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ABSTRACT 
 

SELECTIVE COMPRESSION OF MEDICAL IMAGES VIA INTELLIGENT 
SEGMENTATION AND 3D-SPIHT CODING 

 
by  
 

Bohan Fan  
 
 

The University of Wisconsin-Milwaukee, 2018   
Under the Supervision of Professor Zeyun Yu  

 
 
 
 

With increasingly high resolutions of 3D volumetric medical images being widely 

used in clinical patient treatments, efficient image compression techniques have 

become in great demand due to the cost in storage and time for transmission. While 

various algorithms are available, the conflicts between high compression rate and the 

downgraded quality of the images can partially be harmonized by using the region of 

interest (ROI) coding technique. Instead of compressing the entire image, we can 

segment the image by critical diagnosis zone (the ROI zone) and background zone, and 

apply lossless compression or low compression rate to the former and high 

compression rate to the latter, without losing much clinically important information.  

In this thesis, we explore a medical image transmitting process that utilizes a 

deep learning network, called 3D-Unet to segment the region of interest area of 

volumetric images and 3D-SPIHT algorithm to encode the images for compression, 

which can be potentially used in medical data sharing scenario. In our experiments, we 

train a 3D-Unet on a dataset of spine images with their label ground truth, and use the 

trained model to extract the vertebral bodies of testing data. The segmented vertebral 
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regions are dilated to generate the region of interest, which are subject to the 3D-SPIHT 

algorithm with low compress ratio while the rest of the image (background) is coded with 

high compress ratio to achieve an excellent balance of image quality in region of 

interest and high compression ratio elsewhere. 
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Chapter I Introduction 

Since X-ray was discovered by Wilhelm Röntgen in 1895, people have been able 

to see through the body by taking images. From the single image of X-ray to Computed 

Tomography (CT) scan, Medical Ultrasonography and Magnetic Resonance Imaging 

(MRI), we are increasingly benefiting from the accurate'diagnoses'and'treatments'with'

the'assistant'of'medical'imaging.' 

Medical volumetric images, such as 3D computed tomography (CT) and magnetic 

resonance (MR) images, are typically a group of 2D image slices through the human body, 

and through these stacked slices, 3D reconstruction of the anatomy images can be 

acquired for comprehensive clinical analysis. Because of the huge volume and 

increasingly use of medical volumetric images, efficient compression techniques are 

necessary for storage and transmission. 

There are always conflicts between high compression rate and the downgraded 

quality of the images. Their balance can be partially harmonized by region of interest (ROI) 

coding. Instead of compressing the entire image with single rate, we can divide the image 

by critical diagnosis zone (the ROI zone) and background zone, and apply lossless 

compression or low compression rate to the former and high compression rate to the latter, 

without losing too much clinically important information.  

ROI coding relies on image segmentation techniques which extract the ROI from 

the background. Image segmentation techniques include layer-based segmentation, such 

as 3-layer MRC (Mixed Raster Content) model [6], and block-based segmentation, 

including clustering, split and merge, normalized cuts, region growing, threshold, edge 
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detection techniques [8]. Among them, artificial neural network-based techniques, 

represented by Convolutional Neural Network (CNN), Recurrent neural Network (RNN), 

Fully Convolutional Network(FCN), have progressed rapidly in recent years. Superior to 

the traditional image processing techniques, these artificial neural network-based 

techniques can be fed with raw data, automatically learn the features and make 

predictions [27]. Therefore, artificial neural network-based techniques are promising in 

medical images processing context, which has tremendous images and requires 

extensive and tedious efforts of medical experts [27].   

U-net [14] and Set Partitioning in Hierarchical Trees (SPIHT) [1] are the state-of-

art medical image segmentation technique and image compression algorithm 

respectively. Their extension to 3D version-3D-Unet [3] and 3D-SPIHT [2], can be applied 

to volumetric images. 

In this thesis, we explore a medical image transmitting process that utilizes 3D-

Unet to segment the region of interest area of volumetric images and 3D-SPIHT algorithm 

to encode the ROI with low compress ratio while the rest of the image (background) with 

high compress ratio, and then transmits the generated bit files to the user for decoding 

and reconstructing. This can be potentially used in medical data sharing scenario. 

In Chapter II we review the image segmentation techniques for ROI extraction from 

traditional ROI extraction techniques to the state-of-art deep learning methods. We 

choose one of the most efficient techniques in medical image segmentation: 3D-Unet [3], 

to train and predict on spine volumetric images. In Chapter III we discuss several 

compression techniques and specifically introduce 3D-SPIHT [2] algorithm and 
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implement it using QccPack [4]. In Chapter IV we use Nifti volumetric images with labeled 

vertebral bodies dataset to demonstrate the data transmitting process. Chapter V 

concludes with some limitations and future work. 

"
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Chapter II ROI extraction  

2.1 Traditional ROI extraction techniques  

Region of Interest (ROI) is a subset of an image or a dataset identified for a 

particular purpose [5]. From the users’ perspective, it is the area that contains the needed 

information that the users are searching for. In image processing context, for example, it 

may refer to time or frequency interval of a waveform in 1D case, or a rectangle or circle 

area contains an object in the image [5]. The ROI boundary divides an image into two 

parts: RIO area and Non-ROI area (or background), both of which are useful for image 

processing. The ROI area contains the main targeting information for the user, while the 

background, acting as a map, usually provides the relative location of the ROI area in the 

image. Due to the differences of relative importance and roles played in image processing, 

ROI and Non-ROI areas can be treated differently. In compression, we can apply the low 

compression rate for the former and high compression rate for the latter. 

The different treatments of ROI and Non-ROI areas rely on image segmentation 

techniques. In general, there are two categories of image segmentation techniques: layer-

based methods and block-based methods. Layer-based segmentation, most represented 

by a 3-layer MRC (Mixed Raster Content) model [6], divides images into foreground, 

background and binary mask. The binary mask determines the assignment of each pixel 

to the foreground, or background by 1 or 0 [7], and each of the layers is encoded 

independently with its own encoder.  

Block-based segmentation, including clustering, split and merge, normalized cuts, 

region growing, threshold, edge detection techniques [8], divides images by continuous 
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region or edge of the objects in the images. Clustering is to divide an image into clusters 

such that the total distance between each point and the center of its cluster is minimized. 

The drawback of clustering techniques like K-means clustering is that the cluster area 

may not be continuous [9]. Split and merge technique divides an image into sub regions 

until they are small enough for segmentation, then merges two regions if they are adjacent 

and similar until no more merge is possible [10]. Split and merge technique can guarantee 

the continuity of segmentation area, but the results are position and orientation dependent 

and also suffer from over segmentation problem [8,10]. Normalized cuts [11] considers 

image segmentation as a graph partition problem and is a global criterion to be optimized 

which measures both the dissimilarity between different groups and similarity within each 

groups. In region growing technique, the user chooses one pixel as a seed and adds 

other pixels based on similarity [9]. If a pixel does not belong to any current region, then 

a new region is created. The process is repeated until all the pixels in the image are added 

to some region [9]. Threshold technique is to partition image pixels into foreground or 

background according to its intensity value and a specified threshold value. Threshold 

value can be chosen based on the users’ observation and applied to the entire image or 

local region. Edge detection techniques detect the abrupt changes of intensity value [9] 

in images which is usually the boundary of two regions. Different methods can be used 

to extract the edge: Roberts detection, Prewitt detection, Sobel detection, as well as fuzzy 

logic based approach, genetic algorithm approach and neural network approach.  

Superior to these traditional image segmentation techniques, artificial neural 

network-based techniques can be fed with raw data, automatically learn the features and 
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make predictions [27]. Therefore, artificial neural network-based techniques are intelligent 

when dealing with tremendous medical images and performing extensive and tedious 

work.   

2.2 Artificial neural network-based techniques 

Artificial neural network has been inspired by the research of biological neural 

network since 1940s.  McCulloch and Pitts [28] proposed a simplified model of neuron as 

the simulation of biological neuron (or nerve cell). The neuron can be mathematically 

represented by a weighted sum of n input signals, xi, i=1, 2, …n, 

! = #( %&'& − )
*

&+,
) 

θ(z)=1, if z>0 and θ(z)=0, otherwise. 

A positive weight wi is the excitatory input, while a negative weight is the inhibitory 

input [31]. Despite its simplicity, the computational model inspired and paved the way for 

the neural network research. [32] introduced the first Perceptron, a single layer network 

that is able to learn to output 0 or 1 classification [33]. However, a rigorous analysis on 

the limitations of Perceptron in [34] shows that it can not solve the simple linearly 

inseparable problem like XOR problem, which brings the AI research to winter. The 

renewed interest in artificial neural network is triggered by backpropagation algorithm 

[34][35][36], which shows how multilayer neural networks can be trained for complex 

learning problems [33]. However, multilayer neural networks gradually gave its way to 

SVM and other machine learning models because of its difficulties in training and the 
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limitation of compute capacity. The latest boom of artificial neural network comes with the 

success of convolution neural network (CNN).  

2.2.1 Convolution neural network (CNN) 

The first convolution neural network (CNN) LeNet [20] is proposed by LeCun in 

1998, but it did not become popular because of the limitation of compute capacity at that 

time. The breakthrough in image processing area is widely awarded to AlexNet [12]. With 

millions of labeled high-resolution images in ImageNet [13], the availability of high 

performance GPUs and the optimization on CNN network, AlexNet [12] won ImageNet 

Large Scale Visual Recognition Challenge with an overwhelming lead. Different from the 

traditional machine learning techniques, in which people need to use their knowledge and 

experience to extract features, CNN can learn and extract features automatically in 

training. 

 
 

Figure 1. Example of a convolution neural network structure for classification 

Source: https://ww2.mathworks.cn/discovery/convolutional-neural-network.html 
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Figure 1 shows an example of a CNN structure for classification. A CNN typically 

includes feature learning part and classification part. Features extraction and selection 

are achieved by alternative of convolution layers and max pooling layers. Using different 

filters to apply the convolution operation over the original images, we can detect features 

related to the filter. Simple features go through multiple of convolution layers and max 

pooling layers and output high-level features. After flattening the high-dimension features, 

the fully connected layer connects the flattened vector with softmax layer which outputs 

the probabilities of different classifications. The class corresponding with the highest 

probability is the predicting classification of the input image. 

2.2.2 Fully convolutional network (FCN) 

Fully convolutional network (FCN) [21], by its name, is a neural network that 

contains only convolution layer, instead of ending with a fully connected layer like CNN 

(see Figure 1). The reason for this network construction is that FCN is designed for the 

probability prediction of pixels—how likely a pixel belongs to class A or object A.  

In Figure 2(a), we can see from the comparison that CNN ends up with a probability 

distribution in several classes for the main object in the input image through flatting the 

feature map and fully connected layer. The CNN result shows that tabby cat has the 

highest probability than any other classes, thus the object in the image is classified as 

tabby cat. While an FCN generates a heating map of original image after several 

convolution layers and pooling layers and replacing the fully connected layers by their 

equivalent convolution layers. The heating map represents the probability that tabby cat 

appears at different locations in the measure of pixels, where the red pixels has the 
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highest probability to be tabby cat. Based on the heating map and upsampling layers, an 

FCN generates the segregation of objects by pixels for the original image. Instead of a 

classification task of CNN, which matches the main object of an image with classes labels, 

FCN aims at segmenting and labeling all the meaningful objects in an image by pixel 

(Figure 2(b)), which is called semantic segmentation task.  

Since FCN was proposed in 2015, it has inspired a series of neural networks 

designed for image segmentation, such as SegNet [24], U-net [14], DeconvNet [25]. 

Among them, U-net [14] works especially well for medical image segmentation. 

 
Figure 2(a). Comparison of convolution neural network and fully convolutional network 

structures 
Source: Long, Shelhamer and Darrell (2015) 
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Figure 2(b). FCN process to output the semantic segmentation result 

Source: Long, Shelhamer and Darrell (2015) 
 
2.3 U-net  

The successful training of a deep network usually requires large training samples 

with annotation [14], which is especially rare in medical image processing context. By 

using data augmentation to available training images, [14] gets their elastic deformations, 

and U-net is proposed to learn the augmented data set. U-net is based on FCN [21], but 

it extends the FCN architecture by modifying the upsampling part such that it also has 

many feature channels. Figure 3 shows an example of U-net [14] structure, it has both a 

contracting path (left) as usual convolution network and expanding path that include 

upsampling part (right), which form a U shape architecture.  
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Figure 3. Example of U-Net structure 

Source: Ronneberger, Fischer & Brox (2015) 
 
 
2.3.1 3D-Unet 

3D-Unet [3] is the 3D version of original U-net [14], it is proposed for the reason 

that medical images usually have the form of 3D volumetric type such as Nifti, Dicom, 

instead of 2D images. The high quality annotated training dataset is even harder to 

acquire because it involves labeling the region of interest slice by slice for volumetric 

images, which is both tedious and time consuming [3]. 3D-Unet takes volumetric images 

as input and can be trained to learn from sparsely annotated images and predict the 

dense 3D segmentation [3]. A trained 3D-Unet can also apply to a new volumetric image 

and output its dense 3D segmentation. Figure 4 shows an example of 3D-Unet structure. 
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Figure 4. Example of 3D-Unet structure 

Source: Çiçek, Abdulkadir, Lienkamp, Brox & Ronneberger (2016) 
 
2.3.2 3D-Unet Implementation  

3DUnetCNN is a Github repository developed by David G Ellis and available at 

[37]. The repository is designed after [14] and written to be trained using BRATS [15, 16] 

data for segmenting brain tumors. We modify the code for our own application in spine 

data to segment vertebral bodies. The code is TensorFlow/Keras based so they also need 

to be installed first. 

Tensorflow is an open source software library for high performance numerical 

computing using data flow graphs. “The graph nodes represent mathematical operations 

and graph edges represent multidimensional data arrays (tensors) that flow between 

them” [15]. Since its release in 2015, it has been one of the most popular computing 

framework for machine learning and deep learning. Keras is a high-level neural network 



 13"

API written in Python, and can run on top of different backends: Tensorflow, CNTK, 

Theano, providing a modular way of building neural network.  

Our system is Ubuntu 14.04 and Python version is 2.7. We install Tensorflow with 

CUDA 8 and cuDNN 7, supporting GPU- GeForce GTX 1080 Ti, which has a compute 

capability 6.1 and 11GB memory. There are also several Python dependencies for the 

installation of 3DUnetCNN and we list them in Table 1. 

Table 1. 3DUnetCNN dependencies list 

Dependencies Descriptions 

nibabel Read/write access to some common 
neuroimaging file formats 

keras high-level neural network API 

pytables manage hierarchical datasets and cope 
with extremely large amounts of data 

nilearn fast and easy statistical learning on 
NeuroImaging data 

SimpleITK 
A simplified, open-source interface to 
Insight Segmentation and Registration 

Toolkit (ITK) 
matplotlib 2D plotting library 
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Chapter III Compression techniques 

Image compression is the process of reducing the cost for storage or transmission 

of digital images. This is obtained by exploiting the coding redundancy, interpixel 

redundancy, and psychovisual redundancy [29]. Coding redundancy comes from the fact 

that some pixels appear more than others but each pixel value is encoded with a fixed-

length code word. The solution is to use a variable-length code to assign more frequent 

symbols shorter bits [30]. The common methods include Huffman coding and Lempel-

Ziv-Welch (LZW) coding. Interpixel redundancy results from the fact that neighboring 

pixels are similar or correlated, either in space or time. Methods for exploiting spatial 

redundancy includes Run-Length Coding, Quadtrees, Region Encoding, Predictive 

Coding, Fractal Image Compression, and Transform Coding [30]. Method for exploiting 

temporal redundancy includes motion compensation, which is used in MPEG. 

Psychovisual redundancy comes from the fact that some color differences are 

imperceptible to humans and is exploited with multimedia standards such as NTSC [30].  

Compression ratio is defined by the ratio between uncompressed data size and 

compressed data size. There are always conflicts between high compression rate and 

the downgraded quality of the images. ROI coding techniques, which code the ROI and 

background in different ways, is one of the methods that can harmonize the conflicts.  

3.1 ROI coding techniques 

Several ROI coding techniques can be used following wavelet transform. Scaling 

method [17] is to scale the ROI coefficients to place the required bits of ROI in higher bit 
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planes than the Non-ROI area [19]. Depending on the scaling value, some bits of the ROI 

coefficients may be encoded together with background coefficients, and the shape 

information about ROI should also be provided in decoding. In MAXSHIFT method [18], 

the scaling value is chosen such that the minimum coefficients of the ROI are larger than 

maximum coefficients of the background [19], and no shape information about ROI is 

needed. In vector quantization (VQ) [24], image is divided into non-overlapping blocks. 

Each vector of the image is approximated by the nearest element in codebook and the 

index of the element is transmitted [19]. For ROI-VQ, every region has separate codebook. 

A large codebook containing small codewords is created for the ROI region while the 

block size is smaller for non-ROI region [19]. Based on EZW (Embedded Zerotrees of 

Wavelet transforms) [38], [24] presented the multi rate/resolution control in the 

progressive transmission for ROI coding. However, all these RIO coding techniques only 

apply for 2D still images [19]. 

3.2 Set Partitioning in Hierarchical Trees (SPIHT)  

Set Partitioning in Hierarchical Trees (SPIHT) is based on EZW and proposed by 

[1]. Both of them share the progressive coding feature that the most important wavelet 

coefficients will be transmitted first. Superior to EZW, SPIHT uses the spatial orientation 

tree (SOT), three sets O(i,j), D(i,j) and L(i,j) to organize the hierarchical relations and three 

ordered list: List of insignificant pixels (LIP), List of significant pixels (LSP), List of 

insignificant set (LIS), to trace the significant test results of the wavelet coefficients. In 

addition, SPIHT algorithm develops a set partitioning rule (see below) in sorting pass that 
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both the encoder and decoder follow, thus implicitly transmits the ordering information in 

encoding to decoder and improves the efficiency.   

Figure 5 shows the parents-offspring relations in spatial orientation tree structure. 

Except for the coefficient root node and the leave nodes, all the other nodes (i,j) have four 

children which form offspring set O(i,j). D(i,j) is the set that includes all the descendants 

of node (i,j) and L(i,j) = D(i,j)- O(i,j).  

 
Figure 5. The spatial orientation tree structure of SPIHT 

Source: Said, A., & Pearlman, W. A. (1996). 
 

Following the set partitioning rule: 

1.' Initial partition is sets {(i,j)} and D(i,j), where (i,j) is the root node, 

2.' If D(i,j) is significant then it is partitioned into L(i,j) and four single-element sets 

each has one child of node (i,j), 
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3.' If L(i,j) is significant then it is partitioned into four sets D(k,l), with (k,l) being the 

child of node (i,j), 

the algorithm starts with an empty LSP set. Then the comparison of the coefficients at 

nodes in spatial orientation trees and the threshold value will determine how the sets 

partition and how the three ordered lists are updated. The bit streams file will also be 

generated in this process (more details at [1]). Figure 6 shows the spatial orientation tree 

structure of SPIHT and 3D-SPIHT. All the coefficients nodes in 3D-SPIHT either have no 

child or have 8 children (more details at [2]). 

 
Figure 6. The spatial orientation tree structure of SPIHT and 3D-SPIHT 

Source: www.spiedigitallibrary.org 
 
3.3 QccPack 

QccPack software package is an “open-source collection of library routines and 

utility programs for quantization, compression, and coding data” written by [4]. It 

implements procedures commonly used in coding and compression such as entropy 
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coding, vector quantization, wavelet transforms, wavelet-based subband coding as well 

as SPIHT and SPECK coding. 

The utility programs for SPIHT and 3D-SPIHT algorithms which respectively 

involve 2D and 3D DWT followed by a progressive “bit-plane” coding of the wavelet 

coefficients are used in this thesis project. The package also supports the mask 

parameter which is a transparent area specified by the user for shape-adaptive coding. 

The mask must be determined before the encoding begins and is also needed in decoding. 

The area except for region covered by the mask will be dropped. This property is not 

desired in many medical diagnosis contexts if we use the mask feature to encode the ROI. 

Because the background can provide the relative location information of the ROI area for 

accurate diagnosis. In this thesis project, we separately encode the images by its ROI 

area and background area, and combine the images for reconstruction after transmitting 

and decoding.  
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Chapter IV Data and experiment 

4.1 Dataset 

In this thesis, we use MRI images of human spine and its label files for vertebral 

bodies. The image format is Neuroimaging Informatics Technology Initiative (nifti). We 

have 8 image sample sets and each sample set includes wat.nii, opp.nii, fat.nii, inn,nii 

and truth.nii files. The dataset is provided by [22] in Institute for Surgical Technology and 

Biomechanics at University of Bern. The 3D visualization of Nifti images can be shown by 

3D Slicer [23], an open source software for medical image processing and visualization. 

Figure 7(a) shows the 3D visualization of an opp.nii file and Figure 7(b) shows its vertebral 

bodies ground truth which is manually labeled by medical experts.  



 20"

 
 

Figure 7(a). 3D visualization of opp.nii volumetric image by 3D Slicer 
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Figure 7(b). Vertebral bodies ground truth label of original volumetric image by 3D Slicer 

4.2 Process of medical image transmitting 

In our dataset, Nifti volumetric image have a dimension of 36*256*256. We can 

see it as a stack of 36 slices of 256*256 greyscale images and the size of the volumetric 

image is 4.7MB. Transmitting the original volumetric image is costly in the sense of time 

and bandwidth, especially for remote usage. Figure 8 shows our proposed flowchart how 

a data receiver (user) interacts with the data provider to get the encoded data. The 

flowchart is composed of the data provider on the upper side and the user at the bottom. 
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When there is a need in volumetric image data, the user can interact with the data provider 

in following steps: 

1.' The user makes a request with specific region of interest and its corresponding bit 

per voxel (usually high) as well as the desired bpv (usually low) for the background. 

After receiving the request and parameters, volumetric image is sent to 3D-Unet 

module and its prediction of ROI and background segmentation is generated. The 

output is also a volumetric image but each slice is a binary image with ROI (label) 

being 1 and background being 0, which will be used to generate volumetric mask. 

2.' The original volumetric image and its segmentation predicting image are 

transformed to icb files, which are special volumetric image format defined by 

QccPack and can be used by 3D-SPIHT encoding utilities. Volumetric mask is 

generated from the transformation. 

3.' The icb file of original volumetric image and the ROI mask are used by the 3D-

SPIHT module, and the output is the ROI bit file and mask bit file. With the 

background mask, background bit file is also generated. Then the ROI bit file, 

background bit file, and mask bit file are transmitted to the user.  

4.' After receiving the encoded bit files, the user can decode them to get icb files. 

5.' Through format transformation and reconstruction, a volumetric image with separate 

desired resolutions is acquired.  
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Figure 8. Interaction between the medical images user and data provider 

4.3 3D-Unet module 

3D-Unet Module has two usage scenarios: the first is when the data provider 

receives a region of interest request for the first time, which means there is no trained 

network available, and the user should provide sample volumetric images and 

corresponding label images to train the neural network. The second (more general) is that 

there is a trained network available and it only reads the input volumetric image together 

with the saved parameters of the trained network to get the region of interest prediction. 

As more users request data from the data provider, more trained networks corresponding 

to the common ROIs will be available. 
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In this thesis, however, we implement the former case because it demonstrates an 

end-to-end scenario to train the 3D-Unet and make prediction. Table 2 shows the 

parameter settings we use to train the 3D-Unet. 

Table 2. 3DUetCNN parameter settings  
config["labels"] = 1 the label numbers on the input image 
config["all_modalities"] = ["opp", "wat"]  
config["training_modalities"] = 
config["all_modalities"]   

use opp.nii, wat.nii file for training the 
model 

config["n_epochs"] = 500   cutoff the training after 500 epochs 
config["patience"] = 10   learning rate will be reduced after 10 

epochs if the validation loss is not 
improving 

config["early_stop"] = 50   training will be stopped after 50 epochs 
without the validation loss improving 

config["initial_learning_rate"] = 0.00001  
config["learning_rate_drop"] = 0.5   factor by which the learning rate will be 

reduced 
config["flip"] = False   do not use flip to augment the data 
config["permute"] = False   do not augment the data by permuting in 

various directions 
 

After setting all the parameters, we can run train.py to train the model and 

predict.py to write the predicting label file. The model receives Nifti images of 6 patients 

for training and the remaining 2 sets of images for prediction. Figure 9 is the 3D 

visualization of the model predicting label file. The result shows that comparing to the 

ground truth label file, the model predicting area is smaller and also has some noisy points. 

The prediction of vertebral bodies is not good enough, however, for spine 

segmentation task, what the user cares most is the whole area near the spine, instead of 

only the vertebral bodies. Therefore, we dilate the predicting label areas to get a 
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connected region that includes the spine and nearby area. The size of the region is 

determined by the kernel size of dilating operator. 

 
Figure 9. 3D visualization of the model predicting label file  

4.4 Format transformation module 

There are two format transformation module in the whole process: the data 

provider side that transfers volumetric images to icb files for encoding and the user side 

that recovers the volumetric images from icb files. 
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4.4.1 From volumetric images to icb files 

Both the original volumetric medical image and the predicted volumetric label file 

need to be transformed, and the transformation of label file is different from the former. 

Take our data for example, opp.nii is the original volumetric image with dimension 

36*256*256, we use nib.load() in nibabel package to read the file and get_data() to get 

the 36 slices of pgm files. Each slice is a greyscale pgm image with 256*256 dimension. 

Figure 10 shows the 8th slice from opp.nii file. Then we combine the series of pgm images 

to icb file using seqtoicb utility program provided by QccPack. Since 3D-SPIHT algorithm 

we used only allows an icb file with frame number being the power of 2, we drop the first 

2 and last 2 frames which do not contain any spine pixels, generating an icb file with a 

dimension of 32*256*256.  

 
 

Figure 10. The 8th slice from opp.nii volumetric image 
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For the predicted volumetric label image, whose 3D visualization is shown in 

Figure 9, we apply the dilate operation after getting its slices. Figure 11(a) shows a slice 

from original predicting label image given by 3D-Unet, and Figure 11(b) is our dilated 

result using 7*7 kernel and 1 iteration.  

We continue to increase the kernel size until 25*25, for the reason that all the 

vertebral bodies’ label will joint together, thus forming a cavity that covers the entire spine. 

Based on the dilated label files, we build our mask for region of interest. Figure 12 shows 

the dilated label slice 8,16, 24 and 31 by kernel 25*25 and 1 iteration. 
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Figure 11(a). Label slice from 3D-Unet prediction 

 
 

Figure 11(b). Dilated label image by kernel 7*7 and 1 iteration 
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Figure 12. Dilated label image by kernel 25*25 and 1 iteration (a) slice 8 (left top) 

(b) slice 16 (right top) (c) slice 24 (left bottom) (d) slice 31 (right bottom) 
 

After performing dilate operation for all the prediction slices, we use seqtoicb again 

to get the ROI mask icb file. Also, we create sequences of inverse image of the prediction 

slices to get the background mask icb file. Then the icb file of volumetric image can be 

encoded with ROI mask and corresponding bit rate to get ROI bit file. With background 



 30"

mask and corresponding bit rate, background bit file is also generated, and the ROI mask 

can be encoded with 1 bpv losslessly. Table 3 shows the different size of bit files with 

respect to different bit per voxel. 

Table 3. Bit file size of 3D-SPIHT coding with ROI  
and background mask for different bpv 

 ROI mask Background mask 

0.01 bpv  2.3 KB 

0.1 bpv  23.1 KB 

1 bpv 31.3 KB 230.9 KB 

2 bpv 62.5 KB 461.7 KB 

3 bpv 93.8 KB 692.6 KB 

4 bpv 125.1 KB 923.5 KB 

5 bpv 156.4 KB 1.2 MB 

8 bpv 250.2 KB 1.8 MB 
 

As we can see from Table 3, the size of 3D-SPIHT coding bit file is related to the 

mask and bit per voxel. Background contains the information that can suffer from high 

compression rate. With the user’s choices of high bpv for ROI area and low bpv for 

background area, decoding and combining them will recover a desired image that has 

high resolution in region of interest and low resolution in background. 

Since ROI area is relatively small comparing to the background, we choose 8 bpv 

for ROI and match with different bpv for background. 
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4.4.2 From icb files to volumetric images 

After decoding the bit files and getting the icb files for both ROI and the background, 

we can convert them to the pgm sequences for ROI and background separately, and then 

combine them to get pgm sequences of complete image, where the ROI area has high 

resolution and background has low resolution.  

Figure 12 shows the reconstruction images of slice 21, with different bpv for 

background. Figure 12(a) is from 8 bpv for ROI and 0.01 bpv for background, Figure 12(b) 

is from 8 bpv for ROI and 0.1 bpv for background, Figure 12(c) is from 8 bpv for ROI and 

1 bpv for background, Figure 12(d) is from 8 bpv for ROI and 8 bpv for background and 

Figure 12(e) shows the original image slice. A comparison of different information loss 

measures is reported in Table 4 and plotted in Figure 13. 

Except for the slice encoded with 0.01 bpv for background, which loses most 

details, all the other reconstruction images still keep background information enough to 

provide the relative location of the ROI. The reconstruction information loss measured by 

MSE (the smaller the better), SNR (the larger the better), PSNR or MAE decreases with 

the increase of bpv for background. After reconstructing all the slices, we can use ImageJ 

[25] plugin nifti_io.jar [26] to convert the pgm slices to nii volumetric image. 
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Figure 12(a). Reconstruction image of slice 21 with 8 bpv for ROI and 0.01 bpv for 

background 
 

 
Figure 12(b). Reconstruction image of slice 21 with 8 bpv for ROI and 0.1 bpv for 

background 
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Figure 12(c). Reconstruction image of slice 21 with 8 bpv for ROI and 1 bpv for 

background 
 

 
Figure 12(d). Reconstruction image of slice 21 with 8 bpv for ROI and 8 bpv for 

background 
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Figure 12(e). Original image of slice 21 

 
Table 4. The comparison of different measures of information loss for different bpv 

bpv MSE SNR(dB) PSNR(dB) MAE 

1 14.11 24.81 36.63 23 
2 3.44 30.94 42.76 10 
3 1.03 36.19 48.01 7 

4 0.31 41.38 53.21 3 

5 0.05 49.15 60.97 1 
8 0 -1 -1 0 
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Figure 13. The plot of different information loss measures for different bpv 

4.5 The comparison of original image and bit files sizes 

The original images have 32 slices and each takes 65.6KB. After encoding, the 

data provider need to send three bit files to the user: ROI bit file, background bit file and 

mask bit file. Table 5 reports the total size of bit files that is required in transmitting and 

the compression ratio for different bpv choices in background.  
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Table 5. Total size of bit files required in transmitting and the compression ratio for 
different bpv choices in background  

bpv choices  total size of bit files Compression ratio 
Background 1bpv 
ROI 8bpv 743.2KB 2.82 
Background 2bpv 
ROI 8bpv 974KB 2.16 
Background 3bpv 
ROI 8bpv 1204.9KB 1.74 
Background 4bpv 
ROI 8bpv 1435.8KB 1.46 
Background 5bpv 
ROI 8bpv 1712.3KB 1.23 
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Chapter V Limitations and future work 

There are several limitations in this thesis: First, the segmentation of vertebral 

bodies predicted by the 3D-Unet model is not as good as the brain tumor example shown 

on the package developers’ website. The GPU used in this project is GeForce GTX 1080 

Ti, which has compute capability 6.1 with 11G memory, but the program suffers from out 

of memory error and we have to reduce the modalities number and use less data 

augmentation option. This may be one potential reason of the bad prediction issue. Using 

GPUs with larger memory or optimizing the source code may resolve the problem and 

get more accurate prediction. 

Second, for its importance in medical diagnosis, medical volumetric images usually 

do not afford to lossy compression, in which the information of critical diagnosis zone may 

lose due to image artifacts. The original 3D-SPIHT algorithm supports lossless 

compression, but the QccPack only provides lossy transform. In our experiment, we 

decode the bit-file and restore the original images with different information losses 

depending on the different bpv chosen. These losses may not acceptable in some other 

cases, therefore, the modification to the package to enable lossless compression is 

another direction of work in the future. 

Except for extracting the ROI area and applying 3D-SPIHT encoding to ROI and 

background separately. ROI coding can also be achieved through multiplying the DWT 

coefficients in the desired ROI spatial area by some constant greater than 1 and less than 

or equal to 2 QCCSPIHT_MAXBITPLANES – 1, after the DWT but before the first coding pass. This 
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is a potential way to simplify the image transmitting process, where only one bit-file is 

needed to be generated and transmitted. 
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