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ABSTRACT

OPTIMAL INSURANCE WITH BACKGROUND RISK:

AN ANALYSIS IN THE PRESENCE OF

MODERATE NEGATIVE DEPENDENCE

by

Julian J. Dursch

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Wei Wei

As an individual or a corporation, there are various types of risks one faces. For many of

these risks, there are insurance policies available for purchase that provide some protection

against potential losses. However, there are also risks that are not insurable. These risks

remain present as a background factor and affect the insured’s final wealth. Consequentially,

they have an impact on the optimal insurance for the insurable risk through the dependence

structure between the insurable and uninsurable risk.

In this thesis, we take a look at the optimal insurance problem given an insurable risk X and

a background risk Y that are partly moderately negative dependent. We will investigate the

implications of this dependence structure for the optimal solution to the optimal insurance

problem that uses an approach based on [Chi and Wei, 2018]. First, focusing on whether

coverage is demanded or not, we later on make assumptions about the utility function of the

insured and further specify the form of the dependence structure. These analytic results are

followed up by a numerical analysis that has the goal to illustrate the previously obtained

results of this thesis, and [Chi and Wei, 2018], for an exponentially distributed risk X, and

a Pareto distributed risk X respectively.
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Introduction

The optimal insurance problem can be formulated for various situations, and finding a so-

lution to this problem is of great interest for insurance companies as well as for individuals

or corporations. In this thesis, we want to consider a setting that commonly arises in the

field of non-life insurance where an individual or a corporation faces two different risks: One

being insurable by obtaining an insurable policy from an insurance provider, and the second

being uninsurable. Examples for the second risk include the volatility of share returns, infla-

tion, and general economic conditions, as demonstrated by [Huang et al., 2013] and [Doherty

and Schlesinger, 1983]. These types of risks are usually not insurable, and can therefore be

seen as background risks in situations where the optimal insurance for an insurable risk is

sought. Other authors regard this setting as an optimal insurance problem with random

initial wealth, which is another approach that we will not further develop though.

When discussing approaches and methods to determine solutions to the optimal insu-

rance problem, one major characteristic of modeling is the dependence structure between

the insurable risk and the background risk. As both risks are random variables that repre-

sent random losses or gains for the insured party, the questions of whether and how these

two pay-offs relate to one another arise. Assuming independence of these two risks might

be a tempting approach. However, this often does not reflect the reality of the insured. As

an example, consider the following scenario: The owner of a car is legally required to obtain

liability car insurance for their vehicle. In addition, comprehensive coverage is available

to the insured as an optional feature. In situations where the car owner decides to only

purchase liability coverage but no comprehensive coverage, the risk due to claims that are
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covered by the liability policy is the insured risk, and the risk due to claims that are not

covered by the liability coverage is the background risk. In this setting, rather than there

being independence between the two risks, there exists a dependence structure that needs

to be specified.

With a plethora of possible dependence structures, we want to focus on a scenario where

moderate negative dependence prevails for parts of the claim size range of the risk X. In

a working paper by Chi and Wei, [Chi and Wei, 2018], the two authors give an optimal

solution to the optimal insurance problem in the scenario above. The solution requires some

conditions and is of a multi-layer structure, similar to the structure of a stop-loss policy,

in which there are two critical values, d∗1 and d∗2 - one, d∗1, denoting the beginning of the

interval of the claim sizes for which there is a linearly increasing payment from the insurance

provider to the insured, and the other, d∗2, denoting the beginning of the interval of the claim

sizes for which there is a constant payment made by the insurance provider to the insured.

Based on the results by Chi and Wei, the thesis develops as follows: After introducing the

model with its main assumptions, we specify the dependence structure between the insured

risk X and the background risk Y . Using these results by Chi and Wei, we are then able

to show that if there exists a solution with certain values for d∗1 and d∗2, these need to be

above a certain lower boundary. When it comes to interpreting the values for d∗1 and d∗2,

the question of insurance coverage versus no insurance coverage arises. As we will discuss in

chapter three, the first possible solution to think of is that there is no demand for insurance

coverage. By the end of this chapter, we will have developed a criterion that helps us to iden-

tify those case where there is no demand for insurance coverage. Therefore, in chapter four,

we assume a quadratic utility function for the insured as well as the dependence structure to

follow a piece-wise linear law. Applying these assumptions yields more specified conditions

for d∗1 and d∗2 that can later be used to determine these quantities. In chapters five and six,

we furthermore assume the risk X to be exponentially distributed, and Pareto distributed,

respectively. For these distribution types, we can obtain analytic results about the condi-
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tions, which is followed up by a numerical analysis of d∗1 and d∗2 for various choices for the

parameter values. Finally, we are able to connect the question about whether insurance is

demanded with the numerical results, as well as use these results to better understand the

impact of the individual parameters on the values of d∗1 and d∗2, the critical numbers in the

optimal solution to the optimal insurance problem we consider for this thesis.
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A Model for the Background Risk Y

2.1 Description

First, we need to describe the setting that we want to investigate. As an individual or

corporation who faces two sources of risks, given some initial wealth w, they would like to

reduce their risk exposure by obtaining an insurance policy: The two sources of risks are

denoted byX and Y , where the riskX is assumed to be insurable and positive, P(X > 0) = 1,

representing a loss for the insured. The background risk Y , however, is not insurable and

may be negative, representing a loss or a gain for the insured.

When obtaining the insurance policy, the insured’s wealth changes as claims for the risks

X and Y occur, due to payments received from the insurance company that are related to

the insured risk X, and due to the premium payment made by the insured when concluding

the contract. Therefore, we consider the following: The insured’s ceded loss function f(X)

is the amount that is ceded to an insurer, which yields the residual risk I(X) = X − f(X),

the insured’s retained loss function, to be the amount the insured retains. To avoid the

phenomenon of moral hazard, we assume that one should pay more for a larger realization

of the loss, i.e., f(x) and I(x) are both increasing functions. This yields 0 ≤ f ′(x) ≤ 1 holds

almost everywhere, and f(0) = 0. Thus, the set of admissible ceded loss functions is given

by

A = {0 ≤ f(x) ≤ x : I(x) and f(x) are increasing functions}.

4



For the premium payment made by the insured to the insurer, we assume that the insurer

is risk-neutral as the premium π(f(X)) charged for the insurance coverage is determined in

accordance with the expected value principle. Hence, π(f(X)) = (1 + ρ)E[f(X)] holds for

some positive safety loading coefficient ρ.

With this said, the insured’s final wealth Wf (X, Y ) is of the form

Wf (X, Y ) = w − Y −X + f(X)− (1 + ρ)E[f(X)]. (1.1)

Since it is our objective to maximize the expected utility of the insured’s final wealth, we

obtain the following optimization problem:

max
f∈A

E[u(Wf (X, Y ))] (1.2)

for some utility function of a risk-averse insured for which it holds: u′ > 0 and u′′ < 0.

Additionally, we want to state the notation used for a frequently encountered insurance

form, the stop-loss insurance:

f sld (x) = (x− d)+ = max{x− d, 0} (1.3)

Furthermore, we define Φf (x), an expression in the expected marginal utility function, as

follows:

Φf (x) =
E[u′(Wf (X, Y ))|X > x]

E[u′(Wf (X, Y ))]
, for 0 ≤ x ≤ ess sup X

In this setting, we are now able to infer properties of the optimal solution as well as specify

the dependence structure that we want to consider for this thesis.
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2.2 Properties of the Optimal Solution

At this point, we want to refer to [Chi and Wei, 2018] and mention two results that have

been proven in their working paper.

The first result is in regard to the ceded loss function. Their result suggests that the

optimal insurance strategy f ∗ usually admits a multi-layer structure. The theorem states

that the ceded loss function being an optimal solution to problem 1.2 is equivalent to the

derivative of the ceded loss function obtaining certain values for certain values of Φf (x).

Specifically, the marginal indemnity f ′∗ takes value of either 0 or 1 except at some critical

points.

They further establish the uniqueness of the optimal solution to problem 1.2. That is,

once a strategy is verified to be optimal, then it is unique in the sense that any other optimal

strategy would produce the same utility.

2.3 Dependence Structure between X and Y

One major feature of modeling the risks is the dependence structure that is assumed to

hold between the insurable risk X and the background risk Y . We want to investigate a

special class of dependence structures which are represented by X + Y = m(X) where, in

the following, X is a continuous random variable and m(x) is continuous and differentiable.

This yields the insured’s final wealth to be Wf (X) = w −m(X) + f(X) − (1 + ρ)E[f(X)]

and problem 1.2 can be rewritten as

max
f∈A

E[u(Wf (X))] (3.1)

The three major relations, apart from independence, that can hold for X and Y are described

in the following:

6



Positive Dependence: m′(x) ≥ 1

An increase in x leads to a greater increase in m(x), meaning when X increases, Y increases

as well. Therefore, we have a positive dependence between the insurable risk X and the

background risk Y . As the loss caused by the insurable risk X increases, the loss caused by

the background risk Y increases as well, which results in a greater overall loss X+Y = m(X).

With this said, the stop-loss insurance strategy appears to be a reasonable choice in this

scenario as it eliminates the tail risk of X.

Strong Negative Dependence: m′(x) ≤ 0

An increase in x leads to a decrease in m(x) meaning that when X increases, Y decreases

greater than the increase of X. As a result, we have a strong negative dependence structure

between the insurable risk X and the background risk Y . For example, as the loss caused by

the insurable risk X increases, the loss caused by the background risk Y decreases greater,

and consequentially does not only absorb the additional loss, but it also leads to a decrease

in the combined loss. Overall, this means that a greater loss caused by X yields a smaller

overall loss X + Y = m(X). One might refer to this as “X becoming completely hedged by

Y ”, and does not requite insurance coverage therefore.

Moderate Negative Dependence: 0 ≤m′(x) ≤ 1

An increase in x leads to a smaller increase in m(x), meaning that when X increases, Y

decreases, but the decrease is smaller than the increase of X. Therefore, we have a mo-

derately negative dependence structure between the insurable risk X and the background

risk Y because as the loss caused by the insurable risk X increases, the loss caused by the

background risk Y decreases in contrast. However, it is not able to completely absorb the

additional loss caused by X, and the combined loss still increases. Overall, this means that

a greater loss caused by X yields a greater overall loss X + Y = m(X). This is referred to

as “X is partly hedged by Y ”. This relation turns out to cause some complications when

attempting to find an optimal solution for a given risk structure where the two risks display

7



a moderate negative dependence on a certain interval.

In the following analysis, we want to focus on one specific scenario where there is a

moderate negative dependence structure present between X and Y .

2.3.1 Special Case

The special case for which we try to solve the optimal insurance problem, given the structure

X+Y = m(X) between the two risks, is a mixture of two of the structures we have discussed

so far, and can be described as follows: Assume that there exists x0 ≥ 0 such that it holds

for X + Y = m(X):

• 0 ≤ m′(x) ≤ 1 for 0 ≤ x ≤ x0

• m′(x) ≤ 0 for x > x0

Hence, on the one hand, m is increasing, with slope smaller than 1, and we have a moderate

negative dependence for 0 ≤ x ≤ x0. On the other hand, m is decreasing, without any

further information about the slope, and we have strong negative dependence for x > x0. In

this special case, the optimal solution to problem 1.2 is given by a proposition in [Chi and

Wei, 2018]:

Proposition 3.2. With the dependence structure stated in 2.3.1, the optimal solution to

problem 1.2 is

f ∗3 (x) =

 (m(x)−m(d∗1))+ for x ≤ d∗2

m(d∗2)−m(d∗1) for x > d∗2

(3.3)

if there exist d∗1, d
∗
2, such that 0 ≤ d∗1 ≤ d∗2 ≤ x0 and

 E[u′(Wf∗3
(X))|X > d∗1] = (1 + ρ)E[u′(Wf∗3

(X))] (1)

E[u′(Wf∗3
(X))|X > d∗2] = (1 + ρ)E[u′(Wf∗3

(X))] (2)
(3.4)
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By defining the function E(d) := E[u′(Wf∗3
(X))|X > d], the two conditions (1) and (2) in

Proposition 3.2 can been seen as E(d) attaining the same value, that is (1+ρ)E[u′(Wf∗3
(X))],

for certain d’s that are d∗1 and d∗2. Therefore, the notation E(d) will come up later again in

our discussion where we will consider the function E(d) for further analysis.

The following table illustrates the consequences of the assumptions about m and pro-

position 3.2 for the optimal solution f ∗3 (x), the final wealth of the insured Wf∗3
(x), and the

marginal utility u′(Wf∗3
(x)).
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2.3.2 Lower Boundary for d

Assuming that there exists a d∗ that fulfills the conditions in Proposition 3.2, we can show

an additional property of d∗: There exists a lower boundary for d∗, meaning d∗ is not only

greater than zero, but also greater than S−1X ( 1
1+ρ

).

Proposition 3.5. Given the dependence structure stated in 2.3.1: If there exists d∗ such that

0 ≤ d∗ ≤ x0 and E[u′(Wf∗3
(X))|X > d∗] = (1 + ρ)E[u′(Wf∗3

(X))] holds, then d∗ ≥ S−1X

(
1

1+ρ

)
holds.

Proof :

Using conditional expectation, it holds:

E(d∗) = E[u′(Wf∗3
(X))|X > d∗] =

1

P(X > d∗)
E[u′(Wf∗3

(X))1{X > d∗}]

and

(1 + ρ)E[u′(Wf∗3
(X))]

= (1 + ρ)
(
E[u′(Wf∗3

(X))1{d∗ ≥ X > 0}] + E[u′(Wf∗3
(X))1{X > d∗}]

)
= (1 + ρ)E[u′(Wf∗3

(X))1{d∗ ≥ X > 0}] + (1 + ρ)E[u′(Wf∗3
(X))1{X > d∗}].

Hence,

E[u′(Wf∗3
(X))|X > d∗] = (1 + ρ)E[u′(Wf∗3

(X))]

1

P(X > d∗)
E[u′(Wf∗3

(X))1{X > d∗}] = (1 + ρ)E[u′(Wf∗3
(X))1{d∗ ≥ X > 0}]

+(1 + ρ)E[u′(Wf∗3
(X))1{X > d∗}]

E[u′(Wf∗3
(X))1{X > d∗}] = P(X > d∗)(1 + ρ)E[u′(Wf∗3

(X))1{d∗ ≥ X > 0}]

+P(X > d∗)(1 + ρ)E[u′(Wf∗3
(X))1{X > d∗}]
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0 = P(X > d∗)(1 + ρ)E[u′(Wf∗3
(X))1{d∗ ≥ X > 0}]

+
(
P(X > d∗)(1 + ρ)− 1

)
E[u′(Wf∗3

(X))1{X > d∗}]

Since u′ is positive, both expectations are greater than or equal to 0. Furthermore, with

P(X > d∗) ≥ 0 and ρ ≥ 0, we can infer that the first summand in the last equation is non-

negative. Therefore, the second summand needs to be non-positive. Since the expectation is

non-negative, the factor needs to be non-positive. Thus, it needs to hold P(X > d∗)(1+ρ) ≤

1. With S−1X (x) being decreasing, we obtain the following inequality:

P(X > d∗)(1 + ρ) ≤ 1

P(X > d∗) ≤ 1

1 + ρ

SX(d∗) ≤ 1

1 + ρ

d∗ ≥ S−1X

( 1

1 + ρ

)

This completes the proof. Therefore, if there exists a d∗ that fulfills the equations in Propo-

sition 3.2, we know that d∗ ≥ S−1X

(
1

1+ρ

)
needs to hold.

In the next chapter, we investigate the case where the optimal solution to problem 1.2 is

no coverage, i.e., the insured does not demand any insurance coverage.
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No Insurance Demand

The first question that arises when consider the optimal insurance problem is whether the

insured will demand coverage for the risk X, or not. If we can show that the optimal solution

to problem II.1.2 is no coverage, we are finished and we have found f ∗3 as f ∗3 ≡ 0. According

to [Chi and Wei, 2018], we need to check whether the following holds for all d:

Φf∗3
(d) =

E[u′(Wf∗3
(X))|X > d]

E[u′(Wf∗3
(X))]

≤ 1 + ρ

⇔ E[u′(Wf∗3
(X))|X > d] ≤ (1 + ρ)E[u′(Wf∗3

(X))]

On the other hand, if we can show that this inequality doesn’t hold, i.e., there exist d such

that E[u′(Wf∗3
(X))|X > d] > (1 + ρ)E[u′(Wf∗3

(X))], we know that “no coverage” is not

the optimal solution. Hence, purchasing an insurance policy with coverage is recommended

and we need to conduct further research about the nature of this insurance coverage. The

investigation will deal with the condition 0 ≤ d∗1 ≤ d∗2 ≤ x0 for the d’s as stated in Proposition

II.3.2.

3.1 Setting

Since there is no coverage, f ∗3 ≡ 0 , there is no premium payment, and the final wealth of

the insured Wf∗3
becomes Wf∗3

(X) = w −m(X), which is free of d.

The following table illustrates the consequences of these assumptions for the optimal so-
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lution f ∗3 (x), the final wealth of the insured Wf∗3
(x), and the marginal utility u′(Wf∗3

(x)), in

a shortened version. It is followed by a more detailed version of the table that gives insight

on d∗1 and d∗2, results we want to return to when analyzing the numerical results obtained in

chapters 4.2.2 and 5.2.4.

0 ≤ x ≤ x0 x > x0

f ∗3 (x) = 0 0

monotonicity constant constant

Wf∗3
(x) = w −m(x) w −m(x)

monotonicity decreasing with increasing with

−1 ≤ −m′(x) ≤ 0 −m′(x) ≥ 0

u′(Wf∗3
(x)) = - -

monotonicity increasing decreasing

Table 3.2: Simplified version of the functions involved in the optimal insurance problem
when there is no insurance demand
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Recalling E(d) = E[u′(Wf∗3
(X))|X > d], we now want to investigate whether the inequa-

lity below holds for all d.

Φf∗3
(d) =

E[u′(Wf∗3
(X))|X > d]

E[u′(Wf∗3
(X))]

≤ 1 + ρ

⇔ E[u′(Wf∗3
(X))|X > d] ≤ (1 + ρ)E[u′(Wf∗3

(X))]

3.2 Investigation of E(d)

Let g(X) := u′(Wf∗3
(X)), and with the above said, it follows g(X) = u′(w −m(X)).

In this case, E(d) becomes E(d) = E[u′(Wf∗3
(X))|X > d] = E[g(X)|X > d]. Observe that

the variable d only appears in the condition. For analyzing the monotonicity and extreme

points of E(d), one approach is to consider the first derivative E ′(d) = ∂
∂d
E(d)

3.2.1 General Results

Lemma 2.1. The function E(d) = E[u′(Wf∗3
(X))|X > d] has the derivative

E ′(d) =
∂

∂d
E(d) =

fX(d)

P(X > d)

[
E[g(X)|X > d]− g(d)

]

with g(X) = u′(Wf∗3
(X)).

Proof:

Finding the first derivative yields:

E ′(d) =
∂

∂d
E[g(X)|X > d]

=
∂

∂d

[ 1

P(X > d)
E[g(X)1{X > d}]

]
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=
∂

∂d

[ 1

P(X > d)

∞∫
d

g(x)fX(x)dx
]

=
∂

∂d

[( ∞∫
d

fX(x)dx
)−1 ∞∫

d

g(x)fX(x)dx
]

Using the product rule and the rules for differentiation for parameter integrals, we obtain:

E ′(d) =
∂

∂d

[( ∞∫
d

fX(x)dx
)−1] ∞∫

d

g(x)fX(x)dx

+
∂

∂d

[ ∞∫
d

g(x)fX(x)dx
]( ∞∫

d

fX(x)dx
)−1

= −
( ∞∫
d

fX(x)dx
)−2 ∂

∂d

[ ∞∫
d

fX(x)dx
] ∞∫
d

g(x)fX(x)dx

−g(d)fX(d)
( ∞∫
d

fX(x)dx
)−1

= −
( ∞∫
d

fX(x)dx
)−2

(−fX(d))

∞∫
d

g(x)fX(x)dx

−g(d)fX(d)
( ∞∫
d

fX(x)dx
)−1

=
( ∞∫
d

fX(x)dx
)−2

fX(d)

∞∫
d

g(x)fX(x)dx

−g(d)fX(d)
( ∞∫
d

fX(x)dx
)−1
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=
( ∞∫
d

fX(x)dx
)−1

fX(d)
[( ∞∫

d

fX(x)dx
)−1 ∞∫

d

g(x)fX(x)dx− g(d)
]

=
fX(d)

P(X > d)

[ 1

P(X > d)

∞∫
d

g(x)fX(x)dx− g(d)
]

=
fX(d)

P(X > d)

[ 1

P(X > d)
E[g(X)1{X > d}]− g(d)

]

=
fX(d)

P(X > d)

[
E[g(X)|X > d]− g(d)

]

This finishes the proof.

Since we are interested in the monotonicity behavior of E(d), observe that fX(d) and

P(X > d) are both non-negative, and therefore, the further analysis focuses on the third

factor. Due to the change in monotonicity of m(X) at x0, we want to consider the following

two separate cases.

3.2.2 Results for d > x0

Lemma 2.2. Given the dependence structure stated in 2.3.1: E(d) is decreasing in d for

d > x0.

Proof:

With Lemma 2.1, we can infer for d ≥ x0: From the fact that g(x) = u′(Wf∗3
(x)) is decreasing

for x ≥ x0, see table 3.1, we obtain the following inequality for the third factor in the

derivative E ′(d):
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E[g(X)|X > d]− g(d)

=
1

P(X > d)

∞∫
d

g(x)fX(x)dx− g(d)

≤ 1

P(X > d)

∞∫
d

g(d)fX(x)dx− g(d)

=
1

P(X > d)
g(d)

∞∫
d

fX(x)dx− g(d)

=
1

P(X > d)
g(d)P(X > d)− g(d)

= g(d)− g(d) = 0

In short, E[g(X)|X > d] − g(d) ≤ 0. Since the other two factors in the product are non-

negative, we know that E ′(d) is non-positive for d ≥ x0, which means that E(d) is decreasing

in d on [x0,∞). We can further infer that the maximum of E(d) needs to be to the left of

x0. This completes the proof.

3.2.3 Results for d ≤ x0

Starting off with E(0) = E[g(X)|X > 0] = E[g(X)], assuming that P(X > 0) = 1, we

encounter two subcases that need to be considered separately:
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Subcase: E[g(X)] ≤ g(0)

Lemma 2.3. Given the dependence structure stated in 2.3.1: If E[g(X)] ≤ g(0) (∗) holds,

this implies E(d) = E[g(X)|X > d] ≤ E[g(X)] for all d ≤ x0.

Proof:

For the proof, we need the fact that g(0) ≤ g(x) holds for all x ∈ [0, x0]. This is due to the

monotonicity of m(x): Since 0 ≤ m′(x) ≤ 1 holds for x ∈ [0, x0] (see table), we know that

g(x) = u′(w−m(x)) is increasing on [0, x0]. Hence, g(0) ≤ g(x) holds for all x ∈ [0, x0] (∗∗)

First, we use some general properties of the expected value and conditional expectation

in order to express E(d) = E[g(X)|X > d] in another form:

E[g(X)] = E[g(X)(1{X ≤ d}+ 1{X > d})]

= E[g(X)1{X ≤ d}] + E[g(X)1{X > d}]

= P(X ≤ d)E[g(X)|X ≤ d] + P(X > d)E[g(X)|X > d]

This yields

E[g(X)|X > d] =
E[g(X)]− P(X ≤ d)E[g(X)|X ≤ d]

P(X > d)
,

and we can apply the previously mentioned properties to obtain:

E[g(X)|X > d] =
E[g(X)]− P(X ≤ d)E[g(X)|X ≤ d]

P(X > d)

=
E[g(X)]− E[g(X)1{X ≤ d}]

P(X > d)

(∗∗)
≤ E[g(X)]− E[g(0)1{X ≤ d}]

P(X > d)
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=
E[g(X)]− g(0)E[1{X ≤ d}]

P(X > d)

=
E[g(X)]− g(0)P(X ≤ d)

P(X > d)

(∗)
≤ E[g(X)]− E[g(X)]P(X ≤ d)

P(X > d)

= E[g(X)]
1− P(X ≤ d)

P(X > d)

= E[g(X)]
P(X > d)

P(X > d)

= E[g(X)]

Hence, E(d) = E[g(X)|X > d] ≤ E[g(X)] for all d ≤ x0. This completes the proof.

Subcase: E[g(X)] > g(0)

Lemma 2.4. Given the dependence structure stated in 2.3.1: If E[g(X)] > g(0) (∗) holds,

this implies that there exists d ∈ [0, x0] such that E(d) = E[g(X)|X > d] > E[g(X)] holds.

Proof:

Now, consider the following: In order for E[g(X)] > g(0) to hold, the continuity of g(x)

implies that there exists z ∈ [0, x0] such that g(z) = E[g(X)]. We can state the interval

for z due to the following reasoning: Since g(x) is increasing on [0, x0] and decreasing on

[x0,∞), the maximum of g(x) is attained on [0, x0], and thus, there exists z ∈ [0, x0] with

g(z) = E[g(X)]. Due to the monotonicity of g(x), it holds g(x) ≤ g(z) for all x ∈ [0, z] (∗∗)
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Taking these observations into consideration, we obtain the following for all d ∈ [0, z]:

First, we use some general properties of the expected value and conditional expectation in

order to express E(d) = E[g(X)|X > d] in another form.

E[g(X)] = E[g(X)(1{X ≤ d}+ 1{X > d})]

= E[g(X)1{X ≤ d}] + E[g(X)1{X > d}]

= P(X ≤ d)E[g(X)|X ≤ d] + P(X > d)E[g(X)|X > d]

This yields

E[g(X)|X > d] =
E[g(X)]− P(X ≤ d)E[g(X)|X ≤ d]

P(X > d)
,

and we can apply the previously mentioned observations to obtain:

E[g(X)|X > d] =
E[g(X)]− P(X ≤ d)E[g(X)|X ≤ d]

P(X > d)

=
E[g(X)]− E[g(X)1{X ≤ d}]

P(X > d)

(∗∗)
≥ E[g(X)]− E[g(z)1{X ≤ d}]

P(X > d)

=
E[g(X)]− g(z)E[1{X ≤ d}]

P(X > d)
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=
E[g(X)]− g(z)P(X ≤ d)

P(X > d)

(∗)
>

E[g(X)]− E[g(X)]P(X ≤ d)

P(X > d)

= E[g(X)]
1− P(X ≤ d)

P(X > d)

= E[g(X)]
P(X > d)

P(X > d)

= E[g(X)]

Hence, E(d) = E[g(X)|X > d] > E[g(X)] for all d ∈ [0, z]. Since z ∈ [0, x0], this proves

the existence of some d ∈ [0, x0] such that E(d) = E[g(X)|X > d] > E[g(X)] holds, and the

proof is complete.

3.3 Inference about the Optimal Solution

With the lemmas from the previous sections, we are able to draw conclusions about whether

insurance is demanded.

3.3.1 No Insurance Demand

The following theorem states a condition that implies the optimal solution to be no insurance

coverage.

Theorem 3.1. Given the dependence structure stated in 2.3.1: If E[g(X)] ≤ g(0), the

optimal solution to problem II.1.2 is no insurance coverage, i.e., f ∗3 ≡ 0.
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Proof:

By lemma 2.3, E(d) = E[g(X)|X > d] ≤ E[g(X)] ≤ (1 + ρ)E[g(X)] holds for all d ∈ [0, x0].

By lemma 2.2, E(d) is decreasing on d ∈ [x0,∞). Hence, E(d) = E[g(X)|X > d] ≤

E[g(X)] ≤ (1 + ρ)E[g(X)] for all d ≥ 0. This is exactly what we wanted to show. Therefore,

it holds

Φf∗3
(d) =

E[u′(Wf∗3
(X))|X > d]

E[u′(Wf∗3
(X))]

≤ 1 + ρ

for all d ≥ 0, and [Chi and Wei, 2018] implies that the optimal solution to problem II.1.2 is

no insurance demand, i.e., f ∗3 ≡ 0. This finishes the proof.

3.3.2 Insurance Demand

The following theorem states a condition that implies the optimal solution to be insurance

coverage.

Theorem 3.2. Given the dependence structure stated in 2.3.1: If E[g(X)] > g(0), the

optimal solution to problem II.1.2 is insurance coverage.

Proof:

Assuming there is no insurance contract concluded, we can set π(f(X)) = 0.

By lemma 2.4, there exists some d for which E[g(X)|X > d] > E[g(X)] > (1 + 0)E[g(X)]

holds. Therefore, it holds

Φf∗3
(d) =

E[u′(Wf∗3
(X))|X > d]

E[u′(Wf∗3
(X))]

> 1 + ρ

for some d, which contradicts the properties that need to hold in order for “no coverage” to

be the optimal solution to problem II.1.2. Hence, “no coverage” f ∗3 ≡ 0 is not the optimal

solution, and the optimal insurance needs to be insurance coverage. This finishes the proof.
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Insurance Demand

In this chapter, we want to investigate the case where there is insurance coverage for the

risk X. Furthermore, we want certain assumptions to hold, for the utility function of the

insured, as well as for the function type of m(X) which describes the dependence structure

between the insurable risk X and the background risk Y .

4.1 Quadratic Utility Function

To begin with, we want to specify the type of utility function. We assume the insured has

assessed their final wealth according to a quadratic utility function. For this type of a utility

function, we take a look at the following preliminaries first.

4.1.1 Preliminaries

The quadratic utility function used should have the parametric representation u(ξ) with

= −(η − ξ)2 holding for ξ ≤ η, with an appropriate choice of η. Since we need u′ > 0 to

hold for all ξ, and we only consider the half of the parabola that is to the left of the vertex,

η needs to be chosen large enough. This becomes especially relevant when we consider a

certain distribution for the risk X. We might need to adjust the distribution to keep the

final wealth of the insured bounded allowing for the value of η to be finite. In general, this

assumption is reasonable as in application, the insured’s final wealth is bounded from above

due to natural economic restrictions.
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For the derivative u′(ξ), it holds u′(ξ) = −2(η−ξ)(−1) = 2(η−ξ), and therefore, plugging

in Wf∗3
(x) as the argument, we obtain

u′(Wf∗3
(x)) = 2

(
η −Wf∗3

(x)
)

= 2
(
η − (w −m(x) + f ∗3 (x)− (1 + ρ)E[f ∗3 (X)])

)
= 2

(
η − w +m(x)− f ∗3 (x) + (1 + ρ)E[f ∗3 (X)]

)

The quadratic utility function is convenient in this case as its linear structure allows the

marginal utility to be split up into several parts that can then be analyzed individually.

4.1.2 Application

Lemma 1.1. Given the dependence structure stated in 2.3.1, assuming a quadratic utility

function of the form u(ξ) = −(η − ξ)2, the two equations stated in Proposition II.3.2 are

equivalent to



(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d1]− E[fd1,d2(X)|X > d1]

= ρ(η − w) + (1 + ρ)E[m(X)]

(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= ρ(η − w) + (1 + ρ)E[m(X)]

Proof:

The equations in proposition II.3.2 are as follows:

 E[u′(Wf∗3
(X))|X > d∗1] = (1 + ρ)E[u′(Wf∗3

(X))] (1)

E[u′(Wf∗3
(X))|X > d∗2] = (1 + ρ)E[u′(Wf∗3

(X))] (2)

Assuming the existence of d∗1 and d∗2, we can try to solve this system of equations to determine

the values of d∗1 and d∗2. The optimal solution f ∗3 then depends on the two variables d1 and d2,
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which is why we denote the ceded function as fd1,d2 in the following. With the assumption

of a quadratic utility function, this yields



E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
|X > d1]

= (1 + ρ)E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
] (1)

E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
|X > d2]

= (1 + ρ)E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
] (2)

If we furthermore assume the optimal solution to be given in the form of

fd1,d2(x) =

 (m(x)−m(d1))+ for x ≤ d2

m(d2)−m(d1) for x > d2

the two conditions can be simplified analyzing each part of the equation individually.

Starting off with E[fd1,d2(X)], we observe that fd1,d2(x) = 0 for x ∈ (0, d1] since m is

increasing on [0, x0]. Using conditional expectation, the first expectation becomes:

E[fd1,d2(X)]

= E[fd1,d2(X)1{d1 ≥ X > 0}] + E[fd1,d2(X)1{d2 ≥ X > d1}] + E[fd1,d2(X)1{X > d2}]

= E[(m(X)−m(d1))1{d2 ≥ X > d1}] + E[(m(d2)−m(d1))1{X > d2}]

= E[(m(X)−m(d1))1{d2 ≥ X > d1}] + (m(d2)−m(d1))E[1{X > d2}]

= E[(m(X)−m(d1))1{d2 ≥ X > d1}] + (m(d2)−m(d1))P(X > d2)
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for which it further holds:

E[fd1,d2(X)]

= E[(m(X)−m(d1))1{d2 ≥ X > d1}] + (m(d2)−m(d1))P(X > d2)

= E[m(X)1{d2 ≥ X > d1}]− E[m(d1)1{d2 ≥ X > d1}]

+m(d2)P(X > d2)−m(d1))P(X > d2)

= E[m(X)1{d2 ≥ X > d1}]−m(d1)E[1{d2 ≥ X > d1}]

+m(d2)P(X > d2)−m(d1))P(X > d2)

= E[m(X)1{d2 ≥ X > d1}]−m(d1)P(d2 ≥ X > d1)

+m(d2)P(X > d2)−m(d1))P(X > d2)

= E[m(X)1{d2 ≥ X > d1}]−m(d1)P(X > d1) +m(d2)P(X > d2)

The two conditional expectations become:

E[fd1,d2(X)|X > d1] =
1

P(X > d1)
E[fd1,d2(X)1{X > d1}]

=
1

P(X > d1)

(
0 + E[fd1,d2(X)1{X > d1}]

)

=
1

P(X > d1)

(
E[01{d1 ≥ X > 0}] + E[fd1,d2(X)1{X > d1}]

)

=
1

P(X > d1)

(
E[fd1,d2(X)1{d1 ≥ X > 0}] + E[fd1,d2(X)1{X > d1}]

)

=
1

P(X > d1)
E[fd1,d2(X)1{X > 0}]

=
1

P(X > d1)
E[fd1,d2(X)]
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E[fd1,d2(X)|X > d2] =
1

P(X > d2)
E[fd1,d2(X)1{X > d2}]

=
1

P(X > d2)
E[(m(d2)−m(d1))1{X > d2}]

=
1

P(X > d2)
(m(d2)−m(d1))E[1{X > d2}]

=
1

P(X > d2)
(m(d2)−m(d1))P(X > d2)

= m(d2)−m(d1)

Returning to the two equations, it holds for the right-hand side:

E
[
2(η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)])

]
= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E

[
m(X)− fd1,d2(X)

]
= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E[m(X)]− 2E[fd1,d2(X)]

= 2(η − w) + 2(1 + ρ− 1)E[fd1,d2(X)] + 2E[m(X)]

= 2(η − w) + 2ρE[fd1,d2(X)] + 2E[m(X)]

= 2(η − w + E[m(X)]) + 2ρE[fd1,d2(X)]

Similarly, we obtain for the left-hand side with d1:

E
[
2(η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)])|X > d1

]
= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E

[
m(X)− fd1,d2(X)|X > d1

]
= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E[m(X)|X > d1]− 2E[fd1,d2(X)|X > d1]
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which becomes the following, by using the results above:

2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E[m(X)|X > d1]− 2E[fd1,d2(X)|X > d1]

= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E[m(X)|X > d1]− 2
1

P(X > d1)
E[fd1,d2(X)]

= 2(η − w) + 2
(

(1 + ρ− 1

P(X > d1)
)E[fd1,d2(X)] + E[m(X)|X > d1]

)

Similarly, we obtain for the left-hand side with d2:

E
[
2(η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)])|X > d2

]
= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E

[
m(X)− fd1,d2(X)|X > d2

]
= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E[m(X)|X > d2]− 2E[fd1,d2(X)|X > d2]

which becomes the following, by using the results above:

2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E[m(X)|X > d2]− 2E[fd1,d2(X)|X > d2]

= 2(η − w + (1 + ρ)E[fd1,d2(X)]) + 2E[m(X)|X > d2]− 2(m(d2)−m(d1))

= 2(η − w) + 2
(

(1 + ρ)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))
)

This finishes the individual analysis. Putting these identities together turns the equations
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(1) and (2)



E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
|X > d1]

= (1 + ρ)E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
] (1)

E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
|X > d2]

= (1 + ρ)E[2
(
η − w +m(X)− fd1,d2(X) + (1 + ρ)E[fd1,d2(X)]

)
] (2)

into the following conditions:



2(η − w) + 2
(

(1 + ρ− 1
P(X>d1))E[fd1,d2(X)] + E[m(X)|X > d1]

)
= (1 + ρ)

(
2(η − w + E[m(X)]) + 2ρE[fd1,d2(X)]

)

2(η − w) + 2
(

(1 + ρ)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))
)

= (1 + ρ)
(

2(η − w + E[m(X)]) + 2ρE[fd1,d2(X)]
)

These can be further simplified by dividing by 2, and rearranging terms, to:



(η − w) + (1 + ρ− 1
P(X>d1))E[fd1,d2(X)] + E[m(X)|X > d1]

= (1 + ρ)
(

(η − w + E[m(X)]) + ρE[fd1,d2(X)]
)

(η − w) + (1 + ρ)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= (1 + ρ)
(

(η − w + E[m(X)]) + ρE[fd1,d2(X)]
)
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

(η − w) + (1 + ρ− 1
P(X>d1))E[fd1,d2(X)] + E[m(X)|X > d1]

= (1 + ρ)(η − w) + (1 + ρ)E[m(X)]) + (1 + ρ)ρE[fd1,d2(X)]

(η − w) + (1 + ρ)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= (1 + ρ)(η − w) + (1 + ρ)E[m(X)]) + (1 + ρ)ρE[fd1,d2(X)]



(1 + ρ− (1 + ρ)ρ− 1
P(X>d1))E[fd1,d2(X)] + E[m(X)|X > d1]

= ρ(η − w) + (1 + ρ)E[m(X)]

(1 + ρ− (1 + ρ)ρ)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= ρ(η − w) + (1 + ρ)E[m(X)]



(1− ρ2 − 1
P(X>d1))E[fd1,d2(X)] + E[m(X)|X > d1]

= ρ(η − w) + (1 + ρ)E[m(X)]

(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= ρ(η − w) + (1 + ρ)E[m(X)]

which can also be written as:



(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d1]− E[fd1,d2(X)|X > d1]

= ρ(η − w) + (1 + ρ)E[m(X)]

(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= ρ(η − w) + (1 + ρ)E[m(X)]
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4.2 Piece-wise Linear Function m

We assume m to be a piece-wise linear function in order to simplify the discussion and allow

for more inference.

4.2.1 Preliminaries

The function m should display the following structure:

m(x) =

 m1x for x ≤ x0

m1x0 +m2(x− x0) = (m1 −m2)x0 +m2x for x > x0

with 0 ≤ m1 ≤ 1, since 0 ≤ m′(x) ≤ 1 should hold for 0 ≤ x ≤ x0, and m2 ≤ 0, since

m′(x) ≤ 0 should hold for x > x0.

4.2.2 Application

Lemma 2.1. Given the dependence structure stated in 2.3.1, assuming a quadratic utility

function of the form u(ξ) = −(η − ξ)2, and a linear structure of m with

m(x) =

 m1x for x ≤ x0

m1x0 +m2(x− x0) = (m1 −m2)x0 +m2x for x > x0,
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the two equations stated in Lemma 1.1 are equivalent to



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d1}] + (1 + ρ)m1E[X1{d1 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
−m1(d2 − d1)

= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d2}] + (1 + ρ)m1E[X1{d2 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}].

Proof:

With this additional assumption about the structure of m, we want to simplify the equations

below:



(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d1]− E[fd1,d2(X)|X > d1]

= ρ(η − w) + (1 + ρ)E[m(X)]

(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= ρ(η − w) + (1 + ρ)E[m(X)]

Considering each expectation individually, we obtain:
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For E[fd1,d2(X)], it follows:

E[fd1,d2(X)] = E[(m(X)−m(d1))1{d2 ≥ X > d1}] + (m(d2)−m(d1))P(X > d2)

= E[m(X)1{d2 ≥ X > d1}]−m(d1)P(X > d1) +m(d2)P(X > d2)

= E[m1X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

= m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

For E[fd1,d2(X)|X > d1], we obtain:

E[fd1,d2(X)|X > d1]

=
1

P(X > d1)
E[fd1,d2(X)]

=
1

P(X > d1)

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)

Furthermore, it holds:

E[m(X)] = E[m1X1{x0 ≥ X > 0}] + E[(m1x0 +m2X)1{X > x0}]

= m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0E[1{X > x0}]

+m2E[X1{X > x0}]

= m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0P(X > x0)

+m2E[X1{X > x0}]
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E[m(X)|X > d1] = E[m1X1{x0 ≥ X > d1}] + E[(m1x0 +m2X)1{X > x0}]

= m1E[X1{x0 ≥ X > d1}] + (m1 −m2)x0E[1{X > x0}]

+m2E[X1{X > x0}]

= m1E[X1{x0 ≥ X > d1}] + (m1 −m2)x0P(X > x0)

+m2E[X1{X > x0}]

E[m(X)|X > d2] = E[m1X1{x0 ≥ X > d2}] + E[(m1x0 +m2X)1{X > x0}]

= m1E[X1{x0 ≥ X > d2}] + (m1 −m2)x0E[1{X > x0}]

+m2E[X1{X > x0}]

= m1E[X1{x0 ≥ X > d2}] + (m1 −m2)x0P(X > x0)

+m2E[X1{X > x0}]

With these identities, it yields:



(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d1]− E[fd1,d2(X)|X > d1]

= ρ(η − w) + (1 + ρ)E[m(X)]

(1− ρ2)E[fd1,d2(X)] + E[m(X)|X > d2]− (m(d2)−m(d1))

= ρ(η − w) + (1 + ρ)E[m(X)]
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

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d1}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

− 1
P(X>d1)

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
= ρ(η − w) + (1 + ρ)(

m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]
)

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d2}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

−m1(d2 − d1)

= ρ(η − w) + (1 + ρ)(
m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

)



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d1}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

= ρ(η − w) + (1 + ρ)(
m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

)

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d2}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

−m1(d2 − d1)

= ρ(η − w) + (1 + ρ)(
m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

)
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Rearranging the terms yields:



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d1}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

= ρ(η − w)

+(1 + ρ)m1E[X(1{x0 ≥ X > d1}+ 1{d1 ≥ X > 0})]

+(1 + ρ)(m1 −m2)x0P(X > x0) + (1 + ρ)m2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d2}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

−m1(d2 − d1)

= ρ(η − w)

+(1 + ρ)m1E[X(1{x0 ≥ X > d2}+ 1{d2 ≥ X > 0})]

+(1 + ρ)(m1 −m2)x0P(X > x0) + (1 + ρ)m2E[X1{X > x0}]



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d1}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

= ρ(η − w)

+(1 + ρ)m1E[X1{x0 ≥ X > d1}] + (1 + ρ)m1E[X1{d1 ≥ X > 0}]

+(1 + ρ)(m1 −m2)x0P(X > x0) + (1 + ρ)m2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
+m1E[X1{x0 ≥ X > d2}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

−m1(d2 − d1)

= ρ(η − w)

+(1 + ρ)m1E[X1{x0 ≥ X > d2}] + (1 + ρ)m1E[X1{d2 ≥ X > 0}]

+(1 + ρ)(m1 −m2)x0P(X > x0) + (1 + ρ)m2E[X1{X > x0}],
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which then simplifies to



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d1}] + (1 + ρ)m1E[X1{d1 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
−m1(d2 − d1)

= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d2}] + (1 + ρ)m1E[X1{d2 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}].

At this point, we want to continue assuming a distribution for the risk X.
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Exponentially-distributed Risk X

In the following analysis, we want to consider two different distributions for the risk X,

Exponential and Pareto distribution. These two distributions are from different categories

of distributions: The Exponential distribution is light-tailed, whereas the Pareto distribution

is heavy-tailed.

5.1 Analytic Results

5.1.1 Preliminaries

Since we need m(x) to be bounded from below, the assumed linear structure of m requires

us to restrict the random variable X̃ to the interval [0, D], D ≥ 0. A lower boundary for the

choice of D can be given by the following reasoning: To preserve the risk structure, which is

the change in behavior of the function m, or more precisely, the change of the slope from m1

for x ∈ [0, x0] to m2 for x > x0, while not cut off the second part of the function, the choice

D > x0 seems to reasonable. One interesting point can be obtained from the fact that m is

decreasing linearly from x0 on, with slope m2. For m(D) ≥ 0 to hold for D > x0, the linear

structure of m yields that m(x0) + (D − x0)m2 ≥ 0 needs to hold. With m(x0) = m1x0,

solving the equation for D, we obtain:
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m(x0) + (D − x0)m2 ≥ 0

⇔ (D − x0)m2 ≥ −m1x0

m2≤0⇔ D − x0 ≤ −m1

m2

x0

⇔ D ≤ −m1

m2

x0 + x0

⇔ D ≤
(

1− m1

m2

)
x0 =: D̃

Therefore, we can choose D to be D =
(

1− m1

m2

)
x0.

5.1.2 Distribution of X

Our goal is to have X distributed similarly to the exponential distribution. However, with

what we have just discussed above, we need to make some adjustments to obtain a boun-

ded random variable. Otherwise, the structure of m would lead to the final wealth being

unbounded which would cause complications with the quadratic utility function, or more

specifically, as choice of the value for the parameter η.

Nevertheless, we want to start off with an exponentially distributed random variable X̃:

X̃ ∼ Exp(θ)

Let X̃ be exponentially distributed with:

• Parameter θ > 0

• Probability density function fX̃(x) = 1
θ
e−

1
θ
x
1{x ≥ 0}

• Cumulative distribution function FX̃(x) = P(X̃ ≤ x) = 1− e− 1
θ
x

• Survival function SX̃(x) = 1− P(X̃ ≤ x) = e−
1
θ
x

• Inverse survival function S−1
X̃

(x) = −θln(x)
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• E[X̃] = θ

Now, we choose D in accordance with the boundaries mentioned above. This yields the

truncated random variable X = X̃|X̃ ≤ D that now describes the insurable risk X. The

risk X then is a truncated version of the exponentially distributed random variable X̃.

X ∼ ExpD(θ)

Let X = X̃|X̃ ≤ D with the following characteristics:

• Parameter θ > 0

• Probability density function

fX(x) =
fX̃(x)

FX̃(D)
1{D ≥ x} =

1
θ
e−

1
θ
x

1− e− 1
θ
D
1{D ≥ x ≥ 0}

• Cumulative distribution function

FX(x) = P(X ≤ x) =
FX̃(x)

FX̃(D)
1{x ≤ D}+ 1{x > D}

=
1− e− 1

θ
x

1− e− 1
θ
D
1{x ≤ D}+ 1{x > D}

• Survival function

SX(x) = P(X > x) = 1− P(X ≤ x)

= 1−
( 1− e− 1

θ
x

1− e− 1
θ
D
1{x ≤ D}+ 1{x > D}

)

=
(

1− 1− e− 1
θ
x

1− e− 1
θ
D

)
1{x ≤ D} =

(
1− 1− e− 1

θ
x

FX̃(D)

)
1{x ≤ D}
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• Inverse survival function

S−1X (x) = −θln
(

1− (1− x)(1− e−
1
θ
D)
)

= −θln
(

1− (1− x)FX̃(D)
)

• Expected value:

E[X] =

∞∫
−∞

xfX(x)dx =
1

FX̃(D)

D∫
0

xfX̃(x)dx

=
1

FX̃(D)
E[X̃1{D ≥ X̃ > 0}]
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5.1.3 Application

Lemma 1.1. Given the dependence structure stated in 2.3.1, assuming a quadratic utility

function of the form u(ξ) = −(η − ξ)2, a linear structure of m with

m(x) =

 m1x for x ≤ x0

m1x0 +m2(x− x0) = (m1 −m2)x0 +m2x for x > x0,

and the risk being a truncated exponential random variable X = X̃|X̃ ≤ D, which is derived

from X̃ ∼ Exp(θ), the two equations stated in Lemma IV.2.1 are equivalent to



m1(1− ρ2 −
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)−1
)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
+m1

1
F
X̃
(D)

(d1 + θ)exp(−1
θ
d1)

= ρ(η − w)

+(1 + ρ)m1
1

F
X̃
(D)
θ + ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

(x0 + θ)exp(−1
θ
x0)

−ρm2
1

F
X̃
(D)

(D + θ)exp(−1
θ
D)

m1(1− ρ2)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
−m1(d2 − d1)

+m1
1

F
X̃
(D)

(d2 + θ)exp(−1
θ
d2)

= ρ(η − w)

+(1 + ρ)m1
1

F
X̃
(D)
θ + ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

(x0 + θ)exp(−1
θ
x0)

−ρm2
1

F
X̃
(D)

(D + θ)exp(−1
θ
D)
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Proof:

For the two equations in Lemma IV.2.1



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d1}] + (1 + ρ)m1E[X1{d1 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
−m1(d2 − d1)

= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d2}] + (1 + ρ)m1E[X1{d2 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}],

we need to determine the following quantities:

• P(X > d1), P(X > d2), P(X > x0)

• E[X] = 1
F
X̃
(D)

E[X̃1{D ≥ X̃ > 0}]

• E[X1{d2 ≥ X > d1}] = 1
F
X̃
(D)

E[X̃1{d2 ≥ X̃ > d1}]

• E[X1{d1 ≥ X > 0}] = 1
F
X̃
(D)

E[X̃1{d1 ≥ X̃ > 0}]

• E[X1{d2 ≥ X > 0}] = 1
F
X̃
(D)

E[X̃1{d2 ≥ X̃ > 0}]

• E[X1{x0 ≥ X > d1}] = 1
F
X̃
(D)

E[X̃1{x0 ≥ X̃ > d1}]

• E[X1{x0 ≥ X > d2}] = 1
F
X̃
(D)

E[X̃1{x0 ≥ X̃ > d2}]

• E[X1{X > x0}] = 1
F
X̃
(D)

E[X̃1{D ≥ X̃ > x0}]
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For the first two probabilities, we take a look at the survival function SX , and obtain:

• P(X > d1) =
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
1{d1 ≤ D}

• P(X > d2) =
(

1− 1−e−
1
θ
d2

F
X̃
(D)

)
1{d2 ≤ D}

• P(X > x0) =
(

1− 1−e−
1
θ
x0

F
X̃
(D)

)
1{x0 ≤ D}

For the expected values, we recall the following, using partial integration:

E[X̃1{b ≥ X̃ > a}] =

b∫
a

xfX̃(x)dx =

b∫
a

x
1

θ
exp(−1

θ
x)dx

=
[
− xexp(−1

θ
x)
]b
a

+

b∫
a

exp(−1

θ
x)dx

= −bexp(−1

θ
b) + aexp(−1

θ
a) +

[
− θexp(−1

θ
x)
]b
a

= −bexp(−1

θ
b) + aexp(−1

θ
a)− θexp(−1

θ
b) + θexp(−1

θ
a)

= (a+ θ)exp(−1

θ
a)− (b+ θ)exp(−1

θ
b)
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Putting everything together, this yields the following system of equations:



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d1}] + (1 + ρ)m1E[X1{d1 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
−m1(d2 − d1)

= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d2}] + (1 + ρ)m1E[X1{d2 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]
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

(1− ρ2 −
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)−1
)
(
m1

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−m1d1

(
1− 1−e−

1
θ
d1

F
X̃
(D)

)
+m1d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
= ρ(η − w)

+ρm1
1

F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (x0 + θ)exp(−1

θ
x0)]

+(1 + ρ)m1
1

F
X̃
(D)

[(0 + θ)exp(−1
θ
0)− (d1 + θ)exp(−1

θ
d1)]

+ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[(x0 + θ)exp(−1
θ
x0)− (D + θ)exp(−1

θ
D)]

(1− ρ2)
(
m1

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−m1d1

(
1− 1−e−

1
θ
d1

F
X̃
(D)

)
+m1d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
−m1(d2 − d1)

= ρ(η − w)

+ρm1
1

F
X̃
(D)

[(d2 + θ)exp(−1
θ
d2)− (x0 + θ)exp(−1

θ
x0)]

+(1 + ρ)m1
1

F
X̃
(D)

[(0 + θ)exp(−1
θ
0)− (d2 + θ)exp(−1

θ
d2)]

+ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[(x0 + θ)exp(−1
θ
x0)− (D + θ)exp(−1

θ
D)]
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Evaluating the expressions containing zero, and factoring m1 out yields:



m1(1− ρ2 −
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)−1
)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
= ρ(η − w)

+ρm1
1

F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (x0 + θ)exp(−1

θ
x0)]

+(1 + ρ)m1
1

F
X̃
(D)

[θ − (d1 + θ)exp(−1
θ
d1)]

+ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[(x0 + θ)exp(−1
θ
x0)− (D + θ)exp(−1

θ
D)]

m1(1− ρ2)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
−m1(d2 − d1)

= ρ(η − w)

+ρm1
1

F
X̃
(D)

[(d2 + θ)exp(−1
θ
d2)− (x0 + θ)exp(−1

θ
x0)]

+(1 + ρ)m1
1

F
X̃
(D)

[θ − (d2 + θ)exp(−1
θ
d2)]

+ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[(x0 + θ)exp(−1
θ
x0)− (D + θ)exp(−1

θ
D)]
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Some of the terms cancel out, which yields:



m1(1− ρ2 −
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)−1
)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
= ρ(η − w)

+(1 + ρ)m1
1

F
X̃
(D)
θ

−m1
1

F
X̃
(D)

(d1 + θ)exp(−1
θ
d1)

+ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

(x0 + θ)exp(−1
θ
x0)

−ρm2
1

F
X̃
(D)

(D + θ)exp(−1
θ
D)

m1(1− ρ2)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
−m1(d2 − d1)

= ρ(η − w)

+(1 + ρ)m1
1

F
X̃
(D)
θ

−m1
1

F
X̃
(D)

(d2 + θ)exp(−1
θ
d2)

+ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

(x0 + θ)exp(−1
θ
x0)

−ρm2
1

F
X̃
(D)

(D + θ)exp(−1
θ
D)
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

m1(1− ρ2 −
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)−1
)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
+m1

1
F
X̃
(D)

(d1 + θ)exp(−1
θ
d1)

= ρ(η − w)

+(1 + ρ)m1
1

F
X̃
(D)
θ + ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

(x0 + θ)exp(−1
θ
x0)

−ρm2
1

F
X̃
(D)

(D + θ)exp(−1
θ
D)

m1(1− ρ2)
(

1
F
X̃
(D)

[(d1 + θ)exp(−1
θ
d1)− (d2 + θ)exp(−1

θ
d2)]

−d1
(

1− 1−e−
1
θ
d1

F
X̃
(D)

)
+ d2

(
1− 1−e−

1
θ
d2

F
X̃
(D)

))
−m1(d2 − d1)

+m1
1

F
X̃
(D)

(d2 + θ)exp(−1
θ
d2)

= ρ(η − w)

+(1 + ρ)m1
1

F
X̃
(D)
θ + ρ(m1 −m2)x0

(
1− 1−e−

1
θ
x0

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

(x0 + θ)exp(−1
θ
x0)

−ρm2
1

F
X̃
(D)

(D + θ)exp(−1
θ
D)

In the last step, we arranged the terms in a way that yields the same right hand side of both

equations. The variables d1 and d2 are now both on the left hand side and the right hand side

is constant. Since it appears difficult to solve this system of equations analytically, we use

the software package “R”” to compute solutions for certain parameter values of the model

to obtain some numerical solutions. These solutions can also be used to illustrate concepts

and results obtained without assuming any distribution for the risk X, such as presented in

section 2.3.2 where we have shown that if d1 and d2 exist, they need to be greater than or

equal to S−1X ( 1
1+ρ

).
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5.2 Numerical Results

For the numerical analysis, we need to choose values for a number of parameters. Our

objective is to investigate the impact of the dependence structure between X and Y , repre-

sented by the function m, on the optimal solution, or more specifically, d1 and d1 as part

of f ∗3 . Therefore, we let the parameters x0, m1, and m2 vary while we keep the remaining

parameters of the model constant. Since we want to compare the results for varying slopes

and constant x0, we choose D to be the maximum of all D̃ for all combinations m1 and m2.

Hence, D is constant for the same x0, and varies for different x0.

5.2.1 Parameters

Constant Parameters:

• θ: Parameter of Exponential distribution X̃ ∼ Exp(θ) for X = X̃|X̃ ≤ D, here θ = 1

• ρ: Safety loading coefficient, here ρ = 0.1

• η and w: Since we choose η such that u represents a certain risk aversion which is

unspecified here, we choose η − w = 0 for simplicity here.

Varying Parameters:

• x0: Point where the behavior of m changes, here x0 ∈ {0.5, 1, 1.5, 2.5}

• m1 and m2: Slope parameters of m,

here m1 ∈M1 = {0.25, 0.5, 0.75, 1} and m2 ∈M2 = {−0.5,−0.75,−1,−1.5,−2}

• D: Cut-off value, here D = max
(m1,m2)∈M1×M2

{D̃ : D̃ =
(

1− m1

m2

)
x0}
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5.2.2 Objectives

Using the software package “ R”, we solve the system of equations for d1 and d2. The

following tables display our findings, see 5.2.3. The code used for this analysis can be found

in the appendix.

We want to illustrate the theoretical result in theorem III.3.1, that is, if E[g(x)] ≤ g(0)

holds, the optimal solution to problem II.1.2 is “no coverage”. With the assumptions above,

it holds:

E[g(X)] = E[u′(w −m(X))] = E[2(η − w +m(X))] = 2(η − w) + 2E[m(X)]

= 2
(
m1E[X1{x0 ≥ X > 0}] + E[((m1 −m2)x0 +m2X)1{X > x0}]

)

= 2
(
m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0E[1{X > x0}] +m2E[X1{X > x0}]

)

= 2
(
m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

)

= 2
(
m1

1

FX̃(D)
E[X̃1{x0 ≥ X̃ > 0}] + (m1 −m2)x0

(
1− 1− e− 1

θ
x0

FX̃(D)

)

+m2
1

FX̃(D)
E[X̃1{D ≥ X̃ > x0}]

)

= 2
(
m1

1

FX̃(D)
[θ − (x0 + θ)exp(−1

θ
x0)] + (m1 −m2)x0

(
1− 1− e− 1

θ
x0

FX̃(D)

)

+m2
1

FX̃(D)
[(x0 + θ)exp(−1

θ
x0)− (D + θ)exp(−1

θ
D)]
)
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and

g(0) = E[u′(w −m(0))] = E[2(η − w +m(0))]
m(0)=m1·0

= 2(η − w) = 0

Hence, we check, after dividing both sides by 2, whether it holds

m1
1

FX̃(D)
[θ − (x0 + θ)exp(−1

θ
x0)] + (m1 −m2)x0

(
1− 1− e− 1

θ
x0

FX̃(D)

)

+m2
1

FX̃(D)
[(x0 + θ)exp(−1

θ
x0)− (D + θ)exp(−1

θ
D)]

≤ 0,

and by theorem III.3.1, this implies that “no coverage” is optimal. In the tables, yes repre-

sents the inequality is satisfied, no represents the inequality doesn’t hold. This means, yes

represents the cases where “no coverage” is optimal, and no represents the cases where there

is some form of coverage for the risk X.
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5.2.3 Findings

For the inequality, our choice of the minimum for truncation parameter D yields that the

inequality is never satisfied. There is always need for insurance coverage for the considered

parameter combination.

For the lower boundary S−1X ( 1
1+ρ

), and the values d1 and d2 the results are displayed in

the tables below:

m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.1518 -0.1510 -0.1502 -0.1486 -0.1469

d2 0.0251 0.0249 0.0246 0.0241 0.0236

0.5 d1 -0.1526 -0.1522 -0.1518 -0.1510 -0.1502

d2 0.0254 0.0253 0.0251 0.0249 0.0246

0.75 d1 -0.1529 -0.1526 -0.1524 -0.1518 -0.1513

d2 0.0255 0.0254 0.0253 0.0251 0.0250

1 d1 -0.1530 -0.1528 -0.1526 -0.1522 -0.1518

d2 0.0255 0.0255 0.0254 0.0253 0.0251

Table 5.4: X ∼ ExpD(θ): Numerical Results for x0 = 0.5, D = 0.5625, and S−1X ( 1
1+ρ

) =
0.0399
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m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.2524 -0.2513 -0.2502 -0.2480 -0.2458

d2 0.0469 0.0465 0.0461 0.0452 0.0444

0.5 d1 -0.2535 -0.2530 -0.2524 -0.2513 -0.2502

d2 0.0473 0.0471 0.0469 0.0465 0.0461

0.75 d1 -0.2539 -0.2535 -0.2532 -0.2524 -0.2517

d2 0.0474 0.0473 0.0471 0.0469 0.0466

1 d1 -0.2541 -0.2538 -0.2535 -0.2530 -0.2524

d2 0.0475 0.0474 0.0473 0.0471 0.0469

Table 5.5: X ∼ ExpD(θ): Numerical Results for x0 = 1, D = 1.125, and S−1X ( 1
1+ρ

) = 0.0634
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m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.3196 -0.3184 -0.3173 -0.3151 -0.3128

d2 0.0646 0.0641 0.0636 0.0627 0.0618

0.5 d1 -0.3207 -0.3201 -0.3196 -0.3184 -0.3173

d2 0.0650 0.0648 0.0646 0.0641 0.0636

0.75 d1 -0.3211 -0.3207 -0.3203 -0.3196 -0.3188

d2 0.0652 0.0650 0.0649 0.0646 0.0643

1 d1 -0.3212 -0.3210 -0.3207 -0.3201 -0.3196

d2 0.0653 0.0651 0.0650 0.0648 0.0646

Table 5.6: X ∼ ExpD(θ): Numerical Results for x0 = 1.5, D = 1.6875, and S−1X ( 1
1+ρ

) = 0.077

57



m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.3942 -0.3934 -0.3926 -0.3909 -0.3892

d2 0.0885 0.0881 0.0877 0.0870 0.0862

0.5 d1 -0.3951 -0.3947 -0.3942 -0.3934 -0.3926

d2 0.0889 0.0887 0.0885 0.0881 0.0877

0.75 d1 -0.3954 -0.3951 -0.3948 -0.3942 -0.3937

d2 0.0891 0.0889 0.0888 0.0885 0.0883

1 d1 -0.3955 -0.3953 -0.3951 -0.3947 -0.3942

d2 0.0891 0.0890 0.0889 0.0887 0.0885

Table 5.7: X ∼ ExpD(θ): Numerical Results for x0 = 2.5, D = 2.8125, and S−1X ( 1
1+ρ

) =
0.0893
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5.2.4 Interpretation

Overall, it seems that there are two different types of results obtained from running the code

and solving the two equations for d1 and d2: The first type of results are negative values

for d1, the second type of results are positive values for d2. Hence, the inequality d1 ≤ d2

holds. However, with d1 < 0 < d2 ≤ x0, we are not able to provide values for d1 and d2

that fulfill the conditions stated in theorem II.3.2. This is rather unsatisfying, and demands

further investigation. Since these are numerical results that have been obtained using a

certain software package; a certain code; a certain method for determining the solutions;

and certain input parameters for these methods, such as an initial guess for the solutions,

there are various potential sources that can cause the numerical analysis to produce these

undesired results. Another potential source for these results that needs to be considered are

the assumptions that have been made. Maybe some of the assumptions need to be revised

and adjustments need to made in order to obtain values for d1 and d2 that can be used such

that theorem II.3.2 may provide the optimal solution.

In regard to the impact of m1, we can observe that as m1 increases, d1 becomes smaller,

and d2 becomes greater. This implies that as m1 increases, the difference between d1 and

d2 increases as well. Hence, for greater m1, the claim size for which the insurance coverage

becomes effective decreases, i.e., the insurance company already provides a payment for

smaller claim sizes - the “deductible” decreases in a way. In addition, the claim size causing

the insurance coverage to become capped begins to increase, and the insurance company

provides an increasing payment for even larger claim sizes. This can be seen following the

individual columns from top to bottom, since m1 is increased, top to bottom, taking the

values 0.25, 0.5, 0.75, and 1.

In regard to the impact of m2, we can observe that as m2 decreases, d1 becomes greater,

and d2 becomes smaller. This implies that as m2 decreases, the difference between d1 and d2

decreases as well. Hence, for smaller m2, meaning more negative m2, the claim size for which
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the insurance coverage becomes effective increases, i.e., the insurance company provides a

payment for larger claim sizes than before - the “deductible” increases in a way. In addition,

the claim size that causes the insurance coverage being capped decreases, i.e., the insurance

company provides an increasing payment for smaller claim sizes than before. This can be

seen following the individual rows from right to left, since m2 is decreased going from left to

right in the table, taking the values −0.5, −0.75, −1, −1.5, and −2.

In regard to the impact of x0, a greater value for x0 results into a bigger gap between the

two levels d1 and d2, which is reasonable as a greater x0 means that overall lossm(X) = X+Y

increases on a longer interval, and also decreases on a longer interval, yielding a scaling effect.
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Pareto-distributed Risk X

In the following analysis, we want to consider the Pareto distribution for the risk X.

6.1 Analytic Results

6.1.1 Preliminaries

With the same reasoning as in 5.1.1, we choose D to be D =
(

1− m1

m2

)
x0.

6.1.2 Distribution of X

Our goal is to have X distributed similarly to the exponential distribution. However, with

what we have just discussed above, we need to make some adjustments to obtain a bounded

random variable. Otherwise, the structure of m would lead to the final wealth being unboun-

ded which would cause complications with the quadratic utility function, more specifically,

for choice of the value for the parameter η.

Nevertheless, we want to start off with a Pareto-distributed random variable X̃:

X̃ ∼ Pareto(α, λ)

Let X̃ be Pareto distributed with:

• Parameters α > 0 and λ > 0

• Probability density function fX̃(x) = α
λ

(
1 + x

λ

)−(α+1)
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• Cumulative distribution function FX̃(x) = P(X̃ ≤ x) = 1− (1 + x
λ
)−α

• Survival function SX̃(x) = 1− P(X̃ ≤ x) = (1 + x
λ
)−α

• Inverse survival function S−1
X̃

(x) = λ(x−
1
α − 1)

• E[X̃] = λ
α−1 holds for α > 1

Now, we choose D in accordance with the boundaries. This yields the truncated random

variable X = X̃|X̃ ≤ D that now describes the insurable risk X. The risk X then is a

truncated version of the Pareto distributed random variable X̃.

X ∼ ParetoD(α, λ)

Let X = X̃|X̃ ≤ D with the following characteristics:

• Parameters α > 0 and λ > 0

• Probability density function

fX(x) =
fX̃(x)

FX̃(D)
1{D ≥ x} =

α
λ

(
1 + x

λ

)−(α+1)

1− (1 + D
λ

)−α
1{D ≥ x ≥ 0}

• Cumulative distribution function

FX(x) = P(X ≤ x) =
FX̃(x)

FX̃(D)
1{x ≤ D}+ 1{x > D}

=
1− (1 + x

λ
)−α

1− (1 + D
λ

)−α
1{x ≤ D}+ 1{x > D}
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• Survival function

SX(x) = P(X > x) = 1− P(X ≤ x)

= 1−
( 1− (1 + x

λ
)−α

1− (1 + D
λ

)−α
1{x ≤ D}+ 1{x > D}

)

=
(

1−
1− (1 + x

λ
)−α

1− (1 + D
λ

)−α

)
1{x ≤ D} =

(
1−

1− (1 + x
λ
)−α

FX̃(D)

)
1{x ≤ D}

• Inverse survival function

S−1X (x) = λ
[(

1− (1− x)FX̃(D)
)− 1

α − 1
]

• Expected value:

E[X] =

∞∫
−∞

xfX(x)dx =
1

FX̃(D)

D∫
0

xfX̃(x)dx

=
1

FX̃(D)
E[X̃1{D ≥ X̃ > 0}]
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6.1.3 Application

Lemma 1.1. Given the dependence structure stated in 2.3.1, assuming a quadratic utility

function of the form u(ξ) = −(η − ξ)2, a linear structure of m with

m(x) =

 m1x for x ≤ x0

m1x0 +m2(x− x0) = (m1 −m2)x0 +m2x for x > x0,

and the risk being a truncated Pareto random variable X = X̃|X̃ ≤ D, which is derived from

X̃ ∼ Pareto(α, λ), the two equations stated in Lemma IV.2.1 are equivalent to



m1(1− ρ2 −
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)−1
)(

1
F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+ d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
+m1

1
F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

]

= ρ(η − w) +m1
(1+ρ)
F
X̃
(D)

λ
α−1 + ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

]

−ρm2
1

F
X̃
(D)

[D
(

1 + D
λ

)−α
+ λ

α−1

(
1 + D

λ

)−α+1

]

m1(1− ρ2)(
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+ d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
−m1(d2 − d1)

+m1
1

F
X̃
(D)

[d2

(
1 + d2

λ

)−α
+ λ

α−1

(
1 + d2

λ

)−α+1

]

= ρ(η − w) +m1
(1+ρ)
F
X̃
(D)

λ
α−1 + ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

]

−ρm2
1

F
X̃
(D)

[D
(

1 + D
λ

)−α
+ λ

α−1

(
1 + D

λ

)−α+1

].
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Proof:

For the two equations in Lemma IV.2.1



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d1}] + (1 + ρ)m1E[X1{d1 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
−m1(d2 − d1)

= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d2}] + (1 + ρ)m1E[X1{d2 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}],

we need to determine the following quantities:

• P(X > d1), P(X > d2), P(X > x0)

• E[X] = 1
F
X̃
(D)

E[X̃1{D ≥ X̃ > 0}]

• E[X1{d2 ≥ X > d1}] = 1
F
X̃
(D)

E[X̃1{d2 ≥ X̃ > d1}]

• E[X1{d1 ≥ X > 0}] = 1
F
X̃
(D)

E[X̃1{d1 ≥ X̃ > 0}]

• E[X1{d2 ≥ X > 0}] = 1
F
X̃
(D)

E[X̃1{d2 ≥ X̃ > 0}]

• E[X1{x0 ≥ X > d1}] = 1
F
X̃
(D)

E[X̃1{x0 ≥ X̃ > d1}]

• E[X1{x0 ≥ X > d2}] = 1
F
X̃
(D)

E[X̃1{x0 ≥ X̃ > d2}]

• E[X1{X > x0}] = 1
F
X̃
(D)

E[X̃1{D ≥ X̃ > x0}]
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For the first two probabilities, we take a look at the survival function SX , and obtain:

• P(X > d1) =
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
1{d1 ≤ D}

• P(X > d2) =
(

1− 1−(1+ d2
λ
)−α

F
X̃
(D)

)
1{d2 ≤ D}

• P(X > x0) =
(

1− 1−(1+x0
λ
)−α

F
X̃
(D)

)
1{x0 ≤ D}

For the expected values, we recall the following, using partial integration:

E[X̃1{b ≥ X̃ > a}]

=

b∫
a

xfX̃(x)dx =

b∫
a

x
α

λ

(
1 +

x

λ

)−(α+1)

dx

=
[
− x
(

1 +
x

λ

)−α]b
a

+

b∫
a

(
1 +

x

λ

)−α
dx

= −b
(

1 +
b

λ

)−α
+ a
(

1 +
a

λ

)−α
+
[ λ

−α + 1

(
1 +

x

λ

)−α+1]b
a

= −b
(

1 +
b

λ

)−α
+ a
(

1 +
a

λ

)−α
+

λ

−α + 1

(
1 +

b

λ

)−α+1

− λ

−α + 1

(
1 +

a

λ

)−α+1

= a
(

1 +
a

λ

)−α
+

λ

α− 1

(
1 +

a

λ

)−α+1

− b
(

1 +
b

λ

)−α
− λ

α− 1

(
1 +

b

λ

)−α+1
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Putting everything together, this yields the following system of equations:



(1− ρ2 − 1
P(X>d1))

(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d1}] + (1 + ρ)m1E[X1{d1 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]

(1− ρ2)
(
m1E[X1{d2 ≥ X > d1}]−m1d1P(X > d1) +m1d2P(X > d2)

)
−m1(d2 − d1)

= ρ(η − w)

+ρm1E[X1{x0 ≥ X > d2}] + (1 + ρ)m1E[X1{d2 ≥ X > 0}]

+ρ(m1 −m2)x0P(X > x0) + ρm2E[X1{X > x0}]
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

(1− ρ2 −
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)−1
)(

m1
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−m1d1

(
1− 1−(1+ d1

λ
)−α

F
X̃
(D)

)
+m1d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

[0
(

1 + 0
λ

)−α
+ λ

α−1

(
1 + 0

λ

)−α+1

− d1
(

1 + d1
λ

)−α
− λ

α−1

(
1 + d1

λ

)−α+1

]

+ρm1
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− x0
(

1 + x0
λ

)−α
− λ

α−1

(
1 + x0

λ

)−α+1

]

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

−D
(

1 + D
λ

)−α
− λ

α−1

(
1 + D

λ

)−α+1

]

(1− ρ2)(
m1

1
F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−m1d1

(
1− 1−(1+ d1

λ
)−α

F
X̃
(D)

)
+m1d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
−m1(d2 − d1)

= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

[0
(

1 + 0
λ

)−α
+ λ

α−1

(
1 + 0

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

+ρm1
1

F
X̃
(D)

[d2

(
1 + d2

λ

)−α
+ λ

α−1

(
1 + d2

λ

)−α+1

− x0
(

1 + x0
λ

)−α
− λ

α−1

(
1 + x0

λ

)−α+1

]

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

−D
(

1 + D
λ

)−α
− λ

α−1

(
1 + D

λ

)−α+1

]
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Evaluating the expressions containing zero, and factoring m1 out yields:



m1(1− ρ2 −
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)−1
)(

1
F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

[ λ
α−1 − d1

(
1 + d1

λ

)−α
− λ

α−1

(
1 + d1

λ

)−α+1

]

+ρm1
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− x0
(

1 + x0
λ

)−α
− λ

α−1

(
1 + x0

λ

)−α+1

]

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

−D
(

1 + D
λ

)−α
− λ

α−1

(
1 + D

λ

)−α+1

]

m1(1− ρ2)(
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
−m1(d2 − d1)

= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

[ λ
α−1 − d2

(
1 + d2

λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

+ρm1
1

F
X̃
(D)

[d2

(
1 + d2

λ

)−α
+ λ

α−1

(
1 + d2

λ

)−α+1

− x0
(

1 + x0
λ

)−α
− λ

α−1

(
1 + x0

λ

)−α+1

]

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρm2

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

−D
(

1 + D
λ

)−α
− λ

α−1

(
1 + D

λ

)−α+1

]
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Some of the terms cancel out, which yields:



m1(1− ρ2 −
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)−1
)(

1
F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

λ
α−1

−m1
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

]

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

]

−ρm2
1

F
X̃
(D)

[D
(

1 + D
λ

)−α
+ λ

α−1

(
1− D

λ

)−α+1

]

m1(1− ρ2)(
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
−m1(d2 − d1)

= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

λ
α−1

−m1
1

F
X̃
(D)

[d2

(
1 + d2

λ

)−α
+ λ

α−1

(
1 + d2

λ

)−α+1

]

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

]

−ρm2
1

F
X̃
(D)

[D
(

1 + D
λ

)−α
+ λ

α−1

(
1 + D

λ

)−α+1

]
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

m1(1− ρ2 −
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)−1
)(

1
F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+ d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
+m1

1
F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

]

= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

λ
α−1

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

]

−ρm2
1

F
X̃
(D)

[D
(

1 + D
λ

)−α
+ λ

α−1

(
1 + D

λ

)−α+1

]

m1(1− ρ2)(
1

F
X̃
(D)

[d1

(
1 + d1

λ

)−α
+ λ

α−1

(
1 + d1

λ

)−α+1

− d2
(

1 + d2
λ

)−α
− λ

α−1

(
1 + d2

λ

)−α+1

]

−d1
(

1− 1−(1+ d1
λ
)−α

F
X̃
(D)

)
+ d2

(
1− 1−(1+ d2

λ
)−α

F
X̃
(D)

))
−m1(d2 − d1)

+m1
1

F
X̃
(D)

[d2

(
1 + d2

λ

)−α
+ λ

α−1

(
1 + d2

λ

)−α+1

]

= ρ(η − w)

+m1
(1+ρ)
F
X̃
(D)

λ
α−1

+ρ(m1 −m2)x0

(
1− 1−(1+x0

λ
)−α

F
X̃
(D)

)
+ρ(m2 −m1)

1
F
X̃
(D)

[x0

(
1 + x0

λ

)−α
+ λ

α−1

(
1 + x0

λ

)−α+1

]

−ρm2
1

F
X̃
(D)

[D
(

1 + D
λ

)−α
+ λ

α−1

(
1 + D

λ

)−α+1

]

In the last step, we arranged the terms in a way that gives us the same right hand side of

both equations. The variables d1 and d2 are now both on the left hand side and the right

hand side is constant. Since it appears difficult to solve this system of equations analytically,

we use the software package “R” to compute solutions for certain parameter values of the

model to obtain some numerical solutions. These solutions can also be used to illustrate

71



results such as presented in section 2.3.2 where we have shown that if d1 and d2 exist, they

need to be greater than or equal to S−1X ( 1
1+ρ

).

6.2 Numerical Results

For the numerical analysis, we need to choose values for a number of parameters. Our

objective is to investigate the impact of the dependence structure between X and Y , repre-

sented by the function m, on the optimal solution, or more specifically, d1 and d1 as part

of f ∗3 . Therefore, we let the parameters x0, m1, and m2 vary while we keep the remaining

parameters of the model constant. Since we want to compare the results for varying slopes

and constant x0, we choose D to be the maximum of all D̃ for all combinations m1 and m2.

Hence, D is constant for the same x0, and varies for different x0.

6.2.1 Parameters

Constant Parameters:

• θ: Parameter of Pareto distribution X̃ ∼ Pareto(α, λ) for X = X̃|X̃ ≤ D, here α = 2

and λ = 1

• ρ: Safety loading coefficient, here ρ = 0.1

• η and w: Since we choose η such that u represents a certain risk aversion which is

unspecified here, we choose η − w = 0 for simplicity here.

Varying Parameters:

• x0: Point where the behavior of m changes, here x0 ∈ {1, 2, 4, 10}

• m1 and m2: Slope parameters of m,

here m1 ∈M1 = {0.25, 0.5, 0.75, 1} and m2 ∈M2 = {−0.5,−0.75,−1,−1.5,−2}

• D: Cut-off value, here D = max
(m1,m2)∈M1×M2

{D̃ : D̃ =
(

1− m1

m2

)
x0}
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6.2.2 Objectives

Using the software package “R”, we solve the system of equations for d1 and d2. The following

tables display our findings (see 6.2.3). The code used for this analysis can be found in the

appendix.

We want to illustrate the theoretical result in theorem III.3.1: If E[g(x)] ≤ g(0) holds,

the optimal solution to problem II.1.2 is “no coverage”. With the assumptions above, it

holds:

E[g(X)]

= E[u′(w −m(X))] = E[2(η − w +m(X))] = 2(η − w) + 2E[m(X)]

= 2
(
m1E[X1{x0 ≥ X > 0}] + E[((m1 −m2)x0 +m2X)1{X > x0}]

)

= 2
(
m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0E[1{X > x0}] +m2E[X1{X > x0}]

)

= 2
(
m1E[X1{x0 ≥ X > 0}] + (m1 −m2)x0P(X > x0) +m2E[X1{X > x0}]

)

= 2
(
m1

1

FX̃(D)
E[X̃1{x0 ≥ X̃ > 0}] + (m1 −m2)x0

(
1−

1− (1 + x0
λ

)−α

FX̃(D)

)

+m2
1

FX̃(D)
E[X̃1{D ≥ X̃ > x0}]

)
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= 2
(
m1

1

FX̃(D)
[
λ

α− 1
− x0

(
1 +

x0
λ

)−α
− λ

α− 1

(
1 +

x0
λ

)−α+1

]

+(m1 −m2)x0

(
1−

1− (1 + x0
λ

)−α

FX̃(D)

)

+m2
1

FX̃(D)

[x0

(
1 +

x0
λ

)−α
+

λ

α− 1

(
1 +

x0
λ

)−α+1

−D
(

1 +
D

λ

)−α
− λ

α− 1

(
1 +

D

λ

)−α+1

]
)

and

g(0) = E[u′(w −m(0))] = E[2(η − w +m(0))]
m(0)=m1·0

= 2(η − w) = 0

Hence, we check, after dividing both sides by 2, whether it holds

m1
1

FX̃(D)
[
λ

α− 1
− x0

(
1 +

x0
λ

)−α
− λ

α− 1

(
1 +

x0
λ

)−α+1

]

+(m1 −m2)x0

(
1−

1− (1 + x0
λ

)−α

FX̃(D)

)
+m2

1

FX̃(D)

[x0

(
1 +

x0
λ

)−α
+

λ

α− 1

(
1 +

x0
λ

)−α+1

−D
(

1 +
D

λ

)−α
− λ

α− 1

(
1 +

D

λ

)−α+1

]

≤ 0,

and by theorem III.3.1, this implies that “no insurance” is optimal. In the tables, yes

represents the inequality is satisfied, no represents the inequality doesn’t hold. This means,

yes represents the cases where “no coverage” is optimal, and no represents the cases where

there is some form of coverage for the risk X.
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6.2.3 Findings

For the inequality, our choice of the minimum for truncation parameter D yields that the

inequality is never satisfied. There is always need for insurance coverage for the considered

parameter combination.

For the lower boundary S−1X ( 1
1+ρ

), and the values d1 and d2 the results are displayed in

the tables below:

m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.1649 -0.1644 -0.1639 -0.1628 -0.1618

d2 0.0409 0.0406 0.0403 0.0397 0.0392

0.5 d1 -0.1654 -0.1652 -0.1649 -0.1644 -0.1639

d2 0.0411 0.0410 0.0409 0.0406 0.0403

0.75 d1 -0.1656 -0.1654 -0.1653 -0.1649 -0.1646

d2 0.0412 0.0411 0.0410 0.0409 0.0407

1 d1 -0.1657 -0.1656 -0.1654 -0.1652 -0.1649

d2 0.0413 0.0412 0.0411 0.0410 0.0409

Table 6.8: X ∼ ParetoD(α, λ): Numerical Results for x0 = 1,D = 1.125, and S−1X ( 1
1+ρ

) =
0.0374
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m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.2137 -0.2133 -0.2128 -0.2119 -0.2110

d2 0.0650 0.0647 0.0644 0.0638 0.0631

0.5 d1 -0.2142 -0.2140 -0.2137 -0.2133 -0.2128

d2 0.0654 0.0652 0.0650 0.0647 0.0644

0.75 d1 -0.2143 -0.2142 -0.2140 -0.2137 -0.2134

d2 0.0655 0.0654 0.0653 0.0650 0.0648

1 d1 -0.2144 -0.2143 -0.2142 -0.2140 -0.2137

d2 0.0655 0.0654 0.0654 0.0652 0.0650

Table 6.9: X ∼ ParetoD(α, λ): Numerical Results for x0 = 2, D = 2.25, and S−1X ( 1
1+ρ

) =
0.0439
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m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.2527 -0.2523 -0.2520 -0.2513 -0.2507

d2 0.0921 0.0918 0.0915 0.0909 0.0903

0.5 d1 -0.2530 -0.2528 -0.2527 -0.2523 -0.2520

d2 0.0924 0.0922 0.0921 0.0918 0.0915

0.75 d1 -0.2531 -0.2530 -0.2529 -0.2527 -0.2524

d2 0.0925 0.0924 0.0923 0.0921 0.0919

1 d1 -0.2532 -0.2531 -0.2530 -0.2528 -0.2527

d2 0.0925 0.0924 0.0924 0.0922 0.0921

Table 6.10: X ∼ ParetoD(α, λ): Numerical Results for x0 = 4, D = 4.5, and S−1X ( 1
1+ρ

) =
0.0471
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m1 \ m2 -0.5 -0.75 -1 -1.5 -2

0.25 d1 -0.2861 -0.2859 -0.2857 -0.2853 -0.2849

d2 0.1230 0.1228 0.1226 0.1222 0.1218

0.5 d1 -0.2862 -0.2861 -0.2861 -0.2859 -0.2857

d2 0.1232 0.1231 0.1230 0.1228 0.1226

0.75 d1 -0.2863 -0.2862 -0.2862 -0.2861 -0.2859

d2 0.1233 0.1232 0.1232 0.1230 0.1229

1 d1 -0.2863 -0.2863 -0.2862 -0.2861 -0.2861

d2 0.1233 0.1233 0.1232 0.1231 0.1230

Table 6.11: X ∼ ParetoD(α, λ): Numerical Results for x0 = 10, D = 11.25, and S−1X ( 1
1+ρ

) =
0.0485
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6.2.4 Interpretation

The interpretation of results for the Pareto-distributed risk X is very similar to the inter-

pretation of the results for the exponentially-distributed risk X:

Overall, it seems that there are two different types of results obtained from running the

code and solving the two equations for d1 and d2: The first type of results are found to

be negative values for d1, the second type of results are found to be positive values for d2.

Hence, the inequality d1 ≤ d2 holds. However, with d1 < 0 < d2 ≤ x0, we are not able

to provide values for d1 and d2 which fulfill the conditions stated in theorem II.3.2. This

is rather unsatisfying, and demands further investigation. Since these are numerical results

that have been obtained using a certain software package; a certain code; a certain method

for determining the solutions; and certain input parameters for these methods, such as an

initial guess for the solutions, there are various potential sources that can cause the nume-

rical analysis to produce these undesired results. Another potential source for these results

that needs to be considered are the assumptions that have been made. Maybe some of these

assumptions need to be revised and adjustments need to made in order to obtain values for

d1 and d2 that can be used such that theorem II.3.2 may provide the optimal solution.

In regard to the impact of m1, we can observe that as m1 increases, d1 becomes smaller,

and d2 becomes greater. This implies that as m1 increases, the difference between d1 and d2

increases as well. Hence, for greater m1, the claim size for which the insurance coverage be-

comes effective decreases, i.e., the insurance company already provides a payment for smaller

claim sizes - the “deductible” decreases in a way. In addition, the claim size causing the

insurance coverage to become capped begins to increase, the insurance company provides

an increasing payment for even larger claim sizes. This can be seen following the individual

columns from top to bottom, since m1 is increased, top to bottom, taking the values 0.25,

0.5, 0.75, and 1.

In regard to the impact of m2, we can observe that as m2 decreases, d1 becomes greater,

79



and d2 becomes smaller. This implies that as m2 decreases, the difference between d1 and d2

decreases as well. Hence, for smaller m2, meaning more negative m2, the claim size for which

the insurance coverage becomes effective increases, i.e., the insurance company provides a

payment for larger claim sizes than before - the “deductible” increases in a way. In addition,

the claim size that causes the insurance coverage being capped decreases, i.e., the insurance

company provides an increasing payment for smaller claim sizes than before. This can be

seen following the individual rows, going from left to right in the table, since m2 is being

decreased going from left to right, taking the values −0.5, −0.75, −1, −1.5, and −2.

In regard to the impact of x0, a greater value for x0 results into a bigger gap between

the two levels d1 and d2, which is reasonable as a greater x0 resulting in the overall loss

m(X) = X + Y increases on a longer interval, and also decreases on a longer interval,

yielding a scaling effect.
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Summary

Considering a special case for the dependence structure, where X + Y = m(X) holds for

the two risks and m represents a mixture of moderate negative dependence and strong

negative dependence between X and the background risk Y , we were able to establish a

lower boundary for the d’s as part of the optimal solution to the optimal insurance problem

that is provided by a theorem by Chi and Wei, [Chi and Wei, 2018]. Without making any

further assumptions, we were also able to develop a criterion that implies “no insurance

coverage” is the optimal solution. In the numerical analysis, the examples we considered

turned out to display the exact same behavior as predicted by the criterion.

Adding the assumptions about the utility function and the linear structure of m, led to a

system of equations that we simplified as much as possible. Afterwards, assuming the risk X

to be exponentially distributed, or Pareto distributed respectively, we applied our previous

results to these two distribution types. Due to the assumed quadratic utility function, some

amendments were necessary, and after adjusting the distribution type to a truncated version

that represents the risk X for the further analysis, we obtained a more complex system of

two equations. Therefore, using a built-in solver of the software package ,“R”, we solved this

system numerically yielding results that require cautious interpretation. On the one hand,

the analytic result regarding “coverage” versus “no coverage” were perfectly mirrored in the

numerical results. On the other hand, the values for d∗1 and d∗2 provided by the solver for

the case where the optimal solution is a certain coverage of the risk X, didn’t completely

follow the conditions required for the theorem in [Chi and Wei, 2018] to hold. However, the

overall picture of how the dependence structure, or more specifically, how strongly negative
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dependent, and how moderately negative dependent the two risks are, affects the optimal

solution became clear by the numerical analysis. With X and Y being dependent in a way

that Y is not able to balance out the overall loss on a great part of the domain, insurance

in form of a certain coverage will be demanded by the insured. The layers of the coverage

depend on the parameters that determine the strong negative dependence and the moderate

negative dependence. This allows insight on the behavior of the optimal solution.
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Outlook

For this thesis, we mainly focused on one special case for the dependence structure, which

was a combination of moderate negative dependence and strong negative dependence bet-

ween the insurable risk X and the background risk Y . As mentioned in [Chi and Wei, 2018],

there are various other combinations that can be investigated as well.

Regarding the special case we considered, one of the first assumptions we made was in re-

gards to the utility function that represents the insured’s behavior. We assumed a quadratic

utility function, but a exponential utility function could also hold. So, one interesting topic

to investigate could be how the choice of the utility function affects the question whether

the insured decided to obtain a certain coverage, or whether they decide to not have any

coverage for the risk X. Since we could try choose the parameters of the two utility functions

in a way they deviate only very little from each other, they could both represent the behavior

of the insured as both are assumed models for the behavior. These boundary cases could be

very interesting.

Another assumption made was the linear structure of m. If we loosen this assumption,

other notable scenarios occur. For example, allowing m to exponentially increase for one

part of the domain, and exponentially decreasing on the other part. Also, combinations of

linear behavior and exponential behavior are possible, such as m increasing linearly from 0

up to x0, and decreasing exponentially from x0 on.

This also has an impact on the later assumptions we had regarding the distribution

function of the insurable risk X. If we choose m to be exponentially decreasing from x0

on, such that there exists a lower boundary that m(X) doesn’t fall below, we can allow X
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to be the non-truncated version of the random variable. This, of course, depends on the

application and is very much dependent on the risk X.

In regards to X being a truncated random variable, the choice of D has an impact on the

optimal solution as well. Different choices of D might lead to different values of d∗1 and d∗2,

or even “no coverage” as the optimal solution. Given a different reasoning, other D’s than

the ones used in the numerical analysis are valid as well.

Taking a look at the numerical analysis, we quickly observe the following: Since the sol-

ver used to determine the values of d∗1 and d∗2 requires an initial guess for the solution, the

output might depend on this choice. As it turns out, this is the case in our analysis, and

therefore, there is some variation in the output values as there seem to be several solutions

for the system of equations we have investigated. Furthermore, there are several tools avai-

lable for solving the system of equations, and other methods might yield different results.

With the above mentioned, the numerical analysis part might be adjustable in a way that it

provides values for d∗1 and d∗2 that fulfill the requirements in [Chi and Wei, 2018] allowing for

a statement about the optimal solution in the cases where the optimal solution is “insurance

coverage”.

Overall, we see that there are many more aspects to consider, various methods to imple-

ment, and different assumptions possible that demand further research in this area.
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Appendix

A Code for Exponentially-distributed Risk X

1 # Numerical Analysis: Exponential Distribution

2
3 # package used for solving

4 library(rootSolve)

5
6 # constant parameters

7 theta <- 1

8 rho <- 0.1

9
10 # varying parameters

11 xzero <- c(0.5, 1, 1.5, 2.5)

12 m1smaller <- c(0.25 , 0.5, 0.75, 1)

13 m2greater <- c(-0.5, -0.75, -1, -1.5, -2)

14
15 # set constant parameters

16 r <- rho

17 t <- theta

18 x <- xzero [1]

19
20 # find maximum among D’s

21 Dall <- 1000

22 for(b in 1:4){

23 for(c in 1:5){

24 m1 <- m1smaller[b]

25 m2 <- m2greater[c]

26 Dnew <- (1 - m1/m2)*x

27 if(Dnew < Dall){

28 Dall <- Dnew

29 }

30 }

31 }

32
33 # set D

34 D <- Dall

35
36 # initialize tables

37 table1 = matrix(0, nrow=4,ncol =5)

38 table2 = matrix(0, nrow=4,ncol =5)

39 tablelower = matrix(0, nrow=4,ncol =5)

40 tabletest = matrix(0, nrow=4,ncol =5)

41
42 # loop over m1 and m2

43 for(b in 1:4){

44 for(c in 1:5){

45
46 # reset d

47 d <- c(0,0)

48
49 # set varying parameters

50 m1 <- m1smaller[b]
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51 m2 <- m2greater[c]

52
53 # compute quantities from parameter values

54 FXD <- 1 - exp(-1/t*D)

55 Sinv <- -t*log(1-(1-(1/(1+r)))*FXD)

56
57 # lower boundary for d’s

58 tablelower[b,c] <- Sinv

59
60 # right -hand side of the equations

61 right <- ((1+r)*m1/FXD*t

62 +r*(m2-m1)/FXD*(x+t)*exp(-1/t*x)

63 +r*(m1-m2)*x*(1-(1-exp(-1/t*x))/FXD)

64 -r*m2/FXD*(D+t)*exp(-1/t*D))

65
66 # lower boundary for d’s: S_{X}^{ -1}(1/(1+ rho))

67 lower <- Sinv

68
69 # upper boundary for d’s: x_{0}

70 upper <- x

71
72 # initial value for solver

73 initial <- c(lower , upper)

74
75 # define function with parameter values

76 model <- function(d) {

77 F1 <- (m1*(1-r^2-1/(1-(1-exp(-1/t*d[1]))/FXD))

78 *( 1/FXD*((d[1]+t)*exp(-1/t*d[1]) -(d[2]+t)*exp(-1/t*d[2]))

79 -d[1]*((1-(1-exp(-1/t*d[1]))/FXD))

80 +d[2]*((1-(1-exp(-1/t*d[2]))/FXD)) )

81 +m1/FXD*(d[1]+t)*exp(-1/t*d[1])-right)

82 F2 <- (m1*(1-r^2)

83 *( 1/FXD*((d[1]+t)*exp(-1/t*d[1]) -(d[2]+t)*exp(-1/t*d[2]))

84 -d[1]*((1-(1-exp(-1/t*d[1]))/FXD))

85 +d[2]*((1-(1-exp(-1/t*d[2]))/FXD)))

86 -m1*(d[2]-d[1])

87 +m1/FXD*(d[2]+t)*exp(-1/t*d[2])-right)

88 c(F1 = F1, F2 = F2)

89 }

90
91 # find solutions

92 d1d2object <- multiroot(f = model , start = initial)

93 ds <- d1d2object$root

94
95 # save values in table

96 table1[b,c] <- ds[1]

97 table2[b,c] <- ds[2]

98
99 # expectation

100 e <- ( m1/FXD*(t-(x+t)*exp(-1/t*x))

101 +(m1-m2)*x*(1-(1-exp(-1/t*x))/FXD)

102 +m2/FXD*((x+t)*exp(-1/t*x) -(D+t)*exp(-1/t*D))

103 )

104
105 # test for E(g(X)) <= g(0)

106 if(e<=0){

107 tabletest[b,c] <- 1

108 }

109
110 }

111 }

112
113 # display tables

114 round(table1 , digits = 4)

115 round(table2 , digits = 4)

116 round(tablelower , digits = 4)

117 tabletest
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B Code for Pareto-distributed Risk X

1 # Numerical Analysis: Pareto Distribution

2
3 # package used for solving

4 library(rootSolve)

5
6 # constant parameters

7 alpha <- 2

8 lambda <- 1

9 rho <- 0.1

10
11 # varying parameters

12 xzero <- c(1, 2, 4, 10)

13 m1smaller <- c(0.25 , 0.5, 0.75, 1)

14 m2greater <- c(-0.5, -0.75, -1, -1.5, -2)

15
16 # set constant parameters

17 r <- rho

18 a <- alpha

19 l <- lambda

20 x <- xzero [1]

21
22 # find maximum among D’s

23 Dall <- 1000

24 for(b in 1:4){

25 for(c in 1:5){

26 m1 <- m1smaller[b]

27 m2 <- m2greater[c]

28 Dnew <- (1 - m1/m2)*x

29 if(Dnew < Dall){

30 Dall <- Dnew

31 }

32 }

33 }

34
35 # set D

36 D <- Dall

37
38 # initialize tables

39 table1 = matrix(0, nrow=4,ncol =5)

40 table2 = matrix(0, nrow=4,ncol =5)

41 tablelower = matrix(0, nrow=4,ncol =5)

42 tabletest = matrix(0, nrow=4,ncol =5)

43
44 # loop over m1 and m2

45 for(b in 1:4){

46 for(c in 1:5){

47
48 # reset d

49 d <- c(0,0)

50
51 # set varying parameters

52 m1 <- m1smaller[b]

53 m2 <- m2greater[c]

54
55 # compute quantities from parameter values

56 FXD <- 1 - (1+D/l)^(-a)

57 Sinv <- l*((1-(1-1/(1+r))*FXD)^(-1/a) -1)

58
59 # lower boundary for d’s

60 tablelower[b,c] <- Sinv

61
62 # right -hand side of the equations

63 right1 <- 0+m1*(1+r)/FXD*l/(a-1)

64 right2 <- r*(m1-m2)*x*(1-(1 -(1+x/l)^(-a))/FXD)
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65 right3 <- r*(m2-m1)/FXD*(x*(1+x/l)^(-a)+l/(a-1)*(1+x/l)^(-a+1))

66 right4 <- -r*m2/FXD*(D*(1+D/l)^(-a)+l/(a-1)*(1+D/l)^(-a+1))

67 right <- right1 + right2 + right3 + right4

68
69 # lower boundary for d’s: S_{X}^{ -1}(1/(1+ rho))

70 lower <- Sinv

71
72 # upper boundary for d’s: x_{0}

73 upper <- x

74
75 # initial value for solver

76 initial <- c(lower , upper)

77
78 # define function with parameter values

79 model <- function(d) {

80 F1 <- ( m1*(1-r^2-(1-(1 -(1+d[1]/l)^(-a))/FXD)^(-1))*

81 (

82 1/FXD*( d[1]*(1+d[1]/l)^(-a)

83 +l/(a-1)*(1+d[1]/l)^(-a+1)

84 -d[2]*(1+d[2]/l)^(-a)

85 -l/(a-1)*(1+d[2]/l)^(-a+1)

86 )

87 -d[1]*(1-(1 -(1+d[1]/l)^(-a))/FXD)

88 +d[2]*(1-(1 -(1+d[2]/l)^(-a))/FXD)

89 )

90 +m1/FXD*(d[1]*(1+d[1]/l)^(-a)+l/(a-1)*(1+d[1]/l)^(-a+1))

91 - right)

92
93 F2 <- ( m1*(1-r^2)*

94 (

95 1/FXD*( d[1]*(1+d[1]/l)^(-a)

96 +l/(a-1)*(1+d[1]/l)^(-a+1)

97 -d[2]*(1+d[2]/l)^(-a)

98 -l/(a-1)*(1+d[2]/l)^(-a+1)

99 )

100 -d[1]*(1-(1 -(1+d[1]/l)^(-a))/FXD)

101 +d[2]*(1-(1 -(1+d[2]/l)^(-a))/FXD)

102 )

103 -m1*(d[2]-d[1])

104 +m1/FXD*(d[2]*(1+d[2]/l)^(-a)+l/(a-1)*(1+d[2]/l)^(-a+1))

105 -right)

106 c(F1 = F1, F2 = F2)

107 }

108
109 # find solutions

110 d1d2object <- multiroot(f = model , start = initial)

111 ds <- d1d2object$root

112
113 # save values in table

114 table1[b,c] <- ds[1]

115 table2[b,c] <- ds[2]

116
117 # expectation

118 e <- (

119 m1/FXD*(l/(a-1)-x*(1+x/l)^(-a)-l/(a-1)*(1+x/l)^(-a+1))

120 +r*(m1-m2)*x*(1-(1-(1+x/l)^(-a))/FXD)

121 +m2/FXD*( x*(1+x/l)^(-a)

122 +l/(a-1)*(1+x/l)^(-a+1)

123 -D*(1+D/l)^(-a)

124 -l/(a-1)*(1+D/l)^(-a+1)

125 )

126 )

127
128 # test for E(g(X)) <= g(0)

129 if(e<=0){

130 tabletest[b,c] <- 1

131 }

132
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133 }

134 }

135
136 # display tables

137 round(table1 , digits = 4)

138 round(table2 , digits = 4)

139 round(tablelower , digits = 4)

140 tabletest
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