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ABSTRACT 

REAL-TIME, SELECTIVE DETECTION OF HEAVY METAL IONS IN WATER USING 

2D NANOMATERIALS-BASED FIELD-EFFECT TRANSISTORS 

by 

Guihua Zhou 

The University of Wisconsin-Milwaukee, 2017 

Under the Supervision of Professor Junhong Chen 

Excessive intake of heavy metals damages the central nervous system and causes brain and 

blood disorders in mammals. Heavy metal contamination is commonly associated with 

exposure to mercury, lead, arsenic, and cadmium (arsenic is a metalloid, but classified as a 

heavy metal). Traditional methods to detect heavy metal ions include graphite furnace atomic 

absorption spectroscopy (GFAAS), inductively-coupled plasma optical emission spectroscopy 

(ICP-OES), and inductively-coupled plasma mass spectroscopy (ICP-MS). Recently, many 

new methods have been proposed to detect heavy metal ions, including atomic absorption 

spectrometry, fluorescent sensors, colorimetric sensors, electrochemical sensors, X-ray 

absorption fine structure spectroscopy, ultrasensitive dynamic light scatting assays, and ion 

selective electrodes. Although significant progress has been made, there are still some critical 

issues to be addressed, e.g., lack of portability, the need for well-trained personnel, highly 

expensive and complex instruments, long response time (tens of minutes or even longer), and 

the possibility of introducing additional contamination. Therefore, it is highly desirable to 

develop a real-time, low-cost, portable, user-friendly analytical platform for rapid inline 

analysis of mercury, lead and other heavy metal ions. 

http://en.wikipedia.org/wiki/Nervous_system
http://en.wikipedia.org/wiki/Brain
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This dissertation research aims to investigate field-effect transistor (FET) sensors based on 

two-dimensional (2D) nanomaterials with specific probe-functionalized gold (Au) 

nanoparticles (NPs). The fundamental mechanism of the FET platform is to use a 2D 

nanomaterial as the conducting channel to transport charge carriers (electrons or holes). Upon 

the capture of target analytes, the charge carrier concentration and/or mobility changes 

correspondingly with a signal of current change within the channel. As a result, the FET 

characteristic changes upon the introduction of the heavy metal ion solution, varies with the 

metal concentration, and takes only a few seconds to respond. Control experiments are 

performed to verify the selectivity of the 2D nanomaterial/Au NP hybrid sensor to specific 

targets. The rapid, selective, sensitive, and stable detection performance indicates the promise 

of 2D nanomaterial/Au NP hybrid sensors for heavy metal ion detection in an aqueous solution. 

This research is accomplished through several steps: First, various heavy metal ion 

contaminants, their damage, and the conventional detection methods are reviewed; Second, the 

FET-based plaform and its working mechanism are explored; Third, the understanding of 

various 2D nanomaterials, their unique properties pertinent to electronic sensing, and their 

selection to realize real-time, selective, and sensitive detection of heavy metal ions is carried 

out; Finally, improvement of stability, sensitivity and lifetime of FET sensors is investigated.  

In this thesis work, sensitive and selective FET-based 2D nanomaterial/Au NP hybrid 

sensors for Pb2+, Hg2+, As(III), and As(V) have been demonstrated. The 2D nanomaterials 

include reduced graphene oxide (rGO), molybdenum disulfide (MoS2), and black phosphorus 

(BP). The hybrid structure consists of a nanomaterial film, homogeneously dispersed Au NPs, 

and specific probes. The detection is enabled by recording the electrical conductance of the 
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device through monitoring the change in the drain current of the 2D nanomaterial sheets. The 

platform offers a promising route for real-time (1-2 seconds), high-performance and low-cost 

detection of heavy metal ions. The lower detection limit can reach the order of µg/L (parts-per-

billion or ppb). The sensor also shows high selectivity against other co-existing metal ions.  

To improve the sensitivity of the nanomaterial-based electronic sensor, theoretical analysis 

on the sensing mechanism has been carried out, together with experimental validation. 

Theoretical analysis indicates that sensitivity-related factors are semiconducting properties of 

nanomaterials (e.g., carrier mobility, band gap), number of probes, and adsorption capacity of 

Au NPs. Experimental results suggest that a higher sensitivity for sensors can be realized by 

forming hybrid structures with thinner 2D conducting materials with a larger band gap and a 

higher carrier mobility, increasing the areal density of anchoring sites on the sensor surface, 

and enhancing the adsorption of detection probes. Investigation into the stability of the 

nanomaterial-based electronic sensor includes the binding strength between the nanomaterial 

and electrodes, stability of the nanomaterials in ambient environment and water, the 

detachment of Au NPs, the lifetime and diffusion of probes, and the overall stability of the 

sensor platform. Subsequently, strategies to improve the stability of the nanomaterial-based 

FET sensor have been proposed. Finally, the FET sensor has been used for the accurate 

prediction of arsenic ions in lake water and integrated into a practical flowing water system for 

continuous detection of lead ions.  

The rapid, selective, sensitive, and stable detection performance of the FET sensor for 

various heavy metal ions in water suggests a promising future for in-situ detection of 

contamination events. The thesis study provides a scientific foundation to engineer FET sensors 
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with enhanced performance. An attempt has been made to practically develop the FET platform 

into standalone sensors and to integrate the sensor into flowing water equipment for heavy 

metal ion detection. The thesis results thus contribute to the future application of FET sensors 

for monitoring water contamination and mitigating the public health risk. 
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CHAPTER 1 INTRODUCTION AND LITERATURE SURVEY *1 

1.1 Heavy metal ion contamination and its damage  

There is no clear definition of heavy metal that is globally accepted; however, in most cases, 

density is the defining factor for heavy metals. A metal with a density larger than 5 g/cm3 is 

classified as a heavy metal.2 These metals can cause environmental pollution and generate 

threats to human health. The types of heavy metals, their effect on human health, and their 

permissible limits (defined by Environmental Protection Agency, EPA) are summarized 

in Table 1.1.3-4 

Table 1.1 Types of heavy metals and their effect on human health with their permissible 

limits.  

Pollutants Major Sources Effect on human health 
Permissible 

level (mg/L) 

Arsenic 
Pesticides, fungicides, 

metal smelters 
Bronchitis, dermatitis, poisoning 0.01 

Lead 

Paint, pesticide, 

smoking, automobile 

emission, mining, 

burning of coal 

Mental retardation in children, 

development delay, fatal infant 

encephalopathy, congenital paralysis, 

sensor neural deafness and, acute or 

chronic damage to the nervous system, 

epilepticus, liver, kidney, gastrointestinal 

damage 

0.015 

                                                           

*1 Part of this chapter has been published.  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3113373/table/T1/
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Cadmium 

 

 

Welding, electroplating, 

pesticide fertilizer, Cd 

and Ni batteries, nuclear 

fission plant 

Renal dysfunction, Lung disease, Lung 

cancer, Bone defects (Osteomalacia, 

Osteoporosis), increased blood pressure, 

kidney damage, bronchitis, gastrointestinal 

disorder, bone marrow, cancer 

0.005 

Manganese 

Welding, fuel addition, 

ferromanganese 

production 

Inhalation or contact causes damage to 

central nervous system 
0.05 

Mercury 
Pesticides, batteries, 

paper industries 

Tremors, gingivitis, minor psychological 

changes, acrodynia characterized by pink 

hands and feet, spontaneous abortion, 

damage to nervous system, protoplasm 

Poisoning 

0.002 

Zinc 

Refineries, brass 

manufacture, metal 

Plating, plumbing 

Zinc fumes have corrosive effect on skin, 

cause damage to nervous membrane 
5 

Chromium Mines, mineral sources 
Damage to the nervous system, fatigue, 

irritability 
0.1 

Copper 

Mining, pesticide 

production, chemical 

industry, metal piping 

Anemia, liver and kidney damage, 

stomach and intestinal irritation 
1.3 

 Heavy metal contamination is mainly associated with exposure to mercury (Hg), lead (Pb), 

arsenic (As), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni) and zinc (Zn) (arsenic is 

a metalloid, but classified to be a heavy metal),5 which pose severe risks to human health. It is 

widely known that mercury is highly toxic: it can cause fatal illnesses, such as cyanosis 

syndrome, minamata disease, nephrotic syndrome and pulmonary edema, due to the 
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accumulation in the body.6 It can damage the nervous and gastrointestinal systems and even 

result in kidney and respiratory failure.7 Many regulations have been developed to control the 

use of Hg ions. However, it is still widely used in many domestic and industrial applications, 

for example, pesticides, architecture, cosmetics, thermometers, mining and power plants, etc. 

As a result, they will lead to the high temperature coal combustion, chlorine alkali processing 

for the power plant, waste incineration of the mercury related products. Besides these human-

related mercury sources, another source is natural source, including natural mercury deposits, 

leaking from volcanoes eruption and volatilization from the ocean.8 All these mercury sources 

will introduce the mercury to the atmosphere and/or water sources. Once the water is 

contaminated, the fish will also be polluted. Therefore, the life safety of human, especially for 

young children, infants and fetus, will be challenged either through drinking the contaminated 

water or eating the polluted fishes.  

 Besides mercury, lead is another widely known heavy metal that poses significant threats 

to human health. Recently, there have been numerous reports on lead causing water 

contamination, which leaches from water piping systems to drinking water and tap water.9-10 

The most frequently reported lead contamination is the lead ions’ pollution from the lead 

soldered brass or chrome-plated brass faucets and fixtures, since the lead contained pipes or 

fixtures will be corroded by water that has high acidity or low mineral content. Afterwards, 

significant amounts of lead can enter into the water, especially hot water.11 And lead pipes, 

fixtures and solder are more likely to exist in homes built before 1986. Lead contamination has 

become a health threat, especially for young children and infants. Lead poisoning had been 

recorded throughout history, since ancient China, ancient Rome, and ancient Greece. Excessive 
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lead damages the central nervous system and causes brain and blood disorders in mammals.12 

Lead has the ability to form complexes with ligands of biological matters that contain nitrogen, 

sulfur, and oxygen, because of the covalent interaction between filled ligand orbitals (e.g., O 

2p) and the Pb2+ 6s, therefore, empty 6p orbitals can create bonding and antibonding molecular 

orbitals (MOs).13 Further, the complex leads to changes in the molecular structure of proteins, 

breaking of hydrogen bonds, and inhibition of enzymes. 

Arsenic, the 20th most abundant mineral in the earth’s crust and 12th most common mineral 

in the human body, is widely distributed in nature in various states. Generally, it exists in 

organic and/or inorganic -3, +3 and +5 oxidation states.14 The most common arsenic species in 

water include arsenate (As(V), AsO4
3-) and arsenite (As(III), AsO3

3-). Under oxidizing 

conditions, arsenate is the dominating form and its protonation state is a strong function of pH. 

At neutral pH, H2AsO4
 -and HAsO4

2- co-exist. The toxicity of As is notorious; the ancient 

history of China recorded the toxicity of trioxide arsenic (they call it ‘Pishuang’), and inorganic 

arsenic species are more toxic than organic ones.15 The sources of Arsenic contamination 

include agriculture, mining and natural release. The direct application of arsenic in the form of 

pesticides or wood preservatives has historically been a major source of arsenic to soils.16 

Besides agriculture, in the mining process, arsenic runoff from contaminated sites and would 

impact the freshwaters and associated ecosystems. Furthermore, the natural release of arsenic 

from geologic materials will flow into ground water, which has become a threat to drinking 

water supplies around the world.17 Drinking water with arsenic will cause various diseases, 

including hyperkeratosis on the palm or feet, fatigue, cancer of the bladder, and genotoxic and 

mutagenic effects.18 This is because proteins with sulfur-containing groups can react with 
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As(III) to form products that will cause biological body malfunction.19 To manage the arsenic 

poisoning problem, detection is crucial. 

1.2 Conventional methods to detect heavy metals in water  

Water plays an important role in the world economy: it functions as a key element of food 

and energy production, as a solvent for a wide variety of chemical substances, and facilitates 

industrial cooling, transportation, and effluent discharge.  Heavy metals, e.g., lead, cadmium, 

mercury, and semi-metals, e.g., arsenic, are widely present in water systems.20 Traditional 

methods to detect heavy metal ions in water include atomic absorption spectroscopy (AAS)21 

that uses the absorption of optical radiation (light) by free atoms in the gaseous state for the 

quantitative determination of chemical elements. AAS can be used to determine over 70 

different elements in a solution or directly in solid samples used in pharmacology, biophysics 

and toxicology research. Another traditional method is inductively coupled plasma mass 

spectrometry (ICP-MS), in which the sample is ionized with inductively coupled plasma and 

then a mass spectrometer is used to separate and quantify those ions. ICP-MS is capable of 

detecting metals and several non-metals at concentrations as low as one part in 1015 (parts per 

quadrillion, ppq).22 Recently, other sensors have also been developed to detect mercury ions to 

protect human beings from drinking or eating mercury ions. These methods are colorimetric 

analysis,23-25 electrochemical methods,26-29 fluorescence spectroscopy,30 X-ray absorption fine 

structure spectroscopy31 and ultrasensitive dynamic light scattering assays.32 

Colorimetric sensors have been extensively studied for heavy metal sensing.33-34 Sener et 

al. developed a robust, gold nanoparticles (Au NPs)-based colorimetric sensor array that was 

https://en.wikipedia.org/wiki/Pharmacology
https://en.wikipedia.org/wiki/Biophysics
https://en.wikipedia.org/wiki/Toxicology
https://en.wikipedia.org/wiki/Inductively_coupled_plasma
https://en.wikipedia.org/wiki/Mass_spectrometer
https://en.wikipedia.org/wiki/Metals
https://en.wikipedia.org/wiki/Non-metals


 

 

6 

capable of discriminating seven metal ions (Hg2+, Cd2+, Fe3+, Pb2+, Al3+, Cu2+, and Cr3+) 

simultaneously with excellent selectivity.35 Such colorimetric assay was based on metal ion 

induced aggregation of Au NPs in the presence of different chemicals, resulting in different 

chelate formation capability of metal ions. Fluorescence detection of heavy metal ions is 

another important method for monitoring water quality.36-37 In this type of sensor, artificial 

receptors that exhibit changes in their fluorescence properties upon binding to heavy metal ions 

are recognized as powerful detection tools due to their high sensitivity and selectivity. In 

particular, quantum dots (QDs)38 can generate narrow, size-tunable, and symmetric emission 

spectra, which makes them excellent donors for fluorescence resonance energy transfer (FRET) 

or nanometal surface energy transfer (NSET) sensor38 and offers significant advantages over 

organic dyes as optical labels for chemo/biosensing.39-40 Electrochemical method (e.g., anodic 

stripping voltammetry, ASV) is a promising and elegant technique for detecting trace levels of 

toxic heavy metal ions due to its high sensitivity, selectivity, and short detection time, and it 

can detect multiple heavy metals simultaneously.41-42 It usually consists of three steps for heavy 

metal ion detection: cleaning step, metal deposition step, and detection step 

(stripping/oxidizing the metal). Compared with the linear sweep voltammetry (LSV) technique, 

the ASV technique with linear scans or modulations (differential pulse ASV/DPASV and 

square wave ASV/SWASV) has higher sensitivity.42 

Although significant progress has been made with these methods, there are still some 

critical issues to be addressed, for example, lack of portability, the need for well-trained 

personnel, highly expensive and complex instruments, long response time (tens of minutes, or 

even longer), and the possibility of introducing additional contamination. Accordingly, 
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exploring sensitive, rapid real-time, low-cost, portable, user-friendly, analytical methods for 

precise monitoring of metal ions in drinking water is urgently needed.  

1.3 Nanomaterial-based sensors for the detection of heavy metal ions in water 

Nanomaterials have been widely studied in optical, electronic and electrochemical sensors 

for detection of water contaminants due to their unique structures and excellent 

optical/electrical/catalytic properties. The nanomaterial-based sensors show great promise in 

water contaminant detection, and their performance outperforms the conventional 

sensors/technologies in various aspects, e.g., high sensitivity, fast response, and simple 

operation. 

Optical sensor. It is well known that the optical response of spherical Au NPs exhibits a 

single absorption band attributed to the collective dipole oscillation (surface plasma 

resonance).43 Au NPs were used as the typical agent in this type of sensors due to their tunable 

optical and electronic properties that are controlled by the surface-plasmon resonance through 

size control of NPs and their aggregation state in the solution. For example, smaller individual 

NPs appear ruby red while larger particles or aggregates of smaller particles have a purple to 

deep blue color. For sensor operation, once a specific analyte is introduced, uncontrolled 

aggregation will start due to binding and subsequently leads to change in the solution color, 

which is either due to small changes in refractive index of the surrounding medium or the 

changes in inter-NP interactions during binding of targeted analytes. Fluorescent sensors based 

on 2D nanomaterials, e.g., graphene nanosheets, have received increasing attention for the 

detection of heavy metal ions in recent years. The excellent biocompatibility, chemical 
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inertness and lower cytotoxicity of graphene nanosheets suggest them as a promising candidate 

for the detection of metal ions. For example, the use of graphene oxide (GO) for charge 

transfer-based fluorescent sensor was reported by Wu et al.44 

Electrochemical sensor. In addition to optical sensors, nanomaterial-based 

electrochemical sensors were also used for rapid detection of heavy metal ions. This type of 

sensor utilizes the electrocatalytic activity of the working electrode in a redox system for 

analyte detection (oxidation peak location for selectivity and reaction current for sensitivity). 

The performance of electrochemical sensors depends on the electrode materials. Due to their 

small size, large accessible surface area, and high catalytic activity, nanomaterials were 

intensively studied as electrode materials in electrochemical sensors. Among all methods for 

heavy metal ion detection, the electrochemical method (e.g., ASV) is a promising and elegant 

technique for detecting trace levels of toxic heavy metal ions due to its high sensitivity, 

selectivity, and short detection time, and it can detect multiple heavy metals simultaneously.45 

With nanoparticles, nanofibers, carbon nanotubes (CNTs), graphene, titanate nanosheets, and 

nanocomposites, non-toxic electrodes have been widely studied in heavy metal ion detection. 

The nanomaterial-based electrodes have a high efficiency in pre-concentration and deposition 

of metal ions and show high catalytic activity in stripping tests. Due to their high conductivity 

and large specific surface area, graphene and graphene-based composites have been used in 

electrochemical systems for heavy metal ion detection. Combining the high adsorption capacity 

of γ-AlOOH with the high conductivity of graphene, an electrochemical platform for the 

simultaneous detection of Cd2+ and Pb2+ ions was reported using the SWASV technique.46 
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Electronic sensor. Besides the application in electrochemical methods, nanomaterials have 

also brought great opportunities in water contaminant detection owing to their unique 

electronic properties. In the past decade, various electronic sensors, e.g., field-effect transistor 

(FET) sensors, have been developed based on nanowires, carbon nanotubes, graphene, and 

MoS2 nanosheets. Due to their high carrier mobility and high sensitivity to electronic 

perturbations, nanomaterial-based FET sensors usually show a high sensitivity and a rapid 

response to water contaminants. These unique features allow for the rapid detection of water 

contaminants to address limitations of conventional sensing technologies. FET sensors detect 

the presence of water contaminants (e.g., heavy metal ions and bacteria) based on the 

conductivity change of the semiconducting material (sensing channel) in the transistor when 

the contaminants attach to the sensing material surface. Since the amplitude of conductivity 

change usually depends on the contaminant concentration, the FET sensors could also 

quantitatively measure the contaminants in water. 

The FET, as its name suggests, is a device that uses an electric field to control the 

conductivity of the charge carriers (holes or electrons) of the channel material.47 FETs can be 

majority-charge-carrier devices, in which the current is carried predominantly by majority 

carriers, or minority-charge-carrier devices, in which the current is mainly due to a flow of 

minority carriers. As shown in Figure 1.1, the device consists of an active channel through 

which charge carriers, electrons or holes, flow from the source to the drain. Source and drain 

terminal conductors are connected to the semiconductor through ohmic contacts. The 

conductivity of the channel is a function of the potential applied across the gate and source 

terminals. FET contains a semiconductor layer formed by specific nanomaterial, therefore, it 

http://en.wikipedia.org/wiki/Electric_field
http://en.wikipedia.org/wiki/Electrical_conductivity
http://en.wikipedia.org/wiki/Charge_carrier
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could be used as an electronic sensor to stimulate and/or monitor chemical and electronic 

activities. 

 

Figure 1.1 The schematic of the FET platform. 

FET sensors based on nanomaterials, such as nanowires, nanotubes, and NPs, are emerging 

as a powerful sensing platform for the detection of chemical/biological species due to their 

various attractive features, including ultra-sensitivity, label-free, and real-time response48-52 

comparable with or better than those of conventional techniques (e.g., enzyme-linked 

immunosorbent assay/ELISA).53 FET sensors are capable of label-free detection of heavy 

metals by using the interaction between the analyte and the semiconductor.54 One and two 

dimensional (1D and 2D) semiconducting nanomaterials, such as a single-walled CNT or 

graphene, are especially attractive for FET sensors because they have very high surface-to-

volume ratios and charge mobility, leading to high sensitivity.55 Nanomaterials used as 

semiconducting channel materials usually require surface modification for the specific 

detection of chemicals,56 which will degrade their electronic properties by generating defects 

through chemical or physical adsorption, resulting in the degradation of device performance 
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and instability. 

Two basic sensing mechanisms for FET sensors are the electron transfer between the 

analyte and the semiconductor channel material and the gating effect. With charged ions 

adsorbed to the platform, it will induce electron transfer between the ions and the channel 

material, altering the carrier (i.e., holes or electrons) concentration in the channel film, and 

further introduce a current change between source and drain electrodes. Meanwhile, the 

charged ions adsorbed on the sensor surface would generate an electric field, which repels or 

attracts the carriers in the channel material and leads to the current change between source and 

drain electrodes. 

For sensor applications, several indicators are crucial for their performance, including 

sensitivity, stability and selectivity. Sensitivity of a sensor is defined as the change in output of 

the sensor per unit change in the parameter being measured. Stability is another way of stating 

drift, that is, the extent to which a given input consistently results in the same output. Lifetime 

of a sensor is most commonly defined as the time when the first sensor failure occurs. While 

other definitions exist, there has not been any consensus on which quantitative lifetime 

definition is most useful. Selectivity refers to the specificity of the sensor to a given target, that 

is, the heavy metal ion. However, aiming at the sensitive detection of heavy metal ions, most 

sensors are for one time use only with a relatively short lifetime. As reported previously, this 

type of hybrid sensor has great potential for reuse if a proper method can be identified to detach 

target ions from the probes.57 For practical applications of the nanomaterial/Au NP hybrid 

sensor, it is necessary to further investigate the reusability and the stability.  
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Figure 1.2 (a) The hexagonal structure model of graphene; (b) the oxygen functional groups on 

graphene sheet.58 

In principle, a FET sensor works by transducing and monitoring the adsorbates-induced 

perturbations into the conductance change in the channel materials, typically in terms of the 

source-drain current. The channel material with high surface to volume ratio is favored 

generally since it implies higher adsorption site density available, and it has been reported that 

semiconducting materials outperform the metallic ones in sensing.59 Consequently, 2D 

semiconducting materials are promising candidates for sensing applications. As a model of 2D 

nanomaterials, graphene-based materials have been widely reported for electronic devices.60 

Recently graphene-based sensing platforms have been reported for the detection of various 

analytes.51, 61 Before that, graphene has drawn considerable scientific attention since its initial 

production through mechanical exfoliation by Novoselov and his co-workers in 2004, 62 which 

led to the 2010 Nobel Prize in Physics.63 Pristine graphene, GO and reduced graphene oxide 

(rGO) are all members of the ‘graphene family’. Graphene consists of 2D carbon atoms 

arranged in a regular hexagonal pattern similar to graphite, but it is a single layer of graphite, 

as shown in Figure 1.2(a). Graphene is relatively light, a 1 m2 sheet weighs only 0.77 mg.64 

The International Union of Pure and Applied Chemistry (IUPAC) defines graphene as ‘a single 
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carbon layer of the graphite structure, describing its nature by analogy to a polycyclic aromatic 

hydrocarbon of quasi infinite size’.65 Graphite is a naturally occurring mineral that is already 

used abundantly and poses no threat to the environment. It was named by Abraham Gottlob 

Werner in 1789 from the Ancient Greek, ‘to draw/write’, for its use in pencils, where it is 

commonly called ‘lead’ (not to be confused with the metallic element lead).66 GOs are layered, 

oxygenated graphene sheets that contain oxygen functional groups, such as epoxides, carboxyls, 

hydroxyls, and alcohols, on their basal planes and edges (Figure 1.2(b)). Chemical analysis 

shows that the carbon to oxygen ratio is approximately 3:1.67 Traditionally, GO is seen as a 

precursor to large-scale graphene synthesis.68 GO can be reduced to almost graphene by 

chemical reduction,69 electro-reduction,70 thermal annealing,71 flash reduction,72 and enzymatic 

reduction,73 and some possible applications of GO have recently been reported.64, 74 After 

reduction, GO transforms into rGO with some residual oxygen and structural defects, yielding 

high electrical conductivity comparable to that of doped conductive polymers, about 36 times 

higher than that of Si and about 100 times higher than that of GaAs.75  

Graphene exhibits many outstanding and unique properties. The zero band gap within the 

structure enables its ultrahigh electron mobility (200,000 cm2 V−1s −1), which is much higher 

than that of CNTs.76 It has ultrahigh capacitance,77 excellent thermal conductivity ( ≈4,000 W 

m−1K−1),78 outstanding electrical conductivity (3,189 S cm−1)79 with the monolayer graphene 

devices showing the half-integer quantum Hall effect,80 mechanical strength,81 an extremely 

high surface-to-volume ratio (2,600 m2 g−1) and the possibility of atomically clean graphene 

sheets on lattice symmetry structure-free graphene.81 Besides these excellent properties, the 

exceptionally low electronic noise of graphene also enables the sensitive detection of various 
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analytes using graphene.82 GO naturally has functional groups (mainly carboxyl and hydroxyl 

groups) for the immobilization of target materials. In particular, rGO materials offer relatively 

high charge mobility, large detection area, relatively low 1/f noise, and tunable ambipolar field-

effect characteristics.83 The high electron mobility51 makes graphene highly sensitive to the 

external environment, which enables its potential applications for gas sensors, biosensors and 

heavy metal ion sensors.   

However, the lack of a band gap in graphene significantly limits its application in transistor 

devices because it cannot reach a low off-state current.84 In addition to graphene, molybdenum 

disulfide (MoS2), which is a transition metal dichalcogenide, has been attracting increasing 

attention. MoS2 film is only a single atomic layer thick, in which the molybdenum atoms are 

sandwiched between layers of sulfur atoms by covalent bonds, as shown in Figure 1.3 (a). The 

interaction between adjacent S-Mo-S layers is van der Waals force. In contrast to graphene 

with no band gap, MoS2 is a semiconductor with a direct band gap of 1.8 eV for a single layer. 

MoS2 FETs with the high on-off current ratio of ~108, high mobility (200 cm2V-1 s-1) and good 

performance have also been recently reported. MoS2 has been used in electronic devices and 

circuits based on FETs, because of its robust mechanical semiconducting properties, and it has 

gain significant attention for its future application in electronic circuits requiring low stand-by 

power. These excellent electrical properties, high flexibility and good transparency enables the 

application of MoS2 to be flexible electronics. Furthermore, the development in the synthesis 

of 2D materials improves the possibility of the mass production, great mount integration of 2D 

electronic materials.85-87 Many methods have been developed to synthesize MoS2, such as 

exfoliation of bulk MoS2 via Li intercalation,88 scotch tape based micromechanical 
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exfoliation,89-91 liquid exfoliation,92 chemical vapor deposition (CVD),93-94 physical vapor 

deposition,95 and thermolysis of single precursor containing Mo and S.96 

 

Figure 1.3 (a) Atomic structure of monolayer MoS2 of 6.5 Å thick.1 (b) Atomic structure of 

black phosphorus of 5 Å thick.97 

Black phosphorous (BP) is a layered material with atomic layers stacked onto each other 

through van der Waals force, as shown in Figure 1.3(b). In each single layer, phosphorus atom 

is covalently bonded with three adjacent atoms to form a puckered honeycomb structure. With 

the similar structure to graphite, it could also be micromechanically exfoliated into ultrathin 

nanosheets from the bulk BP crystal. Currently, mechanical exfoliation, liquid exfoliation, 

CVD methods and sonochemical synthesis have been reported for layered BP synthesis.97-98 

BP nanosheet is a p-type semiconductor and has thickness-dependent and tunable band gaps 

ranging from 0.3 eV for bulk BP to 2 eV for monolayer BP nanosheet (phosphorene).99-101 It 

covers the gap of band gaps between graphene and 2D Transition metal dichalcogenides 

(TMDs), as shown in Figure 1.4. Few-layer BP nanosheets based FET shows both excellent 

carrier mobility (up to 1,000 cm2V-1s-1) and high on/off current ratio (~105)101 with well-
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developed current saturation in the transfer characteristics at room temperature. Thus, BP also 

has great potential in the FET sensor applications.101-103 Cui and Pu et al. designed ultrahigh 

sensitivity sensing performance based on phosphorene for the sensing of NO2 detection at the 

parts per billion (ppb) level in dry air.102 Its main disadvantage is the poor air stability under 

ambient condition.104 But researchers have identified the application of encapsulation or 

passivation layer would help BP maintain its good electronic properties and enable its stable 

performance in different applications under ambient condition.105 

 

Figure 1.4 Bandgap energies of several layered materials used for nanoelectronics. The 

range of values for each material can be achieved through a variety of means. For example, 

it is expected that variations in an applied perpendicular electric field, film thickness  or 

strain could modify the bandgap value. hBN, hexagonal boron nitride.106 

Attributed to their outstanding properties (i.e., intrinsic ultrahigh carrier mobility, high 

surface-to-volume ratio), rGO, MoS2 and BP have been widely demonstrated for analyte 

detection, including metal ions, bacteria, proteins, and DNAs in aqueous environment. Table 

1.2 summarizes their performance in terms of rapid response and lower detection limit (M is 
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mol/L). The theoretical analysis in Section 5.2 suggests a lower limit of detection (LOD) and 

a higher sensitivity could be achieved through making films with a larger band gap, a higher 

carrier mobility, and a smaller film thickness. Among the three materials, MoS2 and BP have 

a tunable band gap, as shown in Figure 1.4. The band gap of rGO could be tuned through the 

degree of reduction. BP is challenged by its poor stability in ambient environment due to 

oxidation; however, it could be potentially addressed through applying a passivation layer or 

encapsulation to prevent BP from exposure to O2, thereby improving the sensor stability.  

Table 1.2 2D nanomaterial-based FET sensors and their application in aqueous sensing. 

Channel 

material 

Key sensing 

structure 
Target LOD Advantages 

Disadvan-

tages 
Ref 

mono-

layer rGO 

rGO/AuNPs/G

SH 
Pb2+ 10 nM 

quick response, 

good selectivity 
 52 

mono-

layer rGO 

rGO/TGA/Au

NP  
Hg2+ 25 nM 

quick response, 

good selectivity  
 107 

mono-

layer rGO 

rGO/ferritin/FE

T 
HPO4

2- 26 nM 
quick response, 

good selectivity 
 108 

mono and 

multilayer 

graphene 

DNAzyme-

AuNP-

graphene 

Pb2+ 20 pM 
high selectivity, 

extreme sensitive 

long response 

time (20 

minutes) 

109 

multilayer

- rGO 

MT-II 

functionalized 

Hg2+ & 

Cd2+  

1 nM, 1 

nM 
rapidly, sensitive 

lack of 

selectivity 
55 

large-

sized 

graphene 

film  

anti-E. coli 

antibody 

functionalized 

E.coli  
10 

cfu/mL 
fast, label-free  110 

multilayer 

MoS2 

MoS2/AuNPs/

DNA 
Hg2+ 0.1 nM 

higher sensitivity 

that rGO 
 48 

multilayer 

MoS2 

flakes 

MoS2/ 

ionophore 
AsO2

- 
0.1ppb/

0.93nM   

the sensitivity 

superior to that 

of graphene. 

 111 

four-layer 

MoS2 

MoS2 

/HfO2/biotin 

streptav

idin 
100 fM 

73-times higher 

sensitivity 

comparing to 

graphene 

 112 
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multilayer 

MoS2 

MoS2/HfO2/ 

anti-PSA 

antibody  

PSA 375 fM 
low detection 

limit 
 113 

mono-

layer 

MoS2 

MoS2/wsMOR  
DAMG

O 
3 nM 

wafer-scale, 

high-yield 

fabrication 

 114 

multilayer 

MoS2 
MoS2/DNA  DNA 10 fM good selectivity  115 

multilayer 
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It is important to note that other nanomaterials, such as nanoporous and mesoporous 

materials, were also widely studied for heavy metal ion detection.120-121 The nanoporous 

materials offer an alternative means of immobilizing small molecules. Santos et al. developed 

an innovative portable and cost-competitive sensing system that combines chemically-

modified nanoporous anodic alumina rugate filters (NAA-RFs) for sensing Hg2+ ions in 

environmental water by measuring shifts in the reflection peak position of reflection 

spectroscopy (RfS).121 
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1.4 Objectives and outline of the dissertation research 

As reviewed in the above sections, the 2D nanomaterials-based FET device fabricated on 

a silicon platform can be used in a label-free manner to rapidly detect various metal ions in 

solutions with a high sensitivity and a low detection limit. The overall objective of the 

dissertation research is to explore and understand 2D nanomaterials-based FET sensors for 

water sensing applications. To achieve this objective, the thesis research is organized as follows. 

Firstly, in Chapters 2-4, various 2D nanomaterials are explored based on their unique 

properties for the demonstration of sensitive, selective electronic sensors for toxic heavy metal 

ions, e.g., mercury, lead and arsenic. These metal ions are notably toxic, harmful to the 

environment and human health. Specific probes are selected to realize the selective detection 

of target ions in the presence of other interfering metal ions. During the cumulative addition of 

metal ions to specific sensor platform, the drain current versus time is monitored. Since the 

current change depends on the contaminant concentration, the FET sensors can quantitatively 

measure the contaminants in water. To this end, the simple fabrication method and excellent 

sensing performance of the hybrid structure are used for the accurate prediction of arsenic ions 

in lake water (Chapter 4). 

Secondly, sensing mechanisms of the FET platform are deeply investigated in Chapter 5. 

Based on the dynamic response of the sensors to various metal ions, mechanisms of the FET 

platform are investigated by examining the adsorption of target metal ions and the competition 

between the charge transfer effect and the gating effect. Further exploration is carried out 

through theoretical analyses and AC impedance spectroscopy, revealing that gating effect 

dominates over charge transfer in the sensing platform. 
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   The remaining part of Chapter 5 and Chapter 6 investigate the sensitivity and stability 

improvement of the FET sensor, respectively. To improve the sensitivity, a few factors related 

to the channel material are addressed, such as the on/off current ratio, the band gap and the 

sensor film thickness. Other factors include the areal density of anchoring sites on the sensor 

surface and the adsorption of detecting probes. Further investigation into the sensitivity 

improvement is carried out through theoretical analyses and experimental validation. To 

improve the stability of the nanomaterial-based electronic sensor, the stability of electrodes, 

the bonding between the nanomaterials and the electrodes, the stability of nanomaterials in 

different environments, the detachment of Au NPs, and the lifetime and diffusion of probes are 

investigated. A passivation layer is proposed and used to protect the channel material from 

oxidation, thereby enhancing the sensor stability. An attempt has been made to practically 

integrate the FET sensor into flowing water equipment for inline heavy metal ion detection. 

The conclusions and future research directions are summarized in Chapter 7.  
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CHAPTER 2 REAL-TIME, SELECTIVE DETECTION OF PB2+ IN 

WATER USING A REDUCED GRAPHENE OXIDE/GOLD 

NANOPARTICLE FIELD-EFFECT TRANSISTOR*2 

2.1 Introduction 

 Lead poisoning has been documented since ancient Rome, ancient Greece, and ancient 

China. Recently, there have been numerous reports on the leaching problem of lead from water 

piping systems to drinking water,122 which has become a health threat, especially for young 

children and infants. Excessive lead damages the central nervous system and causes brain and 

blood disorders in mammals.12 In this chapter, rGO, with its outstanding electronic properties, 

has been utilized as the semiconducting channel material to fabricate the rGO/GSH-Au NP 

hybrid sensor for the rapid, sensitive and selective detection of lead ions in water. In section 

2.2, the device fabrication process is introduced in detail, within which rGO is fabricated 

through a self-assembly method. An l-glutathione reduced is employed as the capturing probe 

for the label-free detection of Pb2+ ions. Various techniques, including scanning electron 

microscopy (SEM)，atomic force microscopy (AFM) and Raman spectroscopy, are used to 

characterize the morphology of the platform, the thickness and the structure of rGO film, 

respectively. In Section 2.3, by monitoring the electrical characteristics of the FET device, the 

performance of the sensor is measured and investigated. We discuss the performance of 

detecting Pb2+ ions in water, in terms of the lower detection limit and the response time. And a 

                                                           

*2 This chapter has been published. 
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group of control experiments are carried out to investigate the selectivity of the rGO/GSH-Au 

NP sensor to Pb2+ ions.  

2.2 Experimental methods 

2.2.1 Material： 

 Purified natural graphite was purchased from SP-1. Bay Carbon, MI. KMnO4, NaNO3, 

H2SO4, l-glutathione (GSH), alpha-ethyl-tryptamine (AET) and the blocking buffer (0.1% 

Tween 20) were all purchased from Sigma-Aldrich. Au NPs were sputtered with an RF (60Hz) 

Emitech K550x sputter coater apparatus using an Au target. Ag+, As(V), Cd2+, Cu2+, Hg2+, Zn2+ 

and Pb2+ solutions were prepared by adding chloride salts in deionized (DI) water (Cellgro). 

The assay of Pb2+ in experiment samples was characterized using the ICP-MS method. 

  GO was synthesized using the modified Hummer's method123. First, the purified natural 

graphite was oxidized through treatment with KMnO4 and NaNO3 in concentrated H2SO4.
124 

Due to the presence of its inherent oxygen-containing functional groups, graphite oxide has 

excellent water solubility, strong hydrophilicity, and a facile surface-functionalization feature; 

thus, it can be fully exfoliated in water to form GO. Then, the GO dispersion was centrifuged 

to remove possible agglomeration materials. Finally, with the assistance of ultra-sonication, 

individual GO sheets were obtained from the stable suspension.125  

2.2.2 Device Fabrication:  
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Figure 2.1 Schematic diagram of the rGO/GSH-Au NP hybrid sensor fabrication process: (a) a 

layer of AET coating on the bare interdigitated electrode surface; (b) self-assembly of GO 

monolayer sheets on the AET-modified electrodes, which is followed by the thermal reduction 

of GO to rGO; (c) the assembly of Au NPs onto the rGO film; (d) GSH-modification of Au 

NPs on the rGO sheet surface to form specific recognition groups to detect Pb2+ion. 

To guarantee the electronic stability of the device, we used an electrostatic self-assembly 

method to control the uniformity of the GO film. In this method, an amino-terminated Au 

electrode was employed to anchor the GO. Figure 2.1 (a) and (b) illustrate the chemical 

anchoring procedure of a monolayer AET film. The electrode was immersed in an AET (1 

mg/mL) solution for 10 min to adsorb a monolayer of AET onto the electrodes, as shown in 

Figure 2.1(a). When immersing the electrode in the GO solution, GO sheets self-assembled 

onto the electrode, as illustrated in Figure 2.1(b). One droplet of the GO suspension was 

pipetted onto the electrode and dried at room temperature (~25 ˚C). Single GO layer was 

attached onto the electrode, and excessive GO was removed with the assistance of sonication. 

Thermal reduction was conducted in a tube furnace (Lindberg Blue, TF55035A-1) by heating 
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the device for 1h at 400 ˚C. After the thermal heating, samples were spontaneously cooled to 

room temperature. Several cycles of washing and drying were carried out. Figure 2.1(c) and (d) 

show the deposition of Au NPs onto the rGO surface and the functionalization of Au NPs with 

GSH probes.126 Here we deposited Au NPs for 2s using an RF (60Hz) Emitech K550x sputter 

coater apparatus using an Au target (99.999% purity), at an Ar pressure of 0.03 mbar and a 

working current of 10 mA. A uniform Au NP film of 2 nm thick resulted, as shown in Figure 

2.1(c). GSH is an organic compound which was chosen to be the probe for the specific detection 

of lead ions. The Au NPs were functionalized with GSH groups by immersing the device in a 

10 mM GSH solution at 25 ˚C for 1h. Then the sensor was rinsed with DI water for several 

times to remove extra GSH and dried with a stream of nitrogen gas. A self-assembly monolayer 

of GSH was formed on the gold surface, as shown in Figure 2.1(d). Finally, the device was 

incubated with a blocking buffer for 2h at room temperature and washed with the DI water. A 

three-terminal FET device was employed to measure the device transport characteristics. The 

drain current (Ids) was measured as a function of the gate voltage (Vgs) and a function of the 

drain voltage (Vds), with the gate bias varying from -40 to +40 V. 

2.2.3 Measurement: 

Electrical and transport measurements were performed on rGO/GSH-Au NP hybrid 

structure sensors using a Keithley 4200 semiconductor characterization system, with a back-

gate applied to the FET device at room temperature. By measuring the change in the electrical 

characteristics of the device, we achieved the electrical detection of the target agent that was 

bound to the probes. The electrical conductance of the device was recorded by monitoring the 

change in the drain current (Ids) for a fixed source–drain voltage (Vds) when the device was 

https://en.wikipedia.org/wiki/Organic_compound
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exposed to different concentrations of target solutions. To further confirm the sensor 

repeatability, the detection process was repeated using 3−4 sensors, which showed similar 

sensing responses. 

2.2.4 Characterization: 

 

Figure 2.2 (a) and (b) SEM images of rGO sheets spanning across the interdigitated electrodes, 

showing transparency to the electron beam; (c) SEM image of the rGO sheet decorated with 

Au NPs of 2 nm thick; (d) and (e) AFM (tapping mode) height image and profile of rGO with 

the dashed line indicating the scanning trace; (f) Raman spectrum of the rGO. 

The morphology of the rGO sheets was characterized by a Hitachi S4800 field-emission 

SEM at a 2-kV acceleration voltage. Figure 2.2(a) shows the SEM image of a transparent rGO 

sheet spanning across a pair of Au interdigitated electrodes. The Au interdigitated electrodes 

are about 2 mm long and 50 nm thick, with both finger-width and inter-finger spacing that 
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separates the source and drain terminals around 2 µm. The width of and the gap between the 

electrodes are balanced between the size of synthesized GO flake and the technology limitation 

of microelectronic fabrication. The electrodes were fabricated using a photolithographic 

process on a highly doped Si wafer with an upper layer of dry-formed SiO2 (thickness of 200 

nm). Here the Au electrodes bond with the SiO2 surface through a “metallic glue” -- Ti thin 

film, which has a stronger bonding force to SiO2 and works as an adhesion layer to Au 

electrodes.127 Normally, GO is electrically insulating with a resistance on the order of tens of 

GΩ. The high resistance results from the abundant saturated sp3 bonds and high density of 

electronegative oxygen atoms bonded to carbon atoms. SEM imaging was periodically 

conducted, which suggested the reliable immobilization of rGO sheets on the electrodes. 

Lateral dimensions of rGO typically ranged from several hundred nanometers to several 

micrometers, as shown in Figure 2.2(b). When the Au NPs were sputtered, isolated Au NPs 

uniformly distributed on the surface of the rGO sheet without any aggregation, as shown in 

Figure 2.2(c). It was the physical adsorption between Au NPs and rGO that retained the Au 

NPs on the rGO surface even after several cycles of rinsing in deionized water and drying. 

Figure 2.2(d) and 2.2(e) are an AFM image and a height profile of rGO, by scanning from bare 

silicon substrate surface to rGO. The film thickness was estimated as ∼1 nm, corresponding 

with the typical thickness of a single-layer graphene oxide sheet (∼0.8 nm),128 which suggested 

that the GO film in our sample was monolayer. Raman spectrum for the rGO in Figure 2.2(f) 

shows that the D band is higher than the G band, indicating the abundance of defects in the 

rGO.129 
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2.3 Results and discussion 

AET adsorbed onto the Au electrode surface through the strong affinity of sulfur in the thiol 

functional groups.130 On one hand, the electrostatic adsorption between functional groups (e.g., 

carboxylic acid) on the GO surface and amino groups of the AET131 enabled the first GO layer 

to strongly adhere to AET. On the other hand, because of the weak binding between additional 

layers and the first layer next to the electrode, excessive GO layers were removed through 

sonication. 

Thermal annealing was conducted to remove residue solvents, reduce the GO sheets, 

improve the contact, and reduce the junction barrier between the Au electrode and GO sheets. 

Argon at a flow rate of 0.6 liter per minute is necessary to create an anaerobic atmosphere and 

to reduce oxygen-containing groups. Hence the Au electrodes and rGO sheets work as the 

conducting channel for the sensor device. The conductance of the rGO was dependent on 

annealing temperature, annealing time, and annealing gaseous environment.132 After the self-

assembly of rGO, we need to create anchoring sites for immobilizing probes. Here Au NPs 

were chosen because their excellent functionalization can be used to improve the sensor 

performance.133 The pre-existing abundance of thiolate groups on Au NPs allowed the 

incorporation of a wide range of molecules onto the surface of the GO sensor.134  

In the present study, GSH links with Au NPs through -SH linkage.135 The transmission 

electron microscopy (TEM) imaging and UV-visible spectroscopy136 of GSH- modified Au 

NPs have been reported. As shown in Figure 2.1(d), GSH molecule has two free -COOH groups 

and one -NH2 group, which provide a hydrophilic interface and a handle for functionalization 

with metal ions.137 The complexation between GSH and Pb2+ in an aqueous solution has 
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previously been studied by 13C and 1H NMR methods within a pH range 5.4−12.0.138 A 

blocking buffer was employed to shield the interaction between the rGO and Pb2+, as anions of 

rGO would have electrostatic interactions with Pb2+, affecting the specific interaction between 

Pb2+ and GSH.  

The sensor was exposed to DI water with 10 µM Pb2+, and Pb2+ affected the conductivity of 

the rGO/GSH-Au NP hybrid sensor. The channel conductance changed sensitively due to the 

electron donating and withdrawing effect of target ions. In this FET device, a positive gate 

voltage leads to a depletion layer by repelling the positively charged holes away from the gate-

insulator/semiconductor interface, thus producing a carrier-free region of immobile and 

negatively charged acceptor ions. Here, Au NPs work as the gate in the FET device.139 Due to 

the effective electronic transfer between the rGO and Au NPs, the adsorption of target ions 

onto probes may lead to a carrier concentration change in rGO. As shown in Figure 2.3(a), the 

Dirac point of the sensor shifted ∼ -10 V because of the immobilization of Pb2+ ions. The 

negative shift of the Dirac point can be attributed to the field effect of positive Pb2+ on the 

graphene channel. In the p-channel depletion-mode FET device, once the metal ions bond to 

the hybrid sensor, the positive electrical field of the Pb2+ will force the holes away from the 

gate-insulator/semiconductor interface, leading to a difference in the charge carrier 

concentration within rGO sheets, a decrease of the hole concentration in the rGO sheet, and the 

formation of a depletion layer,140 which consequently causes the reduction of the electrical 

conductivity of the rGO channel in the rGO-FET device. Therefore, compared with water, the 

exposure to Pb2+ reduced the electrical conductance through the hole-transport branch of the 

graphene device. 
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Figure 2.3 (a) Ids−Vgs (Vds =5 V, Vgs= -40 V~40 V, step = 0.2 V), (b) Ids−Vds (Vds= -2.1 V~2.1 

V, step = 0.1 V) characteristics of an rGO/GSH-Au NP hybrid sensor exposed to water (black) 

and 10 μM Pb2+ solution (red) and (c) real-time detection (Vds= 0.1 V) of Pb2+ in water with 

the rGO/GSH-Au NP hybrid sensor. Lower detection limit: 10 nM (0.002 mg/L). 

Figure 2.3(c) shows the dynamic response of the rGO/GSH-Au NP hybrid sensor as a 

function of Pb2+ concentration ranging from 10 nM to 10 µM. During the cumulative addition 

of Pb2+ to the sensor, the drain current versus time was monitored. The sensor responded within 

a few seconds to the Pb2+ due to the diffusion of ions from the liquid drop on the top of the 

device to the contact area. This is much faster than conventional fluorescence sensors, which 

take minutes or even hour.129, 141-142 With the cumulative addition of the Pb2+ solution, the 

conductance of the device decreased gradually, and the rate of the decrease, or percentage 
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change, was in direct proportion to the concentration of Pb2+. The lower detection limit is 10 

nM, defined as the concentration corresponding with a signal-to-noise ratio of approximately 

3143. And it is 5 times lower than the maximum contaminant level (MCL) for Pb2+ ions in 

drinking water defined by the World Health Organization (WHO).144 

 

Figure 2.4 (a) Ids−Vgs (Vds = 5 V, Vgs= -40 V~40 V, step = 0.2 V, (b) Ids−Vds (Vds= -2.1 V~2.1 

V, step = 0.1 V) characteristics of various devices, (c) Ids versus time (Vds= 0.1 V) (dynamic 

responses) of rGO-based sensing platforms: rGO (black), rGO/Au (red), rGO/GSH-Au NP 

(blue), and (d) the sensitivity trendline of the rGO/GSH-Au NP hybrid sensor to Pb ions 

ranging from 10 nM to 10 µM: y = 1.5534ln(x) - 1.8727, R² = 0.9985. 

We designed a control experiment to investigate the function of Au NPs and GSH probes in 

the hybrid sensing platform. As shown in Figure 2.4, three types of sensors were fabricated. 

The first was the bare rGO device without decorating any Au NPs or GSH-functionalized Au 
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NPs. Figure 2.4(c) shows that the device did not respond to Pb2+ ions, implying that there was 

no significant binding between rGO and Pb2+. The second sensor was fabricated with rGO and 

Au NPs without the functionalization of GSH probes. As Figure 2.4(c) shows, the rGO Au-

NPs hybrid device was insensitive to the presence of Pb2+. In the third device, rGO film was 

modified with GSH-functionalized Au NPs, which was highly sensitive to the addition of Pb2+.  

In Figure 2.4(a) and 2.4(b), the typical electrical characteristics, Ids- Vgs and Ids-Vds curves of 

these three types of sensors are presented. The deposition of Au NPs enhanced the drain current 

of the rGO film, which could be attributed to two competing factors. On one hand, comparing 

the work function of Au NPs (5.1–5.47 eV) and rGO (4.4–4.65 eV),145 electrons would transfer 

from the rGO to the Au NPs, increasing the density of holes in the rGO film and thereby 

increasing the drain current. The other factor is that when Au NPs are sputtered onto the rGO 

film, they enlarged the scattering center across the film, hence reduced the mobility of the holes 

of the film and leading to a decrease in the drain current. According to the increased drain 

current, it can be inferred that the electron transfer mechanism dominated in this case. However, 

the assembly of negatively charged GSH molecules onto Au NPs weakened the drain current 

enhancement that was introduced by the deposition of Au NPs, possibly because GSH was 

negatively charged and negative charges would transfer from GSH to rGO. Overall, the drain 

current of the rGO/GSH-Au NP hybrid sensor increased compared with the GO device. 

Compared with the pure rGO film sensing platform and the sensor fabricated with an rGO film 

and Au NPs, the assembly of a stable GSH-functionalized Au NP structure onto an rGO-based 

platform could achieve excellent Pb2+ detection, according to the electrical characteristics and 

the dynamic response (Figure 2.4(c)). 
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To explore the specificity of the GSH probe to Pb2+, we monitored the dynamic response of 

the hybrid sensor to several mineral elements that are necessary for human health.146 As Figure 

2.5 shows, the sensor response to Na+ and Ca2+ is rather weak. However, when exposed to Fe3+, 

the sensor conductivity showed some changes, which may result from the strong affinity of 

Fe3+ to carboxylic groups on rGO.147 However, the interference of Fe3+ is obvious only when 

its concentration exceeds 1μM, suggesting that rGO/GSH-Au NP hybrid sensor is still selective 

to Pb2+, with the Fe3+ at a concentration lower than 1μM.  

 

Figure 2.5 Dynamic responses (Vds= 0.36mV) of the rGO/GSH-Au NP hybrid sensor to 

common metal ions: Na+, Ca2+, Fe3+. 

To further confirm the specificity, we also investigated the behavior of the hybrid sensor 

when it was exposed to a variety of common heavy metal ions: Ag+, As(V), Cd2+, Cu2+, Hg2+, 

Pb2+, Zn2+, and mixed solution of these six kinds of ions (10μM). The Ids characteristics and 

relative current changes are presented in Figure 2.6(a) and (b). Compared with the significant 

responses of Pb2+ and the ion mixture, the responses of the hybrid sensor to Ag+, As(V), Cd2+, 

Cu2+, Hg2+ and Zn2+ ions were much weaker, due to the fact that amidogen, thiol and carbonyl 

groups of GSH favor binding with Pb2+. The increasing relative change can be attributed to the 
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decreasing hole concentration in the rGO sheet.140 As suggested by the previous work, the 

positively charged holes are forced away from the gate-insulator/semiconductor interface by 

the positive electrical field of the Pb2+, and the hole concentration in the rGO sheet decreases.  

As a result, a depletion layer is created, leading to the conductance change in the rGO-FET 

device. 

 

Figure 2.6 (a) Dynamic responses (Vds= 0.1 V) to varying concentrations of heavy metal ions 

and (b) relative current change of an rGO/GSH-Au NP hybrid sensor in response to various 

heavy metal ions: Ag+, As(V), Cd2+, Cu2+, Hg2+, Pb2+, Zn2+, and a mixed solution of the six 

ions (10 μM for total).  

With the development of advanced biochemical, electrochemical, physical detection 

technologies, various methods have been created for the detection of Pb2+, with significant 

progress being made in the lower detection limit. For example, the colorimetric sensor of GSH-

functionalized Au NPs had a lower detection limit of 100 nM137, and catalytic beacon-based 

fluorescent sensor with functional DNAzyme had a lower detection limit of 10 Nm.148 In the 

fluorescent method, the lower detection limit of the GO/aptamer QD sensor was 0.09 nM.143 

An electrochemical SnO2/rGO sensor based on FET had a lower detection limit of 0.184 nM,149 
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the lower detection limit of an electrochemical sensor with nafion-graphene reached 0.003 

nM.150 A rGO-FET sensor got the detection limit of 0.02 nM.109 These achievements are listed 

in Table 2.1. However, besides the lower detection limit, response time and portability need to 

be addressed. Compared with other sensors, our graphene-based FET sensor can provide the 

detection result in a few seconds instead of tens of minutes or even longer, which makes the 

real-time detection feasible. At present, we are aiming at the sensitive detection of target ions, 

and the sensor is for one-time use only.  The sensing device can be reused for 3 times with 

the rinse of acidic buffer (pH=2.8), and no significant degradation in the sensitivity was 

observed. As reported previously, this type of hybrid sensors has great potential for reuse if a 

proper method can be identified to detach target ions from the probes.51,151 For real applications 

of the rGO/GSH-Au NP hybrid sensor, it is necessary to further investigate the reusability and 

the stability. 

Table 2.1 The lower detection limit achieved by different methods measuring lead ions in 

water.  

Methods Structure & Materials 
Lower Detection 

Limit (nM) 

Colorimetric sensor GSH-Au NPs 100 137, 152 

Fluorescent sensor 
DNAzyme 10 148 

GO/aptamer QD 0.09 143 

Electrochemical sensor 
SnO2/rGO 0.184 149 

Nafion-graphene 0.003150, 153 

Electronic sensor 
rGO-FET 0.02109 

rGO/GSH-Au NP 10 
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2.4 Summary and conclusion 

In summary, a real-time, sensitive, specific, user-friendly, portable, and low-cost sensor, 

using an rGO/GSH-Au NP hybrid structure, has been developed for the detection of Pb2+. The 

detection is enabled by recording the electrical conductance of the device through monitoring 

the change in the drain current of the rGO sheets decorated with GSH functionalized Au-NPs. 

The monolayer GO sheets were selectively deposited onto the electrodes by a self-assembly 

method and were thermally annealed to enhance their contact with the Au electrode. The 

experimental results show that Pb2+ can be detected quickly (1−2 s) and sensitively with a lower 

detection limit of 10 nM. The sensor is also selective against other metal ions. The platform 

offers a promising route for real-time, high performance, and low-cost detection of various 

chemicals and bacteria in an aqueous environment. 
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CHAPTER 3 ULTRASENSITIVE MERCURY ION DETECTION USING 

DNA-FUNCTIONALIZED MOLYBDENUM DISULFIDE 

NANOSHEET/GOLD NANOPARTICLE HYBRID FIELD-EFFECT 

TRANSISTOR *3 

3.1 Introduction 

Mercury, one of the most harmful pollutants in water, has a significant negative impact on 

human health. The MoS2 nanosheet, due to its unique electronic properties, is a promising 

candidate for high performance sensing materials. Here, we report an MoS2/DNA-Au NPs 

hybrid FET sensor for the ultrasensitive detection of Hg2+ ions in an aqueous environment. In 

section 3.2, the device fabrication is introduced; MoS2 flakes are prepared as a thin film with a 

filtration method and then transferred on the sensor substrate. Specific DNA is used in the 

hybrid structure as the capturing probe for the Hg2+ ion detection. In Section 3.3, AFM and 

Resonance Raman (RR) spectroscopy are used to characterize the thickness and the phase of 

the prepared MoS2 film, respectively. Sensing performance of the MoS2/DNA-Au NPs to Hg2+ 

is discussed. Exponential fitting of sensitivity as a function of Hg2+ concentration for the hybrid 

sensor suggests that the high sensitivity for future sensors can be realized by enhancing the 

electronic properties of conducting channel materials and coating with the maximum number 

of probes.   

                                                           

*3This chapter has been published.  
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3.2 Experimental methods 

3.2.1 Materials 

MoS2 nanosheets were synthesized by a lithium ion exfoliation method at room 

temperature, primarily due to its capability to control the nanosheet thickness and its potential 

for low-cost industrial applications,88, 154-156 compared with the mechanical exfoliation 

method.91, 157-159 Here the MoS2 powder was intercalated by Li ions and then sonicated in water. 

Next, MoS2 crystals were immersed in a butyllithium solution for 7 days in a flask filled with 

argon gas. The LixMoS2 was retrieved by centrifugation and washed with hexane to remove 

excess lithium and organic residues. Exfoliation was achieved immediately after this by ultra-

sonicating LixMoS2 in water for 1 h. Later, MoS2 film was prepared by filtering a diluted 

suspension (0.2 mg mL–1) through a mixed cellulose ester membrane with 25 nm pores. The 

MoS2 film was delaminated and transferred onto the SiO2 substrate, as shown in Figure 3.1. 

All metal ion solutions, including As(V), Ca2+, Cd2+, Cu2+, Hg2+, Fe3+, Mg2+, Na+, Pb2+ and 

Zn2+, were prepared by adding chloride salts (Sigma-Aldrich) in DI water (Cellgro). MoS2 

powder (particle size: <2 um) was purchased from Sigma-Aldrich. DNA (5’-SH-TCA TGT 

TTG TTT GTT GGC CCCCCT TCT TTC TTA-3’) was purchased from Integrated DNA 

Technologies (IDT). Phosphate buffer solution (PBS) (pH=7.4, ×1) (Fisher BioReagents) was 

used as the solvent for the DNA. Au NPs were obtained through sputtering with an RF (60 Hz) 

Emitech K550x sputter coater apparatus using an Au target. The assay of Hg2+ in experimental 

samples was characterized using an ICP method. The ICP analysis result was 20% higher than 

the prepared concentration of the experimental samples (the pH of experimental samples ranges 
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from 7.74 to 6.40, with the concentration of sample increasing from 0.1 nM to 10 μM, 

respectively). 

3.2.2 Device Fabrication: 

The sensor electrode was fabricated on a Si/SiO2 chip with a similar method used in our 

previous studies.160-162 The interdigitated Au electrodes have a finger width and spacing of 2 

µm. To bridge the interdigitated electrode gaps, the MoS2 dispersion was filtered to form a film, 

as shown in Figure 3.1, and then delaminated and transferred onto the active electrode area 

through a physical contact. Thermal annealing was used to enhance the contact and carried out 

in a tube furnace (Lindberg Blue, TF55035A-1). In the process, Au electrodes with the attached 

MoS2 film and the Si substrate were heated for 1 h at 250 ºC in an Ar and H2 flow (0.4 L/min 

and 0.1 L/min). After heating, samples were cooled down to room temperature. Au NPs were 

deposited onto the surface of the MoS2 film using an RF (60 Hz) Emitech K550x Sputter coater 

apparatus with an Au target (99.999% purity) at an Ar pressure of 0.03 mbar. Au NPs of 2 nm 

were sputtered and attached on the MoS2 film. Then, 10 µL of 100 µM DNA solution in ×1 

PBS was injected onto the active area of the device, and incubated for 60 min at room 

temperature. Finally, the device was briefly rinsed with DI water to eliminate the surplus DNA 

and dried with airflow. 
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Figure 3.1 MoS2 membrane preparation and transfer process. (a-b), MoS2 film was prepared 

by filtering a diluted MoS2 suspension through a mixed cellulose ester membrane with 25 nm 

pores. (c-d), the MoS2 film was delaminated and transferred onto the Si/SiO2 substrate.  

3.2.3 Characterization: 

A Hitachi S4800 field-emission SEM was used to characterize the morphology of the 

MoS2 film at a 5-kV acceleration voltage. RR spectrum, using a Raman spectrometer 

(Renishaw 1000B) with 633 nm laser excitation, was used to investigate the phase of the pure 

MoS2 nanosheet. Meanwhile, the average MoS2 film thicknesses were measured with AFM 

(Park Systems, NX10). The nanostructure of the synthesized MoS2 nanosheet was 

characterized by TEM and HRTEM (Hitachi H-9000-NAR). 

3.2.4 Sensing test: 

A Keithley 4200 semiconductor characterization system was employed to investigate the 

electrical characteristics and sensing performance of the FET device at room temperature. The 
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transistor measurement on the sensor was carried out by measuring the drain current (Ids) as a 

function of the gate voltage (Vg) (-40 V to +40 V) with a fixed source-drain voltage (Vds= 

0.1V). The sensing signal of the device was recorded by monitoring the electrical current of 

the MoS2/DNA-Au NPs hybrid sensor. Specifically, a fixed source-drain voltage (Vds= 0.1V) 

was used and the Ids was recorded when the device was exposed to various concentrations of 

different ion solutions.  

3.3 Results and discussion 
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Figure 3.2 (a) Schematic diagram for the fabrication process of the MoS2/DNA-Au NPs hybrid 

structure. (b) The FET sensor platform based on the hybrid structure. The formation of T-

(Hg2+)-T chelates, through reactions between Hg2+ and the thymidine of the DNA molecules 

on the Au NPs, leading to the change in the MoS2 electrical conductivity as a sensor signal. 

Figure 3.2 (a) shows the fabrication process of our FET sensors. First, Au electrodes were 

patterned onto a Si substrate with a 200-nm SiO2 top layer using a photolithographic technique. 

Later, the MoS2 film was formed by filtration and transferred onto the Au electrodes, followed 

by thermal annealing. Then Au NPs were sputtered on the MoS2 film, and afterward, the DNA 

molecules were decorated onto Au NPs by immersing the device in a DNA solution for 24 

hours. The sensing signal was recorded by monitoring the electrical conductivity change of the 

MoS2/DNA-Au NPs hybrid sensor. Figure 3.2 (b) schematically reveals the formation of T-

(Hg2+)-T chelates between Hg2+ and the thymidine of the DNA molecules on the Au NPs, 

leading to the change in the MoS2 electrical conductivity as a sensor signal. Here, every DNA 

strand (5’-SH-TCA TGT TTG TTT GTT GGC CCCCCT TCT TTC TTA-3’) has multiple pairs 

of T-T on it and every T-T pair has the potential for bonding with one Hg2+ ion. 
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Figure 3.3 (a) TEM, (b) high resolution TEM (HRTEM), (c) AFM images, and (d) cross-

sectional height profile of the exfoliated MoS2 nanosheets, (e) RR spectrum of the 

exfoliated/thermally treated MoS2 nanosheets, (f) SEM image of the prepared 2H-MoS2 film. 

Insert: SEM image of the prepared MoS2 film decorated with Au NPs. 

Figure 3.3(a) shows a TEM image of an exfoliated flake suspended on a lacey carbon TEM 

grid, from which the exfoliated MoS2 sheet displays laminar HRTEM image in Figure 3.3(b) 

clearly indicates that the exfoliated MoS2 sheets are overlapping with each other over the entire 

thin flake with the layer number ranging from 1 to 4. The AFM image in Figure 3.3(c) and the 

height profile in Figure 3.3(d) further suggest that the thickness of the MoS2 nanosheet is ~2 

nm. Since the exfoliation by lithium intercalation results in metastable metallic (1T) phased 

MoS2 (with octahedral coordination of Mo atoms) in the exfoliated individual layer,163 the 

thermal annealing was conducted at 250 °C for 1 h in Ar to restore the MoS2 from 1T phase to 

the thermodynamically stable semiconducting (2H) phase (with trigonal prismatic coordination 

of S-Mo-S atoms) by an intercalation-assisted phase transformation. As a result, the 
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corresponding RR spectrum of the as-fabricated/treated MoS2 sheet in Figure 3.3(e) displays 

several peaks, consistent with those of the 2H-MoS2 reported by previous studies.88 Figure 

3.3(f) and its inset show the SEM images of the prepared 2H-MoS2 film before and after the 

decoration of Au NPs, respectively. The 2H-MoS2 film (~ 10 nm) was prepared with exfoliated 

MoS2 nanosheets as a source material using a previously discussed filtering method. 

 

Figure 3.4 (a) Ids−Vgs (Vds= -40 V~40 V, step = 0.5 V) characteristics of the MoS2/DNA-Au 

NPs hybrid sensor, in air at room temperature, immediately after the thermal annealing without 

exposure to much oxygen. (b) Room-temperature transfer characteristics of the FET sensor in 

air with the bias voltage Vds. of 0.1 V (Vgs= -40 V~40 V, step = 0.5 V). Here, the sensor had 

been exposed to air for over 12 hours before the FET measurement. Inset: Ids−Vds curve 

acquired for a Vgs value of 0 V. 

The FET transfer characteristics in Figure 3.4(b) clearly indicate that the MoS2 film in our 

device is p-type. Note that the p-type nature of MoS2 in our device is opposite to the most 

published n-type MoS2 grown by CVD or produced by mechanical exfoliation.88 This is also 

confirmed in Figure 3.4(a) that the as-synthesized MoS2 was n-type semiconductor. However, 

it was converted to p-type semiconductor when exposed to the oxygen-containing atmosphere, 

as oxygen molecules adsorbed onto defects or sulfur sites on the top layer of the MoS2 film 
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work as p-type dopants for the MoS2 surface by trapping electrons. The linear relationship of 

the I-V curve in the inset of Figure 3.4 (b) suggests an Ohmic contact between the MoS2 film 

and the Au electrodes. 164 This can be expected because the work function of the MoS2 film 

(5.23 eV) is smaller than that of Au electrode (5.26 eV)165 and the band edges would be 

upwards bent upon contact as indicated in Figure 3.5. 

 

Figure 3.5 Schematics of band alignment between the MoS2 film and the Au electrode before 

and after contact. 

For the sensing test, we fabricated three types of sensors: the bare MoS2 film, the MoS2 

film decorated with Au-NPs only, and the MoS2 film decorated with the DNA probe modified 

Au-NPs. The Au NPs here were used as anchoring sites to immobilize probes,166 because 

thiolate groups of the molecules can easily attach to the Au NPs, which allows the incorporation 

of a wide range of molecules onto Au NP surfaces.134 Figure 3.6(a) shows the output 

characteristics (the Ids−Vds curves) of these three types of sensors. A decreased drain current 
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was observed after the deposition of Au NPs on the MoS2 film. Because of the work function 

difference between the Au NPs (3.6 eV in air for D=8 nm)167 and the MoS2 film (~5.23 eV 

after annealing),168 electron transfer occurs from the Au NPs to the MoS2 film, leading to a 

decreased concentration of holes in the MoS2 film and thus the decreased conductivity. After 

the assembly of negatively charged DNA molecules (as the phosphate groups in 

the DNA backbone carry negatively-charged oxygen) onto Au NPs, the drain current further 

decreases, likely because the DNA was negatively charged and electrons transfer from DNA 

to Au NPs and then from Au NPs to MoS2, resulting in a decreased hole concentration in the 

MoS2 film. 

 

Figure 3.6 (a) Evolution of the Ids−Vds characteristics during the MoS2/DNA-Au NPs hybrid 

sensor fabrication process (Vds= -2.1 V~2.1 V, step = 0.1 V) at room temperature. (b) Real-

time detections of Hg2+ (nM) in water (Vds= 0.1 V) with platforms of MoS2/DNA-Au NPs 

(black, solid), MoS2-Au NPs (purple, dash), MoS2 (blue, short dash), respectively. 

Figure 3.6(b) presents the dynamic responses of our as-fabricated devices by monitoring 

the drain current versus time during a cumulative addition of Hg2+ solution to the sensor. We 

can see that the MoS2/DNA-Au NPs hybrid structure is sensitive to Hg2+ with the detection 
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limit lowered to 0.1 nM (defined as the concentration corresponding with a signal-to-noise ratio 

of approximately 3169). This is two orders of magnitude lower than the MCL of Hg2+ (9.9 nM) 

in drinking water defined by the EPA,4 and is superior to most of detection limits reported for 

standard/current methods as summarized in Table 3.1. For example, the Hg2+ detection limit is 

0.25 nM from the cold vapor ICP-MS method,170 while it is down to 0.0299 nM by the 

graphene/Au NPs-based electrochemical sensors.171 For the FET sensors, the detection limit is 

tremendously improved from 25 nM of the rGO/TGA-Au NPs hybrid structure-based sensor161 

to 0.03 nM172 for the few-layer MoS2-based sensor.   

Table 3.1 Comparison of LOD and calibrated range among different methods for Hg2+ 

detection. 

 Standard techniques 
Electrochemical 

sensors 
FET sensors 

Methods 

Ion-

selective 

PVC-

ME173 

Reversed-

phase-

LC174 

Cold 

vapour 

ICP-MS 

method170 

Au-NP-

G171 

SnO2/ 

rGO 

NCs175 

MoS2
172 

 

rGO/ 

TGA- 

Au 

NP161 

 

This 

work 

 

LOD (nM) 1,000 100 0.025 0.0299 0.279 0.03 25 0.1 

Calibrated 

range 

(nM) 

1.8×103-

1.0×108 

1.0×102-

5.0×104 
0.25-5 

0.04-

0.25& 

0.5-

3.0×102 

4.0×102-

1.2×103 
/ / 

0.1-

10 

* The MCL of Hg2+ is 9.97 nM. 

The great improvement of the selectivity after the DNA probe decoration on the Au surface 

suggests that the DNA probe plays an important role in the high selectivity of our sensor.172 

This is mainly due to the strong interaction between the Hg2+ and the single-stranded Hg2+ 

dependent DNA probes immobilized on the Au surface through Au-S bonds,176 since DNA 

binds with Hg2+ by virtue of a series of thymine-thymine mismatches upon exposure to Hg2+, 
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as illustrated in Figure 3.1(b). As the metal ions bind to the DNA probes, the accumulation of 

the positively-charged Hg2+ will cause electron transfer from MoS2 to Au NPs, resulting in a 

p-doping effect to MoS2 and thus an increase of hole concentration in the MoS2 film.140 

Eventually, exposure to Hg2+ leads to an increase of electrical conductivity in the p-type MoS2 

channel. Without specific probe, however, the signals from other metal ions in the water sample 

would generate nontrivial interference. Therefore, adopting specific probe is required for the 

highly sensitive, selective detection of Hg2+. Note that the current increase might also be 

partially due to the higher electrical conductivity of metal ion solutions at high concentrations, 

especially for the bare MoS2 film. Controlled experiments have thus been performed on a blank 

substrate (Figure 3.7) to study such effect quantitatively. The source-drain current changes in 

a blank substrate when exposed to Hg2+ solutions (from 0.1 nM to 100 nM) were 0.1- 0.3 nA, 

correspondingly. However, the current change in the MoS2/DNA-Au NPs hybrid sensor was 

0.07 -0.1 μA. Thus, this remarkable current increase indeed arises from the interaction between 

the MoS2/DNA-Au NPs hybrid sensor and Hg2+ instead of the ionic conductivity introduced 

by Hg2+. As shown in Figure 3.6(b), the pure MoS2 film has no response to Hg2+ until its 

concentration reaches 10 nM, and a similar response was observed after Au NPs deposition, 

implying that there is no significant binding between MoS2 (Au NPs) and low concentration 

Hg2+. When the Hg2+ reaches a high concentration (10 nM or higher), the non-specific binding 

between MoS2, MoS2/Au NPs and Hg2+ leads to an increase in the electrical conductivity. The 

exposure of MoS2/Au NPs platform to high concentration Hg2+ results in a big conductivity 

increase. This can be attributed to the fact that the high concentration Hg2+ ions connect the 

gold nanoparticles (isolated but very close to each other) on the MoS2 film. 
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Figure 3.7 Real-time detection (Vds= 0.1 V) of Hg2+ in water, with concentrations ranging from 

100 pM to 10 μM, using blank Au electrode.  

We now turn to explore the kinetics and the relationship between the sensitivity and the 

ion concentration in our device. Figure 3.8(a) shows the dynamic response of the MoS2/DNA-

Au NPs hybrid sensor for lower Hg2+ concentrations ranging from 0.05 to 2.76 nM (here, the 

applied Vds was 0.1 V). We can see that no noticeable change occurs upon the addition of DI 

water and lower concentrations of Hg2+ than 0.1 nM. Therefore, compared with the DI water, 

the increase in the electrical conductance of the MoS2 FET device indeed results from its 

exposure to Hg2+. Practically, the current begins to increase only after the ions in the liquid 

drop diffuse from the top of the device into the active area. The dynamic responses in Figure 

3.8(a) indicate that our sensor responded to the Hg2+ within a few seconds and this response 

rate is much faster than the conventional atomic fluorescence ones, which take minutes or even 

longer, to have the dispersed Hg2+ fully trapped by the instrument to enable detection.160, 177  
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Figure 3.8 (a) Real-time detection of Hg2+ in water using the MoS2/DNA-Au NPs hybrid sensor 

(Vds= 0.1 V) with a lower detection limit of 0.1 nM (0.02 µg/L). (b) Sensitivity variation and 

exponential fitting of sensitivity using Eq. (3.1) as a function of Hg2+ concentration for the 

MoS2/DNA-Au NPs hybrid sensor. (c) Real-time detection of various interfering ions in water 

with the MoS2/DNA-Au NPs hybrid sensor. (Vds= 0.1 V) (d) Relative current change of an 

MoS2/DNA-Au NP hybrid sensor in response to various heavy metal ions: As(V), Ca2+, Cd2+, 

Cu2+, Fe3+, Hg2+, Mg2+, Na+, Pb2+ and Zn2+ (1 nM).  

In principle, the conductance of our MoS2/DNA-Au NPs sensor increases gradually with 

the cumulative addition of the Hg2+ solution. The rate of increase in the conductance or source-

drain current) is dependent on the Hg2+ concentration. Moreover, this rate should gradually 

decrease to zero (or the sensitivity should gradually increase and eventually saturate) as the 
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Hg2+ concentration increases, because the attracting sites in the DNA probes become fewer and 

fewer. The relationship between the sensitivity and the Hg2+ concentration can be described as      

                       𝑆 = 𝐴[1 − exp(−𝐵𝑥)],                        (3.1) 

in which 𝐴  and 𝐵  are the fitting parameters, and 𝑥  is the ion concentration. For our 

MoS2/DNA-Au NPs hybrid sensor shown in Figure 3.8(b), 𝐴 and 𝐵 are fitted to be 11.6 and 

0.26/nM, respectively. Note that 𝐴 and 𝐵 are intrinsic to the conducting channel materials 

and DNA probes. And the magnitude of the sensitivity (A) is dictated by the properties of 

conducting channel materials (it will be discussed in Section 5.3), while its rate of increase (B) 

is determined by the type of DNA probe and its concentration. Eqn. (3.1) thus suggests that the 

high sensitivity for future sensors can be realized by enhancing properties of conducting 

channel materials and coated with the maximum number of specific DNA probes.   

To determine the selectivity of our hybrid sensor, the detection of nine other metal ions 

was also carried out, such as As(V), Ca2+, Cd2+, Cu2+, Fe3+, Mg2+, Na+, Pb2+ and Zn2+. Figure 

3.8(c) presents the dynamic responses towards these ions with several selected concentrations 

(1 nM, 10 nM, 100 nM, 1 µM), while the sensitivities of the MoS2/DNA-Au NPs hybrid sensor 

at the concentration of 1 nM are plotted in Figure 3.8(d). We can see that Cd2+, Fe3+ and Pb2+ 

could lead to the current increases at the concentration of 100 nM, 100 nM and 1 µM due to 

the increased hole concentration in the MoS2 film, respectively, but the sensitivities are much 

smaller compared with the significant responses to Hg2+. However, the hybrid sensor did not 

show obvious responses to As(V), Ca2+, Cu2+, Mg2+, Na+ and Zn2+. These results indicate the 

high selectivity of the hybrid structure to Hg2+. To verify the stability and repeatability of our 
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sensor devices, each sensing operation was repeated 3 times, with concentrations ranging from 

1 pM to 100 nM, and they showed similar responses, as indicated in Figure 3.9.  

 

Figure 3.9 Repeatability of the MoS2/DNA-Au NPs hybrid sensor, confirmed by similar 

dynamic responses of three different sensors to Hg2+, with concentrations ranging from 1 pM 

to 100 nM. 

 

Figure 3.10 Real-time detection (Vds= 0.1 V) of Hg2+ in real water samples (provided by our 

industrial partner) with concentrations ranging from 0.5 nM to 250 nM using the MoS2/DNA-

Au NPs hybrid sensor. 

We also investigated its sensing performance for Hg2+ in real water samples that were 

provided by our industrial partner. The result is shown in Figure 3.10; the dynamic signal 
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introduced by the Hg2+ in water with concentrations ranging from 0.5 nM to 250 nM clearly 

suggests the rapid and sensitive detection for Hg2+. At present, the sensor is for one-time use 

only, but great potential for reuse has been indicated in experiments with proper methods to 

detach target ions from the probes.160, 151 In our experiments, the sensing device can be reused 

for 3 times by rinsing the device with acidic buffer (pH = 2.8), and no significant degradation 

in the sensitivity was observed (degradation is shown in Figure 3.11). However, to extend the 

MoS2/DNA-Au NPs hybrid sensor into practical reusable applications, further work is needed. 

 

Figure 3.11 Reusability of the MoS2/DNA-Au NPs hybrid sensor, suggesting no significant 

degradation in the sensitivity was observed in dynamic responses of the same sensor to Hg2+ 

for three continuous uses after washing.  

3.4 Summary and conclusion 

In summary, we demonstrated a sensitive and selective MoS2/DNA-Au NPs hybrid 

structure-based FET sensor for Hg2+ detection. In the hybrid structure, the MoS2 thin film acts 

as the conducting channel with the homogeneously dispersed Au NPs as anchoring sites for 

DNA probes specific to detection of Hg2+. The detection is enabled by monitoring the change 
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of the source-drain current in the FET device as a function of Hg2+ concentration. Our sensor 

offers a promising route for the real-time (1−2 s), high-performance, and low-cost detection of 

Hg2+. The detection limit can reach down to the concentration of 0.1 nM. Meanwhile, the sensor 

also shows high selectivity against many other metal ions. Overall, the simple fabrication 

procedure and the excellent sensing performance of the MoS2/DNA-Au NPs hybrid structure 

makes it a promising for real-time detection of Hg 2+ in an aqueous environment. 
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CHAPTER 4 REAL-TIME AND SENSITIVE ARSENIC ION 

DETECTION USING BLACK PHOSPHORUS/AU NP/DTT HYBRID 

STRUCTURE *4 

4.1 Introduction 

BP nanosheet, due to its unique structure and excellent electronic properties, becomes a 

promising candidate for high-performance sensing material in an FET sensor. Arsenic is one 

of the most abundant mineral in the earth. The toxicity of As is notorious and drinking water 

with arsenic can lead to various diseases. Here, we report an FET sensor using hybrid structure 

of BP and dithiothreitol (DTT)-functionalized Au NPs for the detection of As in water. In 

Section 4.2, we will discuss the BP thin film preparation through the mechanical exfoliation 

method. Section 4.3 demonstrates the outstanding performance of the as-fabricated BP/Au 

NPs/DTT sensor. A logarithmic curve and a linear curve are used to fit the sensitivity as 

functions of As ions concentration for the BP/Au NPs/DTT hybrid sensor, respectively, and 

the fitting curve is used for the prediction of As ion concentration in lake water, as discussed 

in Section 4.4.  

4.2 Experimental methods 

4.2.1 Sensor fabrication and characterization:  

The interdigitated Au electrodes (spacing of 2 µm) were thermally deposited on the SiO2 

(thickness of 300 nm)/Si (thickness of 500 µm) substrate using a laser direct writing method. 

                                                           

*4This chapter has been published.  
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The BP film was exfoliated from the commercial bulk BP (purchased from HQ Graphene) 

using the “Scotch tape” method, as shown in Figure 4.1 (a). Then the exfoliated BP film was 

transferred onto the Au electrodes as in Figure 4.1 (b), bridging the gap between the two 

electrodes. To enhance the contact quality between the BP film and Au electrodes, the sensor 

was thermally annealed at 250 °C in Argon atmosphere for 30 mins. And Au NPs were sputter 

coated on the BP film. SEM (Hitachi S4800) was used to characterize the morphology of the 

BP film at a 2-kV acceleration voltage, while AFM (Park Systems, NX10) was employed to 

identify the thickness of the exfoliated BP film. TEM and HRTEM (Hitachi H-9000-NAR) 

were used to characterize the nanostructure of the prepared BP nanosheet. Afterwards, Au NPs 

were sputter coated with an RF Emitech K550x using an Au target. 

 

Figure 4.1 (a) Mechanical exfoliation of the BP film using the “Scotch tape” method. (b) The 

exfoliated BP film was transferred onto the Au electrodes. 

4.2.2 Sensing test: 

All sensing tests were performed under the ambient condition. A Keithley 4200 

semiconductor characterization system was used to characterize the sensor platform. The 

electrical conductance of the sensor was recorded by monitoring the change in the drain current 

(Ids) for a fixed source−drain voltage (Vds) when the sensor was exposed to different 
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concentrations of target solutions. Between the source and drain electrodes, a constant voltage 

(0.1 V) was applied to the sensor and the electrical conductance difference was monitored and 

recorded. In the control experiments of selectivity, Ag+, Ca2+, Cd2+, Cu2+, Fe3+, Hg2+, Mg2+, 

Na+, Pb2+ and Zn2+ solutions were prepared with corresponding metal chloride salts in ultrapure 

water, and phosphate ion solutions were prepared with NaH2PO4. Ethylenediaminetetraacetic 

acid (EDTA) was added as chelating agent for diminishing the reactivity of metal cations, 

especially Mn2+.14 As (V) solutions were prepared with NaH2AsO4. All the salts, EDTA and 

humic acid were purchased from Sigma Aldrich. The As (III) solutions were prepared by 

diluting Arsenic +3 ICP standard (VWR) with ultrapure water. The ICP-MS was employed to 

characterize the assay of the As ions in our experiments. In this research work, for the As (III) 

solutions with concentrations ranging from 1nM to 1µM, their pH values varied from 5.92 to 

5.30. As reported, in this pH range, H3AsO3 (As(OH)3) is dominant;178 thus only As(OH)3 was 

considered for schematic representation. Acidities were tested with a pH meter (Hanna 

Instruments HI98103). 

4.3 Results and discussion 

Figure 4.2 (a) presents a schematic of the BP/Au NPs/DTT sensing platform. BP film was 

mechanically exfoliated and transferred onto the Si wafer with patterned Au electrodes. 

Attributing to the bonding between Au NPs and thiolated groups on DTT molecules, Au NPs 

act as the anchoring sites to immobilize the chemical probes DTT through Au-S bonds, 179-181 

which improves the specificity of the sensing platform. The DTT structure is shown in Figure 

4.2 (b) with two thiol groups on both ends, with one end attaching to the Au NPs, and the other 
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end free. 182-183 It is well known that As (III) has a very high affinity for thiol-containing 

ligands.184-186 During the sensing process, the free end thiol group will chelate with As (III) 

through forming covalent bonding and generates strong complex. 186 As shown in schematic 

Figure 4.2 (b), each As (III) ion can bind with three DTT-conjugated Au NPs through an As-S 

linkage. 185, 187 Since the As (III) species are negatively charged, they would cause the electrons 

to transfer to BP film, leading to the electrical conductivity change in the BP film. 

 

Figure 4.2 (a) Schematic of the BP/Au NPs/DTT sensing platform for the As ion detection. (b) 

The reaction between the DTT and As (III) ion in the detection process.  
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Figure 4.3 SEM images of (a) bulk BP with the layered structure, (b) an exfoliated BP flake 

electrically bridging the interdigitated Au electrodes. (c) AFM image of exfoliated BP flakes 

and, inset: the height profile across the flakes. (d) HRTEM image of a BP film, demonstrating 

the typical BP lattice spacing. (e) TEM image and (f) SAED pattern of the BP film. 

Figure 4.3 (a) and (b) show the SEM images of bulk BP and an exfoliated BP flake, 

respectively. The bulk BP exhibits a layered structure on the cross section, while the as-

prepared BP flake can bridge the interdigitated electrodes, working as the channel material. 

The AFM image in Figure 4.3 (c) and the height profile suggest that the thickness of the BP 

flake in the FET sensor is ~ 60 nm, corresponding to a multilayer BP film. Thinner BP flakes 

were also tested for the channel material, but it did not deliver stable performance as thinner 

flakes can be easily oxidized in air. 188 Figure 4.3 (d) shows the HRTEM image of an exfoliated 

BP film transferred onto a holey carbon grid, while the TEM image of the bulk BP is shown in 

Figure 4.3 (e). The typical lattice spacings in Figure 4.3 (d) are 0.256 nm and 0.217 nm, which 
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correspond to the (111) and (002) planes, respectively, of the side-centered orthorhombic BP.20 

The selected area electron diffraction (SAED) pattern in Figure 4.3 (f) indicates a single 

crystalline structure. The TEM characterizations in Figure 4.3 (d-f) reveal an excellent 

crystalline quality of the as-produced BP film in the FET sensor. 

 

Figure 4.4 Electronic characteristics and real-time sensing performance of the FET sensor 

platform (a) Ids-Vgs curve with the bias voltage Vgs ranging from -40 to 40 V (Vds = 0.1 V).  

(b) Ids-Vds curve with the Vds= -1V~1V (Vgs = 0 V). (c) Real-time detection of As (III) in water 

(Vds= 0.1 V, Vgs = 0 V) with the BP/Au NPs/DTT platform, for concentrations ranging from 1 

nM to 1 µM.  

Since the FET sensor works by transforming the adsorbates-induced electronic perturbation 

into the conductance change in the channel material, an excellent FET sensor requires both a 

highly sensitive response to the external stimulation and a low noise. In other words, the sensor 

http://www.nature.com/ncomms/2015/151021/ncomms9632/full/ncomms9632.html#ref17
http://www.nature.com/ncomms/2015/151021/ncomms9632/full/ncomms9632.html#ref17
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performance is intimately related to the electronic characteristics of the channel material itself 

and its contact quality with the electrodes. The investigation of the electrical characteristics 

was first obtained at room temperature under an ambient condition in the bottom-gated FET 

architecture. The Isd-Vgs characteristic of the BP FET sensor shown in Figure 4.4 (a) exhibits a 

well-developed saturation curve of p-type nature with an on/off current ratio up to 3. The linear 

Isd-Vsd curve in Figure 4.4 (b) implies an Ohmic-like contact between Au electrodes and the 

BP film, suggesting an effective carrier injection from the Au electrodes into the BP film, as 

well as the minimization of the potential electrical noise from the mechanical perturbation 

during the sensing test. Figure 4.4 (c) shows the dynamic sensing performance of the as-

fabricated BP device through monitoring the drain current change versus time. Obviously, we 

could see that the current decreases upon the addition of As (III) solutions with all different 

concentrations. The As (III) solution was cumulatively drop-casted onto the sensor with the 

concentration ranging from 1 nM to 1 µM. The current decrease could be attribute to the fact 

that when the platform is exposed to the negatively charged As (III) ions, the ions will chelate 

with the thiol groups on the DTT molecules, through forming covalent As-S bonding and 

generates strong complex, as shown in schematic Figure 4.2 (b). 185, 187 Electrons are transferred 

from the ions into the BP film, reducing the hole concentration in the p-type BP film and thus 

reducing the conductivity. Defined as the concentration corresponding with a signal to noise 

ratio of approximately 3, the LODs of our sensor towards As (III) is 1 nM, two orders of 

magnitude lower than the MCL of As in drinking water defined by both EPA and WHO (130 

nM).  
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The prepared As (III) solution were diluted from ICP As +3 standard with ultrapure water. 

Their pH values varied from 5.30 (1uM), 5.64 (100 nM), 5.80 (10 nM) to 5.92 (1nM). It has 

been reported that pH increasing will lead to the As species transition, from As(OH)3 to 

ultimately AsO3
3-.178 To investigate the effect of As species on the sensing performance, 

another group of As (III) solutions were prepared in the same manner, followed by adjusting 

to neutral state (pH = 7). Figure 4.5 (a) shows the high similarity in sensing performances 

between the neutral As (III) solutions and the as-prepared As (III) solutions (in Figure 4.4 (c)). 

It may result from the intrinsic high affinity between thiol groups and As (III)  ions, 184-186 

which is independent of the As (III) species. And the comparison confirms the consistent 

performance of the BP/Au NPs/DTT platform in acidic and neutral aqueous environments. The 

result in Figure 4.5 (b) demonstrates a comparable performance of detecting As (V) with the 

BP/Au NPs/DTT platform to the detection of As (III), with an LOD of 1 nM. As being reported, 

DTT can reduce As (V) to As (III), 185, 189-190 thus the result in Figure 4.5 (b) implies that the 

BP/Au NPs/DTT sensing platform can detect As (III) as well as As (V) in water samples. 

Compared with the current detection methods of As (summarized in Table 4.1), the BP FET 

platform features both a lower LOD and a quicker response. 
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Figure 4.5 (a) Real-time detection of neutral (pH= 7) As (III) solutions in water (Vds= 0.1 V, 

Vgs = 0 V) with the BP/Au NPs/DTT platform, for concentrations ranging from 1 nM to 1 µM. 

(b) Real-time detection of As (V) in water (Vds= 0.1 V, Vgs = 0 V) with the BP/Au NPs/DTT 

platform, for concentrations ranging from 0.1 nM to 1 µM. Insert: the schematic of DTT 

reducing As (V) to As (III). 

Table 4.1 Comparison of arsenic ion detection with different methods. 

Methods Structure LOD (ppb) 

Electrochemical 

FePt NPs on Si191 0.8 

FeAu NPs191 4.1 

FePd191 7.9 

Au NPs192 0.0096 

Surface Enhanced Raman Spectroscopy 
Benzenethiol-Coated 

Silver Nanocrystal193 
1 

Ion Selective Electrode μISE/POT194 10 

ICP-MS / 
As (III):0.03; 

As(V): 0.04 195 

This work BP/Au NPs/DTT As (III) & As(V): 0.077 

  Besides functioning as the probe, adsorbed DTT molecules also work as the chemical 

passivation layer through the covalent functionalization between the DTT and Au NPs.196 It 

improves the stability of the BP film by protecting it from being oxidized under the ambient 

condition. The good performance of the sensitivity and quick response is mainly due to the 

selectivity of the probe DTT to As ions. To further validate the role of probe DTT, we also 

designed control experiments with the bare BP film and the BP film coated with the Au NPs 

anchoring sites, in comparison with the BP/Au-NPs hybrid decorated with DTT probes. During 

the fabrication process, we can see from Figure 4.6 (a) and (b) that the current between source 

and drain terminals (Ids) increases after the deposition of Au NPs on the BP film, indicating 

that the deposited Au NPs introduce a p-doping effect on BP. Because of the work function 

difference between the Au NPs (5.1 eV)197 and BP (3.9 eV for vacuum cleaved black 
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phosphorus),198 electron transfer occurs from BP film to Au NPs, leading to the increase of 

hole concentration in BP film and thus the conductivity of BP film increases. After the 

assembly of probe DTT, the drain current decreases, likely because the DTT was negatively 

charged (due to the negatively-charged thiolate -S-) and electrons will transfer to Au NPs and 

further to BP film. Figure 4.6 (c) shows the dynamic responses of these control group sensors 

to As (III) ions at different concentrations. Apparently, only the BP/Au NPs/DTT hybrid sensor 

exhibits significant responses and proves the necessity to use a specific probe for proper 

function of a sensor. The weak current decrease in BP/Au NPs platform is likely due to the 

non-specific attachment of As (III) ions to the Au NPs surface.  

 

Figure 4.6 (a) Ids-Vgs curve with the gate voltage Vgs ranging from -10 V to 10 V. (b) Ids-Vds 

curve with the Vds= -1V~1V. (c) The Ids vs. time (Vds = 0.1 V) (dynamic responses) of BP FET-
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based sensing platforms: the prepared BP film (black), BP/Au NPs (blue), BP/Au NPs/ DTT 

(red) in air.           

4.4 Arsenic analysis in lake water samples 

 

Figure 4.7 Sensitivity to As in water and (a) the logarithmic fitting curve, (b) the linear fitting 

curve of sensitivity as a function of As concentration for the BP/Au NPs/DTT hybrid sensor.  

In Figure 4.7 (a) and (b), a logarithmic curve and a linear curve are used to fit the sensitivity 

as functions of As ions concentration for the BP/Au NPs/DTT hybrid sensor, respectively. The 

sensitivity is defined as the ratio of the source drain current change after ion addition (ΔIds= Ids’ 

− Ids) to the initial current (Ids). The fitting curve enables the BP/Au NPs/DTT platform to 

predict the As concentration in real water sample. To conduct real water test, it is essential to 

characterize the selectivity of the platform. Here we prepared solutions containing other metal 

ions, including Ag+, Ca2+, Cd2+, Cu2+, Fe3+, Hg2+, Mg2+, Na+, Pb2+, Zn2+, other ubiquitous 

anionic species in aqueous samples, such as phosphate ions (H2PO4
-) and humic acid. As shown 

in Figure 4.8 (a), they were all tested with the BP/Au NPs/DTT platform in the same manner 
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as we discussed above. The sensors showed negligible responses from Na+, Ca2+, Zn2+, H2PO4
- 

and humic acid, but noticeable responses from Cu2+, Mg2+, Cd2+, Fe3+, Hg2+, Ag+ and Pb2+.  

 

Figure 4.8 Selectivity: real-time detection of As as well as other ions (10 nM), including Ag+, 

Ca2+, Cd2+, Cu2+, Fe3+, Hg2+, Mg2+, Na+, Pb2+, Zn2+ (a) in initial states (b) with 1:1 molar ratio 

of EDTA added, phosphate ions (H2PO4
-), and humic acid in water with the BP/Au NPs/DTT 

hybrid sensor (Vds= 0.1V, Vgs = 0 V).  

Since the thioled molecule (DTT) modified sensing platform is not only sensitive to Arsenic 

ions but also to other metal cations, we also needed to remove potential interferents cations. 

Many research works have reported that EDTA is broadly used as a cheating agent, as it forms 

stable complexes with metal cations and suppress their activities.199-200 The effect of ETDA 

(100 nM) on the sensing platform was negligible, as shown in Figure 4.9. And EDTA will not 

be able to bond with gold nanoparticles through the SH linkage in the same manner as DTT. 

Therefore, Cu2+, Mg2+, Cd2+, Fe3+, Hg2+, Ag+ and Pb2+ solutions were re-prepared with 

ultrapure water, adding 1:1 molar ratio of EDTA (as the disodium salt) and left for 1 hour. As 

shown in Figure 4.8 (b), an excellent selectivity over most metal ions is obtained, confirming 

that treatment with cation masking agent is crucial to minimize the heavy metal ion interference.  
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Figure 4.9 The Ids change introduced by EDTA (100 nM) to the BP/Au NPs/DTT platform 

(Vds= 0.1 V, Vgs = 0 V).   

Here the real water samples were collected from Lake Michigan, and the collection locations 

was 40 meters from Milwaukee Community Sailing Center. The lake water has a very complex 

chemical composition and contains organic compounds, colloidal particles, bacteria and 

inorganic ions. Thus, pretreatment of lake water samples is essential to accurately analyze ion 

species with small molecular weight. In our case, filtration with 0.2 µm pore filter was used to 

remove potential microorganisms and large suspended particles. EDTA was added into the 

water for pre-treatment, and the water samples were tested by three different sensors. The 

prediction result with the BP/Au NPs/DTT platform is shown in Table 4.2. The average 

sensitivity is 4.68%. The standard deviation of sensitivity is 0.9, indicating good repeatability 

and consistent performance of the sensors. Comparing with real As concentration, which were 

obtained by ICP-MS measurement, the error of the prediction is 14%. The prediction 

experiment suggests that the BP/Au NPs/DTT platform has great potential to develop into a 

standalone sensor for water pollutant detection. 
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Table 4.2 Real water sample test with the BP/Au NPs/DTT sensor. 

 Result 

Average sensitivity tested by three sensors (%) 4.68 

Standard deviation of sensitivity ± 0.9 

Predicted As concentration by BP/Au NPs/DTT sensor (ppb) 1.01 

Real As concentration tested by ICP-MS (ppb) 0.88 

Prediction error 14% 

4.5 Summary and conclusion  

In summary, we demonstrated a sensitive and selective BP/Au NPs/DTT hybrid structure 

based FET sensor for As ion detection. In the hybrid structure, BP film works as the conducting 

channel, while the homogeneously dispersed Au NPs are the anchoring sites for the DTT probe, 

which is specific to As ions. The As ion detection is realized by monitoring the change of the 

source-drain current in the FET device as a function of the As ion concentration. The LOD can 

reach down to a concentration of 1 nM. The sensor also shows high selectivity against many 

other metal ions. Our sensor offers a promising route for the real-time (within 1-2 s), high-

performance and low-cost detection of As ions. Overall, the simple fabrication procedure and 

the excellent sensing performance of the BP/Au NPs/DTT hybrid structure make it promising 

for real-time detection of As ions in an aqueous environment. To improve the real water 

analysis, further investigation is needed to construct a comprehensive calibration model 

considering key factors including the intrinsic electronic property of the sensing platform, 

ambient environment effect, interference from other water components and the sensing 

performance.  
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CHAPTER 5 SENSITIVITY IMPROVEMENT OF THE FET SENSOR 

BASED ON 2D NANOMATERIALS 

5.1 Introduction 

In previous chapters, the sensor platform is shown to exhibit a remarkable sensitivity to 

heavy metal ions with extremely low LODs. The rapid, selective, sensitive and stable detection 

performance suggests a promising future of the FET sensing platform for in-situ detection of 

contamination events. The FET platform could be developed into standalone sensors or 

integrated into existing water equipment for monitoring water contamination and mitigating 

the public health risk. For real water applications, we need to further understand the sensing 

mechanism and improve the sensing performance, especially the sensitivity. In section 5.2, we 

further investigate the sensing mechanism through theoretical analysis and experimental 

validation, and the gating effect-induced channel resistance change (ΔRch) is found to be the 

dominating signal from the sensing performance. To further improve the sensitivity, research 

is needed to identify critical factors for the gating effect. Section 5.3 discusses channel 

materials in terms of the effect of their electronic properties on the sensing performance, which 

suggests that a high sensitivity of sensors can be realized by forming hybrid structures with 

thinner 2D conducting materials with a larger band gap, a higher carrier mobility, and being 

coated with the maximum number of specific probes. Section 5.4 investigates the effect of Au 

NPs, and it is found that balancing the particle size and the particle number to achieve a uniform 

sensing surface with a maximum areal density could maximize the adsorption of probes. The 

formation of self-assembly monolayer (SAM) of the thiol-containing probes on Au NPs is 
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reported in Section 5.5, and the results suggest the optimum time, temperature, pH condition, 

and concentration for SAM formation.  

5.2 Sensing mechanism analysis 

To identify the intrinsic electrical signal and thus improve the sensitivity, the simplified 

Randles circuit and impedance spectroscopy method were used to differentiate the role of each 

electronic element in the FET platform, as shown in Figure 5.1(a). The platform resistance 

consists of the system resistance (R0), the channel resistance (Rch), and the contact resistance 

(Rcontact) at the interface between the channel material and the gold electrodes. Meanwhile, 

under the application of voltage, the interface between the channel material and gold electrodes 

functions as a contact capacitor (Ccontact). During the sensing test, channel capacitance Cch 

occurs between the electrodes, resulting from the water (CH2O) and the metal ions-induced 

electrical double layer (Cdl) on the sensing surface. The whole circuit is simplified as the 

equivalent Randles circuit shown in Figure 5.1 (b). 

Figure 5.1 (a) Schematic of the FET sensing platform and (b) its equivalent Randles circuit. 

 The sensor sensitivity is defined as the ratio of the source drain current change after ion 

adsorption (ΔIds= Ids’ − Ids) to the initial current (Ids). In terms of the resistance, it is expressed 

as:  

                                                                   (5.1) 
𝑆𝑅 =

𝑅’ − 𝑅

𝑅
=

∆𝑅

𝑅
=

∆𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡 + ∆𝑅𝑐ℎ

𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡0 + 𝑅𝑐ℎ0
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Here, R is the initial platform resistance,  

Rch0 is the initial channel resistance from the channel material,  

Rcontact0 is the initial contact resistance at the interface between the channel material and gold 

electrodes, 

ΔR is the total resistance change on the platform induced by the metal ions, 

ΔRch is the channel resistance change induced by the metal ions, 

ΔRcontact is the contact resistance change induced by the metal ions. 

The initial channel resistance Rch0 is determined by the electronic conductivity of the 

channel material; e.g., the fully reduced monolayer rGO exhibits conductivities ranging 

between 0.05 and 2 S/cm and field effect mobilities of 2−200 cm2/V-s at room temperature.201 

Rcontact0 is the initial contact resistance between the channel material and the gold electrodes, 

introduced by the non-ideal physical contact and the work function difference between the 

electrode and the channel material.  

In the sensing platform, after introducing metal ion solutions, both Rch and Rcontact would 

change. Charge transfer will result in the decrease of Rch (Equation 5.2) because positively 

charged Pb2+ ions entrap electrons from the rGO film, thereby increasing the hole density in 

the p-type rGO film and leading to a decrease in Rch, as shown in Figure 5.2 (a). 

                                                                       (5.2) 

Gating effect would lead to the increase of Rch (Equation 5.3), since positively charged 

Pb2+ ions adsorbed on the sensor surface generate positive electric field that repels the carriers 

(holes) in the rGO film, thereby increasing the Rch of the device, as shown in Figure 5.2 (b). 

                                                                   (5.3) ∆𝑅𝑐ℎ_𝐺 ↑ (∆𝑅𝑐ℎ > 0) 

∆𝑅𝑐ℎ_𝐶𝑇 ↓ (∆𝑅𝑐ℎ_𝐶𝑇 < 0) 
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Figure 5.2 Channel resistance change mechanism after introducing Pb2+ ions to the 

rGO/AuNPs/GSH platform: (a) Charge transfer vs. (b) Gating effect.  

Meanwhile, gating effect will lead to a decrease in contact resistance Rcontact. Pb2+ ions 

adsorption results in a positive voltage to the contact regions, enhancing the tunneling 

probability and thus decreasing contact resistance, as shown in the schematic of Figure 5.3. 

                                                                    (5.4) 

   

Figure 5.3 Schematic of introducing gating effect to the channel and the contact region: 

electrons are directly induced in the channel region, but positive voltage is applied to the 

contact regions. 

The AC impedance analysis was employed to quantitatively characterize the channel 

resitance and the contact resistance changes in the sensing platfrom with a sinusoidal voltage 

applied. Figure 5.4 shows the measured electrochemical impedance spectroscopy (EIS) spectra 

of the Randles circuit for the response of the rGO/Au NPs/GSH platform to Pb2+ ions of various 

concentrations. The fitting of the model to the experimental data was performed using complex 

∆𝑅𝑐_𝐺 ↓ (∆𝑅𝑐 < 0) 
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nonlinear least-square procedures which are available in numerous EIS data fitting computer 

programs. The analysis result in Table 5.1 indicates the Rcontact decreases with the introduction 

of Pb2+ ions, which agrees with the theoretical analysis of gating effect; the increase in Rch 

suggests the gating effect is dominant over the charge transfer effect. However, the overall 

resistance change ΔRtotal/Rtotal and related sensitivity is relatively low, since the Rcontact and Rch 

change in opposite directions. And the total resistance change in the platform is a sum of 

ΔRcontact and ΔRch resulting from the gating effect and the charge transfer (Equation 5.5). 

                                                                      (5.5) 

0 10k 20k 30k 40k 50k 60k 70k
0

10k

20k

30k

40k

50k

 

 

Z
" 

(o
h

m
)

Z'' (ohm)

 Air

 Water

 10 ppb

 50 ppb

 100 ppb

 

Figure 5.4 EIS spectra of the Randles circuit for the response of the rGO/Au NPs/GSH platform 

to Pb2+ ions of various concentrations. 

Table 5.1 EIS analysis result for the response of the rGO/Au NPs/GSH platform to Pb2+ ions. 

Resistance (Ω) 
Rcontact0 ΔRcontact/Rcontact0 Rch0 ΔRch/Rch0 Rtotal ΔRtotal/Rtotal 

Pb2+ ion solution 

water 18,800 / 37,548 / 56,348 / 

10ppb 11,280 -40% 45,111 20% 56,391 0.08% 

∆𝑅𝑐ℎ = ∆𝑅𝑐ℎ_𝐺
(> 0) + ∆𝑅𝑐ℎ_𝐶𝑇(< 0) + ∆𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡_𝐺(< 0) 
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50ppb 10,152 -46% 47,686 27% 57,838 2.56% 

100ppb 8,460 -55% 51,065 36% 59,525 2.92% 

To improve the overall sensitivity, some strategies are proposed, including reducing 

Rcontact0; keeping Rcontact constant, namely, ΔRcontact0 = 0; optimizing Rch0; and reducing Rch-

CT=0. All these strategies could be realized through adjusting the platform structure, for 

example, through introducing a passivation layer (Al2O3 thin film) as a gate oxide for the 

channel material. The Al2O3 layer would reduce the ΔRcontact by blocking the interface as a 

physical barrier and keeping lead ions from leaking into the interface; it could also prevent the 

electrons from transferring to/from the channel material, thereby eliminating the ΔRch from the 

charge transfer effect.  
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Figure 5.5 (a-b) SEM and (c-d) TEM images of rGO/Al2O3 structure indicate the good 

uniformity of Al2O3 film coated on the surface of rGO. 

The Al2O3 thin film was produced using atomic layer deposition (ALD). SEM and TEM 

were used to characterize the Al2O3 thin film on rGO flakes, as shown in Figure 5.5. The images 

suggest the good uniformity of Al2O3 film coated on the surface of rGO. Figure 5.6(a) shows 

the schematic of the rGO/Al2O3/Au NPs-GSH platform and Figure 5.6(b) compares the 

sensitivity difference before and after applying the Al2O3 passivation layer. Apparently, the 

application of a passivation layer improves the sensitivity of the rGO/Au NPs-GSH platform 

to Pb2+ ions ranging from 1 nM to 250 nM. It verifies that tuning the sensor platfrom could 

potentially improve the ΔRtotal/Rtotal and the resulting sensor sensitivity. Again, it comfirms that 

the gating effect induced ΔRch is the dominating signal in the sensing platform. 

Figure 5.6 (a) Schematic of the rGO/Al2O3/Au NPs/GSH platform and (b) its sensing 

performance before and after applying Al2O3 passivation layer.  

To further improve the sensitivity of the sensing platform, more research is needed to 

enhance the Rch change induced by the gating effect and to identify critical factors for tuning 

the gating effect. Invesitigation into each component of the sensing platfrom is needed, e.g.,  

optimizing the channel material, maximizing the anchoring site density and the probe coverage.  
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5.3 Channel material investigation 

Aiming at theoretically analyzing the sensitivity of FET sensors，the MoS2/DNA-Au NPs 

sensor is taken as an example. For the conductance-based sensor, the sensitivity S is defined as 

the ratio of the conductance change (ΔG) to the initial conductance (G0), namely, S= ΔG/G0, 

which is also often replaced by its equivalent form S= ΔI/I0 since the current is directly 

monitored during the sensing test with the constant source-drain voltage Vds (G=Ids/Vds). For 

the p-type semiconductor, S= Δnh/nh0, where Δnh and nh0 are the change of hole concentration 

induced by the ion adsorption and the initial hole concentration, respectively. Here, Δnh = ΔQ/t 

in which ΔQ is the amount of charge transfer and t is the sensor film thickness. nh0 in the p-

type semiconductor is approximately proportional to 𝜇−1exp (−𝐸𝑔/2𝑘𝐵𝑇), in which µ, 𝐸𝑔,𝑘𝐵, 

𝑇  are the carrier mobility, the band gap, the Boltzmann constant and the temperature, 

respectively. Consequently, the sensitivity of the MoS2/DNA-Au NPs could be described as 

𝑆(𝑀𝑜𝑆2) ∝
∆𝑄∙𝜇(𝑀𝑜𝑆2)

𝑡(𝑀𝑜𝑆2)
exp [

𝐸𝑔(𝑀𝑜𝑆2)

2𝑘𝐵𝑇
],                   (5.6) 

which suggests that the MoS2/DNA-Au NPs hybrid structure will have a higher sensitivity if 

the MoS2 thin film has a higher carrier mobility, a smaller film thickness, and a larger band gap.  

To validate Equation (5.6) in a quantitative sense, we first did a control experiment by 

increasing the MoS2 film thickness from 10 nm to 20 and 28 nm. For such thick films, the 

mobility and the band gap are invariant and thus only the thickness plays a role in 

differentiating their sensing performance. The sensor test results in Figure 5.7 clearly indicate 

that a thinner film offers a better sensitivity. This is because the thinner film has a larger relative 

carrier concentration variation due to the ion adsorption as the amount of charge transfer is the 
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same for all the samples studied here. Next, we further studied the effect of carrier mobility. 

Given that both carrier mobility and band gap vary in thinner MoS2 films but they barely change 

in thicker MoS2 films, we did another control experiment by testing the sensor performance of 

an rGO/DNA-Au NPs hybrid structure to identify or isolate the roles of the carrier 

mobility/band gap in the MoS2 film. Since the same concentration of DNA-Au NPs solution 

was used here, ΔQ is expected to be similar/even the same in the rGO/DNA-Au NPs and 

MoS2/DNA-Au NPs hybrid structures with the same concentration of target ions. Thus, the 

sensitivity ratio between the MoS2/DNA-Au NPs and the rGO/DNA-Au NPs hybrid structures 

is 

            
𝑆(𝑀𝑜𝑆2)

𝑆(𝑟𝐺𝑂)
∝

𝜇(𝑀𝑜𝑆2)

𝜇(𝑟𝐺𝑂)

𝑡(𝑟𝐺𝑂)

𝑡(𝑀𝑜𝑆2)
exp [

𝐸𝑔(𝑀𝑜𝑆2)−𝐸𝑔(𝑟𝐺𝑂)

2𝑘𝐵𝑇
],               (5.7) 

Strictly speaking, Equation (5.7) is only exact for the single flake of MoS2 (rGO) with 

specific values of the carrier mobility and the band gap. However, Equation (5.7) can still be 

adopted for the MoS2 (rGO) film in which many flakes are patched together using the effective 

carrier mobility and band gap.  

 

0 20 40 60 80 100

0

2

4

6

8

10

12

Hg
2+

 concentration (nM) 


I/

I 0
(%

)

 10 nm

 20 nm

 28 nm

 



 

 

77 

Figure 5.7 Sensitivity as a function of Hg2+ concentration for the MoS2/DNA-Au NPs hybrid 

sensor with different MoS2 film thicknesses. 

For the p-type MoS2 (rGO), its conductance is proportional to the product of the effective 

carrier mobility (𝜇𝑒𝑓𝑓 ) and the carrier concentration [𝜇𝑒𝑓𝑓
−1 exp (−𝐸𝑔,𝑒𝑓𝑓 2𝑘𝐵𝑇⁄ )], namely, 

proportional to exp(−𝐸𝑔,𝑒𝑓𝑓 2𝑘𝐵𝑇⁄ ). Close examination of Figure 3.6 (b) and Figure 5.8 

suggests that the initial source-drain currents for the MoS2 and rGO based hybrid structures are 

very similar to each other (0.68 µA vs. 0.74 µA), indicating that their effective band gaps are 

comparable and the sensitivity is determined by the effective carrier mobility and the film 

thickness. The carrier mobility for multilayer MoS2 is within 30-60 cm2V-1s-1,202 while it varies 

from 0.2 cm2V-1s-1 to 0.6 cm2V-1s-1 for the rGO thin film.203 The thicknesses of the MoS2 and 

rGO thin films in our sensors are 10 nm and 1 nm, respectively. Consequently, the 

S(MoS2)/S(rGO) can be estimated to range from 5 to 30; namely, the higher carrier mobility in 

MoS2 would enhance the sensitivity by a factor of 5~30. In our experiments, the sensitivities 

of the MoS2 (rGO)/DNA-Au NPs hybrid structure at the Hg2+ concentrations of 10 and 100 nM 

are 6.77% and 11.8% (0.2% and 1.3%), respectively. Therefore, the sensitivity enhancements 

are 13.5 and 9.1, respectively, just within the estimated range (5~30). It should be noted that 

our comparison between MoS2 and rGO here would not imply that the MoS2 based sensor is 

better than the rGO-based one; instead it only suggests future directions to achieve a lower 

detection limit by making thinner films with a larger band gap and a higher carrier mobility. 
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Figure 5.8 Real-time detection (Vds= 0.1 V) of Hg2+ in water, with concentrations ranging from 

100 pM to 10 µM, using the rGO/DNA-Au NPs hybrid sensor. The rGO/DNA-Au NPs hybrid 

structure sensor was prepared with a similar method used in our previous study.52 

In principle, the conductance of our MoS2/DNA-Au NPs sensor increases gradually with 

the cumulative addition of the Hg2+ solution. The rate of increase in the conductance or source-

drain current is dependent on the Hg2+ concentration. Moreover, this rate should gradually 

decrease to zero (or the sensitivity should gradually increase and eventually saturate) as the 

Hg2+ concentration increases, because the attracting sites in the DNA probes become fewer and 

fewer. The relationship between the sensitivity and the Hg2+ concentration can be described as      

                       𝑆 = 𝐴[1 − exp(−𝐵𝑥)],                         (5.8) 

in which 𝐴  and 𝐵  are the fitting parameters, and 𝑥  is the ion concentration. For our 

MoS2/DNA-Au NPs hybrid sensor shown in Figure 3.8 (a), 𝐴 and 𝐵 are fitted to be 11.6 and 

0.26/nM, respectively. Note that 𝐴 and 𝐵 are intrinsic to the conducting channel materials 

and DNA probes. And the magnitude of the sensitivity (A) is dictated by the properties of 

conducting channel materials, while its rate of increase (B) is determined by the type of DNA 
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probe and its concentration. Equations (5.6) - (5.8) thus suggest that the high sensitivity for 

future sensors can be realized by forming hybrid structures with thinner 2D conducting 

materials with a larger band gap, a higher carrier mobility, and being coated with the maximum 

number of specific DNA probes. Therefore, sensitivity-related factors are semiconducting 

property of the nanomaterial (band gap, carrier mobility) and areal density of probes on the 

surface. 

Per the theoretical analysis, we suggest employing monolayer MoS2 and BP with a 

relatively larger band gap as the channel material to achieve a higher sensitivity. On the other 

hand, graphene has outstanding ultra-high carrier mobility among all the nanomaterials that we 

have introduced. However, in the real experiment, besides the semiconducting property, we 

also need to consider the challenge in material synthesis and transfer.  

5.4 Effect of Au NP density 

To improve the adsorption capacity of the Au NPs and the areal density of probes, 

investigation into the probe anchor—Au NPs was conducted. Literature reported that the 

relationship between the capacity of the probe adsorption and Au NPs mainly depends on the 

the size of the Au NPs (the effective diameter for the adsorption).204 The particle size and the 

amount are controllable by changing the sputtering current and sputtering time, respectively. 

A group of control experiments were conducted for six samples with sputter-coated Au NPs 

on the surfaces, which were prepared with different sputtering parameters as shown in Table 

5.2. The morphology of each sample was characterized with SEM, as shown in Figure 5.9, 

which enables the measurement of the particle size and number on the sensing surface. From 
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samples No.1, No.2 and No.3, we can easily tell that increasing the sputtering time results in 

the increase of particle number from 76 to 96 and to 104 counts. The higher the sputtering 

current is, the larger the particle size will be, which further leads to the particle congregation 

as shown in sample No.6. Besides the nanoparticles size, the number of reactive surface sites 

also affects the effective surface for probe adsorption. The particle number was counted with 

Software ImageJ. The areal density (=N×πD2)/(sample area) was defined as the indicator for 

effective adsorption surface and sample area = 24,000 nm2. As calculated, samples No.2, No.3, 

No.4 and No.5 have obviously higher particle areal densities than sample No.1. 

Table 5.2 Parameter settings for the Au NP sputtering. 

Factors Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample6 

Sputtering 

current 
10 mA 10 mA 10 mA 20 mA 20 mA 25 mA 

Sputtering 

time 
3 s 5 s 7 s 3 s 5 s 3 s 

Au NPs 

size (D) 
3 nm 3 nm 3 nm 4 nm  5 nm 12 nm 

Count 

density 

(N) 

76/ 

24000nm2 

96/ 

24000nm2 

104/ 

24000nm2 

57/ 

24000nm2 

45/ 

24000nm2 
N.A. 

Areal 

density 

2147.8 nm2/ 

24000 nm2 

2713.0 nm2/ 

24000 nm2 

2939.0 nm2/ 

24000 nm2 

2964.2 nm2/ 

24000 nm2 

3140.0 nm2/ 

24000 nm2 
N.A. 

GSH 

adsorption 
  36% 40% 45% 42% 43% 27% 
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Figure 5.9 The morphology of Au NPs under different sputtering parameter settings. 

  To identify the real effect of Au NP size on the probe adsorption, GSH adsorption was taken 

as an example for the following experiment. We prepared 6 groups of samples with the same 

parameters of samples No.1 to No. 6. Each group has four of 1.5 cm×1.5 cm silicon wafers, 

and they were submersed in saturated 1 mL GSH solution (50 µM) for 1 hour, as shown in 

Figure 5.10. Afterwards, the sample wafers were taken out, and the remaining GSH 

concentration in the solutions was measured with Fluorescence Plate Reader by reacting with 

the commercial Thiol Green Indicator.   
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Figure 5.10 Prepared 1.5cm×1.5 cm silicon wafers submersed in saturated 1 mL GSH 

solution(50µM). 

 

Figure 5.11 Correlation between GSH adsorption and (a) Au NP size, (b) particle number and 

(c) areal density. 

   Figure 5.11 exhibits the correlation between GSH adsorption and Au NPs size, count and 

areal density. It indicates, compared with particle number or particle size, the probe adsorption 

has higher dependency on Au NPs areal density, as shown in Figure 5.11 (c), which will be 

used as the index for the effective probe adsorption. Therefore, balancing the particle size and 

the particle number to achieve a uniform sensing surface with a maximum areal density could 

maximize the probe adsorption. However, different sputter coaters have different sputtering 
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intensities. In this thesis, the parameter setting for RF (60Hz) Emitech K550x sputter coater in 

Table 5.2 is just used as a reference.  

5.5 Effect of probe coverage 

In this thesis, different molecular recognition probes were used，including small organic 

molecules (e.g., GSH, DTT) and DNA. The probes were immobilized onto the sensing surface 

through the thiol-gold bonding with anchoring sites (Au NPs), generating a SAM. To maximize 

the probe adsorption, we investigated critical factors for the thiol-gold bonded SAM, i.e., 

concentration, temperature, time and pH condition. 

 

Figure 5.12 Dynamics and kinetics of thiol coating on Au: from approaching to adsorption. 

Literature reported that the self-assembly is a spontaneous process from approaching to 

adsorption, as shown in Figure 5.12. Its growth in micromolar solutions is a multistep process 

consisting of a fast-initial adsorption followed by at least one slower step involving 

organization of the monolayer. The onset of thiol adsorption is rapid, occurring within a few 

seconds, and proceeds to an identifiable saturation point within a few minutes.205 Others also 

reported that SAM adsorption is a linear behavior with time for most of the adsorption, with a 

distinct slowdown at greater than about 80% of a monolayer. Steady-state coverage is 

independent of solution concentration even at a small concertation, and eventually the coverage 
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reaches a “full” monolayer.206 Therefore, the maximum solubility of probe is more than enough. 

In terms of the time effect, changing the time for the SAMs formed on gold surface from 

0.5 h to 24.0 h did not introduce significant variation of mechanical stability for them. 

Further prolonged reaction time to 5 days can even weaken the thiol–gold interactions. This 

result indicates that from the stability point of view, 0.5 h is enough for the formation of 

SAMs, and very long reaction time is not helpful.207 For the temperature effect on SAM 

formation, simulation and experimental results both revealed that the values of local thermal 

boundary conductance (TBC) at gold/SAM interface do not change significantly within the 

temperature range of 280 to 340 K.208 Furthermore, environmental pH (from 5 to 8) will not 

affect the stability of the SAMs. However, during the formation of SAMs, the solution pH 

changes from 5 to 8 can affect the efficiency for the conversion of thiol–gold contacts from 

coordinate bonds to covalent bonds, since basic solution facilitates the deprotonation of thiol 

group (-SH).207 

Eventually, with all the information we identified above, we measured the GSH- Au NPs 

coverage ratio. ICP-MS was employed because of its great advantage of being independent 

of sample preparation. It means sample loss during the washing step does not affect the test 

results. As shown in Table 5.3, GSH of 163 mM (the max solubility of GSH in water) were 

added to 50 µM Au NP solution (uniform particle of 5 nm, from Sigma Aldrich). After being 

incubated for 1 hour at room temperature, the mixed solution was washed with 

ultracentrifugation (15,000 rpm, 10 mins) for three times, and then the sediment was diluted 

in ultrapure water again. The average GSH/Au NPs coverage ratio is identified to be 5.49, 

indicating sufficient amounts of probe molecules have been immobilized onto the FET 
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platform for the specific reaction with analytes. The repeatable test result implies ICP-MS 

is a reliable method to identify the probe coverage.  

Table 5.3 Au NPs - GSH coverage ratio tested by ICP-MS. 

Prepared Concentration Prepared GSH/Au 

molar ratio  

ICP-MS Tested GSH/Au 

coverage ratio 
GSH (mM) Au NPs (uM)  

163  50 3260 5.49 

5.6 Summary and conclusion 

We investigated sensitivity improvement through theoretical analysis and experimental 

validation. Randle equivalent circuit was used to identify the intrinsic electrical signal in the 

FET platform, which consists of system resistance (R0), the channel resistance (Rch), the contact 

resistance (Rcontact) between the channel material and terminals (gold electrodes), contact 

capacitance (Ccontact), and channel capacitance Cch. The impedance analysis was employed to 

obtain the Randles circuit parameters. Both the theoretical analysis and the EIS analysis show 

that metal ion solutions will change the Rch and Rcontact in the platform. Charge transfer between 

metal ions and the channel material will result in the decrease of channel resistance (Rch), and 

gating effect would lead to the increase of Rch and the decrease of contact resistance (Rcontact). 

It is shown that through applying a passivation layer (Al2O3 thin film), which 

reduces/eliminates the ΔRcontact and prevents the electrons from transferring to/from the channel 

material, the overall sensitivity can be improved. And it also indicates that gating effect induced 

ΔRch is the dominating signal from the sensing platform. Further improvement in the sensitivity 

could be realized through enhancing the gating effect induced ΔRch. Therefore, invesitigation 

into the 2D nanomaterial based sensing platfrom is warranted, e.g., optimizing the channel 
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material, maximizing the anchoring density and the probe coverage.  Experimental results 

further suggest that a higher sensitivity for future sensors can be realized by forming hybrid 

structures with thinner 2D conducting materials with a larger band gap, a higher carrier 

mobility, and being coated with the maximum number of specific probes. In terms of the Au 

NPs, compared with particle number or particle size, the probe adsorption has a higher 

dependency on particle areal density, which becomes the index for the probe adsorption. 

Overall, balancing the particle size and the number to achieve a uniform sensing surface with 

maximum areal density could maximize the adsorption of probes. The formation of SAM of 

thiol-containing probes on the Au NPs is a spontaneous process from approaching to adsorption. 

Steady-state coverage is independent of the probe solution concentration because eventually 

the coverage reaches a “full” monolayer.   
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CHAPTER 6 STABILITY STUDY OF THE FET SENSOR BASED ON 2D 

NANOMATERIALS 

6.1 Introduction 

Considering all the interferences in the real-life water sensing, stable and reliable responses 

for an extended period are needed for the FET platform, especially for integration into existing 

water equipment. Stability of the sensor would be limited by the most vulnerable factors 

including the channel material, the anchoring site, and the probe. To investigate the stability of 

the FET sensor platform, several subtasks need to be addressed, including the stability of 

channel materials, the degradation of anchoring sites, the lifetime of probes, etc. Section 6.2 

investigates the stability of rGO, MoS2 and BP in ambient environment and aqueous 

environment. Al2O3 thin film is used to protect BP from being oxidized by O2 in air or water. 

Sections 6.3 and 6.4 discuss the stability of sputter-coated Au NPs, probe diffusion and lifetime. 

Section 6.5 demonstrates the integration of the passivation layer protected FET platform into a 

flowing system and its application for real-time detection of Pb2+ ions.  

6.2 Channel material stability investigation 

It was noticed that during the rGO sensor storage in air, the resistance of the prepared 

sensor increased gradually, as recorded in Table 6.1. Under the ambient condition, the prepared 

rGO would have adsorbed O2 molecules from air, resulting in the resistance change. Meanwhile, 

some studies based on density functional theory (DFT) calculations suggest that monolayer 

MoS2 with exposed edge sites are also unstable due to oxidation in air.209-210 It occurs at the 
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Mo-edges of MoS2 because of the low energetic barrier to dissociation of O2 molecules. 

Experimental observation also confirms the cracking of MoS2 flakes in air. For the storage of 

BP thin film, it is widely accepted that the main disadvantage of BP is the poor air stability 

under ambient condition.104 It was reported that BP rapidly gets oxidized in air, as O2 etches 

away the thinner parts of the flakes, generates fractions and degrades the BP film. Other 

research work exhibits that the oxidation of BP involves a facile dissociative chemisorption of 

O2, whereas H2O molecules are weakly physisorbed and do not dissociate on the BP surface. 

Therefore, BP rapidly degrades whenever oxygen is present; however, it is unaffected by 

deaerated (i.e., O2 depleted) water.188 Therefore, the oxidation of the channel material and 

damage to the platform could be potentially avoided through storing the prepared sensors in an 

appropriate environment. 

To identify the best storage condition, we first prepared a group of rGO sensors and stored 

them in moist air, dry air, argon (purity: 99%), separately. Their resistance changes in the 

following 6 months were tracked and recorded in Table 6.1. The sensor resistances on average 

increased by 206.7%, 7.08%, -6.45% after storage in moist air, dry air and argon for 2 weeks, 

respectively. Six months later, the increases became 390%, 59%, 6.44% for moist air, dry air, 

and argon storage, respectively. Compared with the sensors stored in moist air (390%), 

apparently, the argon stored sensors (6.44%) have better stability. The increase in the sensor 

resistance in moist air is likely attributed to the adsorption of O2 and water molecules to the 

rGO surface, leading to re-oxidation and decrease in the carrier density (and the related 

conductivity) of the channel material. In contrast, the sensors stored in dry air showed 59% 

resistance change during 6 months’ storage, which indicates that reduced water vapor in 
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ambient environment would alleviate the re-oxidation of rGO. However, protection of the 

sensor with an inert gas would prevent the adsorption of O2 molecules to the channel material 

surface, enhancing the stability of the channel material, and eventually, improving the sensor 

lifetime.  

Table 6.1 rGO sensor resistance change in different ambient environments. 

Time 

Group 1 stored in moist air Group 2 stored in dry air Group 3 stored in argon 

Average 

Resistance 

(KΩ) 

Average 

Resistance 

Change 

Average 

Resistance 

(KΩ) 

Average 

Resistance 

Change 

(%) 

Average 

Resistance 

(KΩ) 

Average 

Resistance 

Change 

(%) 

 1st day 3.40 / 2.57 / 2.97 / 

15th day 9.83 206.66% 2.75 7.08% 2.67 -6.49% 

180th day 16.64 390.20% 4.18 59.19% 3.13 6.44% 

An inert atmosphere (e.g., Ar or N2) is identified to be the best environment for the channel 

material storage. Therefore, we prepared MoS2 and BP sensors in the same manner as we 

discussed in Chapters 3 and 4, respectively, and stored them in argon. Tables 6.2 and 6.3 

demonstrate their resistance changes over the storage. MoS2 thin film sensors were stable with 

an average resistance increase of 3.9% after one month’s storage in argon. BP sensors were 

relatively unstable, and their average resistance increased by 285% after 32 days’ storage and 

showed exponential increase after 42 days. Although the prepared BP sensors were stored in 

argon, they were likely exposed to oxygen when being taken out from argon for the resistance 

tracking, leading to the oxidation and resulting in the resistance increase. It is thus consistent 

with the literature that BP rapidly gets oxidized in air and oxygen etches away the thinner parts 

of the flakes.211 Recent studies demonstrated that Al2O3 encapsulation enables highly stable 
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BP based devices.212 213 Thus, a passivation layer was applied to protect the channel material, 

especially BP. As shown in Figure 6.1, a 3-nm thick Al2O3 film is deposited onto the BP based 

FET platform using the ALD technology. Compared with the sensor resistance change before 

the Al2O3 film deposition, as recorded in Table 6.3, the application of a passivation layer greatly 

delayed the oxidation and extended the lifetime of the BP from 32 days to more than two 

months. It confirms that Al2O3 encapsulation protects the BP sensor from rapid oxidation under 

ambient environment. 

Table 6.2 Resistance tracking of MoS2 based sensors stored in argon. 

Time Average Resistance (KΩ) Resistance Change (%) 

1st day 49.30 / 

8th day 45.50 -6.2% 

18th day 51.15 5.3% 

24th day 48.58 -1.1% 

31th day 50.60 3.9% 

 

Figure 6.1 Schematic of the BP/Al2O3/Au NPs/DTT platform. 
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Table 6.3 Resistance tracking of BP based sensors stored in argon. 

Time 

BP sensors stored in argon 
Al2O3 protected BP sensors stored 

in argon 

Average 

Resistance (KΩ) 

Resistance 

Change (%) 

Average 

Resistance (KΩ) 

Resistance 

Change (%) 

1st day 1.56 / 0.68 / 

20th day 3.50 124% 1.10 62% 

32th day 6.01 285% 1.50 121% 

42th day 2,000 57,000% 3.83 463% 

48th day Infinity Infinity 3.90 474% 

55th day / / 9.20 1,253% 

63th day / / 13.2 1,841% 

Further experiment was accomplished through storing the rGO sensors in DI water to 

verify the stability of rGO in water. As we can identify with the SEM images in Figure 6.2, the 

monolayer rGO flake did not show any visible change after storage in DI water for one month, 

which indicates the good stability of rGO in water. It agrees with the literature report that rGOs 

exhibit high stability in artificial surface water.214-215 DFT calculations reported that both 

graphene and MoS2 tend to avoid water intercalation between their layers and only defects 

located on the basal plane display mild reactivity. MoS2 edges are stable in water and water-

driven oxidation of MoS2 layers is unfavored compared with adsorption.216 Prolonged storage 

of chemically exfoliated MoS2 dispersion is found with lateral fracture and aggregation, which 

is associated with the re-oxidation of the nanosheets. Fortunately, storing the sample in an inert 

atmosphere could prevent such nanosheet degradation effectively through suppressing the re-

oxidation process. And it is crucial to maintain the performance of MoS2 nanosheets when it is 

utilized in a device or an application.217  
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Figure 6.2 SEM images of the Au electrodes with (a) newly prepared rGO flake bridging the 

electrodes and (b) the same rGO flake stored in DI water for one month.  

Finally, we need to identify the stability of the entire FET platform. Here we prepared a 

group of the rGO/Au NPs-GSH sensors. With an interval of every a few days, their responses 

were measured with the semiconductor analyzer and recorded. As shown in Figure 6.3, the 

rGO/Au NP-GSH sensors showed a continuous degradation of response to Pb2+ ions during the 

storage in water, and almost completely lost their reactivity after 4 weeks’ storage. Further 

confirmation indicates the shelf time of rGO/Au NPs-GSH in air is two months. This discovery 

gives rise to two critical questions. First, why does the sensor lose its reactivity after two 

months’ storage in air? The stability of a sensor would be limited by the most vulnerable 

component, such as the channel material, the anchoring site, and the probe. A comparison of 

lifetimes of sensors stored in air and in water indicates that storage in water speeds up the 

degradation. Therefore, the second question is, which element accelerates the sensor 

degradation in water? Since we have investigated and confirmed the rGO sensor could survive 

more than six months in air and it has good stability in water for over one month, the channel 
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material rGO is not the cause for the accelerated degradation. Further investigation into the 

anchoring site and the probe is needed. 
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Figure 6.3 The stability of rGO/Au NP-GSH sensor stored in water. 

6.3 Anchoring sites -Au NPs stability investigation  

To identify the real reason of sensor degradation in water, we need to investigate every 

element in the FET platform. As we discussed above, Au NPs were sputter deposited onto the 

sensing surface using an RF (60 Hz) Emitech K550x Sputter coater apparatus with an Au target 

(99.999% purity) at an Ar pressure of 0.03 mbar. Sputter deposition is a physical vapor 

deposition (PVD) method of thin film deposition. Sputtered particles/films typically have a 

better adhesion on the substrate than evaporated particles/films. Au NPs (5 nm) were sputtered 

and attached on the channel materials with a stable physical contact. Initial stability experiment 

is to store the Au NPs coated electrodes in DI water to check the anchoring stability of sputter-

coated Au NPs in water. SEM imaging was used to track their morphology, and the results are 
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recorded in Figure 6.4. After 34 days’ storage in water, Au NPs were still stably attached on 

electrodes and the sensor showed no visible difference compared with the newly prepared one. 

It indicates the good stability of sputter-coated Au NPs deposited on the sensor platform. 

 

Figure 6.4 SEM images of the sensing surface with sputter-coated Au NPs stored in water for 

various times as labeled.  

6.4 Probe stability investigation 

The last possibility for accelerated degradation in water is the probes, which were 

immobilized on the sensing surface through the anchoring sites. It might be attributed to its 

detachment from the anchoring site, or its loss of activity. First, we investigated the possibility 

of its diffusion from the sensor platform during the storage. Initial experiment was carried out 

by directly measuring the GSH attached on the sensing surface. Conventional methods, 

including Fourier-transform infrared spectroscopy (FTIR), SEM-EDX (Energy Dispersive X-
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Ray Spectroscopy), confocal microscope, etc., were used to measure the GSH molecules on 

the sensing surface through identifying its chemical bonding, elemental composition, florescent 

signal (after been labeled), respectively. However, none of the conventional methods worked 

out successfully, since the GSH signal on the sensing surface (300 nm×800 nm) was too weak 

to be captured. Alternative method is to indirectly test the GSH through replacing the small 

sensing surface with a much larger Si substrate, which would provide a stronger signal. And it 

would be more reliable if using fluorescent method to measure and track the GSH diffusion in 

solution instead of testing GSH on the sensing surface. Therefore, a group of 1.5 cm×1.5 cm 

silicon wafers were prepared and coated with sputtered Au NPs in the same manner as we 

discussed above, with the optimum parameters we identified in Section 5.3. It was followed by 

submersing the Au NPs-coated Si wafers in prepared 1 mL GSH solutions (50 µM) at RT, as 

shown in Figure 5.10. After 1 hour’s adsorption, all the Si wafers were taken out and the 

remaining GSH solutions were taken for the fluorescence test with a Fluorescence Plate Reader 

by reacting with the commercial Thiol Green Indicator (Thiolite™ Green). The difference 

between the initial 50 µM and the GSH concentration in the remaining solutions was defined 

as the GSH molecules that were attached onto the Au NP surfaces.  

Through averaging the results from 3 different samples, we found ~ 19 µM GSH molecules 

were adsorbed onto the Au NPs. Afterwards, each of the Si wafer with attached GSH was 

immersed in a vial with 5 ml ultrapure water. The GSH concentration in the ultrapure water 

was measured every few days to identify the amount of GSH molecules that were detached 

from the Au NP surface. All the diffusion data were recorded and the diffusion curves were 

plotted in Figure 6.5, and it reveals that the GSH diffusion was constantly going on. Until the 
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44th day, about half of the GSH molecules detached from the sensing surface, which explains 

the limited lifetime of rGO/Au NPs/GSH platform in water. After 103 days, ~ 85 % of the 

adsorbed GSH probes left the Au NP surface. Another possible mechanism for the loss of GSH 

molecules under ambient condition is their degradation. Since the surface plasmon resonance 

(SPR) in Au NPs would give rise to superoxide radical (O2-) and O2- converts into hydroxyl 

radical (OH-) in humid environment, OH- radicals could react with GSH. Eventually GSH 

breaks down due to the SPR of Au NPs.218-220 Thus, to protect GSH from degradation, the best 

storage condition would be dark condition and O2, H2O free environment (e.g., Ar or N2 

atmosphere). 
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Figure 6.5 The plot of GSH detached from Au NPs in ultrapure water. 

All the experimental procedures for measuring the GSH detachment were recorded as 

follows: 

Preparation of GSH-functionalized Au NPs 
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1. Prepare a group of three Si wafer samples by sputtering Au NPs (20 mA, 3S) onto the acetone 

cleaned Si wafer. 

2. Submerse each Si wafer sample into prepared 1 mL GSH solution of 50 µM for 1 hour. 

(protected from light and stored at RT to avoid GSH oxidation) 

3. Take the Si wafers out and rinse with static ultrapure water. 

4. Submerse each of the Si wafers into a vial with 5 mL ultrapure water so that the attached 

GSH molecules spontaneously diffuse into the clean water. (protected from light and stored at 

4 ◦C)  

5. Measure the GSH concentration in the ultrapure water to identify the amount of GSH that 

got detached from the Au NP surface. 

Identification of the calibration curve for GSH concentration 

1. Prepare standard GSH solutions of various concentrations: 100 µM, 50 µM, 20 µM, 10 µM, 

5 µM, 2 µM, 1 µM, 0 µM with KPE (0.1 M potassium phosphate buffer with 5 mM EDTA 

disodium salt, pH 7.5). 

2. Identify their pH values with pH meter: 4.34, 4.75, 5,45, 6,65, 7.50, 8,11, 8.10, respectively. 

(pH value of DI water in Global Water Center, Milwaukee, Wisconsin: 7.34) 

3. Adjust pH values of these calibration solutions with PBS buffer (×1) to 7. 

GSH-Au NPs quantification with florescent plate reader 

1. Extract 50 µL blank DI water, 50 µL calibration solution of each concentration, 50 µL GSH 

diffusion solution of each sample to the 96 well plate. Repeat 3 times. 

2. Thaw the frozen Thiol Green Indicator (40 µl per vial) with PBS buffer (×1) (pH= 7), 1.5 

mL. 
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3. Extract 50 µL Thiol Green Indicator into the blank DI water, each calibration solution and 

each GSH diffusion solution in Step 1. Protect the samples from light and keep at 4 °C. 

4.Test the fluorescent intensity of samples in Step 3 with Florescence Plate Reader. (Ex/Em 

(nm)=510/524) within 1 hour starting from Step 1. Average the result for each sample as the 

GSH intensity signal. 

5. Identify the calibration curve with all the intensity signals of the calibration solutions in Step 

4, as shown in Figure 6.6 and calculate the GSH concentrations in the diffusion samples 

through interpolation. 
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Figure 6.6 The calibration curve for GSH concentration and the interpolation calculation. 

  For the stability of probes in the sensing platform, another aspect is the lifetime of probes. 

Conventional methods to test the chemical activity of GSH are High Performance Liquid 

Chromatography (HPLC) and Ion Titration. As the vendor (Sigma Aldrich) tested, GSH and 

DTT both have one year’s chemical activity, starting from the date of shipping. It means 

probe’s chemical activity is not the limitation for the rGO/Au NPs/GSH sensor’s lifetime in air 
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and in water. Moreover, the best storage temperature for GSH (and DTT) is 2- 8ºC. For another 

probe used in this thesis, DNA, the storage time is 2 years at - 20 °C, 1 year at 4 °C and 6 weeks 

at 37 °C, as the vendor (IDT) suggested. 

6.5 Flowing water test 

 For the stability improvement, Al2O3 passivation layer is used to protect the channel 

material from being oxidized in air and water. Here we take the test of lead ions with 

rGO/Al2O3/Au NPs/GSH sensor as an example. The sensor uses monolayer rGO to bridge the 

electrodes and then is coated with Al2O3 thin film with ALD technology to protect the rGO and 

the gold electrodes, followed by the sputter-coated Au NPs and immobilization of GSH 

molecules. The FET platform was developed into sensors of 5 mm×8 mm based on the Si 

substrate, as shown in the inset of Figure. 6.7 (c). The sensor chip is imbedded in a test cell 

(Figure. 6.7 (c)) and then integrated into a flowing system switchable between metal ion 

solution and DI water, which is demonstrated in Figure 6.7 (a). Figure 6.7 (b) shows the 3-way 

valve used in the system to switch the water inlet between metal ion solution and DI water. 

Figure 6.7 (d) is the updated bypass system that allows for the assembly of the test cell into the 

flowing tube. 
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Figure 6.7 (a) The flowing water system; (b) the 3-way valve that controls the switching 

between metal ion solution and DI water; (c) the sensor imbedded test-cell is integrated in the 

flowing tube (Inset: the sensor chip); and (d) the bypass system. 

 The flowing water system enables easy, reliable, and inline detection of metal ions in water 

with the FET sensor. The repeatable detection performance of flowing Pb2+ ion solution is 

demonstrated in the Figure 6.8. The introduction of Pb2+ ions leads to an obvious current 

change in the sensor, with a lower detection limit of 200 ppb. A control experiment was 

conducted to test DI water with the flowing system, which showed no current change. It 

confirms that the current signal indeed results from the Pb2+ ions instead of the system. The 

sensing performance in Figure 6.8 shows that the Pb2+ ions-induced response is reversible, and 

further introducing DI water to the platform will bring the current back to the initial level 

(before introducing Pb2+ ions). However, the current signal reveals a consistent increase upon 

introduction of lead ions, instead of the decreased current pattern as discussed in Section 2.2 

and Section 5.1 (Pb2+ ions introduce gating effect that leads to a decrease in the rGO 

conductivity). This dilemma is not fully understood at this point. However, there are a few 
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possible reasons that can lead to this opposite response. One possibility is the increase in the 

ionic conductivity for high concentrations of Pb2+ ions, but further research is needed to fully 

resolve the contribution of the increased ionic conductivity.  
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Figure 6.8 The dynamic sensing performance of the rGO/Al2O3/Au NPs/GSH sensor to Pb2+ 

ions of various concentrations 200 ppb, 400 ppb, 2 ppm and DI water in the flowing system.  

Meanwhile, comparing the testing performance between the flowing water and static water, 

it is noticeable that the lower detection limit in flowing water (200 ppb) is much higher than 

that in static water test (2 ppb). Theoretical analysis was conducted to compare the Pb2+ ion 

adsorption and resulting sensing signals in the two scenarios.  
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Figure 6.9 Schematic of Pb2+ ion adsorption in (a) the static water and (b) the flowing water 

system. 

Figure 6.9 (a) shows the schematic of Pb2+ ion diffusion from the bulk solution and 

adsorption of Pb2+ ions onto GSH molecules. While in the flowing water system, besides 

diffusive transport, the convective transport of Pb2+ ions is present, as shown in Figure 6.9 (b). 

To investigate the Pb2+ ion adsorption at equilibrium, we should first estimate the amount of 

discrete and non-uniform distribution of Au immobilized GSH molecules. The Au-GSH 

adsorption coverage is calculated as Langmuir adsorption isotherm. 

 

                                                                    (6.1) 

where,  

𝜃: adsorption coverage 

𝑃: osmotic pressure 

𝐾𝑒: equilibrium constant. 

Therefore, the Pb2+ adsorption density is: 

𝑛𝑎 = 𝜃 ∙ 𝑠𝜌GSH                     (6.2) 

where 𝑠: the number of Pb2+ attached to each GSH,  

𝜌GSH: areal density of GSH.  

Using Grahame equation, Pb2+ adsorption induced gating voltage is  

 

                                                                    (6.3) 

 

The sensor sensitivity is thus   

∆𝑉𝑃𝑏2+ =
𝑘𝐵𝑇

𝑒
𝑠𝑖𝑛ℎ−1(

𝑛𝑎×104

√8𝑘𝐵𝑇𝜀𝜀0𝐶𝑃𝑏2+

) 

𝜃 =
𝐾𝑒𝑃

1 + 𝐾𝑒𝑃
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(6.4) 

where 

                     (6.5) 

Thus,  

                                                                (6.6) 

 

𝑄0: initial carrier concentration.  

In the flowing water (Figure 6.9 (b)), both diffusive transport and convective transport of 

Pb2+ ions co-exist and the mass balance of Pb2+ ions can be expressed as, 

                                                       (6.7) 

 

Here, 

       𝐷: diffusion coefficient (diffusivity) of Pb2+ in water 

𝐶: concentration of Pb2+ 

       𝑈⃗⃗ : water velocity vector 

And the sensitivity induced by the gating effect could be expressed similarly as in Equation 

(6.6). 

    (6.8) 

 

where,  

       𝑞: adsorption density of Pb2+. 

Because of the presence of convective transport, adsorption equilibrium coefficient of the 

probe will be lower compared with that in the static water.  Therefore, the adsorption density 

S =
∆𝑄

𝑄0
 

∆𝑄 = 𝑒
𝜀0𝜀𝐴𝑙2𝑂3

𝑑𝐴𝑙2𝑂3

∆𝑉𝑃𝑏2+  

𝜕𝐶

𝜕𝑡
+ 𝑈⃗⃗ ∙ 𝛻𝐶 = 𝐷𝛻2𝐶 

S =

𝑒
𝜀0𝜀𝐴𝑙2𝑂3

𝑑𝐴𝑙2𝑂3

𝑄0

𝑘𝐵𝑇

𝑒
𝑠𝑖𝑛ℎ−1(

𝑛𝑎×104

√8𝑘𝐵𝑇𝜀𝜀0𝐶𝑃𝑏2+

) 

S =

𝑒
𝜀0𝜀𝐴𝑙2𝑂3

𝑑𝐴𝑙2𝑂3

𝑄0

𝑘𝐵𝑇

𝑒
𝑠𝑖𝑛ℎ−1(

𝑞×104

√8𝑘𝐵𝑇𝜀𝜀0𝐶𝑃𝑏2+
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of Pb2+ ions (q) is smaller than that of the static state (𝑛𝑎). As a result, the sensitivity in the 

flowing water would be smaller than that in the static water. Specifically, the sensing 

performance difference of the FET sensor is attributed to the flowing water velocity, the size 

of the tube, and the water pressure in the flowing system, among others. 

6.6 Summary and conclusion 

The FET sensor stability is investigated by examining each component of the sensor as the 

sensor stability is limited by the most vulnerable component. Resistance tracking indicates that 

channel material will adsorb O2, which further leads to oxidization in ambient environment, 

especially BP. An air free and inert gas environment (e.g., Ar) would enhance the stability of 

the channel materials during the storage. A passivation layer is necessary for protecting the BP 

sensor from being exposed to O2 under ambient environment and being oxidized. For stability 

of the entire platform, rGO/Au NP-GSH sensor shows a continuous degradation response to 

Pb2+ ions during its storage in water, and completely loses its sensitivity after 4 weeks’ storage 

in water. SEM tracking of the sensor platform indicates the good stability of rGO nanosheet 

and sputter-coated Au NPs in water. Fluorescence plater reader is used for the probes’ diffusion 

tracking. Until the 44th day, half GSH detached from the sensing surface, which rationalizes 

the limited lifetime of rGO/Au NPs/GSH platform in water. To avoid the probe degradation, 

the sensors should be stored away from direct sunlight and high humidity. An FET sensor 

integrated flowing water system has been designed for the inline detection of flowing Pb2+ ions, 

which shows a repeatable dynamic response. However, it is unexpected with a current signal 

of consistent increase and a LOD of as high as 200 ppb, which are partially attributed to the 
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higher ionic conductivity for high concentrations of Pb2+ ions and the convective transport of 

Pb2+ ions in the flowing water system, respectively.   
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CHAPTER 7 CONCLUSIONS AND OUTLOOK  

7.1 Conclusions 

 The overall objective of the dissertation research is to explore and understand 2D 

nanomaterials-based FET sensors for water sensing applications. Major conclusions are 

summarized below under each specific major task. 

Task 1. Develop a low-cost, portable, user-friendly, sensitive, and selective analytical 

platform for in-line analysis of heavy metal ions.  

We have demonstrated a sensitive and selective FET sensor based on 2D nanomaterial/ Au 

NP hybrid structures for detection of Hg2+, Pb2+, As(V) and As(III) ions in water. The hybrid 

structure consists of a 2D nanomaterial film, homogeneously dispersed Au NPs, and specific 

probes. Unique properties of various nanomaterials (rGO, MoS2, and BP) have been explored 

and specific probes have been identified to realize sensitive and selective detection of toxic 

heavy metal ions. The detection is enabled by recording the electrical conductance of the device 

and by monitoring the change in the drain current of the 2D nanomaterial FET sensor device. 

The platform offers a promising route for real-time (1-2 seconds), high-performance and low-

cost detection of heavy metal ions. The lower detection limit can reach the order of ppb, which 

is below the EPA action level. Meanwhile, the sensor also shows high selectivity against other 

interfering heavy metal ions. The sensing platform features the following advantages: 

Faster – Rapid response for real-time monitoring (detection time on the order of seconds); 

Miniaturized – The micron-sized sensor can be integrated into existing water equipment; 

Highly sensitive – Lower detection limit on the order of ppb; 
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Scalable – Fabrication can be scaled up with good reproducibility/high electrical stability; 

Inline continuous detection – Sensors can be placed directly in the flowing water system; 

Wireless communication compatible – Ready for integration with wireless 

communication. 

The simple fabrication method and excellent sensing performance of the hybrid structure 

have been demonstrated for the accurate prediction of arsenic ions in lake water. 

Task 2. Investigate the FET sensing mechasim. 

The investigation of the sensing mechanism in the FET platform is completed through 

theoretical analysis and expeirmental validation. Theoretically, the adsorption of target metal 

ions will induce charge transfer and gating effect in the FET platform. The adsorption of 

charged ions to the platform will induce the electron transfer between the ions and the channel 

material, altering the carrier (i.e., holes or electrons) concentration in the channel film and 

further introducing a current difference between the source and drain electrodes. Meanwhile, 

the charged ions adsorbed on the sensor surface would generate an electric field, which repels 

or attracts the carriers in the channel material, leading to a current change between source and 

drain electrodes. AC impedance analysis indicates resistance in the platform consists of system 

resistance (R0), channel resistance (Rch), and the contact resistance (Rcontact) at the interface 

between the channel material and gold electrodes. The EIS data fitting result agrees with the 

therotical analysis that the Rch change is induced by both the gating effect and the charge 

transfer effect, and the two changes are in opposit directions.  As a result, the overall 

resistance change and the resulting sensitivity is relatively low.  Finally the EIS result reveals 

that the gating effect dominates over the charge transfer in the sensing platform. A passivation 
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layer (Al2O3 thin film) for the sensing platform is proposed and deposited onto the platform 

with ALD technology to reduce the gating effect on the contact region as well as to reduce the 

Rch change induced by the electron transfer between the channel material and metal ions, 

eventually improving the sensor sensitivity.  

Task 3. Improving the sensitivity of the nanomaterial-based electronic sensor. 

We investigate sensitivity through theoretical analysis and experimental validation. 

Theoretical analysis indicates that sensitivity related factors are semiconducting properties of 

nanomaterials (e.g., carrier mobility, band gap), number of probes, and adsorption capacity of 

Au NPs. Experimental results suggest that the high sensitivity can be realized for future sensors 

by forming hybrid structures with thinner 2D conducting materials with a larger band gap and 

a higher carrier mobility, by increasing the areal density of anchoring sites on the platform and 

enhancing the adsorption of capturing probes. Compared with Au particle number or particle 

size, the probe adsorption has a higher dependency on Au NPs areal density, which becomes 

the index for the effective adsorption surface. Overall, balancing the particle size and the 

particle number to achieve a uniform sensing surface with maximum areal density could 

maximize the adsorption of probes. Other conditions, e.g., probe concentration, temperature, 

assembly time, and solution pH, will also affect the generation of self-assembled probe 

monolayer. 

Task 4. Improving the stability of the nanomatrial-based electronic sensor. 

To understand and potentially enhance the stability and lifetime of the electronic sensor, 

we investigate stability through theoretical analysis and experimental validation. It includes the 
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binding between the nanomaterial and electrodes, the detachment of Au NPs, the lifetime and 

diffusion of probes, and the sensor overall stability. Initial experiments on the lifetime of rGO 

storage in water indicates the good stability of the channel material. And protection with an 

inert gas would prevent the adsorption of O2 to channel material surface, thereby enhancing 

the stability of sensors. Meanwhile, the application of Al2O3 thin film improves the stability of 

sensors through protecting the channel material (especially BP) from oxidation. Comparing the 

resistance change of BP sensor before and after applying the passivation layer, its lifetime 

extends from one month to more than two months. SEM tracking indicates the good stability 

of sputter-coated Au NPs in water. Fluorescence test indicates that about 50% GSH probes 

diffuse away from the sputter-coated Au NPs in 44 days’ storage in water. To avoid the probe 

degradation, the sensors should be kept away from direct sunlight and high humidity.  

Preliminary experiments show that an FET sensor integrated flowing water system can be 

designed for the inline detection of flowing Pb2+ ions. 

7.2 Outlook 

For fundamental research, we have reported the 2D nanomaterial-based FET sensor with 

comparable or better performance than conventional methods and standard instruments. 

However, there are still several challenges to overcome for the sensor fabrication and testing 

process at a large scale, degradation and device-to-device variations in the sensor 

performance/quality. And the application of these heavy metal ion sensors in real tap water or 

surface water is more complicated than that in ultrapure water. Therefore, further research is 

warranted to enable the ultimate practical application of these novel FET sensors based on 2D 

nanomaterials.  
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Fabrication: From the perspective of device fabrication, the challenge in the uniform 

fabrication (the ability to fabricate many sensors with the same performance) still exists. It is 

especially challenging to deposit the channel materials onto the sensing surface, due to their 

ultra-small size and the technical limitation for nanomaterial preparation and manipulation.221 

Currently, the rGO sheets are fabricated onto the substrate through a self-assembly method; 

chemically exfoliated MoS2 flakes are prepared into a thin film and then transferred onto the 

substrate; BP sensor is prepared with the mechanical exfoliation method. Just like none of two 

peas is exactly the same, none of the sensors is exactly like each other. Meanwhile, any small 

variations in the fabrication procedure might lead to a large difference in the final sensing 

performance. To address the challenges of device-to-device variations, rigorous quality control 

of sensor fabrication is needed, likely through process monitoring and automation.  For 

example, automated printing process can be explored for the manufacture of these sensors.   

Sensing performance (sensitivity, selectivity and stability): Meanwhile, understanding 

the sensing mechanism for the observed sensor signals is the key to optimize the sensor design, 

improve the sensing performance, and enhance the sensor reproducibility and reliability. 

Tuning the platform structure could be effective in reducing or eliminating the interference 

from the testing solution. For instance, a gate insulator or a passivate layer is needed for 

reducing or eliminating the signal change introduced by the electron transfer between metal 

ions and the channel material. But this leads to another challenge for the real application of 

FET water sensors--the thickness control of the passivation layer. On one hand, it needs to be 

thick enough to cover the sensing platform; on the other hand, a good detection sensitivity 

requires a thin enough Al2O3 layer because of the sensing range limited by the Debye length.    

For the detection of contaminants in ultrapure water, the FET sensors are sensitive and 

selective to targeted metal ions. However, heavy metal ion detection in tap water or surface 

water is more complicated. Surface water usually has a very complex chemical composition 
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and carries inorganic ions, organic compounds and colloidal particles. These compositions 

would lead to large uncertainties in the detection, and possibly degrade the sensor’s sensitivity 

and reduce its stability. Inevitably, the large number of these stray ions (e.g., Na+, Cl- ions) and 

dissolved organic carbon would affect the sensing signal. Therefore, the ionic strength of the 

liquid media should be considered. 222-223 For example, with the high ionic strength, the Debye 

length of the probe molecules becomes smaller because of the electrostatic screening effect. 

Thus, the strength of the bonded metal ions induced gating effect will be weakened, further 

leading to a weaker sensitivity. Consequently, it needs more careful consideration for the gate 

dielectric and probe selection during the sensor design. The thickness of the gate dielectric 

needs to balance between the sensing signal and the platform protection. And the probe size 

should be moderately small to decrease the distance between the adsorbed charged target 

analytes and the channel material and meet the Debye length requirement. In addition to the 

above-mentioned challenges, temperature impact on the sensor performance should be 

carefully addressed, since 2D semiconducting nanomaterials are sensitive to temperature 

variations in the environment. A possible research direction is to design a compensation 

method for the temperature variations. Further investigation is needed to construct a 

comprehensive calibration model considering the sensing performance as well as all possible 

influencing factors, including ambient environment (i.e., pH, temperature, humidity) and 

interference from other water components.  

Continuous flow sensing: To enable the real application of FET sensors in the flowing 

water system, future research is needed to address a few chanllenges, including improving the 

reliability of the flowing water system set-up, resolving the effect of the convective transport 

on the adsorption of metal ions, and identifying the effect of flowing water on the chelation 

between the capturing probes and targeted ions. Eventually, integration of the FET sensor into 
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existing water equipment for inline, continous monitoring of water contamination could be 

demonstrated.  
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