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ABSTRACT 

HYDROPHOBIC SELF-CLEANING COATINGS FOR SUSTAINABLE 
INFRASTRUCTURE 

by 

Evgeniya Alexandrova 

 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Konstantin Sobolev 

 

 

            Durable two-layer hydrophobic coatings with photocatalytic properties 

demonstrated a good decomposition of NOx up to 23 %. The first layer of the coating is 

based on the application of durable titanium phosphate structures. The hydrophobic 

properties of the coating with a water contact angle of 114° were achieved by the 

application of water-based siloxane emulsion on the surface of the first layer. Conducted 

research has demonstrated that the use of hydrophobic coating in comparison with 

reference TiO2-phosphate can slightly reduce the efficiency for the decomposition of 

NOx by 8 %; however, this feature can be considered as an acceptable trade-off between 

the potential improvement of durability of the coating and photocatalytic performance. 

The formation of layers with very small, around 100 μm, thickness allows to avoid the 

formation of cracks observed for thicker coatings and contributes to better adhesion of 

the coating to the surface of substrate material. 
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1. Introduction  

1.1. Photocatalytic concrete 

            The alarming rise in anthropogenic air pollutions, evident in urban areas, induced 

the need to create new photocatalytic materials with self-cleaning properties which can 

combat the car exhaust fumes and other forms of harmful pollutants in the air. By 

application of building materials with photocatalytic response, engineers can decrease 

the impact of these pollutions on human health and the environment [6]. Imparting 

photocatalytic properties to the facades, roads and other structures without any adverse 

effect to their original properties including color is commonly realized by applying a thin 

layer of coating material based on titanium dioxide (TiO2). Optionally, this coating layer 

can use cement paste to adhere the active components to the surface of structure and 

TiO2 can be incorporated as a component of concrete [6, 34]. The main component of 

photocatalytic coatings, TiO2 is a common white pigment that is harmless, inexpensive 

and currently is widely used in paint, plastics, cosmetics, sunscreen, toothpaste, and 

other products [26].  

            There are three polymorph modifications of titanium dioxide: anatase, brookite, 

and rutile. Rutile is the most commonly occurring type of TiO2, which has chemically 

resistant properties and also high refractive index. Anatase converts to rutile after heating 

at about 915 °C [16, 36]. Anatase has almost the same properties as rutile with regards to 

its density and hardness. Both anatase and rutile have tetragonal crystalline structures, 

but anatase has octahedrons that share four edges forming the four-fold axis. Crystal 

structures of anatase and rutile are demonstrated in Figure 1.1. The X-ray diffractograms 

of rutile titanium dioxide and anatase titanium dioxide are reported in Figure 1.2. 

Anatase is not advisable to use it outdoor applications because it has a lower water 
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absorption rate than rutile [36]. Still, anatase is also used as a white pigment in paints, 

paper, and ceramics.  

 

Figure 1.1. Extended crystal structure of anatase (left) and rutile (right) [30] 

 

Figure 1.2. X-ray diffractograms of rutile and anatase TiO2 [33] 

            The application of TiO2 as a component of concrete can require the use of a 

relatively large amount of TiO2 (up to 15 % of cement replacement) [31]. However, the 

presence of photocatalyst is only required at the surface of the material. Paint 

applications can suffer the photocatalytic and UV decomposition of polymer films 

resulting in a release of TiO2 nanoparticles on the surface, easy removal, and associated 

health issues. 
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            In this regard, a little effort has been made in optimizing the application 

procedure for photocatalysts. The application procedure should be cost effective and 

should not result in inferior physical, chemical and mechanical characteristics of 

concrete or another substrate. The application of the sprayable photocatalytic coating on 

the surface of concrete, capable of chemically bonding with the substrate, can be a more 

effective way to increase the photocatalytic and self-cleaning properties of structure 

achieved at fewer amounts of titanium dioxide [34]. Importantly, such coating should be 

resistant to erosion and abrasion, and nanoparticles of TiO2 should not be washed out by 

water [13]. The outdoor environments with high wind speeds and humidity may affect 

the performance of coatings based on titanium dioxide particles. A new coating 

combining hydrophobic properties along with photocatalytic response can become a new 

generation of materials offering the better performance of TiO2-based products [13]. 

Definition of photocatalysis 

            Photocatalysis is defined as a process of acceleration of a chemical reaction in the 

presence of a catalyst, and this method was successfully applied for the decomposition of 

harmful substances in air and water [32]. The photoreaction is a charge separation of 

electrons and creation of electron-hole pairs on the photocatalytic surface commonly 

occurring under the ultraviolet irradiation [9]. These electrons generate free hydroxyl 

radicals and superoxide anions which can react with air pollutants, decomposing these 

into small amounts of relatively harmless solid compounds. The primary catalytic 

component, the anatase polymorph of titanium dioxide (TiO2), is a commonly used white 

pigment. The mechanism of photocatalysis is reported in Figure 1.3.   
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1. TiO2 + UV-light → e- + hole+ 
2. e- + hole+  → TiO2 + Heat          or 
3. hole+  + OH- →OH∙        &       e- + O2 

 → O2
-∙ 

4. R∙ + NOx → Intermediates → NO3+H2O 

Figure 1.3. The schematics of photocatalytic decomposition of air  
pollutants [32] 

            According to the van Driel and Kooyman [32], if one of the steps resulting in 

radical formation is prevented, the photocatalytic reaction will stop. This happens, for 

example, when the surface of titanium dioxide nanoparticles is covered with an 

inorganic surface coating. In this case, the coating creates the barrier between the 

catalytic molecules and organic compounds in the air acting as an ultraviolet light 

absorber. Therefore, the main problem is to attach the particles of TiO2 to the surface, 

which preserves the ability to generate free radicals.   

            The free radicals help to break down the nitrogen oxides (NOx), volatile organic 

compounds (VOC's), carbon monoxide (CO) and organic pollutants which are generated 

in the air from industrial smog, power generated car exhaust fumes and the other 

outcomes of human activities and to oxidize these into inorganic compounds such as 

carbon dioxide, nitrates, sulfates, etc [23]. 

Photocatalytic concrete 

            Many field and laboratory experiments proved that the application of 

photocatalytic titanium dioxide in pavements, cladding elements, architectural precast 

panels, exterior plaster, windows, stucco, noise barriers for roads and other types of 

structures significantly reduces the concentration of harmful gases in the air 

approximately by 45 %, and up to 60 % in some applications, helping to keep the 

original color of structure [10]. Also, photocatalytic materials reflect much of the sun's 
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heat, reducing the air temperature on the structural surfaces and the amount of smog in 

urban environments during the summer.  

            Many types of building materials with photocatalytic properties have been 

produced over the last twenty years. The application of nano-particles includes the 

improved paint coatings and cement, improved insulation materials with a porosity of 

the order of 10 to 100 nm, polymer-based floor coatings, nano-filters to purify water and 

asphalt blends with the oxidation resistance [7].   

            Photocatalytic coatings have been applied on glass windows to decompose dirt 

particles and to provide infrared and ultraviolet screening on windows. Architectural 

precast panels were manufactured, using white cement with TiO2 and demonstrated the 

aesthetic characteristics over the time along with the effective removal of pollutants. 

White cement with self-cleaning properties has been used for the construction of 

modernistic “Dives in Misericordia” church in Rome [26]. New photocatalytic cements 

and TiO2 products can be used to produce concrete that saves costs on maintenance and, 

at the same time, cleans the environment. Photocatalytic concrete was used as a self-

cleaning material in many civil engineering and architectural projects in Japan [4]. 

            An example of the application of titanium dioxide in photocatalytic concrete is 

Baton Rouge, Louisiana where the ¼ mile of a concrete roadway was covered with a 

photocatalytic coating, with a purpose to demonstrate the ability of TiO2 to decompose 

and reduce the amount of nitrogen oxides in the air. The concentrations of NOx were 

measured, and the results of initial monitoring demonstrated that the developed coating 

was effective in reducing NOx.  

            Researchers proved that many factors affect the effectiveness of photocatalytic 

materials, such as solar radiation, light intensity, relative humidity and wind direction 

and speed (Dylla et al., 2012)  [31, 7]. In 2002, photocatalytic TX Active® mortar was 
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tested for photocatalytic properties. A section of the asphalt surface in Via Morandi in 

Segrate (province of Milan) was covered with TX Active®. This road has a traffic flow 

of around 1,000 vehicles/hour. Tests proved the degradation and reduction of nitrogen 

oxides by 60 %. These projects have demonstrated that a concrete road made of 

photocatalytic concrete can reduce the NOx levels by 20 to 80 %, depending on 

atmospheric conditions. Following this success, new highway using of TiO2 was 

constructed in St. Louis, MO in 2011 [7].   

Types of photocatalysts 

            Some semiconductors can act as effective photocatalysts. The surface energy and 

chemisorption properties of photocatalysts play key roles in the transfer of electrons and 

in determining the vulnerability of the photocatalyst toward photo-corrosion. In general, 

higher surface energy yields a higher catalytic activity. For this reason, metal oxide 

semiconductors such as TiO2, ZnO, Fe2O3, CdS, and ZnS are considered to be the most 

effective photocatalysts due to wide band gap energy and photo-corrosion resistance [2, 

9]. Table 1.1 provides the band gap energies at a corresponding wavelength for well-

known photocatalysts. 

            Titanium dioxide has been most commonly used as the "ideal" photocatalyst due 

to its ability to decompose organic pollutants achieving complete mineralization, its high 

reactivity, chemical stability, reduced toxicity and lower costs [2]. Photocatalytic 

efficiency of different types of TiO2 depends on the surface and structural properties 

which include the surface area, crystal composition, porosity, particle size distribution 

and band gap energy. 
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Table 1.1. Band gap energies of various photocatalysts at relevant wavelengths [2] 

 

Factors affecting the degradation performance 

            The concentration of titanium dioxide particles on the surface affects the overall 

photocatalytic reaction rate, which is directly proportional to the amount of TiO2 

deposited on the surface. However, when the concentration of titanium dioxide is above 

a certain level (saturation stage), the light photon adsorption coefficient decreases and 

this can lead to light screening effect, to the reduction of the surface area exposed to the 

irradiation and thus to the reduction of the photocatalytic efficiency [2]. 

            Particle size is an important factor to be considered in the photocatalytic 

degradation process because there is a direct relationship between the surface area of the 

photocatalyst and the reduction of organic compounds. Different forms of titanium 

dioxide have been developed to achieve the desired characteristics of the photocatalyst, 

including commonly used P25, PC500, UV100 and TTP products. The efficiency of 

these photocatalysts in the degradation of organic compounds has been reported by 

Degussa to be in the order of 

P25 > UV100 > PC500 > TTP [2]. 

            In general, the increase of reaction temperature results in the increased 

photocatalytic activity, however the reaction temperature higher than 80oC leads to the 

recombination of charge carriers and reduces the adsorption of organic compounds on 
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the surface of the photocatalyst. Preferable temperature range for effective photo-

mineralization of organic content lies between 20 – 80 °C [2]. 

            Some studies have proved the dependency of the photocatalytic reaction rate on 

the concentration of contaminants. High concentration of pollutants reduces the photonic 

efficiency of the photocatalyst. Also, the chemical structure of an organic compound 

influences the degradation performance of the photocatalyst. For instance, the 

decomposition of 4-chlorophenol requires extended irradiation [2, 20]. 

            The influence of humidity on the photocatalytic reaction rate was well 

investigated. Researchers proved that the increase in humidity could negatively affect the 

photocatalytic degradation under UV light irradiation. Engel investigated the influence 

of different humilities (between 6 % and 90 %) on the photocatalytic reaction rate of 

TiO2 [12]. The experiment demonstrated that the conversion of NOx decreased with 

increasing humidity. It was found that for the best photocatalytic effect the optimum air 

humidity is in the range of 20-40 %. 

            The conversion of NO compounds was found to be strongly affected by the UV 

irradiance. The increase of UV irradiance results in increasing photocatalytic reaction 

rates. According to Engel, the degradation of NO compounds in the presence of UV(A) 

irradiation increases with increasing the irradiance in a non-linear manner [12]. Figure 

1.4 demonstrates the conversion of NO vs. UV photon flux during the photocatalytic 

oxidation of NO in the presence of P25.  
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Figure 1.4. Fractional conversion of NO vs. UV(A) photon flux during the 
photocatalytic oxidation of NO in the presence of UV(A) irradiated P25 samples 

[12] 

1.2. Chemistry of phosphate cement  

            A binder is any substance that draws and holds other materials and compounds 

together to form a chemically and mechanically cohesive composite, by adhesion or 

cohesion. Binders are classified as organic (including polymers, glues, and bitumens), 

and inorganic such as lime, gypsum, portland cement and based on liquid glass 

(geopolymers, alkali-activated compounds based on sodium or potassium silicates).  

            Inorganic (mineral) binders are finely powdered substances, which when mixed 

with water (sometimes with salt), form a plastic moldable compound that hardens and 

binds together different filler and aggregate components. Organic binders are mixtures of 

high-molecular-weight hydrocarbons, viscous or liquid materials that are processed for 

application by thermal, ultraviolet radiation, or organic cross-linking agent treatment 

[37]. 

            Inorganic binders can be classified by the type of hardening process as hydraulic 

(hydraulic lime, portland cement), non-hydraulic with air hardening mechanism 
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(magnesium oxide, gypsum), autoclave (which harden at 170 to 300 °С and pressure of 

up to 20 atm to comprise CSH composites), alkali- and acid-activated [37]. 

            The type of initial components determines the specific properties of synthesized 

cement composites, which, in particular, include the phosphate cement. For example, 

phosphate hardening occurs when special chemical compounds, usually oxides, react 

with phosphoric acid. The main chemical process that initiates the hardening of 

phosphate cement systems is the acid-base interaction of liquid protonated environment 

with solids. The basis for the synthesis of binders and materials is any reaction of acid-

base interaction in heterogeneous dispersed systems of solid-liquid type. 

            In such systems, development of binding properties changes for different 

chemical characteristics of the base. The decrease of the ionic potential of the cation in 

the oxide as far as the decrease of the electronic work function causes an increase in 

basic properties of the oxide. In this case, the chemical activity of the oxide in acid 

increases and so phosphate systems harden under normal conditions without heating and 

mechanochemical activation. The acceleration of setting and hardening processes occurs 

as the ion potential of the cation decreases in the groups with a uniform electron 

structure and, conversely, as the ion potential increases, this process slows down [40].  

            A necessary condition for the developing of binding properties in phosphate 

cement systems is the proportionality of the intensity of the main chemical process with 

the processes of structure formation. The excess activity of components interaction is 

related to the concentrated heat release in the system, and, when this process becomes 

autocatalytic, it leads to the destructive phenomena with the mass critically warming up 

and crumbling, decomposing the initially formed structure. 

            There are some techniques to overcome the excessive interaction activity among 

the components of phosphate cement: 
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1. Cooling of the initial components and intensive heat transfer from the mixing reactor. 

These techniques allow working with highly reactive systems containing cations such as 

Pb+2, Zn+2, Mg+2 [40]. 

2. The passivation of the initial solid component. The material from which the original 

powder is produced is subjected to heat treatment at high temperatures. Thus, the seal of 

material and the reduction of the reaction activity occur. This technique is especially 

effective for the systems which contain oxides of cadmium, zinc, magnesium. 

3. A common way of passivating the solid component is shielding of particles by 

surface-active substances or by diluting by inert powders, such as finely ground silica, 

wollastonite or fly ash [40, 5, 19]. 

4. The modification of the solution is based on the correction of the functional 

composition of the liquid component. The most common method is the preliminary 

neutralization of acid (cationic modification) until the transition convents the acid 

solvent to salt. Thus, the solvent phase for zinc phosphate or silicate cement is 

orthophosphoric acid, previously neutralized with oxides of aluminum, magnesium, or 

zinc.  

            The main approach to increase the activity of chemical interaction is by heating. 

In some cases, for example in the system of Cr2O3 + Н3РО4, a similar result can be 

achieved by using methods of mechanochemical activation applied to powder 

components [40]. 

Properties of phosphate cement  

            The practical characteristics of phosphate cement have a wide range depending 

on the type of components and proportions used. The hardening of magnesium 

phosphate cement is based on the synthesis of the double magnesium ammonium 
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phosphate NH4MgPO4 • 6Н2О and magnesium phosphate Mg3(PO4)2 • 4H2O. After one 

day of hardening under normal conditions (at room temperature and atmospheric 

pressure) the compressive strength can achieve up to 150 MPa [40]. Zinc phosphate 

cement, a combination of modified zinc oxide powder and partially neutralized 

orthophosphoric acid, demonstrates the highest flexural strength of up to 10 MPa after 

24 hours of hardening [1]. Fast-hardening magnesium ammonium phosphate cement is a 

mixture of ammonium phosphates and magnesium oxide. Being mixed with water, after 

1 hour this cement demonstrates the strength of up to 14 MPa [40, 27].  

            The strength of up to 50 MPa after 4 hours of hardening is gained by wollastonite 

phosphate cement, which is a combination of ground wollastonite and partially 

neutralized acid [40]. By 28 days of hardening, the strength of about 250 MPa is 

achieved by the system, represented by ferrites of zinc and copper [40]. The same level 

of compressive strength (up to 250 MPa) is attained by the systems processed at high (up 

to 1,200 °C) temperatures. This applies to materials based on fused magnesia. 

            When water-containing binder systems are heated, the physical and constitutional 

water is removed. In hydration formed systems, this process causes the destructive 

phenomenon, which leads to a significant (up to 90 %) loss of strength, initially gained 

as a result of hardening. In the case of phosphate cement, thermal dehydration is usually 

combined with the processes of polycondensation and polymerization of the structure-

forming compounds, which favorably affects the strength.   

            The properties of compounds formed as a result of hardening of phosphate 

cement, in many cases, allow these compounds to be attributed to materials with high 

thermal stability. Phosphate cement systems can be used at high and even ultrahigh (up 

to 2,000 °C) temperatures. For example, zirconium phosphate cement, which is a 

combination of zirconium dioxide powder with solutions of aluminum phosphates, is 
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suitable for the service at up to 2,000 °C, and magnesium phosphate, which uses pure 

magnesium oxide and zirconium phosphate solution, up to 1,700 °C [40, 25]. 

            As materials with different thermophysical characteristics can be used as a 

powder component of phosphate cement, both heat-conducting and heat-insulating 

phosphate cement can be obtained using this approach. 

            Some phosphate cement based products have the electrical resistance of up to 1 

kOm. The combination of titanium nitride (TiN) and chromium metal powders with 

orthophosphoric acid gives an excellent conductive cement. Monolithic materials 

obtained by mixing ferrite mineral powders with acid phosphate solutions have a good 

magnetic permeability [40, 29]. 

1.3. Properties of titanium phosphate cement 

            Titanium phosphate is obtained by the reaction of titanium dioxide with 

orthophosphoric acid at high temperatures. To determine the optimal concentrations of 

titanium phosphate compounds, it is necessary to establish the optimal concentration of 

phosphoric acid. Table 1.2 provides the data gained during the heat treatment of cement 

at 573K [14]. 

Table 1.2. Influence of the acid concentration on cement properties [14] 

Ratio 
TiO2:P2O5 
by mass 

Concentration 
of P2O5, % 

Acid 
Density, 
kg/m3 

Compressive 
Strength, 

MPa 

Bending 
Strength, 

MPa 

Water 
Adsorption, 

% 
3.26 : 1 36.2 1.335 9.0 1.5 26.0 
2.02 : 1 54.3 1.579 41.0 1.9 16.2 
1.86 : 1 66.6 1.770 61.5 4.1 9.2 
0.93 : 1 76.6 1.830 16.5 2.2 14.1 

 

            In cases where oxides are relatively inert to achieve the hardening at room 

temperature, hydroxides are used instead, and the resulting phosphate cement is being 
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heated to about 573 K. The temperature is increased slowly, and then the composite is 

kept for an hour at the final temperature. Titanium phosphate cement based products are 

produced using such a route.  

            The optimal P2O5 concentration in the mixture was reported to be about 66.6 %, 

and titanium dioxide content is 33.4 % [14]. The resulting cementitious matrix has a 

compressive strength of 61.5 MPa, bending strength of 4.1 MPa, and has a fire resistance 

of up to 1323-1373K. The neutral and acidic aqueous environments do not destroy the 

titanium phosphate cement matrix, but similarly to other phosphate compounds, it 

decomposes under the influence of alkalis [14].  

1.4. Effect of phosphate bonds on the photocatalytic activity of titanium 

dioxide 

            The surface modification of titanium dioxide may have a significant influence on 

the photocatalytic process by changing the charge-transfer pathways at the TiO2 surface. 

Only a few studies were focused on the effect of phosphate bonds on the photocatalytic 

activity of titanium dioxide. The most of earlier investigations focused primarily on the 

improvement of thermal stability and on the increase of acid sites and the TiO2 surface 

area. Matthews reported that the incorporation of phosphate reduces the photocatalytic 

activity rates by 20-70 % even at millimolar concentrations [35]. However, Yu recently 

reported that the titanium dioxide modified by phosphate ions demonstrated a higher 

photocatalytic activity on oxidation of n-pentane in air vs. pure TiO2. Phosphate 

modified titanium dioxide possessed higher photocatalytic activity because of the larger 

surface area and extended band gap energy. Korosi also studied titanium phosphates and 

found that the catalysts with a small amount of phosphate possess the increased 

photocatalytic activity for photodegradation of phenol and ethanol [35]. It is difficult to 
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determine the effect of phosphate anion on the photocatalysis, because, compared with 

pure titanium dioxide, modified photocatalysts exhibit an array of properties in respect of 

crystallite component and phase, surface area, and surface acidity. Thus, the mechanism 

of the improvement of photocatalytic activity using phosphates is complicated and 

under-investigated. 

            Many studies proved that for improvement of photocatalytic properties, 

phosphate modification should be carried out before the complete crystallization of TiO2. 

According to the research data, if the phosphate anion is introduced after the 

crystallization of titanium dioxide, the modified catalyst holds the same crystallite phase 

and the surface area as the unmodified one. The effect of phosphates on the 

photocatalytic activity of titanium dioxide should mainly be a result of a negative 

electrostatic field induced by the phosphate anions on the surface of TiO2. 

            Zhao investigated the electronic properties of titanium dioxide modified by 

phosphates [35]. For samples with phosphoric acid treated after the crystallization of 

TiO2, the XRD patterns exhibited little change concerning pure TiO2. The average 

crystallite size of 11.5 nm was found from broadening of the diffraction peaks. This 

indicates that this phosphate modification influences the crystallite size and crystalline 

degree of TiO2. In cases when phosphoric acid was treated before the crystallization of 

TiO2, even a small amount of phosphoric acid leads to a marked broadening of the 

diffraction peaks. It was reported that when the phosphoric acid ratio to the amount of 

titanium dioxide was equal to 0.05, the surface area was increased by 85 m2/g, and the 

size of TiO2 crystallites decreased from 11.5 to 9.0 nm. Further increase of the 

phosphoric acid concentration demonstrated a very little effect on the crystallite size but 

resulted in a significant increase in the surface area by an additional 48 m2/g (from 167 

to 215 m2/g). 
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            Based on these data, researchers concluded that the modification process by 

phosphoric acid treatment of TiO2 could significantly reduce the growth of anatase 

grains and greatly increase the surface area of resulting catalysts [35]. The experimental 

results proved that the effect of the phosphate on the photocatalytic activity of titanium 

dioxide is due to the surface-bound phosphate anion, rather than to the change in the 

surface area (particle size) or the crystalline structure of titanium dioxide. Negatively 

charged phosphate anions on the surface of the photocatalyst form a negative 

electrostatic field on the surface of TiO2. This can suppress the charge recombination 

and contribute to the separation of electrons and holes in phosphate modified titanium 

dioxide compared with pure TiO2. 

            It was reported that phosphate modification could inhibit the absorption of most 

compounds and suppress their degradation [35]. On the other hand, a negative 

electrostatic field formed by the phosphate anions can enhance the separation of 

electrons and holes and force the formation of free hydroxyl radicals. As a result, the 

effects of phosphate anions on the photocatalytic properties depend on the type of 

compounds to be degraded. The phosphates greatly accelerate the degradation of 

compounds with weak adsorption on the TiO2 surface or susceptive to hydroxyl radical 

attack due to the hydroxyl radical attack pathway [35]. However, the degradation of 

compounds can be significantly suppressed by the hindered adsorption of substrates for 

systems with strong adsorption on the pure TiO2. 

            All hydrogen phosphates and phosphates of potassium, alkali, sodium, and 

ammonium are soluble in water; their water solutions have a pH > 7. However, the 

phosphates of metals in high oxidation states are insoluble in water. Titanium phosphates 

are also insoluble in water, but highly hydrophilic. However, hydrophobic coatings may 
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be applied to improve the hydrophobic properties and so boost the overall durability of 

titanium phosphate coatings [13].  

1.5. The pathways for superhydrophobic modification  

            Concrete and the most of ceramic materials, like brick and tile, are hydrophilic 

materials, which may significantly reduce the durability of structures. Here, a super-

hydrophobic coating can improve the performance of construction materials and, thus, 

significantly increase the durability of structures.  

           The change in the pore structure on concrete surface affects the migration of 

moisture from concrete. Water in concrete evaporates in the direction of the protective 

coating, which causes the expansion pressure. Thus, if concrete has an impermeable 

coating film having no air ventilation, the coating can experience swelling and 

disbondment. The coating film formed on the concrete surface should ensure ventilation 

so that the internal moisture is evaporated without the damage to the film [36].  

            To solve this problem, it is necessary to improve concrete surface pore structure 

by using the coating material that has the function of ventilation and, at the same time, 

waterproofing. Also, the surface treatment can be applied to the coated material to get 

the required properties. The surface treatment can be mechanical (trowelling of the 

surface) and chemical (treatment of the surface with acid). With such treatment, the 

surface of material remains hydrophobic, saving the initial properties that a material 

possessed before the hydrophobic coating was applied [21].  

            The apparent contact angle (CA) is the principal parameter which characterizes 

the wetting properties of the surface. When the CA is less than 90°, it shows the 

hydrophilicity, which is the tendency of a surface to absorb water, while the CA greater 

than 90° indicates the hydrophobicity (water repelling). The super-hydrophobicity 
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corresponds to an apparent CA more than 150°. The CA between 120 and 150° indicates 

over-hydrophobic state [15]. Figure 1.5 illustrates the schematics of water droplets on 

the hydrophilic and hydrophobic surfaces. 

 

Figure 1.5. The hydrophilic (0° ≤ θ ≤ 90°), hydrophobic (90° ≤ θ),  
over-hydrophobic (120° ≤ θ < 150°), and superhydrophobic (150° ≤ θ ≤180°) 

surfaces, where θ is the CA [15] 

            A superhydrophobic coating is a nanoscopic surface layer that reflects the water. 

Different materials can be used to produce the superhydrophobic coatings, Figs. 1.6 and 

1.7. The following compounds are known possible types of the coating [11, 17, 22, 28]: 

- Silica nano-coating; 

- Manganese oxide polystyrene nano-composite; 

- Carbon nanotube structures; 

- Zinc oxide polystyrene nano-composite; 

- Precipitated calcium carbonate. 

           Silica nano-coatings are probably the most effective to use because can be easily 

applied via aerosol spray or by dipping the object into the gel [3, 30, 38]. Hydrophobic 

silica is a form of silicon dioxide that has hydrophobic groups chemically bonded to the 

surface. Hydrophobic silica demonstrates water-repellent properties because of its 

nanostructure and chemical properties. When the coating is applied on a surface of a 

material, the nanoparticles adhere to the material and prevent water from permeating the 

https://en.wikipedia.org/wiki/Nanoscopic�
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texture. So water comes into contact only with the tips of the coating [3]. As a result, 

water is repelled from the coating due to the lack of attraction.   

            The general property of the main types of organo-silicate compounds is the 

presence of active functional groups that can chemically bind to the surface. 

Organocalcium siloxanes and silicon polymers with Si-O-Si group, chemically fixed on 

the surface of materials according to Figure 1.6 (a), hydrophobize the pores forming a 

hydrophobic film.  Figure 1.7 illustrates the schematics of how randomly distributed 

polyvinyl alcohol (PVA) fibers embedded in the porous material can be used to achieve 

the superhydrophobicity [15]. 

            The example of widely used organo-silicate compounds is represented by the 

alkyl-silicates, the structural formula of which is illustrated in Figure 1.6 (b). Being 

applied on the surface of the material, the sodium oxide reacts with the compounds on 

the surface and binds the silicate to the surface, and free radicals repel the water [3]. 

 

 (a)                                      b) 

Figure 1.6. The chemical bonding of organocalcium siloxanes and silicon polymers 
with Si-0-Si group to the surface of the material (a) and the structural formula of 

the alkyl silicate organic compound (b) [3] 
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Figure 1.7. Schematics of the over-hydrophobic and superhydrophobic concrete 

[15] 
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2. Materials and Methods 

2.1. Materials used in the experiment 

Titanium dioxide 

            During the experiment, P25 titanium dioxide from Evonik was used as a 

photocatalyst, because it has the highest efficiency in the degradation of organic 

compounds and is often used as a reference material. The P25 titanium dioxide is a fluffy 

white hydrophilic powder with a specific surface area of 50 ± 15 m2/g, the tapped 

density is 130 g/l, sieve residue (Mocker, 45 μm) ≤ 0.05 %, pH of 3.5 - 4.5. The boiling 

temperature of TiO2 is 2,972 °C, and the melting temperature is 1,843 °C. The chemical 

composition of P25 includes TiO2 ≥ 99.5 %, SiO2 ≤ 0.2 %, Al2O3 ≤ 0.3 %, Fe2O3 ≤ 

0.01 %, HCl ≤ 0.3 %. Figure 2.1 illustrates the X-ray diffractogram of the titanium 

dioxide based P25 product used in this research.  

            The maximum allowable concentration of titanium dioxide in the air of the 

working space is 10 mg/m³. Titanium dioxide is fire-and explosion-proof and not 

subjected to thermal destruction.   

 

Figure 2.1. X-ray diffractogram of P25 titanium dioxide 
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Phosphoric acid 

            The chemical reagent grade phosphoric acid, containing 85 % of H3PO4 (and 

15 % of water) in solution, was used as a component of the binder. The reagent is a clear, 

colorless and odorless viscous liquid with a density of 1.685 g/ml. The orthophosphoric 

acid is soluble in water (446 g/100 mL at 14.95 °C), has a boiling point equal to 133 °C, 

and a melting point equal to 42 °C.   

            Phosphoric acid reacts with aluminum, alloys of aluminum, and carbon steel. 

Therefore, stainless steel containers were used for the sample testing. 

Ceramic tiles 

            The developed coatings were applied on the surface of unglazed ceramic tiles and 

tested for friction, photocatalytic properties, and hydrophobic properties. Thermal 

expansion of the tiles is low (1-15 ppm/°C), and melting point is high (600-4,000 °C). 

Ceramic tiles are also hard, rigid and brittle. The microstructure includes the grains, 

secondary phases, grain boundaries, micro-cracks, pores and structural defects.  

            One side of the tile has a smooth surface, therefore the coating was applied 

evenly on this surface by dipping the tiles into the solution. Ceramic tiles have a good 

water absorption, thermal stability, wear resistance, good chemical resistance to weak 

acids, such as phosphoric acid. Before the application of the coating, ceramic tiles were 

saturated with water to reduce the absorption of water from the coating solution.  

Water-based siloxane emulsion 

            The water-based siloxane emulsion was used as a hydrophobic component of the 

coating. The emulsion consists of several components. Water-soluble polyvinyl alcohol 

(PVA) was used for emulsion stabilization agent, because of its perfect compatibility 

with concrete materials and non-ionic character. A highly hydrolyzed (98 %) PVA with a 
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molecular weight of 16,000 was used to reduce the foam formation. Polymethyl-

hydrogen siloxane oil, PMHS (XIAMETER MHX-1107) with a viscosity of 30 cSt and a 

specific gravity of 0.997 (at 25 °C) was used as the hydrophobic agent. This product 

contains 85 − 100 % of methyl-hydrogen siloxane as an active agent. Deionized water 

was used as the dispersion medium.  

            The concentration of siloxane and surfactant was kept constant at 25 and 4.4 %, 

respectively, by the weight of the emulsion [15]. A high-speed mixer (HSM, model 

L5M-A from Silverson) was used to prepare the emulsions using the procedure 

described by Flores-Vivian et al [15]. For the solution preparation, PVA was gradually 

added to deionized water and stirred, using a magnetic stirrer with a hot plate, for 10 min 

at 23 ± 3 °C to avoid clumping. Then, the temperature was increased to 95 ± 2.5 °C, and 

kept constant for 40 min while stirring to achieve complete dissolution. The solution was 

cooled in a water bath until a temperature of 23 ± 3 °C. To stabilize the emulsions, high 

speed and high shear mixer at 10,000 rpm was used to produce the small droplet size 

[15]. The emulsions were characterized by an optical microscope (Olympus BH-2) at 

1,000X magnification. 

Deadly burned magnesium oxide 

            Deadly burned magnesium oxide was used in the experiment to explore the 

possibility to create a durable coating without heat treatment. Magnesium oxide is a 

white solid mineral and deadly burned magnesium oxide is manufactured at a relatively 

high temperature of 1500ºC – 2000ºC. This material has a very little reactivity. 
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2.2. Experimental methods 

Confocal Laser Scanning Microscopy (CLSM) 

            The tiles covered with the coating were observed under the confocal laser 

scanning microscopy (CLSM) with 20X magnification to inspect the formation of cracks 

and their dependence on the temperature treatment.   

            The CLSM is an optical imaging technique used to increase the optical resolution 

and contrast of a micrograph by using a spatial pinhole to block the out-of-focus signal 

when the image is formed. Capturing multiple 2D images at different depths on a sample 

enables the reconstruction of 3D structures [24]. The thin optical sectioning makes this 

technique applicable for 3D imaging and surface profiling of samples. 

            The CLSM achieves a highly limited and controlled depth of focus. The confocal 

microscope only focuses a smaller beam of light at one narrow depth level at a time, and 

only the in-focus is recorded, while, under the conventional microscope, light travels 

through the sample as far as it can penetrate.   

            Under the CLSM, the beam is scanned across the sample in the horizontal plane 

by the oscillating mirrors. This scanning method has a low reaction latency. Slower 

scans provide a better signal-to-noise ratio, resulting in better contrast and higher 

resolution [24]. 

Scanning Electron Microscope (SEM) 

             A scanning electron microscope (SEM) was used to investigate, how the coating 

binds to the surface of ceramic tiles and whether free particles of titanium dioxide 

remain on the surface of the coating.  

             The SEM is a type of electron microscope that produces images by scanning the 

surface of a sample with a focused beam of electrons. SEM micrographs have a large 

depth of field due to the very narrow electron beam. Therefore, scanning electron 
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microscopes yield a three-dimensional appearance important for understanding the 

surface structure of a sample. 

Thermal Treatment 

            The thermal treatment of the samples was carried out using a muffle furnace that 

allows to set the required temperature and to change the temperature at any time when it 

is necessary. All samples were placed to the muffle furnace right after the coating was 

applied and the tiles were treated at 250 ˚C during processing time up to three hours. 

X-ray Diffraction 

            The chemical compositions of the coatings were determined using the X-ray 

diffraction method. X-ray scattering technique is a technique used for determining the 

information about the chemical composition, crystal structure, and physical properties of 

materials. This technique is based on reporting the scattered intensity of an X-ray beam 

hitting a sample. The beam of incident X-rays, achieving the crystalline atoms, diffracts 

into many specific directions. By measuring the angles, intensities, polarization, 

wavelength or energy of these diffracted beams, the X-ray diffractor produces the two-

dimensional graphs of the intensities of electrons within the crystal. 

The photocatalytic degradation of NOx 

            To determine the factors, influencing the photodegradation of the organic 

compounds, the photocatalytic reaction was imitated in the laboratory. During the 

experiment, the sample was placed in a chamber covered with a thin film that made the 

chamber seal and allowed the ultraviolet irradiation to pass directly through to the 

chamber. The source of ultraviolet irradiation was located at the distance of 36 cm from 

the surface of the sample. The air humidifier was connected to the chamber. The 
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ventilator was placed into the chamber for better mixing of deposited gas and air. Figure 

2.2 illustrates the schematics of the equipment.               

            The NO gas mixed with air in fixed proportions went to the chamber through the 

pipeline attached to the chamber and then went to the NOx analyzer. At the beginning of 

the experiment, the source of the ultraviolet irradiation was turned off. The NO analyzer 

measured the steady state flow concentration of NO and NOx, and after that, the source 

of UV irradiation and the humidifier were turned on. The photocatalytic reaction 

processed in the chamber, when the tested samples were under the UW irradiation. Here, 

the NO analyzer can detect the reduction of NO and NOx concentrations. When the final 

concentrations of NO and NOx were stabilized, the source of UV irradiation and the 

humidifier were turned off. At that moment, the concentration of gases increases rapidly 

due to a constant supply of NO. The stabilized data, reaching the initial levels, were 

recorded by the NO analyzer. 
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Figure 2.2. Schematics of the photocatalytic degradation experiment 

Friction Tribometery 

            The adhesion and structural integrity of the coating to the surface of the tiles 

were tested on the friction tribometer. A tribometer is the instrument that measures the 

tribological quantities, such as friction force, the coefficient of friction, and wear 

volume, between two surfaces in contact.  

            A tribometer principles were described by the manufacture as a hanging mass 

and a mass resting on a horizontal surface, connected to each other via a string and 

pulley. The coefficient of friction µ is determined by increasing the hanging mass until 

the moment that the resting mass begins to slide [39].   

 

 

 

https://en.wikipedia.org/wiki/Coefficient_of_friction�
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The general equation for friction force:  

F= µ N                                                                   [1] 

where  

            F - the loading force, equal to the weight of the  

                  hanging mass (mH),  (N) 

            µ - coefficient of friction, 

            N - the normal force, equal to the weight (mass x gravity) of the sitting 

            mass (mT).  

thus,                                                    µ= mH/mT.  

The applied load was 25 N. The nitrile rubber was used for testing of friction coefficient 

as a material, which contacts with the surface of the coating. 

Measuring the Contact Angle 

            The wetting properties of the coating were investigated by measuring the water 

CA using the Ramé-Hart Goniometer model 250. At least three 5 μL water droplets were 

placed at different points on each sample. The siloxane based emulsion was used to 

achieve hydrophobicity. The images of water droplets as well as the values of water CAs 

on different hydrophobic coatings are reported in Figure 4.5. 
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3. Experimental Program and Results 

3.1. Objectives  

            The main objective of the research program was to create a new durable 

photocatalytic and also hydrophobic coating. This coating can be applied to concrete 

pavements and other structures to reduce the air pollution and also to protect the 

structures from the destruction due to the expansion of water in pores after multiple 

freeze-thaw cycles. To achieve this goal, two-stage method, comprising of the formation 

of photocatalytic nanoparticle layer, chemically bonded to the substrate, and siloxane 

coating on the top of the photocatalytic surface, forming the hydrophobic structure, is 

proposed.  

            The experimental program included the optimization of chemical composition, 

the concentrations of components and methods of application of the coating. The 

formation of titanium phosphates was proposed as a method of nanoparticle attachment. 

However, it was necessary to prove that such coatings can demonstrate the same 

photocatalytic properties as the reference titanium dioxide. Also, it was necessary to 

determine how the hydrophobic water-based siloxane emulsion can affect the 

photocatalytic properties of developed coatings. Since the hydrophobic component may 

reduce the catalytic effect of the coating, the influence of siloxane emulsion on the self-

cleaning properties was investigated. The resulting two-stage coating should have good 

adhesion to the surface of brick and concrete and have good durability, possessing 

abrasion-resistant properties. 
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3.2. Preliminary experimental matrix  

            Several experimental matrixes were designed to optimize the concentrations of 

components of the coating, methods of application and to identify the factors, which 

have the most significant influence on the performance of developed coatings. The main 

criteria to create the coating were the water/Н3PO4 ratio, TiO2/Н3PO4 ratio, the 

temperature of the heating and the type of heating. Table 3.1 characterizes the solutions 

that were created and tested in the first stage of the experiment. The basic equation to 

obtain the optimal proportions of components of the coating is:  

 4H3PO4 + 3TiO2 = 6H2O + Ti3(PO4)4                                           [2] 

            Based on this equation, the optimal proportions, assuming that the phosphoric 

acid and titanium dioxide entirely react, are equal to 64 % of the phosphoric acid and 

36 % of the titanium dioxide, by weight (see Table 1.2). In the experiments described in 

Table 3.1, the water/Н3PO4 ratio was two or three, and the TiO2/Н3PO4 ratio was one or 

three of the required amount (36/64) according to the Equation 2. 

Table 3.1. The matrix of a preliminary experiment 

             

When the TiO2/H3PO4 ratio is three times of the stoichiometric ratio according to the 

Equation 2, a part of the titanium oxide does not react with the acid, and this can ensure 

№ of 
Sample 

TiO2/Н3PO4, by 
weight  

Water/ Н3PO4, by 
weight 

The temperature of 
Heating, °C 

P1 1 2 25 
P2 1 2 250 
P3 1 3 25 
P4 1 3 250 
P5 3 2 25 
P6 3 2 250 
P7 3 3 25 
P8 3 3 250 
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the attainment of photocatalytic properties. The optimal water amount in the solution 

should be obtained to provide the appropriate fluidity, uniformity of coating and required 

density of particle coverage. Dense solutions may result in thick coatings and even 

cracks on the surface of the coating. Half of the resulting compositions was subjected to 

thermal treatment in the oven at 250 °C, which is the optimal temperature for the 

reaction according to the Equation 2 [14]. The rest of the compositions was cured at 

room temperature (25 °C).  

3.3. Preliminary results and evaluations 

The influence of thermal treatment on properties of the coating 

            The chemical transformations in the investigated system were evaluated using the 

XRD patterns. Figures 3.3 and 3.4 illustrate the XRD patterns of samples P2 and P6, 

respectively, treated at 250 ˚C and compared with reference coatings (samples P1 and 

P5). It can be confirmed that phosphoric acid does not react with the titanium dioxide at 

a room temperature, which was evidenced by other researchers [14]. Thus, for the future 

research, all samples were treated at a temperature of 250 ˚C. 

The influence of dilution rate on properties of the coating 

            The excess amount of water in the solution can not influence the reaction of the 

titanium dioxide with the phosphoric acid critically but may influence the physical and 

mechanical properties of the coating. Fluid solution can result in a uniform coating with 

fewer shrinkage cracks, which was observed under the microscope, but higher water 

content can result in the increased porosity and reduced strength (Table 1.2). 

            For the preliminary experimental program, two different water/Н3PO4 ratios of 2 

and 3 were implemented. Figure 3.2 illustrates the cracks on the surface of the coating 

observed under the confocal microscope when water/Н3PO4 ratio was equal to 3. This 
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pattern was compared with the results for the uncoated surface of the reference ceramic 

tile, illustrated in Figure 3.1. The resulting compositions had a high density and reduced 

fluidity. Thus, the dilution rate was increased by 10 times to make fluid solutions, so the 

water/Н3PO4 ratio in the experiment was set to be 20 or 30 (by weight).  

 

Figure 3.1. Uncoated surface of the reference ceramic tile observed  
under the confocal microscope with 20X magnification 

 
Figure 3.2. Cracks on the surface of the coating observed under  

the confocal microscope with 20X magnification 
 

The influence of TiO2/Н3PO4 ratio on properties of the coating 

            As discussed above, if the TiO2 concentration exceeds the required amount for 

the complete reaction with the phosphoric acid, a part of TiO2 will remain unreacted, 

providing the catalyst on the surface of the coating. In this case, the TiO2 particles can 

remain available for photocatalysis and create free radicals, decomposing the harmful 
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gases in the air. Therefore, in the experiment, two different amounts of TiO2 were used: 

the stoichiometric ratio (36 % of TiO2 and 64 % of H3PO4 by weight) and three times 

over the stoichiometric ratio. Figures 3.3 and 3.4 report on the XRD for samples P2 and 

P6, respectively. Figure 2.1 reports on the XRD pattern of P25 titanium dioxide used as a 

reference for the research.  

            The XRD can identify the picks characterizing TiO2 rutile and TiO2 anatase. The 

sample P6 demonstrates higher intensity for the titanium dioxide than sample P2, which 

means that sample P6 has the higher concentration of free TiO2 particles than sample P2. 

Here, it is proved that a portion of the titanium dioxide did not react with H3PO4 saving 

the photocatalytic properties of the coating.  

 

Figure 3.3. X-ray diffractogram of sample P2 
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Figure 3.4. X-ray diffractogram of sample P6 

The formation of phosphates 

            The XRD patterns identify that sample P2 has the high concentrations of titanium 

phosphates, such as the titanium hydrogen phosphate and titanium hydrogen phosphate 

hydrate. The sample P6 also has titanium phosphates in lower concentrations, which 

proves that phosphate reaction took place at 250 °C, and a part of the titanium dioxide 

particles reacted with the phosphoric acid. A hard solid structure of resulting material 

proves that the titanium phosphates were formed, which can be strongly adhered to the 

substrate.  

3.4. Influence of magnesium oxide on the titanium phosphate formation 

           The experiment was conducted to investigate the influence of MgO on the 

properties of the coating. Magnesium phosphates do not require any thermal treatment 

for hardening, while titanium phosphates harden at high temperatures. Thus, the 

objective of the experiment was to explore the possibility to create a durable coating 

without heat treatment using magnesium oxide component. Table 3.2 describes the 
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experimental matrix, which has two criteria varying among the samples: TiO2/H3PO4 

ratio and MgO/TiO2 ratio. 

Table 3.2. Experiment matrix for the samples with magnesium oxide 

№ of experiment TiO2/Н3PO4 by 
weight (of 34/66) 

MgO/TiO2 by 
weight 

M1 1 0.1 
M2 1 0.2 
M3 3 0.1 
M4 3 0.2 

 

                   In the experiment, the optimal TiO2/Н3PO4 ratio (34 % of TiO2 and 66 % of 

H3PO4) and triple the optimal TiO2/Н3PO4 ratio were applied. The MgO/TiO2 ratios 

equal to 0.1 and 0.2 by weight were used. The amount of water in each case was 

calculated as three times the amount of phosphoric acid by weight. The titanium dioxide, 

and magnesium oxide were mixed with diluted phosphoric acid (acid was added to 

water). The components were mixed, and the resulting mixtures were treated at a room 

temperature of 25 ˚C. The resulting compositions were investigated using XRD to 

determine the composition of products of the reaction. The XRD pattern of the reference 

magnesium oxide is given in Figure 3.5. Figure 3.6, Figure 3.7, Figure 3.8 illustrate the 

XRD patterns of samples M2, M3, and M4, respectively. Sample M1 did not harden at 

room temperature and was not tested on X-ray diffractor.  
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 Figure 3.5. X-ray diffractogram of the reference magnesium oxide component 

 
Figure 3.6. X-ray diffractogram of sample M2 
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Figure 3.7. X-ray diffractogram of sample M3 

 

Figure 3.8. X-ray diffractogram of sample M4 

             X-ray diffractograms of samples M2, M3 and M4 demonstrate many clearly 

expressed picks, not related to the reference magnesium oxide, which means that 

different types of phosphates and hydrates were formed in the compositions. However, 

all resulting samples had a crumbled structure, and expected strength of the material was 
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not achieved. In these cases, magnesium oxide played the role of the passivator for the 

formation of the initial solid component.  

           Although phosphates were formed at room temperature for samples M2, M3 and 

M4, the presence of MgO in the coating was found to reduce the mechanical properties 

significantly. Compositions and proportions used in the research did not result in strong 

coatings, and so were not recommended for the consequent use. For this reason, the use 

of MgO for the formation of titanium phosphates was not justified, and further 

experiments were conducted using the titanium dioxide and phosphoric acid. 

3.5. The design of refined experimental matrix 

           The refined experimental matrix was designed taking into the account the 

following factors, which may have an influence on photocatalytic properties, the 

formation of shrinkage cracks on the surface and the abrasion resistance of the coating 

such as time of heating and cooling regimes, water/Н3PO4 ratio, TiO2/Н3PO4 ratio and 

the flow/concentration of NOx to be decomposed. Table 3.3 summarizes the refined 

experimental matrix. The second hydrophobic coating was applied to the primary 

coating after the optimal compound layer was obtained. 
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Table 3.3. Refined experiment matrix 

 

 

 

 

 

 

 

           The first factor, duration of heating and cooling, may influence the formation of 

cracks on the surface. The structure of cracks of resulting coatings was observed under 

the confocal microscope. Water/Н3PO4 ratio from 20 to 30 by weigh allows the 

attainment of a fluid solution used for the coatings. Also, the use of different 

water/Н3PO4 ratios may influence the photocatalytic properties in different ways. For 

this subset, the TiO2/Н3PO4 ratios were taken at 2 and 4 (over the 34/66). Also, two 

different initial concentrations of NOx equal to 2.7 ppm and 1.5 ppm were used, which 

may influence the conversion of NOx. The last column of Table 3.3 describes the flow of 

constituents to obtain the required concentrations of NOx. All coatings were applied on 

№ of 
Sample 

Duration of 
Heating-
Cooling, 

hours 

Water/P.Acid 
Ratio 

TiO2/P.Acid 
Ratio 

 

The 
concentration 
of NO, ppm 

 

NO Flow, 
l/min 

(at air 1.4 
l/min) 

R1 1 20 4 2.7 0.06  

R2 1 20 4 1.5 0.03  

R3 1 20 2 2.7 0.06  

R4 1 20 2 1.5 0.03  

R5 1 30 4 2.7 0.06  

R6 1 30 4 1.5 0.03  

R7 1 30 2 2.7 0.06  

R8 1 30 2 1.5 0.03  

R9 3 20 4 2.7 0.06  

R10 3 20 4 1.5 0.03  

R11 3 20 2 2.7 0.06  

R12 3 20 2 1.5 0.03  

R13 3 30 4 2.7 0.06  

R14 3 30 4 1.5 0.03  

R15 3 30 2 2.7 0.06  

R16 3 30 2 1.5 0.03  
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the ceramic tiles, and these tiles were tested for crack formation, photocatalytic 

properties and coefficient of friction. 

3.6. The influence of heating and cooling on the formation of cracks 

           The samples R1-R8 were heated in a furnace for 1 hour at a constant temperature 

of 250̊ C. Such rapid heating may lead to the additional crack formation on the surface 

upon coating. These cracks may lead to exfoliating of the coating from the surface of the 

material. Figure 3.9, Figure 3.10 and Figure 3.11 represent the CLSM images of samples 

R2, R5, and R7, respectively.  

           Since cracks were observed on the surface of sample R2, a new protocol for 

thermal treatment was developed to investigate the possibility to reduce the crack 

formation by changing the heating and cooling regime. Figure 3.12 represents the regime 

of heating and cooling for the samples R8-R16. During the first hour, the temperature 

increases evenly from 25 ˚C to 250 ˚C. During the second hour, the temperature is 

constant and equal to 250 ˚C. After this, the temperature decreases gradually from 250˚C 

to 25˚C during 3rd hour. 
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Figure 3.9. Cracks on the surface of the coating observed under the confocal 
microscope with 20X magnification for sample R2 

 

Figure 3.10. The surface of the coating observed under the confocal microscope 
with 20X magnification for sample R5 

 

Figure 3.11. The surface of the coating observed under the confocal microscope 
with 20X magnification for sample R7 
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Figure 3.12. The regime of thermal treatment for samples R8-R16 

The coatings R9-R16 subjected to thermal treatment during three hours were 

investigated under the confocal microscope to detect the formation of cracks. Figure 3.13 

represents the CLSM images of cracks on the surface of the sample R9.  

The images in Figure 3.13 demonstrate that slow heating and cooling did not 

have a significant influence on the crack formation. It can be seen that the coating was 

not applied on the surface of the tile evenly. There are some places with thinner and 

thicker layers. The cracks are observed only on thick layers. Thus, to prevent the 

formation of cracks, evenly distributed thin layer should be applied on the surface of the 

tile. To achieve this goal, the extremely diluted coating was tested. The heating and 

cooling regime for the optimal coating can be 250˚C used for one hour. 
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Figure 3.13. Cracks on the surface of the coating observed under the confocal 
microscope with 20X magnification for sample R9 

3.7. Photocatalytic properties 

           The investigated coatings were applied on ceramic tiles and tested using NO/NOx 

analyzer for photocatalytic properties. The surface area, covered with the coating and 

subjected to UV irradiation was 22,500 mm2. During the experiment, the relative 

humidity in the chamber was 56.4 %. Figures 3.14-3.17 illustrate the NOx decomposition 

for samples R1-R8 by recording the concentrations of NO and NOx versus time. At the 

beginning of the experiment, the initial concentration is remaining at the preset level. 

With UV radiation, when the photocatalytic reaction takes place, the concentration of 

NOx begins to reduce and reaches the steady level. Based on the experimental data, the 

reduction of NOx concentration can be estimated.  
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Figure 3.14. NOx decomposition for sample R1/R2 at the  
NOx concentration of 2.7 ppm (left) and 1.5 ppm (right) 

 
 
 

 

Figure 3.15. NOx decomposition for sample R3/R4 at the  
NOx concentration of 2.7 ppm (left) and 1.5 ppm (right) 

 
 

 

 Figure 3.16. NOx decomposition for sample R5/R6 at the  
 NOx concentration of 2.7 ppm (left) and 1.5 ppm (right) 
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Figure 3.17. NOx decomposition for sample R7/R8 at the  
NOx concentration of 2.7 ppm (left) and 1.5 ppm (right) 

 

All tested samples demonstrate very significant decomposition of NOx. Table 3.4 reports 

on the reduction of NO and NOx for the samples R1-R8. 

Table 3.4. Decomposition of NO and NOx for samples R1-R8 

 
The influence of water/Н3PO4 ratio on photocatalytic properties  

           Based on Table 3.4, the impact of various factors on the photocatalytic properties 

of the coating may be evaluated. The first factor, the water/Н3PO4 ratio, has a significant 

effect on the degradation of NO and NOx. Samples R5, R6, R7, R8, which were 

produced with a higher water/Н3PO4 ratio, demonstrated lower degradation of NO and 

NOx than the samples R1, R2, R3, and R4. The reason for this is that more diluted 

№ of 
Sample 

Water/P.Acid 
Ratio by 
Weights 

 

TiO2/P.Acid 
Ratio  

Initial 
Concentration 

of NO, ppb 
 

Reduction 
of NO, % 

Reduction 
of NOx, 

% 
 

R1 20 
 

4 
 

2712 97 93 
R2 1552 97 93 
R3 20 

 
2 
 

2795 69 63 
R4 1590 75 67 
R5 30 

 
4 
 

2730 67 64 
R6 1526 75 69 
R7 30 

 
2 
 

2700 41 37 
R8 1491 45 41 
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solutions have less amount of titanium dioxide per unit volume (and area). Therefore, the 

concentration of titanium dioxide particles on the surface of covered tiles is reduced. 

Thus, less free radicals are generated during the photocatalytic reaction, and the NOx 

decomposition decreases.   

           The results of the photocatalytic degradation for samples, which have the same 

characteristics and differ only in water/ Н3PO4 ratios, demonstrate the average difference 

in degradation of NO gas equal to 27.5 %, and the average difference in degradation of 

NOx is 26.3 %. 

The influence of TiO2/Н3PO4 ratio on photocatalytic properties  

           The second factor, the TiO2/Н3PO4 ratio, also has a significant influence on the 

photocatalytic properties, based on Table 3.4. Samples R1 and R3 only differ in the 

TiO2/Н3PO4 ratio, and the sample R1 demonstrated a 28 % higher degradation of NO 

than sample R3. Sample R2 demonstrated a 22 % higher decomposition of NO and 26 % 

higher decomposition of NOx than the sample R4. The sample R1 has twice as much 

titanium dioxide per unit weight as the sample R3. For this reason, the sample R1, after 

applying on the surface and hardening, may have more free titanium dioxide particles, 

which did not react with the phosphoric acid, than the sample R3. These free particles of 

TiO2 increase photocatalytic properties of the coating.  

           Samples R5 and R7 demonstrate similar results. The sample R5 had a 38 % higher 

degradation of NO and 39 % higher degradation of NOx than the sample R7. The results 

of the photocatalytic degradation for samples, which have the same characteristics and 

differ only in TiO2/Н3PO4 ratios, demonstrated the average difference in degradation of 

NO equal to 26.5 %, and the average difference in degradation of NOx is 27.7 %. 
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The influence of initial NOx concentration on photocatalytic properties 

           The initial concentration of NOx also influences the photocatalytic degradation 

process.  Based on the results in Table 3.4, if all other parameters are equal, samples 

demonstrate better photocatalytic properties at lower initial NOx concentrations. For the 

samples with the same characteristics and the different initial concentrations of NOx, the 

average difference in degradation of NO was equal to 4.5 %, and the average difference 

in degradation of NOx was equal to 3.25 %. 

           Based on the results in Table 3.4, for this data, the water/Н3PO4 ratio and 

TiO2/Н3PO4 ratio had the most significant impact on the photocatalytic degradation. 

However, all the samples demonstrated a high decomposition of NO and NOx. The 

desirable decomposition of NOx is at least 30 %. Therefore, a composition with a lower 

TiO2/Н3PO4 ratio can be further developed and tested. 

3.8. Tribological properties  

One of the most significant factors, characterizing durable coating is the abrasion 

resistance. To be abrasion resistant, the coating must be solid, have a high hardness and 

good adhesion to the surface of the substrate. The test for the abrasion resistance was 

performed on the tribometer with an applied vertical load of 25 N. The nitrile rubber, 

connected to the hanging mass via a sting and applied to the surface of the coating, 

generated the friction force. The coefficient of friction, characterizing the abrasion 

resistance of the coating, was determined by dividing the friction force by the applied 

load. The uncoated ceramic tile was tested on the tribometer as a reference. The result of 

the tribological test for the uncoated ceramic tile is illustrated in Figure 3.18. 
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Samples R2, R5, R7, and R9, which differ in chemical composition and the 

thermal treatment regime were tested on the tribometer, and the results of the tests are 

illustrated by Figures 3.19-3.22.  

 

 

 

Figure 3.18. The coefficient of friction (top) and normal force (bottom) 
versus time for the uncoated ceramic tile 
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Figure 3.19. The coefficient of friction (top) and normal force (bottom) 
versus time for the sample R2 
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Figure 3.20. The coefficient of friction (top) and normal force (bottom) 
versus time for the sample R5 

 

 

 

 

 

 

 



      
  

51 
 

 

 

 
Figure 3.21. The coefficient of friction (top) and normal force (bottom) 

versus time for the sample R7 
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Figure 3.22. The coefficient of friction (top) and normal force (bottom) 
versus time for the sample R9 
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Figures 3.19-3.22 report on the values of the applied load (Fz) and coefficient of 

friction (COF) versus time for tested coatings. Table 3.5 summarizes the average COF’s 

for samples R2, R5, R7, and R9. Higher coefficient of friction indicates better abrasion 

resistance and that the coating is not being erased from the surface of the tile during the 

tribological test. The industry standards set by Underwriters Laboratory (UL) reported 

the average coefficients of friction for the ceramic tiles from 0.3 to 0.6. The tribological 

tests provided the average coefficient of friction (Fx/Fz) of 0.45 for uncoated reference 

ceramic tiles, which is close to standard values. The average COF for the coated samples 

is 0.61, even higher than the result for the uncoated tile, possibly by enhanced roughness. 

The coated tiles R5 had COF which is similar to uncoated tiles due to using very high 

dilution rate and higher dosage of TiO2 which to a high extent remained unconnected to 

the surface layer. Since the applied coatings did not reduce the abrasion resistance of 

ceramic tiles, it can be concluded that the developed coatings have a solid structure, and 

are not erased by the rubber. 

Table 3.5. Coefficients of friction for samples R2-R9 
 

 

 

 

 

All tested samples R2, R7, R9 demonstrated approximately equal coefficients of 

friction (Figures 3.19-3.22). To accurately evaluate the effect of tribological tests on the 

performance of the coatings, tested tiles were examined under the confocal microscope. 

Figure 3.23 represents the CLSM images of samples R2, R5, R7, R9, with 20X 

magnification after testing on the tribometer. Since the rubber particles remain on the 

surface of the coating, the coating had a stronger structure than the rubber and was not 

№ of 
Sample 

Coefficient of 
friction  

R2 0.6615 
R5 0.4496 
R7 0.6741 
R9 0.6323 
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erased from the surface. White particles under the rubber are the components of the 

coating that remained on the surface. The results of conducted tribological tests 

demonstrated that the investigated coatings have good abrasion resistance and adhesion 

to the substrate, and, therefore, will potentially demonstrate good durability. 

 
a)                                                  b) 

 
c)                                                     d) 

 
Figure 3.23. The surface of the coating observed after tribological test under the 
confocal microscope with 20X magnification for samples R2 (a), R5 (b), R7 (c),  

and R9 (d) 
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4. The Optimization of the Composition and Implementation of TiO2 

Coatings 

           Since several compositions of the coatings were developed and tested, and their 

properties were investigated, the optimized coating can be created based on the analysis 

of the tests results on photocatalytic properties, abrasion resistance, and the damage 

assessment observed under confocal microscope. For an effective application, the 

optimized coating should be as thin as possible to ensure the photocatalytic reaction and 

prevent the crack formation. The amount of the titanium dioxide should be minimized, 

meanwhile preserving the photocatalytic degradation at up to 40 %. The abrasion 

resistance and the adhesion to the ceramic tiles were found to be appropriate for the 

investigated coating materials. Therefore, the thinner layer of the coating was assumed to 

have a good adhesion and the abrasion resistance.  

           Taking into the consideration all the required characteristics of the optimal 

coating, the new final composition was developed. The final coating formulation 

contained 2.1 % of TiO2, 4.1 % of H3PO4, and 93.8 % of water (by weight). This coating 

is more diluted than previously investigated samples, and the TiO2/Н3PO4 ratio was 

reduced to minimize the usage of the titanium dioxide and prevent the distribution of 

multiple TiO2 layers on the surface of the coating.  

           The coating was applied on the ceramic tile, exposed to the thermal treatment in 

the furnace at 250 ˚C during 1 hour, and tested for photocatalytic properties, abrasion 

resistance, and also observed under scanning electron and confocal microscopes. 
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4.1. The photocatalytic properties of the coating 

           The optimal coating was tested on NO-NOx analyzer for the photocatalytic 

properties. All initial experimental conditions, such as the intensity of the UV irradiation, 

humidity in the chamber, the initial preset NOx concentration, and the surface area of the 

tile covered with the coating, remained the same as in the previous experiments for the 

samples R1-R8. Figure 4.1 illustrates the NOx decomposition for the optimal coating by 

recording the concentrations of NO and NOx versus time for the initial concentrations of 

NOx of 2.7 ppm and 1.5 ppm. 

           The results of the photocatalytic experiments prove that even extremely diluted 

coating with minimized amounts of the titanium dioxide provides the significant 

reduction of NOx concentration of up to 15 % ppm and up to 35 % at the initial NOx 

concentration of 2.7 ppm and 1.5 ppm, respectively. The results demonstrate that the 

developed coating has effective photocatalytic properties required for the reduction of 

NO and NOx. 

 

Figure 4.1. NOx decomposition for the optimal coating at the  
NOx concentration of 2.7 ppm (left) and 1.5 ppm (right) 
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4.2. The results of tests on the crack formation 

           The surface of the coating was observed under the confocal microscope to 

investigate the structure and possible crack formation. Figure 4.2 provides the images of 

the surface of the coating observed under CLSM with 20X magnification. 

 

Figure 4.2. The TiO2-phosphate coating applied on the ceramic tile observed under 
a confocal microscope with 20X magnification 

 

White particles of TiO2 and titanium phosphates are seen on the surface of 

ceramic tile, which is illustrated in Figure 4.2. There are no cracks on the surface of the 

coating. The coating is very thin and appears to be applied evenly on the surface of the 

tile, which allows avoiding the crack formation, even if the coating is exposed to the 

thermal treatment. The absence of cracks contributes to better adhesion to the surface of 

the tile and better abrasion resistance, because there is no risk of the exfoliation due to 

the shrinkage of the thicker layers of the coating.  

4.3. The abrasion resistance of the coating 

The developed TiO2-phosphate coating was tested using the tribometer. The COF 

of 0.66 was obtained, which is similar to the average coefficient of friction for the 

samples R2 and R7. It can be concluded that the optimal coating has a good abrasion 

resistance and adhesion to the surface of the tile. Figure 4.3 illustrates the coefficient of 
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friction and normal force versus time for the optimal sample. The data from CLSM, 

represented in Figure 4.4, confirm that the coating is not erased from the surface during 

the tribological tests, and, therefore, will potentially demonstrate a good durability.  

 

 

Figure 4.3. The coefficient of friction (top) and normal force (bottom) versus 
time for the optimal sample 
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Figure 4.4. The surface of the optimal coating observed after tribological test under 
the confocal microscope with 20X magnification  

4.4. The hydrophobization of the coating 

           The TiO2-phosphate-based coating itself is hydrophilic. To make it hydrophobic, 

the water-based siloxane emulsion was applied on the surface of the coating. After 24 

hours from the application, the siloxane emulsion attained the hydrophobic properties 

and the tiles covered with two-layer coating were tested for the contact angle. The 

contact angle was measured three times, and the images of droplets of water on the 

surface of the coating, obtained in three tests, are introduced in Figure 4.5. The resulting 

average CA was 114˚. 

           Since the CA > 90˚, the developed coating is hydrophobic (90˚ < CA < 120˚), 

however, it was important to investigate how the water-based siloxane emulsion 

influenced the abrasion resistance and photocatalytic properties of the coating. 

 
 

Figure 4.5. The CA for developed hydrophobic coating 

           The elemental composition of the developed coating was observed under a 

scanning electron microscope (SEM) to observe the uniformity of coating,  and analyze 
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the chemical composition of the coating. Three samples were tested on SEM. The first 

sample is the uncoated reference ceramic tile. The second sample is the tile covered with 

the one-layer titanium phosphate coating, and the third one is the ceramic tile covered 

with the two-layer hydrophobic coating.  

           Figure 4.6 reports on the image of the uncoated ceramic tile, taken with 1,500x 

magnification. Figure 4.7 illustrates the images of the ceramic tile covered with the one-

layer titanium phosphate coating (and not covered with the siloxane emulsion), taken 

under SEM with 5,500x and 5,000x magnifications. In comparison with the SEM images 

of the uncoated ceramic tile, it can be observed in Figure 4.7 that the titanium 

phosphates evenly cover the surface of the ceramic tile and are well attached to the 

surface.  

 

Figure 4.6. The ceramic tile surface observed under scanning electron microscope 
with 1,500x magnification 

 

 

 

 



      
  

61 
 

 

Figure 4.7. Optimal titanium phosphate coating without hydrophobic coating 
applied on the ceramic tile observed under SEM with 5,500x (left) and 5,000x 

(right) magnification 
 

 

Figure 4.8. The titanium phosphate coating covered with the hydrophobic coating  
applied on the ceramic tile observed under SEM with 1,500x magnification 

 
Figure 4.8 illustrates the ceramic tile covered with the two-layer hydrophobic 

coating, observed under SEM at 1,500X magnification. It can be seen that the structure 

of ceramic tile surface covered with two-layer hydrophobic coating differs from the 

surface structure of the uncoated ceramic tile and ceramic tile covered with the one-layer 

titanium phosphate coating. With hydrophobic coating, the titanium phosphates are not 

seen as clearly, but the surface structure is clear and uniform. 

           The elemental analysis of uncoated reference tile and coated ceramic tile was 

conducted on the scanning electron microscope. Figure 4.9 reports on the elemental 

compositions of uncoated ceramic tile. The analysis of the elemental composition for the 

tile coated with one-layer titanium phosphate coating is introduced in Figure 4.10.  
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Figure 4.11 provides the elemental analysis of the ceramic tile, coated with a two-layer 

hydrophobic coating. The percentages of chemical elements, which can be found in the 

coated tiles, are illustrated in Tables 4.1-4.3. Table 4.1 illustrates the percentage of 

chemical elements on the surface of the reference tile. Table 4.2 illustrates the 

percentage of chemical elements distribution for the tile covered with the hydrophilic 

(one-layer) coating. Table 4.3 reports on the elemental analysis of chemical elements for 

the tile covered with the hydrophilic titanium phosphate coating and siloxane emulsion.  

           The main elements, typical for clay, such as silicon, oxygen, carbon, magnesium, 

potassium, calcium and aluminum are introduced in the elemental composition of the 

ceramic tile. In comparison with the elemental composition of the uncoated tile, the tiles 

covered with the one-layer titanium phosphate coating and two-layer hydrophobic 

coating contain some additional elements, such as titanium and phosphorous. It can be 

observed that different spectra contain different amounts of elements, for example, the 

amounts of titanium by weight is two times higher in the spectrum 2 than in the spectrum 

1 for the tile covered with the titanium phosphate coating and not covered with siloxane 

emulsion. However, the elemental composition for the tile coated with the hydrophobic 

two-layer coating is similar to the chemical composition of the tile covered with a one-

layer hydrophilic coating, as hydrophobic emulsion is not changing the chemical build 

up of the coating.  

           In general, the structures and elemental compositions are similar for each 

spectrum of the investigated samples. This means that the coating has even structure, 

which is observed in the SEM images (Figures 4.6-4.8). TiO2-phosphate particles are 

extremely thin, adhered and evenly distributed on the surface of the tile, which is a 

required characteristic of the coating.  
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Table 4.1. Elemental composition of the reference tile 

Element Spectrum 1 Element Spectrum 2 

Weight % Atomic % Weight % Atomic % 
O 47.73 54.50 O  47.35 59.10 
Si 20.76 13.50 Si  22.16 15.75 
Na 0.37 0.29 Na  0.16 0.14 
Mg 8.16 6.13 Mg  6.21 5.10 
Al 5.53 3.74 Al  12.89 9.54 
K 0.28 0.13 K  0.73 0.37 
Ca 4.15 1.89 Ca  6.32 3.15 
C  13.02 19.81 C  4.10 6.81 
   Mn  0.09 0.03 

Totals 100.00  Totals 100.00  
 
 

Table 4.2. Elemental composition of the tile covered with the hydrophilic coating 

Element Spectrum 1 Element Spectrum 2 

Weight % Atomic % Weight 
% 

Atomic % 

O  43.74 59.31 O  40.11 57.36 
Na  0.22 0.21 Na  0.61 0.61 
Mg  3.42 3.05 Mg  4.52 4.26 
Al  13.71 11.02 Al 6.43 5.45 
Si  26.61 20.55 Si  25.99 21.17 
P  0.28 0.20 P  0.39 0.29 
K  1.03 0.57 K  0.64 0.37 
Ca  2.84 1.53 Ca  3.34 1.90 
Ti  8.72 3.95 Ti  17.98 8.59 

Totals 100.00  Totals 100.00  
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Table 4.3. Elemental composition of the tile covered with the hydrophobic coating  

Element Spectrum 1 Element Spectrum 2 

Weight % Atomic % Weight % Atomic % 
O 43.42 52.31 O 41.72 46.39 
Ca  0.29 0.14 Na 0.12 0.09 
Mg  2.00 1.59 Mg 0.25 0.18 
Al  0.38 0.27 Al 0.04 0.03 
Si  26.73 18.35 Si 21.68 13.73 
P  0.56 0.35 P 0.43 0.25 
Ti  13.91 5.60 Ti 13.00 4.83 
K  0.09 0.04    
C  13.74 22.05    

Totals 100.00  Totals 100.00  
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Spectrum 1 

 
Spectrum 2 

Figure 4.9. The elemental analysis of the uncoated ceramic tile 
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Spectrum 1 

 

Spectrum 2 

Figure 4.10. The elemental analysis of the ceramic tile covered with titanium 
phosphate coating 
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Spectrum 1 

 

             Spectrum 2 

Figure 4.11. The elemental analysis of the ceramic tile covered with titanium 
phosphate coating and siloxane emulsion 
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4.5. The photocatalytic properties of developed coatings 

           Since the use of siloxane emulsion may reduce the decomposition rates of NOx, a 

new test with the tile covered with two-layer hydrophobic coating was conducted on the 

NO-NOx analyzer. The results of the tests are introduced in Figure 4.12. 

 

Figure 4.12. NOx decomposition for the hydrophobic coating at the  
NOx concentration of 2.7 ppm (left) and 1.5 ppm (right) 

           The concentration of NOx gas was decreased by 23 %, which is less than the 

results for the untreated coating (35 %), but the decomposition of NOx is still significant, 

despite the presence of the hydrophobic coating. The results of the photocatalytic 

experiment proved that it is possible to combine self-cleaning and hydrophobic 

properties in a composite coating, which is the important outcome of this research. 

4.6. The abrasion resistance of developed coatings 

           The resulting hydrophobic coating was tested on the tribometer. The normal force 

and resulting coefficient of friction are introduced in Figure 4.13. The COF was slightly 

reduced after the hydrophobization of the coating to the level of 0.55 but remains higher 

than the COF obtained for the uncoated tile, demonstrating an excellent improvement for 

dry traction of tires.  Figure 4.14 represents the results from CLSM for the hydrophobic 

coating.  
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Figure 4.13. The coefficient of friction (top) and normal force (bottom) 
versus time for the hydrophobic sample 

 

Figure 4.14. The surface of the optimal hydrophobic coating observed after the 
tribological test under the confocal microscope with 20X magnification  

 



      
  

70 
 

5. Conclusions 

           Civil engineers have used the titanium dioxide component capable of cleaning the 

air from harmful pollutants for the facades, roads and other structures. Portland cement 

based compositions were mostly used to adhere the active components to the surface of 

the structure. Such an application requires the use of relatively large amounts of TiO2. 

Alternatively, the use of TiO2 not bonded with coatings leads to relatively easy removal 

and associated health issues. A new two stage coating concept allows creating the 

extremely thin titanium phosphate-based coating characterized by minimal consumption 

of TiO2 and good photocatalytic activity and, upon hydrophobization treatment, 

possesses hydrophobic properties. 

          Since one of the most important parameters for the coating is durability, the 

developed composition was based on the titanium phosphates, the solid materials with 

high compressive strength reaching up to 61.5 MPa.  

          It was found that all tested samples have a good adhesion to the surface of the tile 

and developed coatings are not removed from the surface during the tribological tests. 

However, it was realized that the thickness of the coating should be significantly reduced 

to avoid the formation of cracks. It was realized that extremely diluted compositions 

resulted in the almost invisible thin coatings, which evenly covered the tiles without 

cracks on the surface.  

          Preliminary results demonstrated that increasing of the TiO2 amounts in 

comparison with the stoichiometric proportion leads to the significant improvement of 

photocatalytic properties up to 97 % of NOx decomposition (at the initial NOx 

concentration of 1.5 ppm). Since the objective of this research was to minimize the 

titanium dioxide, while maintaining the 30-40 % of NOx decomposition, the optimized 
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coating was selected with a TiO2/H3PO4 ratio close to the stoichiometric (36/64 by 

weight). 

          The conducted research proved that the coating attained the hydrophobic 

properties and at the same time did not lose the photocatalytic and mechanical 

properties.   

          The research was conducted on the effect of magnesium oxide on the formation of 

phosphates and the potential for reduction of temperature required for the formation of 

the titanium phosphates. Since the magnesium phosphates harden at room temperature, 

and titanium phosphates require 250 ˚C for the complete hardening, MgO was intended 

to help to reduce the temperature of the thermal treatment. However, phosphates were 

formed very fast, and the magnesium oxide played the role of the passivator, therefore, 

the expected performance of the coating was not achieved. As a result, the magnesium 

oxide was not recommended as a component of the optimized coating.  

          The developed coating applied on the surface of the tile was investigated under the 

SEM. It was observed that the phosphates and siloxane emulsion are evenly applied and 

properly adhered to the surface of the tile. These conclusions were confirmed by the 

elemental analysis, which demonstrated that all investigated spectra have similar 

elemental compositions. 
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Future Work 

          The reported research has demonstrated that the titanium phosphate - based 

coatings have a good photocatalytic performance and excellent abrasion resistance. 

However, the application of the coating requires the thermal treatment. In this research, 

the coatings hardened in the muffle furnace, and it would be beneficial to optimize the 

application and curing procedure. Future work would also include the improvement of 

the photocatalytic and hydrophobic properties, further minimizing the titanium dioxide 

consumption. 
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