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ABSTRACT 

AUDITORY AND CONTEXTUAL CONTRIBUTIONS TO MEMORY LABILITY AND 

SYNAPTIC DESTABILIZATION IN THE AMYGDALA 

by 

Nicole C. Ferrara 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Fred J. Helmstetter 

 

Pavlovian fear conditioning provides a way to investigate memory formation and 

retrieval. During fear conditioning, a conditional stimulus (CS) is paired with an aversive 

outcome and the CS acquires aversive value over several pairings. The CS may then be presented 

during a retrieval session where fear responding is measured as an indicator of memory strength. 

Retrieval sessions may allow for the incorporation of new information into the original memory 

trace by destabilizing amygdala synapses. However, the specific circuits and neural inputs that 

contribute to memory lability and synaptic destabilization during a retrieval session are poorly 

understood. Previous work has shown that contextual novelty during an auditory retrieval session 

is necessary for memory lability, suggesting that brain regions encoding auditory and contextual 

information interact during memory retrieval. The dorsal hippocampus and auditory thalamus 

play selective roles in processing contextual and auditory information, respectively, during fear 

conditioning. In the current study, we manipulate functional inputs from each region to 

determine how each impacts memory lability at amygdala synapses. We found that 1) silencing 

auditory thalamic inputs in the amygdala during a brief retrieval session reduces fear to an 

auditory cue and leads to long lasting reductions in fear, and 2) inactivation of the dorsal 

hippocampus prior to training allows for memory impairment when anisomycin is infused into 
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the amygdala after a retrieval session in an anisomycin resistant memory. This work highlights 

an important role for brain regions processing sensory information during training and the impact 

on fear memory recall and modification.  

  



iv 
 

TABLE OF CONTENTS 

Abstract …………………………………………………………………………………………...ii 

Table of Contents ………………………………………………………………………………...iv 

List of Figures ……………………………………………………………………………………vi 

Abbreviations ……………………………………………………………………………………vii 

Acknowledgements……………………………………………………………………………….ix 

Chapter one: Introduction and Background Information 

 Pavlovian fear conditioning ………………………………………………………………1 

 Neurobiological mechanisms of memory consolidation ………………………………….3 

 Network regulation of amygdala plasticity during memory formation ...………………...8 

Molecular mechanisms contributing to destabilization and restablization during 

reconsolidation …………………………………………………………………………..10   

Circuitry modulating retrieval-dependent destabilization in the amygdala ……………..12 

Extinction: inhibitory learning and depotentiation………………………………………16 

Targeting and manipulating terminals using optogenetics ……………………………...21 

Chapter two: Inhibition of thalamic terminals in the amygdala facilitates extinction-like learning   

 Introduction ..…………………………………………………………………………….23 

 Materials and methods .………………………………………………………………….26 

 Results ……..…………………………………………………………………………….30 



v 
 

 Discussion ....…………………………………………………………………………….37 

Chapter three: Contextual novelty, dorsal hippocampus, and amygdala-dependent synaptic 

destabilization and memory lability 

 Introduction ..…………………………………………………………………………….39 

 Materials and methods .………………………………………………………………….42 

 Results ……..…………………………………………………………………………….44 

 Discussion ...……………………………………………………………………………..47 

Chapter four: General discussion ………………………………………………………………..51  

References ……………………………………………………………………………………….56 

Curriculum Vitae .……………………………………………………………………………….77 

 

  



vi 
 

LIST OF FIGURES 

 

Figure 1. Extinction schematic ………………………………………………………………….19 

Figure 2. Optogenetics schematic……………………………………………………...………...21 

Figure 3. Auditory thalamic terminal activity in the amygdala is critical for fear memory retrieval 

and retention ………………………………………………………………...…………………...31 

Figure 4. Inhibition of thalamo-amygdala terminals needs to be paired with auditory cue 

presentation for reduced fear responding …………………..........................................................32 

Figure 5. Persistent reductions in fear due to thalamo-amygdala terminal silencing is not a result 

of depotentiation ………………………………………………………………………………...34 

Figure 6. The reduction in fear responding as a result of thalamo-amygdala silencing is context-

dependent …………………..........................................................................................................35 

Figure 7. Silencing MgN-LA terminals during retrieval reduces LA phosphorylated CREB 

expression after retrieval and a laser-free test but not after a renewal test ………………….......36 

Figure 8. Memory lability in the amygdala is regulated by contextual novelty and DH activity..45 

Figure 9. Activity in the DH during training regulates amygdala AMPA receptor trafficking 

during reconsolidation ………………………………………………………..............................47 

Figure 10. Proposed mechanism of action……………………………………………………….54 

 

 



vii 
 

LIST OF ABBREVIATIONS 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid    AMPA 

Adeno-associated viral vectors       AAV 

Anisomycin           ANI 

Archaerhodopsin-T         ArchT 

Artificial cerebral spinal fluid        ACSF 

Calcium-calmodulin dependent protein kinase II     CaMKII 

Calcium impermeable AMPA receptors      CI-AMPAR 

Calcium permeable AMPA receptors       CP-AMPAR 

clasto-Lactacystin β-lactone        βlac 

Conditioned response         CR 

Conditional stimulus         CS 

Dimethyl sulfoxide         DMSO 

Dorsal hippocampus         DH 

Intercalated cells         ITC 

Lateral amygdala         LA 

Long-term potentiation         LTP 

Magnesium          Mg2+ 

Medial geniculate nucleus of the auditory thalamus     MgN 

N-methyl-D-aspartate         NMDA 

Paired pulse facilitation        PPF 

Post synaptic density         PSD 

Post-Traumatic Stress Disorder       PTSD 

Protein Kinase A         PKA 



viii 
 

Ubiquitin-proteasome system        UPS 

Unconditional stimulus        UCS 

Vehicle          VEH 



ix 
 

ACKNOWLEDGEMENTS  

I would first like to thank my advisor Dr. Helmstetter for his guidance and support. I am 

extremely grateful to have worked under his supervision for the last 6 years, and for his advice 

and endless patience displayed throughout his mentorship. I would also like to thank my 

committee members, Drs. Karyn Frick, Debbie Hannula, Marieke Gilmartin, and James Moyer 

for their time and valuable suggestions.  

I would next like to thank the members of the Helmstetter lab for their constant advice 

and help. I received an invaluable training experience from Drs. Marieke Gilmartin, Janine 

Kwapis, and Tim Jarome, and I cannot thank them enough. A majority of my time was spent 

with Dr. Patrick Cullen and Shane Pullins. I am so grateful to them for their technical assistance, 

scientific discussions, and humor. I would also like to thank members of the UWM department 

of Psychology Hanna Yousuf, Lisa Taxier, and Vanessa Ehlers. It has been an honor to spend 

time in and out of lab with you, and I cannot imagine better friends to eat catturd with. 

I would also like to thank my family. A special thank you to my parents, who have 

always helped me chase my dreams. And finally to my husband, Eric, I would not have made it 

through this program without your love, encouragement, and scientific conversation. I am very 

fortunate to have a partner that pushes me to do my best.  

 

 



1 
 

Chapter 1: General introduction and background 

Pavlovian Fear Conditioning 

 Understanding how memory for an aversive or traumatic event is formed can shed light 

on the dysregulation of fear responses that occurs in anxiety and stress related disorders such as 

PTSD.   Expression of fear after trauma comes back in several different forms such as recall and 

avoidance of cues present during the event (Parsons & Ressler, 2013). Fear responses resulting 

from trauma can be generalized to safe stimuli or non-associated cues, resulting in maladaptive 

fear responding (Norrholm et al., 2011). Persistent changes in the neural circuitry and molecular 

mechanisms necessary for the formation of a fear memory and the expression of fear can provide 

a better understanding of treatments for fear related disorders.     

Pavlovian fear conditioning can be used as a tool to measure and manipulate the 

molecular mechanisms underlying fear memory formation and modification in both rodents and 

humans (Fendt & Fanselow, 1999; Johansen et al., 2011; Parsons & Ressler, 2013). The memory 

formed from Pavlovian conditioning is quickly acquired, robust, and long lasting, making it 

appropriate for studying the neural mechanisms supporting learning and memory. During 

conditioning, a neutral stimulus, known as a CS, is paired with an aversive stimulus, known as a 

UCS. The subject learns that the CS predicts the UCS over several pairings, and the CS acquires 

aversive value.  To test the long-term retention of the memory formed during conditioning, the 

CS can be presented independently of the UCS during a retrieval session where the CS will elicit 

a fear response (Fanselow, 1980).  Specifically, the conditioning context, consisting of the 

collection of stimuli that make up the training environment (e.g. flooring, walls, lighting, odor), 

or a discrete auditory cue can often serve as a CS in fear conditioning. To measure the strength 

of the association between the CS and UCS in rodents, freezing behavior is often recorded as a 
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measure of fear responding. At retrieval, groups can be exposed to either the original training 

context or placed into a new context where the chamber, lighting, and odor are changed.  The 

change in context allows us to separate tone specific fear from fear to the environment  in which  

training occurred (Gilmartin & Helmstetter, 2010; Kwapis et al., 2011).   

 Early work studying memory storage showed that the associations formed from a 

learning experience can be disrupted with electroconvulsive shock immediately following 

training (Duncan, 1949; Misanin et al., 1968; Squire et al., 1984). A large number of rodent 

studies have shown that electroconvulsive shock or other disruptive treatments administered after 

training induce retrograde amnesia. Importantly, manipulations capable of disrupting memory 

need to take place within a time window close to when learning occurred, suggesting that 

memories transition to a less fragile state over time (Duncan, 1949). The “consolidation 

hypothesis” accounts for the temporally restricted fragility of a memory trace following learning 

and proposed that the stabilization of memory is characterized by the transition into a long-term 

state for permanent storage (McGaugh, 2000; Nadel & Land, 2000). Memory consolidation 

occurs at both a cellular and neural systems level. Cellular consolidation is generally referred to 

as the time period in which plasticity occurring in neurons storing the memory trace slows and 

becomes resistant to disruption.  This normally occurs within a few hours from learning. Systems 

consolidation refers to the transition of memory storage to the cortex, which can take weeks to 

months. Pavlovian conditioning provides a way to study memory consolidation through the 

newly acquired CS-UCS associations. The memory formed from Pavlovian conditioning 

provides support for the consolidation hypothesis since these memories become increasingly 

resistant to disruption and modification as time after training increases in addition to changes in 
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the neural circuit important for memory storage (Anagnostaras et al., 1999; Bourtchouladze et 

al., 1998; Kida et al., 2002).  

Neurobiological mechanisms of memory consolidation  

Long-term changes in synaptic structure and cellular activity are thought to be a hallmark 

of memory storage. LTP is believed to be the cellular correlate for learning and memory and is 

characterized by long lasting increases in synaptic strength. It is believed that input-specific LTP 

is induced during fear conditioning and results in increased synaptic strength during memory 

consolidation (Kim & Cho, 2017). The plastic events that occur at potentiated synapses during 

the induction of LTP are thought to correspond to early time points of cellular consolidation, 

while plastic events during later stages of LTP have been linked to later phases of memory 

consolidation. For example, weak input (e.g. one train of 100 pulses at 100Hz) leads to increases 

in protein trafficking in synapses but the synaptic potentiation is not dependent on de novo 

protein synthesis or NMDA receptor activity and is relatively short-lived (Huang, et al., 1994; Lu 

et al., 2008). The potentiation of synapses independent of protein synthesis is referred to as early 

phase LTP (E-LTP) and might correspond to short-term memory (Bliss & Collingridge, 1993; 

Hernandez & Abel, 2009). On the other hand, strong inputs (e.g. multiple trains of 100 pulses at 

100Hz) can increase synaptic efficacy lasting for several weeks and requires de novo protein 

synthesis as well as NMDA receptor activity. This is referred to as late phase LTP (L-LTP) 

(Abraham, 2003; Bliss & Collingridge, 1993; Krug et al., 1984; Lu et al., 2008). The ability to 

disrupt L-LTP is also temporally restricted, with a necessity for transcription occurring following 

the first tetanus but not 2-hours after, making the potentiated synapses stable 2-hours after 

induction (Nguyen et al., 1994). The extended duration of synaptic efficacy and the temporally 
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restricted fragility of L-LTP mimics memory stability and the persistence of long term memories 

over time. 

The molecular events occurring during the early and late phases of LTP are key to 

understanding memory storage at a synaptic level. During associative L-LTP, NMDA receptors 

allow for calcium entry to activate a host of proteins associated with receptor trafficking and 

elevated protein expression in the PSD which in turn trigger synaptic plasticity. Activation of 

kinases, such as CaMKII or PKA, via NMDA receptor-dependent calcium influx plays a 

substantial role in the trafficking and function of AMPA receptors in the PSD during L-LTP 

(Bredt & Nicoll, 2003; Plant et al., 2006). AMPA receptors are trafficked into the PSD and are 

remain present for an extended duration following stimulation and have been used as markers for 

potentiated synapses because of their ability to regulate excitability during L-LTP. Generally, 

AMPA receptors can be functionally classified based on calcium permeability – GluR1 

containing AMPA receptors are calcium permeable (CP-AMPAR), while GluR2 containing 

AMPA receptors are calcium impermeable (CI-AMPAR) (Bredt & Nicoll, 2003). AMPA 

receptors are organized into tetramers, namely the GluR1/1 homomeric receptors (CP-AMPAR) 

and GluR1/2 heteromeric receptors (CI-AMPAR). They are well studied and undergo activity-

dependent trafficking. L-LTP induction initiates trafficking of CP-AMPARs into stimulated 

synapses via the second messenger, CaMKII, which is likely activated in response to NMDA 

receptor-regulated calcium influx (Barria et al., 1997; Barria & Malinow, 2005; Hayashi et al., 

2000). At a later time point, CI-AMPARs replace the CP-AMPARs in the PSD during L-LTP 

expression (Kauer & Malenka, 2006; Plant et al., 2006). The presence of CI-AMPARs in the 

synapse is necessary for synaptic stabilization following the induction of L-LTP due to its lack of 

calcium permeability. Synaptic stabilization during L-LTP is also necessary during consolidation 
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and allows the memory to become resistant to disruption, therefore, the stabilization of 

potentiated synapses is critical for stabilization or long-term storage of a memory.  

De novo protein synthesis is necessary for the stabilization of synapses. Previous work 

using a combination of techniques has shown a necessity for de novo protein synthesis during 

memory consolidation and LTP. For example, inhibition of gene transcription or RNA 

translation prior to or immediately following conditioning disrupts memory retention (Parsons et 

al., 2006b; Schafe et al., 2000). ANI is a protein synthesis inhibitor that blocks 60s ribosomal 

subunit activity and subsequent RNA translation and its use has provided much of the 

fundamental data on the role of protein synthesis-dependent plasticity in memory and LTP 

(Alberini, 2009; Davis & Squire, 1984). ANI will prevent the consolidation of several different 

types of memory, including but not limited to fear conditioning, inhibitory avoidance, contextual 

encoding, and object recognition, (Akirav, & Maroun, 2006; Bailey et al., 1999; Barrientos et al., 

2002; Kwapis et al., 2011; Rossato et al., 2007; Stäubli et al., 1985), providing evidence that 

protein synthesis-dependence is a shared mechanism across a variety of memories. Infusions of 

protein synthesis inhibitors provides a way to study the timeline of memory consolidation and 

synaptic stabilization (Bailey et al., 1999; Bourtchouladze et al., 1998; Kwapis et al., 2011; 

Quevedo et al., 1999; Rossato et al., 2007; Schafe et al., 1999; Sharma et al., 2012). Delayed 

infusions of protein synthesis inhibitors have been useful when characterizing the temporal 

limitations of memory consolidation and have shaped our understanding of the role for synaptic 

stabilization following learning. As is the case with L-LTP, infusions of ANI can effectively 

block memory consolidation within 3 hours after a learning event (Bourtchouladze et al., 1998). 

The application of more modern techniques lend further support for the requirement of protein 

synthesis during memory consolidation. The incorporation of labeled puromycin molecules into 
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newly synthesized proteins have shown that protein synthesis occurs following learning and is 

necessary for successful consolidation (David et al., 2012; Hoeffer et al., 2011; Ma et al., 2013, 

Tudor et al., 2016).  

Interruption of synaptic stability and long-term storage of information with broad-

spectrum protein synthesis inhibitors has fueled research to find the specific proteins involved in 

memory and to determine their role in synaptic plasticity. The initial phase of memory 

consolidation is characterized by increases in intracellular calcium levels, which activate 

intracellular signaling cascades, such as CaMKII. As described previously, CaMKII can be 

activated in response to NMDA receptor-dependent Ca2+ influx and plays a critical role in 

synaptic potentiation and plasticity supporting memory formation (Jarome et al., 2016; Wang et 

al., 2003). Inhibiting the translation of CaMKII disrupts memory formation in addition to the 

maintenance of L-LTP which provides evidence that CaMKII translation is necessary for 

postsynaptic stabilization (Miller et al., 2000).  It has been proposed that autophosphorylated 

CaMKII may bind to NMDA receptors to indirectly stabilize CI- and CP-AMPA receptors in the 

PSD (Barcomb et al., 2016; Barria & Malinow, 2005; Lisman & Zhabotinsky, 2001; Sanhueza et 

al., 2011; Sanhueza & Lisman, 2013). Collectively, this work shows a necessity for protein 

synthesis during synaptic stabilization, and specifically, a role for the synthesis of CaMKII 

during later phases of consolidation. 

Memory consolidation and LTP share several characteristics. For example, potentiated 

glutamatergic synapses are thought to be critical for memory formation and are regulated by 

protein synthesis-dependent plasticity. Similar to during LTP, AMPA receptors undergo activity-

dependent trafficking during memory consolidation and are persistently expressed in the PSD 

(Rumpel, et al., 2005; Yeh et al., 2006).  PSD-95 is a synaptic scaffolding protein that also shows 
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persistently elevated expression and acts to stabilize CI- and CP-AMPA receptors at potentiated 

synaptic surfaces. Other scaffolding proteins, such as SHANK, are more dynamically regulated 

during and following memory phases but form complexes with a several other synaptic scaffolds 

to regulate AMPA receptor trafficking and spine morphology (Sala et al., 2001). CP-AMPARs 

are moved to the synaptic surface at the initial phases of consolidation and are associated with 

calcium-dependent phosphorylation of kinases supporting memory formation (Hayashi et al., 

2000). At this time, PSD-95 and SHANK are also increased to accompany the increase in AMPA 

receptor synaptic expression (Jarome et al., 2011). CI-AMPAR replace CP-AMPAR in later 

stages of consolidation to stabilize the memory and the potentiated synaptic connections.  

Recent evidence shows that a destabilization phase precedes the protein synthesis-

dependent stabilization of synaptic change that accompanies learning.  The destabilization phase 

of memory consolidation is dependent on the UPS and may regulate the necessity for protein 

synthesis discussed above. When active, the UPS targets proteins that are tagged by small protein 

modifiers, ubiquitin, for degradation. Specifically, the E1 ligase activates ubiquitin, allowing for 

the E2 ligase to bind and recruit E3 ligases. The E3 ligases bind to protein substrates, forming a 

polyubiquitin chain when linked at specific lysine residues (Jarome et al., 2013). Lysine-48 

polyubiquitin tags are recognized by the UPS to target specific proteins for degradation and are 

thought to be the strongest UPS-recognized signal for protein degradation (Bingol & Sheng, 

2011; Fioravente & Byrne, 2011; Hegde, 2010). The 26S proteasome is a multi-subunit structure 

containing a 20s catalytic core that is flanked by 19s regulatory particles. There are six Rpt 

subunits on the 19s caps, and phosphorylation of Rpt6 regulates 20s catalytic activity, suggesting 

phosphorylation of Rpt6 is critical for function of the UPS (Bedford et al., 2010). Previous work 

has shown that NMDA receptor-dependent CaMKII autophosphorylation activates the UPS, and 
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inhibition of NMDA receptor activity or CaMKII can prevent lysine-48 polyubiquitin tagging 

and phosphorylation of Rpt6 (Barria & Malinow, 2005; Jarome et al., 2016; Jarome et al., 2011). 

Proteins in the synapse that are tagged for UPS-dependent degradation are likely synaptic 

scaffolds to destabilize synapses to potentially allow for reorganization. SHANK is upregulated 

in response to learning and is also a proteasome target, providing a way for proteolytic activity to 

modulate AMPA receptor trafficking and stability in the synapse (Ehlers, 2003; Ferreira et al., 

2015; Jarome et al., 2011; Lu et al., 2008). The activity dependent degradation of synaptic 

scaffolds that maintain stable markers of memory and synaptic potentiation emphasizes a critical 

role for the proteasome in memory. 

Network regulation of amygdala plasticity during memory formation 

Human and rodent work highlight a role for the amygdala during fear conditioning. The 

amygdala is an integration site for CS-UCS neural activity through its connectivity with several 

different sensory processing regions. When applied immediately following fear conditioning, 

protein synthesis inhibition in the amygdala is known to disrupt both auditory and contextual fear 

memories and reduces synaptic plasticity (Bailey et al., 1999; Parsons et al., 2006a-b). For 

example, intracellular signaling pathways in the amygdala regulate AMPA receptor trafficking at 

select synapses following learning (Hayashi et al., 2000). Specifically, fear conditioning drives 

CP-AMPAR into synapses, which are persistently expressed in the amygdala (Yeh et al., 2006). 

Importantly, blockade of AMPA receptor surface expression at as little as 10% of synapses in the 

amygdala reduces fear learning (Rumpel et al., 2005), suggesting an important role for 

potentiated synapses in the amygdala for fear memory consolidation.    

Brain structures such as the MgN and DH play distinct roles in the encoding of an 

auditory or contextual CS, respectively, and require local protein synthesis to successfully 
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encode information about auditory cues or the training context (Helmstetter et al., 2008). The 

learning-induced changes in synaptic plasticity in the amygdala are due to input from afferents 

throughout the fear circuit. The amygdala receives input from both the MgN and DH, and protein 

synthesis-dependent plasticity throughout the distributed circuit plays an important role in 

AMPA receptor presence in amygdala synapses (Davis & Squire, 1984; Ferrara et al., 2017; 

Fischer et al., 2004; Parsons et al., 2006c). CP-AMPAR expression at thalamo-amygdala 

synapses is critical for induction of LTP, showing a necessity for CP-AMPAR trafficking for 

thalamic modulation of amygdala synaptic plasticity (Clem & Huganir, 2010; Rumpel et al., 

2005). Stimulation of MgN and auditory cortex terminals in the amygdala when paired with a 

UCS resembles the process of auditory fear conditioning and is dependent on glutamatergic 

synaptic transmission, suggesting MgN terminals can provide a representation of auditory 

information in the amygdala dependent on CP-AMPA receptor activity (Kwon et al., 2014).  

The amygdala receives information from and is able to modulate synaptic plasticity in the 

DH (McGaugh, 2004; Richter-Levin & Akirav, 2001). For example, pharmacology and 

electrophysiology experiments have demonstrated that stimulation of the amygdala increases 

excitability in the hippocampus (Akirav & Richter-Levin, 1999; Ikegaya et al., 1995), and 

amygdala silencing also reduces hippocampal activity (Huff et al., 2006). Furthermore, there is 

increased theta synchrony between the DH and amygdala following fear learning, suggesting a 

critical role for amygdalo-hippocampal pathways during memory consolidation (Narayanan et 

al., 2007; Pape et al., 2005). While it is unclear how contextual information is relayed to the 

amygdala during Pavlovian conditioning, several studies highlight a role for the hippocampus in 

the encoding of contextual cues during learning, making the interactions between the amygdala 
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and hippocampus critical for a comprehensive understanding of memory consolidation (Lee et 

al., 2017; Maren et al., 1997, Redondo et al., 2014; Rei et al., 2015; Sanders et al., 2003).  

Molecular mechanisms contributing to destabilization and restablization during 

reconsolidation   

The retrieval of an established memory initiates a process known as reconsolidation, 

which may allow for the incorporation of new information into the original memory trace by 

destabilizing synapses supporting the memory (Lee et al., 2008; Lee, Nader, & Schiller, 2017). 

Reconsolidation is potentially useful because it could allow a stable, long-term memory to 

update with synaptic reorganization, but it is not universally accepted as a mechanism for 

memory updating (Biedenkapp & Rudy, 2004; Taubenfeld et al., 2001). It shares several features 

with the consolidation process and is characterized by temporally constrained destabilization and 

restabilization phases (Jarome et al., 2011; Milekic & Alberini, 2002). Destabilization during 

reconsolidation serves to make the memory and synapses labile through the degradation of 

proteins at synapses storing the memory trace. The restabilization serves to strengthen synaptic 

connections and potentially include new information into the memory trace. 

During retrieval, NMDA-dependent calcium influx is believed to regulate UPS activity 

underlying synaptic destabilization, suggesting significant depolarization of neurons storing the 

memory are also required (Ben Mamou et al., 2006; Jarome et al., 2011). Specifically, the 

presence and activity of the NR2B containing NMDA receptors is necessary for synaptic 

destabilization via the UPS. The UPS targets several synaptic scaffolding proteins that maintain 

AMPA receptors in the post-synaptic density and degrades them, resulting in AMPA receptor 

internalization. SHANK is upregulated following consolidation to stabilize AMPA receptors and 

becomes polyubiquitinated following retrieval, providing evidence that the UPS degrades 
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synaptic scaffolds maintaining AMPA receptors during memory reconsolidation to regulate 

destabilization (Wang et al., 2011; Jarome et al., 2011). The internalization of AMPA receptors 

is thought to modulate memory lability and synaptic depotentiation following retrieval (Hong et 

al., 2013). Specifically, it is believed that the endocytosis of CI-AMPAR and insertion of CP-

AMPAR allows for increased calcium into the synapse and phosphorylation of several signaling 

cascades regulating protein synthesis. Maintenance of CI-AMPAR in the synapse or inhibition of 

NMDA receptors or UPS activity during retrieval prevents the incorporation of new information 

into the memory trace, leaving the memory in a stable state that is unable to be strengthened or 

weakened (Dalton et al., 2008; Ferrara et al., submitted; Hong et al., 2013).  

 Restabilization is characterized by a requirement for protein synthesis. Infusions of the 

protein synthesis inhibitor, ANI, immediately following a retrieval session disrupts the original 

fear memory and prevents the return of CI-AMPA receptors to the PSD (Jarome et al., 2012; 

Lopez et al., 2015; Nader et al., 2000). Similar to consolidation, the return of AMPA receptors 

following fear memory retrieval is thought to be a good indicator of memory strength and 

changes in the pattern of CP- and CI-AMPAR expression in the PSD are sensitive to new 

information incorporated into the memory trace (Jarome et al., 2015). Specifically, AMPAR 

trafficking during retrieval can be disrupted with pre-exposure to the retrieval conditions, making 

AMPAR trafficking patterns during reconsolidation sensitive to encoding of sensory cues prior 

to learning (Jarome et al., 2015). The necessity for protein synthesis may be dependent on 

proteolytic activity by the UPS during destabilization. For example, blocking activity of the UPS 

or signaling events upstream from the UPS leaves the memory in a stable state and unable to be 

disrupted with protein synthesis inhibition at retrieval (Ben Mamou et al., 2006; Ferrara et al., 

submitted; Jarome et al., 2011). Examples of memory strengthening lend further support for UPS 
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activity and protein synthesis during reconsolidation. Specifically, inhibition of UPS activity 

leaves fear responding at the same level prior to retrieval-dependent strengthening, while 

inhibition of protein synthesis will reduce fear responding to baseline levels that were seen prior 

to conditioning (Fukushima et al., 2014; Lee, 2008). This work suggests protein synthesis 

inhibition can disrupt the original fear memory while inhibition of UPS activity leaves the 

memory in a stable state. Furthermore, inhibition of both UPS and protein synthesis keeps the 

memory stable and impairs the ability to strengthen the fear memory, suggesting protein 

degradation mediates protein synthesis-dependent plasticity underlying reconsolidation-mediated 

memory strengthening. The plasticity supporting reconsolidation-dependent memory 

strengthening is required throughout the fear circuit and is thought to be regulated by AMPA 

receptor activity (Fukushima et al., 2014).  

Circuitry modulating retrieval-dependent destabilization in the amygdala  

 The presence of specific cues during memory retrieval is known to contribute to 

subsequent reconsolidation. It is believed that the incorporation of new information into the 

retrieval session is what drives memory lability and synaptic destabilization (Lee et al., 2008; 

Lee, Nader, &Schiller, 2017; but see Taubenfeld et al., 2001; Albereini, 2011). However, how 

the information presented at the retrieval initiates destabilization is unclear. During a retrieval 

session, information about the cue and the context are different from the training session. For 

example, the auditory cue presented during retrieval is typically no longer followed by shock and 

the context in which the cue is presented is normally “shifted”. The prediction error theory of 

reconsolidation emphasizes the importance of CS-UCS contingency as a variable for memory 

updating and synaptic destabilization and takes into account the unreinforced auditory cue (Díaz-

Mataix et al., 2013). This theory highlights the temporal uncertainty of the shock presentation as 
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the critical factor triggering synaptic plasticity necessary for memory updating and focuses on 

the presentation of the discrete cue as the primary factor underlying the initiation of memory 

modification. The unreinforced cue presented at retrieval initiates enough temporal uncertainty 

concerning when the shock will be presented during the retrieval session to engage 

destabilization. Extinction is a supporting example of the importance of prediction error during 

memory modification. During extinction, cues are presented several times in the absence of the 

UCS. typically in a shifted/new context. The absence of the shock during fear extinction is 

sufficient to induce temporary synaptic depotentiation and destabilization, rendering the memory 

susceptible to ANI disruption (Dalton et al., 2008). If CS-UCS contingency is critical for 

memory modification, then presentation of the discrete CS in the absence of the UCS prior to 

conditioning should disrupt the ability for the CS to reliably predict the UCS. The disruption of 

the CS-UCS contingency would therefore make the memory resistant to modification and 

unlikely to see anisomcyin-related impairments in memory retention during retrieval. However, 

pre-exposure to tones prior to conditioning does not necessarily lead to resistance to memory 

disruption at retrieval, suggesting that the uncertainty of the cue-shock association is not the only 

factor triggering destabilization (Kim & Cho, 2017).  As previously mentioned, a retrieval 

session not only typically involves an unreinforced CS but also occurs in a new/shifted context, 

suggesting that the shifted context in which the cue is presented may be an important factor in 

the initiation of reconsolidation.  

Contextual novelty during memory retrieval provides another possible factor controlling   

synaptic destabilization and memory lability during reconsolidation. In this case, the novelty of 

the context in which the CS is presented would provide new information and engage 

reconsolidation-dependent memory modification.  Specific examples manipulating context in the 
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absence of a discrete cue show that exposure to the context before non-aversive memory 

formation removes the necessity for protein synthesis (Biedenkapp & Rudy, 2004). On the one 

hand, this work raises concerns for the reconsolidation hypothesis and suggests reconsolidation 

may not be a process necessary for all types of memory. On the other, it may suggest that 

removal of retrieval novelty and lack of new information protects the memory from 

reconsolidation (Biedenkapp & Rudy, 2004). However, it is unclear if an altered context during 

retrieval plays an important role in the reconsolidation of an auditory fear memory. The 

reduction in fear responding following extinction is specific to the context in which extinction 

occurred (fear renewal), suggesting contextual cues play a critical role in the behavioral outcome 

of an auditory cue (Bouton & Bolles, 1979). Recent evidence shows novelty of the retrieval 

conditions (context and auditory cue) during a retrieval session is necessary for the initiation of 

reconsolidation (Jarome et al., 2015). Furthermore, exposure to the retrieval context and auditory 

cue prior to training is sufficient to prevent ANI induced disruption during retrieval (Jarome et 

al., 2015). Additionally, memories are resistant to ANI disruption with auditory fear 

overtraining, which has been linked to context generalization, suggesting that an excitatory 

context that may not be perceived as novel during retrieval may modulate the ability to disrupt an 

auditory fear memory (Wang et al., 2009).  This work collectively shows that contextual cues 

guide destabilization and subsequent restabilization, and thus the brain structures that encode 

contextual cues and send information to the amygdala may be critical for fear memory 

reconsolidation. 

The DH is known to be necessary for encoding of contextual information and may 

therefore play an important role in the initiation of reconsolidation. Protein synthesis inhibition 

in the DH prior to, or immediately following, fear retrieval disrupts long-term memory retention, 



15 
 

suggesting a critical role for protein-synthesis dependent plasticity during reconsolidation of 

contextual fear (Debiec et al., 2001; Suzuki et al., 2008). Specifically, retrieval of an auditory 

cue initiates AMPAR trafficking in the DH, suggesting contextual information during an 

auditory retrieval may be important for auditory reconsolidation (Sanders et al., 2003). This is 

further supported by increased theta synchronization between the DH and amygdala after 

auditory fear retrieval (Seidenbecher et al., 2003). More recent work shows strong auditory 

memories that are resistant to amygdala ANI disruption following a brief retrieval session are 

modulated by DH activity (Wang et al., 2009). Specifically, ANI resistant memories can be made 

labile and susceptible to ANI disruption when the DH is lesioned. As previously discussed, the 

NR2B subunit is important for initiating synaptic destabilization, and NR2B, but not NR1, 

expression in the amygdala is decreased when memories are resistant to disruption (Wang et al., 

2009). The behavioral recovery of ANI-dependent disruption and NR2B subunit expression in 

the amygdala is mediated by the DH. This work highlights an important role for contextual 

information, regulated by the DH, in the long-term storage and maintenance of both auditory and 

contextual fear memories in the amygdala. 

Activity in the MgN is critical for fear memory formation and additional learning, such as 

extinction (Orisini & Maren, 2009). Pharmacological interventions investigating a role for the 

MgN show that when information about CS-UCS associations between retrieval days is 

unchanged, plasticity in the MgN is not required for fear memory retention. However, 

electrophysiology work demonstrates maintained potentiation of the thalamo-amygdala pathway 

even following memory consolidation, suggesting activity in this pathway is critical after 

memory formation (Kim & Cho, 2017). The maintained potentiation and synaptic strength in this 

pathway may indicate an important role for plasticity at MgN-amygdala synapses for memory 
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maintenance. This would suggest that plasticity in the MgN, and specifically the thalamo-

amygdala pathway, is critical when auditory CS-UCS associations are changed. This idea 

supports previous work showing a role for MgN plasticity during extinction learning and 

retrieval-dependent modification of CR during additional training (Ferrara et al., 2017; Orsini & 

Maren, 2009).  

Extinction: inhibitory learning and depotentiation  

 Extinction refers to the repeated presentations of a previously trained CS in the absence 

of the UCS, resulting in a decrease in fear responding to the CS at a long-term test.  Previous 

work has suggested extinction shares similarities with exposure therapies, making it 

therapeutically relevant. The understanding of the behavioral and neural mechanisms underlying 

extinction may help to minimize the return of fear expression seen in debilitating anxiety-related 

disorders. Currently, there are two major competing theories explaining how extinction results in 

decreased fear expression: inhibitory learning and depotentiation. Both views account for the 

reduction in fear at a long-term test, but the mechanisms through which the reduction in fear 

responding occurs is different. 

Inhibitory learning 

Fear extinction can be viewed as new inhibitory learning, resulting in a context-specific 

decrease in fear responding (Konorski, 1948; Rescorla, 1979). The associative inhibition view of 

extinction suggests contextual and temporal stimuli modulate excitatory CS-UCS association 

(Rescorla, 2004). This modulation of fear inhibits the excitatory CS-UCS association during 

extinction, resulting in a reduction in fear responding and a context specific CS-no UCS memory 

(Bouton & Bolles, 1979). The recovery of fear is, therefore, dependent on the specific context in 

which extinction occurred. It has been suggested that the extinction context encompasses the 
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physical context as well as the passage of time (Bouton, 2004). Spontaneous recovery refers to 

the return of fear at remote time points, while renewal demonstrates the context specificity of 

extinction. Fear renewal occurs when the CS is presented in the training or novel context after 

extinction and fear responding returns (Rescorla, 2004). The return of fear through spontaneous 

recovery and renewal strongly support that the original learning experience is retained following 

extinction.  

As discussed throughout this document, the presence of AMPAR in amygdala synapses 

has been directly associated with memory strength and can serve as an index of synaptic 

potentiation. Following extinction, there is evidence of maintained potentiation of cortico- and 

thalamo-amygdala synapses (Kim & Cho, 2017) and increased inhibition from the mPFC in 

amygdala (Bloodgood et al., 2018). The inhibition from the mPFC is a result of long-range 

GABAergic neurons in the amygdala in addition to increased mPFC-interneuron synaptic 

strength (Bravo-Rivera et al., 2015; Rosenkranz et al., 2003). Recent work also shows a role for 

heterosynaptic inhibition of primary auditory input in the amygdala by mPFC terminals, 

resulting in decreased glutamate release (Cho et al., 2013). In this case, synaptic connections 

storing the CS-UCS memory, such as thalamo- and cortico-amygdala pathways, remain 

potentiated but are directly inhibited by mPFC projecting neurons. The result of multilevel 

inhibition from the mPFC in the amygdala is an imbalance between excitation and inhibition. In 

addition to increased activity from the mPFC, ITC neurons in the amygdala show increased 

activity following extinction and their activity is directly modulated by MgN input (Asede et al., 

2015; Likhtik et al., 2008). For example, ITC cells can inhibit fear responding through 

projections to the central amygdala as well as by project back to the BLA to provide a negative 

feedback loop (Asede et al., 2015). During extinction, it is likely that MgN-driven activity in the 
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amygdala is reduced, which allows for increased activity from ITCs. The increase in ITC activity 

is inhibitory and feeds back to the amygdala to likely release GABA to presynaptically inhibit 

MgN input in the LA as well. The imbalance of extinction and inhibition is gated by context, 

encompassing the physical chamber as well as the passage of time, so when re-exposed to the CS 

in the training or novel context, excitation resumes resulting in a rapid return of fear (Cruz et al., 

2014). This work strongly suggests extinction is not a result of the weakening of synaptic 

connections storing information about the CS-UCS association at cortico- and thalamo-amygdala 

synapses, but may be a result of increased inhibition in the amygdala (Figure 1). 

Depotentiation  

An alternative view of the neural substrates of extinction is the depotentiation of 

excitatory amygdala synapses. Depotentiation has been closely associated with memory erasure 

or “unlearning” which, unlike extinction, would not result in return of fear over time or and 

would not be dependent on the context in which depotentiation occurred (Hong et al., 2009; Kim 

& Cho et al., 2017; Kim et al., 2007). However, fear rarely returns to originally conditioned 

levels during spontaneous recovery, which may suggest some degree of unlearning (Delamater & 

Westbrook, 2014). Depotentiation has been largely characterized by decreased AMPAR presence 

in amygdala synapses and a more persistent reduction in fear responding over time as a result of 

extinction (Clem & Huganir, 2010; Hong et al., 2009; Kim & Cho et al., 2017; Kim et al., 2007). 

Support for this idea comes from manipulating CI-AMPAR internalization during extinction. 

Specifically, the inhibition of CI-AMPAR internalization plays an important role in memory 

modification, but not necessarily new learning (Kim et al., 2007). Peptides infused into the 

amygdala that block CI-AMPAR internalization during extinction can prevent the retention of 

extinction, suggesting modification of the original fear memory trace and possibly synaptic 
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depotentiation. However, these findings are not always consistent with the current extinction 

literature. For example, when AMPA: NMDA ratios were compared between in vivo 

depotentiation and extinction groups, extinction groups showed maintained potentiation at 

cortico- and thalamo-amygdala synapses while depotentiated synapses showed reductions in 

AMPAR presence (Kim & Cho, 2017). These findings lend support for distinct patterns of 

postsynaptic AMPAR expression in the amygdala following depotentiation and extinction, and 

further suggest that depotentiation is not a result of extinction (Figure 1). 

Integrating inhibitory learning and depotentiation 

Although depotentiation and inhibitory learning account for extinction differently, it is 

possible that some degree of both of these processes occur simultaneously during extinction. The 

formation of a fear memory requires associations between several different sensory, temporal, 

and emotional aspects of the training experience (Dunsmoor et al., 2015).  It may be possible for 

some synapses storing select sensory information to undergo depotentiation, while others may 

Figure 1. Extinction learning results in a new inhibitory memory formed. Increased inhibition in the amygdala from local inhibitory 

interneurons contributes to heterosynpatic inhibition of primary auditory inputs, and increased activity from the IL region of the 

mPFC also show increased activity of inhibitory projections to the basolateral amygdala. Extinction is characterized by context-

dependent decrease in fear responding and maintained synaptic potentiation in the amygdala. Depotentiation using optogenetic 

techniques weakens inputs and results in a more permanent, persistent decrease in fear responding closely associated with 

memory erasure and characterized by decreased synaptic expression of AMPAR in the LA. 
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become potentiated. For example, while cortico-amygdala afferents may undergo depotentiation 

following extinction, mPFC-amygdala pathway may become potentiated, resulting in no 

difference in the overall degree of amygdala synaptic strength. With that being said, the evidence 

of cortico- and thalamo-amygdala changes in synaptic strength as a result of extinction remains 

inconsistent (Cho et al., 2013; Herry et al., 2008; Hong et al., 2009; Kim & Cho, 2017). This 

could be due to differences in fear conditioning training, extinction protocols, or how/when 

depotentiation is measured. For example, studies in support of depotentiation have used ex vivo 

paired-pulse low-frequency stimulation at cortico- and/or thalamo-amygdala synapses to show 

fear conditioned groups show synaptic depression while extinction and naïve groups do not 

(Hong et al., 2009; Kim et al., 2007). In vivo accounts of depotentiation show differences in 

AMPA:NMDA ratio at cortico- and thalamo-amygdala synapses during depotentiation but not 

following extinction (Clem & Huganir, 2010; Hong et al., 2009; Kim & Cho, 2017). 

Interestingly, retrieval-extinction designs result in CP-AMPAR mediated amygdala 

depotentiation and memory erasure, while this effect was absent in “traditional” single-day 

extinction groups, suggesting differences in multi- vs single-day extinction protocols may also 

explain the conflicting evidence of depotentiation in the extinction literature (An et al., 2017; 

Cain et al., 2003; Clem & Huganir, 2010). 

Despite conflicting evidence for postsynaptic AMPAR modifications, both depotentiation 

and inhibitory learning views of extinction highlight a role for decreased presynaptic activity 

from the thalamus and cortex in the amygdala during extinction (Clem & Huganir, 2010; Cho et 

al., 2013; Hong et al., 2009; Kim & Cho, 2017). PPF provides a way to measure presynaptic 

activity. The depotentiation literature shows significant impairments in the ability to induce PPF 

using low-frequency stimulation, suggesting weak presynaptic activity as a result of extinction 
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(Clem & Huganir, 2010; Hong et al., 2009; Kim et al., 2007). Additionally, heterosynaptic 

inhibition of presynaptic activity in the amygdala from major auditory centers occurs following 

extinction (Bauer & LeDoux, 2004; Cho et al., 2013). Reductions in fear responding as a result 

of extinction may not necessarily be associated with postsynaptic loss of potentiation, but may be 

a result of increased inhibition of presynaptic activity from primary auditory centers. The loss of 

activity from presynaptic sites would account for changes in PPF following extinction as well as 

maintained potentiation at postsynaptic sites. Furthermore, this heterosynpatic inhibition of 

presynaptic activity occurs in response to priming of the mPFC-amygdala pathway, suggesting 

mPFC plays a role in presynaptic inhibition following extinction (Cho et al., 2013). Because the 

mPFC plays a large role in contextual fear, mPFC-dependent heterosynaptic inhibition of 

cortico- and thalamo-amygdala terminals after extinction is also likely context-dependent and 

may account for renewal of fear (Bruchey et al., 2007; Gilmartin et al., 2013; Herry et al., 2008). 

Targeting and manipulating terminals using optogenetics 

 Optogenetics is a tool commonly used to study the precise time points at which specific 

brain circuits are necessary for memory formation and retention. Light exposure in the brain 

region expressing a particular opsin can activate or inhibit affected neurons within milliseconds 

(Boyden et al., 2005; Han et al., 2007). The AAV vector containing the ArchT insert has been 

used to silence neurons (Han et al., 2011). ArchT is a green-sensitive opsin proton pump and 

Figure 2. Viral infusions into a localized region (a) can undergo microtubule-dependent trafficking and expression can be 

visualized and manipulated to projecting regions (b). Light exposure to axons containing virus in distal regions can be 

manipulated (c). Adapted from Yizhar et al., 2011. 

a
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. 
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upon light exposure facilitates H+ exit, resulting in membrane hyperpolarization (Chow et al., 

2010). After infusion into brain tissue, AAV vectors enter the neuron via endocytosis and are 

trafficked into endosomes and lysosomes (Castle et al., 2013). Once in endosomes and 

lysosomes, AAV can be moved to the Golgi and nucleus, or undergo dynein-dependent 

retrograde trafficking or kinesin-dependent anterograde trafficking, suggesting a microtubule 

mediated mechanism for axon terminal expression (Castle et al., 2013; Castle et al., 2014). Once 

infused locally (Figure 2a), the virus can be expressed throughout the neuron in a matter of 

weeks (Figure 2b). To silence or activate cells containing the opsin, light can be delivered locally 

through optical fibers that are implanted during a stereotaxic surgery (Sparta et al., 2011). 

Optical fibers can be implanted into regions where axons terminate to allow for manipulation of 

the connections between brain structures in a temporally precise manner (Johansen et al., 2012; 

Figure 2c). The present studies use an AAV9-CAG-ArchT-GFP virus to selectively silence input 

from the MgN in the amygdala (Bukalo, et al., 2015; Chow et al., 2010; Han et al., 2011; Kwon 

et al., 2014).  

The goal of the following experiments was to determine the contribution of auditory and 

contextual modulation of synaptic destabilization during auditory fear memory recall. These 

experiments manipulated the MgN or DH during brief retrieval sessions and measured the effects 

of this manipulation on synaptic plasticity within the amygdala. Chapter 2 will focus on the 

contribution of auditory thalamic terminals in the amygdala during auditory fear memory 

retrieval and retention using optogenetics. Chapter 3 focuses on the role of DH activity during 

auditory fear conditioning and how this activity regulates the ability to disrupt a memory in the 

amygdala.  
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Chapter 2: Inhibition of thalamic terminals in the amygdala facilitates 

extinction-like learning   

During auditory fear conditioning, synaptic connections between major auditory centers 

(e.g. the MgN) and the amygdala are strengthened. This is supported by work that has stimulated 

axons from the MgN in the amygdala as a CS to simulate auditory fear conditioning, suggesting 

an essential role for presynaptic plasticity from the MgN in the amygdala during conditioning 

(Kwon et al., 2014). The increase in activity in the thalamo-amygdala pathway initiates a series 

of postsynaptic events that contribute to protein synthesis, which is necessary for memory 

formation. Namely, increases in phosphorylation of several kinases, notably ERK and CREB, are 

necessary for the initiation of transcription and translation (Josselyn et al., 2001; Rashid et al., 

2016; Schafe et al., 2000; Zhou et al., 2009). Additionally, potentiation of thalamo-amygdala 

synapses, measured by AMPAR presence in the synapse, is critical for auditory fear memory 

retention (Clem & Huganir, 2010; Rumpel et al., 2005). It has been suggested that the retention 

of auditory fear depends on the maintenance of potentiated synaptic connections from major 

auditory centers to the amygdala (Rumpel et al., 2005; Takemoto et al., 2017).  

Extinction learning is largely characterized by a temporally-limited, context-dependent 

reduction in fear following repeated presentations of an unreinforced CS (Bouton, 2002). 

Renewal and spontaneous recovery are commonly used to test the contextual and temporal 

limitations of extinction and are associated with return of fear following extinction learning 

(Bouton & Bolles, 1979). The associative inhibition theory of extinction states that new 

inhibitory learning modulates the excitatory CS-UCS representation during extinction, and 

contextual changes reduce the inhibitory gate over the excitatory fear memory (Rescorla, 2004). 

Local and network changes result in increased inhibition in the amygdala during extinction, 
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resulting in decreased fear to the CS. Specifically, inhibitory regulation of the amygdala from the 

mPFC suppresses excitation and fear responding and are a result of long-range mPFC 

GABAergic neurons and strengthened mPFC-interneuron connections in the amygdala (Cho et 

al., 2013; Quirk et al., 2003; Senn et al., 2014). The increases in inhibition following extinction 

are associated with several plastic events in the amygdala (like the phosphorylation of ERK) that 

are necessary for the retention of extinction (Herry et al., 2006; Kwapis et al., 2014). However, 

phosphorylation of CREB in the amygdala is not critical for extinction, and levels of 

phosphorylated CREB have been associated with the strength of the CR, which potentially 

provides a dissociable molecular mechanism to measure changes between excitatory and 

inhibitory learning (Han et al., 2009; Lin et al., 2003; Porte et al., 2011; Tronson et al., 2012).  

While behavior differs between brief retrieval sessions and extinction, they are both 

associated with maintained potentiation of amygdala synapses. This suggests synaptic strength is 

unchanged following extinction, which may explain rapid return of fear in cases such as renewal 

(Clem & Huganir, 2010; Herry et al., 2008; Kim & Cho, 2017). Modulation of excitatory 

thalamo-amygdala synapses during extinction may then be a presynaptically mediated process. 

There is evidence of heterosynaptic inhibition from the mPFC at thalamo-amygdala synapses 

that results in reduced glutamate release (Cho et al., 2013). Additionally, MgN terminals also 

modulate ITC activity, which provide a negative feedback loop to inhibit BLA neurons and show 

increased activity following extinction (Asede et al., 2015; Likhtik et al., 2008) Based on this, 

changes in activity in the thalamo-amygdala pathway likely contribute to an imbalance between 

excitation and inhibition that occurs during extinction learning, which has been suggested with a 

combination of physiology and pharmacology data (Clem & Huganir, 2010; Kim et al., 2007; 

Orsini & Maren, 2009), and mimicking activity in brain regions critical for extinction may be 
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sufficient to facilitate extinction learning (Bukalo et al., 2015; Do-Monte et al., 2015). Therefore, 

reducing activity from the MgN in the amygdala during a “shortened” extinction session may be 

able to facilitate extinction learning. The reduction in activity in the thalamo-amygdala pathway 

during retrieval should also lead to decreases in phosphorylated CREB but maintained CI-

AMPAR expression in the amygdala. These results would support extinction studies 

demonstrating maintained potentiation of thalamo-amygdala synapses and changes in 

phosphorylated CREB corresponding to expression of fear. Because the reduction in fear from 

extinction is dependent on the context in which it occurred, the reduction in activity in the 

thalamo-amygdala pathway may also lead to the contextually- dependent return of fear if 

extinction is facilitated. 

Here, we explore a role for the thalamo-amygdala pathway during fear recall. We found 

that when MgN terminals in the amygdala are silenced during retrieval there was a reduction in 

fear responding that was persistent at a 24-hour test. This reduction was dependent on the 

simultaneous pairing of optogenetic inhibition of MgN-BLA terminals and CS presentation. 

Further, fear renews when animals are re-exposed to the CS in the training context, and MgN-

BLA silencing did not result in changes in AMPAR expression in amygdala synapses. We also 

measured changes in phosphorylation of CREB after the test and renewal because of CREB’s 

dissociable expression following extinction and retrieval. We found that silencing MgN 

terminals in the amygdala at retrieval reduced levels of pCREB after the test and pCREB 

returned to control levels following renewal test. Collectively, these results highlight an 

important role for activity from the MgN in the amygdala during fear retrieval, and suggest 

decreased activity in the thalamo-amygdala pathway results in facilitated extinction learning. 
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Methods  

Subjects  

Subjects were male Long Evans rats from Envigo (n = 151; Indianapolis, IN) weighing 

approximately 350g at the time of arrival. Rats were individually housed with free access to 

water and rat chow. The animal colony was maintained at a 14:10-hr light/dark cycle with all 

experiments occurring under the light portion of the cycle. All experiments were approved by the 

Institutional Animal Care and Use Committee. 

Optogenetics: Infusion of virus and implantation of optic fibers  

Archaerhodopsin-T (CAG-ArchT-GFP) and control virus (CAG-GFP) recombinant 

adeno-associated virus (AAV) were produced and serotyped (AAV9) by Dr. Ed Boyden and 

packaged by the UNC vector core (ArchT titer: 3 x 1012; control titer: 2 x 1012).  The control 

virus condition was identical to ArchT animals in every respect other than expression of ArchT.  

The promoter selected would be expected to activate expression in all local cell types.  

Immediately before surgery rats were anesthetized with 4% isoflurane and oxygen and after 

induction, isoflurane levels were maintained at 2 - 2.5% throughout the surgery. Virus was 

loaded into a 10μl Hamilton syringe with a 34-gauge needle (World Precision Instruments) and 

mounted onto a stereotaxic automated injector (World Precision Instruments). Groups received 

bilateral infusions of AAV9-CAG-GFP or AAV9-CAG-ArchT-GFP (0.5μL/side; 50 

nanoliters/min) targeting the MgN (-5.3 mm posterior, +/-2.8 mm lateral, -5.6 mm ventral) 

relative to bregma (Paxinos & Watson, 2007). The needle was left in place for 10-min to allow 

for diffusion. Groups received a second surgery, approximately 8 weeks following virus surgery, 

to implant optic fibers (200μm diameter) into the LA (-3.0 mm posterior, +/-5.0 mm lateral, -7.0 

mm ventral). Fibers were secured to the skull with four skull screws and were surrounded by 
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acrylic cement. Rats were given a minimum of 7 days after surgery to recover before behavioral 

training and testing. 

Apparatus 

Auditory fear conditioning was conducted in a set of four Plexiglas and stainless-steel 

chambers within sound-attenuating boxes (Context A) for Experiments 1-6. The floor contained 

18 stainless steel bars connected to a shock generator (Coulbourn Instruments, Allentown, PA). 

Each chamber had speaker to allow delivery of white noise, overhead illumination with a 7.5 W 

bulb, and ventilation fans to provide a constant background noise (55 dB). The chambers were 

cleaned with 5% ammonium hydroxide solution between sets of rats. A set of similar chambers 

designated Context B served as a shifted context for auditory CS testing. Context B has several 

distinct features including dark Plexiglas flooring and ethanol cleaning solution. 

Behavioral procedures and light delivery 

Rats were transported, handled, and gently restrained for 3 days prior to behavioral 

training and testing. Rats were placed in Context A for delay fear conditioning. During training, 

rats received four white noise presentations (72dB, 10s) that were always paired with a footshock 

(1s, 1.0mA). The average inter-trial interval between each tone presentation was 110s. All 

auditory CS retrieval and testing sessions took place in Context B where rats received four 

discrete tone presentations of the CS (30s; 60s ITI) after a 60s baseline. A multimode patch cord 

was used to split the light for bilateral laser (λ = 532 nm, 20 mW, continuous) delivery and was 

controlled with TTL pluses (as described in Gilmartin et al, 2013). The laser was activated 1s 

prior to CS onset, remained on for the entire duration of the CS, and was turned off 1s after 

offset of the CS during retrieval sessions, with the exception of the ITI group where the laser was 

presented during the ITI and the laser only condition where the auditory cue was not presented 
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but the laser was during retrieval. All groups received a total of 128s of laser exposure. Freezing 

was defined as the cessation of all movement excluding respiration and was automatically scored 

in real-time with FreezeScan 1.0 detection software (Clever Sys, Inc., Reston, VA) calibrated to 

a trained human observer.  

Synaptosomal membrane preparation  

Animals were deeply anesthetized with isoflurane 90-minutes or 7-hours following test. 

Brains were immediately removed, flash frozen with dry ice, and stored at -80ºC until dissected. 

Crude synaptosomal fractions were obtained as previously described (Ferrara et al., 2017; 

Jarome et al., 2011). Amygdalae were dissected out and homogenized in TEVP buffer with 

320mM sucrose and then centrifuged at 1000x g for 10 minutes. The supernatant was removed 

and centrifuged at 10,000 x g for 10-minutes, and the remaining pellet was denatured in lysis 

buffer (all in 100 ml DDH20; 0.605 g Tris-HCl, 0.25 g sodium deoxycholate, 0.876 g NaCl, 1 

µg/ml PMSF, 1 µg/ml leupeptin, 1 µg/ml aprotinin, 10 ml 10% SDS). Protein levels were 

measured with a protein assay kit (Bio-Rad laboratories, Hercules, CA, USA). 

Immunofluorescence  

Animals were deeply anesthetized with isoflurane 90-mins following retrieval. Brains were 

immediately removed and stored at -80ºC until sliced. Brains were sliced in 20-micron sections 

and were mounted onto charged slides. Slides were rehydrated in wash buffer (PBS + 0.05% 

Tween-20) and permeabilized (PBS + 0.3% Triton X) for 15-min, and incubated in blocking 

solution (PBS + 0.7% NGS). Slides were then incubated in phosphorylated CREB ser133 antibody 

(Cell Signaling, 1:100, #9198) solution (PBS + 0.3% Triton X + 5% NGS) overnight at 4 ºC. The 

next day, slides were incubated in secondary antibody solution for 2 hours and rinsed with wash 

buffer, a DAPI counterstain was applied, and slides were cover slipped.  
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Immunofluorescence microscopy and quantification  

Specific anatomical locations were chosen based on a rat brain atlas (Paxinos & Watson, 

2007). Amygdala images were captured on the Olympus Fluoview FV1200 confocal microscope 

using a 20x objective lens. Serial z-stack images covered a depth of 4.55μm through five 

consecutive sections (0.91μm per section) and were acquired using Fluoview software (Olympus). 

Three amygdala sections were analyzed bilaterally and were averaged for each rat (6 sections 

matched along the anterior-posterior axis for each rat).  

Images were exported as 12-bit TIFF files and particles were quantified using ImageJ 

software (NIH, Bethesda, MD, USA). Images were quantified with ImageJ software by 

converting them to 32-bit, difference of Gaussian filtering (sigmas of 2 and 1.5), thresholding 

with the triangle method, and then counting particles greater than 4 pixels in diameter within the 

ROI. This results in a binary image with minimal background. All particle counts were averaged, 

bilaterally, across animals in each condition and normalized to the slices of animals infused with 

control virus using the “Analyze Particles” plugin in ImageJ. 

Western blotting 

Groups were trained and received a retrieval and test session as described above and 

sacrificed at 90-minutes or 7-hours following the test session. Following synaptosomal 

preparation, protein levels were normalized and loaded onto an SDS/PAGE gel and then to a 

membrane using a transfer apparatus (Bio-Rad). Membranes were incubated in blocking buffer 

for 1 hour before being incubated in GluR1 (Cell Signaling, 1:1000), GluR2 (Santa Cruz, 1:500), 

PSD95 (1:1000, Santa Cruz), or βactin (Cell Signaling, 1:1000) primary solutions overnight at 4 

ºC. Membranes were then incubated in the appropriate secondary (Santa Cruz, 1:20,000) 
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antibody for one hour and prepped in a chemiluminescence solution for 3 minutes. Images were 

captured and densitometry performed using NIH Genesys. 

Statistical analyses  

All statistical analyses and graphing were conducted in Prism 7 software (Graphpad, San 

Diego, CA). Western blot samples normalized to actin levels are expressed as a percentage of 

control groups (no test). Behavioral and western blot statistical outliers were defined as being 

two standard deviations above or below group mean and were excluded from all subsequent 

analyses. The data is presented as group averages with standard error of the mean (SEM). 

Western blot and behavioral experiments were analyzed using a t-test or one-way Analysis of 

Variance (ANOVA). 

Results 

Auditory thalamic terminal activity in the amygdala is critical for fear memory retrieval and 

retention  

To test whether activity from the MgN in the amygdala is required for fear retrieval, we 

used optogenetics to target terminals in the amygdala during CS presentation at retrieval. We 

infused virus (GFP or ArchT) into the MgN and implanted fibers targeting the lateral portion of 

the amygdala (example terminal image seen in Figure 3b). Groups were trained with auditory 

fear conditioning 8 weeks following viral infusion and received a retrieval session the next day. 

During retrieval, thalamo-amygdala terminals were silenced for the entire duration of auditory 

cue presentation. Groups were then tested for the retention of auditory fear (Figure 3a). There 

were no differences during the training session (F(2, 51) = 1.355, p = 0.27; Figure 3c).  The 

following day, groups received a CS retrieval session in a shifted context where thalamic 

terminals were silenced for the entire duration of the CS presentation. Silencing MgN terminals 
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in the amygdala at retrieval significantly reduced fear responding during CS presentation (t(16) = 

2.45, p < 0.05; Figure 3d). Groups were presented with the CS the next day to test the long-term 

retention of fear following thalamo-amygdala terminal silencing. At the long-term laser free test, 

there was a persistent reduction in fear to the CS (t(16) = 4.74, p < 0.0005; Figure 3e). This 

finding suggests that activity from the MgN in the amygdala is critical during fear memory 

retrieval and this activity is necessary for long-term retention.  

 

 Recent work suggests that depotentiation of cortico- and thalamo-amygdala synapses 

does not require explicit pairing of stimulation-CS or memory reactivation during stimulation to 

see a long-term reduction in fear responding (Kim & Cho, 2017). We wanted to determine 

whether memory reactivation and/or explicit pairing of the CS with silencing of MgN terminals 

in the amygdala was required for reductions in fear at test. We tested explicit pairing of 

Figure 3. Auditory thalamic terminal activity in the amygdala is critical for fear memory retrieval and retention. Experimental design (a) 

and example MgN-LA terminal image (b). There were no differences in freezing during training (c). When MgN-LA terminals are silenced, 

there is a significant reduction in freezing during CS presentation during retrieval (d) and at a long-term test (e).  *p < 0.05, ***p < 0.0005. 
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stimulation with the CS in an ITI group, and the necessity of memory reactivation with 

stimulation in a laser-only group.  The ITI groups received the same retrieval parameters as 

described above with the exception that the laser and CS were unpaired (Figure 4a). The laser-

only group did not receive auditory cue presentation at retrieval but did receive laser presentation 

(Figure 4a). During retrieval, the laser only condition that did not receive any auditory cue 

presentations froze significantly less than the GFP group that did receive auditory cue 

presentations throughout the retrieval session (p < 0.0001) and there were no differences between 

the GFP and ArchT conditions (Figure 4b). At the long-term laser free test, there was no 

difference in freezing between any of the groups (F(2, 21)  = 0.92, p = 0.41; Figure 4c). These 

results suggest the auditory fear memory requires reactivation to see persistent reductions in fear 

due to thalamo-amygdala silencing. Furthermore, terminal silencing needs to be paired with CS 

Figure 4. Inhibition of thalamo-amygdala terminals needs to be paired with auditory cue presentation for reduced fear responding.  

Experimental design (a). Laser only controls that did not receive a CS presentation during retrieval froze significantly less than the GFP 

group received CS presentations, and there were no differences in freezing between ArchT and GFP groups that received both CS and 

laser presentation (b). There were no significant differences between groups at a long-term test (c). ****p < 0.0001. 
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presentation during retrieval to see reductions in fear during retrieval and long-term test and thus 

is not a simple consequence of inhibition per se.  

Persistent reductions in fear due to thalamo-amygdala terminal silencing is not a result of 

depotentiation 

 Reductions in fear at a 24-hour time point can be a result of depotentiation or extinction. 

Persistent reductions in synaptic expression of AMPAR in the amygdala provide evidence of 

depotentiation, which is associated with persistent reductions in fear. In amygdala synaptosomal 

fractions, expression of AMPAR subunits GluR1 and GluR2 are reduced 90-min after a brief 

retrieval session and return to previous levels at the end of the reconsolidation window (at least 

6-hr following retrieval), suggesting maintained synaptic and memory strength. (Jarome et al., 

2015). During depotentiation, synaptosomal expression of GluR1 and GluR2 are persistently 

reduced during reconsolidation and outside of the reconsolidation window, contributing to long-

term reductions in fear. To determine whether we are engaging a depotentiation mechanism in 

response to thalamo-amygdala terminal silencing, in crude synaptosomal fractions, we conducted 

western blots to look at the synaptic expression of AMPA receptors at 90-min and 7-hr following 

the laser free test (Figure 5a). At the 90-min timepoint following test, there were no differences 

in GluR1 (t(14) = 0.45, p = 0.66), GluR2 (p = 0.58), or PSD95 (p = 0.88), indicating there were no 

differences in AMPAR synaptic expression during reconsolidation (Figure 5b). At the 7-hr time 

point, there were also no differences in GluR1 (t(15) = 1.05, p = 0.31), GluR2 (p = 0.15), or 
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PSD95 (p = 0.25) (Figure 5c). Collectively, these results suggest the reductions in fear seen 

during test may not be the result of depotentiation or a reduction in the number of synapses.  

Thalamo-amygdala silencing during retrieval facilitates extinction learning 

During extinction learning, there is an imbalance between excitation and inhibition in the 

amygdala. Several studies show that extinction is not a result of depotentiation (Kim & Cho, 

2017, but see Hong et al., 2009; Kim et al., 2007), but instead could result from reduced activity 

from primary excitatory inputs onto the amygdala. Extinction can be characterized by the return 

of fear through a shift in context or passage of time. To test if silencing excitatory input from the 

MgN in the amygdala facilitates extinction processes in comparison to groups without thalamo-

amygdala manipulations during retrieval, we tested for the renewal of fear when rodents were 

Figure 5. Persistent reductions in fear due to thalamo-amygdala terminal silencing is not a result of depotentiation.  Experimental design (a). 

There were no differences in LA synaptosomal expression of AMPAR or PSD95 between GFP and ArchT groups (b). Long-term reductions in fear 

responding were not associated with differences in LA synaptosomal AMPAR expression or PSD95 outside of the reconsolidation window (c). 
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placed back into the original training context and presented with the auditory CS (Figure 6a). 

Similar to previous results, silencing thalamo-amygdala terminals at retrieval leads to a reduction 

in fear behavior during retrieval (t(26) = 3.05, p < 0.05) and this reduction persists during a 

subsequent laser-free test (p < 0.05; Figure 6b-c). Interestingly, fear renews when groups are 

placed back into the training context and presented with the auditory CS (p = 0.17; Figure 6d), 

suggesting silencing of thalamic terminals in the amygdala may result in facilitated extinction 

learning.  We cannot rule out the possibility that silencing the thalamo-amygdala pathway during 

fear retrieval may be a transient effect where fear responding would recover to control levels 

over a sufficient amount of time. However, we think it is unlikely that the return of fear seen 

during renewal is dependent on the passage of time because pharmacological manipulations of 

the MgN or amygdala after initial learning are associated with persistent reductions in fear 

responding, and return of fear as seen in spontaneous recovery designs would not be expected 

until at least 7 days following retrieval.  

Figure 6. The reduction in fear responding as a result of thalamo-amygdala silencing is context-dependent.  Experimental design 

(a). Silencing MgN-LA terminals decreases fear responding to the CS during retrieval (b) and at a long-term test (C). There were no 

significant differences between ArchT and GFP groups when the CS was tested in the training context (d). *p < 0.05, **p < 0.005. 
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Next, we measured phosphorylated CREB to further assess a role for thalamo-amygdala 

terminal silencing as a method for facilitating extinction learning. Prior work suggested CREB 

undergoes dephosphorylation following extinction learning, and levels of phosphorylated CREB 

in the amygdala are directly correlated with the degree of fear responding, unlike other plasticity 

markers such as phosphorylated ERK (Baumgärtel et al., 2008; Hagiwara et al., 1992; Han et al., 

2009; Kwapis et al., 2014; Lin et al., 2003; Porte et al., 2011; Tronson et al., 2012).  We used 

immunofluorescence to measure the amount of phosphorylated CREB in the amygdala at 90-min 

following the retrieval, laser free, and renewal tests (Figure 7a). If silencing thalamo-amygdala 

terminals at retrieval results in facilitated extinction, we would expect to see reduced in 

phosphorylated CREB in the amygdala at the retrieval and laser free test but not renewal test. 

After retrieval, there was a significant reduction in phosphorylated CREB when terminals from 

the MgN in the LA were silenced (t (20) = 2.12, p < 0.05; Figure 7c). There was also a significant 

Figure 7. Silencing MGN-LA terminals during retrieval reduces LA phosphorylated CREB expression after retrieval and a laser-

free test but not after a renewal test.  Experimental design (a). Representative image of phosphorylated CREB expression in the 

LA in a GFP animal following laser-free test. Phosphorylated CREB is reduced after the retrieval session where MgN-LA terminals 

are silenced (c) and after the laser-free test (d). There are no differences in phosphorylated CREB expression in the LA after a 

renewal test (e). *p < 0.05, ***p < 0.001. 
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reduction in phosphorylated CREB after the laser-free test when thalamic terminals in the LA 

were silenced (t (22) = 5.39, p < 0.001; Figure 7d). After renewal, there were no differences in 

phosphorylated CREB between groups (t (16) = 1.05, p = 0.31; Figure 7e). These results show 

silencing thalamo-amygdala terminals during retrieval decreases levels of phosphorylated CREB 

in the amygdala at a long-term test but not after a renewal test, similar to our behavioral results.  

 Discussion  

 In the current experiments, we assessed a role for MgN terminal activity in the amygdala 

during fear retrieval and the impact on long-term retention of fear. We show thalamo-amygdala 

activity is necessary for fear retrieval and retention, and this persistent reduction in fear is likely 

not due to depotentiation in the amygdala. However, this effect may be a result of facilitated 

extinction learning. We show a renewal effect when the CS is presented in the training context 

and additionally show changes in pCREB that are similar to changes in the behavioral expression 

of fear at a laser-free test and during renewal of fear. This work highlights an important role for 

excitatory input, specifically from the MgN, in the amygdala for long-term fear responding to 

auditory cues. 

Inhibitory activity from the mPFC in the amygdala contributes to the imbalance of 

excitation and inhibition during extinction learning and retention (Bloodgood et al., 2018; Cho et 

al., 2013). Plasticity in the MgN is also critical for fear extinction learning, and recent work 

shows heterosynaptic inhibition of primary auditory inputs in the amygdala may contribute to 

fear extinction learning (Cho et al., 2013; Orsini & Maren, 2009). In the current experiment, 

inhibition of thalamo-amygdala connections during retrieval results in extinction-like behaviors 

and molecular profiles. We found a persistent reduction in fear at a long-term test following 

thalamo-amygdala terminal silencing, which is renewed when retested in the training context. 

Previous work shows terminals from the mPFC in the lateral amygdala suppress activity from 
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sensory inputs (Rosenkranz & Grace, 2001). There are also increases in synaptic strength 

between the mPFC and amygdala interneurons following extinction that inhibit auditory input 

(Cho et al., 2013). Extinction, then, can result in suppression of auditory input by the mPFC in 

the amygdala. Previous work also shows increases in ITC activity following extinction, which 

can feedback and inhibit BLA neurons (Asede et al., 2015). The synaptic connections between 

the MgN and ITCs may contribute to changes in fear responding seen following extinction 

because of the ability of ITCs to modulate EPSPs in the BLA, suggesting a feedback loop of ITC 

cells onto BLA neurons. Based on this, it is possible that inhibition of the thalamo-amygdala 

pathway during retrieval may mimic inhibition via modulation of ITCs or by mimicking 

silencing that would occur in the presence of increased mPFC activity that occurs during 

extinction to result in extinction-like behaviors.  

We also found MgN terminal silencing in the amygdala needs to be paired with the CS 

during retrieval to observe reductions in auditory fear, suggesting the ability to reduce fear 

responding in the thalamo-amygdala pathway during retrieval is temporally restricted to the 

period of CS presentation. Further, the reduction in fear responding seen at long-term test is 

likely dependent on glutamate receptor activity in the MgN (Kwon et al., 2014; Orsini & Maren, 

2009). Although much of the pharmacology work minimizes a role for the MgN during fear 

retention, the current data shows a strong role for the maintenance of thalamo-amygdala synaptic 

connections at long-term time points for persistent expression of fear (Apergis-Schout et al., 

2005; Kwon et al., 2012). These results are consistent with the previous work discussed 

suggesting an important role for the silencing excitatory input in the amygdala during extinction 

learning and further suggest thalamo-amygdala activity is critical during CS presentations after 

fear learning.  



39 
 

Our behavioral and biochemical results lend support for thalamo-amygdala silencing as a 

critical mechanism for maintained fear responding. Following thalamo-amygdala silencing, we 

did not see changes in AMPAR expression during or outside of the reconsolidation window. 

These results suggest that the persistent reductions in fear are not due to depotentiation, 

suggesting synaptic strength is maintained despite the reduction in fear, which is similar to 

previous work showing maintained potentiation of cortico- and thalamo-amygdala synapses after 

extinction (Kim & Cho, 2017). Levels of pCREB have been correlated with the strength of 

conditioned fear expression, and here, we report a significant reduction in pCREB following 

thalamo-amygdala silencing (Baumgärtel et al., 2008; Hagiwara et al., 1992; Han et al., 2009; 

Lin et al., 2003; Porte et al., 2011; Tronson et al., 2012). Collectively, our reduction in pCREB 

following the retrieval and test as well as maintained expression of AMPAR in amygdala 

synapses suggest thalamo-amygdala silencing during a brief retrieval session leads to persistent 

reductions in auditory fear but maintained post synaptic potentiation. 

In summary, we provide several pieces of evidence suggesting a critical role for MgN 

activity in the amygdala during fear recall. We found thalamo-amygdala silencing during 

retrieval results in a context-specific decrease in fear, reduction in pCREB, and maintained 

potentiation of amygdala synapses. These results support a strong role for excitatory input from 

primary auditory centers in the amygdala during long-term fear responding.  

 

Chapter 3: Contextual novelty, dorsal hippocampus, and amygdala-dependent 

synaptic destabilization and memory lability 

Introduction 
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Memory retrieval provides an opportunity to include new information into the original 

memory trace, providing a unique therapeutically relevant opportunity to modulate debilitating 

fear-related disorders (Lee et al., 2008; Lee, Nader, &Schiller, 2017). Retrieval is characterized 

by the degree of fear expression to the CS, AMPAR trafficking at amygdala synapses, and 

sensitivity to protein synthesis inhibition. Specifically, protein synthesis inhibition in the 

amygdala following a brief retrieval session is associated with long-term memory impairment 

and is often used to characterize memory lability during reconsolidation (Jarome et al., 2012; 

Lopez et al., 2015; Nader et al., 2000). The internalization of CI-AMPAR during reconsolidation 

is thought to regulate memory lability, as measured by anisomycin-dependent impairments in the 

long-term retention of fear.  For example, inhibition of CI-AMPAR internalization prevents the 

retrieval related anisomycin reduction in fear memory retention (Hong et al., 2013).  

Interestingly, the internalization of AMPAR is influenced by sensory cues present during 

retrieval. Specifically, pre-exposure to the retrieval conditions prior to training prevents 

internalization of AMPAR during reconsolidation and anisomycin-dependent memory 

impairment at a long-term test, suggesting novelty of the retrieval conditions influences memory 

lability and synaptic destabilization during retrieval (Jarome et al., 2015).  

The DH and amygdala interact during fear memory formation and retrieval, and 

specifically activity in the amygdala impacts long-term plastic events in the DH (Ikegaya et al., 

1995; McIntyre et al., 2005; McReynolds et al., 2009). While the amygdala is critical for 

auditory and contextual fear memory formation and retention, the necessity for the DH in 

contextual and auditory fear memory retention is dependent on the type of fear conditioning. For 

example, inactivation or protein synthesis inhibition in the DH during training in auditory delay 

fear conditioning shows selective impairment in context fear retention without impacting 
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auditory CS fear (Debiec et al., 2001; Helmstetter et al., 2008; Suzuki et al., 2008), while a trace 

fear training requires the DH for both auditory and contextual fear retention (Chowdhury et al., 

2005; Quinn et al., 2008). Even though DH activity is not necessary for a delay auditory fear 

memory, plastic changes in the DH have been reported in response to cued fear retrieval, 

suggesting DH plasticity occurs during auditory fear retrieval and may be important for memory 

lability during retrieval in the amygdala (Sanders et al., 2003; Seidenbecher et al., 2003). 

Interestingly, auditory memories resistant to impairment with amygdala anisomycin infusions 

during retrieval are regulated by DH activity (Wang et al., 2009). While evidence suggests an 

interaction between the dorsal hippocampus and amygdala during auditory delay fear memory 

retrieval, how the dorsal hippocampus may influence later recall of an auditory fear memory is 

unclear. It is possible that contextual information processed by the DH during delay fear 

conditioning regulates the ability of an auditory fear memory to become labile during retrieval 

(Jarome et al., 2015). 

The goal of the following experiments was to directly test whether contextual novelty 

during auditory fear memory retrieval is necessary for memory lability, as indicated by the 

requirement for protein synthesis in the amygdala. To test this, groups received delay fear 

conditioning, retrieval, and test in the same context. Infusions of anisomycin were delivered to 

the amygdala immediately following retrieval. Consistent with previous work, we show 

contextual novelty is critical for memory susceptibility to anisomycin impairment following a 

retrieval session. We next tested whether the contextual restraint on memory lability was 

dependent on DH activity. We found that DH inactivation during training allowed for amygdala 

anisomycin impairments during retrieval. Because internalization of CI-AMPAR are necessary 

for memory lability during retrieval, we wanted to determine if contextual novelty regulates 
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AMPAR trafficking during retrieval. We found inactivation of the DH during training allows for 

internalization of AMPAR in the amygdala when the context is not shifted. These results suggest 

contextual novelty during retrieval is critical for memory lability and synaptic destabilization in 

the amygdala. 

Methods  

Subjects  

Subjects were male Long Evans rats from Envigo (n = 95; Indianapolis, IN) weighing 

approximately 350g at the time of arrival. Rats were individually housed with free access to 

water and rat chow. The animal colony was maintained at a 14:10-hr light/dark cycle with all 

experiments occurring under the light portion of the cycle. All experiments were approved by the 

Institutional Animal Care and Use Committee. 

Surgery 

Immediately before surgery, rats were anesthetized with 4% isoflurane and oxygen, and 

after induction, isoflurane levels were maintained at 2 - 2.5% throughout the surgery. LA 

cannula were implanted at a 10° lateral angle (-3.0 mm posterior, +/-6.5 mm lateral, -7.6 mm 

ventral) and DH (-3.6 mm posterior, +/-2.6 mm lateral, -2.0 mm ventral) according to bregma 

(Paxinos & Watson, 2007). Cannula were secured to the skull with four screws and surrounded 

by acrylic cement.  Rats were given a minimum of 7 days after surgery to recover before 

behavioral training and testing. 

Apparatus 

Auditory fear conditioning was conducted in a set of four Plexiglas and stainless steel 

chambers within sound-attenuating boxes (Context A). The floor contained 18 stainless steel bars 

connected to a shock generator (Coulbourn Instruments, Allentown, PA). Each chamber had a 
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speaker to allow delivery of white noise, overhead illumination with a 7.5 W bulb, and 

ventilation fans to provide a constant background noise (55 dB). The chambers were cleaned 

with 5% ammonium hydroxide solution between sets of rats. A set of similar chambers 

designated Context B served as a shifted context for auditory CS testing in some conditions. 

Context B has several distinct features including dark Plexiglas flooring and 5% acetic acid 

cleaning solution. 

Drug preparation and infusion  

Animals were adapted to transport handling procedures for 3 days before conditioning, 

which included gentle restraint during the sound of the infusion pump. Drugs were prepared on 

the day of infusion. Groups received bilateral microinjections of lidocaine (40 μg/μl, Sigma), or 

vehicle (sterile saline) at a rate of 0.5 μl/min and at a volume of 0.5 μl/hemisphere into the DH 

10-minutes prior to training. Amygdala injections occurred immediately following a retrieval 

session (Anisomycin: 125 μg/μl, or ACSF vehicle). Drugs were infused through 33-ga injection 

cannulae extending 0.5-0.7 mm beyond the guide cannulae. Injectors remained in place for 90s 

following infusion to ensure drug diffusion.  

Behavioral procedures  

Rats were placed in Context A for delay fear conditioning. During training, rats received 

four white noise presentations (72dB, 10s) that were paired with a footshock (1s, 1.0mA). The 

average inter-trial interval between each tone presentation was 110s. Auditory CS retrieval and 

testing sessions took place in Context A or B where rats received four discrete tone presentations 

of the CS (30s; 60s ITI) after a 4-min baseline. Freezing was defined as the cessation of all 

movement excluding respiration and was automatically scored in real-time with FreezeScan 1.0 

detection software (Clever Sys, Inc., Reston, VA), which was calibrated to a trained human 

observer.  
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Synaptosomal membrane preparation  

As described in Chapter 2. 

Western blot method 

As described in Chapter 2. 

Statistical analyses  

All statistical analyses and graphing were conducted in Prism 7 software (Graphpad, San 

Diego, CA) software. Western blot samples were normalized to actin levels expressed as a 

percentage of control groups (no reactivation). Behavioral and western blot statistical outliers 

were defined as being two standard deviations above or below group mean and were excluded 

from all subsequent analyses. The data are presented as group averages with standard error of the 

mean (SEM). Western blot and behavioral experiments were analyzed using a one-way Analysis 

of Variance (ANOVA). 

 

Results 

Memory lability in the amygdala is regulated by contextual novelty and DH activity 

To directly test the necessity of contextual novelty on auditory fear memory lability, 

training, retrieval, and test conditions were the same across days (Figure 8a). The dorsal 

hippocampus is critical for processing contextual information during training, so we inactivated 

the dorsal hippocampus with lidocaine during training to determine if we could remove the 

constraint of contextual novelty on retrieval-dependent memory lability. Because lidocaine was 

“on board” during training, we compared freezing responses, or performance, between vehicle 

and lidocaine groups during conditioning. There were no significant performance effects during 

training while the DH was inactivated (F(6, 58) = 0.39, p = 0.88; Figure 8b) or during the retrieval 
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session (F(3, 29) = 2.047, p = 0.13; Figure 8c). To more closely look at an effect of DH 

inactivation on purely contextual fear during the retrieval session, lidocaine and vehicle groups 

were directly compared during the baseline period. There was a modest reduction in freezing in 

groups that received lidocaine infusions into the dorsal hippocampus (t(31) = 1.56, p = 0.06). 

Figure 8. Memory lability in the amygdala is regulated by contextual novelty and DH activity.  Experimental design (a&e).  Groups 

were infused with Lidocaine (LIDO) or Vehicle (VEH) into the DH prior to training and there were no significant performance effects 

during training (b&f). When LIDO and VEH groups are compared, there is a trend for a significant reduction in context but not 

auditory CS fear when groups received LIDO into the DH (c).  Groups that received LIDO into the DH and anisomycin (ANI) into the 

amygdala froze significant less to the CS in comparison to the VEH-VEH condition (d). There were no significant differences in 

baseline or auditory CS fear during retrieval in a shifted context when groups received LIDO infusions into the DH prior to training (g). 

The group that received an amygdala ANI infusion immediately after retrieval froze significantly less to the CS than the VEH group 

during the test (h). #p = 0.06, *p < 0.05. 
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During the long-term retention test, there was a significant main effect of drug (F(3, 58) = 3.17, p < 

0.05; Figure 8d). This main effect revealed a significant reduction in fear between groups that 

received lidocaine-anisomycin infusions in comparison to vehicle-vehicle infusions (p < 0.05). 

These results support the idea that context shifts are required for a memory to be susceptible to 

protein synthesis inhibition (Jarome, et al 2015). Furthermore, neural activity in the dorsal 

hippocampus gates or modifies anisomycin-dependent memory lability in the amygdala.  

To rule out potential confounding lidocaine-anisomycin interactions and ensure DH 

inactivation does not impair auditory fear memory retention, we included a condition where all 

groups receive lidocaine DH infusions and the context between training and retrieval/test is 

shifted (Figure 8e). There were no differences between groups during training (F(2, 30) = 0.33, p = 

0.72; Figure 8f) or retrieval (F(1, 15) = 0.53, p = 0.48; Figure 8g). At test, there was a near 

statistically significant interaction (F(1, 14) = 3.29, p = 0.09), and a main effect for time (F(1, 14) = 

140.80, p < 0.0001). Post hoc analysis revealed a significant reduction in freezing in groups that 

received anisomycin infusions immediately following retrieval (p < 0.05; Figure 8h).  

Activity in the dorsal hippocampus during training regulates amygdala AMPA receptor 

trafficking during reconsolidation  

The trafficking of AMPA receptors at synapses in the amygdala following retrieval has 

been linked to memory lability and modification. Previous work shows reduced expression of 

GluR1 and GluR2 in the amygdala at 90-min following retrieval (Jarome et al., 2015). To 

determine if inactivation of the dorsal hippocampus restores AMPA receptor trafficking patterns 

in the absence of contextual novelty, we inactivated the dorsal hippocampus with lidocaine prior 

to training and sacrificed groups 90-min following retrieval (Figure 9a). There was a significant 

reduction in GluR2 (p < 0.05) and nearly significant reduction in GluR1 (p = 0.07) expression 
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between groups that received a context shift (B) and groups that did not (A-VEH) (Figure 9b). 

There was no significant difference between the context shift (B) condition and groups that 

received lidocaine infusions but received a retrieval session in the training context (A-LIDO) 

when measuring GluR1 (p = 0.81) or GluR2 (p = 0.52) expression (Figure 9b).   

 

Discussion  

In the current experiment, we manipulated contextual novelty by having groups undergo 

training, retrieval, and test in the same context. The DH is known to selectively encode 

contextual information during delay fear conditioning and may play an important role during the 

initiation of reconsolidation (Helmstetter et al., 2008). Memory susceptibility to disruption using 

protein synthesis inhibitors has also been linked to contextual novelty (Jarome et al., 2015). To 

target hippocampal activity, we infused lidocaine into the dorsal hippocampus prior to auditory 

fear conditioning. Groups received a retrieval session 24-hrs later and infusions of either vehicle 

or anisomycin in the amygdala immediately after retrieval. During the retrieval session, groups 

Figure 9. Activity in the DH during training regulates amygdala AMPA receptor trafficking during reconsolidation.  Experimental 

design and representative western blot bands (a).  Groups that received a CS presentation in a shifted context or received DH LIDO 

infusions prior to training without a training-retrieval context shift show reduced GluR1 and GluR2 expression in comparison to the 

DH VEH group without a context shift (b).  #p = 0.07, *p < 0.05. 



48 
 

that received lidocaine infusions into the dorsal hippocampus show modest reductions in context 

fear in comparison to groups infused with vehicle. This could be due to generally low fear 

responding during baseline in the vehicle conditions (i.e. less than 35% freezing), which may not 

be sensitive enough to detect decreases in fear. At a long-term test, groups that received 

lidocaine into the dorsal hippocampus and anisomycin into the amygdala showed a deficit in CS 

retention, suggesting activity in the dorsal hippocampus during training allows for amygdala-

dependent memory lability following retrieval. We next measured AMPA receptor expression in 

the amygdala to determine if dorsal hippocampal inactivation is critical for AMPA receptor 

internalization during reconsolidation. The group that received lidocaine infusions into the DH 

without a shift in context showed a similar pattern of AMPA receptor expression in the amygdala 

in comparison to the shifted retrieval condition. Collectively, this work suggests activity in the 

DH during training can mediate memory lability and synaptic destabilization in the amygdala 

during retrieval when contextual novelty is removed. 

Several studies demonstrate an important role for crosstalk between the dorsal 

hippocampus and amygdala during fear memory formation (McIntyre et al., 2005; McReynolds 

et al., 2009; Sanders et al., 2003; Seidenbecher et al., 2003; Wang et al., 2009). During delay fear 

conditioning, activity in the dorsal hippocampus is necessary for contextual processing, and the 

amygdala integrates a broad spectrum of sensory information for long-term storage (Helmstetter 

et al., 2008). Furthermore, the plastic events occurring in the DH and amygdala seem to impact 

one another, suggesting bidirectional modulation of plasticity between these regions during 

learning and memory (McIntyre, 2005; McReynolds et al., 2010 Richter-Levin & Akirav, 2001). 

For example, the amygdala and hippocampus show increased synchrony following fear learning, 

and inactivation of the amygdala prevents increases in hippocampal IEG expression (Huff et al., 
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2006; Narayanan et al., 2007; Pape et al., 2005). While some work suggests the amygdala is a 

critical local site for memory storage (Gale et al., 2004; Kim et al., 1993), other work suggests 

that the amygdala plays a modulatory role for memory storage in the DH (Bevilaqua et al., 1997; 

McIntyre et al., 2005; McReynolds et al., 2009). Specifically, lesions or inactivation of the 

amygdala are known to impair memory formation, and LTP occurs at thalamo- and cortico-

amygdala synapses following fear conditioning, providing evidence that the amygdala is a key 

site for memory storage and requires persistent potentiation of synapses (Apergis-Schoute et al., 

2005; Gale et al., 2004; Kim & Cho, 2017). However, other work suggests the amygdala plays a 

modulatory role in memory storage by providing emotional valence or arousal.  In this case, the 

amygdala would only be important for emotional or motivational aspects of the memory whereas 

the hippocampus would be the primary site for memory storage. For example, norepinephrine in 

the amygdala is thought to contribute to enhancements in hippocampal-dependent tasks, 

highlighting an important role for the amygdala in the modulation of memory elsewhere 

(McReynolds et al., 2010). Our results are consistent with work highlighting an important role 

for the amygdala during permanent memory storage but do not attempt to rule out the necessity 

of other brain regions in the consolidation and retention of a fear memory. Instead, our results 

emphasize that the DH and amygdala work together during fear memory formation and recall. 

Specifically, our results show that inactivation of the DH does not prevent DFC memory 

formation but impacts the ability to modulate this memory with amygdala manipulation, 

therefore the DH may gate the ability to modify a DFC fear memory in the amygdala during 

retrieval.  

Amygdala AMPA receptor trafficking during retrieval has been linked to the initiation of 

memory lability (Jarome et al., 2012; Lopez et al., 2015). Rapid internalization of CI-AMPAR 
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during reconsolidation allows for synaptic plasticity underlying destabilization of synaptic 

connections to allow for the incorporation of new information into the original memory trace 

(Hong et al., 2013; Migues et al., 2016). The pattern of AMPAR trafficking and amount of 

AMPAR that return to the synapse after reconsolidation are sensitive to the cues present during 

retrieval (Jarome et al., 2015). Consistent with this, we demonstrate that contextual novelty 

during retrieval is an important factor for AMPAR internalization and this is regulated by DH 

activity during training. Specifically, when the retrieval context is novel, CI-AMPAR internalize 

and the memory is susceptible to protein synthesis inhibition, and when the context is not shifted, 

CI-AMPAR are maintained in amygdala synapses and do not allow for memory modification. 

Thus, the contextual information encoded and regulating lability is dependent on hippocampal 

activity, which then influences memory persistence in the amygdala.  

In the current study, we used anisomycin to inhibit protein synthesis and track memory 

lability. Anisomycin has been referred to as a “messy” drug due to its ability to activate stress 

related kinases, apoptosis, and result in temporary behavioral reductions in fear and state-

dependent effects (Bradley & Galal, 1988; Iordanov et al., 1997; Lattal & Abel, 2004; Rudy et 

al., 2006). However, many of these reports do not locally infuse anisomycin and none have 

reported such effects using cued fear conditioning or retrieval. Work from our lab supports the 

effectiveness of anisomycin used at the current dose in inhibition of protein synthesis in the 

amygdala for memory formation and retention (Parsons et al., 2006b). Furthermore, we found a 

specific reduction in auditory fear during a context shift or inactivation of the DH and not a 

global impairment in behavioral performance in other groups also infused with anisomycin, so it 

is unlikely changes in fear from anisomycin in this case was related to any potential adverse 

effects.    
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Collectively, these results provide insight for contextual novelty during retrieval-

dependent memory modification and lend further support for dorsal hippocampal-amygdala 

interactions during learning and memory. Our work adds to existing work showing the amygdala 

is a critical site for memory storage and plasticity here is critical for retrieval-dependent memory 

updating which is gated by contextual information processed by the DH. 

 

Chapter 4: General discussion  

 The goal of these experiments was to elucidate the contributions of auditory and 

contextual information to fear retention and post-retrieval modification. In two different aims we 

examined a role for contextual novelty and the maintenance of thalamo-amygdala pathway 

activity during auditory fear retrieval (Figure 9).  

 We found MgN activity in the amygdala is critical for fear retrieval and retention. This 

provides some of the first direct evidence for thalamo-amygdala pathway activity during auditory 

fear retrieval and retention. We originally predicted persistent reductions in fear would be 

associated with depotentiation of amygdala synapses as a result of MgN-LA terminal silencing 

during retrieval. However, the persistent reductions in fear do not seem to be a result of 

depotentiation, at least as inferred from synaptic expression of AMPAR (Figure 3) or of memory 

erasure (Figure 4). Previous work measuring depotentiation isolated the specific synaptic 

connections that were manipulated to measure the presence of amygdala AMPAR after 

manipulation, suggesting our method for measuring depotentiation may not be sensitive enough 

to detect significant changes in AMPAR expression (Kim & Cho, 2017). This explanation for 

our results is unlikely given that we do not see evidence of memory erasure (Figure 4).  Our 

reductions in fear during retrieval and test as a result of MgN-LA terminal silencing are 
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consistent with extinction-like behavior that is limited to the retrieval context (Bouton, 2004). 

During extinction learning, heterosynaptic inhibition of primary auditory inputs in the amygdala 

contributes to the reduction in fear responding at long-term tests (Bauer & LeDoux, 2004; Cho et 

al., 2013; Rosenkranz & Grace, 2001). Heterosynaptic inhibition reduces presynaptic activity 

from regions such as the MgN and ACx while maintaining potentiation of cortico- and thalamo-

amygdala synapses. Inhibition of thalamo- and cortico-amygdala pathways during extinction 

could occur from a variety of different sources. For example, mPFC input to the amygdala is 

increased following extinction and can excite local interneurons, which release GABA. The 

GABA release binds to pre- and post-synaptic sites and results in inhibited activity from primary 

auditory inputs in the amygdala. An alternate explanation for our extinction-like behaviors 

comes from manipulation of MgN-ITC synapses. Neurons from the MgN project to ITC neurons 

in the amygdala to directly manipulate ITC activity. ITC activity is increased following 

extinction and can feedback onto BLA projection neurons to inhibit them. The increase in ITC 

activity during extinction may then be based on decreased activity from the MgN. This increase 

in ITC activity would then allow for inhibition of BLA projecting neurons via GABA release, 

which would also presynaptically inhibit MgN inputs in the LA. Based on this, silencing MgN-

LA terminals during a retrieval session may therefore facilitate extinction learning by mimicking 

the heterosynaptic inhibition that occurs during extinction. Our results are consistent with several 

behavioral and molecular profiles collectively showing activity from the MgN in the amygdala 

plays an essential role in the balance between excitation and inhibition that regulates auditory 

fear retention extinction, such as maintained postsynaptic potentiation of amygdala neurons, 

changes in amygdala pCREB expression correlated with fear responding, and fear renewal 
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(Baumgärtel et al., 2008; Hagiwara et al., 1992; Han et al., 2009; Lin et al., 2003; Kim & Cho, 

2017; Porte et al., 2011; Rescorla, 2004; Tronson et al., 2012). 

 We found DH activity and contextual novelty regulate amygdala synaptic destabilization 

and memory lability during retrieval. We demonstrate a necessity for contextual novelty during 

retrieval for memory lability, and further show that DH activity during training contributes to 

amygdala-dependent memory lability in the absence of contextual novelty (Figure 6). CI-

AMPAR internalization in the amygdala is necessary for synaptic destabilization during retrieval 

and is regulated by contextual novelty (Hong et al., 2013; Jarome et al., 2015). We provide 

evidence that DH activity during training can regulate amygdala AMPAR trafficking during 

reconsolidation when groups receive training and retrieval in the same context, suggesting 

contextual cues encoded by the DH during training can regulate amygdala synaptic 

destabilization during auditory fear retrieval (Figure 7). Collectively, these results support the 

idea that contextual novelty initiates synaptic destabilization and memory lability in the 

amygdala, and additionally show that the contextual information that regulates later amygdala 

destabilization may be encoded by the DH.  

Final conclusions 

 In conclusion, memory retrieval provides a unique time for memory modification. 

Activity throughout a distributed circuit is critical for recall, expression, and reconsolidation of 

memory during a retrieval session. Sensory input to the amygdala has been implicated in the 

formation of a memory, but how these processes contribute to the stability of a memory after 

consolidation are unclear. Based on our findings, we show retrieval-dependent memory updating 

is dependent on the amygdala and 1) activity from the auditory thalamus in the amygdala during 

retrieval regulates fear responding and has lasting impacts on long-term fear retention and 2) the 
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lasting modifications of a fear memory via protein synthesis inhibition or through manipulation 

of amygdala inputs are gated by contextual information encoded during conditioning.  

 

  Future work needs to address when contextual information processed by the DH is 

important. Our work highlights an important role during learning and previous work shows 

contextual encoding prior to conditioning is important, but does DH processing of contextual 

cues need to occur during retrieval to allow for memory lability? If DH activity is necessary for 

auditory memory lability during retrieval, then this would provide an avenue to prevent the 

context-dependent return of fear and memory susceptibility to disruption. This approach would 

provide more information about how contextual cues influence memory modification and the 

Figure 10. During retrieval, presynaptic activity from primary auditory centers release glutamate, which binds to AMPAR and NMDAR. When in a new 

context, the original memory can be updated and results in the phosphorylation of kinases, increases in UPS activity, and AMPAR trafficking. When 

contextual novelty is removed, AMPAR do not internalize and the memory is not able to be modified. During extinction, activity from inhibitory 

interneurons or ITCs can release GABA. GABA spillover binds to presynaptic GABAb receptors on primary auditory inputs in the amygdala to stop 

glutamate release. The reduction in neurotransmitter release from primary auditory centers contributes to the reduction in fear seen during 

extinction learning and retention. Inhibition of excitatory presynaptic inputs during retrieval may therefore mimic this process. This reduction in fear 

is limited to the context in which extinction was learned and can undergo renewal when the context is changed. Contextual novelty following 

extinction learning may release the inhibitory regulation of primary auditory centers, which would allow the rapid return of fear. 
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context-dependent return of fear, and when the DH interacts with the amygdala for memory 

disruption. 

Traumatic memories can be associated with debilitating behaviors generalized to cues not 

predictive of an aversive event. Current treatment options, such as exposure therapies, are not 

always effective and require the repeated presentation of stimuli evoking substantial fear 

responses. Therefore, shorter more effective treatment sessions would reduce the amount of 

trauma re-exposure and may have fewer contextual constraints. Retrieval sessions allowing for 

the modification of the original fear memory provide a way to shorten exposure therapies and 

understand the limitations and neural mechanisms underlying long-term reductions in fear. Based 

on our results, shorter therapies could be more effective by reducing excitatory presynaptic 

activity in the amygdala during recall and ensuring novelty of the therapeutic environment.  
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