studied. The peak sensitivity of a PTA is right around fGW = 1/Tobs, so the

potential for larger sources at lower frequencies increases the chance of the detection

of a single resolvable source. More on detecting individual sources will be discussed in

Chapter 5.
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3.3 Spectral Shape from Binary Black Hole Dynamics

Distributions of Ayr are a useful way of comparing predictions for the stochastic back-

ground, and if one assumes gravitational radiation is the dominant evolutionary mecha-

nism for all binaries in the PTA band and that binaries enter the PTA band in circular

orbits, then Ayr provides all that is needed to describe the expected power-law spectral

model from Eqn. 2.6.6. However, those assumptions do not necessarily hold. Instead,

it is very likely that as binaries enter the PTA band, they are evolving through some

other mechanism (e.g., slingshot interactions with a core of unbound stars) and are not

circular. In these cases, the spectral shape deviates from the power-law model, and the

specific shape of the spectra will depend on the specifics of the other mechanism driving

evolution, as seen above in Figure 15.

While it is fairly straight forward to model circular binary evolution with many mech-

anisms, once any level of eccentricity is incorporated, the modeling becomes difficult as

there are no analytic spectral models that encapsulate the combined influences. Modeling

the combined effects requires evolving each binary across the entire PTA band individu-

ally since a binary’s total mass, mass ratio, and the initial parameters of the evolutionary

mechanisms all impact the evolution track. This level of individual detail makes a single

spectra calculation take much longer than in the non-circular case. In order to speed up

the creation of non-circular binary populations, I interpolate a binary’s evolution over

the expected range of total mass, mass ratio. The specifics of which are described below

followed by an example of the resulting spectra from these eccentric populations.

3.3.1 Stellar Scattering & Eccentricity Evolution

When a binary is evolving through interactions with an isotropic distribution of unbound

stars in the galaxy core, the orbital decay is set in part by the dimensionless hardening rate

H, while the eccentricity evolution is set in part by the dimensionless eccentricity growth

rate K, both described in Sec. 2.4.1. Quinlan (1996) measured H and K through simple

scattering experiments, there were improved by Sesana et al. (2006), which reproduced
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1:1 Mass Binary - Eccentricity Evolution

Figure 16: The above plot shows the eccentricity evolution of a binary SMBH under a variety of

cases. The colors match the binary eccentricity and their values are described in the color bar on the

right. The evolution shown here is for equal mass binaries and each individual plot shows the binary

chirp mass on the y-axis and the orbital frequency on the x-axis. The columns correspond to increasing

levels of stellar density (ρ) and the rows correspond to increasing levels of initial eccentricity (e0). In

general, if the eccentricity starts out small (e . 0.3) then it stays small. However, for higher levels

of initial eccentricity, the eccentricity grows as the binary evolves through stellar slingshots. Once the

binary evolution becomes dominated by gravitational radiation, the eccentricity quickly goes to zero. The

increasing values of ρ move the frequency at which gravitational radiation dominates to higher values,

and for the largest values of ρ the frequency where the evolution mechanism changes is within the PTA

band. However, even for small values of ρ, if the initial eccentricity is moderately large, the effects of the

stellar evolution can be detected in the PTA band by the non-zeros levels of eccentricity.
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the classical results and found that the rates are well described by the following functions:

H = A

(
1 +

a

a0

)γ
, (3.3.1)

K = A

(
1 +

a

a0

)γ
+B . (3.3.2)

Sesana et al. (2006) expanded upon the classical results in Quinlan (1996) to a broader

range of initial eccentricities (e0) and mass ratios (q).

When stellar scattering and eccentricity are incorporated into these models, we inter-

polate over the results presented in Sesana et al. (2006). Table 1 in Sesana et al. (2006)

only shows the values for circular binaries, so unlike Ravi et al. (2014) which ignored the

effects of eccentricity on semi-major axis evolution, we use Figure 1 in Sesana et al. (2006)

to estimate those effects and include those various values into our interpolation. As in

Ravi et al. (2014), we anchor all binary evolution to a starting frequency of forb = 10−12

Hz, which is sufficiently low that any GW emission is outside PTA sensitivity ranges. The

initial eccentricity parameter is set at this frequency, and is evolved across the PTA band

in accordance with which ever mechanism (stars or gravitational radiation) dominated

the orbital evolution. Figure 16 shows the interpolation of eccentricity evolution across

orbital frequency and binary chirp mass under different sets of parameters (ρ, e0) using

the Sesana et al. (2006) scattering experiment results.

3.3.2 Predictions for Full Spectra

The orbital eccentricity and environmental couplings of a population of SMBHBs do not

directly impact the merger-rate density. They effect the evolution of the binaries and

the frequency distribution of the characteristic strain emitted by each source, hc(fgw).

Thus, all populations share a common binary merger-rate density prescription like that

described in Section 2.2. However, to ease computational burden, a single measurement

of each observable was used: GSMF from Ilbert et al. (2013), fpair from Robotham et al.

(2014), and M•-Mbulge from McConnell & Ma (2013). For each realization, the value of

each observable was randomly drawn from a Gaussian with widths equal to the cited one-

sigma uncertainty regions, this method propagates observational uncertainties through

to the spectra variance.
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Figure 17: The four plots each show a hundred population realizations for the chosen values of

binary evolution (e0, ρ), where e0 is the initial eccentricity of the binary set to an orbital frequency

of 10−12 Hz and ρ is the density of unbound stars in the galactic core. Grey lines indicate single

population realizations, while green is the mean over realizations. The dashed line shows a ∝ f−2/3

strain spectrum for reference. The four plots encapsulate the four extreme corners of the combined

parameter space {e0, ρ}: upper left {e0 = 0, ρ = 10M�pc−3}; upper right {e0 = 0.9, ρ = 10M�pc−3};
lower left {e0 = 0, ρ = 104M�pc−3}; lower right {e0 = 0.9, ρ = 104M�pc−3}.

To generate a population, a finite number of sources are created, whose binary param-

eters match the merger-rate density for each realization, with eccentricities that have been

evolved according to the prescribed environmental conditions {e0, ρ}. We assume that

all binaries have the same initial eccentricity and are embedded in a stellar distribution

with the same density.

Almost all (> 99%) of the GW strain in the PTA sensitivity band (10−10 < fgw < 10−7

Hz) comes from less than 2×105 sources. These sources are saved for each realization. The

characteristic strain spectrum of the GW background, hc(f), is built up as the quadrature

sum of the strain from each source. Figure 17 shows the characteristic strain spectra at

four extreme corners of the combined parameter space {e0, ρ}.
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Chapter 4

Astrophysical Interpretation of

Pulsar Timing Array Limits

The previous chapter in this dissertation have focused on predicting the gravitational wave

signatures from a population of binary SMBHs. While these predictions are interesting

and useful in their own right, one of the primary purposes for creating a simulation to

produce them was to better understand and interpret PTA data. The following chapter

sets out to systematically do that. First, in Section 4.1, by setting up direct mappings

between PTA limits on the gravitational wave background (GWB) and the astrophysical

parameters that are used as inputs for Ayr predictions. And then by taking actual PTA

data and setting limits directly on various parameters of galaxy evolution. Section 4.2

does this for parameters that greatly impact Ayr predictions, while Section 4.3 sets limits

on a combined parameter space that describes binary evolution parameters that affect

the spectral shape of the background in the PTA band.

4.1 Translating GWB Limits and Astrophysical Parameters

One of the overarching goals in this work is to provide a mapping of GWB

limit/measurement values to specific parameters of galaxy formation. Below, we look

at how areas of parameter space correspond to specific values of Ayr with an associ-

ated error range. In our discussions below we aim to make the following two statements

attainable:
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Figure 18: These parameters, with ε, are used to characterize the black hole-host galaxy relation

described in Eqn. 2.3.3 (ε = 0 in this figure). The contours show constant values of Ayr; note, however,

that the contours will scale downward with ε > 0 according to the curve in Fig. 19. Observational

measurements are indicated by diamonds. The grey region accounts for uncertainties in other measured

astrophysical parameters, specifically the GSMF and the galaxy merger rate. This uncertainty applies to

all values of Ayr but is only shown on the current best published PTA limit. A set value of Ayr translates

to a collection of α − β pairs, while a PTA upper limit on the value of Ayr translates to an upper limit

on these parameters. Values of α and β which predict a larger Ayr would be inconsistent with that PTA

limit.

• Given a PTA upper limit on the GWB, what specifically does this mean for

galaxy/SMBH evolution?

• Given a new observation of the M•-Mbulge relation, are the new values compatible

with the best PTA limit? If not, how can they be reconciled?

4.1.1 GW limits and the Black Hole - Host Galaxy Relation

The parameter space that characterizes the black hole-host galaxy relation is encompassed

by α, β, and ε (e.g., Equations 2.3.3 & 2.3.5). Fig. 18 shows contours of constant Ayr

in α-β space, while keeping ε equal to zero, as this is the most common way that the

M•-Mbulge relation is reported. Yet, for a specific value of α, changing β across the entire

range of observed values translates to only a < 20% change in Ayr. ε is the natural scatter
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Figure 19: As the intrinsic scatter ε increases, the black hole mass function adjusts to include higher

mass SMBH systems and as such the overall strain increases in an exponential manner.

of individual galaxies around the trend described by intercept α and slope β, and plays a

critical role in Ayr predictions. As ε increases, higher masses are present in a few binaries,

which increases the distribution of chirp masses and effectively weights Ayr upward. We

demonstrate the implications of this in Figure 19, which shows the dependence calculated

numerically; for any combination of α and β, changes in ε effect A2
yr in the same way.

It is thus α and ε that have the most impact on a prediction of Ayr, and so we combine

the results of Fig. 18 & 19 in Fig. 23 to show Ayr as a function of α and ε, while holding

β = 1.

4.1.2 GW limits and Stalling Binaries

The assumption that galaxy mergers and binary black holes form at the same cosmolog-

ical time has until now been implicit in the model used in this paper and others. Yet,

as PTA upper limits become inconsistent with measured astronomical parameters, the

assumptions of this model must be questioned. It is straight forward to ease this as-

sumption by allowing for a “stall” in the binary SMBH formation, as described in Section

2.4.3. Let us incorporate the variable Tstall, which sets the different redshift values used in

Equation 2.4.17. Fig. 21 shows how Ayr changes with different values of Tstall. Obviously
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Figure 20: The parameters α and ε are found to most strongly define the predicted strength of GW

amplitude. The contours show the value of the Ayr as a function of these parameters. Observational

measurements are shown as indicated. The grey region accounts for uncertainties in other measured

astrophysical parameters, specifically the GSMF and the galaxy merger rate. As in Fig. 18, this uncer-

tainty applies to all values of Ayr but is only shown on the current best published PTA limit. A PTA

upper limit on the value of Ayr translates to an upper limit on the parameters α and ε and would be

inconsistent with parameter values that predict a larger Ayr.

as the stalling time scale reaches values nearing the Hubble time, Ayr falls to zero as no

systems are expected to ever enter the PTA band. The meaning and use of limits on Tstall

are described further in Section 4.2.2.

4.2 Limiting M•-Mbulge and stalling timescale with PTA con-

straints

The following section describes a method by which PTA constraints can be extended

beyond Ayr and into the parameter space of galaxy evolution. Similar goals have been

proposed using different methods in Middleton et al. (2016). We note that a key difference

between this work and that of Middleton et al. (2016) is that we interpret PTA limits in

the context of other observational constraints on galaxy evolution, whereas the Middleton

et al. (2016) method assumes no outside knowledge of the SMBH binary population,
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Figure 21: Tstall measures the time between the galaxy merger and the binary SMBH entering the

PTA band in Gyrs, described in Section 2.4.3. The predicted value of characteristic strain for a given

value of astronomical parameters depends on the value of Tstall. As the time increases, binaries “stall” for

longer and less reach the PTA band, which lowers the overall strain until the time approaches a Hubble

time and there is effectively no GWB from binary SMBHs.

except for a general form of the SMBH merger rate density (which is well motivated), to

formulate their constraints. As such, they were unable to place meaningful limits on the

binary population, while this work is able to place tighter constraints by utilizing a well

established range of prior information.

4.2.1 Constraining α, β, and ε for the M•-Mbulge relation with PTAs

It is common for PTA constraints to be quoted as a single number, Ayr, which represents

the 95% upper limit on a GWB of a given spectral index: for binary SMBHs, αh = −2/3

(Equation 2.6.6). However, quoting a single number is only for simplicity; the actual

result produced by PTAs for a limit on a power-law GWB is a probability distribution

for the value of the strain amplitude.

Here we describe the use of this probability distribution to obtain direct limits on α,

β, and ε. We then demonstrate how an inconsistency with an observed value can be used

to place a lower limit on Tstall.
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In terms of Bayesian statistics, a PTA produces a posterior on Ayr,

p (Ayr|PTA) ∝ p (Ayr) p (PTA|Ayr) , (4.2.1)

where p (Ayr) is the prior distribution, and p (PTA|Ayr) is the likelihood. We are inter-

ested in producing a posterior on parameters from our model. As the M•-Mbulge relation

provides the most influential parameters on Ayr, here we calculate the posteriors on α, β,

and ε:

p (α, β, ε|PTA) ∝ p (α) p (β) p (ε) p (PTA|α, β, ε) . (4.2.2)

Our model gives us a way of translating α, β, and ε into a value of Ayr, which means the

two likelihoods are equivalent,

p (PTA|α, β, ε) = p (PTA|Ayr(α, β, ε)) . (4.2.3)

We do need to include other observational parameters into our model, specifically the

GSMF and the galaxy merger rate. We will represent all of these parameters with θ,

which we can marginalize over, giving

p (α, β, ε|PTA) ∝
∫
dθ p(θ) p(Ayr(α, β, ε, θ)|PTA). (4.2.4)

Fig. 22a shows the translation of the recent upper limit from Shannon et al. (2015)

into the parameter space that characterizes the M•-Mbulge relation, while Figure 22b

shows the translation of the recent upper limit from Arzoumanian et al. (2015) into the

same parameter space. A 95% upper limit can be set in the 2−D parameter space, α-ε,

by integrating the distribution. These are shown in Figures 23a & 23b for the Shannon

et al. (2015) and the Arzoumanian et al. (2015) upper limits, respectively. Similar work

has been done in Middleton et al. (2016), where an attempt is made to reconstruct a

parametrized form of the black hole merger rate density from a posterior on Ayr from

PTAs. This kind of mapping from PTA data to astrophysical parameters is the next step

forward in analyzing PTA data and is already being used in recent PTA limit papers

(Arzoumanian et al. 2015).

4.2.2 Reconciling PTA limits with M•-Mbulge measurements

Figure 23 demonstrates that the Kormendy & Ho (2013) and McConnell & Ma (2013)

measurements are inconsistent with the upper limit on the GWB from Shannon et al.
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Figure 22: The above plots show the translation of the marginalized posterior distributions of Ayr from

(a) Shannon et al. (2015) and (b) Arzoumanian et al. (2015) into the black hole - host galaxy parameter

space, which is characterized by an intercept α, a slope β, and an intrinsic scatter ε. β is not informed

by the distribution of Ayr, while both α and ε are, with a limit on α being more strongly set. The curves

show the 1, 2, and 3σ contours. Relevant observational measurements are also shown, with McConnell

& Ma (2013) in blue and Kormendy & Ho (2013) in magenta.
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Figure 23: These plots show both the PPTA 11 year limit (Shannon et al. 2015) and the NANOGrav

9 year limit (Arzoumanian et al. 2015) on Ayr translated directly into the parameter space of α-ε, which

characterizes the black hole - host galaxy relation. The solid line in each represents the 95% upper limit

on this combined parameter space. The points above the line are inconsistent with a power-law spectra

associated with the predicted Ayr values for the fiducial model, discussed in Section 3.1.4. Observed

values of these parameters are shown with errorbars, McConnell & Ma (2013) in blue and Kormendy &

Ho (2013) in magenta.
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Figure 24: Using the measured parameters of the M•-Mbulge relation from Kormendy & Ho (2013) and

McConnell & Ma (2013) the above plots show a probability distribution of Tstall, the time between the

galaxy merger and the binary SMBH entering the PTA band in Gyrs. (a) Uses the posterior distribution

on Ayr from Shannon et al. (2015), and sets a lower limit of 1.2 and 2.3 Gyrs for the α, ε values of

McConnell & Ma (2013) and Kormendy & Ho (2013), respectively. The shaded gray region is upper

limit on the amount of Tstall expected from the simulations in Khan et al. (2013). (b) Uses the posterior

distribution on Ayr from Arzoumanian et al. (2015), and sets a lower limit of 1.1 Gyrs for the α, ε values

of Kormendy & Ho (2013).
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(2015), while Kormendy & Ho (2013) is inconsistent with the upper limit from Arzou-

manian et al. (2015). We can thus attempt to reconcile this discrepancy by considering

whether a non-zero Tstall can make these two results consistent. If we assume the mea-

sured values are correct, then we can do a direct translation of the PPTA upper limit

into a probability distribution on Tstall. This is seen in Fig. 24a, and we set a lower limit

of Tstall > 2.3 Gyrs using Kormendy & Ho (2013) and a lower limit of Tstall > 1.2 Gyrs

using McConnell & Ma (2013). We do the same thing for Kormendy & Ho (2013) and

the NANOGrav upper limit, seen in Figure 24b, and we set a lower limit of Tstall > 1.1

Gyrs.

We reiterate that in our formulation, τ essentially represents a dynamical friction

timescale (the merger timescale), while Tstall represents the additional time it takes the

binary to enter the PTA waveband. Our limits on Tstall could be capturing a longer merger

timescale, such as those discussed in Ravi et al. (2015). However, since there is not a

concrete definition for each of these parameters in the literature, we choose to make the

straight-forward assumption that after a standard dynamical friction timescale estimate,

the remaining time for binary evolution is captured by Tstall.

There are a limited number of observational and theoretical limits on stalling

timescales in the literature. Originally, the apparently “missing” inspiral mechanisms

were taken to imply that binary SMBHs might stall for up to a Hubble time (Begel-

man et al. 1980), although for a few systems with sufficient gas it was shown that binary

SMBHs can inspiral efficiently (e. g. Mayer et al. 2007; Cuadra et al. 2009). More recently,

numerical simulations have demonstrated that with mild triaxiality or axisymmetries in

merging galaxies, binary SMBH coalescence timescales can be pushed to . 2.4 Gyr, and

contrary to previous inference, timescales have been found to be much less (< 0.5 Gyr)

for the highest-mass galaxies (Preto et al. 2011; Khan et al. 2011, 2013). Furthermore,

Burke-Spolaor (2011) placed an observational upper limit on the stalling timescale of the

most massive binary SMBH systems (& 108 M�) of < 1.25 Gyr at 50% confidence (i. e. a

few Gyrs at 95% confidence). The latter observationally-derived value is consistent with

our lower limits using both the McConnell & Ma (2013) and the Kormendy & Ho (2013)

relations. However, the theoretical result that inspiral due to host axisymmetries can be
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. 2.4 Gyr, or beyond < 0.5Gyr for the highest-mass galaxies we’re probing here, is in

contention with both of these limits. More recent work has shown that for ‘dry’ mergers,

where there is little gas present, the total merger time is > 1 Gyr, which is consistent

with our limits (Sesana & Khan 2015).

There are two likely interpretations of this result. First, if we assume that the Mbulge

relations here hold, we must infer that either something else is reducing the expected

GW background (for instance, a turn-over due to environmental coupling or a longer

merger timescale than assumed here), or that triaxiality and axisymmetry are not preva-

lent enough to be the dominant force in driving pre-GW-dominant inspiral in massive

galaxies. Second, it is possible that the parameterizations of Mbulge relations have been

over-estimated. As a more general consideration for this analysis, it is worth noting here

that it has been suggested that recent black hole - host relations might err on using an

upper-limit mass value for many black holes in their fits, for a range of valid values Merritt

(2013, see e. g. the discussion in Chapter 3,). Thus, it is possible that the McConnell &

Ma (2013) and Kormendy & Ho (2013) measurements have arrived at disproportionately

high values, particularly for α and ε. Recent work has proposed there is a bias in these

measurements as well (Shankar et al. 2016), we note that a moderate downward shift of

both the McConnell & Ma (2013) and Kormendy & Ho (2013) relations in α and/or ε

would render fits consistent with current PTA limits (e. g. Figure 23).

As previously noted, there could exist a deviation from a single-power-law GWB

spectrum due to essentially the opposite effect from stalling: a super-efficient evolution

through low orbital frequencies that also affects the PTA band. This may lead to a low-

frequency turn-over in the strain spectrum and significant additional complexity to PTA

analysis (e. g. Ravi et al. 2014; Huerta et al. 2015; Sampson et al. 2015; Arzoumanian

et al. 2015). The next section investigates that possibility.
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4.3 Limiting the multidimensional parameter space of binary

evolution using Gaussian Process Regression

For non-circular binaries, there does not exist an analytic spectral model, and so a direct

sampling of parameter space, which would require the creation of a unique spectra, is

prohibitively long and prevents analysis like the kind presented above in Section 4.2. To

bypass this issue, we use gaussian process regression, which is a powerful interpolation

scheme which treats (noisy) data as a random draw from a multivariate Gaussian process

with a mean vector and covariance function. A set of initial training data is used to learn

the GP’s covariance structure, after which predictions can be made about the outcome of

hypothetical experiments between the training points (interpolation), and beyond them

(extrapolation). We use the set of spectra from the populations described in Section 3.3 as

training data and then analyze a dataset that is identical to that from Arzoumanian et al.

(2015) to set limits on the combined parameter space of {e0, ρ}, where e0 is the initial

eccentricity of the binary set to an orbital frequency of 10−12 Hz and ρ is the density of

unbound stars in the galactic core. Both are key parameters for binary evolution (Section

2.4).

The procedure is as follows:

1. Simulate training data: Build a bank of SMBHB populations by initializing

simulations with different binary eccentricities and environments.

[Computationally expensive].

2. Train the Gaussian-process model: Model the strain distribution over popula-

tion realizations as Gaussian with a mean and standard error. This noisy data is

used to train a GP and optimize its kernel hyper-parameters.

[Computationally cheap].

3. Analyze PTA data with Gaussian-process model: The trained GP predicts

the shape of the strain spectrum for our GW analysis.

[Computationally cheap].

The dataset used to perform the analysis consisted of an 18-pulsar array that emulates

the Arzoumanian et al. (2015) PTA in every way, with the same noise properties and an
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Figure 25: Astrophysical inference on an emulated NANOGrav 9 year dataset. The GSB amplitude at

high frequencies is anchored to the McConnell & Ma (2013) (blue) and the Kormendy & Ho (2013) (red)

Ayr distributions plotted in Figure 6. The lines indicate the boundaries of the 68% credible regions.

identical observation schedule. The amplitude is anchored for the two Ayr predictions

plotted in Figure 6, which are made using two different measurements of the M•-Mbulge

relation. The shape of the spectra is then informed by the training data. The resulting

2-d marginalized posterior distribution in {e0, ρ} are shown in Figure 25. Under the as-

sumptions of the given Ayr priors, the emulated NANOGrav 9 year data favors eccentric

binary SMBHs that are coupled to dense stellar distributions. This is because a power law

spectrum produces a signal that is inconsistent with the PTA data, as seen and discussed

above in Section 4.2. In this case, instead of using Tstall to explain the discrepancies, they

can be explained by the existence of a low-frequency attenuation caused by eccentricity

and the binary’s interaction with the stars in the galactic core. We note that the Mc-

Connell & Ma (2013) prediction on Ayr is just within in credible region, so a power law

spectra has not been ruled out completed for that model. However, a modest eccentric-

ity with low stellar densities is ruled out because the shape of the spectra under those

circumstances actually grows larger than that of a power law spectra at the frequency

where the NANOGrav limit is set.
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Chapter 5

Electromagnetic Counterparts for

Binary Supermassive Black Holes

All of the work described so far in this dissertation has kept electromagnetic and gravita-

tional wave observations separate using one to inform the other, like taking observations

of galaxies to infer the binary population, or using PTA limits to constrain black hole -

host galaxy or binary dynamical parameters. In this next chapter, the models for grav-

itational wave sources described so far will be combined with electromagnetic models of

active galactic nuclei (AGN) to study the potential for multi-messenger sources present

in the PTA band. The first section describes the types of dual AGN that are included

in these models, followed by a discussion of the potential for detecting a multi-messenger

source with future PTAs.

5.1 Incorporating Models for Dual AGN

The accretion process onto SMBHs, which powers AGN, requires large clouds of gas in

the interstellar medium to lose enough angular momentum to plunge close enough to a

galaxy’s core to be gravitationally captured by the SMBH’s accretion disk. Simulations

have shown that major merger events are effective mechanisms to drive gas into the

common core of the merger remnant (Hopkins et al. 2006). Recent observations have also

hinted that galaxy mergers may preferentially trigger high-luminosity AGNs (Comerford

& Greene 2014), and radio loud AGNs appear to almost always be associated with a
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major merger (Chiaberge et al. 2015). Other evidence indicates that the AGN fraction

of major mergers increases as the binary goes to smaller separations (Ellison et al. 2011).

All of this points to a strong connection between dual AGN and galaxy mergers.

Given that a lot of AGN activity is triggered by galaxy mergers, there are many sig-

natures for dual AGN across the electromagnetic spectrum (Burke-Spolaor 2013). Mod-

eling these various electromagnetic counterparts has various challenges, and since there

has been no combining of electromagnetic models with gravitational wave models, we

start by exploring two of the easiest AGN tracers to model: dual radio AGN and peculiar

emission lines.

5.1.1 Dual Radio AGN

One of the most straight forward ways to identify two SMBHs in close orbit is by spatially

resolving them. Compact self-absorbed synchrotron emission at the site of relativistic jet

formation is detectable by radio telescopes. While current searches have only revealed

one sub-100 parsec pair, at a projected separation of 7 pc (Rodriguez et al. 2006), in

principle, this type of radio emission should be sustainable throughout the evolution of

the binary. The VLBA has excellent resolving power down to sub-milliarcseconds. While

these kind of sources are not practical to discover in large-scale blind searches (Kaplan

et al. 2011), they are ideal tools for targeted candidate confirmation, such as the follow-up

to a PTA detection of a resolvable binary in gravitational waves (Croft & Kaplan 2016).

Modeling dual radio AGN requires two additional parameters: angular separation (α)

and radio flux (S). Angular separation is calculated, in degrees, by:

α =
a

D
, (5.1.1)

where D is the distance to the source, a is the orbital semi-major axis and q• is the black

hole mass ratio. The radio flux, S, is drawn from the bivariate luminosity functions from

Mauch & Sadler (2007), which relate S to the K-band magnitude of the galaxy. The K-

band magnitude is calculated from the stellar mass of the galaxy MGal using the relation

from Cappellari (2013).

MK =
10.58− logMGal

0.44
− 23 (5.1.2)
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5.1.2 Peculiar Emission Lines

For two active black holes in approximately circular orbits, their relative line-of-sight

velocity (vrel) can be estimated by

vrel =

√
GMtot

a
sini , (5.1.3)

where Mtot is the total mass of the binary black hole system, a is the orbital semi-major

axis, and i is the inclination angle. If any, or both, of the black holes are AGN with either

broad or narrow emission lines, then these emission line regions may become either red-

or blue-shifted with respect to the host galaxy or the companion black hole by several

hundred km s−1.

This method has been used to successfully identify many dual AGN at early stages

of inspiral (Comerford et al. 2013). However, at separations for binaries within the PTA

band, nothing to date has been verified as a true binary, as care must be taken to rule

out other non-binary emission dynamics which could cause similar features.

5.2 Predictions for ‘Multi-Messenger’ Sources in the PTA Band

When modeling the stochastic background, we work in characteristic strain (hc), but when

discussing individually resolvable sources we work in terms of strain (hs from Equation

2.5.1). Figure 26 plots the combined brightest sources in the PTA band from a thousand

populations which were created using σ as a proxy for the black hole mass, a method

derived in Section 3.2. Plotted on top of that distribution are predictions of PTA sensi-

tivity curves for the next decade or so (most PTAs already have over a decade of data)

(Ellis 2016). While there has been no detection to date, this is not surprising, but over

the course of the next decade PTA sensitivities will reach a region where the probability

of detecting a single resolvable source will get very high.

Each of the 1000 populations are then modeled with AGN emission. Figure 27 shows

the parameter distributions for the dual radio AGN sources. These sources are very rare,

with each realization having about 0.5 dual radio AGN sources in it, but the sources

that are present are observable with present radio telescopes, as they have large fluxes

and are nearby. Figure 28 shows the parameter distributions for the binaries emitting
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Figure 26: All of the points in this plot represent the estimated number density of sources at a given

strain and gravitational wave frequency from 1000 different populations of binary SMBHs. The three

different colored lines show increasing PTA sensitivity over the next decade. Over the next decade, the

improvement of sensitivity should allow for the detection of an individually resolvable source.

GWs in the PTA band which contain potentially resolvable peculiar emission lines. For

a peculiar emission line to be resolvable, we claim that the velocity offset must be larger

than the velocity dispersion of the host galaxy and smaller than the Roche lobe limit

of the individual sources. These are conservative limits, but we use them in an attempt

to maximize the likelihood that the offset emission lines would be distinct from the rest

of the host galaxy’s spectra. These types of sources are much more numerous, however,

there numbers depend on the assumed AGN fraction with in the PTA band. Assuming

a 50% fraction yields 5000 sources with at least a single AGN detectable by peculiar line

emission, 250 of which are dual AGNs. When a 10% AGN fraction is used these numbers

drop to 1000 sources with at least a single AGN and 50 duals.

We combine the electromagnetically observable sources with the gravitational wave

sources in Figure 29. Multi-messenger sources, which would be detectable with both some

kind of electromagnetic counterpart, in additional to gravitational waves, are rare. They

appear to be more prevalent at lower frequencies, which is encouraging for future detection

prospects. There is currently an open question regarding low-frequency attenuation of the
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Figure 27: The above plots show various parameter distributions for the binaries which contain two

radio loud AGN. They are very rare, as there is 0.5 sources per realization. However, the sources that

do show up have large fluxes (C), are at very small distances (B), and should be at VLBA resolvable

separations (A).

stochastic background due to environmental effects, and so electromagnetic counterparts

to binary SMBHS, even non-PTA-resolvable sources, may play a big role in determining

the population demographics at the lower end of the PTA frequency band.
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Figure 28: The above plots show various parameter distributions for the binaries emitting GWs in

the PTA band which contain potentially resolvable peculiar emission lines. Both orbital period (A) and

redshift (B) will set the detectability of these sources. The distributions stay fairly constant, but the

numbers are based on what the AGN fraction is at binary separations in the PTA band, which are

unknown. When we use a 50% AGN fraction we discover around 5000 sources with at least a single AGN

with a potentially detectable peculiar emission line, 250 of which are actual dual AGNs. These numbers

drop to 1000 sources with at least a single AGN and 50 duals when we drop the AGN fraction to 10%.
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Figure 29: This plot overlays the distributions of dual radio AGN sources (red) and peculiar line

emission sources (blue) over the gravitational wave sources from Figure 26. While multi-messenger sources

appear to be rare, they do appear to occur more prevalently at low frequency, which is encouraging given

PTA sensitivity curves.
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Chapter 6

Summary

This dissertation has given a detailed description of the models used to create populations

of binary SMBHs, which can then be utilized to understand and interpret PTA data in

an astrophysical context. Using these models, I have inspected the amplitude variance of

the nHz-µHz waveband GWB, as formulated from state-of-the-art observations of massive

galaxies, massive galaxy mergers, and SMBHs in the z . 3 Universe. In the course of

this analysis I provided simple reference plots which can be used to map PTA limits on

the GWB to the parameters of cosmological evolution that most impact the power-law

GWB prediction (Figs. 19 & 21).

I found that the vastly different observations of the intercept (α) and scatter (ε) of

the M•-Mbulge relation have the most impact on the range of GWB amplitude prediction.

I used PTA upper limits on the GWB to compare my mapping to these parameters,

and found that under some circumstances the M•-Mbulge relations of McConnell & Ma

(2013) and Kormendy & Ho (2013) are inconsistent with the PTA limit. Both of these

measurements include the high-mass SMBHs expected to contribute the majority of signal

to the PTA gravitational wave band (Kormendy & Ho 2013; McConnell & Ma 2013),

making them the appropriate measurements for this comparison. I showed that using

different proxies for the black hole mass function can produce very different population

demographics in the PTA band, and further study is needed to assess the impacts these

populations have on detectability.

Observationally, the uncertainty in M•-Mbulge and similar relations are largely due to

73



small sample sizes. One important conclusion drawn from this analysis is that better

constraints on the M•-Mbulge relation will greatly tighten GWB predictions, motivating

further SMBH measurements to be made in the & 109 M� range. Furthermore, it has

been pointed out that the masses used for many SMBH - host galaxy relations may be

overestimated, potentially solving the discrepancy we have found, as recently noted in

Shankar et al. (2016). However, this only points more strongly towards a need for better

characterization of these relations to allow an accurate prediction of the GWB, which

I intend to pursue in more detail in future work. The host-galaxy relation is the most

critical to be improved if we are to tighten the constraints PTAs can put on effects such

as binary stalling, wandering SMBHs, and environmental interactions from the influence

of gas or stellar dynamics during the GW-dominant regime. Finally, while the redshift

evolution of this relation was not considered in this work, it is clear that strong evolution

could further heighten its impact on GWB predictions (see, e. g., Ravi et al. 2015).

As discussed in Sections 4.2.2 & 4.3, this inconsistency can be reconciled in a number

of ways. First, we can include a moderate amount of “stalling” in the inspiral of the

binary SMBH, in which the pair slows its evolution for at least 1.2 and 1.1 or 2.3 Gyr

for the α, ε values of McConnell & Ma (2013) and Kormendy & Ho (2013), respectively,

which are in contention with theoretical work that has shown how axisymmetries may

allow inspiral efficiencies of < 0.5 Gyr for the most massive pairs. Additionally, we can

allow for binary dynamics with the galactic core environment and non-circular orbits to

attenuate the signal at the lowest frequencies in the PTA band. The Gaussian Process

regression techniques, which were recently published in Taylor et al. (2017), show lots

of promise to expand the astrophysical inference that PTAs can do and are sure to be

incorporated in future PTA data analysis.

Finally, I shows some preliminary work that incorporates peculiar AGN emission lines

and double radio AGN into gravitational wave models. While the prospects for detecting

an individually resolvable source with PTA data is still probably a decade or more away,

there is some potential that in the future one of those resolvable sources would contain a

detectable electromagnetic counterpart.
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6.1 Future Work

6.1.1 Expanding Models for Black Hole Mass

The recent debate in the SMBH community calls current observations of the black hole

- host galaxy relationship into question. Shankar et al. (2016) claims there is a ‘bias’ in

previously reported observations which is causing an over-estimation of black hole masses

in the universe. However, Thomas et al. (2016) shows that the most massive black holes

and galaxies are more related by size than mass which implies some black hole masses

will be even larger than previously thought. The results presented in Section 3.2, which

utilize σ as a proxy for black hole mass appear more in line with the Thomas et al.

(2016) observations, while recent PTA limits appear more consistent with the Shankar

et al. (2016) results. This debate is ongoing and has important implications for potential

PTA discoveries since the more massive black hole binaries radiate stronger GWs, and

evolve quicker than their smaller counterparts. The most massive systems dominate the

stochastic background, and the most massive binaries at the smallest distances are the

most likely sources to be detected individually as discrete sources of GWs by PTAs.

6.1.2 Incorporating Electromagnetic Observations

The preliminary work described in Chapter 5 needs to be expanded to include high-energy

counterparts (Roedig et al. 2014), complex AGN variability (Smailagić & Bon 2015), and

post-merger remnants such as afterglows (Tanaka et al. 2010) and recoiling AGN. Like

dual radio AGN, resolving dual x-ray cores is not practical for large-scale blind searches

with current x-ray and radio instruments given the small sizes of these objects. However,

such emission is an excellent tool for targeted confirmation of candidate binary systems.

For systems with relatively short orbital periods, P . 10 yr, periodic or nearly periodic

variability on a time scale associated with the period of the binary can be detected

by consistent long-term monitoring of the source. These periodicities are expected to

arise from orbital passages through a gaseous disc, which triggers temporary heightened

accretion or shocks in the ambient gas (Bon et al. 2012). Periodic emission may occur

at many wavelengths: some from disc interactions in the x-ray or UV and optical, others
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from intensified core emission in radio or x-ray. While this technique is observationally

intensive, it will play a more important role in the future as a number of high-cadence

synoptic surveys come online like the Zwicky Transient Factory (Smith et al. 2014) and

LSST (LSST Science Collaboration et al. 2009).

Admittedly, most of the EM signals detected by these surveys will come from sources

that do not have resolvable GW signatures, as has been seen in current survey results

(Graham et al. 2015). However, comparing predictions for and detections of these signals

will provide invaluable insights about the population of binaries that make up the GW

stochastic background (Sesana et al. 2017). PTAs may be the only tool that can definitely

observe the final stages of binary SMBH evolution (Sesana 2013a), and as such, it is

critical that we use all of the observational information available. Given that decoupling

the various environmental effects potentially present at the lowest frequencies in the

PTA band is very difficult (as seen in Section 4.3), successful interpretation of PTA

measurements may require using EM detections and/or non-detections of these sources.
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