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ABSTRACT 

EFFECTS OF METAL SULFATE ELECTROLYTE ADDITIVES ON CHARGE 

ACCEPTANCE IN AGM BATTERIES 

by 

Alex Drake 

 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Deyang Qu 

 

 In the United States the transportation sector is the second largest source of greenhouse 

gas emissions, making up 27% of the total greenhouse gas emitted in 2015.  Within the 

transportation sector passenger vehicles make up the largest percentage of emissions at 41.6% 

[1].  To help curb passenger vehicle CO2 emissions manufacturers are adopting increasing 

amounts of hybrid technology.  Micro-hybrid technology utilizes a typical internal combustion 

engine and lead-acid battery partnered with Start-Stop technology and regenerative breaking to 

decrease emissions by 5-12%.  To keep up with the electrical demands of this type of use, 

advanced lead acid batteries in the form of Absorbent Glass Matt (AGM) batteries are being used 

in these systems.  With an ever-growing electrical demand placed on these batteries, 

improvements to the charge acceptance of these batteries is required.  Much research is being 

done on adding carbon materials to the batteries lead plates and various compounds to the 

electrolyte to increase charge acceptance.  For the original experiments contained in this paper, 

the use of metal ion sulfate salts to improve charge acceptance is investigated.  Results establish 

that different metal ions and different concentrations of ions have a broad range of effects on 

charge acceptance.  Magnesium, zinc, and aluminum ions showed a 32-41% increase in charge 

acceptance at a 60% state of charge. 
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1 Introduction 

1.1 Energy Storage 

 For as long as man has been generating electricity there has been the desire to store it.  

The man credited with creating the first battery in 1800 used zinc and copper discs, a cardboard 

separator, and a brine electrolyte [2].  Fast forward 200 years and batteries have found their way 

into nearly all aspects of life.  From starting cars to powering cell phones and running smoke 

detectors, batteries have become an integral part of the modern world.  This widely versatile 

technology’s influence will continue to grow as the demand for electricity continues to grow.   

One subset of the battery industry, the AGM battery, has an interesting role to play in society’s 

energy future. 

1.2 History of the Lead Acid Battery 

 The original battery created by Alessandro Volta was what is known as a primary cell.  In 

a primary cell, once the positive and negative active materials no longer have a high enough 

voltage difference, the battery can no longer be used.  The next logical step in battery 

development was a battery that could be reused many times (secondary cell). In 1860 the French 

scientist Gaston Plante solved this problem when he created the first lead acid battery [3]. 

 The lead-acid battery designed by Plante, which consisted of nine cells in series, as seen 

in Figure 1 was the only secondary cell until the creation of the nickel-cadmium battery 40 years 

later.  Unlike the nickel-battery, lead acid batteries have managed to remain one of the dominant 

energy storage technologies for well over 100 years. 
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Figure 1-Plante original lead acid battery [3] 

 There are many factors that have led to the prominence of lead-acid technology over 

other secondary battery types.  The two main factors behind lead acids success is the low cost of 

lead and it’s versatility [4]. The cost of lead has always been low, and in comparison to the high 

cost of components in competing battery technologies like lithium-ion, it often provides enough 

of an and edge to maintain its place.  The versatility of the lead acid battery can be clearly seen 

today by its wide use in a variety of applications.  While most people may only be familiar with 

lead acid batteries because of their use in automobiles, they can also be found in many other 

places. Figure 2 highlights that lead acid batteries play a prominent role in not only the 

automotive market, but also in telecommunications and backup supply markets. 

 

Figure 2-ALABC battery markets 2013 [5] 
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1.3 Lead Acid Battery Chemistry/Mechanism 

Since the lead acid battery’s inception over 150 years ago, little has changed with the 

basic setup of the battery, with the main components still having the same requirements.  There 

are four main components of any successful battery: a cathode and anode, a separator, an 

electrolyte, and a load.  As with any redox (reduction-oxidation) reaction, an oxidation reaction 

occurs at the anode, resulting in free electrons that then flow through the load to the cathode 

where the electrons are consumed in a reduction reaction.  Below the reaction equations show the 

process by which the chemical reaction in the lead acid battery occurs. 

Anode Reaction (-): -0.356 V 

Pb(s) + HSO4 (aq) → PbSO4 (s) + H+
(aq) + 2e−             Eq. 1 

Cathode Reaction (+): 1.685 V 

PbO2 (s) + HSO4 (aq) + 3H+
(aq) + 2e− → PbSO4 (s) + 2H2O(l)             Eq. 2 

Total Reaction: 2.041 V 

Pb(s) + PbO2 (s) + 2H2SO4 (aq) → 2PbSO4 (s) + 2H2O(l)               Eq. 3 

Figure 3-Main Lead Acid battery chemical equations. 

The reactions above show the discharge reaction for a lead acid battery.  As a secondary battery, 

the reverse reaction takes place during recharge when outside energy is applied to the system.  

For use in today’s automobiles a single cell, which provides about 2.2 volts, is not enough.  A 

stack of 6 cells is required to meet the requirements of 12 V systems used in most automobiles.   

 The second main component in the lead acid battery is the electrolyte.  For lead acid 

batteries, the electrolyte is a sulfuric acid solution.  The reactions listed above show that the 
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sulfuric acid provides the necessary compounds, in the case HSO4, to allow the oxidation and 

reduction reactions to happen simultaneously.  An interesting note about reactions taking place 

inside the lead acid battery is what happens when the battery is fully discharged.  Since both 

plates result in the formation of PbSO4 (lead sulfate) during discharge, the acidity of the 

electrolyte decreases during discharge, with almost no acid remaining in a fully discharged cell. 

Because of this fact, testing the density of the electrolyte is often used to check the health 

flooded cells.  

 The third main component of a lead acid battery is the separator.  The main role of the 

separator is to prevent an electrical short circuit from forming between the positive and negative 

plates, but it must also be resistant to sulfuric acid and allow for ionic transport through the 

separator. The earliest separators, like those used by Plante and his peers, were often made of 

substances such as natural rubber and cardboard [2].  As time went on, changes were made to the 

separator materials from things like rubber, sponges, cork, and wood.  From around 1880 

through the 1940’s wood was used until cellulose and PVC separators became the norm [6].  The 

next big change in lead acid battery design came in the 1970’s with the invention of the AGM 

battery [7]. 

1.4 Differences in Current Lead Acid Battery Technology 

 Today, there are four main types of lead acid batteries available and are most easily 

distinguished by their separator style. The flooded style is the oldest and most common. These 

batteries utilize a solid separator, typically a material like polyethylene [6]. The acid electrolyte 

fills the body of the battery case keeping the lead plates completely submerged in acid.  These 

batteries represent the least expensive type and have been used in automobiles for decades.  The 

main drawback with this style of battery is that there is no system in place for oxygen and 
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hydrogen recombination.  This results in the gradual loss water from the battery and, without 

proper maintenance, a shorter life span. 

 The second type of lead acid battery today is an Enhanced Flooded Battery (EFB).  

Similar in its overall design to the standard flooded battery, the EFB also uses a hard separator 

and fills the battery case with acid, keeping the plates constantly submerged.  The main 

difference between standard flooded batteries and enhanced flooded batteries lies in the lead 

plates themselves.  EFBs use carbon additives to improve charge acceptance and cycle life [8]. 

 The third variant of lead acid batteries is the gel lead acid battery.  Very different from 

the flooded batteries mentioned above, the gel lead acid battery uses the addition of silica to the 

electrolyte to create a gel [6].  This type of battery is one that falls into the category of Valve 

Regulated Lead Acid Batteries (VRLA).  In VRLA batteries, the battery case is sealed with a 

pressure release valve to prevent gases from escaping at low pressures.  This is done to allow for 

the recombination of hydrogen and oxygen inside the battery, removing the need to add water to 

the battery.  Also known as maintenance free batteries, this feature allows for a heightened 

versatility.  In the gel VRLAs, the gelled electrolyte will initially shrink and crack during 

charging causing small amounts of water loss.  After these cracks have formed, they offer the 

pathways for oxygen generated on the positive plate to travel through the gel to the negative 

plate to be reduced [6]. 

The final type of lead acid battery to be discussed here is the Absorbent Glass Mat 

(AGM) VRLA.  In an AGM battery a fiberglass mat is used as the separator material.  These 

mats have a long list of positive attributes including high acid resistance, high wettability (low 

contact angle) with sulfuric acid, inexpensive, easily variable diameter and length of glass fibers, 
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and stability through a wide temperature range [9]. By changing the diameter and length of the 

glass fibers and the percentages of certain sized fibers, properties like pore size, surface area, and 

separator density can all be manipulated.  These considerations are important for determining 

acid filling speeds and diffusion rates through the separator.   

Another factor that can greatly change the behavior of an AGM battery is the level of 

compression experienced by the separator.  The general trend with regards to separator 

compression is that low compression leads to shorter cycle life and that a minimum pressure of 

around 40kPa should be experienced at the plate/separator interface [9].  It has been noted that 

another important characteristic of the separator is that it is able to rebound after cycles of 

increasing and decreasing pressures caused by the changing plate thicknesses during charge and 

discharge cycles. Additionally, increasing the amount of compression of the separator will 

reduce the amount of acid that the mat can absorb, while adding acid to compressed mat will 

reduce the amount of compression due to the reduction of friction/force within the mat [9].  

These characteristics of compression are important for consideration during the design of a AGM 

battery. 

Since the lead-acid battery’s creation in the mid 1800’s, many changes have been made 

to improve the technology’s usefulness., Figure 4 (below) [10] shows an exploded view of a 

modern AGM battery. 
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Figure 4: AGM Battery Exploded View 

When comparing Figure 4 to Figure 1, the differences are clear.  Instead of using coiled 

lead sheets separated by rubber strips [3], most lead acid batteries found in cars today use lead 

plates separated by various separators.  In the more modern batteries, both the separators and the 

plates have more complicated constructions and purposes. The positive and negative plates, 

labeled as B and C respectively in Figure 4, are combinations of lead and other materials pressed 

around a metal grid.  This grids, A and D (Figure 4),  act as the current collector and are 

responsible for conducting the electricity from the terminal to the plate’s active material, 

allowing for electricity to be stored in chemical bonds.  The final part focused on in Figure 4, is 

the separator (part C).  The diagram shows the use of an AGM separator and will be the 

separator of choice for the testing to follow.  

1.5 Requirements for Batteries in Micro-Hybrid Applications 

 In the United States and around the world, serious consideration is being giving to the 

issue of CO2 emissions.  Across numerous industries methods are being employed to reduce the 

amount of CO2 and other greenhouse gases emitted.  These methods range from CCS (carbon 

capture and sequestration), to wind and solar generation, to driving more efficient or electrified 
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automobiles.  All of these methods would reduce CO2 emissions, but questions of cost and 

efficiency must also be considered. 

Many car manufactures like Tesla, with its completely electric line of vehicles, and 

Nissan, with its all electric Leaf, have begun focusing on reducing the need for oil by removing 

internal combustion engines altogether.  While on the surface this appears to be a win for the 

environment, an immediate shift from gasoline to electric cars would merely shift the CO2 

emissions from the tailpipe to the power plant, where in the United States almost 65% of 

electricity generated is done so using fossil fuels like coal and natural gas [11].  The use of 

electric cars is an important step toward improving the way people are transported, but until the 

electricity used to power these cars is generated using renewable methods, it will not be the 

solution. 

Another way to reduce automotive carbon emissions and to meet the ever-tightening 

government pollution restrictions is to increase the overall efficiency of today’s automobiles.  

Several methods being introduced to boost internal combustion engine (ICE) efficiency without 

redesigning the engine include reducing idle rpm, mild to full drivetrain hybridization, and the 

utilization of micro-hybrid technology [12].  Full hybridization of the drivetrain does result in the 

greatest reduction in CO2 emissions, but also has the highest cost per pound of CO2 reduced [12].  

The cost/reduction ratio is lowest at lower levels of hybridization and higher at higher levels of 

hybridization.  Keeping in mind that automotive companies are businesses, the most likely goal 

of reducing emissions will be doing so for the lowest cost.  

This is where micro-hybrid technology comes into play.  There are four main components 

that make up micro-hybrid technology; Start/stop functionality, regenerative breaking, charge 

voltage control, and passive boost [13].  These four systems can be used individually or in 
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concert with one another, with changing battery requirements based on which systems are used. 

The theory behind start/stop functionality is simple; cars cannot burn fuel while idling if the 

engine is not running.  When the car is stopped or hits a certain low speed, the engine will be 

automatically shut off to conserve fuel.  While stopped, all the electrical features that are 

typically powered by the alternator during vehicle operation are instead powered by the battery.  

When the gas pedal is depressed, the engine is quickly restarted and standard operating behaviors 

continue.  The added stress that this function adds to the battery is the added drain of supplying 

electricity to the electronic features while the engine is not running and being able to start the 

engine many times instead of once per trip. With just the start/stop segment of micro-hybrid 

technology in play, fuel savings land around 6% [13] and in the range of 5-10% [10] when 

compared to the same model care without start/stop technology.  

The second component of micro-hybrid technology is regenerative braking.  The goal of 

a regenerative braking system is to capture the kinetic energy usually lost during the breaking 

process and turn it into potential energy.  In the case of automobiles, the kinetic energy is 

transformed into electricity and used to charge the battery.  In standard cars, the method used to 

stop a car is hydraulic breaking.  When the brake pedal is depressed in the car, fluid is forced 

through the brake lines causing the brake pads to close on the brake rotor.  The result is a lot of 

heat and a slowed or stopped car.  For a regenerative system the alternator, or a separate electric 

motor, is designed to run by the rotation of the wheels during breaking, using the cars 

momentum to generate electricity instead of energy from the engine.  Using these systems some 

of the energy that would typically be lost as heat can instead be stored as electricity in the 

battery.  Much like the start/stop feature mentioned above, regenerative breaking creates 

additional requirements for the battery.   
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One of these new requirements is for a lower target operating State of Charge (SoC) [13]  

Standard Starting, lighting, Ignition (SLI) batteries typically remain around 100% state of 

charge.  When operating at a high state of charge, the ability for a battery to accept charging 

energy, commonly known as charge acceptance, is very low.  To utilize the energy from 

regenerative breaking, the battery needs to operate at a lower SoC to be able to maximize the 

energy recovered from regenerative breaking.  The second new requirement is that the battery 

needs to have a higher overall dynamic charge acceptance over current SLI batteries. 

The last two features of micro-hybrid technology are charge voltage control and passive 

boost.  Charge voltage control is a system that works to keep the energy needed to recharge the 

battery as low as possible while also ensuring that the battery is never overcharged [13].  This is 

achieved by reducing the charging voltage and not charging the battery while idling.  The passive 

boost feature acts to stop the alternator from producing electricity during acceleration.  This 

reduces the fuel consumption needed to increase the cars speed by removing the energy drain 

from the alternator.  The effect this has on the battery is an increase in charge and discharge 

cycling since the battery must run the electrical features during acceleration instead of the 

alternator [13]. 
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1.6 The Case for Lead acid over other technology, AGM Tech in Micro Hybrid 

Applications, and Needed Improvements 

1.6.1 Lead Acid vs Lithium Ion 

 The dominant battery technology for automobiles has always been the lead acid battery.  

But with the prevalence of lithium ion batteries (LIBs) in people’s daily lives, many may wonder 

why would investments be placed in an old technology like lead acid batteries for cars when 

something better is already here.  While it is true that lithium ion batteries do have many 

attractive qualities like high cycle life, energy efficiency, and high energy densities, the 

temperature issues, recyclability, cost, and availability of materials cause issues when looking to 

expand their uses in automotive markets.  The largest issue is, however, not a technical one but a 

marketing one.  People need to buy electric cars for the market to be successful.   

 One major issue to consider when looking at lithium ion and lead acid batteries for cars is 

the temperature range in which they will be operating.  For most lithium ion technologies there is 

a dramatic decline in their performance around the 0˚ C (32˚ F) and another dramatic drop at 

temperatures below -20˚C (-4˚F).  At these very low temperatures the chemical reaction is 

slowed almost to a stop [14].  Simply put, lithium ion batteries struggle to perform at colder 

temperatures like those experienced in the winter months in the northern United States.  Lead 

acid batteries, however, can operate in these cold temperatures and meet the needs of a modern 

automobile.  

 Another concern that growing lithium ion use raises is recyclability.  The compounds that 

are found in typical lithium ion cells changes depending on what chemistry the electrodes use, 

but can contain cobalt, lithium, nickel, manganese, and iron. The recycling rates of the materials 

found in LIBs is different for each element.  The focus on LIB recycling has mainly been to 
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retrieve the cobalt and nickel from spent batteries.  Recycling efficiency for these metals is 

around 50% while the lithium recycling efficiency is less than 1% [15][16].  The main issues that 

increase the difficulty of recycling LIBs include the large list of compounds in the battery, high 

cell count in the batteries, and the different construction materials and methods between different 

manufactures.  Lead acid batteries on the other hand, have a very successful recycling network 

already in place.  Currently, lead acid batteries are recycled at a higher rate than any other 

consumer product in the United States with a recycling rate around 99% [8]. 

 A close issue with recycling is material availability and cost.  Should a major switch to 

lithium ion batteries take place for powering automobiles the availability of necessary 

components to fulfill the demands of such a large market, in addition to meeting the needs of an 

ever-growing portable electronics market, could become an issue. One example of this trend 

appeared between 2005 and 2010 when the U.S. lithium consumption for batteries increased 

194% [17].  Another can be seen more recently with the increase in costs of lithium imported to 

China where in the May of 2016 the costs had risen 42% in the preceding 6 months [18].  The 

cost and availability of lithium alone is not the only issue that may impact lithium ion’s future in 

the automotive industry.   

  Another main component found in many lithium ion batteries is cobalt.  Cobalt is used as 

a main component in the cathode material in several different lithium ion chemistries including 

lithium cobalt oxide (LCO), nickel cobalt aluminum (NCA), and nickel manganese cobalt 

(NMC) [19].  Each chemistry gives different performance in terms of energy density, power 

density, and capacity so certain chemistries are better suited to different applications.  Most 

portable electronics use LCO batteries and Tesla, one of the most visible names in the electric 

vehicle market today, uses NCA batteries to power its vehicles [20].  The portable electronics 
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and automobile markets are both likely to experience huge growth in the coming years and 

companies are already planning to secure cobalt supplies for their batteries.   

 Bloomberg, among other news outlets, has reported that Apple is one company among 

many seeking to set up direct supply lines with mining companies to ensure cobalt is available 

for their battery production [21].  The main reason given for this move is fear of availability 

because of the expected growth in the electric vehicle market. Other companies including 

Samsung SDI and Volkswagen AG are also making deals to ensure their cobalt supply over the 

next several years.  An additional issue surrounding the production of cobalt lies with the 

political stability and unethical mining practices of the Democratic Republic of the Congo, where 

around over half of the global cobalt supply currently originates [19] [21].   

Beyond the ethics of cobalt mining, the cost of this material alone has been rapidly 

increasing.  With the heavy increase in demand from lithium battery manufacturing, the cost of 

cobalt has tripled between September of 2016 and February of 2018 [21].  Concerns about 

further cost increases and availability exist with an increase in electric vehicles since the battery 

for a car requires potentially 1,000 times the cobalt of a hand held device [22].  With the high 

costs and possible political issues surrounding it, cobalt remains a large factor in future costs of 

many lithium ion batteries.  In contrast to these lithium batteries, lead-acid batteries do not see 

these same issues with high cost fluctuations and increases with its component parts. 

The last technical issue facing the large-scale implementation of the electric vehicle with 

lithium ion batteries is the lack of infrastructure to support electric vehicles.  Tesla has built a 

network of charging stations across the US in major cities and along major highways to support 

its growing fleet of cars nationwide.  The issues this system can still experience are long charge 
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times (30 min with supercharge) [23], restriction to areas with charging stations, and added 

difficulty of long distance travel.  Improving fuel efficiency through, among other things, micro-

hybrid technology would best utilize the existing infrastructure while allowing for new electric 

based infrastructure to grow and eventually meet the demands of fully electric vehicles.   

 The final hurdle for a successful full electric car market is getting consumers to buy into 

it.  While resolving issues with the sustainability of EV battery recycling, convenient charging 

locations, and manageable purchase price will increase interest in electric cars, there are a few 

main issues still preventing its success; perceived safety and changing people’s habits.  Every 

few years an incident comes along that makes Li-ion batteries seem dangerous.  Tesla has been 

at the center of the Li-ion safety controversy as early as 2013 and as recently as June 2018 for 

battery backs that have caught fire from road debris damage, high-speed accidents, and technical 

issues [24]–[27].  Samsung also experienced repeated issues with Li-ion batteries in their 

Galaxy-Note 7 that was eventually banned by the FAA for use in airplanes [28].  Li-ion battery 

fires also grounded the entire US Boeing 787 fleet until the specific causes of the battery fires 

could be found [29].  These incidents, while not occurring at rates higher than ICE cars, gain 

extra media attention and have an influence on people’s perception of the technology. 

 Looking at the current trends in EV sales is a telling method at determining public 

opinion.  In 2016, the percentage of completely electric vehicles sold in the us was only 2.9% 

[1].  The sales of cars with micro-hybrid technology, however, have shown a much more 

impressive growth over the past few years.  Micro-hybrid systems are already found in 38% of 

vehicles produced between US, European, and Chinese markets and that value is expected to 

reach 57% by 2020 [8].  The two likely factors behind this trend are the costs associated with 

each technology and how it changes the way people use their cars. 
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 First looking at price, many electric cars are already prohibitively priced for most 

consumers with low end EVs like the Nissan Leaf costing just under 30,000 dollars [30] and a 

Tesla, the brand most often referenced when discussing EVs, has cars ranging from 35,000-

70,000 dollars and up depending on the model [23].  Many manufactures like Ford and GM are 

actively employing micro hybrid technology in many of the cars across the full range of prices 

with little added cost. 

 Based on how people use their vehicles, it is easy to see why few people are investing in 

electric vehicles.  With an electric vehicle, special attention must be given to charge levels and 

the distance needed to travel and the availability of charging stations along your route.  With 

micro-hybrid vehicles, nothing changes from the user’s perspective. 

Lithium ion batteries are currently used in a wide variety of technologies including a 

growing electric vehicle market, but are not yet ready to remove the lead acid battery from the 

automotive market.  These Li-ion batteries have a range of issues both technical and 

political/environmental that need to be addressed.  Low temperature performance, poor 

recyclability, safety, and the costs and availability of components are all issues facing the use of 

Lithium ion batteries in electric vehicles.  These issues highlight the fact that lithium ion 

batteries have yet to replace the usefulness of lead acid batteries for automobiles, and that 

focusing on micro-hybrid cars while EV’s become a more viable choice for a larger portion of 

the market is the best way forward. 

1.6.2 AGM for Micro-hybrid 

 As mentioned earlier, one successful method of reducing carbon emissions is micro-

hybrid technology.  Micro-hybrid technology focuses on better management of the energy your 

car generates. Here, the focus will be on start-stop functionality and regenerative braking.  Stop-
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start technology shuts off the motor while the vehicle is stopped, removing the use of gasoline 

during typical idle conditions like sitting at a stop light or stuck in exceptionally slow-moving 

traffic.  The regenerative braking typically uses an electric motor to generate high current loads 

during breaking to charge the battery.  The use of these two features, in addition to battery power 

running the electronics while the vehicle is not moving, add some very specific requirements to 

which AGM batteries are better suited than standard flooded batteries.  These requirements are 

the ability to operate at a partial state of charge (PSoC) and having a high dynamic charge 

acceptance (DCA) capability.   

 The current battery used in a typical internal combustion engine powered vehicle is an 

SLI flooded lead acid battery.  These batteries are designed to provide the energy needed to start 

the car and power electronics while the vehicle is not running.  This type of battery is intended to 

be used for a short period of time to a low depth of discharge (DoD) before being recharged and 

kept at a full charge.  One of the most prominent issues with running a flooded cell at a PSoC is 

acid stratification.  When a lead acid cell is fully charged the electrolyte is comprised primarily 

of an acid with a uniform density.  As the battery is discharged and the sulfate precipitates on the 

plate surface, the electrolyte’s water composition increases causing a change in density.  This 

density shift will cause the denser acid to sink to the bottom of the battery forming a 

concentration gradient in the cell.  This process occurs regularly during charging as high density 

sulfuric acid generated from dissolving sulfate crystals will immediately sink to the bottom of the 

battery. 

 In addition to occurring during the standard charging process, the stratification also 

occurs quickly if the battery is left in a PSoC, as would be common in a micro-hybrid 

application.  The problem that stratification causes, especially during periods of rest, is the 
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formation of large sulfate crystals in the dense acid regions at the bottom of the plate [13].  This 

occurs because the plates experience a high potential in the high-density regions and low 

potential in the low-density regions.  The result is a self-discharge reaction at the bottom of the 

plate causing excess lead sulfate buildup and a self-charging reaction at the top of the plate 

removing sulfate ions from the negative plate [13].  Once large lead sulfate crystals form, they 

are often too stable to be dissolved under the typical charging voltages found in an automobile 

and end up reducing the capacity and life of the battery.  The best solution to this problem is to 

avoid acid stratification. 

 The two current options that best limit acid stratification are gelled electrolytes and the 

use of AGM separators.  As mentioned earlier, gelled electrolytes function by adding a silica 

gelling agent to the electrolyte to immobilize it, which prevents acid stratification.  The downside 

of this gelled electrolyte is poor cold weather performance.  With a drop in temperature the 

resistance within the electrolyte increases dramatically and limits the range of applications in 

which gelled lead acid batteries can operate successfully [8]. 

Prevention of acid stratification is one main benefit of the fiberglass mats used in AGM 

batteries.  Since the acid is held in the mat like a sponge and, it does not freely respond to gravity 

and cause the concentration gradients seen in flooded cells and does not have the internal 

resistant issues at cold temperatures seen with gelled electrolytes.  As a result, AGM batteries 

can function for much longer periods of time at a PSoC that is necessary for micro-hybrid 

functionality.  This, in combination with the much more efficient water recombination than that 

found in flooded cells, make the AGM battery perfectly suited to be the focus of continued 

research for lead acid batteries in micro-hybrid applications.   
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1.7 State of Research 

 As shown above, AGM batteries have come out as the dominant lead acid battery 

technology type for use in micro-hybrid style automobiles.  That fact, when combined with 

growing electrical demands placed on a battery with the added features found in new cars, 

illustrates the need to continue improving the performance characteristics of AGM batteries. The 

need for continuing improvement in this technology is well known to lead acid battery industry.  

The Advanced Lead Acid Battery Consortium (ALABC) is a research organization with 

corporate members from all parts of the lead industry.  The goal of this group is to improve the 

effectiveness of lead acid batteries in many energy storage fields.   

This group has a projected goal for research during the 2016-2018 window that shows the 

direction of their current research.  The first objective, and arguably the most important, is to 

increase the dynamic charge acceptance.  DCA is the ability of a battery to absorb an electrical 

charge [31].  Currently, the lead acid battery lags behind other battery technologies in this regard 

and a low DCA will limit LABs role in the growing hybrid battery market. 

Two more ALABC objectives are to reduce gas generation and water loss and increase 

the effective temperature range of LABs.  The main goal of reducing gassing is to increase the 

life of a battery, but reducing gassing would also allow the use of greater levels of carbon 

additives in the plate, which have been shown to increase DCA [5].  Currently, LABs have a 

wider functional temperature range than Li-ion and nickel metal hydride (NiMH) batteries have 

difficulty with low temperature operation (less than 0˚C) but their cold weather performance is 
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always improving.  By improving the LAB cold weather functionality, lead-acid batteries can 

help prevent being displaced by competing technologies. 

The final two ALABC objectives for 2016-2018 deal with improving charge efficiency 

and reducing corrosion that is often experienced under partial state of charge (PSoC) cycling.  

Using higher voltages and other charging techniques would allow for faster charging of LABs, 

but also cause increased gassing levels that reduce battery life and DCA.  This issue is closely 

tied with the previous objective of lowering gas generation.  The final objective, minimizing 

corrosion under PSoC cycling conditions, is important for increasing the life of the battery.  

Through new additives and alloys, reduced corrosion in these conditions would result in broader 

versatility and lighter batteries by using thinner grids for both automotive and energy storage 

situations [5]. 

Keeping these research goals in mind, the following sections will focus on two methods 

for increasing the capabilities of LABs for micro-hybrid applications.  The first method of 

interest will be the use of additives in the negative and positive plate mix.  The second method, 

which is the method employed in the experimental portion of this paper, is through the addition 

of various compounds to the electrolyte.  In addition to increasing the DCA of the battery, 

another added benefit of these methods is the minimal impact on the current design and 

manufacturing processes of the battery.  The goal is to improve the DCA without redesigning the 

electrodes as seen with ultra-batteries.   

1.8 Increasing Micro-Hybrid capability through Negative/Positive Paste Additions 

 Carbon additives are currently a very active field of research for lead acid batteries.  One 

large motivator behind the current research is the ability of these carbon additives to slow the 
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formation of insoluble lead sulfate which leads to battery failure [32].  There are many different 

forms these carbon additives can take, and the ones looked at here are carbon black, activated 

carbon, carbon nanotubes, and graphitic carbon.  Since each of these forms carries with it 

different qualities in terms of particle size, pore size, and conductivity, it is difficult to point out 

one specific reason or mechanism for the benefits carbon has in lead acid batteries.  There are 

numerous possible causes for the effects of carbon including increased conductivity, prevention 

of large crystal growth, and the introduction of hydrogen over-potential impurities [33]. 

 Another proposed mechanism is the formation of two separate systems on the negative 

plate surface; a capacitive system based on the carbon additive and the charging and discharging 

of a double layer and the standard chemical reaction oxidizing lead to lead sulfate [34].  

Regardless of the specific mechanism, different carbon allotropes provide different results when 

added to a lead acid battery’s negative active mass (NAM).  Several of these additives and their 

effect on the lead acid battery’s performance are discussed below.   

1.8.1 Carbon Black and Activated Carbon 

When using the standard plate mix absent of any additives, standard SLI and deep cycle 

batteries often accumulate lead sulfate crystals that do not dissolve under normal charging 

conditions.  The results of this lead sulfate crystal growth are lower capacity, charge acceptance, 

and a shorter lifespan.  There are many carbon based additives that have found their way into the 

NAM to improve battery properties and the first to be discusses are activated carbon and carbon 

black. 
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When adding either of these carbon materials to the plate mix there are several things to 

consider.  These considerations include particle size, porosity, resistivity, degree of order, and 

the impurities present in the carbon [35].  Table 1 below shows four carbon black compounds 

and a lamp black compound and their respective values for many of the above parameters.  

 CB 1 CB 2 CB 3 CB 4 LB 

BET-SURFACE (
𝒎𝟐

𝒈
) 243 58 54 153 29 

NAM MASS PERCENTAGE  0.2 1.0 1.1 0.3 2.0 

AVE. PARTICLE SIZE (µ𝒎 ) 3.8 4.2 6.2 0.05 2.1 

PORE VOLUME (
𝒄𝒎𝟑

𝒈
) 0.51 0.20 0.19 0.71 0.05 

ORDER (𝑳𝒂, 𝒏𝒎) 1.5 1.3 3.2 1.6 1.0 

DRY RESISTIVITY AT 470 
𝒌𝒈

𝒄𝒎𝟐  [𝒎𝛀  𝒄𝒎] 77 88 79 4224 51 

Table 1 Carbon and Lamp Black Characteristics  

To test the effects of these compounds on the behavior of a lead acid battery, full 12v, 

59Ah EFBs were made and cycled at a 17.5% DoD.   

In this cycling test, the battery using CB 3 showed the greatest cycle life with around 

1000 cycles and the worst performing battery using CB 2 with around 230 cycles.  Using this 

same method, a standard flooded battery typically fails after 200 cycles [35].  This particular test 

shows that the addition of carbon blacks positively effects the cycle life of a LABs that undergo 

PSoC cycling.  Another test done on the carbon blacks used in this experiment, Raman 

spectroscopy, showed that the more ordered the structure of the carbon black as determined by a 

ratio of the D-band and G-band intensities, the higher cycle life its respective battery experienced 

[35]. 
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In an experiment focusing on activated carbons instead of carbon blacks, 2v test cells 

made up of 2 positive plates and 1 negative plate with an AGM separator we built using paste 

mixes containing 2% weight of the activated carbons under investigation [36]. The cycling test 

used in this experiment initially discharged the 2V cells to 50% DoD, followed by a cycling 

scheme meant to imitate micro-hybrid driving. The cycles consisted of a charge step 

at a 2 C rate for 90 seconds with an upper voltage limit of 2.54 V, a rest step for 10 seconds, a 

discharge at a 2 C rate for 60 seconds, and a rest step for 10 seconds [36].  The results of this test 

on the reference cell, the activated carbon cells, and the activated carbon cell with graphite can 

be seen in Figure 5.   

 

Figure 5:HRPSoC cycling on activated carbon samples [36] 

 Comparing the cycle life of the two activated carbon cells and the reference cell show a 

clear trend that, to a point, the larger particle size of the activated carbon will lead to a longer 

cycle life.  The reference cell, with no activated carbon, experienced the shortest cycle life 

followed by the small particle size (4μm diameter) activated carbon, with the larger particle size 
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(68μm diameter) activated carbon experiencing the greatest cycle life with 7,000, 10,700 and 

15,600 cycles respectively.  

 The role that the activated carbon plays goes deeper than simply extending the cycle life 

of the battery.  Focusing on the larger diameter activated carbon, AC 2, highlights the benefits of 

using activated carbon.  One major benefit of the activated carbon lies in its pore volume and 

size.  With a volume of 1.662 cm3 g-1 and an average pore diameter of 2nm, the activated carbon 

can accommodate large amounts of H2SO4 [36].  The effect of this heightened acid 

accommodation is to provide acid to internal portions of the plate which increase the amount of 

the NAM that can be easily used, resulting in more surfaces for lead sulfate crystals to form, 

higher charge acceptance, and longer cycle life thanks to the formation of fewer large sulfate 

crystals.  Figure 6 shows the schematic of how these large activated carbon particles act to 

provide acid to more of the NAM. 
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Figure 6: Carbon additive effect on HRPSoC Cycling [36] 

 As the diagram shows, the effects of activated carbon will be especially pronounced 

during high-rate discharges.  This high-rate discharging behavior is common in micro-hybrid 

vehicles since the current needed to restart the motor after a rest cycle is both a common 

occurrence and requires a large, short burst of current.   

1.8.2 Carbon Nano-Tubes 

 Another carbon additive technology that has garnered attention is the application of 

carbon nanotubes (CNT) to negative plate mix to improve the performance of lead acid batteries.  

One issue with the use of carbon additives is that increasing weight percentages of carbon can 

work to decrease the density of the plate mix, resulting in lower capacities for the battery.  The 

goal then, would be to find a new carbon allotrope that is able to match the charge acceptance 
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and cycle life benefits of other carbons without also reducing the capacity.  Carbon nanotubes 

may be able to provide benefits to charge acceptance and cycle life while also improving the 

mechanical stability of the plates [37]. One predicted benefit that the CNTs will have has been 

seen with other carbon additives as well; prevention of large sulfate crystal growth.  By 

improving the electrical conductivity within the plate, combined with the conductive matrix that 

the nanotubes form within the active mass, lead sulfate crystal growth is dispersed throughout 

the negative plate [37]. 

 In one experiment, multiwalled carbon nanotubes (MWCNT) of two separate varieties 

were used.  In the first group, the nanotube diameter was 10-15 nm and 1-10 microns long and 

the second group contained nanotubes with a diameter or 40-60 nm and a 15 micron length.  The 

weight percent of the nanotubes in the paste mixes ranged from 0.008-0.02% [37].  When testing 

the effect of the CNTs on the negative plates, a 2.4v cell was made using two positive plates and 

1 negative plate.  These cells were cycled by discharging to 30% DoD at a 0.25 C rate and 

charged at a 0.5 C rate.  Cell failure was determined to be a voltage reading of 1.75V at 30% 

DoD% [37].  Tests were run on a standard flooded cell, a flooded cell with the CNT additive in 

the plates, and a gelled electrolyte with the CNT additive in the plates.  This test showed the 

standard cells tend to fail at around 250 cycles where the flooded and gelled cells with the CNTs 

in the positive plate failed at around 450 and 750 respectively.  

 The addition of the CNTs has a substantial effect on the cycle life of these 2.4V cells, but 

the effect of size is the opposite of the activated carbon discussed in the previous section.  With 

these commercially available MWCNTs, the longer and larger diameter CNTs showed a longer 

cycle life than the reference cell with no modification, but had a significantly shorter life than the 

cells prepared using the shorter and smaller diameter CNTs.  While the exact reasoning behind 
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the difference in performance is not known, the initial assumption is that better mixing of the 

smaller CNTs lead to this result [37].    

Similar work has been done using a different CNT type known as Molecular Rebar® or 

discreet carbon nanotubes(dCNT).  Due to a proprietary preparation process these dCNTs look 

and behave differently than other commercially available CNTs.  Instead of clustering with small 

aspect ratios of about 1 like the stock CNTs in Figure 7 (A), the molecular rebar disperses as a 

mat with aspect ratios close to 70 [38]. 

 

Figure 7: 5000x magnified SEM images of (A)commercially available CNTs. and (B)Molecular Rebar [38] 

 For the electrical testing of the effects of the dCNTs against conventional CNTs and 

reference cells, full batteries were built and tested to determine their behavior in a number of 

tests.  The results are the average of five identical batteries. The two tests of interest here are the 

cold cranking test, where the batteries were discharged at -18˚C at 270A for 30 seconds, and the 

cold charge acceptance test, where the batteries were discharged to 50% DoD then cooled for 18 

hours at 0˚C before a constant 14.4V recharge [38]. 
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 The result of the cold cranking tests showed that batteries with the dCNT added to the 

negative plates showed a 6-10%increase in the length of time needed to reach the 6V level and 

2% increase in the voltage measurement after 30 seconds under the 270 A discharge.  While 

these improvements are not large, it is noted that any improvement in cold cranking values is 

surprising due to the typical negative effects of carbon additives on cold cranking [38]. 

 The cold environment charge acceptance test also showed beneficial results from the use 

of the dCNTs.  From the DoD of 50% the batteries were charged for 10 minutes at a fixed 14.4V 

with variable current.  Figure 8 shows the comparison of the modified and unmodified battery 

types.  At the very beginning of the recharge step, the current levels are difficult to differentiate, 

but once the curves begin to level out, the dCNT battery has a definitively higher amperage 

being allowed into the battery.  The differences between the two battery types were a 13% 

increase in the allowed current, and a 6% increase in the charge accepted, Ah during the 10 

minutes [38].  

 

Figure 8: Cold charge acceptance test 
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 While these discreet carbon nanotubes appear to have positive effects on the electronic 

behavior of the batteries without any negative effects, further research into ideal weight 

percentages, effects in the positive active mass, and tests under more conditions are necessary to 

show how truly effective this technology is. 

1.8.3 Graphite 

 Graphite is the final form of carbon to be discussed here for use as an additive to the 

active mass in lead acid batteries.  Graphite has a hexagonal structure and forms in layers with 

strong bonds within a layer and weak bonds between layers [39].  In one test, two different forms 

of graphite were used; expanded graphite and flake graphite.  These two forms have similar 

conductive capabilities but have very different surface areas [40].  For comparison, a control 

batch using carbon black was also tested.  The goal of these graphite additions is to improve the 

high rate partial state of charge (HRPSoC) cycling as seen in micro-hybrid applications.  

Through gas intrusion testing the surface area of the samples were taken and showed that the 

1.5% by weight addition of expanded graphite increased the specific surface area (SSA) by 25% 

where the 1.5% by weight flake graphite showed a small reduction in surface area compared to 

the control batch containing 2% by weight carbon black [40]. 

 Several tests were run to show the difference in the electrical effects of the new additions.  

The first, constant discharges at currents ranging from 10-500A showed no differences between 

the additives.  To test the PSoC characteristics, 36V prototypes (six 6V modules in series) were 

tested at different depths of discharge (DoD) ranging from 0-80%.  The tests showed improved 

charge acceptance for the expanded graphite mainly between 20-80% DoD.  The samples using 

the flake graphite showed a reduction in charge acceptance, most likely due to the reduced SSA 

of the negative plates [40].  
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 A second test was used to determine the effect these additives would have on the cycle 

life of the battery.  Using the Power Assist Life Cycle Test from EUCAR at a 2.5% DoD [40].  

Figure 9 shows the cycle used in this test. 

 

Figure 9: EUCAR Power Assist Life Cycle Test[40] 

 These cycles first discharge the battery to a 60% SoC before running the battery though a 

cycle representing those seen in hybrid electric vehicle (HEV) operation including rest, 

regenerative breaking, cruising, and boosting steps.  To determine an end to the test, a battery 

must have reached either 5V during a 5C discharge or the control capacity, measured after every 

10,000 cycles, fell below 50% of the original capacity.  In these tests the prototype batteries 

using the expanded graphite showed improved values over the standard containing carbon black 

and a larger improvement over the prototypes using the graphite flakes.  The expanded graphite 

prototypes showed higher end or discharge voltage (EDVs), lower increases in internal resistance 

after cycling, and an approximately 20% increase in cycle life over the standard prototype using 

the carbon black additive [40]. 
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 Carbon additives to both the positive and negative active masses of lead-acid batteries 

show promise for increasing the charge acceptance, capacity, and cycle life of lead acid batteries 

whether the additive is in the form of carbon blacks, graphite, activated carbon, or CNTs.   Given 

the wide variety of additives available, there are also many considerations to be made to ensure a 

positive outcome from the addition of additives.  Weight percentage, surface area, pore size, and 

aspect ratios all have significant effects on a carbon additive’s behavior in terms of water 

consumption and plate strength in addition to the electronic effects [38].  While the mechanism is 

in some cases unclear, the positive effects of carbon additives are clearly supported and required 

continued research to optimize the role carbon can play in lead-acid batteries.   

 To conclude on carbon additives, they have the ability to increase capacity and charge 

acceptance, and cycle life of lead-acid batteries.  The methods through which these changes 

occur include enhancing conductivity, encouraging the formation of small, easily dissolved 

PbSO4 crystals, and introducing impurities that resist the hydrogen evolution [41]. 

1.9 Increasing Micro-Hybrid capability through Changes in Electrolyte Composition 

 Another viable approach for increasing the performance of lead-acid batteries is by 

changing the composition of the electrolyte.  This field of research has not been very active in 

recent years with a large amount of the research in this area having been done in the 1990’s and 

early 2000’s.  A major difference between todays lead-acid battery research and older research is 

its main goals.  Older researched focused on many of the same areas as today including cold 

cranking performance, reducing plate sulfation, minimizing gas generation, and reducing grid 

corrosion.  One major research area not in older experiments is dynamic charge acceptance.  

During the 90’s the primary use for lead-acid batteries were automotive and deep cycle uses with 

no need for HRPSoC cycling ability.  Many additives have been used to improve various 
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characteristics of the battery.  Unfortunately, making changes to improve one attribute often 

effects other battery parameters. 

1.9.1 Acid Additives 

 One grouping of additives that have been used in lead-acid batteries is other acids.  

Sulfuric acid is the one that gives lead-acid batteries its name, but many acids including citric, 

boric, and phosphoric acid have been used.  Phosphoric acid was one of the earliest acids to be 

used as an electrolyte additive with active research beginning in the 1920’s [42]. According to 

this early work performed by Muritz Kugal and Ing Max Rabl, the beneficial effects of adding 

phosphoric acid included small and dispersed lead sulfate crystals, reduced shedding of the 

electrodes, and no loss in capacity when added in the appropriate amount [42].  The addition of 

phosphoric acid was continued by the German battery company Duros, a future Varta subsidiary, 

until the 1970’s 

Jumping forward to the mid 1990’s and early 2000’s, phosphoric acid’s effects on a lead 

acid battery were still being investigated.  The main use of the acid is for increasing cycle life for 

deep discharge applications [43] [44].  The increased cycle life from phosphoric acid additions is 

typically attributed to the reduction of positive plate shedding and reducing positive grid 

corrosion [43].  The main drawback of adding phosphoric acid is the effect it has on the battery 

capacity.  The formation and dispersion of fine lead sulfate crystals instead of large crystals, 

which helps increase the cycle life, also acts to reduce the capacity of the positive plate by up to 

15% [44].  Given the nature of the trade off, the use of the additive can be selected when the end 

use of the battery prioritizes cycle life over capacity.   

The effects of phosphoric acid additions have been measured using cyclic voltammetry in 

a study by K. Saminathan et al.  4.5M sulfruric acid with increasing concentrations of phosphoric 
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acid additions were cycled between 600 to 2200mV versus Hg/Hg2SO4 at a fixed scan rate of 

50mV/s [43].  In the initial test with pure sulfuric acid there are two distinct peaks reflecting the 

formation of α-PbO2 and β-PbO2 with the positive plate consisting of a lead-tin alloy.  As the 

concentration of the phosphoric acid was increased, the peak current for the α-PbO2 was steadily 

reduced and the β-PbO2 peak dramatically reduced and disappears at higher the higher 

phosphoric acid combinations.  These results were also seen to a large extent in positive plates 

consisting of a lead-calcium-tin alloy.  In addition to the inhibited formation of  β-PbO2, the 

increasing phosphoric acid concentrations also lead to a positive shift in the oxygen evolution 

potential[43].  In all, phosphoric acid additions have multiple effects on lead acid batteries 

including increased deep-cycle life, lowered capacity, reduced β-PbO2 formation, and reduced 

oxygen formation.   

 Acid additives have also been used to reduce the self-discharge process in lead-acid 

batteries.  Reducing self-discharge is typically done by inhibiting the reaction of the lead oxide to 

lead sulfate while the battery is not in use.  Boric acid is thought to reduce the self-discharge 

process by modifying the physical structure of the PbO2 crystals and delays the formation of 

PbSO4.  The result of adding boric acid was a reduction in the voltage drop from 0.01 
𝑉

𝑑𝑎𝑦
 to 

0.0025 
𝑉

𝑑𝑎𝑦
 when compared to a standard battery with a pure sulfuric acid electrolyte [45]. 

 Similarly, stearic acid causes a 50% reduction in self-discharge voltage of 0.005
𝑉

𝑑𝑎𝑦
.  In 

contrast with the boric acid, stearic acid is a surfactant that is absorbed into the surface of the 

plate and decreases the three-dimensional growth and increases the two-dimensional growth of 

the PbO2.  This PbO2 layer is more difficult to reduce to PbSO4 than one that is formed in pure 

sulfuric acid[45].  Citric acid has also been used as an additive, but while the self-discharge rate 



33 

is reduced by 25% to 0.0075
𝑉

𝑑𝑎𝑦
, the overvoltage for both the oxygen and hydrogen evolution 

reactions is reduced, leading to increased gassing rates [45].  

1.9.2 Sodium additives 

 Sodium sulfate is a compound that is already commonly used as an electrolyte additive 

for lead-acid batteries.  Since at least the 1970’s sodium sulfate was seen as a cost effective 

additive over other sulfate salts including potassium, lithium, magnesium, cadmium, zinc and 

aluminum to reduce the solubility of lead and help prevent shorts [46].  As mentioned with other 

additives, typically multiple aspects of battery performance are changed and sodium sulfate is no 

different.  A number of studies have been done looking at sodium sulfates effects on a range of 

parameters including hydrogen evolution, anodic passivation [47], capacity, cold cranking, and 

charge acceptance [48]. 

 For these tests, a standard sulfuric acid solution was prepared with no sodium sulfate, 

then acid solutions with increasing levels of sodium were sulfate were made and tested to show 

the effects of the changing sodium sulfate concentrations.  One set of tests out of China looked 

specifically at the sodium sulfates effects on hydrogen evolution and anodic passivation.  Using 

linear sweep voltammetry(LSV) the hydrogen evolution decreased from the 3.5 mol/L sulfuric 

acid solution to the 3.5 mol/L sulfuric acid solution with 0.05 mol/L of sodium sulfate.  

However, the trend shows that with increasing amounts of sodium sulfate from 0.05 mol/L to 0.5 

mol/L the cathodic currents related to hydrogen evolution increases [47].  To summarize, at low 

levels sodium sulfate acts to reduce the hydrogen generation, but at higher levels it works to 

increase hydrogen generation.  Using the same solutions and a cyclic voltammetry (CV) test, the 
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same group concluded that adding sodium sulfate inhibits the growth of a PbO film on the lead 

grids resulting in less corrosion and better conductivity [47]. 

 Another way to investigate the additive effects are through cycling of larger prototype 

batteries instead of sample electrodes to better represent what the practical changes the additive 

causes.  This approach was used to investigate varying sodium sulfate concentrations on 

capacity, cold cranking, and charge acceptance, and high rate discharge following Japanese 

Industrial Standards(JIS) D 5301 for lead acid batteries[48][16] .  For these tests flooded 12V, 

65Ah batteries with 8 positive and 7 negative plates were used.  The sulfuric acid contained  

weight percent amounts of sodium sulfate of 0%, 0.5%, 0.75%, 1.0%, 2.0%, 4.0%,6.0%, 8.0% 

and 10.0% [48].  In a capacity test, the batteries were discharged at a 5C rate and showed a 

mildly decreasing trend in capacity as the sodium sulfate concentration grew.   For cold 

cranking, the batteries were discharged at a high rate (specific current used not given) and the 

voltage was taken after 30 seconds.  The trend in this test showed increasing voltage at 30 

seconds up to 0.75% weight sodium sulfate followed by steady decrease of voltage with 

increased concentrations. 

 The test for high rate discharge used batteries soaked at -15°C and discharged them at a 

high rate (likely 150A [49]).  The voltage was measured after 5 seconds of discharge as was the 

total time needed to reach 6V [48].  The data showed that the 5second voltage was highest at 1% 

sodium sulfate by weight and that adding increasing amounts passed 1% resulted in decreasing 

voltage.  The time to reach 6V, however, showed a much different trend.  Here, a linear 

relationship was formed with increase time throughout the samples with the no sodium sulfate 

standard falling between the 4% and 6% samples.   
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 The final test, charge acceptance, is the most interesting test when considering micro-

hybrid use.  For this test, the batteries were soaked at 0°C for 12 hours before charging at a 

constant 14.4V.  The current measurement was taken at the 10th minute[48] [49].  The results 

showed that the charge acceptance was highest at low to no sodium sulfate and decrease 

dramatically upon increasing the sodium sulfate concentration.  From these tests, the addition of 

sodium sulfate shows mainly negative impacts on the electrical behavior of the lead acid battery.  

 To summarize, the addition of sodium sulfate to lead acid batteries has been a common 

practice for decades.  As the previous tests have shown, its impacts on the electrical performance 

of the batteries is generally negative.  As mentioned earlier, the primary use of sulfate salts, and 

sodium sulfate has been to help prevent shorting from occurring [46].  Sulfate salts, and sodium 

sulfate in particular, are used to reduce the solubility of lead sulfate and limit the free lead ions in 

the acid that lead to shorts.  This is achieved through the common ion effect, where the excess of 

SO4
- ions in the electrolyte from the sodium sulfate shift the equilibrium closer to the solid lead 

sulfate crystals [50].  In AGM batteries this is particularly useful as lead sulfate is more likely to 

precipitate in regions of low acidity common in the separator during deep discharges when the 

overall pH of the electrolyte is lower.  Upon recharging, the sulfate will be driven back into the 

solution but metallic lead can be left behind in the separator eventually leading to dendrite shorts 

through the separator [51].  Given that the demands have changed for batteries over the years and 

that for micro-hybrid applications charge acceptance is a very important parameter, new 

additives are needed that can fulfill the role played by sodium sulfate without the negative 

impacts on the batteries electrical behavior.  

 An interesting new additive sharing a sodium salt based chelating agent Na2-EDTA.  

Chelating agents form two or more coordinate bonds between a polydentate ligand and a central 
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atom, typically a metal ion.  In this reaction, the Na2-EDTA molecule bonds with lead sulfate, 

expelling the sulfate ion by the mechanism shown below.   

 

Figure 10:Chelating additive Na2EDTA mechanism with lead sulfate.[52] 

 

In order to test the effects this compound would have on lead-acid battery operation, 2V 2.8Ah 

cells were made using a two negative plates and one positive plate, an AGM separator, and 4.5M 

sulfuric acid with additions of 0%,0.25%, 0.5%, 1% by weight [52].  Further information on cell 

design are available in the literature.  The tests conducted to evaluate changes in electrical 

behavior included galvanostatic charge-discharge studies, I-V characteristics, impedance, and 

cyclic voltammetery [52]. 

 After initial capacity tests were completed the 0.5% Na2-EDTA electrolyte showed the 

highest capacity and was used as the only electrolyte for comparison with the standard sulfuric 

acid electrolyte [52].  In the initial C/20 capacity tests showed the 0.5% Na2-EDTA electrolyte 

had a capacity of 3.3Ah hours compared to the 2.8Ah of the standard electrolyte.  Rate 

capabilities for these two electrolyte were also tested in terms of discharge capacity(Ah) with the 

0.5% Na2-EDTA electrolyte showing around 10% improvements at low C rates (C/20 and C/5) 

and over 20% improvements at high C rates (3C).  These results were attributed to the increased 
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mobility of ions from the electrolyte to the plates due to a decreased non-conductive lead sulfate 

layer on the positive plate [52].   

In addition to increased rate performance, the 0.5% Na2-EDTA electrolyte also showed 

greater cycling performance as capacity was maintain after 135 deep discharge cycles when the 

standard cells began seeing decreasing capacity after 80 cycles.  Along with improved cycle life, 

the Na2-EDTA electrolyte also showed a reduction in the in ohmic resistance throughout the 

various the entire range of charge states.  From this observation the conclusion drawn was that 

the Na2-EDTA was decreasing sulfation and in doing so decreasing resistance [52].    

1.9.3 Surfactant Additives 

 Another electrolyte additive for improving the lead-acid battery electrolyte is a surfactant.  

A surfactant, also known as a surface active agent, is a compound that reduces surface tension 

and increases wetting characteristics [53].  Surfactants have been used in other battery 

technologies to improve performance by reducing hydrogen formation, limiting metal corrosion, 

and modifying crystal morphology [54].  The surfactants, which are comprised of a long 

hydrophobic chain with a hydrophilic end, are absorbed into the hydrophobic electrode and 

change the characteristics of the interface of the electrode and electrolyte [54].  It is also 

important to note that the behavior of surfactants varies significantly from factors including the 

charge of the end group, positive or negative, and the concentration of the surfactant, and how 

well it is absorbed into the plate surface [54].   

 Interest in surfactants date back to at least the 1950’s when a patent for 

perfluoroalkylsulfonates was filed claiming that their addition increased wetting of the 

electrodes, increased surface area by decreasing crystal size, reduced water loss from 

evaporation, and sequestered impurities in the electrolyte from additions of water[55]. In 
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addition to US patents, several patents for similar surfactant additives were made in Japan in the 

early 1990’s[56].  In a study performed in 1998, several different perfluorinated surfactants with 

anionic, cationic, and non-ionic end groups were used to increase the utilization of the positive 

active material in lead acid batteries[56].  The results of these tests were not positive due to 

additives breaking down or from shortened cycle life attributed to a loss of grid contact in the 

positive plate[56]. 

In a recent study by Ghavami et al four surfactants, cationic cetyl trimethyl ammonium 

bromide (CTAB), cationic cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl 

sulfate(SDS), and nonionic t-octyl phenoxy poly ethoxy ethanol (Triton X-100), were used to 

observe the effects they have on the negative active mass (NAM) and the effects were evaluated 

using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning 

electron microscopy (SEM), and X-ray diffraction (XRD).  

 SURFACTANT 

TYPE 

CONC. 

(PPM) 

MOLECULAR 

WEIGHT 

CRITICAL MICELLE 

CONC. (𝒎𝑴)  

CHEMICAL 

FORMULA 

CTAB Cationic 50 364.45 1 C19H42BrN 

SDBS Anionic 50 348.48 1.6 C18H29NaO3S 

SDS Anionic 50 288.37 8 NaC12H25SO4 

TRITON 

X-100 

Non-ionic 50 647 0.22-0.224 C14H22O(C2H4O)n 

Table 2:Surfactant properties. 

 For testing flooded cells with a 2.1 Ah nominal capacity were used with further cell 

design details in the literature [57].  The surfactants were added to the electrolyte after the cells 

went through formation and kept under 50 ppm to prevent the formation of micelles in the 
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electrolyte.  The cells were tested for capacity though full discharges and in PSoC mode using 

the method shown in Figure 11 below.    

 

Figure 11:PSoC cycling profile. 

 The pattern of the end-of-discharge potential (EoDP) and end-of-charge potential (EoCP) 

were used to examine the effects of the additives during the PSoC cycling where the output and 

input charge are equal, resulting in consistent under charging [54].  To evaluate the charge 

efficiency of the cells during the PSoC cycling a conversion indicator calculated by ratio of the 

charge input and the discharge capacity of the previous step.   

 In terms of capacity, the SDBS electrolyte had the best capacity values around 2.4 Ah, 

with the SDS and TX-100 at around 2.3 Ah. The standard electrolyte mixture’s capacity was 

about 2 Ah with the CTAB very close behind.  The PSoC cycle testing gives a good look at how 

the cells would operate in a micro-hybrid environment.  Figure 12 below shows the each of the 

cells performed in the PSoC testing. 
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Figure 12: Conversion indicator performance under PSoC cycling. 

From the plot, the SDS electrolyte showed the longest cycle life in this test and also had 

the greatest energy efficiency in three of the four SoC windows.  The standard performed worse 

than both the SDS and Tx-100 electrolytes and failed to make it into the last cycling window.  

The CTAB electrolyte performed far worse than the rest of the field with substantially lower 

energy efficiency and the worst cycle life. 

The SEM analysis of the plates after testing also shows a critical element in the 

differences in the electrical behavior of the cells.  The impact the different surfactants have on 

the shape, size, and dispersion of the lead sulfate crystals correlates strongly with the charge 

acceptance and cycle life of the batteries in this test.  The best performing surfactant additive, 

SDS, showed fine and well dispersed crystals on the negative plate. The worst performing 

surfactant additive, CTAB, Showed large and course needle shaped crystals [54]. This same type 

of crystal growth is commonly associated with dendritic shorts.    
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 In Summary, certain surfactant compounds can increase certain parameters of lead acid 

batteries while others either limit certain behaviors of break down in the highly oxidative 

environment found in lead acid batteries.   

1.9.4 Ionic Liquid Additives 

 Another contender in the realm of lead acid battery electrolyte additive is ionic liquids.  A 

common definition of ionic liquids is a salt compound that is a liquid below 100°C [58].  This is 

a very broad definition that covers a wide range of organic cations including quaternary 

ammonium cations, heterocyclic aromatic compounds, and pyrrolidinium cations combined with 

an equally wide range of anion [59].  Given the variability of possible of an ionic liquid’s 

makeup, the resulting properties can vary greatly.  The characteristics that make these 

compounds desirable for battery electrolytes, as seen by their heavy use in lithium ion 

batteries[59].  The characteristics these materials have that are so appealing for electrochemical 

applications include their liquid state at room temperature, nonflammability, high ion density, 

thermal stability, wide electrochemical windows and their highly customizable nature [59]. 

 In 2009 some of the first tests were run specifically on the effect that ionic liquids could 

have on a lead acid battery as an additive to the electrolyte.  The four ionic liquids, triethyl 

ammonium hydrogen sulfate, dibutyl ammonium hydrogen sulfate, benzyl ammonium hydrogen 

sulfate, and 1-butyl-3-methylimidazolium hydrogen [59].  The ionic liquids were added to 4.0 

mol/dm3 sulfuric acid in the amounts of 2.5, 5.0, 10.0, 15.0 and 20.0mg/cm3 and tested using 

cyclic voltammetry between 2.500V to +2.500V at a sweep rate 50.0mV/s. Electrode 

specifications may be found in the literature [59]. 

 Using cyclic voltammetry and SEM analysis several trends were seen resulting from the 

addition of the ionic salts.  First, these additives increased both the hydrogen and oxygen 
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overpotentials which should lead to a decrease in water consumption. Second, the additives 

increased the conversion rate of PbSO4 to Pb and of Pb to PbSO4, which increased the utilization 

of the positive active material.  The third and final trend established in the research was an 

increase in the grid corrosion. 

1.9.5 Metal Ion additives  

 So far, most of the testing that has been done using metal ion sulfates, like sodium 

sulfate, has been done to establish the effects the salts have on reducing the appearance of shorts 

[46][50].  The prevention of shorts is caused by the reduced lead sulfate solubility caused by the 

increased sulfate ion concentration in the electrolyte from the added sulfate salt.  The effects of 

the metal ions in the solution are not as well understood, especially in the role they may play in 

charge acceptance.  The following work looks to focus on the effect that different sulfate salts 

will have on mainly the charge acceptance behavior of the cells, but will also consider its effects 

on capacity and cold cranking.  
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2 Experimental  

 The goal of the following experiments is to evaluate the impact of single metal-sulfate 

additives to the electrolyte of AGM lead-acid batteries using a single cell design that closely 

replicates a commercially made AGM battery.  To accomplish this, positive and negative plates 

typically used in mass-market AGM batteries were used.  The “battery box” is a custom designed 

box that allows for single cell AGM configurations, vacuum acid filling, use of pressure release 

valves, and thermocouple and electrode measurements.  For this set of tests, the 2V, 10Ah cells 

were comprised of two negative plates and one positive plate, and Dumas separator 

2.1 Methods and Materials 

2.1.1 Acids 

 The standard acid used in lead acid batteries is sulfuric acid with a density ranging from 

1.200 -1.300 
𝑔

𝑚𝐿
.  For these tests the stock acid solution was purchased from Alchemix and was 

sulfuric acid with a density of 1.24 
𝑔

𝑚𝐿
.  The standard acid for these experiments will be a sulfuric 

acid with sodium sulfate added at a concentration of 15 
𝑔

𝐿
.  This concentration is one that is 

currently used as a standard concentration to produce some lead-acid batteries.  By using the 

formula in Figure 13 below, the number of moles of the sodium ion was calculated.  The 

concentration of other sulfate salts will be based on the equivalent amount of metal ions.   

𝑀𝑜𝑙𝑠 𝑁𝑎+ = 15𝑔 𝑁𝑎2𝑆𝑂4 ×
2 𝑚𝑜𝑙 𝑁𝑎

142.04𝑔
= 0.2112 

𝑚𝑜𝑙

𝐿
 𝑁𝑎+  

Figure 13-Sodium Ion Concentration 

 Using the ion concentration found in Figure 4, acids were made using 10 sulfate salts to 

be used in the first round of testing.  Table 2 below shows the 15g sodium sulfate metal ion 

equivalent acids and their properties.  At the .02112 M level the copper, bismuth, and tin sulfates 
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were over their saturation point in the acid.  These acids were vacuum filtered to remove solid 

particles leaving a saturated solution.   

 A B C D E F G H I J 

SALT FORMULA 𝑁𝑎2𝑆𝑂4 𝑀𝑔𝑆𝑂4 𝐴𝑙2(𝑆𝑂4)3 𝐿𝑖2𝑆𝑂4 𝑍𝑛𝑆𝑂4 𝐼𝑛2(𝑆𝑂4)3 𝐶𝑢𝑆𝑂4 𝐵𝑖2(𝑆𝑂4)3 𝑆𝑛𝑆𝑂4 𝐾2𝑆𝑂4 

MOLECULAR WEIGHT 142.04 120.37 342.15 109.94 161.47 517.81 159.61 706.13 214.77 174.26 

SALT MASS (G) 15.00 25.42 36.13 11.61 37.90 54.68 33.71 74.57 45.36 18.40 

ION CONC. (
𝒎𝒐𝒍

𝑳
) 0.2112 0.2112 0.2112 0.2112 0.2112 0.2112 0.2112 0.2112 0.2112 0.2112 

ACID DENSITY (
𝒈

𝑳
) 1.25 1.27 1.28 1.25 1.28 1.29 x x x 1.29 

Table 3:Table of Sulfate Salt and Acid Properties.  The table shows the properties for acids containing (A) Sodium Sulfate, (B) 

Magnesium Sulfate, (C) Aluminum Sulfate, (D) Lithium Sulfate, (E) Zinc Sulfate, (F) Indium Sulfate, (G) Copper Sulfate, (H) 

Bismuth Sulfate, (I) Tin Sulfate, and (J) Potassium Sulfate. 

The second round of testing focused on the ions that had the best charge acceptance 

behavior (excluding indium sulfate) and used decreasing concentrations to establish a 

relationship between the charge acceptance behavior and the concentration of the metal ion in the 

acid.  The additives that showed the best behavior at this concentration were zinc sulfate and 

aluminum sulfate.  Tables 4 and 5 below shows the concentrations of the metal ions and 

properties of these additives.   

ZINC SULFATE 

SULFURIC ACIDS 

          

ION CONC. (
𝒎𝒐𝒍

𝑳
) 0.2112 0.1408 0.0704 .0422 .0387 0.0352 .0317 .0282 .0142 .0071 

SALT MASS (G) 37.90 25.27 12.63 7.58 6.95 6.32 5.69 5.05 2.54 1.27 

SODIUM MASS 

EQUIVALENT (G) 

15.00 10.00 5.00 3.00 2.75 2.5 2.25 2.00 1.01 0.50 

DENSITY (
𝒈

𝒎𝑳
) 1.28 1.27 1.25 1.25 1.25 1.25 1.25 1.25 1.24 1.24 

Table 4: Properties of Zinc Sulfate-Sulfuric Acid Solutions 
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ALUMINUM SULFATE SULFURIC ACIDS       

ION CONC. (
𝒎𝒐𝒍

𝑳
) 0.2112 0.1408 0.0704 0.0352 .0142 .0071 

SALT MASS (G) 36.13 24.09 12.04 6.02 2.42 .061 

SODIUM MASS EQUIVALENT(G) 15.00 10.00 5.00 2.5 1.01 0.50 

DENSITY (
𝒈

𝑳
) 1.28 1.26 1.25 1.25 1.24 1.24 

Table 5: Properties of Aluminum Sulfate-Sulfuric Acid Solutions 

 The final round of testing single metal ion additives looked at the original sulfate salts 

with metal ion concentrations of 0.0352 M.  Table 6 shows the properties of the acids with the 

sulfate salt additives at the optimal concentration. At the 0.0352 M level, Bismuth was still over 

the saturation point. 

SALT PROPERTIES A B C D E F G H I 

SALT FORMULA 𝑀𝑔𝑆𝑂4 𝐴𝑙2(𝑆𝑂4)3 𝐿𝑖2𝑆𝑂4 𝑍𝑛𝑆𝑂4 𝐼𝑛2(𝑆𝑂4)3 𝐶𝑢𝑆𝑂4 𝐵𝑖2(𝑆𝑂4)3 𝑆𝑛𝑆𝑂4 𝐾2𝑆𝑂4 

MOLECULAR WEIGHT 120.37 342.15 109.94 161.47 517.81 159.61 706.13 214.77 174.26 

SALT MASS (G) 4.24 6.02 1.94 6.32 9.11 5.62 12.43(SAT) 7.56 3.07 

CONC. (
𝒎𝒐𝒍

𝑳
) 0.0352 0.0352 0.0352 0.0352 0.0352 0.0352 0.0352 0.0352 0.0352 

ACID DENSITY (
𝒈

𝒎𝑳
) 1.24 1.25 1.24 1.25 1.25 1.25 x 1.25 1.24 

Table 6:Acid properties at low levels of metal ion additives. (A) Magnesium Sulfate, (B) Aluminum Sulfate, (C) Lithium Sulfate, 

(D) Zinc Sulfate, (E) Indium Sulfate, (F) Copper Sulfate, (G) Bismuth Sulfate, (H) Tin Sulfate, and (I) Potassium Sulfate. 

2.1.2 Cell Assembly 

 A custom designed battery test box comprised of a main box with a cavity for plates and 

acid and a faceplate that is bolted onto the box once the plate stack is inside.  The depth of the 

cavity allows for variation in the compression of the separator by changing the thickness of 

plastic shims in the cavity.  For these tests, the target separator thickness was between 0.85-0.90 

mm.  Once the box has been assembled, a vacuum is applied to the box through a valve located 

on the top of the box.  A second valve located on the back of the box allows for the acid to be 

pulled into the box.  The acid is applied in two steps.  First, 70 mL of acid is pulled into the box 
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followed by three “massage” pulses. Each pulse consists of pulling a vacuum (typically around 

11 PSI), sealing the box, then opening the acid valve to release the vacuum.  The second step is a 

25 mL of acid addition.  Once the box has been filled and weighed it is hooked up to an Arbin 

channel to begin formation.  Figure 14 shows the cell during several steps of the assembly 

process. 
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Figure 14: Single cell construction.  A) Empty battery box. B) Battery box with plate stack. C) Completed box front. D) 

Completed box back. 

2.2 Electrical Tests 

2.2.1 Formation 

 When the positive and negative plates for lead-acid batteries are made, they both begin 

from a similar leady oxide paste mix.  The main differences come from the additives to each 

plate, mainly that lignosulfate expanders, barium sulfate, and other additives are added to the 

negative mix before the paste is applied to the grids [50].  The formation process, or the initial 

A B 

C D 
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charge, is responsible for changing the positive and negative plates, which have the same 

combination of bivalent lead compounds into the lead oxide (PbO2) positive plate and the lead 

(Pb) negative plate required for the electrochemical reaction to occur [50].  The formation 

process used for the cells in these tests is a combination of charging and rest steps over a period 

of 24 hours using an Arbin Instruments BT2000 to perform test cycle.  Figure 15 shows the 

formation process. 

 

Figure 15:AGM Lead-Acid Battery Formation Plot 

During the battery formation large amounts of gas generation is typically experienced.  

For the batteries in this test the weight loss due to gas generation is typically between 10 and 13 

grams.  Much of this gassing occurs during the final three charging steps when the voltage 

exceeds 2.5V.  A good indicator for a poor or incomplete formation in these batteries can be seen 

by the combination of low weight loss and the voltage never exceeding 2.3V-2.5V during the 
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final stages of the formation charging schedule.  Figure 16 shows what the voltage output looks 

like for a battery that fails the formation process.  

 

Figure 16:Failed Lead-Acid Battery Formation 

2.2.2 5 Cycle-Test 

 The five-cycle test run on the batteries for this experiment implemented a custom 

schedule and an Arbin Instruments BT2000.  This test is broken up into two main sections.  The 

first section establishes the condition of the battery.  After a battery has successfully completed 

formation it goes through four full discharge and recharge cycles.  The battery is discharged at a 

C/5 rate (2A) for these batteries, and is recharged at a C/10 rate (1A) for these batteries, until the 

discharge capacity has been reached followed by some additional charging to make up for low 

charging efficiency.  During these conditioning cycles the general capacity of the cells can be 

seen and is usually stabilized after these cycles.  The second portion of the five-cycle test is 

designed to check the charge acceptance behavior of the batteries at several different SoCs.   
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 After the final conditioning cycle the battery is discharged by 1 Ah down to a 90% SoC.  

After the 10% discharge the cells are rested for 12 hours before beginning the charge acceptance 

step.  During the charge acceptance step the voltage is held constant at 2.4V and the current is 

limited by the charge acceptance of the battery.  After 10 seconds the battery is discharged by the 

same amount of Ah it received during the DCA step and then another 1Ah down to an 

approximately 80% SoC. The same method is used to determine the charge acceptance 

characteristics at 80%, 70%, and 60% SoC as at 90% SoC.  After the 60% SoC step the battery is 

fully recharged and then discharged at a C/20 rate, which is 0.5A for these batteries.  Figure 17 

below shows the graphical representation of the five-cycle test. 

 

Figure 17:5 Cycle Test 

 Looking at the plot between 4000 and 7000 seconds the expected DCA behavior of 

increasing charge acceptance with decreasing state of charge can be seen.   
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2.2.3 Cold Cranking 

 One of the most important properties of lead acid batteries is their ability to operate in 

very cold temperatures.  To determine if changes in charge acceptance came with changes in 

cold cranking ability, the cold cranking test for these cells is a 30A discharge on cells after 

completing the five-cycle test and soaking in a temperature controlled chamber at -18°C for 24 

hours.  The test is run until the voltage of the battery reaches 1V.  The time and discharge 

capacity are measured using an Arbin Instruments BT2000. 

2.3 Analytical Tests 

2.3.1 ICP-OES 

 For the ICP samples, the same negative plates were used as those for the SEM/EDS 

samples.  Sections of the lead plate were removed from all 5 positions of the plate.  5 grams of 

the plate were removed ground and mixed into a fine powder with a mortar and pestle.  0.25 

grams of the powder were dissolved in 8mL of concentrated nitric acid (70%) and heated.  After 

about 5 minutes 20mL of DI water was added to the solution and heating continued until the 

samples were completely dissolved.  The solution was then transferred into a 50mL volumetric 

flask and diluted to the 50mL mark with DI water.   

 Samples were also taken from the electrolyte to help identify how the added ions are 

working to affect the electrical properties of the battery.  Fresh electrolyte was taken for ICP 

testing as well as used electrolyte after the boxes had undergone formation and four conditioning 

cycles comprised of a C/5 discharge and a C/10 recharge.  These battery boxes were broken 

down and the separators were squeezed to remove the electrolyte contained within.  After 

removal from the separator, the electrolyte was syringe filtered to remove any fiberglass or other 

contaminants.   
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 A PerkinElmer Optima ICP-OES machine was used for analysis.  This machine uses a 

dual echelle monochromator with 79 lines/mm and a blaze angle of 63.4° and a dual, backside-

illuminated, cooled, CCD detector.  This machine uses the inductively coupled plasma to excite 

the components contained in the sample.  Upon relaxing back to their original state, some 

characteristic light spectra are emitted and gathered by the optical sensor.  When the target 

elements in the sample are in an appropriate concentration range for the sensor, the intensity of 

the spectra can be used to evaluate the concentration of the target elements in the solution.  For 

these samples, the electrolytes were diluted by a factor of 300 and the dissolved plates were 

dissolved by a factor of 50 for evaluation.  

2.3.2 SEM/EDS 

 After being run through the formation test, boxes that contained Aluminum and Zinc 

acids at the 15g sodium sulfate equivalent concentration and the 2.5g sodium sulfate equivalent 

concentration were broken down and compared with a box containing pure sulfuric acid.  Once 

the plates were removed from the battery boxes there rinsed under DI water for approximately 4 

hours to remove any acid from the plates.  After rinsing the plates were placed in a vacuum oven 

at 60°C overnight to remove any water and prevent further reactions from taking place.   

 For the SEM/EDS images sections of the negative plate were removed corresponding to 

positions 2 and 3 in Figure 18.  The electron microscope used for the SEM and EDS images is a 

a Hitachi S-4800 with a 3 kV accelerating voltage.  For the Energy Dispersive X-Ray 

Spectroscopy (EDS) uses x-rays to excite the surface of a sample and upon relaxation emission 

spectra are gathered by the sensor.  Since each element has a unique atomic structure, the 

emission from each element is also unique.  This method can be used to effectively analyze the 

elemental makeup of the surface of a sample.   
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Figure 18: Negative Plate Sample Locations 

3 Results and Discussion 

3.1 Charge Acceptance 

In the first round of testing all the battery boxes were filled with sulfuric acid with a 

metal ion concentration of 0.2112 M, or, in the case of copper, bismuth, and tin, saturated.  

Figure 19 shows the results of the four charge acceptance steps from the five-cycle test for each 

of the additives tested.   

 

Figure 19: High Concentration Dynamic Charge Acceptance plot, All Acids 
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The plot in Figure 18 illustrates the typical behavior of charge acceptance. A table of the 

values in Figure 18 can be found in the Appendix.  As the battery is further discharged it is 

increasingly capable of accepting a larger charge.  This behavior is the main reason why new 

applications of lead-acid batteries need to operate at a partial state of charge: to be able to take 

advantage of the charging energy availably during micro-hybrid driving.  The second thing the 

plot displays is the large difference in the effect these metal ions can have on the charge 

acceptance behavior of the lead acid cells.  Another notable point displayed in Figure 20 is the 

charge acceptance capability of the sodium sulfate electrolyte.  In comparison with the other 

electrolyte additives used, sodium sulfate has the poorest charge acceptance behavior.  

Considering sodium sulfate’s use as an additive for the past few decades has been to reduce 

shorting and improve cold cranking performance, it is not surprising that it does not have 

exceptional charge acceptance effects. 

 

Figure 20:Charge acceptance plot for magnesium across four different DoDs 

Figure 19 shows an expanded view of the four charge acceptance steps for the zinc 

sulfate additive electrolyte. This plot is representative of the charge acceptance steps seen by all 

the acids used in this experiment.  With the voltage held at 2.4V the current spikes to a high 
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initial value and decays down to what would eventually be a constant current that would 

continue to decay as the battery SoC increases.  The charge capacity is calculated by the Arbin 

software by integrating the Time vs Current curve to give a value in Ah that can easily be 

compared with other tests. 

 Based on the high charge capacities seen by the aluminum sulfate and zinc sulfate boxes 

and the low likelihood of indium sulfate’s industrial application due to its high cost, further 

testing at lower concentrations of aluminum sulfate and zinc sulfate were performed.  Figures 21 

and 22 show the charge acceptance steps for these two additives at a range of concentrations.   

 

Figure 21: Aluminum Sulfate Charge Acceptance for several concentrations 
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Figure 22: Zinc Sulfate Charge Acceptance for Several Concentrations 

 Tables containing the values for Figures 21 and 22 can be found in the Appendix.  

Running the five-cycle test revealed that the effect of the concentration on the charge acceptance 

did not have a linear relationship.  For both the aluminum sulfate and the zinc sulfate the 0.0352 

𝑚𝑜𝑙

𝐿
 concentration gave the highest charge acceptance at the 60% SoC level.  After this new trend 

emerged the entire set of acids were also tested at the 0.0352 
𝑚𝑜𝑙

𝐿
 and the results of that test can 

be seen below in Figure 23. 
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Figure 23: Charge acceptance of Metal-Ion Sulfates at the 0.035 M level 

 Figure 22 shows that three ions showed heightened charge acceptance behavior at the 

0.0352 
𝑚𝑜𝑙

𝐿
 level: Aluminum, Zinc, and Magnesium.  Indium, which showed by far the highest 

charge acceptance at the 0.2112 
𝑚𝑜𝑙

𝐿
 level, shows a lower charge acceptance than magnesium and 

aluminum at this lower level.  This trend implies that for each element there is likely a different 

ideal concentration for each ion that will show the highest charge acceptance value.  A table with 

the values from Figure 23 is available in the Appendix. Figure 24 shows the charge acceptance 

steps of magnesium at this lower concentration.   
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Figure 24:  Charge acceptance plot for 0.0351 M magnesium across four different DoDs. 

 When comparing Figure 24 to Figure 20, two important differences arise.  The first is that 

the initial current at the lower concentration is much higher.  The second is that the current level 

approached during the current decay is higher at all levels of discharge.   

3.2 Cold Cranking 

The cold cranking test was run on many of the acids at their 0.0352 
𝑚𝑜𝑙

𝐿
 or at a saturated 

concentration if their solubility was very low.  Figure 25 show a plot of the cold cranking 

discharge capacity of these acids. 
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Figure 25: Cold cranking capacity of low concentration acids. 

 The sodium data point on the left end of the plot is for the reference acid.  The 

magnesium and zinc both have slightly improved discharge capacities over the reference acid 

and aluminum has a slight decrease. Based on the small differences in the charge capacity of 

these three acids, the added charge capacity they provide does not come with a detrimental effect 

on the cells cold cranking abilities compared to the reference cell.   

3.3 ICP-OES Analysis 

 For the ICP-OES analysis calibration curves for aluminum and zinc were calculated from 

4 standard solutions. A blank HNO3 standard and standard solutions of 2, 5 and 10 ppm of 

aluminum and standard solutions containing 2, 10, and 20 ppm of zinc.  The electrolyte solutions 

were diluted by a factor of 300 and the dissolved plate samples were diluted by a factor of 300 to 

evaluate the lead content and by a factor of 50 to evaluate the ion content.  Tables 7 and 8 shows 

the results of the electrolyte analysis. 
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𝐀𝐥 𝐂𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧 𝐏𝐮𝐫𝐞 𝐀𝐜𝐢𝐝 (
𝒎𝒈

𝑳
) 𝐏𝐨𝐬𝐭 𝐅𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐢𝐝(

𝒎𝒈

𝑳
) 

0.2112  
𝒎𝒐𝒍

𝑳
 17.00 19.79 

0.0352 
𝒎𝒐𝒍

𝑳
 1.88 1.99 

𝐍𝐨 𝐀𝐝𝐝𝐢𝐭𝐢𝐯𝐞 0.00 0.163 

Table 7: ICP-OES results for aluminum content of electrolyte at 300 times dilution.  

  

𝐙𝐧 𝐂𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧 𝐏𝐮𝐫𝐞 𝐀𝐜𝐢𝐝 (
𝒎𝒈

𝑳
) 𝐏𝐨𝐬𝐭 𝐅𝐨𝐫𝐦𝐚𝐭𝐢𝐨𝐧 𝐚𝐜𝐢𝐝(

𝒎𝒈

𝑳
) 

0.2112  
𝒎𝒐𝒍

𝑳
 45.03 40.65 

0.0352 
𝒎𝒐𝒍

𝑳
 7.47 6.22 

𝐍𝐨 𝐀𝐝𝐝𝐢𝐭𝐢𝐯𝐞 -0.10 0.03 

Table 8:ICP-OES results for zinc content of electrolyte at 300 times dilution. 

For the ICP analysis of the lead plates 0.5g of the powdered lead plate was dissolved in 

nitric acid for the aluminum plates and 0.2g of the powdered lead was dissolved in nitric acid for 

the zinc plates and the no additive plates.  The solution was diluted by a factor of 300 to analyze 

the lead concentration and by a factor of 50 to analyze the aluminum and zinc concentration in 

the plates. 
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𝐂𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧 𝐀𝐥𝐮𝐦𝐢𝐧𝐮𝐦 (
𝒎𝒈

𝑳
) 𝐙𝐢𝐧𝐜(

𝒎𝒈

𝑳
) 𝐋𝐞𝐚𝐝(

𝒎𝒈

𝑳
) 

𝐀𝐥𝐮𝐦𝐢𝐧𝐮𝐦 0.2112  
𝒎𝒐𝒍

𝑳
 0.01 0.02 26.52 

𝐀𝐥𝐮𝐦𝐢𝐧𝐮𝐦 0.0352 
𝒎𝒐𝒍

𝑳
 -0.01 0.05 27.00 

𝐍𝐨 𝐀𝐝𝐝𝐢𝐭𝐢𝐯𝐞 0.04 0.00 12.60 

𝐙𝐢𝐧𝐜 0.2112  
𝒎𝒐𝒍

𝑳
 0.00 0.13 10.81 

𝐙𝐢𝐧𝐜 0.0352 
𝒎𝒐𝒍

𝑳
 -0.02 -0.03 10.65 

Table 9: ICP-OES results for zinc, aluminum, and lead concentration in lead plates 

 The results in Tables 7 and 8 show some interesting behavior with the concentration of 

the target additives in the electrolyte.  The expectation would be that if the additives form some 

sort of alloy with the lead plates or plate the surface of either plate there would be a drop in their 

concentration after formation. If the ion additives act as a catalyst then the expectation would be 

for the concentration to remain the same after the formation process.   Looking at the aluminum 

concentrations in Table 7, the concentration of aluminum in those samples increased slightly for 

both the 0.2112 
𝑚𝑜𝑙

𝐿
 sample and the .0352 

𝑚𝑜𝑙

𝐿
 sample.  An increase in the concentration after 

formation is expected since water is lost during the formation process. 

 The zinc concentrations are more interesting.  For both the 0.2112 
𝑚𝑜𝑙

𝐿
 sample and the 

0.0352 
𝑚𝑜𝑙

𝐿
 sample the concentration of zinc in the electrolyte decreased by over 10%.  Since the 

zinc concentration has decreased, the zinc may have been left of the surface of the plate in one 

form or another.  The results in Table 9 show the concentration of ions found in the lead plates 

themselves.  At the dilution factor of 300, lead showed up with the expected concentration in 

each sample but the concentration of the aluminum and zinc ions was too low for the sensitivity 
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of the sensor.  For this ICP-OES machine the sensor is no longer accurate at levels below 0.5 

ppm.  To get the samples in the appropriate range the plate samples were diluted by a factor of 

50.  At this dilution, there was still no aluminum or zinc detected in the lead plate samples.   

3.4 SEM and EDS Analysis 

 To further understand the interactions between the electrolyte additives and the negative 

plate in a lead-acid battery, SEM images and EDS mapping were used.  The images in Figure 26 

show the structure on the plate surface from each ion at the 0.0352M concentration at two 

magnification levels.   
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Figure 26: SEM images of negative lead plate. (A) Zinc low concentration, location 2, (B) Zinc low concentration, location 3,  

(C) Aluminum low concentration, location 2, and (D) Aluminum low concentration, position 3. 

The images show the presence of very small lead sulfate crystals.  Since the images are 

taken after the cells had been fully recharged and only put through 4 charge/discharge cycles and 

4 separate SoC charge pulses before being fully charge, the presence of a small amount of lead 

sulfate is expected.  To show the presence of the target elements the samples were mapped using 

EDS.  In Figure 26 (A) the small spiked clusters are lead sulfate.  The other crystalline structures 

seen in the SEM images are the various lead compounds typically found in the negative active 

mass.  The images do not show distinct differences between the different types of electrolyte that 
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were used, only that there is very little presence of lead sulfate on the plate surface and the lead 

sulfate that does exist is found in very small crystals. 

The spectra below in Figure 27 shows the EDS results for the plate sample with no 

additive in the electrolyte.  Data collected from EDS analysis is plotted with the energy in 

electron volts on the X-axis and the count of x-rays that hit the sensor per second on the Y-axis.  

The spectrum shows no peaks for the zinc or aluminum and very large peaks for lead.   

 

Figure 27: EDS spectra for the no additive negative plate. 

The spectra for the other plates resemble Figure 27 with no meaningful peaks 

representing the presence of zinc or aluminum on the plate surface.  The mapping feature also 

failed to show concentrations of zinc or aluminum on the plate surface.  From the SEM and EDS 

analysis, zinc and aluminum do not appear to be present on the surface of the negative plate at a 

fully charged state.   
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4 Conclusion 

 The previous experiment has shown that the presence of metal ions in the electrolyte can 

have large effects on the behavior of an AGM lead-acid battery.  Using 1.24 g/mL density 

sulfuric acid with 15g/L (0.2112mol/L of sodium) of sodium sulfate added as an industry 

benchmark, several new electrolytes were made using different metal-sulfate salts.   The 

concentration of the metal ions in the solution played a large part in the determining the charge 

acceptance behavior of the battery.  The DoD of the battery also effects the change in charge 

acceptance behavior.  Using aluminum at the 0.0352 mol/L level, the charge acceptance value at 

the 60% SoC was the largest of any aluminum concentration.  At the 90%SoC, the highest 

charge acceptance value was found using the 0.2112 mol/Lof aluminum ions.  This pattern also 

occurred with the zinc sulfate acids with the 0.2112 mol/L zinc acid showing the best charge 

acceptance behavior at 90% SoC and the 0.0352mol/L zinc acid showing the best charge 

acceptance behavior at 60% SoC.   

 Except for indium, all additives showed lower charge acceptance value at the 

0.2112mol/L concentration than at lower levels.  The increase in charge acceptance with the 

decreasing concentration is not linear and shows the highest charge acceptance values for most 

of the additives at the 0.0352mol/L concentration.   

 A general trend also appeared based on the oxidation state of the metal ions.  Except for 

copper, the ions with an oxidation state of +1 (potassium, lithium, and sodium) showed the worst 

performance for charge acceptance at low concentrations.  Copper, with an oxidation state of +2, 

had a very high shorting rate and exhibited low charge acceptance values.  The best performing 

ions have either a +2 or +3 oxidation state.  A trend did not appear based on the weights of the 
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ion with weights of the best ions ranging from 12 g/mol for magnesium to 49 g/mol for indium 

and the worst ions ranging from 3g/mol for lithium and 83 g/mol for bismuth.   

 The electrical testing performed has shown that different metal ions can cause significant 

effects on the performance of a lead-acid battery and that trends exist between oxidation state, 

concentration, and charge acceptance behavior.  The mechanism behind how these ions affect 

charge acceptance is not elucidated through electrical testing. 

The main goal of the electrical testing was to show that ions can affect charge acceptance 

behavior.  The SEM-EDS and ICP-OES analysis was intended to shed some light on the 

mechanism by which these changes occur.  The results from these two techniques showed that 

there was little lead sulfate accumulation on the plates, which was expected, and that the metal 

ions were not present on the plate surface at a full state of charge.  From these two analytical 

techniques there is not enough information to make any firm conclusions about the mechanism 

behind metal ions improving charge acceptance. 

 In all, the addition of specific metal ions to the electrolyte can improve the batteries 

charge acceptance capability, which is key parameter for improving lead-acid batteries for 

micro-hybrid use.  The tests performed here have shown have shown substantial increases in 

charge acceptance behaviors over conventional lead-acid battery electrolyte.  The best 

performing ions (zinc, magnesium, and aluminum) have showed charge acceptance increases of 

32-41% at a 60% SoC and increases of 24-51% at the 90% SoC.  

4.1 Future Work 

 The previous tests show that single metal ions can strongly affect the charge 

acceptance behavior in lead acid batteries.  What the testing does not show are the long-term 
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effects these ions may have, the impact of using several ions together, and the mechanism behind 

the changes in charge acceptance behavior.  Based on this, there are three clear paths forward to 

better understand the impact metal ions can have. 

The first path involves long term testing to evaluate the applicability of these additives in 

an industrial setting.  If an ion additive provides great charge acceptance at the expense of cycle 

life or cold cranking performance, the benefits would not offset the losses.  To better understand 

the long-term effects, full scale batteries should be run through a variety of tests that would 

evaluate cycle life under normal and micro-hybrid cycling, water consumption, and cold 

cranking.   

A second area of further study would be to evaluate the mechanism for the changes in 

charge acceptance behavior with the addition of metal sulfates.  Moving forward with this 

testing, several assumptions based on the results from the previous experiments will be made.  

The first is that the metal sulfates are not causing a change in charge acceptance through changes 

in gas generation.  This assumption is based on the weight loss during the formation process 

remaining constant regardless of the additives used.  The second assumption is that the metal 

ions are not changing the charge acceptance behavior by changing the conductivity of the plates.  

The ICP and SEM-EDS data gathered from negative plates formed with both zinc and aluminum 

additives showed no presence of either ion within or on the surface of the plate. The assumed 

mechanism for changing the charge acceptance with metal sulfate additives is changing the size, 

geometry, or distribution of the lead sulfate crystals grown during discharge, much like was seen 
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in the evaluation of negative plates after use with various surfactant additives [54].  

 

Figure 28:Lead sulfate crystal formation.[60] 

 As Figure 28 shows the pathways to lead sulfate crystal growth. Small crystals are easily 

dissolved during the typical charge process while large crystals are more difficult to dissolve 

with typical charging processes.  With this in mind, specific charging and discharging profiles 

will be used to encourage the growth of larger lead sulfate crystals.  To grow large crystals, a 

combination of low current discharges and low current recharges encourage larger crystal 

growth.  Running batteries through these cycles in 10-14 day increments may show the 

progression of crystal growth and, if successful, meaningful differences may be seen between the 

size, shape, and dispersion of the crystals between the different metal sulfate additives.  
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Appendix: Charge Acceptance and Cold Cranking Raw Data 

 90% SoC 80% SoC 70% SoC 60% SoC 

Additive Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Sodium 3.38 0.0103 4.63 0.0145 5.45 0.0174 6.28 0.0202 

Magnesium 3.77 0.0128 5.06 0.0174 6.15 0.0214 6.98 0.0242 

Aluminum 4.72 0.0156 5.78 0.0201 7.00 0.0241 7.61 0.0259 

Lithium 3.89 0.0123 5.12 0.0163 6.23 0.0200 6.86 0.0220 

Zinc 4.14 0.0143 5.61 0.0194 6.80 0.0232 7.45 0.0252 

Indium 6.70 0.0217 8.26 0.0268 9.77 0.0314 10.73 0.0340 

Copper 3.70 0.0105 4.82 0.0138 6.32 0.0182 7.12 0.0205 

Bismuth 3.98 0.0138 5.31 0.0183 6.57 0.0224 7.37 0.0252 

Tin 3.92 0.0122 5.34 0.0170 6.42 0.0206 7.33 0.0236 

Potassium 3.41 0.0090 5.39 0.0147 6.78 0.0194 7.72 0.0235 

No Ion 3.88 0.0133 5.33 0.0181 6.46 0.0219 7.10 0.0240 
Table 10: Raw Data for 0.2112 M Charge Acceptance Plot 

 90% SoC 80% SoC 70% SoC 60% SoC 

Additive Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Al .2112 4.72 0.0156 5.78 0.0201 7.00 0.0241 7.61 0.0259 

Al .1408 4.33 0.0143 5.63 0.0194 6.93 0.0235 7.71 0.0258 

Al .0704 3.76 0.0120 5.08 0.0170 6.08 0.0204 7.07 0.0236 

Al .0352 3.98 0.0132 5.63 0.0191 7.08 0.0243 8.23 0.0281 

Al .0142 3.64 0.0117 4.96 0.0166 5.90 0.0201 6.76 0.0228 

Al .0071 3.23 0.0104 4.61 0.0151 5.66 0.0189 6.77 0.0222 

None 3.88 0.0133 5.33 0.0181 6.46 0.0219 7.10 0.0240 

Na .2112 3.38 0.0103 4.63 0.0145 5.45 0.0174 6.28 0.0202 
Table 11: Raw Data for Aluminum Acids Charge Acceptance Plot 

 90% SoC 80% SoC 70% SoC 60% SoC 

Additive Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Zn 0.2112 4.14 0.0143 5.61 0.0194 6.80 0.0232 7.45 0.0252 

Zn .1408 3.83 0.0102 5.15 0.0137 6.24 0.0165 7.11 0.0186 

Zn .0704 3.82 0.0130 5.44 0.0187 6.59 0.0226 7.65 0.0258 

Zn 0.0422 3.38 0.0109 4.82 0.0158 5.96 0.0198 6.91 0.0229 

Zn 0.0387 4.09 0.0134 5.53 0.0187 6.44 0.0220 7.03 0.0241 

Zn .0352 3.79 0.0124 5.36 0.0184 6.63 0.0231 7.77 0.0269 

Zn 0.0317 3.93 0.0130 5.37 0.0181 6.44 0.0217 7.09 0.0242 

Zn 0.0282 3.57 0.0116 4.94 0.0164 6.14 0.0205 7.08 0.0236 

Zn .0142 3.55 0.0118 4.98 0.0168 5.90 0.0200 6.76 0.0227 

Zn .0071 3.66 0.0097 5.17 0.0138 6.44 0.0178 7.56 0.0209 

None 3.88 0.0133 5.33 0.0181 6.46 0.0219 7.10 0.0240 
Table 12: Raw Values for Zinc Charge Acceptance Plot 
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 90% SoC 80% SoC 70% SoC 60% SoC 

Additive  Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Current 
(A) 

Cap. 
(Ah) 

Sodium 

(0.2212M)  

3.38 0.0103 4.63 0.0145 5.45 0.0174 6.28 0.0202 

Magnesium 4.49 0.0154 5.81 0.0206 6.96 0.0249 7.98 0.0285 

Aluminum 3.98 0.0132 5.63 0.0191 7.08 0.0243 8.23 0.0281 

Lithium 2.77 0.0088 3.98 0.0129 5.03 0.0167 5.74 0.0192 

Zinc 3.79 0.0124 5.36 0.0184 6.63 0.0231 7.77 0.0269 

Indium 4.69 0.0157 6.37 0.0213 7.74 0.0254 8.38 0.0273 

Copper 3.18 0.0101 4.65 0.0146 5.93 0.0187 6.65 0.0211 

Bismuth 3.98 0.0138 5.31 0.0183 6.57 0.0224 7.37 0.0252 

Tin 3.55 0.0116 4.99 0.0165 6.14 0.0204 7.00 0.0234 

Potassium 3.25 0.0096 4.76 0.0153 6.00 0.0193 6.88 0.0225 

None 3.88 0.0133 5.33 0.0181 6.46 0.0219 7.10 0.0240 
Table 13: Raw Values for 0.0352 Charge Acceptance Plot 

 

Ion Time 

(S) 

Cap. 

(Ah) 

Sodium 333.01 2.78 

Magnesium 352.74 2.94 

Aluminum 329.58 2.75 

Zinc 362.90 3.02 

Indium 257.26 2.14 

Copper 343.94 2.87 

Bismuth 278.25 2.32 

Tin 314.01 2.62 

Potassium 393.71 3.28 

No Ion 298.75 2.49 
Table 14: Cold Cranking Raw Values 
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