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ABSTRACT

ESSAYS ON THE CAREER CHOICES OF DOCTORAL STUDENTS IN THE U.S.

by

Chandramouli Banerjee

The University of Wisconsin – Milwaukee, 2018
Under the supervision of Professor Niloy Bose

This thesis consists of three essays on the post-graduation career choices of doctoral

students in the U.S. and the impact these choices may have on innovation and the

competitiveness that the U.S. enjoys in the global science and engineering landscape.

The first chapter studies the location choice of work of foreign-born U.S. doctorates,

who have been playing a central role in shaping the U.S. skilled workforce over the

past few decades. Evidence suggests that not all foreign-born U.S. doctorates choose

to remain in the U.S. following graduation. This chapter uses a new data set -

the International Survey of Doctoral Recipients (ISDR) - to identify a number of

demographic and country specific factors having implications for location choice of

work for foreign-born U.S. PhDs. In addition, we find evidence of a temporal increase

in the intensity of positive skill selection among foreign-born U.S. PhDs leaving the

U.S. workforce. The result indicates that U.S. may be losing premium talent to global

competition.

The second chapter studies the choice of the type of job that a S&E doctoral

student matches with and how job-skill match in the labor market for scientists

impacts productivity at the industry level and hence innovative processes at the
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aggregate level. This chapter primarily offers a transparent theoretical approach that

demands relatively little from the data and yet produces reliable estimates of the

output gain due to job-skill match in the labor market. We apply this approach

to data containing information on job choices of scientists in the U.S. The results

suggest that for all major skill types/industries, job-skill match creates larger value as

opposed to skill mismatch. At the same time, the estimated match surplus responds

differently to economic conditions across industries. This difference is useful for

uncovering important industry specific traits, including an industry’s propensity

toward diversification and innovation. In addition, we investigate the relationship

between the output gained due to a skill match and innovation at an aggregate

level. We find that an increase in a market index of output surplus generated by the

skill match increases research output in the economy, as measured by total patent

applications. This points to a channel through which the effects of job-skill match

could show up in the form of higher productivity.

The third chapter builds on the findings in the first chapter by attempting to

uncover the causal relationship between attending a highly ranked graduate program

in the U.S. and the propensity to leave following graduation for foreign-born U.S.

doctoral students. A variety of unobservable factors at the individual level that may

affect the attendance in top programs and propensity to emigrate may attenuate

the correlation that is picked up in naive OLS regressions. To isolate the effect of

attending a top program on the probability of leaving we instrument top program

attendance at the individual level by the average past top program attendance from

the students’ country of origin. The instrument is plausibly correlated with top
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program attendance since a greater number students attending top programs from a

particular country may encourage others from that country to apply to these programs.

Additionally, this may induce top programs to admit more students from a particular

country since these programs have better information about the quality of education

in the country of origin through past students. The IV results, while confirm the

findings of the first chapter, also find that the naive OLS regressions underestimate

the impact of top program attendance on probability of leaving the U.S. following

graduation substantially.

Thesis Supervisor: Niloy Bose

Title: Professor of Economics
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introduction

The impact of the very highly skilled members of the workforce on the sustained

well-being of an economy through the creation and adoption of scientific knowledge is

well established in the economics literature. The skills that these individuals own are

key inputs in innovative processes in any economy, which in turn spur job creation

and long term economic growth. Scientists and engineers are thus believed to be

essential to technological leadership, innovation, manufacturing, and services, and

thus vital to economic strength and societal needs of an economy. There is evidence to

suggest that the skills owned by the S&E workforce are highly demanded by markets

– doctoral students in S&E occupations enjoy very low levels of unemployment, are

highly employable over time and contribute significantly to the knowledge economy.

There is also evidence that this demand for S&E skills has intensified over the past

few decades and will continue to grow in the future. In the face of the demand for

S&E skills, the U.S. government has enacted many programs to ensure an adequate

supply of these skills in the workforce through education and development of scientists

and engineers by providing funds that encourage graduate and postgraduate research

at U.S. colleges and universities through the financing of university-based research.

Additionally, policymakers have sought to increase the number of foreign scientists

and engineers working in the U.S. through various immigration programs that invite

foreign scientists to study, work and innovate in the U.S. Such policy measures are

not limited to the U.S. only – in an increasingly globalized economy, many other

countries who recognize the value of having a highly skilled S&E workforce have been
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rapidly tailoring their policies to foster and attract talent. Given the central role

that doctoral students play in the global knowledge economy, the career choices of

these individuals with respect to where they choose to work, whom they choose to

work with and how productive they are as result have a crucial impact on innovative

processes in the U.S. and in the long run, the global leadership that the U.S. enjoys

in research and development. This thesis studies the post-graduation career choices

of doctoral students in the U.S. - in terms of location choice of work and matching

behavior of doctoral students with different firms by leveraging detailed data on

doctoral students in the U.S.1 It explores the factors that affect these choices, and

the implications that they have on U.S. innovation and research productivity.

The first chapter of this dissertation aims to learn about the location choice of

work for foreign-born U.S. graduates. For the specific case of the U.S., the growth in

the demand for highly skilled workers is partly satisfied by an increased participation

of foreign-born scientists in the U.S. S&E workforce. Currently, foreign-born scientists

represent a large fraction of the S&E workforce.2 Significantly, amongst the foreign-

born doctorate holders employed in the S&E workforce in the U.S., many received

their doctoral degree from a U.S. institution and this supply pool of U.S. trained

foreign-born doctorates has grown rapidly over the last few decades. The share of

foreign nationals earning doctorates in Science, Engineering or Health in the United

States was about 17% during the decade of 1960. By 2010, this share increased to

1Survey of Earned Doctorates (SED), Survey of Doctorate Recipients (SDR) and International
Survey of Doctorate Recipients (ISDR) all complied by the National Science Foundation (NSF).

2According to the American Community Survey (ACS) and the Scientists and Engineers
Statistical Data System (SESTAT), 26-27% of respondents employed in S&E occupations during
2010 were foreign born and the corresponding number for the pool of respondents with a doctoral
degree is about 42-44%.
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nearly 40%.3 There is evidence to suggest that this effect is being driven by a large

influx of students from low and middle income countries Grogger and Hanson (2015).

The share of doctorates awarded to foreign-born students in the top tier universities

has also grown rapidly while the total share of doctorates handed out by these schools

has remained fairly constant. Foreign-born students now also dominate the pool of

PhD recipients in many key subject areas.4 The above stylized facts indicate that

over the past few decades, foreign-born U.S. PhDs have shaped and are continuing to

shape the landscape of the U.S. S&E higher education and workforce. It is, therefore,

crucial to have a deeper understanding of the migration behavior of this group of

individuals.

This goal is meaningful for a variety of reasons. First, there is evidence that a

large fraction of foreign born S&E graduates emigrate after graduation. For example,

Finn (2010, 2014) constructs stay rates of foreign-born doctoral students in the U.S.

using Social Security Data and finds that approximately two-thirds of foreign-born

doctoral students in the U.S. leave within two years of graduation. Second, there

is compelling evidence that U.S. trained foreign born graduates make significant

contribution to research and innovation. According to Chellaraj et al. (2008), a 10%

increase in the size of foreign graduate students in Science and Engineering (S&E)

fields leads to 4.5% increase in the university patent applications and 6.8% increase in

the university patent grants. Similarly, the estimates by Stuen et al. (2012) suggest

3Source: InfoBrief, National Center for Science and Engineering Statistics, NSF-13-300, October
2012.

4Bound et al. (2009) report that students from outside the US accounted for 51% of PhD
recipients in S&E in 2003, up from 27% in 1973. This trend holds across fields. For example, the
same study finds that in 2003, foreign-born individuals accounted for: 50% of degrees in Physical
Sciences, 67% of degrees in Engineering, 68% of degrees in Economics.
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that having an additional foreign graduate student in S&E departments translates

into an average gain of 5 extra articles in the department over the course of a doctoral

student’s 6-year graduate career. Hunt and Gauthier-Loiselle (2008) suggest that

foreign-born students not only do not crowd out natives from the graduate school,

but a one percentage point increase in the share of immigrant college graduates in the

population increases patent per capita by about 15%. Beyond the domain of graduate

schools, the contributions of the foreign-born graduates are disproportionately large

as well. According to Peri (2007), compared to a foreign-born population of 12%

in 2000, 26% of U.S. based Nobel Prize recipients from 1990-2000 were immigrants.

Similarly, immigrants are over-represented among members of the National Academy

of Science and the National Academy of Engineering (Levin and Stephan, 1999) and

non-U.S. citizens account for 24% of international patent applications from the U.S.

Together, the above facts offer prima facie evidence that a large number of U.S.

trained graduates relocate to other countries taking human capital and vast potential

with them. This location decision has crucial implications for the U.S. S&E workforce

and for the U.S. productivity growth.5 Finally, in an era where most nations realize the

importance of having a well trained S&E workforce, the competition to attract these

highly skilled individuals has become more and more fierce. Many countries are now

engaging in the intense global competition to attract internationally mobile human

capital by redesigning their immigration regimes. The UN World Population Policies

Database reports that in 2013, approximately 40% of the 172 UN member states

declared an explicit interest to increase the level of high-skilled migration into their

5For example, Xu (2015) estimates that the impact of doubling the number of immigrants from
every non-OECD country would boost U.S. productivity growth by 0.1 percentage points per year.
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countries either by attracting foreign or retaining native talent, whereas this share was

only about 22% in 2005. Highly developed countries lead this global trend – two thirds

of OECD nations have implemented or are in the process of implementing policies

specifically aimed at attracting high-skilled migrants. Moreover, many countries in the

Asia-Pacific region have been investing heavily in R&D and now collectively perform

a larger share of global R&D than the United States (National Science Board (NSB),

2014). Since S&E skills are portable, these global changes not only have implications

for the location choice, but also have implications for cross-border transmission of

knowledge and for the U.S. advantages in S&E.

In this chapter we leverage the International Survey of Doctoral Recipients (ISDR)

dataset to answer a variety of questions that are relevant for the formulation of

policies pertaining to scientific workforce development and high-skill migration. The

unique nature of the data alleviates many challenges facing the research community

studying high skilled emigration from the U.S. Our analysis identifies a number of

factors that are relevant for the location choice. The economic performance of the

destination country vis-á-vis United States matters for the location decision. At

an individual level, the strength of ties to the U.S. versus the destination country

(through legal residency and personal/professional networks) appear to play important

roles. We also find that the quality of job-skill match is important for location choice.

Significantly, we find that the foreign-born doctoral graduates who leave the U.S.

are positively selected on the basis of their talent as measured by the quality of the

programs they have attended. In addition, the positive selection is purely driven by

the choice of graduates who came to the doctoral program from low/middle income
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countries and the effect is more pronounced for those who have chosen to emigrate

back to low/middle income countries. The effect is also strong for those students who

have opted for an academic job. We also find that the magnitude of the positive skill

selection has increased in the recent decade suggesting a possible trend where the

U.S. may be losing the best of the U.S. university trained foreign-born graduates to

other countries in the global race to attract talent.

In the second chapter of this dissertation shifts its focus to the matching behavior

of doctoral students in the U.S. high skill labor market. In particular, we study

if the type of firm a doctoral student in the U.S. chooses to match with has any

implications on how productive they are in the match. In a labor market where

workers are heterogeneous in terms of their skill they have and firms differ in terms of

the skill they require, productivity at the firm level as well as at the aggregate level

may depend upon how the market assigns the workers across jobs. For the specific

case of scientists in the U.S., the way the labor market sorts may have potential

consequences on the the generation of knowledge and innovation in the economy.

However, the first step to gain a deeper understanding of the effects of mismatch

on match output and subsequently on aggregate variables requires the researcher to

quantify this effect. Empirically doing so is a challenging task. This chapter seeks

to meet this challenge by offering a transparent theoretical approach that demands

relatively little from the data and yet can offer a reliable measure of job-skill match -

both at the sectoral as well as at the aggregate level. The measure that we offer is

also suitable for identifying the effects of job-skill match on aggregate outcomes.

A fully estimable model that quantifies the effect of match quality on match
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output was recently put forward in a seminal contribution by Hagedorn et al. (2017).

However, the implementation of their methodology comes at a cost. The estimation

process is computationally intensive, it places a lot of demands from the observed

data such as information on worker and firm characteristics, and information on

workers over a period of time who switch employers and finally relies heavily on wage

data which known to be noisy and mis-measured. Crucially, the implicit assumption

in HLM is that all mismatch occurs purely due to search frictions. This may not be

true in the case of observed labor markets as there may be a variety of factors that

influence why one observes an individual with a particular skill type employed in a

firm with a different skill type. The aim of this chapter is to provide an alternative

approach to quantifying the effect of match quality on output that demands less from

the data, is less computationally burdensome, and allows for a broader view of what

drives the mismatch.

In order to do so, we use the Choo and Siow (2006) matching model of the marriage

market and adapt it to estimate the output or surplus from a match between a worker

and a firm while imposing little demand on the data. The estimation in our case

simply requires information on the skill types of firms and workers and the observed

matching pattern between these two groups of agents. Furthermore, this methodology

allows us to quantify the effects of job-skill match while remaining agnostic about

its sources. We use this model to study the output gains generated by a job-skill

match in the labor market for scientists in the U.S. The data comes from the Survey

of Earned Doctorates and the Survey of Doctorate Recipients (SDR), which contains

detailed information on the educational history of Ph.D. students graduating from
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U.S. institutions and the jobs they hold allowing us to infer skill types of workers

and firms. We exploit this information and estimate the temporal patterns in the

output gain associated with job-skill match by type/industry.

Our analysis offers a number of insights. We find evidence that a job-skill match

results in a larger value created as compared to a skill mismatch for all major skill

types/industries. There is a large variation in the job-skill match surplus across

industries and this surplus varies over time. It is also the case that the a firms’ net

benefit from matching with a worker of its own type is correlated with economic

conditions and the magnitude of the correlation also varies across time as well as across

industries. We find evidence that during periods of high economic activity, certain

industries (such as Computer Science) are more open to exploit the benefits from

cross-type matches as compared to other industries. This behavior possibly captures

an industry’s propensity toward diversification and innovation. Since the empirical

application is focused on doctorate degree holders in science and engineering fields

the interpretation of the output or surplus arising from skill match could potentially

be production of knowledge that are key to innovation and sustained growth. With

this in mind we explore whether the surplus generated by scientists by staying within

their own field has any impact on frequency of innovation at the aggregate level.

We find that an increase in the aggregate match surplus in the labor market for

scientists increases innovative activities in the economy, as measured by total patent

applications. This points to a channel through which better job-skill match in the

labor market for scientists may provide tangible benefits to innovative processes in

the U.S.

8



The third chapter of the dissertation revisits the issue of skill selection in the

out-migration of foreign-born U.S. PhDs. The analysis conducted in the first chapter

suggests that foreign-born doctoral graduates who leave the U.S. are positively

selected on the basis of their talent as measured by the quality of the programs they

have attended, which is the first evidence in favor of positive skill selection amongst

highly skilled emigrants. However, as results from OLS regressions, the estimates are

partial correlations and may not represent the true relationship between top program

attendance and propensity to emigrate. As such there may be many unobserved

individual level factors that affect both top program attendance and propensity to

emigrate and bias the estimated coefficients. In this chapter, we try to uncover the

causal effect of attending a top program on the probability of leaving by instrumenting

top program attendance at the individual level by the average past top program

attendance from the students’ country of origin.

The instrument is plausibly correlated with top program attendance through two

channels. Firstly, the presence of doctoral students from a particular country of

origin allows schools to elicit more information about the quality of students from

that country. A larger number of students in the program, then, indicates that this

information may be inducing schools to accept more students from the country in

question and raises the probability of top program attendance at the individual level.

Secondly, for any individual looking to apply to doctoral programs in the U.S., a

larger presence of doctoral students from the individuals’ country of origin in a top

program may induce the individual to apply to that program.

Using this instrument, we find that although the OLS regressions in the first
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chapter identify the patterns of positive skill selection in out-migration of foreign-born

doctoral students correctly, it severely underestimates the effects. The analysis in

the third chapter verifies that there is indeed a strong causal relationship between

attending a top program and leaving the U.S. following graduation, and this effect is

entirely driven by students coming from low/middle income countries. These results

bolster the narrative in the first chapter and indicate that there may indeed be some

evidence to support the claim that the U.S. is losing top talent to global competitors,

especially rapidly expanding low/middle income countries.

To summarize, the three chapters of this thesis study the post-graduation career

choices of doctoral students in the U.S., a group of individuals who are considered very

important for the sustained well-being of the U.S. economy. We explore the factors

that determine where these students choose to locate for work following graduation

and how their choice of the type of firm they choose to match with impacts their

productivity. Wherever possible, we draw implications of these choices on the U.S.’

capacity to innovate and continue to maintain it’s leadership in the global research

and development landscape. This thesis puts forth some novel findings in context of

the literature on high-skilled emigration from the U.S. While the analysis conducted

in this thesis leaves many questions unanswered, the results that we present should

inform and guide policies whose goals are to maintain the quality of the skilled S&E

workforce in the U.S. and to ensure that the U.S. maintains an advantage in global

scientific research and innovation.
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Introduction

The contributions of the Science and Engineering (S&E) or Science, Technology,

Engineering and Mathematics (STEM) workforce are essential for creation and

adoption of scientific knowledge. According to the U.S. Census Bureau, employment

in S&E occupations in the U.S. grew from about 1.1 million in 1960 to about 5.8

million in 2011 at an annualized rate of 3.3%, which is twice the annual rate of

growth in total employment for the same period. Foreign-born scientists represent

a large fraction of this S&E workforce. According to the American Community

Survey (ACS) and the Scientists and Engineers Statistical Data System (SESTAT),

26-27% of respondents employed in S&E occupations during 2010 were foreign born.

Foreign-born graduates account for 42-44% of the respondents with a doctoral degree

(see Table 1), and 58% of this group have earned their doctoral degrees from an U.S.

institution (National Science Board (NSB), 2014). This pool of doctoral graduates

has grown rapidly over the last few decades. The share of foreign nationals earning

doctorates in Science, Engineering or Health in the United States was about 17%

during the decade of 1960. By 2010, this share increased to nearly 40% (See Figure

1), the effect being driven by a large influx of students from low and middle income

countries (Grogger and Hanson, 2015).1 The share of doctorates awarded to foreign-

born students in the top tier universities has also grown at a rapid pace (See Figure 2).

Foreign-born students now dominate the pool of PhD recipients in many key subject

1Source: InfoBrief, National Center for Science and Engineering Statistics, NSF-13-300, October
2012.
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areas.2 It is also the case that the foreign-born doctoral students in U.S. universities

are drawn from the top-end of the skill distribution in their home countries and there

is compelling evidence to suggest that these individuals make significant contributions

to research and innovation as students and as professionals.3
,4

There is also evidence that each year a large number of U.S. trained highly skilled

graduates relocate to other countries taking human capital and vast potential with

them. According to 2007 Survey of Earned Doctorates (SED), only 53% of foreign

doctorate recipients with temporary visas reported that they have a ‘definite plan’ to

remain in the United States.5 Since S&E skills are portable, the location decisions of

these individuals have crucial implications for the U.S. S&E workforce, cross-border

transmission of knowledge, and for the current and the future trajectory of the U.S.

comparative advantage in the fields of science and technology. In this paper we use

a new set of data - the 2010 and 2013 International Survey of Doctoral Recipients

2Bound et al. (2009) report that in 2003, foreign-born U.S. PhDs accounted for: 50% of degrees
in Physical Sciences, 67% of degrees in Engineering, 68% of degrees in Economics.

3Please refer to Kapur and McHale (2005) for anecdotal evidence supporting this claim.
4According to Chellaraj et al. (2008), a 10% increase in the size of foreign graduate students in

Science and Engineering (S&E) fields leads to 4.5% increase in the university patent applications
and 6.8% increase in the university patent grants. Stuen et al. (2012) reports that having an
additional foreign graduate student in S&E departments translates into an average gain of 5 extra
articles in the department over the course of a doctoral student’s 6-year graduate career. Hunt and
Gauthier-Loiselle (2008) suggest that a one percentage point increase in the share of immigrant
college graduates increases patent per capita by about 15%. According to Peri (2007), compared to
a foreign-born population of 12% in 2000, 26% of U.S. based Nobel Prize recipients from 1990-2000
were immigrants. Similarly, immigrants are over-represented among members of the National
Academy of Science and the National Academy of Engineering (Levin and Stephan, 1999) and
non-U.S. citizens account for 24% of international patent applications from the United States.

5Finn (2010, 2014) offers more direct estimates that are based on Social Security and tax
information on foreign doctoral recipients. According to Finn (2010), the two year stay rate of
foreign students (with temporary visas) who received their S&E doctorate degree in 2005 is about
67%. In a more recent publication, Finn (2014) reports a slightly higher stay rate for 2006. Still,
nearly 28% of graduates have relocated to other countries within two years of graduation and the
share rises to 34% within a five year period.
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(ISDR) – assembled by the National Science Foundation to analyze the location

choice of foreign born doctoral recipients. This data set is unique in a number of

respects. In Section 2, we outline the features of the ISDR data and explain its

contributions in meeting the challenges facing the current research community in

further detail. This data allows us to seek answers to a variety of questions that are

relevant for the formulation of policies pertaining to scientific workforce development

and high-skill immigration. For example, which individual and country specific factors

are important in the foreign-born doctoral graduates’ decision to emigrate? Are there

are any recent changes in the pattern of emigration among foreign-born doctoral

graduates? Finally and most importantly, which segment of the skill distribution

amongst this population is the U.S. losing to foreign competition? These are the

main set of issues that we address in this paper.

Our analysis identifies a number of factors that are relevant for the location choice

of foreign born doctoral students. We find that at the time of the decision, the

relative performance of the destination country vis-à-vis United States matters for

the location decision – an individual is more likely to stay back in the U.S. if the U.S.

enjoys a relatively faster output growth and (in some cases) lower unemployment.

These results are broadly consistent with earlier findings, e.g., Grogger and Hanson

(2015). In addition, we find that FDI inflows to the destination country and a higher

patenting intensity (relative to the U.S.) help to attract talent. At an individual

level, the status of legal residency and the status of graduate funding appear to

play important roles. For example, students with stronger ties to the U.S. via legal

residency (U.S. Citizenship/Permanent Residence) are more likely to stay back. The
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same holds for students who have received a RA/TA-ship or received a B.A. in the

U.S. and the opposite is true for those who have received a fellowship or funds from

a foreign source. We also find that the quality of job-skill match is important for

location choice.

Our analysis yields a set of results on skill selection in emigration that deserve

attention – particularly in the context of an ongoing debate in the existing literature

on this issue. For example, by observing attrition from a longitudinal sample of

scientists and engineers, Borjas (1989) concluded that the least successful group were

the most likely to drop out of the sample, and by inference, leave the United States.

Other researchers found support of this result for the general emigrant population in

countries such as Germany (Constant and Massey, 2003), Egypt (Gang and Bauer,

1998), and Sweden (Edin et al., 2000). At the same time, there are studies which

suggest that those with higher levels of education are more likely to return than those

with lower levels (Jasso and Rosenzweig, 1988; Reagan and Olsen, 2000). To reconcile

these apparent contradictory findings, Borjas and Bratsberg (1996) reasoned that

emigrants can be positively or negatively selected depending on the selection that

characterized the original migration flow.

Against these findings, we revisit this selection issue and find that the foreign-born

doctoral graduates who leave the U.S. are positively selected on the basis of their

talent as measured by the quality of the programs they have attended. This result is

robust for the full sample as well as for the sub-samples constructed on the basis of the

students’ country of origin and their choices of destination. In addition, the positive

selection is purely driven by the choice of graduates who came to the doctoral program
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from low/middle income countries and the effect is more pronounced for those who

have chosen to emigrate back to low/middle income countries. The effect is also

strong for those students who have opted for an academic job. We also find that the

magnitude of the positive skill selection has increased in the recent decade suggesting

a possible trend where the U.S. may be losing the best of the U.S. university trained

foreign-born graduates to other countries in the global race to attract talent.

The rest of the paper proceeds as follows. In Section 2 we discuss the literature

that is closely related to our study and some of the major constraints facing research

in this field. Variables used in the analysis and their construction are explained

in Section 3. In Section 4, we discuss the results. Section 5 concludes with some

remarks.

Related Literature and Challenges

This paper is certainly not the first to study the population of highly skilled migrants

in the U.S. The rapidly changing landscape of U.S. higher education has previously

drawn the attention of researchers. Some have focused on the determinants of changes

over time in the representation of foreign born students among doctorate recipients

from U.S. universities (Kapur and McHale, 2005; Bound et al., 2009; Freeman, 2010).

Others went on to look at the impact of foreign-born graduates on innovation (Stuen

et al., 2012) and on the U.S. labor market conditions (Borjas, 2005; Hunt, 2011).

In comparison, little work has been undertaken to understand the factors governing

location choice of foreign born U.S. doctoral graduates. Notable exceptions include
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Black and Stephan (2007) and Grogger and Hanson (2015). When undertaken, the

analysis is based on a set of imprecise information. This is not due to the lack of

information on high-skilled emigrants. Rather, the manner in which information

were made available rendered little scope for conducting a systematic analysis. To be

precise, a systematic analysis of location choice requires simultaneous access to two

sets of information on individuals. The first set includes conditioning variables that

are based on individual characteristics and the second set must inform about the true

location choice of an individual as well as about the characteristics of the host and

the destination country around the time of the departure. Heretofore, matching these

two sets of information has posed a major challenge to the research community. For

example, it is possible to learn a great deal through the Survey of Earned Doctorates

(SED) about the characteristics of foreign-born doctoral graduates and about their

intentions (regrading whether to leave or stay in the U.S. labor market). In practice,

however, the researchers knew little about which individual has left and his/her true

location choice. On the flip-side, the seminal studies by Michael G. Finn (Finn,

2010, 2014) offer a scientific method for identifying those foreign born graduates

who have left the U.S. workforce. However, this information is not suitable for the

analysis because the reported data are in the aggregate form lacking any information

on individuals. The reports also do not contain any information on the destination

choice of an individual.

The lack of precise information has compelled researchers to make heroic assump-

tions in the analysis of ‘stay versus leave’ decisions of the foreign graduates. Using the

defense that at the aggregate level the ‘intend to stay’ responses are good predictor
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for actual behavior, the existing research (Black and Stephan, 2007; Grogger and

Hanson, 2015) has used the temporary visa holders’ ‘intend to stay’ responses in the

SED as a proxy for the actual decisions of the foreign born graduates. It is true that

the percentage of foreign-born graduates who express their intention to remain in the

U.S. (in the SED) tracks the actual one year stay rate in (Finn, 2010) closely. This

close correlation between the two aggregate variables does not however guarantee that

there exists a close match between the intentions and the actions at an individual

level. In fact, in our sample we find that the correlation between ‘intend to stay’

responses and the ‘actual stay’ rates is only about 0.67. It is therefore important

that we not rely on the stated intentions of the students at the time of graduation.

Instead, we should align the characteristics of an individual with his/her true choice.

The ISDR data offers such an opportunity by informing us about individuals who

have actually left the U.S. workforce.

It is also a customary practice in the literature to assume that the foreign-born

graduates are destined to return to their country of birth at the time of gradua-

tion. Accordingly the conditioning variables which capture the relative economic

environment were constructed around the time of graduation with the birth country

as the country of reference. This leaves further room for misaligning incentives with

the choice of an individual. Needless to say that in an era of globally integrated

labor markets, high skilled workers need not return to their country of birth and

the macroeconomic conditions that factor into an individual’s decision to move must

be those constructed at the time of location and on the basis of the actual location

choice.
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The newly available International Survey of Doctoral Recipients (ISDR) data

alleviate many of the above constraints. The data provide information on foreign born

graduates who have left the U.S. workforce along with their current locations. The

ISDR data also offer us an opportunity to pin down the time of departure for a large

group of individuals in the sample. To this, we add information from other sources to

learn more about individual characteristics and also about the characteristics of the

destination country. Together, the set of information that is rich enough to render

itself suitable for a systematic analysis of location choice.

Data and Variables

For the purposes of our analysis, we make use of the newly available 2010 and 2013

International Survey of Doctorate Recipients (ISDR) data, along with the information

contained in the Survey of Earned Doctorates (SED) and the 2010 and 2013 Survey of

Doctorate Recipients (SDR). The 2010 ISDR survey was the first to track individuals

who settled outside U.S. borders. We merge the data on the respondents from the

SDR and ISDR to corresponding data from the SED, which allows us to observe all

the demographic variables contained in the SED, in addition to what we observe in

the SDR and ISDR. We limit our analysis to foreign born doctoral recipients in the

2010 and 2013 SDR/ISDR for whom we have valid information.

Our measure for emigration from the U.S. is an indicator of whether one is in

the ISDR (current job location is outside the U.S.) or one is in the SDR (current

job location is within the U.S.). Since every respondent of the ISDR lived outside
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the United States, we assume they chose to leave the U.S. at some point between

graduation and the time at which they were surveyed. Every foreign-born respondent

in the SDR currently lives in the U.S. so we assume they have chosen to remain in

the U.S. Unfortunately, the ISDR does not offer any direct information about the

exact time of emigration. However, we are able to identify the time of emigration

using other variables in the data. The ISDR reports the date at which an individual

started working on his/her principal job. We compare this date to the date at which

he/she received his/her degree. If an individual started working at the job within a

two year window from graduation, we set the year of departure equal to the year in

which the individual started the job.6 We use a different strategy for individuals who

started on the job more than two years after graduation. The ISDR/SDR data allow

us to observe the U.S. legal residence criteria of every individual in the sample. A

foreign-born graduate who does not have an H1-B visa, permanent residence or US

citizenship, is typically allowed to stay in the U.S. for one year after they graduate.

We assume that an individual who does not have any record of a H1-B visa, permanent

residence status or US citizenship must have left the US one year after receiving

his/her doctorate degree. Put together, we are able to identify the departure date

of 88.88% of the sample of those who have emigrated. We exclude the remaining

11.12% from the analysis since we do not know when they have left. This leaves us

with a sample of 6,169 foreign-born doctoral recipients from U.S. institutions. Of

these, 5,238 were in S&E fields.7 We treat all emigration as permanent since there is

6Using this method, we are able to identify exactly the departure dates of 56% of the individuals
who emigrated.

7Our sample size is smaller than Grogger and Hanson (2015). This is because unlike Grogger
and Hanson (2015), we do not rely on the ‘intend to stay’ responses in the SED. Instead, our sample
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no information in the our data pertaining to circular migration.

The descriptive statistics in Table 2 identify some salient features in the data.

For example, in the sample of 6,169 foreign born PhDs, two-thirds (4,113) stayed

and one-third (2056) emigrated. Among those who left, the share of individuals who

came from high income countries is disproportionately larger.8 A higher proportion of

those who stay in the U.S do not stay in academics and a higher proportion of those

who leave go to academic positions. Significantly, among those who emigrated, there

is a higher proportion of graduates who “Attended a Top Program”. To define a ‘top

program’ we use the classification of highly ranked doctoral programs constructed in

Finn (2010) where top programs within broad areas of study (e.g. Physical Sciences,

Life Sciences, Mathematics, Economics etc.) are identified using data from the U.S.

News and World Reports (USN) ranking of doctoral programs, cross-validated by

the 1995 National Research Council rankings of doctoral programs. For each of the

nine degree fields, Finn (2010) reports 20-25 top-rated departments.9 It is fair to

assume that on the average the graduates of top programs or top schools have a higher

productivity in their chosen field. This is evidenced in our data by significantly higher

current earnings among those from top programs who remain in the U.S. compared

with those from programs ranked lower. The earnings differential is approximately

is limited to those foreign-born who are tracked in the SED as well as in the 2010 or 2013 SDR and
ISDR. The smaller sample size is likely to affect the precision of our estimates but not the parameter
estimates themselves.

8We classify countries into the categories on the basis of the World Bank Country Classification
by Income Level.

9As an alternative, we also classify schools into ‘top 10’ and ‘11-40’ categories solely on the
basis of the 1995 National Research Council rankings of doctoral programs. We use the average of
nonzero scores across all 41 ranked programs. See https://www.stat.tamu.edu/~jnewton/nrc_

rankings/nrc1.html#TOP60. We report the descriptive statistics for these measures in Table 2.
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15%. This is even more pronounced for those employed in the academic sector, with

the differential being 24.2%. For those employed in non-academic jobs the earnings

differential is 9.3%.

The remainder of Table 2 includes other control variables with potentials to

influence the location choice. These include citizenship, residency status, parental

education, sex, marital status, and whether one obtained his/her B.A. in the U.S.

The list also includes the nature of financial support, whether it be through research

or teaching assistantships (RA/TA, Fellowship or Funds from a foreign source). As

one might expect, individuals with closer ties to the U.S. in terms of citizenship or

residence status are among those who stay. Similarly, those who stay are more likely

to have received a RA/TA, while those who receive a fellowship or other foreign

support are more represented among the leavers. On a scale of 1-3, respondents of

ISDR/SDR are asked about the quality of the match between their field of study

and their current job. The responses are categorized as 1 being the best match and

3 being the poorest match. We recode the responses such that 1 represents “best

match”, and 0 otherwise (corresponding to responses recorded as 2 or 3 in the original

variable). The variable, “Job in Field in which Trained” in Table 2 indicates that

those who leave are better matched than those who stay.

The ISDR allows for a better construction of potentially relevant macroeconomic

variables by informing us of the country in which an individual currently resides.

Having more exactly identified departure dates and emigration location, we are able

to create variables that capture economic climate (relative to the U.S. and around the

time of departure) of countries to which individuals has chosen to relocate. For the
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individuals who have not left the U.S., we simply assume that the relevant comparison

country for their location choice is their country of birth. We construct these variables

based on information from the World Development Indicators (WDI) published by

The World Bank. For example, to construct a relative GDP growth variable, we first

standardize the per-capita GDP growth of countries. Next, we take the average of this

standardized variable for three years preceding the date of departure. The relative

GDP growth rate is then defined as the ratio of the averaged standardized U.S. GDP

per capita growth rate to the averaged standardized GDP per capita growth rate of

the country to which an individual has emigrated. Following the same procedure, we

construct the relative unemployment variable. FDI inflows serve as a proxy for the

economic openness and it is simply defined as the lagged-three year average of FDI

inflows (in 2005 USD) as the percentage of GDP for each country.

We construct a salary premium variable on the basis of the self reported earnings

and job type information that are available in the 2010 and 2013 SDR/ISDR surveys.

This variable intends to capture the effects of earning potential on the location choice.

We classify the job types into 39 categories according to the Job Code for Principal

Job (minor group) classifications in the SDR.10 We divide the foreign salaries by the

PPP conversion factor to exchange rate ratio of the corresponding countries, thus

giving us the equivalent U.S. salary in terms of purchasing power.11 Next, we compute

10Some information about cross-country wages/salaries by occupation is available in ‘The Occu-
pational Wages around the World Database’ published by International Labor Organization. The
job classification in this database is completely different from those used in the SDR. As a result,
this data does not serve our purpose.

11This ratio, also called the national price level, tells us how many dollars would be needed in
the country in question to buy a bundle of goods that costs one dollar in the U.S. The ratio trivially
equals 1 for the U.S.
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average salary for each of the 39 job categories in every work location (country). Our

strategy here is compare salaries within a profession for two foreign-born graduates -

one who is currently working in the U.S. labor market versus the one who has left

U.S. for another country. Accordingly, we define salary premium in a job location

for a particular job category as the log difference between the average salary of the

job category in that location and the average salary of the same job category in the

U.S. However, there is one major caveat in this construction. There are a number

of locations (countries) which are sparsely represented in the sample and the salary

information for all 39 categories are not available for these countries. This limits

our ability to use this variable for the full sample. We are however able to use this

variable in the analysis pertaining to the most represented countries such as India,

China, South Korea and Taiwan.

We factor in the impact of the R&D environment on location choice by constructing

a relative average patenting intensity variable. We define patenting intensity as the

total patent applications (direct and PCT national phase entries) per capita and

the variable represents the average patenting intensity (relative to the U.S.) over

three years preceding the date of departure. We also use the relative rule of law

variable in the analysis by holding U.S. as the numerator country. Information for

these variables are drawn from the WDI Governance Indicators. The Data Appendix

provides additional information about the variables and their sources.
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Model and Results

We estimate linear probability models of the form:12
,13

P(leaveict) = α + β1Xict + β2Zc + δc + τt + εict

The variable ‘leave’ is an indicator for whether one emigrated. X is a vector of

commonly used co-variates listed in Table 2 [see (Black and Stephan, 2007; Grogger

and Hanson, 2015)]. To this we add an indicator of having ‘Attended a Top Program’

to captures the skill selection pattern in emigration. Z is a vector of country specific

variables measured around the time of an individual’s departure from the U.S. labor

market. For those who left, these are the relative (to the U.S.) economic and political

conditions in the country to which they have emigrated. For those who did not

depart, these are relative conditions at the time of graduation in their country of

birth. Finally, δc and τt are country of birth and PhD cohort fixed effects, respectively.

Column (1) of Table 3 includes all variables from the X and Z vectors plus a set

of cohort fixed effects τt. In column (3), we limit the sample to students in the S&E

programs. The point estimates of the variable “Attended a Top Program” suggest

that those who graduate from top programs are 3.64 percentage points more likely

to relocate outside of the U.S. Among S&E workers, the estimate jumps to 3.96

12We recognize the limitations of the linear probability model in terms of predictions outside
of the 0 to 1 range. However, a logit/probit estimation is beyond our scope due to the potential
incidental parameters problem arising from a large number of fixed effects. Moreover, the linear
probability model lends itself to easily interpretable parameter estimates.

13Our analysis is based on richer set of information than previous studies. Still, our data is not
rich enough to draw any causal inference.
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percentage point, and both these estimates are significantly different from zero at the

0.05 level. This is the first evidence in favor of positive skill selection amongst highly

skilled emigrants. This evidence is at odds with some of the earlier conclusions that

are either based on a sample of scientists and engineers (Borjas, 1989), or on samples

of the general emigrant population (Constant and Massey, 2003; Gang and Bauer,

1998; Edin et al., 2000). Our results however finds support in Jasso and Rosenzweig

(1988) and Reagan and Olsen (2000) who suggest that those with higher level of

education (skills) are more likely to return than those with lower levels of education.

The result is also consistent with the descriptive statistics generated by Finn (2010)

who suggests a lower aggregate stay rate among those from top programs.

The effects of the other variables in the X vector are consistent with what one

might expect and these effects have been noted by previous studies (Black and

Stephan, 2007; Grogger and Hanson, 2015). One is less likely to leave if he/she is

closely tied to the U.S. (received a B.A. in the U.S., a U.S. permanent resident or

citizen) at the time of graduation. The source of support for graduate studies matters

as well, with RA and TA recipients are less likely to leave and those receiving foreign

support are more likely to leave. This could be due to the fact that graduates with RA

or TA-ships face a larger set of opportunities in the U.S. since they work closely with

faculty members and have access to a stronger professional network. These students

also represent a better pool within their own doctoral programs. A lower stay rate

of students with foreign support could be due to the fact that foreign funding often

requires students to return to the country of support after graduation.

We add country specific variables to the analysis with more precision by knowing
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who actually left, when they left, and their true location choice. As in Grogger and

Hanson (2015), our results suggest that countries that are growing slower than the

U.S. around the time of graduation are less likely to attract graduates. In addition,

we find that FDI inflows and relative patenting intensity matter as well. Graduates

are more likely to emigrate to a country if a country attracts more foreign investment

and graduates are more likely to stay back if the U.S. patenting environment is better

than what prevails in the alternative location. The effect of the patent intensity

however is much weaker in magnitude than the other two variables. The effects of

relative unemployment appear to be large with correct signs. However, the effects

are not statistically significant presumably due to its strong association with other

country-wide variables, such as GDP growth. Similarly, the relative rule of law

appears with correct sign but without significance. This is not surprising since the

relative rule of law variable is very persistent and a sizable portion of our sample is

made of students who came from high income countries. For these students, it is

likely that the comparison is between the quality of the U.S. rule of law and similar

rules of law that prevail intese high income countries. This diminishes the importance

of the relative the rule of law variable for the full-sample.

It should be noted that we haven’t explicitly included changes in the immigration

policy as a control. This may raise some alarm and we defend our decision on the

following grounds. All our regressions include cohort fixed effects to control for the

set of time variant factors which includes any changes in the immigration policy. In

addition, our sample consists of individuals who have emigrated immediately after

graduation or at most within two years of graduation. The availability of the H1-B
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visa is unlikely to have an effect on our sample since doctoral graduates in the S&E

field can take advantage of the student visa (F-1) practical training for 1-2 years

before initiating the labor certification and H1-B process.14 It is also the case that

a large fraction of the doctoral graduates are interested in either academic and/or

R&D related jobs for which H1-B visa cap is less stringent.15

In columns (2) and (4), we add birth country fixed effects δc which increases the

R2 but reduces the sizes of parameter estimates including the size of the top program

coefficients. This is not surprising since country of origin fixed effects hold constant

any variation that might occur from people being from different countries. If there

is clustering of students from certain countries in top programs and those countries

are more likely to have students that leave, then these estimates will understate

the potential top program effects. For a clearer picture, we stratify the sample by

country of origin. In particular, we divide the sample on the basis of whether the

country of origin is a developed versus a developing country while keeping in mind

that the influx of foreign-born doctoral students in the recent years is driven by those

from middle/low income countries whereas the inflow of students from high income

countries has remained relatively stable (see Figure 2). The split-sample analysis

yields a number of important insights to which we turn next.

The results from the split samples are reported in column (1) and (2) of Table 4.

14Foreign-born graduates are allowed to reside in the U.S. under a Optional Practical Training
(OPT) provision, which is linked to their F-1 student status.

15To be clear, academic and academic institution affiliated jobs are cap-exempt. In addition, the
law exempts up to additional 20,000 foreign nationals holding a master’s or higher degree from U.S.
universities from the cap on H1-B visas. Still, to make sure, we separately run regressions controlling
for H1-B regime changes by including a dummy that takes the value 1 if there was a regime change
within two years of an individual’s graduation year. The results remain mostly unchanged. These
results are available upon request.
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Interestingly, we find that the positive skill selection that we uncovered in our baseline

analysis is driven entirely by those students from low/middle income countries. In

fact, students from high income countries who attend a top program are more likely

to stay back, even though this effect is not significant. Thus, while there are an

increasing number of students from low/middle income countries populating U.S.

doctoral programs, it is the most skilled amongst this group of students who choose to

leave the U.S. following graduation. It also appears that some conditioning variables

play different roles across the two groups of students. For example, the macroeconomic

climate appear to matter more for those from high income countries than for those

from low/middle income countries. A possible explanation is that students from

low/middle income countries may face a much larger set opportunities back at home

with a U.S. doctorate degree and hence are more shielded from economic vagaries. It

may also be the case that students from low/middle income countries who come to

the U.S. for higher education are typically from the higher income strata at home.

High income countries are similar to the U.S. in terms of the skill distribution and

other characteristics. As a result, a U.S. degree buys relatively less insurance against

the economic downturns in these countries and the general economic conditions at

home may matter more for a student from a high income country when deciding

whether to return home or not.

Emigration has a direct consequence for the cross-border transmission of knowledge.

The scope of such transmission varies the across sectors and it is important that we

learn which sectors in destination countries have benefited most from the location

choice. Column (3) and (4) indicate that the intensity of skill selection is considerably
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larger for those employed in the academic sector than in the non-academic sector.

The effect is in fact absent for those leaving for non-academic jobs. This is not

surprising given the changing landscape of the U.S. higher education sector where

there is a trend of hiring non-tenure-track faculty in the place of full time tenure track

faculty (Ehrenberg, 2012). Given the difficulties in finding tenure track jobs in the

U.S., the academic sector outside the U.S. is more attractive to foreign-born doctoral

students - particularly for those graduating from top programs with an inclination

toward academic/research positions.16 This behavior has potential consequences for

the transmission of knowledge. Unlike the non-academic sector, there is more scope

in the academic sector to disseminate knowledge to a broader audience in a non-rival

setup. Therefore it is reasonable to expect that a graduate from a top program in

the U.S. is likely to generate a greater diffusion of knowledge abroad when working

in an academic environment.

The results so far offer strong evidence in favor of positive skill selection among

foreign-born doctoral graduates who have emigrated. Moreover, the result is primarily

driven by the group of students who came to the U.S. from low/middle income

countries. In Table 5 we pay special attention to students from the countries such

as India, China, and Taiwan who dominate the low/middle income group. To this

group we add South Korea to obtain the top four sending countries in our whole

sample. According to the National Science Board Report 2014 (National Science

Board (NSB), 2014), these countries also belong to a set of countries with the most

16The SDR data contains information about the nature of academic jobs that the individuals are
employed in. We find that a greater proportion of those who have left the U.S are tenured or in the
tenure track position as compared to those who stay back. Those who leave are also more likely to
report “Applied/Basic Research” as their primary job activity.
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rapid expansion of R&D expenditures over the last two decades. For these countries

we are able to construct and include the salary premium variable. We also include

another endogenous variable indicating the quality of the match between the job and

the acquired skills. The baseline results are reported in column (1) of the Table 5.

In column (2) we include the job-skill match variable and column (3) includes both

the match as well as the salary premium variable. In all the three specifications we

find we find strong evidence in favor of positive skill selection. It is also the case that

the students from these countries who left for another country have experienced a

better job-skill match than their counterparts who stayed back in the U.S. workforce.

In contrast, the salary premium variable does seem to not matter in the location

decision. We are unable to offer an exact explanation for the absence of this effect.

However, it is worth noting that the salary premium variable is constructed on the

basis of survey responses on salaries which are known to be noisy. We also find that

while relative patent intensity loses its significance, relative rule of law matters in the

decision of graduates in this selective sample.

Table 6 reports estimates by splitting the sample of students from low/middle

income countries in terms of their chosen destinations. In columns (1) and (2), we

report the estimates for the group of graduates who have left for another low/middle

income countries. Columns (3) and (4) report results for those who have left for

a high income country. Some of the covariates lose significance due to the drop in

the number of observations. However, the coefficients on the top program indicator

remain robust. In fact, we find this coefficient to be much larger for the group

who relocated to a low/middle income country as opposed to those who relocated

31



to a high income country.17. As in the previous cases, the job-skill match variable

assumes importance with a larger coefficient for the group who have returned to the

low/middle income countries.

Put together, the data seem to suggest a number of salient facts. First, a large

fraction of U.S. trained foreign-born doctorates leave the U.S. S&E workforce after

graduation and there is robust evidence of positive skill selection in this group. This

effect is driven entirely by those students who come from low/middle income countries

and the top talent amongst this group are more likely to return to a set of low/middle

income countries experiencing high growth in GDP and R&D over the last couple

of decades. It is also the case that there is more evidence of positive skill selection

among the graduates who have returned to be employed in the academic sector with

more opportunity to disperse knowledge to a wider audience.

We conclude this section by exploring if the positive selection that we have

uncovered represents a recent as opposed to an ongoing trend in the high-skill

emigration. In Figure 3 we plot the share of students from top programs leaving the

U.S. by cohort. The most striking feature of the plot is the sharp upswing in the

leave rate since the mid 1990s, which roughly coincides with the slowdown in the U.S.

academic labor market and with the rapid growth in R&D and investment in a select

few low/middle income countries from which the U.S. universities receive most of

the foreign-born students. The lack of information on some of the variables such as

unemployment rates, patent intensity, salary premium, job-skill match, and the rule

17Our data suggests that six countries (India, China, South Korea, Malaysia, Taiwan and
Thailand) out of the total 84 low/middle income countries have attracted 50% of the students who
are originally from the low/middle income countries and have attended top doctoral programs in
the U.S
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of law prohibits us to repeat the original exercise by decade. We separately estimate

a reduced baseline specification for the four decades - 1970-80, 1980-90, 1990-2000,

and 2000-2011 - without these variables. In Figure 3 we plot the corresponding point

estimates on the “Attended a Top Program” variable. While we recognize that these

coefficients are not directly comparable to the ones reported in the main analysis, the

sharp increase in the size of the coefficient during the most recent decade is too large

to be ignored and raises the possibility that the U.S. may be losing a part of its very

highly skilled migrant workforce to competition from other countries and that this is

a recent occurrence.

Concluding Remarks

Historically, foreign-born graduates from the U.S. universities have made significant

contributions to the U.S. S&E workforce. We must not however ignore the changing

global landscape. Many countries are now investing heavily in R&D infrastructure

and are actively tailoring their immigration policies to attract talent from abroad.

The UN World Population Policies Database reports that in 2013, approximately

40% of the 172 UN member states declared an explicit interest to increase the level

of high-skilled migration into their countries – either by attracting foreign talent

or by retaining native talent. This share was only about 22% in 2005. Developed

countries lead this global trend – two thirds of OECD nations have implemented or

are in the process of implementing policies that are specifically aimed at attracting
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high-skilled migrants (Parsons, 2015).18 In addition, some high growth countries in

the Asia-Pacific region, including China, India, South Korea, Taiwan, Malaysia, have

been investing heavily in R&D over the last two decades (National Science Board

(NSB), 2014). Incidentally, it is the same group of countries who currently dominates

the pool of foreign born doctorates and doctoral candidates in the U.S. universities.

Concurrently, there is an emerging trend showing low STEM retention rates and a

steady decline in the share of U.S. citizens enrolled and awarded advanced degrees

in the fields of Science and engineering (See Figure 1). This has been documented

by the National Academy of Sciences (National Academy of Sciences and National

Academy of Engineering and Institute of Medicine, 2007) and the same sentiment

is echoed in a 2012 report by the U.S. Congress Joint Economic Committee (US

Congress Joint Economic Committee and others, 2012). There is even some evidence

to suggest that professional STEM vacancies take longer to fill now (Rothwell, 2014).

Putting it together, the aforementioned developments seem to have implications

for the U.S. S&E workforce. But to be sure, we must dig deeper into the behavior

of the foreign-born doctoral graduates who historically have remained a dominant

source of supply for the S&E workforce. Such line of inquiry is also important

from the perspective of current and future policies. For example, we must learn

about the destinations of foreign-born doctorates leaving the U.S. workforce and the

direction of the cross-border transmission of knowledge so that appropriate policies

18In addition to making these broad changes, many countries have initiated specific programs
to promote the return of STEM talent back to their home countries. Examples of such programs
include Horizon 2020 (Europe), 1000 Talent Program (China), Brain Return 500 (South Korea),
Reverse Brain Drain (Thailand). There is also anecdotal evidence that academic institutions in
some countries, such as China, are now paying a very large premium to attract U.S. trained doctoral
graduates back to home country.
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can be drawn to sustain the U.S. global advantage in science and technology. It

is also important that we uncover the recent changes in the pattern of emigration

among the foreign-born doctoral graduates, be informed about the individual and

country specific factors that are important for the foreign-born doctoral graduates’

decision to emigrate, and most importantly, be aware about which segment of the

skill distribution among the foreign-born graduates that the U.S. may be losing to

foreign competition. These information are essential for tailoring time appropriate

immigration policies for high-skill workers, and these are the main set of issues that

we address in this paper.

Our analysis points to a number of salient patterns in the data. For example, we

find that foreign-born U.S. doctorates who leave the U.S. are positively selected in

terms of skill, as measured by the quality of the doctoral program they attended.

Moreover, this effect is driven entirely by those students who come from low/middle

income countries and there is a higher propensity for this top talent to choose

low/middle income countries with fastest growth in R&D as their choice of work

location. There is also some tentative evidence to suggest that out-migration from

the top portion of the skill distribution of foreign-born U.S. PhDs has intensified

during the recent years.

We recognize that our analysis leaves some important questions unanswered. For

example, we are unable to address any issues pertaining to circular migration. We

are also unable to break the sample further by stay rates. As a result, our focus here

has been on the set of individuals who have left the U.S. workforce immediately after

graduation. The two year, five year and ten year stay rates of foreign-born U.S. PhDs.
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differ significantly, and individuals who move within a few years of graduation and

those who move much after presumably represent two very different set of skills with

different implications for the S&E workforce and for the cross-border transmission

of knowledge. Despite some of these limitations, the results that we present should

inform and guide policies whose goals are to maintain the quality of the skilled S&E

workforce in the U.S. and to ensure that the U.S. maintains an advantage in global

scientific research and innovation.
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Figures and Tables

Figure 1.1: U.S. research doctorates awarded in science, engineering, or health, by
citizenship: 1960 - 2010
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Share of Foreign−born Doctoral Students in Top Programs

Figure 1.2: Trend in Doctorates awarded by Top Programs

To define a ’top program’ we use the classification of highly ranked doctoral programs constructed in

Finn (2010) where top programs within broad areas of study (e.g. Physical Sciences, Life Sciences,

Mathematics, Economics etc.) are identified.
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Figure 1.3: Trend in Leave Rates of Top Program Students

Note: Figure 3 is generated on the basis of frequencies weighted by the sampling weights in the

ISDR.
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Figure 1.4: Intensity of Positive Skill Selection by Decade 1970-2011
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Table 1.2: Descriptive Statistics

Main Variables of Interest (Proportions) Total Sample (n = 6169) Emigrated (n = 2056) Stayed (n = 4113)
Currently in High Income Country 75.49
Currently in Low/Middle Income
Country

24.51

From a S&E Field 84.91 77.58 88.57
From a High Income Country 50.43 64.93 43.17
From a Low/Middle Income Coun-
try

49.57 35.07 56.83

Currently in an Academic Job 51.37 61.58 46.27
Currently in a Non-Academic Job 48.63 38.43 53.73
Categorical Covariates (Propor-
tions)
Bachelors’ in the US 16.29 7.73 20.57
Either Parent has a Bachelors’ 61.24 59.24 62.24
Male 65.21 69.94 62.85
Married 60.56 53.06 64.31
US Permanent Resident 8.67 1.75 12.13
US Citizen 11.25 2.09 15.83
Received RA/TA 65.08 56.76 69.24
Received Fellowship 21.14 23.39 20.01
Received Foreign Support 5.30 11.04 2.43
Attended a Top Program 33.20 36.43 31.58
Attended a Top 10 School 12.87 14.79 11.91
Attended a School Ranked 11-40 31.14 31.37 31.02
Job in Field in which Trained 71.88 75.78 69.92
Numeric Covariates (Means)
Age 32.49 32.78 32.34
Relative GDP Growth -0.14 -0.85 0.20
Relative Unemployment 1.24 1.34 1.19
FDI Inflows to Destination Coun-
try

3.57 4.01 3.35

Relative Patenting Intensity 214.75 87.64 278.29
Relative Rule of Law -0.97 -1.33 -0.79
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Table 1.3: Determinants of Leaving the U.S. Following Receipt of a PhD

All Fields S&E Only
(1) (2) (3) (4)

Measured at time of PhD Receipt
Attended a Top Program .03645** .01416 .03960** .01612

(.01653) (.01320) (.01600) (.01255)
Bachelors’ in the US –.04652 –.11983*** –.02975 –.11448***

(.03572) (.02325) (.03812) (.02343)
Either Parent has Bachelors’ .00759 –.00479 .00769 –.00037

(.02766) (.00830) (.02775) (.00783)
Male .03015 .02281 .02560 .01926

(.02025) (.01622) (.01964) (.01556)
Married –.09541** –.04813* –.10172** –.05022**

(.04199) (.02522) (.03907) (.02173)
Age .00775*** .00325** .00642*** .00210*

(.00279) (.00150) (.00233) (.00127)
US Permanent Resident –.25864*** –.23822*** –.23675*** –.21432***

(.04840) (.05111) (.04719) (.05001)
US Citizen –.28957*** –.24660*** –.27255*** –.23371***

(.03561) (.03441) (.03334) (.03414)
Received RA/TA –.10482*** –.04342** –.08379** –.02571

(.03137) (.02001) (.03457) (.02197)
Received Fellowship .00061 .01808 .01608 .02961

(.02895) (.02377) (.03415) (.02849)
Received Foreign Support .21735*** .12311*** .25261*** .14519***

(.05775) (.03385) (.06085) (.03525)
Measured at time of Emigration (US
Relative to Destination Country)
Relative GDP Growth –.00031*** –.00031*** –.00031*** –.00026***

(.00009) (.00010) (.00008) (.00008)
Relative Unemployment .05023 .04939 .05157 .04784

(.03298) (.03479) (.03402) (.03419)
FDI Inflows to Destination Country .01014*** .01480*** .01105*** .01550***

(.00359) (.00398) (.00407) (.00383)
Relative Patenting Intensity –.00001*** –.00002*** –.00001*** –.00002**

(.00000) (.00001) (.00000) (.00001)
Relative Rule of Law –.00012 –.00015 –.00022 –.00024

(.00040) (.00025) (.00041) (.00026)
Cohort Fixed Effects Yes Yes Yes Yes
Country Fixed Effects No Yes No Yes
R2 .223 .347 .217 .348
No. of Observations 6169 6169 5238 5238
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Table 1.4: Determinants of Leaving the U.S. by country of Country of Origin and
Job Type

From High Income From Low/Middle Income Academic Non-Academic
(1) (2) (3) (4)

Measured at time of PhD Receipt
Attended a Top Program –.01542 .03919*** .03679* –.00467

(.02038) (.00658) (.01961) (.01314)
Bachelors’ in the US –.13126*** –.07611*** –.16584*** –.05990*

(.02735) (.02689) (.02676) (.03158)
Either Parent has Bachelors’ –.01323 –.00385 –.00065 –.00461

(.01358) (.00722) (.01620) (.01686)
Male .05546** –.00352 .06572*** –.01607

(.02663) (.00771) (.02282) (.01551)
Married –.00894 –.08665*** –.04701* –.05960**

(.01937) (.02746) (.02556) (.02539)
Age .00190 .00406** .00122 .00630***

(.00210) (.00166) (.00181) (.00194)
US Permanent Resident –.33534*** –.14183*** –.25026*** –.20746***

(.02122) (.03627) (.03616) (.06571)
US Citizen –.27142*** –.18797*** –.18606*** –.31364***

(.02820) (.05237) (.03052) (.05439)
Received RA/TA –.05507** –.02318 –.03487 –.04334*

(.02421) (.02665) (.02361) (.02384)
Received Fellowship .02302 .01176 .00541 .03631

(.03571) (.01805) (.02185) (.03794)
Received Foreign Support .12534*** .09177** .12274*** .11955***

(.03975) (.04162) (.04257) (.03942)
Measured at time of Emigration (US
Relative to Destination Country)
Relative GDP Growth –.00038*** .00089 –.00042*** .00090

(.00009) (.00073) (.00012) (.00072)
Relative Unemployment .19805** –.02316 .05875 .04655

(.08524) (.02797) (.04498) (.03304)
FDI Inflows to Destination Country .00860** .02459*** .01536*** .01397***

(.00422) (.00493) (.00464) (.00394)
Relative Patenting Intensity –.00048 –.00002*** –.00002*** –.00002***

(.00029) (.00001) (.00001) (.00001)
Relative Rule of Law –.00006 –.00023 –.00002 –.00040

(.00021) (.00049) (.00033) (.00029)
R2 .318 .372 .330 .404
No. of Observations 3111 3058 3169 3000
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Table 1.5: Estimates for Students from India, China, South Korea, Taiwan: Incorpo-
rating Match Quality and Salary Premium

(1) (2) (3)
Variables of Interest
Attended a Top Program .03495** .03393** .03046*

(.01555) (.01555) (.01605)
Job in Field in which Trained .02627* .02819*

(.01417) (.01483)
Salary Premium –.02634

(.01860)
Other Covariates
Bachelors’ in the US –.08817** –.08831** –.10742***

(.03583) (.03590) (.03735)
Either Parent has Bachelors’ –.00921 –.00972 –.01048

(.01517) (.01517) (.01562)
Male .01684 .01674 .01769

(.01469) (.01468) (.01520)
Married –.10052*** –.10013*** –.09775***

(.01690) (.01690) (.01755)
Age .00674*** .00662*** .00628***

(.00185) (.00185) (.00190)
US Permanent Resident –.11769*** –.11558*** –.11339***

(.01782) (.01785) (.01857)
US Citizen –.19202*** –.18968*** –.17948***

(.03413) (.03415) (.03564)
Received RA/TA –.05335* –.05298* –.05222*

(.02883) (.02876) (.02998)
Received Fellowship –.05890* –.05818* –.05921*

(.03221) (.03217) (.03358)
Received Foreign Support .11128* .11074* .12977*

(.06494) (.06544) (.06662)
Relative GDP Growth .00130 .00129 .00022

(.00150) (.00152) (.00119)
Relative Unemployment –.06738 –.06800 .02953

(.07607) (.07606) (.04647)
FDI Inflows to Destination Country .02778*** .02766*** .03705***

(.00387) (.00387) (.00474)
Relative Patenting Intensity –.00082 –.00082 –.00049

(.00052) (.00052) (.00047)
Relative Rule of Law –.00096** –.00095** –.00116**

(.00044) (.00044) (.00047)
R2 .283 .284 .286
No. of Observations 2867 2867 2672
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Table 1.6: Estimates for Students from Low/Middle Income Countries: Where do
they go?

To a Low/Middle Income Country To a High Income Country
(1) (2) (3) (4)

Variables of Interest
Attended a Top Program .03222*** .02817*** .01288** .01487***

(.00764) (.00840) (.00538) (.00424)
Job in Field in which Trained .02105*** .02175*** .00755 .01888**

(.00741) (.00565) (.00713) (.00751)
Salary Premium –.01042 –.02004

(.00892) (.01622)
Other Covariates
Bachelors’ in the US –.07144*** –.08123*** –.02249 .00377

(.02218) (.02364) (.02273) (.01796)
Either Parent has Bachelors’ –.01095 –.01399*** .00396 .00864

(.00770) (.00463) (.00595) (.00658)
Male .00795 .01546** –.01659** –.00964

(.00584) (.00601) (.00683) (.00574)
Married –.06127*** –.08503*** –.03852** –.02558***

(.02160) (.01599) (.01511) (.00796)
Age .00344* .00243 .00083 –.00016

(.00182) (.00153) (.00100) (.00131)
US Permanent Resident –.10792*** –.09599*** –.04931*** –.02841***

(.03527) (.03281) (.01627) (.00870)
US Citizen –.13415** –.14114** –.07757** –.04945

(.05445) (.06363) (.03251) (.03287)
Received RA/TA –.04328 –.04651 .01962 .03395**

(.02749) (.03020) (.01713) (.01590)
Received Fellowship –.01429 –.02908 .04024** .03830***

(.02336) (.02199) (.01854) (.01407)
Received Foreign Support .09245* .06918 .06234 .03054

(.05054) (.06194) (.07666) (.07559)
Relative GDP Growth .00011 –.00257* .00123 .00014

(.00063) (.00135) (.00098) (.00141)
Relative Unemployment .08869 .09384 –.31940** –.26029**

(.05681) (.06037) (.13203) (.10320)
FDI Inflows to Destination Country .03450*** .04327** .02824*** .03251***

(.01128) (.02087) (.00697) (.01004)
Relative Patenting Intensity –.00001*** –.00006 –.00002** –.00056***

(.00000) (.00007) (.00001) (.00019)
Relative Rule of Law .00010 .00027 –.00033 –.00043

(.00029) (.00067) (.00038) (.00057)
R2 .359 .405 .488 .600
No. of Observations 2813 2312 2582 2053
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2
job-skill match in the labor market for

scientists and its aggregate implications
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Introduction

The allocation of resources among competing ends is potentially important for aggre-

gate outcomes.1 The same holds for a labor market where workers are heterogeneous

in terms of their skill they have and firms differ in terms of the skill they require.

In this case, the productivity at the firm level as well as at the aggregate level may

depend upon how the market assigns the workers across jobs. Given this, a deeper

understanding of how to quantify the effects of job-skill match and how such effects

shape productivity is central to understanding how this impacts the working of an

economy. Researchers studying job-skill match and it’s effects are however faced with

a fundamental question – “How can the gain (loss) due to skill match (mismatch)

between heterogeneous workers and firms be quantified?” The present paper seeks

to address this question by offering a transparent approach that demands relatively

little from the data and yet produces reliable estimates of the output gain due to a

job-skill match - both at the sectoral as well as at the aggregate level. The measure

that we offer is also suitable for identifying the effects of job-skill match on economic

outcomes.

Empirically estimating the effect of a job-skill match on output has proven to

be a challenging task. The current workhorse model of labor market matching with

heterogeneous agents that allows for mismatch is due to Shimer and Smith (2000), who

introduce search frictions into the matching model of Becker (1973). Until recently,

1For example, there is large evidence to suggest that misallocation of factors can lower factor
productivity and can explain persistent cross-country variation in GDP per capita (Banerjee and
Duflo, 2005; Restuccia and Rogerson, 2008; Hsieh and Klenow, 2009; Bartelsman et al., 2009; Jeong
and Townsend, 2007).
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both the Becker (1973) model and its frictional counterpart in Shimer and Smith (2000)

were thought to be empirically unidentifiable. In a recent contribution Hagedorn

et al. (2017) (henceforth HLM) show how to identify and estimate components of

the Shimer and Smith (2000) model including the match production function from

observed data. Having recovered the match production function, HLM generate

estimates of the output lost due to mismatch by comparing the estimated production

function to a benchmark model that has no mismatch, i.e. the frictionless model of

Becker (1973).

While HLM offers a breakthrough in estimating matching models of the labor

market, the implementation of their proposed methodology comes at a cost. Firstly,

The estimation process is computationally intensive. It involves generating a global

ranking of workers and firms which uses an approximation of an algorithm that is

NP-Hard. Secondly, the estimation process demands a lot from the observed data

such as information on worker and firm characteristics, and requires information on

workers who switch employers over a period of time.2 Additionally, the identification

relies heavily on wage data which known to be measured with substantial noise. Most

importantly, the implicit assumption in models such as HLM is that all mismatch

occurs because search is costly and absent these frictions the model would approach

the perfect sorting equilibrium of Becker (1973). In reality, there may be many

underlying factors starting from remuneration structures across skill types, sector

specific skill shortages (or over-supplies), varying growth opportunities across sectors

etc. that could shape the way matches are formed. The estimated output lost due

2Observing the same worker in different firms is crucial for the ranking algorithm to work.
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mismatch in HLM then represents only that part of the output which is lost due to

search frictions in the labor market.

The above discussion points to the need for an alternative way of quantifying

the output lost due to mismatch that (i) demands less from the data, (ii) is less

computationally burdensome, and (iii) allows for a broader view of what drives the

mismatch. With this in mind, we lean on the seminal work by Choo and Siow (2006)

(henceforth CS) that was originally formulated keeping marriage market matching in

mind. We modify their model in such a way that we are able to estimate the output

surplus from a job-skill match between a worker and a firm while imposing minimal

demands on the data. The estimation in our case simply requires information on the

skill types of firms and workers and the observed matching patterns between these

two groups of agents. Furthermore, this methodology allows us to quantify the effects

of job-skill match on match output while remaining agnostic about its sources. The

details of the model are outlined in Section 2 of the paper.

We use this model to study the output gains generated by a job-skill match in the

labor market for scientists in the U.S. The data comes from the (licensed version of)

Survey of Earned Doctorates and the Survey of Doctorate Recipients (SDR), which

contains detailed information on the educational history of Ph.D. students graduating

from U.S. institutions and the jobs they hold. Based on this information we are

able to construct job-skill matching patterns for high skilled STEM workers over the

period 1975-2011. We exploit this information and estimate the temporal patterns in

the output gain associated with job-skill match by type/industry. Our analysis offers

a number of insights. We find evidence that a job-skill match results in a larger value
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created as compared to a skill mismatch for all major skill types/industries. There

is a large variation in the job-skill match surplus across industries and this surplus

varies over time. It is also the case that the a firm’s net benefit from matching with

a worker of its own type is correlated with economic conditions and the magnitude of

the correlation also varies across time as well as across industries. For example, during

favorable economic conditions, certain industries (such as Computer Science) are more

open to exploit the benefits from cross-type matches as compared to other industries.

This behavior possibly captures an industry’s propensity toward diversification and

innovation. We are also able capture how such propensity has evolved over time and

differs across industries.

Our estimation only uses job-skill match data for individuals with a doctorate

degree in science and engineering fields. This opens up a broader interpretation of

the output or surplus arising from the match. For example, in our case, the output

from skill match could very well encompass non-tangible production of knowledge

that are key to innovation. With this in mind we move forward and explore whether

the surplus generated by scientists by staying within their own field has any impact

on frequency of innovation at the aggregate level. For this purpose, we aggregate

the information contained in the sectoral time series to construct a diffusion index

representing an aggregate measure of surplus from job-skill match. We find that

an increase in the aggregate index increases innovative activities in the economy, as

measured by total patent applications. This points to a channel through which the

effects of job-skill match could show up in the form of higher productivity.

The rest of the paper proceeds as follows – Section 2 outlines the model. Section
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3 discusses the data, the empirical methodology and the results. Section 4 concludes

with summary and with some comments on possible extensions.

A Model of Worker-Firm Matching

Firms and workers in this setup are heterogeneous in skill requirement and skill

ownership. These workers and firms match over a single characteristic – ‘skill type’.3

Consider a firm x with skill requirement i. The firm has two choices, pair with

someone with the skill type i or with someone who has a different skill type −i. The

firm’s choice set can be expressed as j ∈ {i,−i}. The payoffs from a match with j

can be expressed as:

V x
j,i = πj,i − τj,i + εxj,i (2.1)

πj,i + εj,i is the firm’s match payoff, consisting of the deterministic match output

πj,i and the idiosyncratic value from the match εxj,i where E[εxj,i] = 0 ∀j. The

idiosyncratic value can be interpreted as an unobserved (to the analyst) preference

parameter. A firm of type i, therefore may choose a worker of type −i for one of

two reasons: (i) the output from this match, π−i,i, is high, or (ii) the firm has an

idiosyncratic preference for the worker of type −i, i.e. εxj,i is high. The transfer/wage

paid by the firm to the worker is given by τj,i.

3Note that ‘skill type’ for firms and workers are constructed symmetrically. The skill types of
workers are constructed according to their doctoral degree fields, and job categories are also grouped
according to these fields to construct job types. The types are Agricultural Sciences, Biological
Sciences, Health Sciences, Engineering, Computer Science and Engineering, Mathematics, Chemistry,
Geological and Related Sciences, Physics, Other Physical Sciences, Psychology, Economics and
Related Sciences.
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πj,i can be interpreted in multiple ways depending on the nature of the firm in

question. When the firm is a private firm, πj,i can be thought of as the output

accruing to the firm from this match. Alternatively this value can be thought of as

knowledge created by the match. The model allows for a general interpretation of

the deterministic value. The firm chooses the type of worker that maximizes payoff:

max
j∈{i,−i}

Vj,i (2.2)

The problem is similar for the workers. Consider a worker y of skill type i. The

worker faces a choice of working in a firm of the same type i or with one that requires

a different set of skills −i. The worker’s choice set is k ∈ {i,−i}. The payoffs from

each match is:

Uy
i,k = γ + τi,k + ρyi,k (2.3)

The deterministic payoff from this match is γ + τi,k. The γ term is a fixed utility the

worker gets from working and τi,k is the workers’ earnings from the match. The the

idiosyncratic payoff is ρyi,k where E[ρyi,k] = 0 ∀j. The utility maximizing problem for

the worker is:

max
k∈{i,−i}

Ui,k (2.4)

In general, the total value generated by any pair (j, k) with j ∈ {i,−i} and k ∈ {i,−i}

φj,k = πj,k + γ + εj,k + ρj,k (2.5)
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It can be shown that a stable (overall) match maximizes total match output (Chiappori

and Salanié, 2016).

Equilibrium

In the market, firms demand skills and workers supply them. The demand for different

types of skills by a firm of type i can be written as:

µd
j,i = P[j|πi,i, π−i,i, τi,i, τ−i,i]× pi (2.6)

where pi is the share of firms of type i and P[j|πi,i, π−i,i, τi,i, τ−i,i] is the probability

that a firm i chooses a worker j ∈ {i,−i}.

The supply of skills of type i across different firms is:

µs
i,k = P[k|γ, τi,i, τi,−i]× qi (2.7)

where qi is the share of workers of type i and P[k|γ, τi,i, τi,−i] is the probability that a

worker of type i pairs with a firm of type k ∈ {i,−i}.

In equilibrium, transfers adjust to clear the market. In general for any pair (j, k)

with j ∈ {i,−i} and k ∈ {i,−i}, the market clearing conditions are given by

µj,k = µd
j,k = µs

j,k. Therefore, in equilibrium:

P[j|πi,k, π−i,k, τ eqi,k, τ
eq
−i,k]× pk = P[k|γ, τ eqj,i , τ

eq
j,−i]× qj (2.8)

We now specialize the model by assuming - (i) εj,i and ρi,k, are draws from IID Type

I Extreme Value distributions with scale parameter equal to 1, and (ii) the transfer
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for paid to a worker of a different skill type is zero, i.e τ−i,i = τi,−i = 0.4

Under these assumptions, choice probabilities can be expressed analytically (MCFAD-

DEN, 1974):

P[j|πi,i, π−i,i, τi,i, τ−i,i] =
exp(πj,i − τ eqj,i)

exp(πi,i − τ eqi,i ) + exp(π−i,i)
(2.9)

P[k|γ, τ eqj,i , τ
eq
j,−i] =

exp(γ + τ eqi,k)

exp(γ + τ eqi,i ) + exp(γ)
(2.10)

In equilibrium, expressions (6), (7), (9), (10) form the basis of our identification of the

surplus value generated when there is a skill match as compared to a skill mismatch

in a worker-firm pairing.

The Surplus Value Generated by a ‘Skill-Match’

Let us define the output gained due to a ‘skill match’ between a worker and a firm

for skill type i as:

Πi ≡ πi,i − π−i,i (2.11)

πi,i−π−i,i is the systematic additional output generated by a firm from pairing with a

worker with the same skill set i as compared to a worker with a different skill set −i.

Assuming that the market clears at all times, this quantity can be uniquely identified

4This normalization is made to correct for the indeterminacy in identifying the true transfers
that clear the market. Note that an across-the-board increase/decrease in transfers will not change
the preference orderings of the firms/workers. As a result, any set of transfers that preserve the
preference ordering produces the same choice probabilities. Only differences in transfers are identified.
Such normalizations are common in discrete choice models. For a detailed exposition see Graham
(2011).
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from observed data.5

A little bit of algebra establishes our identification claim. Note, from the demand

condition (6) and the firms’ choice probabilities (9), we can express the log-odds of a

firm of type i choosing to match with a worker of type i versus type −i:

ln

(
µi,i

µ−i,i

)
= πi,i − π−i,i − τ eqi,i (2.12)

Similarly, using the supply condition (7) and workers’ choice probabilities (10) we

can write the log-odds of a worker of type i choosing to match with a firm of type i

versus type −i:

ln

(
µi,i

µi,−i

)
= τ eqi,i (2.13)

The previous expressions map the theoretically constructed log-odds to observed

frequencies of matches. Adding these two expressions and re-arranging gives the main

identification result:

Πi ≡ πi,i − π−i,i = 2 ln(µi,i)− lnµi,−i − lnµ−i,i (2.14)

Discussion

Expression (14) provides a simple parameter-free estimator for the systematic output

gain due to a skill match as compared to that of a skill mismatch in a worker-firm

pairing. To fix ideas, consider the market for skill type ‘Physics’. We observe (i)

5Note that this is equivalent to identifying the systematic output loss due to a skill mismatch
between a worker and a firm, which is simply the negative of Πi.
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graduates with skill type ‘Physics’ pairing with jobs of type ‘Physics’ [(i, i) pairings],

(ii) graduates with skill type ‘Physics’ pairing with jobs of type ‘Not Physics’ [(i,−i)

pairings], and (iii) graduates with skill type ‘Not Physics’ pairing with jobs of type

‘Physics’ [(−i, i) pairings]. The observed frequencies of these pairings uniquely identify

Πi. This expression provides us with a quantifiable value of the output gained due

to skill match. The statistic in (14) is unit free and as such is comparable across

different skill types i.

The estimator in (14) hs a straightforward interpretation. The left hand side of

the expression is the total systematic output surplus generated from a skill match.

The right hand side is increasing in the observed frequency of (i, i) type pairings,

and decreasing in the frequencies of cross-type ((i,−i) and (−i, i)) pairings. By

revealed preference, if we observe a large number of (i, i) type pairings relative to

cross-type pairings then we can conclude that this is due to higher systematic gains

from matching within own type. Similarly, if we observed relatively smaller number

of (i, i) type pairings as compared to (i,−i) and (−i, i) pairings, revealed preference

leads us to conclude that the output produced from matching with another skill type

is relatively higher than matching with the own type. Thus, the observed matching

behavior of agents in the model inform us about the surpluses generated from different

types of matches. Expression (14) captures this succinctly.

When would a particular firm be more likely to hire a worker of a different skill

type? Typically, we expect that firms match with someone of a different skill type when

they are trying to diversify their production activities/engage in the production of new

products which requires them to seek out new skills in the workforce. For example,
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a tech company such as Google may require expertise in statistical methodology as

a part of their expansion into data analytics. Hence, they may hire Economists or

Mathematicians (who own these skills) to meet this requirement. Theoretically, this

shows up as an increase in the payoff from matching outside the firms’ own type π−i,i

relative to the payoff from own-type matching πi,i. We also expect that economic

conditions that change firms’ incentives to innovate or diversify change the way they

demand certain skills in the marketplace which can be captured through the changes

in the estimated output surplus from out model. We return to this point in the next

section.

The model presented is based on the CS marriage market model and as such,

some of the limitations of the CS model applies to ours as well. The other assumption

built into the framework is that the market under study is frictionless, i.e. the market

clears at all times. While this is a strong assumption in a general labor market setting,

in the specific case of the market for doctoral students in the U.S. it is perhaps a

reasonable approximation since there is very little unemployment for STEM doctoral

students. Similarly, the parametric assumption made in the model in order to derive

choice probabilities has been criticized in the literature that followed the CS model.6

This is because Type I Extreme Value distributions imply the IIA property, i.e. it

rules out any correlation in unobserved tastes across different types. In the present

case, the choice set of firms is binary and hence the restrictions imposed by the IIA

6Graham (2011) and Galichon and Salanié (2015) who study the Choo and Siow (2006) model
explain it’s caveats in more detail. In perhaps the most significant update to the methodology in the
Choo and Siow (2006) model, Galichon and Salanié (2015) show that the general matching model is
identified even when the distributional assumptions of Choo and Siow (2006) are completely dispensed
with, but estimation is not as straightforward since it requires the estimation of distributional
parameters. We choose to use the current framework because of its simplicity.
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property are inconsequential. For workers, the choice probabilities depend only on

transfers in own type matches due to the normalization performed. However it is

easily shown that the probability that a worker chooses a firm of it’s own type is

increasing in the value of the transfer that the worker receives from an own type

match. In a binary choice setting, the probability that the worker chooses a firm of a

different type is simply one minus the probability that the worker chooses a firm of its

own type. As such, this characterization is sufficient to capture the effect of transfers

on different job choice probabilities of workers. Finally, the model is static in nature,

and we apply this to compute the equilibrium surplus values from a skill-match by

skill type and by cohort. There are no dynamics explicitly included in the model.

However, we recognize that the equilibria from cohort to cohort may be linked to

each other and choose to incorporate this in a reduced form sense in the empirical

analysis that follows, by allowing Πi to have an autoregressive component. In the

next section, we describe our empirical results from taking expression (14) to the

data on job choices of STEM doctoral students in the U.S.

Empirical Results

Data and Construction of Skill Types

The primary data sources for this analysis are the licensed version of the Survey of

Earned Doctorates (SED) and Survey of Doctorate Recipients (SDR), both conducted

by the National Science Foundation. The SED is an annual survey of individuals

receiving a research doctorate from an accredited U.S. institution in a given academic
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year, containing information on the doctoral recipient’s educational history and

demographic characteristics. The SDR provides, over and above that contained in

the SED, demographic, education, and career history information from individuals

with a U.S. research doctoral degree. Between the SED and the SDR, we are able to

observe research doctorates’ fine field of degree (FFOD), and the job category that

best describes her principal job at the time the SDR was conducted. Our sample is

constructed on the basis of the individuals surveyed in the 1995, 1997, 1999, 2001,

2003, 2006, 2008, 2010 and 2013 SDR.

Central to our analysis is the definition of ‘types’, i.e. the skill type of the worker

and the skill requirement of the job. The skill type of scientists in our data is a

direct analogue to their field of degree. The SED/SDR classify doctoral degrees into

352 types. However, given the sample size, estimation of (17) on the basis of all

these types is problematic since we would observe a lot of zero cells in the match

distribution. Additionally, it isn’t clear how much more information is added to the

analysis by a finer classification of degree fields, since many of these fields that fall

under a broad degree type presumably provide the worker with very similar skills.

Hence, we group these degree fields into 12 groups to generate broad skill types.

We also restrict our attention to STEM fields alone, dropping Humanities from the

analysis. The types are Agricultural Sciences, Biological Sciences, Health Sciences,

Engineering, Computer Science and Engineering, Mathematics, Chemistry, Geological

and Related Sciences, Physics, Other Physical Sciences, Psychology and Economics

and Related Sciences. Appendix A describes this grouping.

Constructing the corresponding job types is less straightforward. The SDR
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provides a “Job Category” list and asks respondents to choose the category that

best describes the job they hold. These job categories, however, aren’t grouped

by degree field and as such does not provide an easy correspondence with the skill

type of the workers that we construct. Furthermore, these job categories change

in a non-systematic way between survey years.7 Hence, we resort to manually

classifying job categories in every SDR survey year to the 12 broad groups to produce

the corresponding skill types for jobs. Appendix B provides an example of the

classification of job categories into groups for the survey year 2010.

On the basis of these classifications, we have a skill type for every individual

and the skill type of the job she is matched with. Across surveys, this amounts to

60,187 unique matches. However, there is one important caveat. The SDR collects

information about the job held during the survey date. For a given individual being

surveyed, the current job may not be the first job that they held, especially if they

appear in the survey many years after they graduate. Since we are interested in

estimating (17) by cohort and the time variation in the added value generated by a

skill match is crucial to this paper, we must restrict ourselves to counting only “first

matches”.8 That is, by cohort, we only keep those individuals for whom we can say

with a degree of certainty that this was their first job. We achieve this by comparing

Ph.D. graduation dates and job start dates, and keeping only those individuals for

whom the job start date is within two years of the graduation date. This leaves us

7Although most of the job categories stay the same, some categories are removed and others are
added over different survey years, and these changes need to be kept track of.

8For example, suppose we observe an individual in the 2010 survey who graduated in 1995. If
we did not filter for a “first match”, then this match observed in 2010 would be counted towards a
match in 1995, resulting in biased estimates of the additional value generated by a “skill match” for
her skill type in 1995.
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with 36,830 match observations. We also drop graduation cohorts before 1970 since

the number of observations for those years is small enough that it generates many

zero cells in the match distribution. Our final matched worker-job data has 35,679

observations across 42 cohorts (1970-2011).

Sectoral Analysis of Skill Match Surplus

Figures 1 and 2 plot the time series of the output (surplus) from job-skill match

by industries (sectors). A positive value of the surplus represents a higher benefit

from matching within its own type as opposed to matching outside the type.9 From

the plots it is evident that there is a large variation in the surplus across industries

and over time. However, in most cases the gain from own type matching is readily

apparent. Table 1 reports the time series averages and standard deviations of output

gained by job-skill match by sector. Focusing on the cross-sectional variation across

industries, we find that the average gain from skill match is much larger in the cases

of certain industries such as Psychology and General Engineering whereas industries

such as Computer Science, Agricultural Science, and Biological Science record lower

averages. We suspect that this is due to the differences in skill specificity across

industries. For example, in the case of some industries such as computer science,

the skill specificity is much weaker (than say nuclear engineering) due to it’s wide

applications and it’s intersections with other disciplines. Accordingly, there is a

smaller difference between the output from matching within it own type and the

output from matching outside it’s core skill set.

9Note that the output lost due to skill mismatch is simply the negative of these numbers.
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There is also large temporal variation of the match surplus within each industry.

This could be due to factors that are specific to the industries, differences in the

manner in which industries respond to economic conditions, or both. Within our

framework, there is little scope to unveil the role of industry specific factors. However,

it is possible to uncover the role of economic conditions. For this purpose, we compute

the correlations between output gain Πi and the lagged two year average of GDP

growth in the U.S. Table 2 reports these results. Surprisingly, for many industries

the correlations appear to be negative. The negative correlation is more pronounced

in the case of Computer Science, Physics, and Other Physical Sciences. These results

are open to interpretation. One possible interpretation is that industries often seek

to expand during favorable economic conditions. While some industries choose to

expand their existing product line, others take advantage of ‘good times’ and seek

to diversify and innovate. Diversification and innovation initiatives often require

reaching out to other disciplines with the view that the payoff from matching outside

firm’s own skill type could exceed the payoff from matching within their own skill type.

For such industries, the output gain from matching with its own type will appear to

be negatively correlated with economic growth. To anchor this interpretation firmly

we compute the correlations between match surplus and economic growth (as above)

for the decades of 1980-89, 1990-99 and 2000-11. Table 3 reports these results for

a selected group of industries where we see patterns that are consistent with the

documented evolution of some industries. For Computer Science, the match surplus is

positively correlated with economic growth for the the decade of 1980s. However, the

correlation turns negative during the following two decades. The computer science
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industry was in its nascent stage during the 1980s and naturally leveraged favorable

economic conditions to hire more computer scientists in order to obtain a foothold.

This translates into a positive correlation between match surplus and economic growth

for the decade of 1980s. By the next two decades, the industry had widened its

scope to diversify as it gained a central role in every aspect of our daily lives. As the

products and skills specific to this industry found wider potential applications, better

economic conditions opened up the incentive for the industry to to diversify and

innovate by hiring skills outside it’s own type set. Presumably this explains the large

negative correlation for the two recent decades. We observe a similar pattern in the

case of Chemistry. In contrast, industries such as Health Sciences and Engineering

seem to exhibit no such patterns and in fact may have become even more selective in

their matching preferences.

As noted earlier, the output surplus from job-skill match has a broader interpre-

tation in our model and includes production of intangible knowledge which drives

productivity growth. We can verify this by drawing a line from the estimated surplus

to a measure of innovative activity such as the volume of patent applications filed

in the U.S. One could carry out such an exercise by sector given that information

on sector specific patent applications is available. While there exists sector specific

patent application data there isn’t a one-to-one correspondence between the sectors

we define and the sectors in the patent data. We therefore rely on economy wide

patent application data and adopt an alternate strategy where we first aggregate the

information contained in the 12 estimated surplus series by constructing a diffusion

index of output surplus in the labor market for scientists. We then use this index in a
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VAR setup to explore how the output surplus interacts with R&D output indicators.

The following section offers the details pertaining to the construction of the index.

An Index of Economy Wide Match Surplus

The construction of the diffusion index follows from the vast literature on Dynamic

Factor Models (DFM) (Sargent et al., 1977; Stock and Watson, 1991, 2002).10 The

core idea behind dynamic factor models is that the information contained in multiple

time series can be pooled into a few series, averaging away idiosyncratic variation

in the respective time series. The insight comes from the long standing notion in

macroeconometrics that a small set of latent variables, called factors, drive fluctuations

in different time series.11 The premise is that the (smaller set of) factors which

constitute the index can replace the original set of time series in forecasting, or as

recently explored in Bernanke et al. (2005), in estimating large VAR models.

We follow the methodology in Stock and Watson (1991) to estimate a parametric

“single index” model (one dynamic factor), where the index is an unobserved variable

capturing all systematic variation in the 12 time series of the output surplus by field.

The adoption of this methodology is appealing for the following reasons. Firstly,

dimension reduction is necessary given the relatively short length of the time series

of our model, given that we wish to eventually estimate a VAR system. Efficiently

summarizing the relevant information in each series by constructing an index leads to

no loss of interpretability while allowing for cleaner estimation in the VAR stage.12

10For a recent technical overview of the DFM literature see Stock and Watson (2011).
11This dates back to the idea of a “reference cycle” in business cycle analysis in Burns et al.

(1946).
12This is the basic intuition behind the factor-augmented VAR approach popularized by Bernanke
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Secondly, it allows us to combine the disaggregated output surplus series to a series

that captures the economy-wide output surplus without imposing any added a-priori

theoretical structure on the analysis. Finally, using a factor model allows us to

maintain agnosticism about what really lies behind the output surplus generated. We

simply claim that there is a composite latent component that drives these series in

some systematic way. The diffusion index model is specified as follows:

Πi,t = αift + ei,t (2.15)

where ft is the index/unobserved factor. The αi are the ‘loadings’ for each skill type

i. ei,t is an idiosyncratic component that is specific to sector i. These disturbances

are AR(1):

ei,t = φiei,t−1 + vi,t where vi,t ∼ N(0, σ2
i ) (2.16)

And finally, the index itself is AR(1):

ft = Γft−1 + ηt where ηt ∼ N(0, 1) (2.17)

The index and idiosyncratic terms in (18) are taken to be uncorrelated at all leads

and lags. Finally, the idiosyncratic terms e(i,i),t are uncorrelated across i at leads

and lags. The model is estimated using classical Maximum Likelihood and Kalman

Filtering after being re-expressed as a state space model.13 Finally, as can be seen in

et al. (2005).
13For a detailed treatment we refer the reader to Kim et al. (1999).
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Figures 1 and 2, there are some missing values in the estimated time series of output

surplus. Even though the Kalman Filter can deal with missing values, we choose to

impute these values using exponential weighting.

Tables 4, 5 and 6 list the parameter estimates of the model described in (18)-(20).

We find that the loading values in Table 4 are significant and of the correct signs. The

only negative loading is the one on “Other Physical Sciences”, the series for which we

observed a negative average output surplus over the time series indicating that this

degree field behaves differently from the rest of the market for scientists. A potential

explanation for this is that this skill grouping is the only one that combines many

small and disparate fields of study within the Physical Sciences, which may move the

variation in a different direction as compared to the rest of the fields. Engineering,

Mathematics, Chemistry and Economics seem to exhibit the highest correlation with

the index. Table 5 shows the AR(1) parameters for the model. Almost all the

AR(1) parameters are significant, indicating the presence of serial correlation in the

idiosyncratic variation in most series, with Biology and Other Physical Sciences being

the exception.14 Table 4 lists the estimated variances for every innovation. Figure 3

plots the Kalman filtered (bold line) and smoothed (dashed line) indices.

Perhaps the most important metric for judging how well the index captures the

information contained in each series is the Proportion of Variance Explained (PVE)

by the Index. PVE is the ratio of the variance contributed to the series by the

index to the total variance of the series. Applying the variance operator to (15) and

14We could have specified a more general autoregressive structure for the innovations, but the
model is already heavily parameterized given the sample size. We tried using an AR(2) specification
but the likelihood convergence failed.
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manipulating the expression gives:

PV Ei =
α2
i /(1− Γ2)

α2
i /(1− Γ2) + σ2

i /(1− φ2
i )

(2.18)

Table 7 shows the estimated PVE for every output surplus series. The index does a

very good job of capturing the variation in most series. Again, the lowest PVE is seen

for Other Physical Sciences. Note that it is not necessary for us to model a single

index, the methodology allows for estimation of multiple latent factors. However,

given the performance of the single index, we choose to proceed with the parsimonious

model. In what follows we use the smoothed index series to explore the dynamic

relationship it has with aggregate patent applications.

Economy-Wide Dynamic Relationship between Match

Surplus and Patenting Activity

We expect the surplus created by scientists matching with jobs of their own skill

type to translate into observable increases in research output. In this section we test

this hypothesis, focusing on the most commonly used indicator of research output –

patenting activity. The data on aggregate patenting applications, and patent issues

in the United States comes from the USPTO. Since we are interested in scientists’

activities, we consider patenting applications as the indicator for increased scientific

activity. Since the index series is stationary, while patenting applications exhibit

an increasing trend, we use the HP filtered cycles of the patenting variables in our

analysis.
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We now estimate a VAR model with patent applications and the output surplus

index as the two variables. We choose this parsimonious model keeping in mind

the tendency of the VAR setup to eat up degrees of freedom as we increase the

number of variables in the analysis. We select the lag length on the basis of a few

information criteria. The Hannan-Quinn, Schwarz and Final Prediction Error criteria

select a lag length of 1 while the Akaike criteria selects the lag length as 3. We use

the smaller lag length given the short length of the time series that we are dealing

with. The results of the reduced form VAR(1) model are reported in Table 8. The

results indicate that the lagged output index is positively correlated with patenting

applications after controlling for patent issuance, and is significant at the 10% level.

We also find no evidence of reverse relationship, as is borne out by the zero coefficient

on patenting applications on the equation for the output surplus index. We test for

Granger causality formally and the test rejects the null hypothesis that the output

surplus in the labor market for scientists does not Granger cause Patent Application

increases, suggesting a causal link between the two variables that runs from the value

generated by scientists by staying in their own field to increased research activity.

Figure 5 plots the impulse response of patenting applications as a result of a shock

to the output surplus index. A positive shock to the output surplus index shows

up as a increase in patent applications after one year and the effects seem to be

fairly persistent, only dying out completely 9 years ahead. Thus, we find evidence to

suggest that if scientists stay within their own field and hence are more productive,

they are able to generate more knowledge on the aggregate which in our context is

captured by an increase in R&D activity such as patenting and that the effect of an
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increase in the productivity due to a skill match in this market is long lasting.

Conclusion

This paper proposes an empirical methodology that can be used to generate estimates

of the output gained (lost) by skill match (mismatch) in a labor market setting. In

particular, we formulate a tractable model of labor market matching where workers

and firms match on skill types based on the Choo and Siow (2006) model of the

marriage market. We show how identification of the surplus value generated by a

skill match as compared to a mismatch can be achieved using data on aggregate

matching patterns, given well defined skill types of workers and firms. The model in

this paper also provides for a more general take on what drives matches across types.

In this setup, dissmiliar workers and firms may match optimally simply because the

systematic payoff from these matches are high, or because there is some unobserved

heterogeneity specific to a worker-firm pair that drives these matches. The key

identification result is intuitive and provides for an easy and direct way to quantify

the value lost due to a mismatch.

We then take our model to data on the job choices of young scientists in the U.S.

in order to quantify the surplus value by skill types of scientists (their major degree

fields). The model allows us to generate estimates of the surplus value due to a skill

match at a disaggregated level – by skill type and over time. Our results suggest that

there is indeed an added value generated by a skill match in most major degree fields,

and even though the surplus values demonstrate significant time series variation, they

are mostly positive. It is also the case that the a firm’s net benefit from matching with
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a worker of its own type is correlated with economic conditions and the magnitude of

the correlation also varies across time as well as across industries. For example, during

favorable economic conditions, certain industries (such as Computer Science) are more

open to exploit the benefits from cross-type matches as compared to other industries.

This behavior possibly captures an industry’s propensity toward diversification and

innovation. We are also able capture how such propensity has evolved over time and

differs across industries. We then exploit the time series variation in these series to test

the hypothesis that when scientists stay in their own field and presumably generate

more knowledge, this corresponds to observable increases in research productivity in

the economy. We study the dynamic relationship between the surplus value and an

indicator of research productivity at an aggregated level, namely patent applications.

Our findings suggest that increases in surplus value due to a skill match predicts

increases in patent applications. This points to a channel through which the effects

of job-skill match could show up in the form of higher productivity.

The methodology explored in this paper is general enough that it can be applied

to any dataset which allows the construction of well defined skill types. It doesn’t

rely on data on vacancies at the firm level, neither wage data and characteristics of

workers beyond what is required to determine their skill ownership. From the specific

case in which we apply the model, we find no evidence of a structural break in surplus

value, suggesting the market for scientists has remained relatively stable over the

years. The findings seem reasonable within context, labor markets for the very highly

skilled may behave differently than labor markets for individuals at the lower end of

the skill distribution. In particular, we expect technological changes in the economy
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to induce changes in the the way skills are used across sectors which may be more

visible for a labor market which is not as specialized as that for scientists. In future

research we intend to conduct a similar analysis using the National Survey of College

Graduates (NSCG) conducted by the NSF, which also contains data on Bachelors

and Masters students where we expect much larger volatility in the surplus value

generated by a skill match. This analysis when applied to this population, opens

up the possibility of exploring the effects of major technological changes in the U.S.

economy that have redefined the usage of skills, such as the computing revolution or

the rise of quantitative finance.
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Figures and Tables
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Figure 2.1: Added Value Generated by a Skill Match by Subject Area over Time
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Table 2.1: Added Value Generated by a Skill Match: Summary Statistics
Skill Type Time Series Mean Time Series Std. Dev.
Agricultural Sciences 0.8384 0.7535
Biological Sciences 1.3548 0.4729
Health Sciences 0.5912 0.6915
Engineering 3.0539 0.7789
Computer Science 1.5950 0.7976
Mathematics 2.8669 0.6641
Chemistry 2.8962 0.6575
Geological Sciences 1.3376 1.0816
Physics 1.5816 0.7350
Other Physical Sciences -0.0695 0.9531
Psychology 5.3292 0.6479
Economics 2.9668 0.9639

Table 2.2: Correlations of Surplus Value with Lagged Two Year Average of GDP
Growth

Skill Type Correlation
Agricultural Sciences 0.128
Biological Sciences -0.077
Health Sciences 0.184
Engineering 0.050
Computer Science -0.235
Mathematics -0.041
Chemistry 0.307
Geological Sciences -0.307
Physics -0.294
Other Physical Sciences -0.204
Psychology 0.173
Economics -0.097

74



Table 2.3: Correlations with Lagged Two Year Average of GDP Growth: Certain
Fields over Time

Skill Type 1980 - 1989 1990 - 1999 2000 - 2011
Health Sciences -0.322 0.160 0.510
Engineering 0.210 0.098 0.563
Computer Science 0.106 -0.305 -0.437
Chemistry 0.642 -0.113 -0.209

Table 2.4: Parameter Estimates from Dynamic Factor Analysis: Factor Loadings
Parameter Point Estimate Std. Err. z 95% CI
αagri 0.3683 0.0027 21.1576 0.3630 0.3737
αbiology 0.5247 0.0023 179.7146 0.5202 0.5293
αhealth 0.1990 0.0072 11.2894 0.1849 0.2131
αengg 0.8179 0.0021 25.2903 0.8138 0.8220
αcomputer 0.5844 0.0045 11.4559 0.5756 0.5931
αmath 0.9599 0.0043 21.6427 0.9514 0.9684
αchemisty 1.0775 0.0026 29.8528 1.0723 1.0826
αgeology 0.4071 0.0029 7.3194 0.4014 0.4127
αphysics 0.5612 0.0042 87.5493 0.5531 0.5694
αotherphysical -0.0443 0.0078 2.8541 -0.0596 -0.0291
αpsychology 0.4169 0.0031 104.0651 0.4108 0.4231
αeconomics 0.7961 0.0027 103.9943 0.7907 0.8015
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Table 2.5: Parameter Estimates from Dynamic Factor Analysis: AR(1) Parameters
Parameter Point Estimate Std. Err. z 95% CI
Γ 0.9692 0.0021 12.2791 0.9652 0.9733
φagri 0.3318 0.0027 5.9536 0.3264 0.3372
φbiology 0.6529 0.0053 1.4963 0.6426 0.6633
φhealth 0.5458 0.0023 16.7598 0.5413 0.5504
φengg 0.8367 0.0019 9.1590 0.8329 0.8405
φcomputer 0.8455 0.0048 32.3469 0.8360 0.8550
φmath 0.3542 0.0036 2.9772 0.3472 0.3612
φchemisty -0.2828 0.0013 81.2008 -0.2853 -0.2803
φgeology 0.6484 0.0016 2.6366 0.6453 0.6515
φphysics -0.0998 0.0027 4.3641 -0.1050 -0.0946
φotherphysical 0.0553 0.0025 0.6936 0.0504 0.0602
φpsychology 0.9880 0.0025 9.8228 0.9831 0.9929
φeconomics 0.7244 0.0015 102.4458 0.7215 0.7274

Table 2.6: Parameter Estimates from Dynamic Factor Analysis: Innovation Variances
Parameter Point Estimate Std. Err. z 95% CI
σ2
agri 0.3659 0.0034 5.1609 0.3592 0.3726
σ2
biology 0.1197 0.0049 3.0320 0.1100 0.1294

σ2
health 0.4196 0.0011 22.2836 0.4174 0.4217
σ2
engg 0.5981 0.0058 3.4286 0.5868 0.6094
σ2
computer 0.3487 0.0045 9.9409 0.3399 0.3575
σ2
math 0.5047 0.0027 10.4557 0.4995 0.5100
σ2
chemisty 0.4232 0.0006 10.8221 0.4221 0.4244

σ2
geology 0.9499 0.0037 15.7425 0.9427 0.9572

σ2
physics 0.8249 0.0061 9.7988 0.8130 0.8369

σ2
otherphysical 0.9748 0.0025 21.3985 0.9700 0.9796

σ2
psychology 0.2707 0.0023 2.6915 0.2663 0.2752

σ2
economics 0.9303 0.0026 4.4694 0.9252 0.9355
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Table 2.7: Proprtion of Variance Explained (PVE) by Common Factor
Skill Type PVE
Agricultural Sciences 0.8449
Biological Sciences 0.9561
Health Sciences 0.5224
Engineering 0.8470
Computer Science 0.8217
Mathematics 0.9634
Chemistry 0.9766
Geological Sciences 0.6253
Physics 0.8619
Other Physical Sciences 0.0321
Psychology 0.2017
Economics 0.8423

Table 2.8: VAR Results
Estimate Std. Error Pr(>|t|)

Equation: Total Patent Applicationst
Output Surplus Indext−1 7301.0881∗ 3884.0786 0.0680
Total Patent Applicationst−1 0.3395∗∗∗ 0.1455 0.0092
Total Patents Issuedt−1 0.0475 0.0306 0.1296

Estimate Std. Error Pr(>|t|)
Equation: Output Surplus Indext

Output Surplus Indext−1 0.227131 0.164479 0.176
Total Patent Applicationst−1 0.000001 0.000006 0.804
Total Patents Issuedt−1 -0.000001 0.000001 0.322

77



3
skill selection in out-migration of foreign

born u.s. doctorates: a causal approach
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Introduction

Historically, foreign-born graduates from the U.S. universities have made significant

contributions to the U.S. S&E workforce and have been the dominant source of supply

of S&E skills in the marketplace. However, against the backdrop of a rapidly changing

global landscape of international competition to gain an edge in R&D by attracting

top talent, we must gain a deeper understanding of the behaviors of these individuals

and the consequences of their choices for the U.S. S&E workforce. The first chapter

of this thesis seeks to learn about the destinations of foreign-born doctorates leaving

the U.S. workforce and the direction of the cross-border transmission of knowledge

between countries. It explores which individual and country specific factors play

an important role for the foreign-born doctoral graduates’ decision to emigrate and

whether there are any recent changes in the patterns of emigration. Most importantly,

this chapter seeks to uncover which segment of the skill distribution among the

foreign-born graduates that the U.S. may be losing to foreign competition.

The analysis conducted in the first chapter confirms a few existing findings while

pointing to a number of salient patterns in the data. The most significant finding of

the analysis is that foreign-born U.S. doctorates who leave the U.S. are positively

selected in terms of skill, as measured by the quality of the doctoral program they

attended. Moreover, this effect is driven entirely by those students who come from

low/middle income countries and there is a higher propensity for this top talent to

choose low/middle income countries with fastest growth in R&D as their choice of

work location. We also find some tentative evidence to suggest that out-migration
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from the top portion of the skill distribution of foreign-born U.S. PhDs has intensified

during the recent years. This hints towards a possible trend where the U.S. may be

losing the best of the its university trained foreign-born graduates to other countries

in the global race to attract talent.

While the finding of positive skill selection in the out-migration of foreign-born

doctoral students from the U.S. is novel in the context of the literature on high skilled

emigration from the U.S., we are not able to establish any form of causality.1 As such,

there are reasons to believe that the estimated magnitude of skill selection is biased in

simple OLS regressions since there may be many unobserved factors at the individual

level which are correlated with both top program attendance and propensity to leave.2

The direction of the bias is hard to pin down where there are many omitted factors

that are correlated with the explanatory variables of interest, and hence there is

a possibility that the estimated coefficients understate the true effect of attending

a top program on the probability of emigrating following graduation. The goal of

this chapter is to resolve this issue. In particular, we seek to empirically investigate

the causal link between skill and propensity to emigrate for the sample of highly

skilled foreign-born individuals in the U.S. In order to estimate the causal effect of

1To reconcile the existing debate regarding positive/negative skill selection in high skilled
emigration, Borjas and Bratsberg (1996) reasoned that emigrants can be positively/negatively
selected depending on the selection that characterized the original migration flow. However, the
argument put forth in Borjas and Bratsberg (1996) requires that the selection in the original
migration flow be negative to induce positive skill selection in emigration. Our finding is novel in
the sense that we find positive skill selection in emigration even when there is evidence to suggest
that the individuals who migrate to the U.S. for higher education belong to the top portion of the
skill distribution in their respective countries.

2For example, one such factor is parents’ socioeconomic status, which may induce individuals to
migrate to the U.S. to pursue education and also return home following graduation. While we can
proxy for this using parental education, such proxies are imperfect.
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top program attendance on probability of emigration involves finding a variable that

induces exogenous variation in top program attendance. Absent the availability of

any obvious natural experiments that induce such variation, we propose to instrument

top program attendance with the past three year (from year of graduation) average

of top program attendance from a student’s country of origin (henceforth referred to

as average past top program attendance).

Ex ante, top program attendance at the individual level is plausibly a function

of average past top program attendance due to two reasons. Firstly, the presence of

doctoral students from a particular country of origin allows schools to elicit more

information about the quality of students from that country. A larger number of

students in the program, then, indicates that this information may be inducing schools

to accept more students from the country in question and raises the probability of

top program attendance at the individual level. For example, a program that has had

good experiences with Indian graduate students in terms of academic performance

and professional achievement may be induced to admit more graduate applicants from

India in future cohorts. Secondly, and perhaps less importantly, for any individual

looking to choose doctoral programs in the U.S., a larger presence of doctoral students

from the individuals’ country of origin in a top program may induce the individual to

apply to that program. This corresponds to the country-of-origin network effect that

increases the chance of application and hence may increase the chances of acceptance

into a top program.

Using average past top program attendance as an instrument for top program

attendance, we find the first stage relationship between these variables to be as
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expected – higher the average past top program attendance, greater is the probability

that an individual is enrolled in a top program. In comparing the instrumented

coefficients with naive OLS coefficients we find that although the OLS regressions

in the first chapter identify the key patterns of positive skill selection in the out-

migration of foreign-born doctoral students correctly, they severely underestimate the

magnitude of these effects. Therefore, the analysis in the third chapter verifies that

there is indeed a strong causal relationship between attending a top program and

leaving the U.S. following graduation, and this effect is entirely driven by students

coming from low/middle income countries. These results bolster the narrative in

the first chapter and indicate that there may indeed be some evidence to support

the claim that the U.S. is losing top talent to global competitors, especially rapidly

expanding low/middle income countries.

The rest of the chapter is organized as follows. The next section describes the

construction of the instrument in detail and highlights certain empirical challenges

faced in doing so. The following section presents the results and discusses possible

reasons for the differences between the OLS and IV estimates. The final section

concludes.

Constructing the Instrument

The data for the analysis is the same as in the first chapter – we make use of the

2010 and 2013 International Survey of Doctorate Recipients (ISDR) data, along with

the information contained in the Survey of Earned Doctorates (SED) and the 2010

and 2013 Survey of Doctorate Recipients (SDR). When all the information is put
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together this is a cross sectional, individual level dataset with limited information

about the education and work histories of the individuals. For the construction of

the instrument, we leverage information on the year of graduation of an individual.

To construct the instrument for a particular individual, we simply count the number

of top graduates belonging to the individuals’ country of origin in the past three

years and average them. For example, for an Indian student graduating in 2007, the

instrument would be the average number of Indian students who graduated from top

programs in the period 2004-2006.

There are certain caveats in the measurement of the instrument. In particular,

the data at hand is a (representative) sample of the universe of foreign-born doctoral

students in the U.S. and not a census. Therefore, there is a possibility that the data

collection mechanism simply doest not sample individuals for certain combinations

of graduation year and country of origin owing to the fact that they have very low

proportional representation in the population. To fix ideas, consider the example of

observing a student from Nepal in 1999. On counting the number of students from

Nepal who went to top programs in the years 1996-1998, we find that the counts are

mostly zero. There are two possibilities. One – that there were indeed no students

from Nepal who attended top programs in that period, or two – that top program

attendees from Nepal in that period were not sampled. If the latter is true, the

construction of the instrument would be imputing zeroes where the true value of

the instrument should be positive. There is also no way for us to tell which of the

possibilities arise in practice on a case by case basis.

Under the assumption that the second possibility is true in many cases, the nature
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of the measurement error in the instrument reduces the variation in the instrument

itself. While this may be of concern regarding the strength of the instrument in the

first stage, we take solace in the fact that the bias induced by the measurement error

in the first stage relationship between top program attendance and average past top

program attendance will most certainly be downwards. In other words, the first stage

effects that we are likely to find will underrepresent the strength of the true first stage

relationship. The other potential concern is that the measurement error is correlated

with the country of origin of the student and hence correlates the instrument with the

error term in absence of country of origin controls. In all our regressions, we include

year of graduation and country of origin fixed effects to control for this correlation.

The problem of zero imputation in constructing the instrument also limits our

ability to finesse the measurement of the same any further. For example, we would

ideally like to instrument top program attendance of an Indian physics student by

the average number of Indian physics students who graduated from top programs

in the past three years. However, adding this extra layer (field of study) increases

the number of possible combinations that need to be counted by an order of 200,

while the number of observed top program attendees to populate the counts of these

combinations remain the same. This would mean that incorrect zero imputation

would become highly likely, severely damaging the instruments ability to induce any

variation in top program attendance. We choose to proceed with the cruder version

of the instrument in order to keep the potential measurement error to a minimum.
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Model and Results

We estimate the following reduced form IV model:

P(Attended a Top Programict) = α + γ1Avg. Past Top Program Attendance

+ γ2Xict + γ3Zc + δc + τt + εict (3.1)

P(leaveict) = δ + β11(Attended a Top Program)

+ β2Xict + β3Zc + δc + τt + εict (3.2)

where Avg. Past Top Program Attendance instruments 1(Attended a Top Program).

Xict collects individual specific exogenous variables, Zc is a vector of relative (to the

U.S.) country specific exogenous variables measured around the time of an individual’s

departure from the U.S. labor market. Finally, δc and τt are country of origin and

graduation year fixed effects, respectively. Throughout the analysis, we use LIML

estimators to alleviate concerns of weak instrumentation.3

Table 3.1 reports the first stage regression results for the full sample and the

sample that contains only S&E students. As intuition suggests, we find a positive

relationship between Avg. Past Top Program Attendance and the probability of

Attending a Top Program and the relationship is significantly different from zero.

The size of the coefficient is quite small, possibly due to the attenuation caused by

measurement error in the construction of the instrument. The bottom of the table

reports the first stage robust F statistics. In both samples the F statistic exceeds the

rule-of-thumb value of 10. Given that we are using LIML in estimation, this suggests

32SLS results are very similar to LIML.

85



that the instrument is strong (Staiger et al., 1997; Stock and Yogo, 2005).4

Table 3.2 reports the second stage IV regression results along with the correspond-

ing OLS regressions from Chapter 1 for the full sample and S&E only sample. It is

immediately clear that naive OLS underestimates the true effect of attending a top

program on the propensity to leave. The instrumented coefficient on the top program

indicator is along the same direction as the OLS coefficient, but is about 50-70 times

larger than the OLS coefficient. The IV results suggest that those who attend top

programs are approximately 60-72% more likely to leave as following graduation as

compared to those who don’t. In the broader context of skill selection in high skilled

emigration, this evidence is a strong contradiction of the earlier conclusions that are

either based on a sample of scientists and engineers (Borjas, 1989), or on samples

of the general emigrant population (Constant and Massey, 2003; Gang and Bauer,

1998; Edin et al., 2000). The results are consistent with the descriptive statistics

generated by Finn (2010) who suggests a lower aggregate stay rate among those from

top programs. The rest of the measured effects on exogenous variables remain broadly

the same, with some being measured with more precision in the IV regression. Note

that both IV and OLS estimates are measured with substantial noise, a pattern that

is also noticed in the first chapter. Next, we divide the sample on the basis of whether

the country of origin is a high income versus a low middle/income country.

Table 3.3 reports the second stage regression results for the split sample.5 The

4Stock and Yogo (2005) note that the Staiger et al. (1997) rule of thumb may be too conservative
when LIML is used. Under the assumption that the F statistic is non-robust, we can compare the
estimated values to tables in Stock and Yogo (2005). The non-robust F statistic is 10.04 which
exceeds the critical value at size 0.15 (8.96).

5The bottom panel of the table reports the first stage partial correlation between the instrument
and the endogenous variable. In all regressions, the first stage correlation is strong.
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results follow a similar pattern to what was seen in Table 3.2. The instrumented

coefficients are in the same direction as the OLS coefficients but are much larger,

again suggesting that OLS underestimates the true magnitude of skill selection in the

out-migration of the foreign-born. In some cases, the IV coefficients are also measured

with lesser noise in the case of the sample of students from high income countries.

The IV results suggest that these two groups demonstrate very different behaviors –

students from high income countries who graduate from top programs are 53% more

likely to stay back in the U.S. following graduation compared to students in other

programs while top students from low/middle income countries are almost 1.5 times

more likely to leave. The estimated coefficients are also significantly different from

zero. The phenomenon of positive skill selection in the full sample is entirely driven

by the behavior of students from low/middle income countries. In Table 3.4, we

report split sample analyses for S&E students only. The results are broadly the same.

The causal analysis performed thus far serves to bolster the findings from and

hence the narrative of the first chapter. Interestingly, we find that although naive

OLS regressions identify the patterns of skill selection in the out-migration of foreign-

born doctoral students accurately, they underestimate he magnitude of the effect

significantly. The estimated IV coefficients are at least 35 times and at most 45 times

larger than OLS coefficients. We now briefly consider why this may be the case.

The first possibility is that the OLS results are indeed biased downward. However,

there may be a myriad of unobservable individual characteristics that may be corre-

lated with both top program attendance and propensity to leave. As such, finding

an economic narrative that supports the downward bias of OLS regressions amounts
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to discerning which factors create the downward bias, which is next to impossible

and foolish to try. We note that the OLS estimate is the partial association between

probability of leaving and top program attendance, while the IV estimate is deter-

mined by the partial association between probability of leaving and the component of

top program attendance correlated with the instrument – average past top program

attendance. The results therefore mean that the association of propensity to leave

with the component of top program attendance uncorrelated with the average past

top program attendance is much smaller than the component that is correlated.

This indicates that individuals who are selected into top programs either due to

positive information spillovers in doctoral admissions processes or network effects are

more likely to emigrate following graduation. The following scenario supports these

findings – the students who would be differentially admitted into doctoral programs

due to better information from past student history are most likely those who are

in the bottom of the within-program skill distribution. Upon graduation, these are

the students that are more likely to emigrate as compared to their higher skilled

batchmates, since the U.S. labor market wouldn’t place as much value on their skill

but a top program degree still provides a lot of leverage in international labor markets.

Thus, even though there is positive skill selection across the entire gamut of programs

(skills), the results may be primarily driven by negative selection within top programs.

This scenario also helps explain why the magnitude of skill selection is so large in the

case of students from low/middle income countries, since a top program degree has

much greater purchase in labor markets in low/middle income countries as compared

to in high income countries. Unfortunately, the data provides no way for us to verify
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this narrative empirically.

The second possibility is that the instrument itself is endogenous and hence the

IV results are biased upwards. We do not believe this to be the case since the

instrument varies at the country of origin and year of graduation level, and we control

for unobserved effects at that level through fixed effects. In sum, the IV results

confirm the patterns in positive skill selection in the out-migration of foreign-born U.S.

doctorates as uncovered in Chapter 1 and finds that it is of a much larger magnitude

than naive OLS regressions would have us believe.

Concluding Remarks

This chapter investigates the relationship between attending a top program and the

propensity to emigrate for foreign born doctoral students in the U.S. from a causal

perspective. In this respect it seeks to build on the findings of the first chapter of this

thesis, which finds that there is evidence of positive skill selection in the out-migration

of these individuals and that the effect is driven entirely by the migration behavior of

students from low/middle income countries. A possible caveat in of the analysis in

the first chapter is that there may be many unobserved factors at the individual level

which are correlated with both top program attendance and propensity to leave and

may cause naive OLS results to be biased. In the presence of many such factors, the

direction of the bias is difficult to pin down. This chapter aims resolves the issue of

uncovering the true magnitude of skill selection in the out-migration of foreign-born

doctoral students by using an instrumental variables approach.

We propose to instrument top program attendance (the measure of skill of an
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individual) using the past three year (from year of graduation) average of top program

attendance from a student’s country of origin. The reason we expect these variables

to be associated is as follows. Firstly, the presence of doctoral students from a

particular country of origin allows schools to elicit more information about the quality

of students from that country. A larger number of students in the program, then,

indicates that this information may be inducing schools to accept more students from

the country in question and raises the probability of top program attendance at the

individual level. Secondly, for any individual looking to apply to doctoral programs

in the U.S., a larger presence of doctoral students from the individuals’ country of

origin in a top program may induce the individual to apply to that program.

Using this instrument, we find that although the OLS regressions in the first

chapter identify the patterns of positive skill selection in out-migration of foreign-born

doctoral students correctly, it severely underestimates the effects. The analysis in

the this chapter verifies that there is indeed a strong causal relationship between

attending a top program and leaving the U.S. following graduation, and this effect is

entirely driven by students coming from low/middle income countries. These results

bolster the narrative in the first chapter and indicate that there may indeed be some

evidence to support the claim that the U.S. is losing top talent to global competitors,

especially rapidly expanding low/middle income countries.
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Tables

Table 3.1: First Stage Regressions: Full Sample and S&E Only

All Fields S&E Only
Dependent Variable: Attended a Top
Program
Average Past Top Program Attendance .00277*** .00281***

(.00087) (.00088)
Bachelors’ in the US .01936 .00064

(.03025) (.02819)
Either Parent has Bachelors’ .04494** .03592**

(.01962) (.01710)
Male .06965*** .06490***

(.01420) (.01620)
Married –.03239*** –.04545***

(.01650) (.01635)
Age –.01355*** –.01405***

(.00155) (.00173)
US Permanent Resident .00309 .00756

(.02487) (.02844)
US Citizen .00101 .02618

(.02788) (.02942)
Received RA/TA .06310*** .08218***

(.01986) (.02548)
Received Fellowship .11962*** .09582**

(.02791) (.03755)
Received Foreign Support .11550*** .13578***

(.04236) (.04636)
Relative GDP Growth .00018 .00018

(.00012) (.00012)
Relative Unemployment –.02436 –.03319

(.01912) (.02281)
FDI Inflows to Destination Country .00331* .00473**

(.00175) (.00195)
Relative Patenting Intensity –.00003 –.00005

(.00002) (.00003)
Relative Rule of Law –.00001 –.00008

(.00018) (.00015)
No. of Observations 6169 5238
Robust F Statistic 10.0463 10.12
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Table 3.2: Determinants of Leaving the U.S: OLS vs. IV for Full Sample and S&E
Only

All Fields S&E Only
OLS IV OLS IV

Measured at time of PhD Receipt
Attended a Top Program .01416 .59639 .01612 .72474

(.01320) (.48036) (.01255) (.48563)
Bachelors’ in the US –.11983*** –.13159*** –.11448*** –.11560***

(.02325) (.02464) (.02343) (.02503)
Either Parent has Bachelors’ –.00479 –.02994* –.00037 –.02451

(.00830) (.01702) (.00783) (.01545)
Male .02281 –.01736 .01926 –.02637

(.01622) (.03913) (.01556) (.03743)
Married –.04813* –.02889* –.05022** –.01751

(.02522) (.01646) (.02173) (.02265)
Age .00325** .01121 .00210* .01214

(.00150) (.00705) (.00127) (.00741)
US Permanent Resident –.23822*** –.23842*** –.21432*** –.21754***

(.05111) (.04301) (.05001) (.04037)
US Citizen –.24660*** –.24719*** –.23371*** –.25240***

(.03441) (.02988) (.03414) (.03316)
Received RA/TA –.04342** –.07918** –.02571 –.08281*

(.02001) (.03666) (.02197) (.04776)
Received Fellowship .01808 –.05037 .02961 –.03653

(.02377) (.06668) (.02849) (.06477)
Received Foreign Support .12311*** .05524 .14519*** .04813

(.03385) (.07432) (.03525) (.08501)
Measured at time of Emigration (US
Relative to Destination Country)
Relative GDP Growth –.00031*** –.00041*** –.00026*** –.00038**

(.00010) (.00011) (.00008) (.00015)
Relative Unemployment .04939 .06297** .04784 .07068**

(.03479) (.02874) (.03419) (.02995)
FDI Inflows to Destination Country .01480*** .01298*** .01550*** .01229***

(.00398) (.00351) (.00383) (.00416)
Relative Patenting Intensity –.00002*** –.00002** –.00002** –.00002*

(.00001) (.00001) (.00001) (.00001)
Relative Rule of Law –.00015 –.00015 –.00024 –.00030

(.00025) (.00032) (.00026) (.00030)
No. of Observations 6169 6169 5238 5238
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Table 3.3: Determinants of Leaving the U.S. by Country of Origin: OLS vs. IV

From High Income From Low/Middle Income
OLS IV OLS IV

Measured at time of PhD Receipt
Attended a Top Program –.01542 –.53005* .03919*** 1.43301**

(.02038) (.29572) (.00658) (.58381)
Bachelors’ in the US –.13126*** –.14332*** –.07611*** –.20811**

(.02735) (.03306) (.02689) (.08659)
Either Parent has Bachelors’ –.01323 .02158 –.00385 –.01801

(.01358) (.02365) (.00722) (.03561)
Male .05546** .09928** –.00352 –.06966

(.02663) (.04573) (.00771) (.04346)
Married –.00894 –.02201 –.08665*** –.02696

(.01937) (.02755) (.02746) (.03334)
Age .00190 –.00666 .00406** .01882***

(.00210) (.00509) (.00166) (.00511)
US Permanent Resident –.33534*** –.34480*** –.14183*** –.16422***

(.02122) (.02804) (.03627) (.03802)
US Citizen –.27142*** –.28011*** –.18797*** –.26079***

(.02820) (.03052) (.05237) (.06153)
Received RA/TA –.05507** –.04125 –.02318 –.15767**

(.02421) (.02750) (.02665) (.06654)
Received Fellowship .02302 .06524 .01176 –.19409**

(.03571) (.04299) (.01805) (.09208)
Received Foreign Support .12534*** .18321*** .09177** –.03370

(.03975) (.04337) (.04162) (.05698)
Measured at time of Emigration (US
Relative to Destination Country)
Relative GDP Growth –.00038*** –.00024** .00089 .00274*

(.00009) (.00012) (.00073) (.00149)
Relative Unemployment .19805** .19159** –.02316 .00366

(.08524) (.08125) (.02797) (.05088)
FDI Inflows to Destination Country .00860** .00954** .02459*** .01587**

(.00422) (.00430) (.00493) (.00756)
Relative Patenting Intensity –.00048 –.00065** –.00002*** –.00002*

(.00029) (.00031) (.00001) (.00001)
Relative Rule of Law –.00006 –.00007 –.00023 –.00018

(.00021) (.00011) (.00049) (.00043)
No. of Observations 3111 3111 3058 3058
First Stage: Average Past Top Program
Attendance

.01079** .00275**

(.00428) (.00129)
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Table 3.4: Determinants of Leaving the U.S. by Country of Origin for S&E Only:
OLS vs. IV

From High Income From Low/Middle Income
OLS IV OLS IV

Measured at time of PhD Receipt
Attended a Top Program –.00809 –.53877* .03411*** 1.33926***

(.02386) (.28989) (.01056) (.47485)
Bachelors’ in the US –.13991*** –.15563*** –.05350* –.13083*

(.02750) (.03395) (.02986) (.07502)
Either Parent has Bachelors’ –.00399 .02116 –.00336 –.02222

(.01431) (.01894) (.00612) (.03698)
Male .05090* .09355** –.00452 –.06573

(.02706) (.04453) (.00961) (.04243)
Married –.03283* –.05459* –.06188** .00464

(.01922) (.03029) (.02983) (.03256)
Age .00143 –.00763 .00206 .01781***

(.00212) (.00593) (.00135) (.00506)
US Permanent Resident –.30781*** –.31995*** –.12964*** –.16338***

(.02761) (.03182) (.03479) (.03408)
US Citizen –.24564*** –.24532*** –.19833*** –.29937***

(.02642) (.02737) (.06179) (.07542)
Received RA/TA –.03850 –.01612 –.00381 –.15143**

(.02996) (.03303) (.02699) (.06305)
Received Fellowship .03948 .06409 .02494 –.14860**

(.04361) (.05145) (.01891) (.06830)
Received Foreign Support .14201*** .20658*** .14197*** –.03207

(.03964) (.04813) (.05171) (.06472)
Measured at time of Emigration (US
Relative to Destination Country)
Relative GDP Growth –.00033**** –.00021** .00108 .00286**

(.00005) (.00009) (.00076) (.00138)
Relative Unemployment .18949** .17252** –.02099 .01224

(.08392) (.08225) (.02865) (.05633)
FDI Inflows to Destination Country .00975** .01176** .02284*** .01420*

(.00444) (.00475) (.00510) (.00858)
Relative Patenting Intensity –.00047 –.00058* –.00002* –.00001

(.00031) (.00030) (.00001) (.00001)
Relative Rule of Law –.00013 –.00008 –.00031 –.00035

(.00018) (.00010) (.00051) (.00045)
No. of Observations 2476 2762 2476 2762
First Stage: Average Past Top Program
Attendance

.01160*** .00326***

(.00370) (.00130)

94



references

Banerjee, Abhijit V, and Esther Duflo. 2005. Growth theory through the lens of

development economics. Handbook of economic growth 1:473–552.

Bartelsman, Eric J., John C. Haltiwanger, and Stefano Scarpetta. 2009. Cross-

country differences in productivity: The role of allocation and selection. Tech.

Rep.

Becker, Gary S. 1973. A theory of marriage: Part i. Journal of Political economy

81(4):813–846.

Bernanke, Ben S, Jean Boivin, and Piotr Eliasz. 2005. Measuring the effects of

monetary policy: a factor-augmented vector autoregressive (favar) approach. The

Quarterly journal of economics 120(1):387–422.

Black, Grant, and Paula Stephan. 2007. The importance of foreign PhD students to

US science. Science and the University 113–33.

Borjas, George J. 1989. Immigrant and emigrant earnings: A longitudinal study.

Economic inquiry 27(1):21–37.

———. 2005. The labor-market impact of high-skill immigration. American Eco-

nomic Review 95(2):56–60.

Borjas, George J., and Bernt Bratsberg. 1996. Who leaves? the outmigration of the

foreign-born. The Review of Economics and Statistics 78(1):165–176.

95



Bound, John, Sarah Turner, and Patrick Walsh. 2009. Internationalization of US

doctorate education. Tech. Rep., National Bureau of Economic Research.

Burns, Arthur F, Wesley C Mitchell, et al. 1946. Measuring business cycles. Nber

Books.

Chellaraj, Gnanaraj, Keith E Maskus, and Aaditya Mattoo. 2008. The contribution of

international graduate students to US innovation. Review of International Economics

16(3):444–462.
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Table A.1: Variable Descriptions and Data Sources

Variable Description Source

Dependent Variable
Left Indicator for whether individual left the U.S. SDR

Explanatory Variables
Attended a Top Program Indicator for whether individual attended a top program within

his/her field. Top programs are identified according to Finn (2010).
SED

Bachelors’ in the US Indicator for whether individual has a U.S. undergraduate degree. SED
Either Parent has Bachelors’ Indicator for whether either parent of the individual attained a

bachelor’s degree
SED

Male Indicator for gender of individual SED
Married Indicator for whether an individual is presently married. SDR
Age Age at Ph.D. completion date. SED
US Permanent Resident Indicator for whether the individual has/ever had permanent resi-

dence status in the U.S.
SED

US Citizen Indicator for whether the individual is a U.S. citizen SED
Received RA/TA Indicator for whether the individual received RA/TA during Ph.D. SED
Received Fellowship Indicator for whether the individual received a Fellowship for Ph.D.

studies
SED

Received Foreign Support Indicator for whether the individual received support from home
country for Ph.D. studies

SED

Relative GDP Growth Ratio of standardized US per-capita GDP growth rate averaged
over three years prior to individual’s graduation year to the stan-
dardized Home/Work country per-capita GDP growth rate aver-
aged over three years prior to individual’s graduation year.

WDI

Relative Unemployment Ratio of US unemployment rate (ILO measure) averaged over three
years prior to individual’s graduation year to the Home/Work
country unemployment rate (ILO measure) averaged over three
years prior to individual’s graduation year.

WDI

FDI Inflows to Destination
Country

Net FDI inflows to Home/Work Country (in constant 2005 $)
averaged over three years prior to individual’s graduation year.

WDI

Relative Patenting Intensity Ratio of US patents (resident) per-capita averaged over three years
prior to individual’s graduation year to the Home/Work country
patents (resident) per-capita averaged over three years prior to
individual’s graduation year.

WIPO

Relative Rule of Law Ratio of US estimated rule of law to the Home/Work country
estimated rule of law

WDI

Relative Political Stability Ratio of US political stability (precentile) to the Home/Work
country political stability (percentile)

WDI

Job in Field in which Trained Indicator for whether work on principal job was “closely” related
to Ph.D. field (self reported)

SDR

Salary Premium Log difference between average salary for an individual’s job type
in Home/Work country and the average salary for an individual’s
job type in the US

SDR
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appendix b: degree field groupings (chapter 2)
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1 - Agricultural Sciences

Agricultural Economics

Agricultural Business & Management

Agricultural Animal Breeding

Animal Husbandry

Animal Nutrition

Dairy Science

Animal Science, Poultry (or Avian)

Animal Science, Other

Agronomy & Crop Science

Agricultural & Horticultural Plant Breeding

Plant Pathology/Phytopathology

Plant Protect/Pest Management

Plant Sciences, Other

Food Sciences

Food Distribution

Food Science

Food Sciences and Technology, Other

Soil Sciences

Soil Chemistry/Microbiology

Soil Sciences, Other

Horticulture Science

Fish & Wildlife

Fishing and Fisheries Sciences/Management

Wildlife Management

Forestry Science

Forest Sciences and Biology

Forest Engineering

Forest/Resources Management

Wood Science & Pulp/Paper Technology

Natural Resources/Conservation

Forestry & Related Science, Other

Wildlife/Range Management

Environmental Science

Agriculture, General

Agricultural Science, Other

2 - Biological Sciences

Biochemistry

Bioinformatics

Biomedical Sciences

Biophysics

Biotechnology

Bacteriology

Plant Genetics

Plant Pathology/Phytopathology

Plant Physiology

Botany/Plant Biology

Anatomy

Biometrics & Biostatistic

Cell/Cellular Biology and Histology

Evolutionary Biology

Ecology

Hydrobiology

Developmental Biology/Embryology

Endocrinology

Entomology

Immunology

Molecular Biology

Microbiology & Bacteriology

Microbiology

Cancer Biology
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Neurosciences

Nutrition Sciences

Parasitology

Toxicology

Genetics/genomics, Human & Animal

Genetics

Pathology, Human & Animal

Pharmacology, Human & Animal

Physiology, Human & Animal

Animal & Plant Physiology

Zoology

Biology/Biomedical Sciences, General

Biology/Biomedical Sciences, Other

3 - Health Sciences

Speech-Language Pathology & Audiology

Dentistry

Environmental Health

Environmental Toxicology

Health Systems/Services Administration

Public Health

Public Health & Epidemiology

Epidemiology

Kinesiology/Exercise Science

Hospital Administration

Medicine & Surgery

Nursing Science

Optometry & Ophthalmology

Medicinal/Pharmaceutical Sciences

Rehabilitation/Therapeutic Services

Veterinary Sciences

Health Sciences, General

Health Sciences, Other

4 - Engineering

Aerospace, Aeronautical & Astronautical

Agricultural

Bioengineering & Biomedical

Ceramic Sciences

Chemical

Civil

Communications

Electrical

Electronics

Electrical, Electronics and Communications

Engineering Mechanics

Engineering Physics

Engineering Science

Environmental Health Engineering

Industrial & Manufacturing

Materials Science

Mechanical

Metallurgical

Mining & Mineral

Naval Architecture & Marine Engineering

Nuclear

Ocean

Operations Research

Petroleum

Polymer & Plastics

Systems

Textile
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Engineering Management & Administration

Engineering, General

Engineering, Other

5 - Computer Sciences and Engineering

Computer Enigeering

Computer Science

Information Science & Systems

Computer & Information Science, Other

6 - Mathematics

Applied Mathematics

Algebra

Analysis & Functional Analysis

Geometry/Geometric Analysis

Logic

Number Theory

Statistics

Topology/Foundations

Computing Theory & Practice

Operations Research

Mathematics/Statistics, General

Mathematics/Statistics, Other

7 - Chemistry

Analytical Chemistry

Agriculture & Food Chemistry

Inorganic Chemistry

Nuclear Chemistry

Organic Chemistry

Medicinal/Pharmaceutical Chemistry

Physical Chemistry

Polymer Chemistry

Theoretical Chemistry

Chemistry, General

Chemistry, Other

8 - Geological and Related Sciences

Geology

Geochemistry

Geophysics & Seismology

Geophysics (solid earth)

Paleontology

Fuel Technology & Petroleum Engineering

Mineralogy & Petrology

Mineralogy/Petrology/Geological Chemistry

Stratigraphy & Sedimentation

Geomorphology & Glacial Geology

Applied Geology

Applied Geology/Geological Engineering

Geological and Earth Sciences, General

Geological and Earth Sciences, Other

9 - Physics

Acoustics

Atomic/Molecular/Chemical Physics

Electron Physics

Electromagnetism

Particle (Elementary) Physics

Biophysics

Fluids Physics

Mechanics
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Nuclear Physics

Optics/Phototonics

Plasma/Fusion Physics

Polymer Physics

Thermal Physics

Condensed Matter/Low Temperature Physics

Theoretical Physics

Applied Physics

Physics, General

Physics, Other

10 - Other Physical Sciences

Astronomy

Astrophysics

Astronomy & Astrophysics

Atmospheric Chemistry and Climatology

Atmospheric Physics and Dynamics

Meteorology

Atmospheric Science/Meteorology, General

Atmospheric Science/Meteorology, Other

Environmental Science

Hydrology & Water Resources

Oceanography, Chemical and Physical

Marine Sciences

Ocean/Marine, Other

11 - Psychology

Clinical Psychology

Cognitive Psychology & Psycholinguistics

Comparative Psychology

Counseling

Developmental & Child Psychology

Human Development & Family Studies

Experimental Psychology

Experimental/Comparative & Physiological Psy-

chology

Educational Psychology

Human Engineering

Family Psychology

Industrial & Organizational Psychology

Personality Psychology

Physiological/Psychobiology

Psychometrics

Psychometrics and Quantitative Psychology

School Psychology

Social Psychology

Psychology, General

Psychology, Other

12 - Economics

Economics

Econometrics

Public Policy Analysis

Statistics
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appendix c: job category classifications
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Table C.1: Job Category Classifications
Code Description Jobtype Jobtype1 Jobtype2

1 110510 Computer and information
scientists, research

Computer Sciences and
Engineering

2 110530 Computer support special-
ists

Computer Sciences and
Engineering

3 110540 Computer system analysts Computer Sciences and
Engineering

4 110550 Database administrators Computer Sciences and
Engineering

5 110560 Network and computer sys-
tems administrators

Computer Sciences and
Engineering

6 110570 Network systems and data
communications analysts

Computer Sciences and
Engineering

7 110580 OTHER computer infor-
mation science occupa-
tions

Computer Sciences and
Engineering

8 110880 Computer engineers - soft-
ware

Computer Sciences and
Engineering

9 121720 Mathematicians Mathematics
10 121730 Operations research ana-

lysts, including modeling
Mathematics Engineering

11 121740 Statisticians Mathematics Economics
12 121760 OTHER mathematical sci-

entists
Mathematics

13 182760 Postsecondary Teachers:
Computer Science teachers

Computer Sciences and
Engineering

14 182860 Postsecondary Teachers:
Mathematics and statistics
t...

Mathematics

15 210210 Agricultural and food sci-
entists

Agricultural Sciences

16 220220 Biochemists and biophysi-
cists

Biological Sciences

17 220230 Biological scientists [e.g.,
botanists, ecologists,...

Biological Sciences

18 220250 Medical scientists [exclud-
ing practitioners]

Health Sciences

19 220270 OTHER biological and life
scientists

Biological Sciences

20 230240 Forestry and conservation
scientists

Agricultural Sciences
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Code Description Jobtype Jobtype1 Jobtype2
21 282710 Postsecondary Teachers:

Agriculture teachers
Agricultural Sciences

22 282730 Postsecondary Teachers:
Biological Sciences teach-
ers...

Biological Sciences

23 282970 Postsecondary Teachers:
OTHER natural sciences
teach...

Agricultural Sciences Biological
Sciences

Health
Sciences

24 311930 Chemists, except bio-
chemists

Chemistry

25 321920 Atmospheric and space sci-
entists

Other Physical Sciences

26 321940 Geologists, including earth
scientists

Geological Sciences

27 321950 Oceanographers Other Physical Sciences
28 331910 Astronomers Other Physical Sciences
29 331960 Physicists Physics
30 341980 OTHER physical scientists Other Physical Sciences
31 382750 Postsecondary Teachers:

Chemistry
Chemistry

32 382770 Postsecondary Teachers:
Earth, Environmental

Other Physical Sciences

33 382890 Postsecondary Teachers:
Physics

Physics

34 412320 Economists Economics
35 432360 Psychologists, including

clinical
Psychology

36 482780 Postsecondary Teachers:
Economics

Economics

37 482910 Postsecondary Teachers:
Psychology

Psychology

38 510820 Aeronautical, aerospace,
astronautical engineers

Engineering

39 520850 Chemical engineers Engineering
40 530860 Civil, including architec-

tural and sanitary engineer
Engineering

41 540870 Computer engineer - hard-
ware

Computer Sciences and
Engineering

42 540890 Electrical and electronics
engineers

Engineering

43 550910 Industrial engineers Engineering
44 560940 Mechanical engineers Engineering
45 570830 Agricultural engineers Engineering
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Code Description Jobtype Jobtype1 Jobtype2
46 570840 Bioengineering and

biomedical engineers
Engineering

47 570900 Environmental engineers Engineering
48 570920 Marine engineers and

naval architects
Engineering

49 570930 Materials and metallurgi-
cal engineers

Engineering

50 570950 Mining and geological en-
gineers

Engineering

51 570960 Nuclear engineers Engineering
52 570970 Petroleum engineers Engineering
53 570980 Sales engineers Engineering
54 570990 Other engineers Engineering
55 582800 Postsecondary Teachers:

Engineering
Engineering

56 611110 Diagnosing/Treating Prac-
titioners

Health Sciences

57 611120 RNs, pharmacists, dieti-
cians, therapists

Health Sciences

58 611130 Health Technologists and
Technicians

Health Sciences

59 611140 OTHER health occupa-
tions

Health Sciences

60 612870 Postsecondary teachers -
Health and related sciences

Health Sciences

61 640260 Technologists/technicians
in biological/life

Biological Sciences

62 640520 Computer programmers Computer Sciences and
Engineering

63 641000 Electrical, electronic, in-
dustrial, mechanical tech-
nicians

Engineering

64 641010 Drafting occupations, in-
cluding computer drafting

Computer Sciences and
Engineering

65 641030 OTHER engineering tech-
nologists and technicians

Engineering

66 641970 Technologists and techni-
cians in the physical sci-
ences

Engineering

67 721520 Personnel, training, and la-
bor relations specialists

Psychology

68 750700 Counselors, Educational,
vocational, mental health

Psychology
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