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ABSTRACT

INTERNAL AND EXTERNAL HARMONIC FUNCTIONS IN FLAT-RING
COORDINATES

by

Lijuan Bi

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Hans Volkmer

The goal of this dissertation is to derive expansions for a fundamental solution of Laplace’s

equation in flat-ring coordinates in three-dimensional Euclidean space. These expansions are

in terms of harmonic functions in the interior and the exterior of two different types of regions,

“flat rings” and “peanuts” according to their shapes. We solve Laplace’s equation in the

interior and the exterior of these regions using the method of separation of variables. The

internal and external “flat-ring” and “peanut” harmonic functions are expressed in terms of

Lamé functions.
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Chapter 1

Introduction

It has been known for a long time that Laplace’s equation in cartesian coordinates on R3

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 (1.0.1)

can be solved in a quadric or a cyclidic coordinate system on R3 using separation of variables
methods. A cyclidic coordinate system in R3 has three coordinates, each coordinate is
obtained by a transformation from cartesian coordinates in R3, and the coordinate surfaces
are cyclides. A cyclide in general is a fourth-order surface, which is a natural extension of a
quadric surface. A quadric surface in general is a second-order surface.

Bôcher listed quadric and cyclidic coordinate systems where Laplace’s equation can be
solved using separation of variables in his book “Ueber die Reihenentwicklungen der Poten-
tialtheorie” [9] published in 1894. We can also find these quadric and cyclidic coordinates
systems in Miller’s Book ([4], Table 14 on page 164, Table 17 on page 210). The quadric coor-
dinates are cartesian, cylindrical, parabolic cylindrical, elliptic cylindrical, spherical, prolate
spheroidal, oblate spheroidal, parabolic, paraboloidal, conical, and ellipsoidal coordinates.
The cyclidic coordinates are flat-ring cyclide, flat-disk cyclide, bi-cyclide, cap-cyclide, and
3-cyclide coordinates.

Using separation of variables methods, a solution of (1.0.1) can be written in the form

u(x, y, z) = R(α, β, λ)v1(α)v2(β)v3(λ)

where α, β, λ are quadric or cyclidic coordinates, R(α, β, λ) is a fixed and known function,
and v1(α), v2(β), v3(λ) are solutions of a second order linear homogeneous ordinary differen-
tial equation, respectively. We have R(α, β, λ) = 1 if α, β, λ are quadric coordinates, and
R(α, β, λ) 6= 1, if α, β, λ are cyclidic coordinates. For example, we solve the (1.0.1) in a
well-known quadric coordinate system, the spherical coordinate system,

x = r cosφ sin θ, y = r sinφ sin θ, z = r cos θ, (1.0.2)
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r > 0, −π < φ < π, 0 < θ < π.

The equation (1.0.1) has solutions of the form

u(x, y, z) = u1(r)u2(θ)u3(φ).

The u1, u2, u3 have to satisfy the following equations, respectively:

r2u1
′′ + 2ru′1 − n(n+ 1)u1 = 0, (1.0.3)

u
′′

2 + cot θu′2 +

[
n(n+ 1)− m2

sin2 θ

]
u2 = 0, (1.0.4)

u
′′

3 +m2u3 = 0, (1.0.5)

where m, n are separation parameters. A general solution of (1.0.3) is

u1(r) = c1r
n + c2r

−n−1,

where c1 and c2 are constants. A general solution of (1.0.4) is

u2(θ) = c1P
m
n (cos θ) +Qm

n (cos θ),

where Pm
n and Qm

n are the associated Legendre functions of the first kind and the second kind,
respectively. We consider the simplest cyclidic coordinate system, the toroidal coordinate
system,

x =
sinhσ cosφ

coshσ − cosψ
, y =

sinhσ sinφ

coshσ − cosψ
, z =

sinψ

coshσ − cosψ
.

The coordinate surfaces σ = constant are tori, i.e.

(1 + x2 + y2 + z2)2 = 4(x2 + y2) coth2 σ.

The coordinate surfaces ψ = constant are spherical bowls, i.e.

(z − cotψ)2 + x2 + y2 =
1

sin2 ψ
.

The coordinate surfaces φ = constant are planes, i.e.

x sinφ = y cosφ.

We assume
u(x, y, z) =

√
coshσ − cosψ u1(σ)u2(φ)u3(ψ).
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We find u1, u2, u3 satisfies each of the following equations, respectively:

1

sinhσ
(sinhσu′1)

′ −
(
n2 − 1

4
+

m2

sinh2 σ

)
u1 = 0, (1.0.6)

u′′2 + n2u2 = 0, (1.0.7)

u′′3 +m2u3 = 0, (1.0.8)

where m,n are separation parameters. A general solution of (1.0.6) is

u1(σ) = c1P
m
n− 1

2
(coshσ) + c2Q

m
n− 1

2
(coshσ),

where c1 and c2 are constants, and Pm
n and Qm

n are the associated Legendre functions of
the first kind and the second kind, respectively. Special functions we obtain from solving
Laplace’s equation in a quadric coordinate system via separation of variables are functions
like Bessel functions, Legendre functions, Lamé polynomials, etc, which are some of the
most classical special functions. For a cyclidic coordinate, special functions are functions
like Legendre functions, Lamé periodic functions, Lamé-Wangerin functions, solutions of an
ordinary equation with five elementary singularities (see [6]), etc.

The Helmholtz equation on R3,

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+ k2u = 0,

where k2 is a real number, can be solved via separation of variables in the same quadric coor-
dinate systems that Laplace’s equation can be solved using separation of variables. However,
the Helmholtz equation cannot be solved in the cyclidic coordinate systems listed above using
separation of variables.

It is also long known that a fundamental solution of Laplace’s equation in R3, i.e.

1

||r− r′|| =
(
x− x′)2 + (y − y′)2 + (z − z′)2

)− 1
2 ,

where r = (x, y, z), r′ = (x′, y′, z′), and r 6= r′, can be expressed using solutions from
separation of variables (see [10], [11], [4], and [12]). For example, we consider spherical
coordinates. The internal spherical harmonics are

Gm
n (x, y, z) = rnPm

n (cos θ)eimφ, −n ≤ m ≤ n,

where Pm
n is an associated Legendre function of the first kind (Ferrer’s function). Gm

n is a
harmonic function in R3. The external spherical harmonics are

Hm
n (x, y, z) = r−n−1Pm

n (cos θ)eimφ, −n ≤ m ≤ n.

3



Hm
n is a harmonic function in R3 except the origin. An expansion of a fundamental solution

is
1

||r− r′|| =
∞∑

n=0

n∑

m=−n

(n−m)!

(n+m)!

(
Gm
n (r)Hm

n (r′)
)
, (1.0.9)

where ||r|| < ||r′||. As another example, we can consider toroidal coordinates. The internal
toroidal harmonics are

Gm
n (x, y, z) =

√
coshσ − cosψQm

n− 1
2
(coshσ)einψeimφ,

where m,n ∈ Z and Qm
n− 1

2

is the associated Legendre function of the second kind. Gm
n is

harmonic in R3 except for the z-axis. The external toroidal harmonics are

Hm
n (x, y, z) =

√
coshσ − cosψ Pm

n− 1
2
(coshσ)einψeimφ,

where m,n ∈ Z and Pm
n− 1

2

is the associated Legendre function of the first kind. Hm
n is

harmonic in R3 except for the unit circle z = 0, x2 + y2 = 1.
In this dissertation we consider flat-ring coordinates which is listed as number 15 in

Miller’s list [9, page 210] (see [4]). The coordinates ρ, µ, φ in algebraic form compose an
orthogonal coordinate system in R3 with rotational symmetry. They vary according to
1 < ρ < a < µ < ∞, where a is a given number. For our convenience, we use flat-ring
coordinates α, β, φ in transcendental form, which is a transformation of the algebraic form.
The surface α = constant looks similar to a flat-ring. The surface β = constant looks similar
to a peanut. We derive expansions analogous to (1.0.9) for flat-ring coordinate system in
terms of flat-ring harmonics and peanut harmonics, respectively. As far as we know, the
expansions are given for the first time.

The outline of this dissertation is as follows. In chapter 2 we discuss flat-ring coordi-
nates. In chapter 3 we solve Laplace’s equation in flat-ring coordinates using the method
of separation of variables. The solutions are in terms of Lamé functions. In chapter 4 we
collect some facts about Lamé functions that will be used in the later chapters. In chapter 5
we derive internal and external flat-ring harmonics, solve the Dirichlet problem and provide
expansions for a fundamental solution of Laplace’s equation in terms of internal and external
flat-ring harmonics. In chapter 6 we derive internal and external peanut harmonics, solve the
Dirichlet problem and provide an expansion for a fundamental solution of Laplace’s equation
in terms of internal and external peanut harmonics.

This introduction is based on Cohl’s manuscript (see [2]), the introduction of [6], and the
introduction of [7].
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Chapter 2

Flat-Ring Coordinates

2.1 Flat-Ring Coordinates in Algebraic Form

Flat-ring coordinates ρ, µ, φ form an orthogonal coordinate system in R3 with rotational
symmetry. According to ([4], system 15, page 210), it is given by

x =
cosφ

r
, y =

sinφ

r
, z =

1

r

(
(µ− a)(a− ρ)

a(a− 1)

) 1
2

, (2.1.1)

where

r =
(µρ
a

) 1
2

+

(
(µ− 1)(ρ− 1)

a− 1

) 1
2

. (2.1.2)

The number a > 1 is given. The coordinates ρ, µ, φ vary according to

1 < ρ < a < µ <∞.

The square roots appearing (2.1.1) and (2.1.2) are understood to be positive.
It is easier to visualize in two dimensions. So we set φ = 0 to remove rotational symmetry

and look at the two-dimensional coordinate system as a slice. Now

x =
1

r
, z =

1

r

(
((µ− a)(a− ρ)

a(a− 1)

) 1
2

(2.1.3)

where

r =
(µρ
a

) 1
2

+

(
(µ− 1)(ρ− 1)

a− 1

) 1
2

. (2.1.4)

We will show the mapping (x, z) = f(ρ, µ) according to (2.1.3) and (2.1.4) is bijective.

5



Proposition 1. If A = (1, a) × (a,∞), Q0 = {(x, z) : x > 0, z > 0, x2 + z2 < 1}, and
(x, z) = f(ρ, µ) according to (2.1.3) and (2.1.4), we obtain that f maps A to Q0 and

(x2 + z2 + 1)2

s
− (x2 + z2 − 1)2

s− 1
− 4z2

s− a = 0, (2.1.5)

where s = µ or ρ.

Proof. First we show that f maps A to Q0. Let (ρ, µ) ∈ A and (x, z) = f(ρ, µ) according
to (2.1.3) and (2.1.4). Since the square roots in (2.1.3) and (2.1.4) are understood to be
positive, we have x > 0 and z > 0. We wish to show x2 + z2 < 1. According to (2.1.4), we
have

r =
(µρ
a

) 1
2

+

(
(µ− 1)(ρ− 1)

a− 1

) 1
2

.

We find

1

r
=

1
(
µρ
a

) 1
2 +

(
(µ−1)(ρ−1)

a−1

) 1
2

=

(
µρ
a

) 1
2 −

(
(µ−1)(ρ−1)

a−1

) 1
2

(
µa−µρ+ρa−a

a(a−1)

) . (2.1.6)

We also calculate

x2 + z2 − 1 =
1

r2
+

1

r2

(
(µ− a)(a− ρ)

a(a− 1)

)
− 1 (2.1.7)

=
1

r2

(
µa− µρ+ ρa− a

a(a− 1)

)
− 1. (2.1.8)

Using the results from (2.1.6) and (2.1.8), we obtain

x2 + z2 − 1
1
r

=

1
r2

(
µa−µρ+ρa−a

a(a−1)

)
− 1

1
r

=
1

r

(
µa− µρ+ ρa− a

a(a− 1)

)
− r

=− 2

(
(µ− 1)(ρ− 1)

a− 1

) 1
2

< 0.

It is clear that
x2 + z2 − 1 < 0, (2.1.9)

because
1

r
> 0.

6



Hence f maps A to Q0. Second, we wish to show equation (2.1.5) is true.
We consider

r2
[

(x2 + z2 + 1)2

µ
− (x2 + z2 − 1)2

µ− 1
− 4z2

µ− a

]

=

(
x2+z2+1

1
r

)2

µ
−

(
x2+z2−1

1
r

)2

µ− 1
− 4

a− ρ
a(a− 1)

=

(
2
(
µρ
a

) 1
2

)2

µ
−

(
2
(

(µ−1)(ρ−1)
a−1

) 1
2

)2

µ− 1
− 4

a− ρ
a(a− 1)

= 4

[
ρ

a
− ρ− 1

a− 1
− a− ρ
a(a− 1)

]
= 0.

So it is clear that
(x2 + z2 + 1)2

µ
− (x2 + z2 − 1)2

µ− 1
− 4z2

µ− a = 0.

With a similar calculation, we have

(x2 + z2 + 1)2

ρ
− (x2 + z2 − 1)2

ρ− 1
− 4z2

ρ− a = 0.

Proposition 2. If A = (1, a) × (a,∞), Q0 = {(x, z) : x, z > 0, x2 + z2 < 1}, and (x, z) =
f(ρ, µ) according to (2.1.3) and (2.1.4), then f : A→ Q0 is bijective.

Proof. Let (x, z) ∈ Q0. Assume

F (s) = s(s− 1)(s− a)

[
(x2 + z2 + 1)2

s
− (x2 + z2 − 1)2

s− 1
− 4z2

s− a

]
, (2.1.10)

The coefficient of s2 is

(x2 + z2 + 1)2 − (x2 + z2 − 1)2 − 4z2 = 4x2 > 0. (2.1.11)

Moreover,

lim
s→0

F (s) = a(x2 + z2 + 1)2 > 0,

lim
s→1

F (s) = (a− 1)(x2 + z2 − 1)2 > 0,

lim
s→a

F (s) = −a(a− 1)4z2 < 0.

7



If F (s) = 0, we can find two real solutions, say ρ and µ, such that 1 < ρ < a and µ > a
according to (2.1.11) and the inequalities above. Then we obtain

F (s) = 4x2(s− ρ)(s− µ), (2.1.12)

where s is a real number. According to (2.1.12), we get

lim
s→0

F (s) = 4x2ρµ,

lim
s→1

F (s) = 4x2(1− ρ)(1− µ),

lim
s→a

F (s) = 4x2(a− ρ)(a− µ).

We match the above corresponding limits respectively and we get

a(x2 + z2 + 1)2 = 4x2ρµ, (2.1.13)

(a− 1)(x2 + z2 − 1)2 = 4x2(1− ρ)(1− µ), (2.1.14)

−a(a− 1)4z2 = 4x2(a− ρ)(a− µ). (2.1.15)

From equation (2.1.13), we have

ρµ

a
=

(x2 + z2 + 1)2

4x2
. (2.1.16)

From equation (2.1.14), we obtain

(ρ− 1)(µ− 1)

a− 1
=

(x2 + z2 − 1)2

4x2
. (2.1.17)

We define

r =
(ρµ
a

) 1
2

+

(
(µ− 1)(ρ− 1)

µ− 1

) 1
2

, (2.1.18)

then we substitute equation (2.1.16) and equation (2.1.17) in equation (2.1.18) to get

r =
x2 + z2 + 1

2x
− x2 + z2 − 1

2x
=

1

x

Hence,

x =
1

r
(2.1.19)

Then plug equation (2.1.19) in equation (2.1.15), we have

z =
1

r

(
(µ− a)(a− ρ)

a(a− 1)

) 1
2

.

8



Therefore, f is surjective. Suppose f(ρ, µ) = f(ρ̄, µ̄) = (x, z). By Proposition 1, ρ, µ, ρ̄, µ̄ are
all roots of F (s) = 0 with F defined in (2.1.12). Since (ρ, µ) ∈ A, (ρ̄, µ̄) ∈ A, this implies
(ρ, µ) = (ρ̄, µ̄). Thus, f is injective. Hence, f is bijective.

If we change the signs of the square roots in (2.1.3) and (2.1.4) we obtain coordinates for
other regions in R2 according to Table 1.

(
µρ
a

) 1
2

(
(µ−1)(ρ−1)

a−1

) 1
2
(

(µ−a)(a−ρ)
a(a−1)

) 1
2

x > 0, z > 0, x2 + z2 < 1 + + +

x > 0, z > 0, x2 + z2 > 1 + − +

x > 0, z < 0, x2 + z2 > 1 + − −
x > 0, z < 0, x2 + z2 < 1 + + −

Table 2.1: Signs of roots in regions of (x, z)-plane

Some coordinate lines are shown in Figure 2.1. Note that the boundary of the region
is given by the quarter circle ρ = 1, the vertical segment µ = ∞, and two horizontal
segments [0, b], [b, 1] represented by ρ = a and µ = a respectively, where b =

√
a−
√
a− 1 =

(
√
a+
√
a− 1)−1.

	

2 HANS VOLKMER

(µρ
a

)1/2
(

(µ−1)(ρ−1)
a−1

)1/2 (
(µ−a)(a−ρ)

a(a−1)

)1/2

x > 0, z > 0, x2 + z2 < 1 + + +

x > 0, z > 0, x2 + z2 > 1 + − +

x > 0, z < 0, x2 + z2 > 1 + − −
x > 0, z < 0, x2 + z2 < 1 + + −

Table 1. Signs of roots in regions of (x, z)-plane

region Q0 is given by the quarter circle ρ = 1, the vertical segment µ = ∞,
and two horizontal segments [0, b], [b, 1] represented by ρ = a and µ = a,
respectively, where b =

√
a −

√
a − 1 = (

√
a +

√
a − 1)−1. The coordinate

Figure 1. Coordinate lines of system (2.2) for a = 2.

surfaces for (2.1) are given by (2.3) with x2 + y2 replacing x2:

(2.4)
(x2 + y2 + z2 + 1)2

s
− (x2 + y2 + z2 − 1)2

s − 1
− 4z2

s − a
= 0.

Figure 2.1: Coordinate lines of system (2.1.3) for a = 2

9



We calculate the metric coefficients in this chapter. We will use them in the later chapters.

Proposition 3. The metric coefficients hρ and hµ for (2.1.3) and (2.1.4) are given by

h2ρ :=

(
∂x

∂ρ

)2

+

(
∂z

∂ρ

)2

=
µ− ρ

4(a− ρ)ρ(ρ− 1)

1

r2

=
1

16

(
−(x2 + z2 + 1)2

ρ2
+

(x2 + z2 − 1)2

(ρ− 1)2
+

4z2

(ρ− a)2

)

h2µ :=

(
∂x

∂µ

)2

+

(
∂z

∂µ

)2

=
µ− ρ

4(µ− a)µ(µ− 1)

1

r2

=
1

16

(
−(x2 + z2 + 1)2

µ2
+

(x2 + z2 − 1)2

(µ− 1)2
+

4z2

(µ− a)2

)

Proof. Let

J =

(
∂x
∂ρ

∂x
∂µ

∂z
∂ρ

∂z
∂µ

)
,

where (x, z) = f(ρ, µ) according to (2.1.3) and (2.1.4). First, we wish to show that

JTJ =

(
h2ρ 0

0 h2µ

)
,

where

h2ρ =
µ− ρ

4(a− ρ)ρ(ρ− 1)

1

r2
,

h2µ =
µ− ρ

4(µ− a)µ(µ− 1)

1

r2
.

We calculate
∂r

∂ρ
=

1

2

(
µ

aρ

) 1
2

+
1

2

(
µ− 1

(a− 1)(ρ− 1)

) 1
2

, (2.1.20)

which can be used for the rest of this proposition. Let

L1 =
1

r

∂r

∂ρ

(
1 +

(µ− a)(a− ρ)

a(a− 1)

)
. (2.1.21)
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We have

hρ
2 =

(
− 1

r2
∂r

∂ρ

)2

+

(
− 1

r2

(
(µ− a)(a− ρ)

a(a− 1)

) 1
2
(
∂r

∂ρ

)
− 1

2

1

r

(
(µ− a)(a− ρ)

a(a− 1)

)− 1
2
(

µ− a
a(a− 1)

))2

=
1

r2

(
1

r2

(
∂r

∂ρ

)2(
1 +

(µ− a)(a− ρ)

a(a− 1)

)
+

1

r

(
µ− a
a(a− 1)

)(
∂r

∂ρ

)
+

1

4

(
a(a− 1)

(µ− a)(a− ρ)

)(
µ− a
a(a− 1)

)2
)

=
1

r2

(
1 +

(µ− a)(a− ρ)

a(a− 1)

)−1((
L1 +

1

2

(
µ− a
a(a− 1)

))2

+
1

4

(
µ− a

a(a− 1)(a− ρ)

))

=
µ− ρ

4(a− ρ)ρ(ρ− 1)

1

r2
.

Similarly, we have

h2µ =
µ− ρ

4(µ− a)µ(µ− 1)

1

r2
.

Substitute (2.1.6) and (2.1.20) in (2.1.21) and simplify it then we have

L1 = −1

2

µ− a
a(a− 1)

+
1

2

(
µ(µ− 1)

a(a− 1)

) 1
2

((
ρ

ρ− 1

) 1
2

−
(
ρ− 1

ρ

) 1
2

)
.

Similarly, we have

L2 : =
1

r

∂r

∂µ

(
1 +

(µ− a)(a− ρ)

a(a− 1)

)
=

1

2

a− ρ
a(a− 1)

+
1

2

(
ρ(ρ− 1)

a(a− 1)

) 1
2

((
µ

µ− 1

) 1
2

−
(
µ− 1

µ

) 1
2

)
.

L1 and L2 will be used in the following calculation. The off-diagonal element in JTJ multi-
plied by r2 defined in (2.1.4) is

r2
(
∂x

∂ρ

∂x

∂µ
+
∂z

∂ρ

∂z

∂µ

)
=

∂r
∂ρ

r

∂r
∂µ

r
+

(
∂r
∂ρ

−r

(
(µ− a)(a− ρ)

a(a− 1)

) 1
2

− 1

2

(
µ− a

(a− ρ)a(a− 1)

) 1
2

)(
∂r
∂µ

−r

(
(µ− a)(a− ρ)

a(a− 1)

) 1
2

+
1

2

(
a− ρ

(µ− a)a(a− 1)

) 1
2

)

= 0

We can compute JTJ in a slightly different way as follows. Let

K =

(
∂ρ
∂x

∂ρ
∂z

∂µ
∂x

∂µ
∂z

)
= J−1.
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Then
JTJ = (KKT )−1.

Let

Fs : =
(x2 + z2 + 1)2

s
− (x2 + z2 − 1)2

s− 1
− 4z2

s− a,

Ps : =
∂Fs
∂s

= −(x2 + z2 + 1)2

s2
+

(x2 + z2 − 1)2

(s− 1)2
+

4z2

(s− a)2

Qs : =
x2 + z2 + 1

s
− x2 + z2 − 1

s− 1

Q̃s : =
x2 + z2 + 1

s
− x2 + z2 − 1

s− 1
, where s = µ or ρ.

In these definitions x, z, ρ, and µ are independent variables.
Let (x, z) = f(ρ, µ). We have

∂Fs
∂s

∂s

∂x
= Pµ

∂s

∂x
=

4x(x2 + z2 + 1)

s
− 4x(x2 + z2 − 1)

s− 1
= 4xQs

∂Fs
∂s

∂s

∂z
= Ps

∂s

∂z
=

4x(x2 + z2 + 1)

s
− 4x(x2 + z2 − 1)

s− 1
− 4z

2

s− a = 4x(Qs −
2

s− a).

We can obtain

Ps
∂s

∂x
= 4xQs,

Ps
∂s

∂z
= 4x(Qs −

2

s− a).

We have

PsPt
16

kij

=
PsPt
16

(
∂s

∂x

∂t

∂x
+
∂s

∂z

∂t

∂z

)

=x2QsQt + z2
(
Qs −

2

s− a

)(
Qt −

2

t− a

)

=
1

2
QsFt +

1

2
QtFs +

Ft − Fs
t− s where s 6= t, s = ρ or µ, and t = ρ or µ.

Therefore,

x2QsQt + z2
(
Qs −

2

s− a

)(
Qt −

2

t− a

)
=

1

2
QsFt +

1

2
QtFs +

Ft − Fs
t− s , if s 6= t.
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By taking limit s→ t, we obtain

x2Qt
2 + z2

(
Qt −

2

t− a

)2

= QsFt + Pt.

Therefore,

PsPt
16

kij = x2QsQt + z2
(
Qs −

2

s− a

)(
Qt −

2

t− a

)
=

{
Ps, if s = t

0, if s 6= t.

Hence,

hρ
2 =

µ− ρ
4(a− ρ)ρ(ρ− 1)

1

R2
=

1

16

(
−(x2 + z2 + 1)2

ρ2
+

(x2 + z2 − 1)2

(ρ− 1)2
+

4z2

(ρ− a)2

)

hµ
2 =

µ− ρ
4(µ− ρ)µ(µ− 1)

1

R2
=

1

16

(
−(x2 + z2 + 1)2

µ2
+

(x2 + z2 − 1)2

(µ− 1)2
+

4z2

(µ− a)2

)

2.2 Flat-Ring Coordinates In Transcendental Form

Miller [4] also considers the following transcendental form of flat-ring coordinates. We write
a = k−2 with k ∈ (0, 1), and set

ρ = sn2(β, k), µ = sn2(α, k), (2.2.1)

where sn(z, k) denotes the Jacobian elliptic function of modulus k and z is a complex number.
We will also use the Jacobian elliptic functions cn(z, k), dn(z, k), the complementary modulus
k′ =

√
1− k2, and the complete elliptic integrals K, K ′. K and K ′ are the complete elliptic

integrals. More details about Jacobian elliptic functions are given in the appendix.
The interval β ∈ (K − iK ′, K) is mapped bijectively onto the interval ρ ∈ (1, a). The

interval α ∈ (iK ′, K + iK ′) is mapped bijectively onto the interval µ ∈ (a,∞). Substituting
(2.2.1) into (2.1.1) and (2.1.2), we obtain

x =
cosφ

R
, y =

sinφ

R
, z =

i dn(α, k)dn(β, k)

k′R
, (2.2.2)

where

R = k sn(α, k)sn(β, k) +
k

k′
cn(α, k)cn(β, k).
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The coordinate surface α = α0 is given by

(x2 + y2 + z2 + 1)2

sn2(α0, k)
+

(x2 + y2 + z2 − 1)2

cn2(α0, k)
+

4k2z2

dn2(α0, k)
= 0, (2.2.3)

and the coordinate surface β = β0 is given by

(x2 + y2 + z2 + 1)2

sn2(β0, k)
+

(x2 + y2 + z2 − 1)2

cn2(β0, k)
+

4k2z2

dn2(β0, k)
= 0. (2.2.4)

The metric coefficients of (2.2.2) are

hα = hβ′ =
k(sn2(α, k)− sn2(β, k))1/2

R
, hφ =

1

R
, (2.2.5)

where β = K + iβ′ and β′ is real.
When φ = 0, we have the planar coordinate system

x =
1

R
, z =

i dn(α, k)dn(β, k)

k′R
. (2.2.6)

The transcendental form of flat-ring coordinates has the advantage that it can be extended
to a coordinate system for almost the whole space R3. We can achieve this in three different
ways.

2.2.1 First variant of transcendental flat-ring coordinates

We take α ∈ (iK ′, K+ iK ′) and β ∈ (K− iK ′, K+ 3iK ′). Then it can be shown that (2.2.6)
establishes a bijective real-analytic map between (α, β) and the region

Q1 = {(x, z) : x > 0} \ {(x, 0) : 0 < x ≤ b−1 =
1 + k′

k
}.

Q1 is the right-hand half-plane with a cut from x = 0 to x = b−1 along the x-axis. The range
of α, β in regions of the (x, z)-plane is shown in Table 2.2. Some coordinate lines of this
coordinate system are depicted in Figure 2.2. The first variant of flat-ring coordinates will
be useful when we discuss internal harmonics associated with coordinate surfaces α = α0.
When we discuss internal harmonics associated with coordinate surfaces β = β0, then the
following second variant will be more convenient.
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α β

x > 0, z > 0, x2 + z2 < 1 (iK ′, K + iK ′) (K − iK ′, K)

x > 0, z > 0, x2 + z2 > 1 (iK ′, K + iK ′) (K,K + iK ′)

x > 0, z < 0, x2 + z2 > 1 (iK ′, K + iK ′) (K + iK ′, K + 2iK ′)

x > 0, z < 0, x2 + z2 < 1 (iK ′, K + iK ′) (K + 2iK ′, K + 3iK ′)

Table 2.2: Range of α, β in regions of (x, z)-plane (first variant)

2.2.2 Second variant of transcendental flat-ring coordinates

Now we take α ∈ (iK ′, 2K + iK ′) and β ∈ (K − iK ′, K + iK ′). Then (2.2.6) establishes a
bijective real-analytic map between (α, β) and the region

Q2 = {(x, z) : x > 0} \ {(x, 0) : 0 < x ≤ b =
k

1 + k′
or x ≥ b−1 =

k

1− k′}.

Q2 is the right-hand half-plane with cuts along the x-axis from x = 0 to x = k
1+k′

and from
k

1−k′ to ∞ The range of α, β in regions of the (x, z)-plane is shown in Table 2.3.

α β

x > 0, z > 0, x2 + z2 < 1 (iK ′, K + iK ′) (K − iK ′, K)

x > 0, z > 0, x2 + z2 > 1 (iK ′, K + iK ′) (K,K + iK ′)

x > 0, z < 0, x2 + z2 > 1 (K + iK ′, 2K + iK ′) (K,K + iK ′)

x > 0, z < 0, x2 + z2 < 1 (K + iK ′, 2K + iK ′) (K − iK ′, K)

Table 2.3: Range of α, β in regions of (x, z)-plane (second variant)
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Figure 2.2: Coordinate lines α = αi, α1 = 0.3K + iK ′, α2 = 0.5K + iK ′, α3 = 0.7K + iK ′,
and β = βi, β1 = K − 0.5iK ′, β2 = K, β3 = K + 0.5iK ′, β4 = K + 1.5iK ′, β5 = K + 2iK ′,
β6 = K + 2.5iK ′ of system (2.2.6) for a = 2.

2.2.3 Third variant of transcendental flat-ring coordinates

We take α ∈ (iK ′, K+iK ′) and β ∈ (K−3iK ′, K+iK ′). Then (2.2.6) establishes a bijective
real-analytic map between (α, β) and the region

Q3 = {(x, z) : x > 0} \ {(x, 0) : 0 < x ≤ b =
k

1 + k′
}.

2.2.4 Reflection

Let x > 0, z > 0 with coordinates α ∈ (iK ′, K + iK ′), β ∈ (K − iK ′, K + iK ′) according to
(2.2.6). These coordinates are the same in all three variants. Then the coordinates α̃, β̃ of
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the point (x,−z) are

α̃ = α, β̃ = 2K + 2iK ′ − β for the first variant,

α̃ = 2K + 2iK ′ − α, β̃ = β for the second variant,

α̃ = α, β̃ = 2K − 2iK ′ − β for the third variant.

We see that the reflection (x, z) 7→ (x,−z) is represented by reflections in the coordinates
but in each variant in a different way. We will use these reflections when we derive harmonic
functions later.
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Chapter 3

R-Separation of Variables

We wish to solve Laplace’s equation in flat-ring coordinates by using R-separation of vari-
ables. We state one theorem that we will use in the last two chapters. Let U(x, y, z) be a
function defined in the region

Q̃0 = {(x cosφ, x sinφ, z) : (x, z) ∈ Q0, φ ∈ (−π, π)}.

where
Q0 = {(x, z) : x > 0, z > 0, x2 + z2 < 1}

In this region, we have flat-ring coordinates ρ ∈ (1, a), µ ∈ (a,∞), and φ ∈ (−π, π) as we
showed in chapter 2.

Lemma 4. Suppose

U(x, y, z) = (x2 + y2)−1/4u1(ρ)u2(µ)u3(φ),

ρ ∈ (1, a), µ ∈ (a,∞), and φ ∈ (−π, π). Assume u1, u2, u3 are not identically zero. Then
U is harmonic if and only if there are separation constants m,h such that u1 and u2 satisfy
the algebraic Lamé equation

d2u

ds2
+

1

2

(
1

s
+

1

s− 1
+

1

s− a

)
du

ds
+
ah− (m2 − 1

4
)s

4s(s− 1)(s− a)
u = 0,

and u3 satisfies
d2u3
dφ2

+m2u3 = 0.

Note that u1 and u2 satisfy the same differential equation but on different intervals (1, a) and
(a,∞), respectively.
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Proof. We consider cylindrical coordinates

x = r cosφ, y = r sinφ, z = z.

Let U(x, y, z) = u(r, z, φ). Then the equation

∆U = 0

transforms to
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
+

1

r2
∂2u

∂φ2
= 0. (3.0.1)

We wish to separate the variable φ from the other two variables r and z. We assume

u(r, z, φ) = v(r, z)u3(φ). (3.0.2)

We plug (3.0.2) in (3.0.1) then we have u3 is a solution of

d2u3
dφ2

+m2u3 = 0,

where m is a constant. It follows that

∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2
=
m2

r2
v. (3.0.3)

In order to separate the variables r and z, we set

v(r, z) = r−
1
2 ṽ(r, z).

We calculate
∂v

∂r
= −1

2
r
−3
2 ṽ + r

−1
2
∂ṽ

∂r
, (3.0.4)

and
∂2v

∂r2
=

3

4
r
−5
2 ṽ − r−3

2
∂ṽ

∂r
+ r

−1
2
∂2ṽ

∂r2
. (3.0.5)

From (3.0.4), we have
1

2
r
−3
2 ṽ = −∂v

∂r
+ r

−1
2
∂ṽ

∂r
. (3.0.6)

Multiplying (3.0.6) both sides by − 3
2r

, we have

3

4
r
−5
2 ṽ = − 3

2r
(
∂v

∂r
+ r

−1
2
∂ṽ

∂r
). (3.0.7)

19



Substituting (3.0.7) in (3.0.5) and rearranging the terms, we obtain

∂2v

∂r2
+

1

r

∂v

∂r
=

1

4
r
−5
2 ṽ + r

−1
2
∂2ṽ

∂r2
. (3.0.8)

We substitute (3.0.8) in (3.0.3) then we have

∂2ṽ

∂r2
+
∂2ṽ

∂z2
=
m2 − 1

4

r2
ṽ. (3.0.9)

We change variables by setting
ṽ(r, z) = w(ρ, µ) (3.0.10)

with flat-ring coordinates ρ and µ. The metric coefficients are

hρ =

√
µ− ρ

Rf1(ρ)

and

hµ =

√
µ− ρ

Rf2(µ)
,

where
f1(ρ) = 2

√
(a− ρ)ρ(ρ− 1),

f2(µ) = 2
√

(µ− a)µ(µ− 1),

and

R =
(µρ
a

) 1
2

+

(
(µ− 1)(ρ− 1)

a− 1

) 1
2

.

Equation (3.0.9) can be transformed to

1

hρhµ

[
∂

∂ρ

(
hρ
hµ

∂w

∂ρ

)
+

∂

∂µ

(
hµ
hρ

∂w

∂µ

)]
= R2

(
m2 − 1

4

)
w. (3.0.11)

We plug hρ, hµ, f1, and f2 from above in (3.0.11) and simplify it then we have

f1(ρ)
∂

∂ρ

(
f1(ρ)

∂w

∂ρ

)
+ f2(µ)

∂

∂µ

(
f2(µ)

∂w

∂µ

)
= (m2 − 1

4
)(µ− ρ)w. (3.0.12)

Now we separate the variables ρ and µ by setting

w(ρ, µ) = u1(ρ)u2(µ). (3.0.13)
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We plug (3.0.13) in (3.0.12) and rearrange the terms and it follows that

f1(ρ) d
dρ

(
f1(ρ)du1

dρ

)
+ (m2 − 1

4
)ρu1

u1
(3.0.14)

=
−f2(µ) d

dµ

(
f2(µ)du2

dµ

)
+ (m2 − 1

4
)µu2

u2
= h (3.0.15)

where h is a constant. Then we have

d2u1
dρ2

+
1

2

(
1

ρ
+

1

ρ− 1
+

1

ρ− a

)
du1
dρ

+
ah− (m2 − 1

4
)ρ

4ρ(ρ− 1)(ρ− a)
u1 = 0 (3.0.16)

and
d2u2
dµ2

+
1

2

(
1

µ
+

1

µ− 1
+

1

µ− a

)
du2
dµ

+
ah− (m2 − 1

4
)µ

4µ(µ− 1)(µ− a)
u2 = 0. (3.0.17)

Let U(x, y, z) be a function defined in the region

Q̃1 = {(x cosφ, x sinφ, z) : (x, z) ∈ Q1, φ ∈ (−π, π)},

where

Q1 = {(x, z) : x > 0} \ {(x, 0) : 0 < x ≤ b−1 =
1 + k′

k
}.

Note that Q̃1 consists of all of R3 with the exception of a disk in the xy-plane centered at
the origin with radius b−1, and the half-plane y = 0, x ≤ 0. In this region, we have the first
variant of transcendental flat-ring coordinates α ∈ (iK ′, K + iK ′), β ∈ (K − iK ′, K + 3iK ′),
φ ∈ (−π, π).

Theorem 5. Suppose that U has the form

U(x, y, z) = (x2 + y2)−1/4v1(β)v2(α)v3(φ), (3.0.18)

where α ∈ (iK ′, K + iK ′), β ∈ (K − iK ′, K + 3iK ′), and φ ∈ (−π, π). Assume v1, v2, v3 are
not identically zero. Then U is harmonic if and only if there are separation constants m,h
such that v1 and v2 both satisfy the transcendental Lamé equation

d2v

dz2
+ (h− (m2 − 1

4
)k2sn2(z, k))v = 0, (3.0.19)

and v3 satisfies
d2v3
dφ2

+m2v3 = 0. (3.0.20)
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Proof. It follows that v3 satisfies
d2v3
dφ2

+m2v3 = 0 (3.0.21)

from the above lemma. Substituting ρ = sn2(β, k), where β ∈ (K−iK ′, K+3iK ′) in (3.0.16)
and simplifying it, we have

d2v

dz2
+ (h− (m2 − 1

4
)k2sn2(z, k))v = 0. (3.0.22)

Similarly, substituting µ = sn2(α, k) where α ∈ (iK ′, K + iK ′) in (3.0.17) and simplifying
it, we obtain

d2v

dz2
+ (h− (m2 − 1

4
)k2sn2(z, k))v = 0. (3.0.23)
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Chapter 4

The Lamé Equation

4.1 The Lamé Equation

We collect some known results [13] on the Lamé equation

d2w

dz2
+ (h− ν(ν + 1)k2sn2(z, k))w = 0. (4.1.1)

We assume that 0 < k < 1 and ν ≥ −1
2
. The function sn2(z, k) is even and has period 2K.

4.2 Lamé Periodic Fuctions

The problem we are going to consider in chapter 5 is to find values of the spectral parameter
h such that (4.1.1) has nontrivial 4K-periodic solutions. This eigenvalue problem is treated
in [13, 15.5.1] and [21, Theorem 1.2]. The eigenvalue problem splits into four eigenvalue
problems with separated boundary conditions

boundary conditions eigenvalues eigenfunctions period

w(0) = w(K) = 0 b2n+2
ν (k2) Es2n+2

ν (z, k2) w(z + 2K) = w(z)

w′(0) = w(K) = 0 b2n+1
ν (k2) Es2n+1

ν (z, k2) w(z + 2K) = −w(z)

w(0) = w′(K) = 0 a2n+1
ν (k2) Ec2n+1

ν (z, k2) w(z + 2K) = −w(z)

w′(0) = w′(K) = 0 a2nν (k2) Ec2nν (z, k2) w(z + 2K) = w(z)

where n ∈ N0 in each case denotes the number of zeros of the eigenfunction in the interval
(0, K). We will normalize the eigenfunctions w = Es and w = Ec such that

∫ K

0

w(t)2 dt = 1.
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Since sn2(z, k) also has the imaginary period 2iK ′, we can consider a second eigenvalue
problem where h has to be determined in such a way that (4.1.1) admits nontrivial solutions
with period 4iK ′. This problem can be reduced to the previous one by the substitutions

z′ = i(z −K − iK ′), h′ = ν(ν + 1)− h.

Then we obtain
d2w

dz′2
+ (h′ − ν(ν + 1)k′2sn2(z′, k′))w = 0. (4.2.1)

This is the same equation as (4.1.1) but with h′, k′ in place of h, k, respectively. Therefore,
the 4iK ′-periodic solutions of (4.1.1) are

Ec′
n
ν (z, k2) := Ecnν (z′, k′2),

Es′
n+1
ν (z, k2) := Esn+1

ν (z′, k′2),

with corresponding eigenvalues

a′
n
ν (k2) = ν(ν + 1)− anν (k′2), b′

n+1
ν (k2) = ν(ν + 1)− bn+1

ν (k′2),

where n ∈ N0. Ec′ nν have the period 2iK ′ if n is even, and 4iK ′ if n is odd. Es′ n+1
ν have the

period 2iK ′ if n is odd, and 4iK ′ if n is even.

4.3 Frobenius Solutions

The Lamé equation (4.1.1) has a regular singularity at z = iK ′ with exponents ν + 1,−ν.
The Lamé function of the second kind Fcnν (z, k2), 0 < Re z < 2K, is defined as the Frobenius
solution of (4.1.1) with h = anν (k2) belonging to the exponent ν + 1. It is known that Ecnν
and Fcnν are linearly independent. Similarly, Fsn+1

ν is the Frobenius solution of (3.0.19) with
h = bn+1

ν which belongs to the exponent ν + 1 at z = iK ′. Similarly, we define Fc′nν and
Fs′n+1

ν .
We normalize the Lamé functions of the second kind such that

W [Ecnν ,Fcnν ] = W [Esn+1
ν ,Fsn+1

ν ] = 1, (4.3.1)

where W is the Wronskian.

4.4 Lamé-Wangerin Functions

The problem we consider in chapter 6 is to find values of the spectral parameter h such that

(4.1.1) has a nontrivial solution w(z) that sn(z, k)
1
2 w(z) is bounded at iK ′ and 2K + iK ′.
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The theory of this eigenvalue problem can be found in [13, 15.6] and [18, page 172].

boundary conditions eigenvalues eigenfunctions

sn(z, k)
1
2w(z) bounded at z = iK ′ and z = 2K + iK ′ cnν (k2) W n

ν (z, k2)

where n ∈ N0. W
n
ν (z, k2) has exactly n zeros on the open interval (iK ′, 2K+ iK ′). W n

ν (z, k2)
is an even function when n is even and W n

ν (z, k2) is an odd function when n is odd. We
normalize the eigenfunctions w = W n

ν such that

∫ 2K

0

w2(t+ iK ′) dt = 1.

It is more convenient to work on the Lamé equation by only considering real numbers.
To do so, we can write

z = t+ iK ′, where 0 < t < 2K. (4.4.1)

It is known that

sn(t+ iK ′, k) =
1

k(sn(t, k))
. (4.4.2)

Substituting (4.4.1) and (4.4.2) in (4.1.1), we have

d2w

dt2
+

(
h− ν(ν + 1)

sn2(t, k)

)
w = 0, where 0 < t < 2K. (4.4.3)

More details about Lamé-Wangerin functions are given in the appendix.
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Chapter 5

Flat-Ring Harmonic Functions

5.1 Internal Flat-Ring Harmonics

For internal flat-ring harmonics, we use the first variant of the flat-ring coordinates. We
have α = t + iK ′ with 0 < t < K. If α0 = t0 + iK ′ for some fixed value t0 ∈ (0, K), then
α = α0 describes a closed surface. The closed surface looks like a flat ring (see Figure 5.1).
So we call this kind of closed surface “flat ring”. Let

Figure 5.1: flat-ring, a = 2, α = 0.8K + iK ′

D1 = {r ∈ R3 :
(‖r‖2 + 1)2

sn2(α0, k)
+

(‖r‖2 − 1)2

cn2(α0, k)
+

4k2z2

dn2(α0, k)
> 0}, (5.1.1)
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where α0 ∈ (iK ′, K + iK ′). D1 describes the interior of a flat-ring for a fixed α0. Internal
flat-ring harmonics are harmonic functions of the separated form (3.0.18) which are harmonic
in the region described by D1 for a fixed α0. We can consider the region forms by the union
of the regions described by D1 for each α0, which is all R3 except the z-axis. Suppose that
v1 and v2 are solutions of the Lamé equation (3.0.19) defined on the strip 0 < Real vs < 2K,
where s = 1, 2, and v3 is a solution of (3.0.20). We use the first variant of the transcendental
flat-ring coordinate system and −π < φ < π then U(x, y, z) defined by (3.0.18) is a harmonic
function in Q̃1. We want this function to be harmonic on R3 except the z-axis. Clearly, we
needm ∈ Z, and we choose u3(φ) = eimφ (alternatively, we could use cos(mφ), m = 0, 1, 2, . . .
and sin(mφ), m = 1, 2, 3, . . . ). Then we have to require that the function v1(β)v2(α) is
analytic in the right-hand half plane x > 0, z ∈ R. We know v1(β)v2(α) is always analytic
in the quadrant x > 0, z > 0. When we use the third variant, we can analytically extend
this function to the quadrant x > 0, z < 0 across the segment b = k

1−k′ > x > 0, z = 0.
We want the first and third extension to be the same. In order to make the first and third
extension the same, we need that v1 to be periodic with period 4iK ′. Therefore, we take
v1 = Ec′n|m|− 1

2
or v1 = Es′n+1

|m|− 1
2
. When we use the second variant, we can analytically extend

this function to the quadrant x > 0, z < 0 across the segment b = k
1+k′

< x < b−1 = k
1−k′ ,

z = 0. We want the first and second extension to be the same. In order to make the first
and second extension the same, we need that v1 has the same parity with respect to K+ iK ′

as v2. Therefore, v1 has to be a constant multiple of v2. We can take v1 = v2. We define
internal flat-ring harmonics by

Gcnm(x, y, z) = (x2 + y2)−1/4Ec′
n
|m|− 1

2
(β, k2)Ec′

n
|m|− 1

2
(α, k2)eimφ, (5.1.2)

Gsn+1
m (x, y, z) = (x2 + y2)−1/4Es′

n+1
|m|− 1

2
(β, k2)Es′

n+1
|m|− 1

2
(α, k2)eimφ, (5.1.3)

where m ∈ Z, n ∈ N0. Note that the Lamé functions Ec′(ζ) and Es′(ζ) are analytic on the
strip 0 < Re ζ < 2K, and that α and β lie in this strip.

We collect some properties of internal harmonics in the following theorem. We refer to
the inversion at the unit sphere given by

σ(r) = ‖r‖−2r.

Theorem 6. The internal flat-ring harmonics Gcnm and Gsn+1
m are harmonic in all of R3

except for the z-axis. They have the following symmetry regarding inversion at the unit
sphere:

Gcnm(σ(r)) =‖r‖Gcnm(r),

Gsn+1
m (σ(r)) =−‖r‖Gsn+1

m (r),
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and regarding reflection at the xy-plane

Gcnm(x, y,−z) = (−1)n+1Gcnm(x, y, z),

Gsn+1
m (x, y,−z) = (−1)nGsn+1

m (x, y, z).

Proof. From our consideration at the beginning of this section we know that U = Gc and
U = Gs are harmonic functions on R3 except for the z-axis and the two circles centered at
the origin with radii b−1 and b on the xy-plane, respectively. The function U is bounded in
a neighborhood of the two circles. Therefore, the two circles are removable singularities of
U (see [3], Theorem XIII, page 271). Hence, U is harmonic on R3 except for the z-axis.

The inversion σ in the upper half-space z > 0 is expressed in flat-ring coordinates by
the reflection of β at K: β 7→ 2K − β. The Lamé functions Ec′ remain unchanged under
this reflection while the Lamé functions Es′ change sign. Similarly, the reflection z 7→ −z is
expressed by reflection of β at K + iK ′: β 7→ 2(K + iK ′) − β. The Lame functions Ec′nν ,
Es′nν remain unchanged under this reflection if n is odd but change sign when n is even.

5.2 The Dirichlet Problem

From the known orthogonality and completeness properties of the periodic Lamé functions,
we obtain the following theorem.

Theorem 7. The system of functions

(8π)−1/2Ec′
n
|m|− 1

2
(β, k2)eimφ, (8π)−1/2Es′

n+1
|m|− 1

2
(β, k2)eimφ, m ∈ Z, n ∈ N0

is an orthonormal basis in the Hilbert space

H1 = L2((K − iK ′, K + 3iK ′)× (−π, π)).

We use the internal flat-ring harmonics to solve the Dirichlet problem for harmonic
functions in the region D1 defined in (5.1.1).

Theorem 8. Let f be a function defined on the boundary ∂D1 of the region D1. Suppose
that f is represented in flat-ring coordinates as

(x2 + y2)1/4f(x, y, z) = g(β, φ), β = K + iβ′, β′ ∈ (−K, 3K), φ ∈ (−π, π)

such that g ∈ H1. For all m ∈ Z and n ∈ N0, define

cnm : =
1

8πEc′n|m|− 1
2
(α0, k2)

∫ π

−π

∫ 3K

−K
g(β, φ)Ec′

n
|m|− 1

2
(β, k2)e−imφ dβ′dφ

=
1

8π
{

Ec′n|m|− 1
2
(α0, k2)

}2

∫

∂D1

1

hβ′(r)
f(r)Gcn−m(r) dS(r)
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and

dn+1
m : =

1

8πEs′ n+1
|m|− 1

2

(α0, k2)

∫ π

−π

∫ 3K

−K
g(β, φ)Es′

n+1
|m|− 1

2
(β, k2)e−imφ dβ′dφ

=
1

8π
{

Ec′ n+1
|m|− 1

2

(α0, k2)
}2

∫

∂D1

1

hβ′(r)
f(r)Gsn+1

−m (r) dS(r).

Then the function

u(r) =
∑

m∈Z

∞∑

n=0

(
cnmGcnm(r) + dn+1

m Gsn+1
m (r)

)
(5.2.1)

is harmonic in D1 and it assumes the boundary values f on ∂D1 in the weak sense. The
infinite series in (5.2.1) converges absolutely and uniformly in compact subsets of D1.

Proof. Using flat-ring coordinates, we can write surface integrals over ∂D1 as double inte-
grals:

∫

∂D1

f(r) dS(r) =

∫ 3K

−K

∫ π

−π
hβ′hφ(x2 + y2)−1/4g(β, φ) dβ′ dφ

=

∫ 3K

−K

∫ π

−π
hβ′(x

2 + y2)1/4g(β, φ) dβ′ dφ.

with the metric coefficients hβ′ , hφ given in (2.2.5). This shows that the two formulas given
for cnm and dn+1

m agree.
The rest of the proof is similar to the proof of Theorem 6.3 in [6] .

5.3 External Flat-Ring Harmonics

External flat-ring harmonics are harmonic functions U of the form (3.0.18) which are har-
monic outside of all flat rings (5.1.1). Therefore, they are harmonic in R3 except for the
annulus b2 ≤ x2 + y2 ≤ b−2 in the (x, y)-plane. It is clear that m must be an integer and
arguing as at the beginning of Section 5.1, we see that v1 must have period 4iK ′. Since the
function U has to be analytic along the z-axis, we require that v2 is a solution of the Lamé
equation (3.0.19) which is bounded (actually must converge to 0) when α approached iK ′.
These are the Frobenius solutions of the Lamé equation that we mentioned in Section 4.2.
Thus we define external flat-ring harmonics by

Hcnm(x, y, z) = (x2 + y2)−1/4Ec′
n
|m|− 1

2
(β, k2)Fc′

n
|m|− 1

2
(α, k2)eimφ, (5.3.1)

Hsn+1
m (x, y, z) = (x2 + y2)−1/4Es′

n+1
|m|− 1

2
(β, k2)Fs′

n+1
|m|− 1

2
(α, k2)eimφ, (5.3.2)
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where m ∈ Z, n ∈ N0. We use the first variant of the transcendental flat-ring coordinates
(we can also use the third variant but not the second one).

Theorem 9. The external flat-ring harmonics Hcnm,Hsn+1
m are harmonic in all of R3 except

for the closed annulus in the xy-plane centered at the origin with inner radius k
1+k′

and outer

radius k
1−k′ . They have the same symmetry properties as the internal flat-ring harmonics;

see Theorem 6.

Proof. From our consideration at the beginning of this chapter we know that the functions
U = Hcnm and U = Hsn+1

m are harmonic on R3 except for the z-axis and the annulus b2 ≤
x2 + y2 ≤ b−2 in the (x, y)-plane. Since U is bounded the z-axis is a removable singularity
(see [3], Theorem VI, page 335). Therefore, U is harmonic on R3 except for the annulus
b2 ≤ x2 + y2 ≤ b−2 in the (x, y)-plane. (It appears that U has a continuous extension on this
annulus but not an analytic extension.)

We now show that external harmonics admit an integral representation in terms of in-
ternal harmonics.

Theorem 10. Let α0 ∈ (iK ′, K + iK ′), m ∈ Z, n ∈ N0, and let r′ be a point outside D̄1,
where D1 is given by (5.1.1). Then

Hcnm(r′) =
1

{Ec′n|m|− 1
2
(α0, k2)}2

∫

∂D1

Gcnm(r)

hα(r)4π‖r− r′‖ dS(r), (5.3.3)

and

Hsn+1
m (r′) =

1

{Es′n+1
|m|− 1

2

(α0, k2)}2
∫

∂D1

Gsn+1
m (r)

hα(r)4π‖r− r′‖ dS(r). (5.3.4)

Proof. Let D be an open bounded subset of R3 with smooth boundary. For u, v ∈ C2(D̄),
Green’s formula states that

∫

D

(u∆v − v∆u) dr =

∫

∂D

(
u
∂v

∂ν
− v∂u

∂ν

)
dS, (5.3.5)

where ∂u
∂ν

is the outward normal derivative of u on the boundary ∂D of D. We apply (5.3.5)
to D = D1, u = G = Gcnm, and

v(r) =
1

4π‖r′ − r‖ . (5.3.6)

Since ∆u = ∆v = 0 on D1 we obtain

0 =

∫

∂D1

(
G
∂v

∂ν
− v∂G

∂ν

)
dS. (5.3.7)
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Let Br(q) denote the open ball centered at q ∈ R3 with radius r > 0. We apply (5.3.5)
a second time with D = BR(0) − D̄1 − Bε(r

′) with large R and small ε > 0. Choose
u = H = Hcnm and v as in (5.3.6). Note that ∆u = ∆v = 0 on D. By a standard argument,
taking the limit ε→ 0, we obtain

H(r′) =

∫

∂BR(0)

(
H
∂v

∂ν
− v∂H

∂ν

)
dS −

∫

∂D1

(
H
∂v

∂ν
− v∂H

∂ν

)
dS, (5.3.8)

where, in the second integral, ∂
∂ν

denotes again the derivative in the direction of the outward
normal as in (5.3.7). As R→∞, the first integral on the right-hand side of (5.3.8) tends to
0 (see [8], page 109), so we obtain

H(r′) = −
∫

∂D1

(
H
∂v

∂ν
− v∂H

∂ν

)
dS, (5.3.9)

Set E(ζ) = Ec′n|m|− 1
2
(ζ) and F (ζ) = Fc′n|m|− 1

2
(ζ). We multiply (5.3.7) by F (α0), then multiply

(5.3.9) by E(α0) and add these equations. Using the definitions (5.1.2) and (5.3.1) of internal
and external flat-ring harmonics and cancelling terms, we find

E(α0)H(r′) =

∫

∂D1

v

(
E(α0)

∂H

∂ν
− F (α0)

∂G

∂ν

)
dS. (5.3.10)

Since flat-ring coordinates are orthogonal, the normal derivative and the partial derivative
with respect to α are related by

∂

∂ν
=

1

hα

∂

∂α
,

where hα is given in (2.2.5). Let r = (x, y, z) ∈ ∂D1 with flat-ring coordinates α, β, φ. Then

E(α0)
∂H

∂ν
(r)− F (α0)

∂G

∂ν
(r)

= E(α0)
∂((x2 + y2)−1/4)

∂ν
F (α0)E(β)eimφ

+E(α0)(x
2 + y2)−1/4h−1α F ′(α0)E(β)eimφ

−F (α0)
∂((x2 + y2)−1/4)

∂ν
E(α0)E(β)eimφ

−F (α0)(x
2 + y2)−1/4h−1α E ′(α0)E(β)eimφ

= h−1α (x2 + y2)−1/4 {E(α0)F
′(α0)− E ′(α0)F (α0)}E(β)eimφ.

We now use the Wronskian (4.3.1) and obtain

E(α0)
∂H

∂ν
(r)− F (α0)

∂G

∂ν
(r) =

1

hα(r)E(α0)
G(r). (5.3.11)

When we substitute (5.3.11) in (5.3.10) we obtain (5.3.3). The proof of (5.3.4) is similar.
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5.4 A Fundamental Solution

We obtain the expansion of (5.3.6) in internal and external flat-ring harmonics of the first
kind by combining Theorems 8 and 10.

Theorem 11. Let r, r′ ∈ R3 with flat-ring coordinates α, α′ ∈ (iK ′, K + iK ′), respectively.
If Reα > Reα′ then

1

‖r− r′‖ =
1

2

∑

m∈Z

∞∑

n=0

(
Gcnm(r)Hcn−m(r′) + Gsn+1

m (r)Hsn+1
−m (r′)

)
. (5.4.1)

Proof. We pick α0 ∈ (iK ′, K+iK ′) such that Reα′ < Reα0 < Reα, and consider the domain
D1 defined in (5.1.1). The function f(q) := 1

‖q−r′‖ is harmonic on an open set containing

D̄1. Therefore, by Theorem 8, we have

f(r) =
∑

m∈Z

∞∑

n=0

(
cnmGcnm(r) + dn+1

m Gsn+1
m (r)

)
, (5.4.2)

where cnm and dn+1
m can be evaluated by Theorem 10:

cmn =
1

2
Hcn−m(r′), dn+1

m =
1

2
Hsn+1
−m (r′).

We use hβ′ = hα. Thus we obtain (5.4.1).
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Chapter 6

Peanut Harmonic Functions

6.1 External Peanut Harmonics

It is more convenient to consider external peanut harmonics first. We use the second variant
of the flat-ring coordinates. We have β = K + it with −K ′ < t < K ′. If β0 = K + it0
for some fixed value t0 ∈ (−K ′, K ′), then β = β0 describes a closed surface (if we add two
points on the z-axis, where the coordinate system is not valid). The closed surface looks like
a peanut (see Figure 6.1). So we call this kind of closed surface “peanut”. The interior of

Figure 6.1: peanut, a = 2, β = K + 0.7iK ′

a peanut is given by t < t0 and the exterior by t > t0 (if we add a disk or the exterior of a
disk in the (x, y)-plane, where the coordinate system is not valid).
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We also want to describe the region D2(one peanut) in Cartesian coordinates as we did
for the region D1(one flat ring) earlier. We consider the surface given by

f(r) :=
(‖r‖2 + 1)2

sn2(β0, k)
+

(‖r‖2 − 1)2

cn2(β0, k)
+

4k2z2

dn2(β0, k)
= 0. (6.1.1)

Then f(σ(r)) = ‖r‖−4f(r), where σ(r) = ‖r‖−2r denote an inversion at the unit sphere. It
follows that if r is on the surface, then the mirror point σ(r) is on the surface. Therefore,
the surface given by (6.1.1) has two parts, namely the surface β = β0 and β = β̄0. Unless
t0 = 0, one surface is interior to the unit sphere and the other one is its mirror image and it
lies exterior to the unit sphere. This is also clear from the observation that f(r) remains the
same if we replace β0 by its conjugate. Between the surfaces we have f(r) > 0 and interior
to the smaller surface and exterior to the larger surface we have f(r) < 0. We can check this
by considering r = 0 and ‖r‖ = 1.

We consider three cases:

• If t0 = 0 then the surface β = β0 is the unit sphere and its interior D2 is the open unit
ball

B = {r : ‖r‖ < 1}.
Notice that f(r) is not well-defined in this case.

• If −K ′ < t0 < 0 then the surface β = β0 is in B. Then we have

D2 = B ∩ {r : f(r) < 0}.

• If 0 < t0 < K ′ then the surface β = β0 is exterior to the unit sphere and

D2 = B ∪ {r : f(r) > 0}.

External peanut harmonics are harmonic functions U of the form (3.0.18) that are har-
monic outside a peanut described by D2 for a fixed β. We can consider the region formed
by the union of the regions outside each peanut described by D2, which is R3 except the
disc centered at the origin with radius b = k

1+k′
on the xy-plane. Suppose that v1 and v2

are solutions of the Lamé equation (3.0.19) defined on the strip 0 < Real vs < 2K, where
s = 1, 2, and v3 is a solution of (3.0.20). We use the second variant of the transcenden-
tal flat-ring coordinate system and −π < φ < π then U(x, y, z) defined by (3.0.18) is a
harmonic function in Q̃2. We want this function to be harmonic on R3 except for the disc
centered at the origin with radius b = k

1+k′
on the xy-plane. Clearly, we need m ∈ Z and

we choose u3(φ) = eimφ (alternatively, we could use cos(mφ), m = 0, 1, 2, . . . and sin(mφ),
m = 1, 2, 3, . . . ). Then we have to require that the function v1(β)v2(α) is analytic in the
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right-hand half plane x > 0, z ∈ R except the segment between the origin and b on the
x-axis. As harmonic functions are smooth, the function v2 has to be bounded at the points
iK ′ and 2K + iK ′. Therefore, we take v2 = W n

|m|− 1
2

. We know v1(β)v2(α) is always analytic

in the quadrant x > 0, z > 0. When we use the first variant, we can analytically extend this
function to the quadrant x > 0, z < 0 across the ray x > b−1 = k

1−k′ , z = 0. When we use the
second variant, we can analytically extend this function to the quadrant x > 0, z < 0 across
the segment b−1 > x > b, z = 0. We want the first and second extension to be the same. In
order to make the first and second extension the same, we need v1 to have the same parity
with respect to K + iK ′ as v2. Therefore, v1 has to be a constant multiple of v2. We can
take v1 = v2. Thus we define external peanut harmonics by

Hn
m(x, y, z) = (x2 + y2)−1/4W n

|m|− 1
2
(β, k2)W n

|m|− 1
2
(α, k2)eimφ. (6.1.2)

We collect some properties of external peanut harmonics in the following theorem.

Theorem 12. The external peanut harmonics Hn
m are harmonic on R3 except for the disc

centered at the origin with radius b = k
1+k′

on the xy-plane. Regarding reflection at the
xy-plane, we have

Hn
m(x, y,−z) = (−1)nHn

m(x, y, z).

Proof. From our consideration at the beginning of this section we know thatHn
m is a harmonic

function on R3 except for the disc centered at the origin with the radius b on the xy-plane,
z-axis, and the circle centered at the origin with radius b−1 on the xy-plane. Hn

m is bounded
in a neighborhood of the circle. Therefore, the circle is a removable singularity of Hn

m (see
[3], Theorem XIII, page 271). Since Hn

m is bounded in a neighborhood of z-axis, the z-axis
is a removable singularity (see [3], Theorem VI, page 335). Hence, Hn

m are harmonic on R3

except for the disc centered at the origin with radius b = k
1+k′

on the xy-plane.
The reflection z 7→ −z is expressed by reflection of α at K + iK ′: α 7→ 2(K + iK ′)− α.

The Lamé-Wangerin function W n
ν remains unchanged under this reflection if n is even but

changes sign if n is odd.

6.2 Internal Peanut Harmonics

Internal peanut harmonics are harmonic functions U of the form (3.0.18) which are harmonic
inside a peanut described by D2 for a fixed β. We can consider the region formed by the
union of the regions inside each peanut described by D2, which is R3 except for the infinite
annulus with inner radius b = k

1−k′ and outer radius ∞ in the (x, y)-plane. It is clear that
m must be an integer and arguing as at the beginning of section 6.1.

We define internal peanut harmonics by

Gn
m(x, y, z) = (x2 + y2)−1/4W n

|m|− 1
2
(2K − β, k2)W n

|m|− 1
2
(α, k2)eimφ, (6.2.1)
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where m ∈ Z, n ∈ N0.

Theorem 13. The internal peanut harmonics Gn
m are harmonic on R3 except for the infinite

annulus with inner radius b−1 = k
1−k′ and outer radius ∞ in the (x, y)-plane. They have the

following symmetry regarding inversion at the unit sphere (Kelvin inversion):

Gn
m(σ(r)) = ||r||Hn

m(r),

and regarding reflection at the xy-plane

Gn
m(x, y,−z) = (−1)nGn

m(x, y, z).

Proof. The inversion σ for x > 0 is expressed in the flat-ring coordinates by the reflection of
β at K: β → 2K − β. The region of all internal peanuts is under the inversion σ of D2 for
all β0.

The reflection z 7→ −z is expressed by reflection of α at K + iK ′: α 7→ 2(K + iK ′)− α.
The Lamé-Wangerin function W n

ν remains unchanged under this reflection if n is even but
changes sign if n is odd.

We now show that external harmonics admit an integral representation in terms of in-
ternal harmonics. Assume

W [En
ν , F

n
ν ](z) = w, (6.2.2)

where W is the Wronskian, En
ν (z) = W n

ν (z), F n
ν (z) = W n

ν (2K − z), and w is a constant.

Theorem 14. Let β0 ∈ (K − iK ′, K + iK ′), m ∈ Z, n ∈ N0, and let r′ be a point outside
D̄2, where D2 is given in section 6.1. Then

Hn
m(r′) =

w

{W n
|m|− 1

2

(β0, k2)}2
∫

∂D2

Gn
m(r)

hβ(r)4π‖r− r′‖ dS(r). (6.2.3)

Proof. Let D be an open bounded subset of R3 with smooth boundary. For u, v ∈ C2(D̄),
Green’s formula states that

∫

D

(u∆v − v∆u) dr =

∫

∂D

(
u
∂v

∂ν
− v∂u

∂ν

)
dS, (6.2.4)

where ∂u
∂ν

is the outward normal derivative of u on the boundary ∂D of D. We apply (6.2.4)
to D = D2, u = G = Gn

m, and

v(r) =
1

4π‖r′ − r‖ . (6.2.5)

Since ∆u = ∆v = 0 on D2 we obtain

0 =

∫

∂D2

(
G
∂v

∂ν
− v∂G

∂ν

)
dS. (6.2.6)
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Let Br(q) denote the open ball centered at q ∈ R3 with radius r > 0. We apply (6.2.4)
a second time with D = BR(0) − D̄2 − Bε(r

′) with large R and small ε > 0. Choose
u = H = Hn

m and v as in (6.2.5). Note that ∆u = ∆v = 0 on D. By a standard argument,
taking the limit ε→ 0, we obtain

H(r′) =

∫

∂BR(0)

(
H
∂v

∂ν
− v∂H

∂ν

)
dS −

∫

∂D2

(
H
∂v

∂ν
− v∂H

∂ν

)
dS, (6.2.7)

where, in the second integral, ∂
∂ν

denotes again the derivative in the direction of the outward
normal as in (6.2.6). As R→∞, the first integral on the right-hand side of (6.2.7) tends to
0 (see [8], page 109), so we obtain

H(r′) = −
∫

∂D2

(
H
∂v

∂ν
− v∂H

∂ν

)
dS. (6.2.8)

Set E(ζ) = W n
|m|− 1

2

(ζ) and F (ζ) = W n
|m|− 1

2

(2K − ζ). We multiply (6.2.6) by F (β0), then

multiply (6.2.8) by E(β0) and add these equations. Using the definitions (6.1.2) and (6.2.1)
of internal and external flat-ring harmonics and cancelling terms, we find

E(β0)H(r′) =

∫

∂D2

v

(
E(β0)

∂H

∂ν
− F (β0)

∂G

∂ν

)
dS. (6.2.9)

Since flat-ring coordinates are orthogonal, the normal derivative and the partial derivative
with respect to β are related by

∂

∂ν
=

1

hβ

∂

∂β
,

where hα is given in (2.2.5). Let r = (x, y, z) ∈ ∂D2 with flat-ring coordinates α, β, φ. Then

E(β0)
∂H

∂ν
(r)− F (β0)

∂G

∂ν
(r)

= E(β0)
∂((x2 + y2)−1/4)

∂ν
F (β0)E(α)eimφ

+E(β0)(x
2 + y2)−1/4h−1β F ′(β0)E(α)eimφ

−F (β0)
∂((x2 + y2)−1/4)

∂ν
E(β0)E(α)eimφ

−F (β0)(x
2 + y2)−1/4h−1β E ′(β0)E(α)eimφ

= h−1β (x2 + y2)−1/4 {E(β0)F
′(β0)− E ′(β0)F (β0)}E(α)eimφ.

We now use the Wronskian (6.2.2) and obtain

E(β0)
∂H

∂ν
(r)− F (β0)

∂G

∂ν
(r) =

w

hβ(r)E(β0)
G(r). (6.2.10)

When we substitute (6.2.10) in (6.2.9) we obtain (6.2.3).
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6.3 The Dirichlet Problem

From the known orthogonality and completeness properties of the Lamé-Wangerin functions,
we obtain the following theorem.

Theorem 15. The system of functions

(8π)−1/2W n
|m|− 1

2
(α, k2)eimφ, m ∈ Z, n ∈ N0

is an orthonormal basis in the Hilbert space

H2 = L2((iK ′, 2K + iK ′)× (−π, π)).

where m ∈ Z, n ∈ N0.

We use the external peanut harmonics of the second kind to solve the Dirichlet problem for
harmonic functions in the region D2 defined in section 6.1.

Theorem 16. Let f be a function defined on the boundary ∂D2 of the region D2. Suppose
that f is represented in flat-ring coordinates as

(x2 + y2)1/4f(x, y, z) = g(α′, φ), α′ = α + iK ′, α ∈ (0, 2K), φ ∈ (−π, π)

such that g ∈ H2. For all m ∈ Z and n ∈ N0 , we define

cnm : =
1

8πW n
|m|− 1

2

(β0, k2)

∫ π

−π

∫ 2K

0

g(α′, φ)W n
|m|− 1

2
(α′, k2)e−imφ dα dφ

=
1

8π
{
W n
|m|− 1

2

(β0, k2)
}2

∫

∂D2

1

hα(r)
f(r)Gn

−m(r) dS(r).

Then the function

u(r) =
∑

m∈Z

∞∑

n=0

(cnmG
n
m(r)) (6.3.1)

is harmonic in D2 and it assumes the boundary values f on ∂D2 in the weak sense. The
infinite series in (6.3.1) converges absolutely and uniformly in compact subsets of D2.

Proof. Using flat-ring coordinates we can write surface integrals over ∂D2 as double integrals:
∫

∂D2

f(r) dS(r) =

∫ 2K

0

∫ π

−π
hαhφ(x2 + y2)−1/4g(α′, φ) dα dφ

=

∫ 2K

0

∫ π

−π
hα(x2 + y2)1/4g(α′, φ) dα dφ

with the metric coefficients hα, hφ given in (2.2.5). This shows that the formula given for cnm
agrees. The rest of the proof is similar to the proof of Theorem 6.3 in [6] .
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6.4 A Fundamental Solution

We obtain the expansion of (6.2.5) in internal and external peanut harmonics by combining
Theorems 16 and 14.

Theorem 17. Let r, r′ ∈ R3 with flat-ring coordinates β, β′ ∈ (K − iK ′, K + iK ′), respec-
tively. If Re β > Re β′ then

1

‖r− r′‖ =
1

2

∑

m∈Z

∞∑

n=0

(
Gn
m(r)Hn

−m(r′)
)
, (6.4.1)

where m ∈ Z, n ∈ N0.

Proof. We pick β0 ∈ (K − iK ′, K + iK ′) such that Re β′ < Re β0 < Re β, and consider the
domain D2 defined in section 6.1. The function f(q) := 1

‖q−r′‖ is harmonic on an open set

containing D̄2. Therefore, by Theorem 16, we have

f(r) =
∑

m∈Z

∞∑

n=0

(cnmG
n
m(r)) , (6.4.2)

where cnm can be evaluated by Theorem 14:

cmn =
1

2
Hcn−m(r′).

We used hβ′ = hα. Thus we obtain (6.4.1).
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Appendix

General Descriptions of the Functions snu, cnu, dnu

Let 0 < k2 < 1,

K(k) :=

∫ 1

0

dx√
1− x2

√
1− k2x2

,

K ′(k) := K(k′).

(I) The function snu is a doubly-periodic function of u with periods 4K, 2iK ′. It is analytic
except at the points congruent to iK ′ or to 2K + iK ′ (mod. 4K, 2iK ′); these points are
simple poles, the residues at the first set all being k−1 and the residues at the second set all
being −k−1; and the function has a simple zero at all points congruent to 0 (mod. 2K, 2iK ′).

(II) The function cnu is a doubly-periodic function of u with periods 4K and 2K + 2iK ′. It
is analytic except at points congruent to iK ′ or to 2K + iK ′ (mod. 4K, 2K + 2iK ′; these
points are simple poles, the residues at the the first sent being −ik−1, and the residues at
the second set being ik−1; and the function has a simple zero at all points congruent to K
(mod. 2K, 2iK ′).

(III) The function dnu is a doubly-periodic function of u with periods 2K and 4iK ′. It is
analytic except at points congruent to iK ′ or to 3iK ′ (mod. 2K, 4iK ′); these points are
simple poles, the residues at the first set being −i, and the residues at the second set being
i; and the function has a simple zero at all points congruent to K + iK ′ (mod. 2K, 2iK ′).

It may be observed that snu, cnu, and dnu are the only functions satisfying the above
descriptions, respectively, see [22, page 504].
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Lamé-Wangerin Functions

The eigenvalue problem

We consider the differential equation

−y′′ + q(x)y = λy, 0 < x ≤ b <∞. (6.4.3)

We assume that q : (0, b] → R is a continuous function. Additionally, we assume that q(x)
has the Laurent series representation

q(x) =
1

x2

∞∑

k=0

qkx
k, 0 < x < ε, (6.4.4)

for some ε > 0. The differential equation (6.4.3) has a regular singularity at x = 0 with
indicial equation

r(r − 1)− q0 = 0.

The solutions (called exponents) of this equation are

r1 =
1

2
−
√

1

4
+ q0, r2 =

1

2
+

√
1

4
+ q0.

If q0 = −1
4

we have a double root r1 = r2 = 1
2
. If q0 > −1

4
, there are two distinct real roots

r1 <
1
2
< r2. If q0 < −1

4
, the roots r1, r2 are conjugate complex.

For every λ ∈ C, equation (6.4.3) has a fundamental system y1(x, λ), y2(x, λ) with the
property

y1(x, λ) =xr1
∞∑

k=0

ckx
k + cy2(x, λ) lnx, 0 < x < ε,

y2(x, λ) =xr2
∞∑

k=0

dkx
k, 0 < x < ε.

If r2 − r1 6= 0, 1, 2, . . . then c0 = d0 = 1, c = 0. If r1 = r2 then c0 = 0, d0 = 1, c = −1. If
r2 − r1 = m0 a positive integer, then c0 = d0 = 1, cm0 = 0. This is a well-known result; see
[18, Satz 1, page 147]. We have

d0 = 1, d1 =
q1
2r2

, d2 =
2r2q2 − 2λr2 + q21

4r2(2r2 + 1)
.

In the following we assume that

q0 ≥ −
1

4
.
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Let 0 < β ≤ π. We call λ ∈ C an eigenvalue if

cos β y2(b, λ) = sin β y′2(b, λ), ′ =
d

dx
. (6.4.5)

We call y2(x, λ) a corresponding eigenfunction.

Main results

In this section we argue essentially the same way as in the theory of regular Sturm-Liouville
problems.

Lemma 1. For every λ, µ ∈ C we have

lim
x→0+

y2(x, λ)y′2(x, µ) =

{
0 if q0 > −1

4
,

1
2

if q0 = −1
4
.

Proof. If q0 > −1
4

then r2 >
1
2

and if q0 = −1
4

then r2 = 1
2
.

Lemma 2. If λ1, λ2 are two distinct real eigenvalues, then

∫ b

0

y2(x, λ1)y2(x, λ2) dx = 0.

Proof. Let uj(x) = y2(x, λj). For 0 < δ < b we obtain

(λ1 − λ2)
∫ b

δ

u1(x)u2(x) dx= [u1(x)u′2(x)− u′1(x)u2(x)]
b
δ

=−u1(δ)u′2(δ) + u′1(δ)u2(δ).

By Lemma 1, as δ → 0+,

(λ1 − λ2)
∫ b

0

u1(x)u2(x) dx = 0.

Since λ1 6= λ2 the desired statement follows.

Lemma 3. All eigenvalues are real.

Proof. Let λ be a complex eigenvalue. Setting u1 = y2(x, λ) and u2 = y2(x, λ̄) we obtain
arguing as in the proof of Lemma 2,

2i Imλ

∫ b

0

|u1(x)|2 dx = 0.

Therefore, Imλ = 0.
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We introduce the Prüfer angle θ(x, λ) and Prüfer radius r(x, λ) > 0 for 0 < x ≤ b by
setting

y2(x, λ) = r(x, λ) sin θ(r, λ), y′2(x, λ) = r(x, λ) cos θ(r, λ).

The Prüfer angle is defined to be between 0 and π/2 for small positive x and by continuity
otherwise. For small positive x we have

θ(x, λ) = arctan
y2(x.λ)

y′2(x, λ)
.

This shows that θ(x, λ) is an analytic function of x in a neighborhood of 0. We calculate

θ(x) = a1x+ a2x
2 + a3x

3 + . . . (6.4.6)

with

a1 =
1

r2
, a2 = − q1

2r32
,

a3 =
12λr32 − 12r32q2 − 8r32 + 9q21r2 − 4r22 + 3q21

12r52(2r2 + 1)
.

The Prüfer angle satisfies the first order differential equation

θ′ = cos2 θ + (λ− q(x)) sin2 θ. (6.4.7)

The following lemma collects properties of θ(x, λ). These properties are analogous to
those of the Prüfer angle for regular Sturm-Liouville problems; see [19].

Lemma 4. (a) When θ(x0, λ) = nπ for some integer n and 0 ≤ x0 ≤ b, then θ(x, λ) < nπ
for 0 < x < x0 and θ(x, λ) > nπ for x0 < x ≤ b.
(b) The function λ→ θ(x, λ) is continuous and strictly increasing for every 0 < x ≤ b.
(c) limλ→−∞ θ(b, λ) = 0.
(d) limλ→∞ θ(b, λ) =∞.

Proof. (a) If θ(x0, λ) = nπ then (6.4.7) implies θ′(x0, λ) = 1.

(b) Let λ1 < λ2. The expansion (6.4.6) shows that dk

dxk
θ(0, λ1) = dk

dxk
θ(0, λ2) for k = 0, 1, 2 but

d3

dx3
θ(0, λ1) <

d3

dx3
θ(0, λ2). Therefore, we can choose 0 < δ < x such that θ(δ, λ1) < θ(δ, λ2).

Then θ(x, λ1) < θ(x, λ2) follows from a standard differential inequality; see [16, Theorem
2.1, page 144].
(c) The expansion (6.4.6) shows that there is 0 < δ < b such that 0 < θ(δ, 0) < π

2
. Let

Θ(x, λ) be the solution of (6.4.7) with initial condition Θ(δ, λ) = π
2
. It follows from (b) that

θ(δ, λ) < π
2

for λ ≤ 0. Therefore, 0 < θ(b, λ) < Θ(b, λ) for λ ≤ 0. It is known from regular
Sturm-Liouville theory that limλ→−∞Θ(b, λ) = 0. This proves (c).
(d) We choose 0 < δ < b. Let Θ(x, λ) be the solution of (6.4.7) determined by Θ(δ, λ) = 0.
Then Θ(b, λ) < θ(b, λ) for all real λ. It is known from regular Sturm-Liouville theory that
limλ→∞Θ(b, λ) =∞. This proves (d).
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Theorem 18. The eigenvalues (solutions of (6.4.5)) form an increasing sequence

λ0 < λ1 < λ2 < . . .

converging to infinity. The corresponding eigenfunctions y2(x, λn) have exactly n zeros in
the open interval (0, b).

Proof. By Lemma 3, all eigenvalues are real. A real number λ is an eigenvalue if and only if
there exists n = 0, 1, 2, . . . such that

θ(b, λ) = β + nπ. (6.4.8)

By Lemma 4, for every n = 0, 1, 2, . . . , equation (6.4.8) has exactly one solution λ = λn. By
Lemma 4(a), y2(x, λn) has exactly n zeros in (0, b).

Let C[0, b] be the vector space of continuous real-valued functions defined on [0, b] en-
dowed with the inner product

〈f, g〉 =

∫ b

0

f(x)g(x) dx.

This is a pre-Hilbert space. We could also work in the Hilbert space L2(0, b) but we want to
avoid usage of the Lebesgue integral in this section. An orthogonal sequence {fn}, fn 6= 0,
in a pre-Hilbert space H is called complete if the closed linear span of the sequence is H.
The sequence is complete if and only if every function f ∈ H can be written as a generalized
Fourier series

f =
∑

n

〈f, fn〉
〈fn, fn〉

fn

with convergence in H.
By Lemma 2, the sequence {y2(x, λn)}∞n=0 is an orthogonal sequence in C[0, b]. We are

going to show that this sequence is complete (this result is missing in [17].).
For λ ∈ C let y3(x, λ) be the solution of (6.4.3) determined by initial conditions

y3(b, λ) = sin β, y′3(b, λ) = cos β.

λ is an eigenvalue if and only if y2 and y3 are linearly dependent. Choose λ∗ ∈ R such that
λ∗ is not an eigenvalue, and define the Green’s function

G(x, t) = W−1
{
y2(x)y3(t), 0 < x < t ≤ b,

y2(t)y3(x), 0 < t ≤ x ≤ b,

where yj(x) = yj(x, λ
∗) for j = 2, 3, and W is the Wronskian

W = y3y
′
2 − y′3y2.

W is a nonzero constant.
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Lemma 5. If we set G(x, t) = 0 for x = 0 or t = 0, then G : [0, b]× [0, b]→ R is continuous.

Proof. We use the estimates

|y2(x)| ≤ B2x
r2 , |y3(x)| ≤ B3x

r1| lnx|, for 0 < x ≤ b,

where B2, B3 are constants. If 0 < t ≤ x ≤ b, we have

|y2(t)y3(x)| ≤ B2B3t
r2xr1 ≤ B2B3x

r1+r2| lnx| = B2B3x| lnx|.

This shows that G is continuous on the triangle 0 ≤ x ≤ t ≤ b. Since G(x, t) = G(t, x), G is
continuous on [0, b]2.

We consider the integral operator T : C[0, b]→ C[0, b] defined by

Tf(x) =

∫ b

0

G(x, t)f(t) dt.

Since G is continuous and G(x, t) = G(t, x), we have the following expansion theorem; see
[19].

Theorem 19. The operator T has a sequence of nonzero eigenvalues {µn} with corresponding
orthogonal eigenfunctions fn such that the closed linear span of {fn} contains the range of
T .

Lemma 6. λ is an eigenvalue in the sense of (6.4.5) if and only if (λ−λ∗)−1 is an eigenvalue
of T . The corresponding eigenfunctions are the same.

Proof. Let f ∈ C[0, b] and set y = Tf . Then, for 0 < x ≤ b,

y(x) = W−1
(∫ x

0

y2(t)f(t) dt

)
y3(x) +W−1

(∫ b

x

y3(t)f(t) dt

)
y2(x).

Differentiating we obtain

y′(x) = W−1
(∫ x

0

y2(t)f(t) dt

)
y′3(x) +W−1

(∫ b

x

y3(t)f(t) dt

)
y′2(x).

Differentiating once more we find

y′′(x) = −f(x) + (q(x)− λ∗)y(x).

If Tf = (λ− λ∗)−1f with f 6= 0 then setting y = Tf 6= 0 we obtain −y′′ + q(x)y = λy. We
have

y(b) = W−1
(∫ b

0

y2(t)f(t) dt

)
y3(b), y′(b) = W−1

(∫ b

0

y2(t)f(t) dt

)
y′3(b).
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Therefore, y satisfies the boundary condition cos βy(b) = sin βy′(b). If r1 < 0 then y must be
a constant multiple of y2(x, λn) for some n because y = Tf is continuous on [0, b]. Therefore,
λ = λn for some n = 0, 1, 2 . . . If r1 ≥ 0 then y(x) = O(x) + O(xr2) as x → 0+ so we reach
the same conclusion.

Conversely, we wish to show that Ty2(x, λn) = (λn − λ∗)−1y2(x, λn). This follows from
the equations

∫ x

0

y2(t)y2(t, λn) dt= (λn − λ∗)−1(y2(x, λn)y′2(x)− y′2(x, λn)y2(x)),

∫ b

x

y3(t)y2(t, λn) dt= (λn − λ∗)−1(−y2(x, λn)y′3(x) + y′2(x, λn)y3(x)).

Theorem 20. The eigenfunctions {y2(x, λn)}∞n=0 are complete in C[0, b].

Proof. It follows from Lemma 6 and Theorem 19 that the closed linear span of the eigen-
functions y(x, λn) contains the range of T . Therefore, it is enough to show that the range
of T is dense in C[0, b]. Let g ∈ C2[0, b] with compact support in (0, b). Then f(x) :=
−g′′(x) + (q(x) − λ∗)g(x) is continuous on [0, b] with compact support in (0, b). The func-
tion y = Tf satisfies f(x) = −y′′(x) + (q(x) − λ∗)y(x), so v(x) := g(x) − y(x) satisfies
−v′′(x) + (q(x)− λ∗)v(x) = 0. Now cos β v(v) = sin β v′(b), and y(x) is a constant multiple
of y2(x) for x close to 0. Therefore, g = y and g is in the range of T . The set of functions
g ∈ C2[0, b] with compact support in (0, b) is dense in C[0, b]. The proof is complete.

Connectios to Weyl’s theory of singular Sturm-Liouville problems

We see that y2 ∈ L2(0, 1
2
ε) for all q0 ∈ R, and y1 ∈ L2(0, 1

2
ε) if and only if q0 <

3
4
. From this

observation we obtain the following lemma.

Lemma 7. Equation (6.4.3) is in the limit-point case at x = 0 if and only if q0 ≥ 3
4
.

Lemma 7 is a special case of [18, Satz 1, page 152].
The point b is a regular end point. At this end point we pose the boundary condition

cos β y(b) = sin β y′(b). (6.4.9)

If q0 ≥ 3
4

we do not need a boundary condition at x = 0. If −1
4
≤ q0 <

3
4
, we add a boundary

condition that forces eigenfunctions to be constant multiples of y2. Let H = L2(0, b). If
q0 ≥ 3

4
, we introduce the linear operator A : H ⊃ D(A)→ H by Ay = −y′′+qy with domain

D(A) = {y : y, y′ ∈ AC[δ, b] for all 0 < δ < b, y,−y′′ + qy ∈ H, y satisfies (6.4.9)}.
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If −1
4
≤ q0 <

3
4
, we add the boundary condition

lim
x→0+

(y2(x)y′(x)− y′2(x)y(x)) = 0.

It is known that A is a self-adjoint operator. For the operator T : H → H defined in Section
2 we have

T = (A− λ∗)−1.
Since T is compact, A is a self-adjoint operator with compact resolvent. We also see that A
is bounded below. The eigenvalues of A are exactly the numbers λn, n = 0, 1, 2, . . .

Examples

Example 3: The Lamé-Wangerin functions are eigenfunctions of the differential equation

−y′′ + ν(ν + 1)

sn2(x, k)
y = λy.

Then q0 = ν(ν + 1), q1 = 0, q2 = ν(ν + 1)1
3
(k2 + 1). The boundary condition is y(K) = 0 or

y′(K) = 0.
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