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ABSTRACT 
 

TOWARDS BETTER UNDERSTANDING OF FAILURE MODES IN  

LITHIUM-ION BATTERIES: DESIGN FOR SAFETY 

 

by 

 

Alex Francis 

 

 

The University of Wisconsin-Milwaukee, 2018 

Under the supervision of Professor Ilya Avdeev 

 

In this digital age, energy storage technologies become more sophisticated and more widely used 

as we shift from traditional fossil fuel energy sources to renewable solutions. Specifically, 

consumer electronics devices and hybrid/electric vehicles demand better energy storage. 

Lithium-ion batteries have become a popular choice for meeting increased energy storage and 

power density needs.  Like any energy solution, take for example the flammability of gasoline 

for automobiles, there are safety concerns surrounding the implications of failure.  Although 

lithium-ion battery technology has existed for some time, the public interest in safety has become 

of higher concern with media stories reporting catastrophic cellular phone- and electric vehicle 

failures. Lithium-ion battery failure can be dangerously volatile. Because of this, battery 

electrochemical and thermal response is important to understand in order to improve safety when 

designing products that use lithium-ion chemistry. The implications of past and present 

understanding of multi-physics relationships inside a lithium-ion cell allow for the study of 

variables impacting cell response when designing new battery packs.  Specifically, state-of-the-

art design tools and models incorporate battery condition monitoring, charge balancing, safety 

checks, and thermal management by estimation of the state of charge, state of health, and internal 

electrochemical parameters. The parameters are well understood for healthy batteries and more 
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recently for aging batteries, but not for physically damaged cells. Combining multi-physics and 

multi-scale modeling, a framework for isolating individual parameters to understand the impact 

of physical damage is developed in this work.  The individual parameter isolated is the porosity 

of the separator, a critical component of the cell.  This provides a powerful design tool for 

researchers and OEM engineers alike.  This work is a partnership between a battery OEM 

(Johnson Controls, Inc.), a Computer Aided Engineering tool maker (ANSYS, Inc.), and a 

university laboratory (Advanced Manufacturing and Design Lab, University of Wisconsin-

Milwaukee).  This work aims at bridging the gap between industry and academia by using a 

computer aided engineering (CAE) platform to focus battery design for safety. 



  

iv 
 

© Copyright by Alex Francis, 2018 

All Rights Reserved 
  



  

v 
 

Dedicated to the passion, motivation, and memory of John Francis. 

 



  

vi 
 

TABLE OF CONTENTS 
TABLE OF CONTENTS ................................................................................................................ vi 

LIST OF FIGURES ....................................................................................................................... vii 

LIST OF TABLES .......................................................................................................................... ix 

LIST OF EQUATIONS ................................................................................................................... x 

ACKNOWLEDGMENTS .............................................................................................................. xi 

1. Introduction .............................................................................................................................. 1 

1.1. Battery Failure ................................................................................................................. 1 

1.1.1. Catastrophic Failures.................................................................................................... 2 

1.2. State-of-the-Art in Lithium-Ion Battery Modeling .......................................................... 4 

1.2.1. Multi-Scale and Multi-Physics Motivation .................................................................. 4 

1.3. Motivation ........................................................................................................................ 5 

2. Review of State-of-the-Art in Lithium-Ion Battery Modeling................................................. 7 

2.1. .Overview of Prior Work ................................................................................................. 8 

3. Multi-Physics Modeling ........................................................................................................ 13 

3.1. Analytical Modeling ...................................................................................................... 15 

3.1.1. Thermal Domain ........................................................................................................ 16 

3.1.2. Coupled-Field Models................................................................................................ 21 

3.2. Reduced Order Modeling ............................................................................................... 24 

3.3. Numerical Modeling ...................................................................................................... 33 

3.4. Modeling Health of the Battery ..................................................................................... 35 

4. Advancement in Lithium-Ion Coupled Field Simulation ...................................................... 42 

4.1. Overview ........................................................................................................................ 43 

5. Experimental validation ......................................................................................................... 59 

5.1. Multi-physics Validation................................................................................................ 59 

5.2. Structural Validation ...................................................................................................... 66 

6. Summary of Results and Contributions ................................................................................. 87 

6.1. Review of Conclusions .................................................................................................. 87 

6.2. Future Work ................................................................................................................... 91 

REFERENCES .............................................................................................................................. 93 

APPENDIX .................................................................................................................................. 103 

CURRICULUM VITAE .............................................................................................................. 112 

 



  

vii 
 

LIST OF FIGURES 
 

Figure 1. Jellyroll layers [46] (from top to bottom): copper anode (graphite coating), separator (tri-layer) 

[47], [48], aluminum cathode (LiNiCoAlO2 coating). .................................................................................. 9 

Figure 2. Electric Vehicle Lithium-Ion Battery Multi-scale Considerations .............................................. 11 

Figure 3. Exploded view of battery module: a) depiction of battery cell internal components b) battery 

back module ................................................................................................................................................ 11 

Figure 4. Vehicle battery pack scale simulation [49] .................................................................................. 12 

Figure 5. Classification of Li-ion battery models based on [Jokar 2016] ................................................... 16 

Figure 6. Temperature profile and heat generation values published by Onada [78]. ................................ 18 

Figure 7. Example flowchart of a BMS [61] .............................................................................................. 25 

Figure 8. Example equivalent circuit model, 1RC Randles model ............................................................. 27 

Figure 9. Baseline 6P cell geometry adapted from Avdeev et al. [46]: a) jellyroll, b) core, c) case, d) 

spacer. ......................................................................................................................................................... 45 

Figure 10. Undeformed thermal response of a cell: (a) outside casing and (b) homogenized jellyroll. ..... 46 

Figure 11. Boundary conditions of homogenized volumetric heat generation and convection: a) 

undeformed cell, b) deformed cell. ............................................................................................................. 47 

Figure 12. Thermal response of horizontal lug deformation with homogenous heat generation: (a) outside 

casing and (b) homogenized jellyroll. ......................................................................................................... 47 

Figure 13. Deformed Thermal response of vertical lug deformation with homogenous heat generation, no 

short circuit: (a) outside casing and (b) homogenized jellyroll. .................................................................. 48 

Figure 14. Volumetric heat generation in response to: (a) external lug contact and  (b) internal short 

circuit. ......................................................................................................................................................... 49 

Figure 15. Thermal response of horizontal lug deformation after internal short circuit: (a) protective 

aluminum case and (b) homogenized jellyroll. ........................................................................................... 49 

Figure 16. Thermal response of vertical lug deformation after internal short circuit: (a) protective 

aluminum case and (b) homogenized jellyroll. ........................................................................................... 50 

Figure 17. Top view of pouch cell geometry and element size .................................................................. 54 

Figure 18. Cross-sectional views of pouch cell layer thickness. A) 3-layer geometry, B) 30-layer 

geometry ..................................................................................................................................................... 55 

Figure 19. Example voltage output of simulation ....................................................................................... 56 

Figure 20. Example Current Density output of simulation ......................................................................... 57 

Figure 21. Example Ohmic Heating Power output of simulation ............................................................... 57 

Figure 22. Example Temperature distribution output of simulation ........................................................... 58 

Figure 23 Diagram of Coin Cell using Celgard 2325 Separator ................................................................. 62 

Figure 25. HPPC voltage and current pulse correlation .............................................................................. 65 

Figure 26. Depiction of ECM parameter derivations .................................................................................. 65 

Figure 27. Curve fit of data for parameter calculation. ............................................................................... 66 

Figure 28. Compression test setup while monitoring cell electrical response: a) undeformed, b) deformed.

 .................................................................................................................................................................... 67 

Figure 29. Internal failure location and analysis: (A) highly distorted layers,  and (B) electrode fracture. 69 

Figure 30. Comparison of (A) structural simulation deformation contour and (B) CT scan image distorted 

layers. .......................................................................................................................................................... 69 



  

viii 
 

Figure 31. Rod compression internal failure analysis. ................................................................................ 70 

Figure 32. Quality control using Mimics software: (A) measurement line, and (B) layer differentiation. . 70 

Figure33. 3D CT reconstruction of rod compression.................................................................................. 71 

Figure 34. CT scan diagram: source producing x-rays, target of interest, detector, target magnitude (TM), 

and detector magnitude (DM). .................................................................................................................... 73 

Figure 35. Mimics reconstruction process: (A) data scan and mask construction, (B) individual 3-D model 

components, and (C) full cell model (aligned and merged). ....................................................................... 74 

Figure 36. Layer processing procedure: (A) initial mask segmentation, (B) cleaning and post processing, 

and (C) final mask segmentation and separation. ....................................................................................... 76 

Figure 37. Thresholding images corresponding to cell components: (A) Aluminum Case, (B) Aluminum 

Rod, and (C) Jellyroll. ................................................................................................................................. 76 

Figure 38.  R0 vs SOC Temperature dependence ....................................................................................... 78 

Figure 39.  R10 vs SOC Temperature dependence ..................................................................................... 79 

Figure 40.  C10 vs SOC Temperature dependence ..................................................................................... 79 

Figure 40. Damage effect on Ohmic resistance (R0) .................................................................................. 81 

Figure 41. Damage effect on charge-transfer resistance (R10) ................................................................... 82 

Figure 42. Damage effect on internal capacitance (C10) ............................................................................ 82 

Figure 43. Xeneth Tool Locations (A) center of cell, (B) bottom left, (C) bottom right, (D) top left, (E) top 

right, (F) positive tab, (G) negative tab, (H) ambient ................................................................................. 85 

Figure 44. Temperature distribution (A) at rest and (B) during discharge ................................................. 86 

Figure 45. Voltage vs SOC comparison of baseline HPPC experiments. ................................................... 91 

Figure 46. Raw HPPC data for all damaged cells.  Some cells do not have reliable data. ......................... 92 

Figure 48.  R0 vs SOC 0kN ...................................................................................................................... 104 

Figure 49.  R0 vs SOC 15kN .................................................................................................................... 104 

Figure 50.  R0 vs SOC 30kN .................................................................................................................... 105 

Figure 51.  R0 vs SOC 45kN .................................................................................................................... 105 

Figure 52.  R0 vs SOC 60kN .................................................................................................................... 106 

Figure 53.  R10 vs SOC 0kN .................................................................................................................... 107 

Figure 54.  R10 vs SOC 15kN .................................................................................................................. 107 

Figure 55.  R10 vs SOC 30kN .................................................................................................................. 108 

Figure 56.  R10 vs SOC 45kN .................................................................................................................. 108 

Figure 57.  R10 vs SOC 60kN .................................................................................................................. 109 

Figure 58.  C10 vs SOC 0kN .................................................................................................................... 109 

Figure 59.  C10 vs SOC 15kN .................................................................................................................. 110 

Figure 60.  C10 vs SOC 30kN .................................................................................................................. 110 

Figure 61.  C10 vs SOC 45kN .................................................................................................................. 111 

Figure 62.  C10 vs SOC 60kN .................................................................................................................. 111 

 

  



  

ix 
 

LIST OF TABLES 

 

Table 1. Thermal material properties. ............................................................................... 51 

Table 2. HPPC cycle method. ........................................................................................... 64 

Table 3. Scan parameters. ................................................................................................. 73 

Table 4. Grey value selection thresholds .......................................................................... 77 

Table 5. Mercury Intrusion Porosity results ..................................................................... 77 

Table 6. Effect of combined damage on cell reliability (green = pass, red = fail) ........... 80 

Table 7. Pouch Cell Maximum Temperatures (where * = predicted values) ................... 86 

Table 8. Thermal modeling research matrix. .................................................................. 103 

 

  



  

x 
 

LIST OF EQUATIONS 

 

Equation 3.1 Thermal Battery Model Developed by Bernardi [74] ............................................... 19 

Equation 3.2. General heat transfer equation. ................................................................................ 19 

Equation 3.3 in Ωe, the electrolyte domain .................................................................................... 23 

Equation 3.4 in Ωs, the solid, active particle domain .................................................................... 23 

Equation 5.1. Calculated scan resolution. ...................................................................................... 72 

 

  



  

xi 
 

ACKNOWLEDGMENTS 

  

I would like to express my immeasurable gratitude for my advisor, Dr. Ilya Avdeev, whose 

guidance has been essential to my growth as a student, researcher, professional, and as a person.  

I also would like to thank the industry partner of this project, Johnson Controls, Inc. and key 

personnel driving the research initiative, Steven Cash and Paul Frank.  Also, my friends and 

colleagues at UWM, especially Dr. Joshua Harris, Caleb Abegglen, and Dr. Steven Hardcastle.  

Additional thanks to Dr. Junhong Chen, Dr. Ben Church, and Dr. Anoop Dhingra, Dr. 

Konstantin Sobolev and Dr. Deyang Qu for serving on my thesis committee and offering 

valuable feedback. 

 

The support from members of the Advanced Manufacturing and Design Lab, Mehdi Gilaki, 

Mason Pingel, Douglas Wicker, Daniel Bautista, and Michael Powley, has also been of immense 

assistance which must not go unnoticed.  Finally, I am grateful for the support of my parents, 

family, and friends through this journey inside and outside academics. 

  



 
 

1 
 

1. Introduction  

 

We live in an era in which energy storage markets have been overtaken by lithium-ion batteries.  

Lithium-ion batteries are now not only widely used in consumer electronics market, but also in 

automotive industry (hybrid- and electric vehicles), and certain aerospace applications. As new 

applications and products adopt lithium-ion technology the need for increased power density 

becomes a significant R&D driver. However, with a continuous push for better battery 

performance, safety concerns become increasingly important.  Recent catastrophic malfunctions 

of lithium-ion batteries ranging from thermal runaway fires in Samsung Note 7 mobile phones to 

hover boards – both banned due to their dangers to consumers – and vehicles, both consumer 

(Tesla [1], [2]) and commercial (Boeing, [3]–[5]) demonstrate an urgent need for improved 

battery safety.  The key motivation of this research is focus on energy storage design for safety. 

 

1.1.   Battery Failure 

Although the statistics seem low for the likelihood of failure, the number of catastrophic event 

occurrences in cell phone and EV applications are interestingly the same, one in ten thousand 

[6], [7]; these numbers are significant.  They have influenced responsive policy changing, testing 

standards, and design changes.  Most important, it has influenced researchers to address the 

problem for better understanding failure mechanisms in effort to reduce the collateral impact of 

faulty lithium-ion cells. 
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Lithium-ion batteries can fail under various circumstances such as normal aging, accelerated 

testing or due to catastrophic events.  Take for instance the 24-month average lifetime of a 

cellphone by consumers before it is replaced [8].  The average lithium-ion battery in a cell phone 

is designed to last about two years or between 500 and 750 charge cycles [9].  The phone 

replacement time may be influenced by purchasing decisions or based on the performance of the 

mobile technology itself. In an automotive market, average consumers are expected to use their 

vehicle for 15 years or 300,000 miles, but cars can last above 1,000,000 miles with proper 

maintenance [10].  Electric vehicles (EVs) pose new challenges to existing automotive cycle and 

lifetime routine maintenance.  A consortium of American electric vehicle manufacturing 

companies (FreedomCAR) introduced EV industry goals and performs state-of-the-art research 

analysis hoping to reach a battery- pack lifetime of 10 years or 1,000 cycles [11]. Tesla Motors 

offers eight-year, infinite mile warranty for their 85 kWh batteries [12].  This data represents 

normal operating conditions for some lithium-ion battery applications. Over time the battery 

ages, causing the battery operation to be inconsistent and even dangerous.  Normal aging can 

lead to battery failures.  Other failure modes can occur suddenly in the form of catastrophic 

events. 

 

1.1.1. Catastrophic Failures 

Catastrophic failures of lithium-ion battery packs are highly publicized prompting a lot of debate 

and ramping-up concerns about their safety [1], [7], [13]–[15].  When a lithium-ion battery 

catastrophically fails, the results can be very dangerous because the flammable electrolyte 

solution inside can combust.  The dangers of battery failure have influenced the FAA to ban 

certain types of consumer devices from being allowed on aircrafts.  There have been five 
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lithium-ion related safety alerts issued by the FAA, Safety Alerts for Operators (SAFOs), since 

2015 for lithium-ion battery procedures on aircrafts, one in particular that forbids safety-recalled 

lithium-ion batteries on aircrafts [16]–[20].  This ban applies not only to the Samsung Note 7 but, 

more broadly, to all hazardous lithium-ion batteries 

 

The recall of the Samsung Note 7 is a result of catastrophic failure of the lithium-ion battery that 

powers the device.  Preliminary investigations point at the failure caused by the phone being too 

thin as well as to battery manufacturing errors [6], [21]–[24].  The phone design flaw was 

twofold: 1) there was not enough space for battery swelling over time and 2) mechanical 

deformation of the phone and manufacturing errors may lead to separator failure inside battery 

jellyroll.  Sadoway also speculates that when dendrites form they can puncture through the thin 

separator material [6]. Ultimately, the separator integrity is the primary concern whether from a 

structural point of view, manufacturing concern, or aging with the accumulative dendrite 

formation. When the separator inside the battery fails, a short circuit can occur between the 

cathode and the anode, generating enough heat to set the flammable electrolyte on fire. 

 

The dangers of lithium-ion batteries in consumer products might are also present in electric 

vehicles.  Electric vehicle lithium-ion battery packs have been reported to catch fire in various 

situations involving battery pack puncture, during and after a crash [7], [14].  Although all 

vehicles, not just electric vehicles, are at risk of fire in the event of a serious crash the media has 

focused on electric vehicle issues since the market for electric vehicles has started to emerge.  

Notable manufacturers publicized by EV failure events are Tesla and Chevrolet.  In 2013, early 

Tesla vehicles reported battery fires due to puncturing the underside of the battery pack while 
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driving.  Since the incidents Tesla has included a protective plate under the battery pack as a 

preventative measure [7].  For Chevrolet, in 2011 a Volt electric vehicle caught fire long after 

structural damage from the impact of a crash.  The National Highway Traffic and Safety 

Administration (NHTSA) reported three weeks after side-impact crash testing, the stationary 

vehicle caught fire [15].  They reported that the battery pack encountered a thermal runaway 

situation that lead to the catastrophic event [25]. 

 

1.2.   State-of-the-Art in Lithium-Ion Battery Modeling 

Structural integrity of a lithium-ion battery is important for protection of the active electro-

chemical process ongoing inside the cell.  The safety of lithium-ion batteries stems to multiple 

variables in multiple physical domains and influenced by even small abnormalities.  

Understanding the impact of just one variable, the separator, and the effect of battery chemistry 

and mechanical damage at the component level on the safety of an entire electric vehicle can be 

accomplished with through a refined understanding of lithium-ion battery modeling and 

computer simulations accompanied by experimental validation. 

 

1.2.1. Multi-Scale and Multi-Physics Motivation 

Researchers have developed models to predict and understand each type of physical response in 

a lithium-ion battery.  The majority of studies are compartmentalized to a specific discipline and 

do not address the multi-field effects and difficulties of coupling them. There are, however, 

studies that attempt to create comprehensive simulations of lithium-ion battery cell behavior. 
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Modeling lithium-ion batteries is becoming refined by researchers at the National Renewable 

Energy Lab (NREL) and at The Massachusetts Institute of Technology (MIT) [26], [27].  The 

latter study contributes to state-of-the-art by expanding upon the multi-scale and multi-physics 

efforts with a full vehicle numerical model and parametric failure analysis protocol indicating 

most influential design parameters. Through the utilization of homogenization methods, reduced 

order modeling, and high performance computing resources, the goal of this study is to 

contribute to the understanding of lithium-ion battery safety in electric vehicles from the full 

scale of a vehicle to the internal components of an individual battery cell.  The framework to do 

so is presented and explored by isolating a critical variable of the separator, porosity. 

 

1.3. Motivation 

The motivation of this work is to ultimately improve crash safety of electric vehicles by 

contributing to better-informed lithium-ion battery design considerations.  This study focuses 

specifically on the Johnson Controls, Inc. 6P spirally wound cylindrical cells, larger variants of 

the popular 18,650 cells.  Each 6P cell is 3.6 V/6.8 Ah, coated with NCA/Graphite, with a length 

of 140 mm and diameter of 40 mm. We aim to unify understanding of cylindrical cell geometries 

by electrochemical verification with coin cells and thermal characterization with pouch cells.  

Chapter 2 provides a review of Li-Ion modeling and experiments that are foundational to this 

work; developing an approach for rebuilding deformed cell geometry after abuse and validation 

of structural simulation results using the method.  Chapter 3 provides a comprehensive review of 

state-of-the-art work, alternative approaches, and the gaps in knowledge in Li-Ion battery 

modeling motivating this research.  Chapter 4 describes the framework and methods to pursue 

the next generation li-ion battery modeling capabilities isolating cell design variables specific to 
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the influence of damage on cell performance and phenomena that govern the changes. Chapter 5 

illustrates how to experimentally verify the framework and modeling capabilities.  Chapter 6 is 

an in-depth review of the results, conclusions, and contributions to the field of li-ion battery 

modeling. 
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2. Review of State-of-the-Art in Lithium-Ion Battery Modeling 

This study investigates the influence of the cell’s structural parameters on how dependent the 

response is relative to each physical design variable with a critical focus on safety. Analysis of 

structural parameters such as optimal active layer thicknesses for maximum structural strength 

and electrical efficiency, temperature response and thermal runaway considerations as well as the 

impact of structural deformations and short circuits can all benefit from a multi-scale and multi-

physics simulation.  Additional capabilities of the computational battery model include the 

quantification of battery deformation and swelling during charge/discharge cycles, ideal pack 

temperature, or even understanding the safety implications of structural deformation. 

 

On a micro-scale of lithium-ion storage systems, chemistry in the cell is dominated by energy 

and thermal producing Li diffusion and transport reactions.  Electrical phenomena such as charge 

balancing, electrical potential and current distribution is analyzed in the micro-scale active layers 

and macro-scale module and pack level influence.  At the cell level, heat generation due to 

electrochemical interactions as well as structural capabilities are included in the analysis.  At the 

module and pack level, individual cell response effects surrounding cells, thus thermal 

management and control is important as well as the structural integrity. Catastrophic battery 

failure happens quickly and needs to be better understood for improved battery safety.  The most 

newsworthy occurrences of battery design malfunction include those in consumer cellular 

electronics [6], [6], [21], [22], [24], battery failure on aircrafts [16]–[20] and, a focus of this 

study, electric vehicles [7], [25]. 
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2.1. .Overview of Prior Work 

2.1.1. Experimental Work 

Experimental testing of lithium-ion batteries mimicking the damage in real-world situations is 

essential to collecting data of actual battery response and for a refined understanding of the 

modes of failure.  With a broad focus on multi-scale and multi-physics relationships, 

experimental data is critical for developing accurate numerical and computational models.  

Collectively, researchers have conducted experiments to understand multiple phenomena in the 

electrochemical, thermal, and structural domains using 2032 coin cells [28], [29], 18650 

cylindrical cells [30]–[38] and various sizes of pouch cells [7], [27], [39]–[41]. Little research 

has been conducted on the state-of-the art 6P cylindrical battery geometry, those who have, 

studied the geometry using electrochemical impedance spectroscopy [42]. 

 

One way to address a complex multi-scale system is to simplify the analysis.  In case of lithium-

ion batteries with heterogeneous internal layered structures, the “jellyroll” can be modeled as a 

homogenized structure. This simplification must be verified through material modeling, 

characterization and experimentation for the most accurate simulation results.  Homogenization 

of lithium-ion cells can be achieved using various approaches: through cell representation as a 

laminated composite structure [43], through a classical laminated shell theory [44], or by a 

multilinear interpolation of the stress-strain curve [45]. However, Avdeev and Gilaki [46] have 

established the groundwork for lithium-ion battery cell homogenization used in this study. 

 

The lithium-ion cell contains an energy storing jellyroll, which is a repeated series of layers 

rolled into a cylindrical form.  The layers consist of a graphite coated copper anode (~80 μm) 
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and LiNiCoAlO2 coated aluminum cathode (~75 μm), separated by a polymer separator (~20 

μm); Figure 1 depicts the layers.  Each layer is approximately 175 μm in thickness and there are 

61 layers per cell.  The micro-scale layer thicknesses compared to dimensions of the cell, 

measured in millimeters, makes full scale structural simulations computationally intensive 

requiring small elements discretizing the jellyroll layers relative to the size of the cell itself.  At 

the full vehicle pack level containing hundreds of cells and even the module level containing 

twelve cells, representing all layers is extremely inefficient and unnecessary for most situations. 

 

 

Figure 1. Jellyroll layers [46] (from top to bottom): copper anode (graphite coating), 

separator (tri-layer) [47], [48], aluminum cathode (LiNiCoAlO2 coating). 

 

Material characterization of jellyroll components guided the homogenization process.  A 

representative material model that can be applied to a solid construction of the jellyroll was 

developed.  Multiple homogenization procedures were conducted and compared by 

Avdeev/Gilaki [46] and Martinsen [48].  They compared homogenization procedures through 

analysis of structural response via compression and tensile testing of individual layers in the 

jellyroll separately, under various strain rates and environmental conditions as well as 

performing compression testing on representative samples of the combined jellyroll samples 

themselves. 
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Two methods of homogenization were studied: (1) indirect homogenization and (2) direct 

homogenization.  An indirect homogenization method using the virtual work principal showed 

better accuracy for smaller cells. This method assumes the compressive load is mainly carried by 

the central area of the jellyroll for which the average stress and strain is calculated using the 

virtual work principal.  Direct homogenization methods showed improved accuracy for the 

larger 6P cells associated with our study. This method used the stress-strain results obtained 

from experimental compression data of sections taken from the full cell. 

 

Since this problem is an intensive multi-scale and multi-physics study, understanding the 

dynamics of each level is critical. The range is from micro-meters to meters, taking into 

consideration chemical and physical fields; Figure 2 depicts the multi-scale nature of the 

investigation.  At the active layer level, much of the consideration is with respect to the 

chemistry of the battery. At the scale of a single battery cell and components, structural 

considerations and electrical characteristics dominate the analysis.  Multiple single cells make up 

a battery pack module, shown in Figure 3. A full electric vehicle battery pack is a combination of 

all scales, the battery pack, the battery module, the battery cell, and the layers of each cell; see 

Figure 4.  At this level, computational efficiency is important and can be obtained through 

parallel computing, homogenization and model order reduction.  The high performance 

computing (HPC) resources at UWM are critical for achieving results at this multi-scale level. 
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Figure 2. Electric Vehicle Lithium-Ion Battery Multi-scale Considerations 

 

Figure 3. Exploded view of battery module: a) depiction of battery cell internal components 

b) battery back module 
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Figure 4. Vehicle battery pack scale simulation [49] 

 

2.1.2. Modeling Work 

Since lithium-ion battery failure is dangerous for testing live cells, modeling the battery can be a 

safer alternative for adjusting design parameters and studying the response.  Representative 

models for lithium-ion phenomena have been developed in support of understanding of cell 

operation, design of improved battery packs, and control of the batteries during operation.  

Comprehensive analytical modeling of the governing physics has lead the way for the evolution 

of cell models into full battery pack modeling.  Full pack modeling is valuable for the accurate 

characterization of current and future operation in Battery Management Systems (BMS). 

Industry requirements of battery control with BMSs have especially motivated the need for 

reduced order models (ROM) with a balance of capability, accuracy, and speed. 
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3. Multi-Physics Modeling 

Multi-physics modeling allows us to study complex real-world systems.  Multi-physics modeling 

is an all-encompassing term for multi-field, multi-domain and multi-scale analysis. Multi-field, 

or coupled field, analysis itself can represent various types of problems: single domain and single 

field, single domain and multi-field, multi-domain and multi-field, multi-domain and multi-field 

[50].  Fluid, structural, and interactions between the two are examples of domains and structural, 

thermal, and chemical responses are examples of physical fields.  Multi-scale analysis spans 

discrete increments, for our case we consider length scales from micro-meters to meters.  We 

will discuss how complex heterogeneous battery components can be simplified using 

homogeneous models in order to bridge the gap between multi-scale increments. 

 

Coupled-field analysis has been observed by influential scientists like Seebeck, Peltier, Navier 

and Maxwell.  Their investigation into the coupled nature of physics established the future for 

two- and three- field analysis such as the relationships fluid and structural domains, thermal and 

structural (thermo-elastic), electrical and chemical (electrochemical), thermal and electric 

(thermoelectric), as well as thermoelectro-elasticity. 

 

The power of multi-field analysis has been utilized to study fluid-structural interactions in the 

aerospace, automotive and consumer product industries helping understand phenomena such as 

the aerodynamic structures like the efficiency of bicycle rider position [51], the electronics 

industry to develop microelectromechanical systems (MEMS) for applications in accelerometers 
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and printing components [52], as well as the harmonic electromagnetic-thermal effects of 

induction heating for material processing [53]. 

 

Battery specific multi-physics modeling has gained interests with the evolution of electric 

vehicles that use lithium-ion batteries as a primary power source.  Modeling the processes of 

lithium-ion batteries is multi-scale, multi-field, and multi-purpose.  Since Randles’ [54] 

development of a lumped parameter model in 1947, researchers have built upon equivalent 

circuit methods, analytical, and empirical based models to capture the complex nature of lithium-

ion battery operation. 

 

Battery performance modeling can be divided into three categories: (1) analytical models 

(closed-form) models, (2) electrochemical reduced order models, and (3) equivalent circuit 

models.  Variants and combinations of these modeling categories is possible in battery 

management systems and numerical simulations for design of cells, modules, and full battery 

packs.  Models that are fast enough to provide critical information to battery management 

systems are generally called real-time models often originating from simplified electrochemical 

models or equivalent circuit models (ECM).  The importance of using representative models in 

EV applications is to predict the age of the battery, thus remaining life, improve the safety of 

operation during charge/discharge, especially fast charging, as well as optimization of cell usage 

in a pack [55] 
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3.1. Analytical Modeling 

When selecting a modeling approach, one must consider a balance of accuracy, calibration effort, 

and the ability to use the model for the intended purposes [56]. The most accurate type of 

modeling is electrochemical modeling using PDE’s to describe the governing equations of the 

electrode solid concentration, electrode potential, electrolyte concentration, and electrolyte 

potential.  Electrochemical modeling’s accuracy can fit to experimental data with little error 

allowing it to be used for verification of other models and providing specific insight into internal 

states which are not observable [55]. Examples of commonly used multi-physics models are 

electrochemical impedance based models [38], [57]–[60], linear parameter varying models [56], 

pseudo 2D models [58], [58], [61]–[64].  

 

Electrochemical models can be further segmented into general electrochemical models, single 

particle concentration models (SPM), and models incorporating thermal physics [55].  Pure 

electrochemical models include representation of internal battery components of the positive 

electrode, negative electrode, electrolyte, separator, and current collectors, building governing 

equations defined in the x-direction through layers [55].  SPM models define positive and 

negative particles with equations in spherical coordinates [55].    Models have evolved to include 

thermal capabilities powerful to represent cell types used by EVs.  However, with additional 

multi-physics capabilities and multi-scale EV cell, module, and pack geometries, the order of the 

model increases dramatically.  Thus, some researchers use computational methods such as CFD 

and FEA to represent the systems [55], [62], [65]. 
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Several literature review papers have been published summarizing modeling approaches in the 

past three years [2], [55], [61], [66]–[68].  The different approaches to li-ion battery modeling, 

specifically equivalent circuit modeling, are summarized by the following diagram; Figure 5.  

The most recent improvements in battery modeling include SOH and age prediction capabilities 

using 1D ECM networks for representation of the electrodes (electron binders in current 

collectors and intercalated in the active material) and separator (li-ions in the bulk electrolyte).  

Since research of healthy undamaged batteries is understood, the approach to this research is to 

determine modeling and characterization of damaged li-ion chemistry cells with a focus on a 

critical component of the system and the model, the separator; also highlighted in Figure 1. 

 

 

 

Figure 5. Classification of Li-ion battery models based on [Jokar 2016] 

 

3.1.1. Thermal Domain 

Thermal response of lithium-ion batteries is modeled as a combination of electrochemical 

reactions, phase changes, mixing effects, and joule heating [57]; a result of the homogeneous 

activity [44] that originates within the energy producing layers.  Originally shared by Bernardi 
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et.al. [57], this model has been adapted and adjusted by many researchers to follow. Table 8. 

Thermal modeling research matrix. of the Appendix describes the landscape of li-ion thermal 

modeling research. 

 

Lithium-ion battery thermal failure can become rapidly catastrophic and is influenced by 

prolonged abuse or immediate response to external stressors to internal components such as the 

separator.  Actually, the separator component of the cell is designed to fail, melting at elevated 

temperatures and sealing the micro-pores, stopping energy production before thermal runaway 

occurs [69], [70].  Thermal runaway is an occurrence of an uncontrollable increase in battery 

temperature leading to failure [71], [72]. An understanding of thermal failure mechanisms can 

better inform design.  Han et al, Pesaran et al, and Shah are some researchers who have 

developed experimentally validated thermal models, which are able to predict heat generation 

inside a lithium-ion cell [73]–[75]. 

 

Recent research efforts focused on better understanding of thermal behavior of lithium-ion 

batteries during normal operation and catastrophic events focused on three areas: (1) 

experimental battery abuse studies, (2) analytical heat generation models, and (3) finite element 

models.   Bandhauer et al. conducted a comprehensive review of thermal issues with lithium-ion 

batteries referencing work that investigated scenarios leading to thermal runaway including 

critical operating temperatures, effects of temperature on jellyroll components, and sources of 

heat generation [76].  Through experiments, Zhang, Khasawneh, and Onda studied the heat 

generation response during charging and discharging lithium-ion batteries, showing that 1800 

mAh cells operate between 25 and 50 degrees Celsius with heat generation rates up to 1 W; for 
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example, see Onada’s results below in Figure 6 [34], [77], [78].  Research has shown a strong 

influence of cycling temperature on thermal stability [Borner, 2017]. 

 

 

 

Figure 6. Temperature profile and heat generation values published by Onada [78]. 

 

 

Chen et al., Sievers et al., and Zhang. investigated analytical modeling of the thermal response of 

a battery [69], [79], [80].  The Bernardi [81] model is adapted by many.  His contribution shows 

that heat generation within the battery is a combination of phenomena distributed evenly within 

the energy producing section of the battery; see Bernardi’s thermal model in Equation (3.1) 

[81] 
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(3.1) 

 

Notice how this equation evolved from the general heat transfer equation below; (3.2. 

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ ∇ ∙ 𝐪 = 𝑞̇ 

(3.2) 

 

The thermal model of a lithium-ion battery contains sources of heat generation from more 

complex electro-chemical reactions and is carefully controlled by thermal management systems 
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regulating its environment through convection.  Heat generation inside the battery is found by 

Baba et al. to be a collection of local heat generation across the entire electrode plane, caused by 

the electrochemical reaction that results from lithium-ion intercalation or deintercalation [82]. 

 

Somasundaram et al used a two-dimensional, transient mathematical model for cylindrical 

lithium-ion cells encompassing conservation of charges, species, and energy together with 

electroneutrality, constitutive relations and relevant initial and boundary conditions.  This was 

accomplished with two-way coupling of heat generation and temperature-dependent physical 

property terms in electrochemical and thermal equations.  The model was also solved 

numerically for passive thermal management with and without a phase change material (PCM) at 

various galvanostatic discharge rates.  The study revealed characteristics of spirally wound 

cylindrical cells, such as edge effects from variations in heat generation in the functional layers 

[83].  Many battery chemistries and geometries have been studied experimentally, modeled, and 

simulated numerically.  For example, cylindrical li-ion batteries consisting of 

electrode/electrolyte combinations of graphite and LiFP6 in a propylene carbonate/ethylene 

carbonate/dimethyl carbonate (PC/EC/DMC) solution electrolyte [80]. 

 

The model studied by Zhang, considers the electrolyte transport properties as a function of 

temperature and lithium-ion concentration.  Specifically, heat in the cell is understood to be 

generated by three sources [80].  Ohmic heat, the heat generated by electrical current traveling 

through the components of a cell, contributing to approximately 54% of the heat generated [80].  

Reaction heat, the exothermic or endothermic heat transfer generated by the thermal 

electrochemical reactions of the cell, contributing to approximately 30% of the heat generated by 
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the electrochemical reaction [80].  In the case of a cell discharge, the reaction is exothermic with 

the rise in temperature being dependent on the thickness of both separator and electrodes [27], 

[80].  Finally, active polarization heat, the heat generated by the diffusion of Lithium ions in the 

cell and remaining sources contribute the least to the state of temperature in the cell [47], [55], 

[84]. Conclusions indicate that Li ion concentration gradients in electrolyte are the major factors 

giving the effect on the heat generations of active polarization and electrolyte electric resistance 

[80].  Additionally, temperature increase during discharge is positive related with the thickness 

of both separator and electrodes [Zhang, 2010].  The study of li-ion heat generation extends into 

investigations of entropy, model based studies of reversible heat [85], and simulation based 

studies of reversible heat [86]. 

 

 

3.1.2. Coupled-Field Models 

Research of specific physical phenomena is useful for deep understanding of battery behavior.  

An overlap of electrochemical and thermal physics is inherent in some models, but, ultimately, 

full multi-field modeling is necessary for a more comprehensive analysis.  Lithium-ion battery 

multi-scale and multi-field analysis is of increased interest. For example, NREL is working on 

developing a Computer Aided Engineering for Electric Drive Batteries (CAEBAT) modeling 

tool in order to “couple structural models with electro-chemical-thermal models to simulate 

crash-induce crush and thermal runaway.” [26].  Moreover, combinations exist of analytical 

electrochemical models [64], [87]–[89] and thermo-electrochemical models [55], [63], [72], [83], 

[90]–[96]. 
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Thermal management and application to battery management systems (BMS) are relevant 

because thermal management improves charge-discharge efficiency and cycle life [92].  Low and 

high temperature operation effect the battery performance in different ways.  Low temperature 

operation decreases the battery capacity while high temperatures age batteries faster [61]. 

 

Evolution of battery models is marked by the following milestones: energy balance [81], a single 

battery P2D model combined with heat generation [97], heat generation analysis of a battery 

stack [98], battery models with uniform temperature environmental conditions [99], [100], 2D 

and 3D models with harsh environmental condition [79], empirically based simulations focused 

on heat generation [101], [102][,  empirically based simulations focused on battery parameters 

[32], [103].  Thermal and electrochemical models are the most common tools used to accurately 

predict battery performance, safety, and reliability. When thermal and electrochemical models 

are combined, the accuracy of prediction is improved. However, as the accuracy and robustness 

of the model increased along with the growing number of battery parameters, the computational 

price paid has increased as well,. Specific heat capacity, thermal diffusivity, and thermal 

conductivity are the parameters that are required for the thermal model [61].  When considering 

accuracy, discharge rate has been shown to be a critical factor of effecting electrolyte 

concentration and potential parameters above 1 C rates [104] while at lower discharge rates 

below 1 C the electrolyte properties can be assumed to be constant [61]. 

 

The accuracy of the Newman model is accepted as a reliable method of representing the 

electrochemical performance of a li-ion cell.  Further research has expanded upon the Newman 

model to incorporate thermal [62], [91] [105] and mechanical capabilities [106], [107]. 
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The electrochemical model used by Wu is a combination of the Newman’s Model, porous 

electrode theory and concentrated solution theory [108], [109].  The porous electrode theory 

considers the porous electrode and electrolyte interfaces as one homogenized component.  The 

concentrated solution theory has more to do with the mass transportation within the electrolyte.  

Both the solid and electrolyte phase are represented by the Butler-Volmer equation [110]. 

Ion transportation in the electrolyte phase consists of diffusion and migration described by the 

following governing equation. 

 

𝜀2

𝑑𝑐2

𝑑𝑡
= ∇ ∙ (𝐷2

𝑒𝑓𝑓
∇𝑐2) −

1

𝐹
𝑖2 ∙ ∇𝑡+ +

𝑆𝑎𝑗𝑛

𝐹
(1 − 𝑡+)  

(3.3) 

 

Where Fick’s second law describes the mass transport phenomena in spherical coordinates; see 

equation #.  It is believe that the surface of the electrode contains spherical particles.  At this 

particle surface, the Li-ion flux and current density are related by the following equation. 

 

𝛿𝑐1
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+

1

𝑟2

𝛿

𝛿𝑟
(−𝑟2𝐷1

𝛿𝑐1

𝛿𝑟
) = 0 

(3.4) 

 

In terms of accuracy, the most successful model is the pseudo-2D model, but this model is too 

complex for usage in real-time battery management systems [61].  However, researchers have 

investigated simplification methods to reduce the order of governing equations [61]. 
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3.2. Reduced Order Modeling 

 

Modeling battery performance, especially SOC, in EV’s accurately enables an indicator of 

battery condition and in some cases the future condition of the battery.  EV specific models 

differ from the robustness of fully defined electrochemical models in that they need to consider 

speed rather than accuracy as well as capabilities at high C-rates for on-line usage in BMSs.  

Overall, the simplification of models for use in EVs incudes simplified or reduced order (ROM) 

electrochemical models and ECMs.  The ROM methods essentially simplify the model through 

various discretization techniques to account for the most important contributors to the cell 

behavior [55] [111].  Discretization methods are represented by a few categories including: 

analytical methods, integral approximation, Padé approximation, finite element methods (FEM), 

and finite difference methods (FDM).  Analytical reduction methods utilize Eigen function series 

expansion and Laplace transformation.  Similarly, using power series expansion is a method 

called Padé approximation.  Integral approximation converts the governing analytical equations 

from PDEs to simplified ODEs using integration.  Also, specific for computational methods the 

FEM and FDM are used for multi-scale and multi-physics solving, but these methods are not 

applicable to real-time computation in BMSs because of the relatively long solution time.  

Alternatively, spectral method have been employed offering a 10-100 times increase in speed 

relative to FDMs [93]. 

 

Mathematical models can be segmented into simplified analytical models such as the Kinetic 

Battery Model (KiBAM) representing the battery with a relatively small number of equations 
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and stochastic models which are fast and accurate based on stochastic discrete-time Markov 

chains [55], [112]. 

 

When selecting a model, users must consider a balance of accuracy, calibration effort, and the 

ability to implement for the application [56].  This balance is especially useful for Battery 

Management Systems (BMS).  In place to monitor and control the current state of the batter in 

terms of voltage, temperature, current and variables associated with the mutli-physics operation 

of the battery, BMSs are essential to maintaining safe battery operation.  An example BMS 

flowchart with capabilities to monitor battery condition, control operation, manage thermal 

performance, and perform safety checks is shown in Figure 7. 

 

 

Figure 7. Example flowchart of a BMS [61] 

 

Optimization of electrochemical models has been studied for real-time battery management 

systems [89]. 
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With the battery performance changing with condition and over time, modeling in either 

category relies on determining condition- and time-variant model parameters empirically.  

Experimental methods of determining parameters depend on the model selection and generally 

include: Electrochemical Impedance Spectroscopy (EIS) [57]–[59], [113] and High Pulse Power 

Characterization (HPPC) cycle testing to determine a representative internal resistance and 

capacitance [57], [114]–[116].  Model parameters for the corresponding lookup tables are 

determined off-line from the experimental data.  Alternatively, model parameters are determined 

by the coefficients of fitting functions to the experimental data.  In both cases, the model 

parameters determined are associated with the operating conditions of the experiment used.  

Thus, in order to account for many SOC, temperatures, and C-rates, more experiments must be 

completed.  Selection of parameter values is essential to accuracy optimization because the error 

of the EMC prediction relative to actual operation of the battery is considered.  Methods of 

parameter optimization are Prediction-error minimization (PEM) and a Gauss-Newton search 

scheme [55].  Again, the downfall of ECMs is that they need experimental data for parameter 

lookup tables at operating ranges of SOC and temperatures.  Also, they cannot predict internal 

variables (electrolyte potential) [55]. 

 

Recent modeling has reached a balance of complexity and accuracy for use in BMS 

computations through Equivalent Circuit Modeling  (ECM) or (EC).  A focus of this study, ECM 

methods are built on representative electrical circuits consisting of an ideal voltage source, 

resistance, and capacitance terms that vary in complexity.  As such, these models offer the 

capability of real-time results [55], [117]. 
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Figure 8. Example equivalent circuit model, 1RC Randles model 

 

Figure 8, demonstrates a common ECM adding to it an RC network. Models of this type are 

known as Thevenin Models or 1RC models, containing parameters for a terminal voltage source 

(V_t), open circuit voltage (OCV), load current (I_L), internal resistance (R_0), equivalent 

polarization resistance (R_P), and equivalent polarization capacitance terms (C_P) [55], [118].  

Parameters in Thevenin and other ECM must be determined experimentally by Electrochemical 

Impedance Spectroscopy (EIS), relating equivalent impedance to empirical data by applying 

pulses of AC voltage at steady state conditions of the battery.  Examples of other commonly used 

equivalent circuit models are the Randles model [30], [54], [57], [59], [63], [119]–[122], 

Thevenin models [57], [121] simple resistance models [57], and variations there of [42], [113]. 

 

The drawbacks of determining parameters for ECM models is that the parameter is only 

applicable to its respective steady state condition, thus experiments at various SOCs and 

temperatures need to be completed in order to create the look-up tables for these types of models.  

In more detail of battery condition, SOC is used as a variable because it significantly affects 
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battery behavior.  Considering other variables, temperature can damage the battery and C-rate 

dictates energy production and can increase internal resistance [55].  Aging is the characteristic 

battery condition changes over time which changes the model itself making the output less 

accurate.  This can be captured in an additional State-of-Health (SOH) parameter [55], [123]. 

Although relatively more work is required up-front, this is a benefit discussed later in Section 

3.4. 

 

A common 1RC model used for EIS is the Randles model [54], using parameters similar to the 

Thevenin Model described previously including the resistance term as the bulk resistance (R_b) 

representing the electric conductivity of the electrolyte, separator, and electrodes, the charge 

transfer resistance (R_ct), double layer capacitance (C_dl), both representing the voltage drop 

due to activation polarization, and a term for the Warbug Impedance (Z_W) for the diffusion of 

Li-ions in the cell [47], [55], [84]. 

 

However, ROM usage in EV is not the same in all applications and should not be confused for 

use with HEVs because the model and parameter assumptions differ [111], [124].  Equivalent 

circuit models can be made for real-time EV applications with the balance between speed and 

accuracy.  The selection of an appropriate EMC is a matter of 1) model structure selection, 2) 

experimental testing considerations and 3) error and fit criteria [55]. In EV applications, the goal 

of BMS design is to find a model structure with the correct balance between accuracy and 

simplicity.  Optimization methods have been used in order to assist in the determination of 

precise and relatively simple RC network model structures [55] [125]. 
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Battery models can be further segmented into model type (empirical look-up table or function 

solving), variables included (SOC, temperatures, C-rate, SOH, and combinations there of), and 

parameterization technique of model components [55].  ECM models have evolved to include 

thermal and SOC capabilities [126]. 

 

Models have evolved into streamlined combinations of isothermal, continuous, piecewise-linear, 

electrode-average models using optimization methods such as the knot placement technique for 

instance [89].  The work conducted by Farag et al reduced the CPU run time by 20% when 

compared to reduced-order, electrode- average models and predict cell voltage accurately with 

less than 2% error [89].  Computational speed is important for the control of or monitoring of 

model parameters live, also known as in-line monitoring.  State-of-the-art modeling used to 

predict cell voltage and battery response for BMS’s has evolved to use actual automotive driving 

profiles [63], [89], [113], [119]. 

 

Battery management systems are only as accurate as the model used.  Non-linear monotonic 

correlation between State-of-Charge (SOC) and Open Circuit Voltage (OCV) is necessary for 

accurate battery state estimation [127].  The OCV has been studied and shown to be a function of 

aging, temperature, and previous history using various battery active material choices (C/NMC, 

C/LFP, LTO/NMC) through a temperature range from -20 C to 45 C [127].  After their studies, 

Fermann et al. concluded that the OCV and the OCV hysteresis change over the battery lifetime 

[127]. 
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Battery modeling and SOC estimation has technical and commercial implications from an 

improved understanding of battery safety during charge and discharge, for optimizing battery 

usage, and for improved accuracy of EV battery pack range.  Another area of work is studying 

how to include complex battery models into an onboard battery management system (BMS) 

which needs to operate in real-time [55].  Understanding the SOC provides BMS’s an estimate of 

the remaining available energy in the battery, insight into charge/discharge strategy, and an 

ability to protect the battery from over charge/discharge.   A review of SOC estimation methods 

is provided by Hannan et al. by comparison of benefits, drawbacks and estimation error [68].  Li-

ion battery operation, aging, and ultimately safety, is highly dependent on temperature.  At low 

temperatures aging and performance is effected and at high temperatures thermal runaway is a 

safety concern. Low temperatures reduce the available energy and increase internal impedance 

[66]. Even though li-ion EV batteries have shown advantages when compared to other 

chemistries, commercial disadvantages of Li-ion batteries reveal issues of safety, cost, charging 

time, and recycling [66]. 

 

Model reduction methods include those that simplify the solid-state concentration function as a 

polynomial profile [128], further simplifying the solid concentration equation of the P2D model 

with parabolic profile (PP) approximation [129].  Evolving into more advanced methods of 

simplification for the electrolyte concentration [130], solid material concentration, and potential 

in State Variable Models (SVM) first developed by Smith et al. [65], [131].  Improvements of 

the battery modeling include Electrode Averaged Models (EAM) [132], P2D models simplified 

with: proper orthogonal decomposition [62], polynomial profile (PP) approximations of x-

direction dependent functions (pore wall flux, solid phase concentration, electrolyte 
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concentration), simplified PP profiles [133], SPM models including thermal considerations 

[134], reduced P2D models [135] also including temperature considerations [Klein, 2013], 

reduced SVM [92] into extended single particle models (ESPM) [104], and ESMP models that 

account for temperature [111]. 

 

Model reduction methods evolved over time and each simplification method has advantages and 

disadvantages [61].  The P2D model simplified using polynomial profiles by Subramanian et al. 

are dependent on pore-wall flux, ionic conductivity of the electrolyte, solid phase average 

concentration, and electrolyte concentration have advantages of speed in comparison to finite 

difference approximation methods of P2D’s and disadvantages that the pore-wall flux is not a 

function of time causing increased error at high C-rates and when considering battery aging [96], 

[129].  The SPM model developed by Gou et al. has an advantage of accounting for temperature 

but a disadvantage of accuracy only at low C-rates [134].  The reduced P2D model proposed by 

Forman et al deemed accurate with other ROM techniques but the CPU time was inadequate for 

use in real-time applications.  However, this was improved upon by Dao et al. by incorporating 

polynomial profiles and Galerkin approximation with an advantage of significantly reduced CPU 

time and a disadvantage of Li-ion wall flux particle parameters modeled as constant [136]. The 

reduced SVM model developed by Lee et al. changed fully physics based equations to 

computationally simple representations with advantages of decreasing the CPU time and 

providing relatively high C-rate capabilities up to 2C, but with disadvantages of the 

mathematical complexity[137].  The P2D model developed by Klein et al. used polynomial 

profiles of solid concentration, ignoring changes in electrolyte concentration, this provided 

advantages in being able to account for temperature considerations but this model has a 
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disadvantage in applicability at C-rates of 2C or less [138].  In 2013, Luo et al. accounted for 

non-uniform Li-ion wall flux in an Extended Single Particle Model (ESPM) providing 

advantages of accurate results with P2D models for C-rates larger than 4C while having a 

disadvantage of minimal errors in the cell potential curves [139].  Through Padré 

Approximation, Maracki et al, developed a P2D model having advantages in control and 

parameter identification [85].  Rahimian et al. used an ESPM to predict electrolyte potential as 

well as concentration both as a function of time proving advantageous in its accuracy relative to 

COMSOL P2D and SP models from 1C to 5C-rates, although having disadvantages that it does 

not account for temperature and aging [104].  More recently, to account for temperature, Tanim 

et al used an ESPM model obtaining the temperature variable as an input from sensors on-board 

the battery providing improved accuracy in comparison to P2D models and speed fast enough for 

control, however this method was not accurate above 5C rates or below -10 C, which is still a 

substantial improvement from earlier techniques [111].  An advanced simplified Electrochemical 

Multi-Particle (SEMP) model developed by Majdabadi et al is able to handle particles with 

various radii and properties with an advantage of improving accuracy with experiments up to C-

rates of 5C, with a disadvantage that this verification only was conducted on a Li foil/LiFePO4 

cathode half-cell [140]. 

 

In comparison of P2D, SPM, and PP approximations, there are differences for varying discharge 

rates and accuracy.  The second order PP and SPM models are both useful for discharge rates at 

or below 1C while at higher discharge rates the second order PP is more accurate until 

characterizing pulse loads. The CPU time is 100 times smaller for the PP model in comparison to 
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the P2D model. However, to successfully reproduce the PD2 results, higher order models must 

be used [113]. 

 

The change of battery parameters over time has lead to advanced ROM techniques of real-time 

on-line parameter identification.  With on-line parameter identification, the model parameters 

can be calculated real-time for calculation of battery performance.  Methods of on-line parameter 

identification have been studied called adaptive battery models [61], [88]. Temperature and 

current can be measured on-line, but SOC cannot be measured directly and needs to be 

estimated.  The accuracy of SOC estimation is important and can be obtained by common 

methods of 1) Coulomb-Counting, 2) look-up tables or polynomials relating SOC to OCV, or 3) 

recursive adaptive filters such as utilization of the Kalman filter.  The Coulomb Counting (CC) 

method is powerful and can be used as a reference to evaluate other SOC estimation methods.   

However, if the initial SOC estimation is inaccurate, errors accumulate in the calculations.  The 

most common group of SOC estimation method is to use recursive adaptive filters [142].  Filters 

such as the Kalman filter use the error between battery output and model prediction, which is 

initially large. 

 

3.3. Numerical Modeling 

Analytical models are necessary for characterizing battery behavior and ideal for 1D analysis, 

especially calculations for BMSs.  However, Finite Element Analysis most suitably solves the 

scalability into two- and three-dimensions. Battery modeling for electric-vehicle safety is a 

multi-physics and multi-scale effort.  The robust parametric capability and ability to solve large 

detailed systems makes Finite Element Modeling an appealing choice for understanding 
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batteries.  As of 2014, work toward accurate finite modeling has focused on an automotive 

industry need for predictable and efficient methods for simulating battery deformation and 

failure in crash situations.  State-of-the-art simulation efforts to aid in the design of improved 

battery safety encompass, studies of deformation, mechanical and electro-chemical failure. 

 

Finite element simulations have been created by Jeon (Abaqus) [143], Yi (ANSYS) [144], Sun 

2015 (Comsol) [145], and Sievers (Modelica) [69] for cylindrical and pouch cell geometries.  The 

simulations utilize the Bernardi model or adaptations of it for application of heat generation.  

Jeon et al. used a conservation of energy model considering heat generations due to both joule 

heating and entropy change to solve a transient FEA problem in LiCoO2/C and LiNiCoMnO2/C 

cylindrical cells [143].  The resulting maximum temperature profile analyzed contributions of 

each heat sources at several discharge rates.  It was found that Joule heating is significant 

contributor at high discharge rates, while at low discharge rates, entropy change was dominant 

[143].  Local heat generation is modeled with an enhanced single particle model.  Furthermore, 

the ESP model is implemented into a two-way coupled electro-thermal simulation utilizing a 3D 

thermal solver with a quasi-3D porous electrode solver applied to the plane of spirally wound 

electrodes [82].  Additional simulation investigation of 3D spirally wound cylindrical cells with 

thermal capabilities has been conducted by Lee et al. [146] and other research groups  [96], 

[147]. 

 

Simulation software with built in capabilities for lithium-ion battery specific modeling includes 

LS-Dyna [85], [116], [148]–[150], COMSOL [61], [62] and Abaqus [148]. 
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3.4. Modeling Health of the Battery 

Modeling techniques from analytical to ECM representations for li-ion batters have 

disadvantages and advantages for BMSs.  Currently, a limiting drawback on long-term accuracy 

of models used in BMSs is the inability to account for cell SOH in terms of electrochemical 

aging, thermal damage, and structural damage.  For example, in an ECM representation, the 

electrode performance is characterized by specific components of the circuit as well as the 

separator component of the battery contributing to the circuit embedded inside model parameters 

[115].  Aging of the battery has been shown to decrease the capacity, SOC, over time [68].  This 

decrease in performance is consolidated into what is called the State of Health (SOH) of the 

battery [63].  Although research has been conducted on electrochemical contributions over time 

to SOH, this study focuses on more physical phenomena such as thermal damage and mechanical 

damage of the battery.  Thermal and Mechanical damage are risk factors especially in EV 

applications of Li-Ion batteries.  Understanding how battery performance is affected by physical 

SOH influences can ultimately improve battery safety. 

 

A disadvantage of empirical BMS models are that they do not account for the change in battery 

model parameters with aging and the model is only specific to one type of cell [61].  Simplified 

P2D models have been developed in attempt to remedy the problems of empirically based BMS 

models and more complicated models.  As a compromise, the simplified models receive inputs 

such as voltage, current, battery temperature, and ambient temperature, with outputs such as 

SOC, SOH, aging status, parameters inside, parameters outside, and internal temperatures used 

for control, on-line monitoring, optimization, parameter estimation and age prediction [61]. 
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Equivalent modeling of healthy batteries begins with identification of associated model 

parameters from empirical data.  Variations of commonly used RC equivalent circuit models 

may take the form of Fractional-order Models (FOM) for which parameters are found with 

optimization methods and compared [113]. Furthermore, parameter sensitivity analysis in order 

to determine influence on the model output based on simulations under various conditions [151].  

Sensitivity analysis and step-wise identification methods show very good results, such as a better 

fitting of the simulated cell voltage with experimental data [151]. With a modeling focus on 

estimation of SOC is explored deeply because the electro-chemical reactions and aging 

mechanisms are complex. 

 

Li-ion batteries can be stressed by mechanical and non-mechanical methods that inhibit their 

healthy operation and can be chronic or acute dangers to the health of the battery.  Non-

mechanical stresses exhibited on the separator inside li-ion cells include intercalation stress and 

thermal stresses.  The intercalation stress is a produced by the expansion and contraction of the 

electrodes [110]. With a composition made up of various materials, li-ion cells by design will 

contain thermal stresses.  Heat generation [81], [152], [153] and heat transfer [79], [98], [101], 

[154]–[156] are understood, but the fatigue due to internal thermal stresses is not understood 

[110]. 

 

Chronic/Normal Aging 

Even during normal operation, battery health is effected by aging.  Conditions such as current 

imbalance can accelerate pack aging [64].  Current imbalance can be cause by cell-to-cell 

chemical variation or variation in operating conditions [64].  A failure mechanism caused by 
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normal aging of the battery is an internal short circuit caused by SEI layer growth dendrite 

formation.   From an in-depth investigation of why this happens, Ashwin et al. concluded that he 

thermal imbalance has more impact than the change in inter-connecting resistance on the split 

current distribution, which accelerates the irreversible porous filling and ageing [64] .  Research 

has shown a strong influence of cycling temperature on thermal stability [157].  The variations in 

performance are mainly attributed to aging effects on the anode side specifically, by the 

formation of an effective SEI during cycling for which the magnitude is temperature dependent 

[30], [157].  On the cathode side, decomposition of the cathode is main contributor to thermal 

runaway and the subsequent reactions with the electrolyte [157].  Reactions such as, evolving 

gases which confirmed the severe degradation of the electrolyte and active material during 

cycling at 20 C [157].  As for temperature dependence, the cells cycled at 45 C show an 

improved electrochemical performance over the lifetime of the cell than those cycled at 20 C 

[30]. 

 

Another example of a key performance indicator of aging is the lithium content.  Experiments 

have studied the lithium content of/at the individual components of the cells for different states 

of charge (SOCs) by inductively coupled plasma-optical emission spectrometry (ICP-OES) and 

the lithium distribution as well as the loss of active lithium within the cells is calculated after 

cycling [158].  With increasing the SOC, the lithium contents decrease in the cathodes and 

simultaneously increase in the anodes [158].  The temperature increase shows a clear shift of the 

lithium content in the direction of the anode for the T-cells [158].  The comparison of the C-rate 

influence shows that the lower the C-rate, the more the lithium content on the electrodes is 

shifted into the direction of the anode [158].  Models for control and battery management are 
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designed to monitor the concentration and potential [63].  However, models lack more 

significant parameters such as variable double layer capacitance, the full current-over potential 

relation and over potentials due to mass transport limitations [63].  Srbik et al. developed an 

improved coupled electrochemical and thermal model accounting for capacity fade via a loss in 

active species and for power fade via an increase in resistive solid electrolyte passivation layers 

at both electrodes with a capability to simulate cell behavior under dynamic events.  The model 

is validated against test procedures, such as standard battery testing load cycles for current rates 

up to 20 C, as well as realistic automotive drive cycle loads [63]. 

 

An additional model variable with significant influence is the separator.  Although it is an 

inactive component in the electrochemical interactions inside a cell [159],  the properties of the 

separator and its influence on other variables of the electrochemical response are represented in 

some analytical models such as the Pseudo-2D model developed by Jokar et al [61].  In the 

Psudo-2D model the separator is a variable in the liquid-phase positive Li-ion concentration (ce) 

and liquid-phase potential (Φe) calculations.  An ideal separator has infinite electrical resistance 

and zero ionic resistance.  The presence of the separator in between the electrodes inherently 

increases the ionic resistance because the non-uniform surface of the separator restrict the 

contact area between the electrolyte and electrodes and the porous channels create an indirect 

pathway for the ionic current [61] [160].  Also, increasing the porosity and optimizing separator 

thickness reduced the conductivity of the liquid electrolyte [160].  Specifically, the separator 

parameters (porosity, thickness, pore size, pore diameter) influence the MacMullin number (NM) 

and tortuosity (τ), both factors in the ionic conductivity of the separator [160]. Manufacturers of 

separator material seek a balance between porosity and mechanical strength.  If a separator is too 
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think the lack of strength creates a risk for internal short circuits.  Typical separators range 

between 20 and 30 um in thickness with porosities ranging from 40% to 70%. Further separator 

focused research has revolved around studying the thermal stability, wettability of the separator 

[159] and high rate charge-capacity [160].  The separator has been shown to have minimal 

effects on cell performance at discharge rates below 20C [160].   However, when the stability is 

compromised, the relationship between thermal response and aging response with respect to the 

separator specifically has not been studied in depth.  Volck et al. has begun to investigate the 

matter with research on “dummy” pouch cells [39]. 

 

However, modeling lithium ion batteries using analytical models do not include a parameter for 

the separator porosity.   Simplified equivalent circuit models are developed to use empirical data 

to accurately determine model parameters.  First, these parameters are usually found for healthy, 

undamaged cells.  Second, even robust equivalent circuit models do not have a parameter for 

separator porosity.  Opportunity exists to develop a model to include the health of the separator 

and at this time, porosity is a physical indicator of the health. 

 

The challenge of multi-physics modeling is to obtain the material properties and model 

parameters for the system [110].  We are using reduced order ECM based equations, which 

contain empirically derived parameters.  This approach allows us to use temperature and damage 

dependent parameters; a first for ECM modeling and Li-ion battery simulations.  The ECM 

equations are adapted in the LS-Dyna simulation environment allowing for the benefits of large 

deformation capability as well as the parallel processing capability on an HPC.  A combination 

of the reduced order ECM model and ability to run simulations in parallel allows for new 3D 
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lithium-ion simulation capability to be utilized at its highest potential.  We have the capability to 

build cells and run experiments, study uses 1D model where we use 3D LSDYNA and can run 

large format simulations, and we have a highly accurate structural simulation with calculated 

material properties. 

 

Pingel et al., conducted an in-depth study of isolating separator damage to study the effect on 

battery performance.  With complete control over battery manufacturing, 0.012 Ah coin cells 

were made using Celguard 2325 separator that was damaged by means of mechanical loading, 

heating near the melting temperature, or a combination of the two.  The material was damaged 

prior to assembly of the coin cell; a unique capability for isolating damage effects on cell 

performance.  Damaged material was used to manufacture the batteries as well as reserved for 

experimentation and characterization.  The material serves the purpose of separating Cathodes 

and Anodes in a battery while allowing lithium ions to transport during energy producing 

chemical reactions.  Porosity of the Celguard separator is a physical parameter of the material 

that dictates the quality of the electro-chemical reactions.  The porosity of the undamaged and 

damaged material was characterized by studying measurements of pores with an SEM as well as 

a using Mercury intrusion porosimetry.  Separator samples were mechanically loaded at 15 kN, 

30 kN, 45 kN, and 60 kN and heated to 110 C and 135 C. Results correlated well, showing that 

as mechanical load increases, porosity size of pores decrease and porosity decreases.  As 

temperature increases near the melting temperature the porosity decreases.  Loads of 0 kN, 15 

kN, 30 kN, 45 kN, and 60 kN corresponded to porosity values of 41±1%, 35±1%, 32±1%, 21±3%, 

18±2% respectively.  Temperatures of 110 C and 135 C corresponded to 27±1% and 19±5% 
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respectively.  In comparison, 15 kN loads compared to110 C heated and 60 kN compared to 135 

C heated resulted in similar porosity values. 

 

Acute/Catastrophic 

Other mechanisms of health degradation include acute/catastrophic failure and chronic longer-

term degradation.  Mechanical damage specifically contributes to significant risk for both failure 

mechanisms.  Catastrophic failures due to mechanical damage are cell puncture, internal, and 

external short circuits.  Chronic failure occurs from damage, which effects battery performance, 

but gradually over time.  The influence of chronic health changes in battery modeling state-of-

the-art.  When applied to ECM, some parameter identification of un-healthy batteries has been 

investigated. 

 

Advanced model accuracy under different conditions is compared with that of conventional 

Randles model and the parameter variations at different stage of the aging process are studied 

[161]. Characterizing battery model parameters has led to improvements from traditional pulse 

power characterization (PPC). Improving modeling accuracy and reduction in the 

experimentation time, per state-of-charge (SoC) and temperature, to several minutes compared to 

several hours for a PPC experiment [119].   Research into progressive improvement of BMS 

technology has lead to adaptive identification algorithm of model parameters on separate time 

scales showing validation with experimental results that the strategy performs better than the 

traditional RLS based identification methods [120]. 
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4. Advancement in Lithium-Ion Coupled Field Simulation 

Following the review of modeling methods by Jokar, suggested modeling improvements are 

outlined as follows: (1) an in-depth investigation into the effect of operating variables and 

polynomial profiles selected for approximation; (2) account for the nonlinearity of Li-ion internal 

parameters with more advanced functions, suggesting improvements for current density, 

electrolyte properties, and pore wall flux; (3) since current models accounting for temperature 

have only been used to model C-rates up to 1C rate, for applications in BMSs explore an 

improved understanding of internal heat generation, temperature-dependent properties and 

effects of pack geometry, (4) enhance the capabilities of P2D governing equations to account for 

aging sources, side reactions and Solid Electrolyte Interface (SEI) growth; (5) account for aging 

for improved battery control with a focus on age prediction as well as SOC and SOH 

estimations; and (6) further investigate reliable modeling for LiFePO4 cathodes for an improved 

understanding of  Lithium insertion/extraction and micro/macroscopic models suggesting models 

that include variable cathode parameters [61]. 

 

In this study a numerical and experimental investigation addresses the recommended future work 

in the field of li-ion battery analysis in order to build a state-of-the-art modeling capability.  

Specifically, the recommendations from Jokar that have been addressed include: (3) model 

parameter temperature dependence by HPPC cycling at various temperatures and states-of-

charge and aging or damage mechanisms of (4), and (5). 
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4.1.  Overview 

This work builds on modeling and structural characterization foundations by Gilaki [45], [46], 

[46], [150] as well as experimental characterization of separator material by Martinsen [48], 

[162] and Pingel with influence from prior research in the field in order to create an accurate 

model of the cell physics then building upon it to include novel capabilities of accounting for 

damage. 

 

4.2. Structural Domain 

The multi-scale groundwork of the simulation geometry was created by Gilaki et al [150].  A 

layered cylindrical cell model created in LS-Dyna was used to accurately model structural 

deformations of a 6P spirally wound cylindrical cell.  Extensive work has been conducted by 

Avdeev/Gilaki [46] and Martinsen et al. [48], to build and validate an accurate structural finite 

element model of individual lithium-ion cells.  Development of an accurate finite element model 

consisted of thorough material testing of individual battery material components in various 

environmental conditions the battery can be exposed to.  Compression and impact testing on 

cells were conducted in order to investigate catastrophic deformation conditions and potential 

short circuit scenarios.  We set out to answer how we might design battery cells for safety 

without conducting dangerous experiments.  The battery cells used to develop structural 

parameters and geometry for the numerical model happened to be uncharged dummy cells.  A 

unique defining characteristic of this work is the access to dummy cells.  This allows for safe 

structural abuse analysis compared to the volatility of a charged cell.  CT scanning was used to 

investigate and compare internal deformations and critical short circuit areas. 
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Being able to locate the precise location of a short circuit is one of the key objectives of this 

research.  We have developed an algorithm to locate potential short-circuit locations based on 

stress/strain criteria derived from the finite element analysis results.  The developed algorithm 

allows us to detect separator thinning and tearing – one of the key mechanisms leading to electric 

shorts and subsequent catastrophic failure.  Identified elements of the short circuit algorithm 

become sources in the thermal and electrochemical simulation. 

 

4.3. Thermal Domain 

Using existing modeling results as a heat generation input load for the thermal simulation, the 

thermal effects on surrounding cells can be studied. Improved understanding of the temperature 

distribution and model accuracy for deformed cells is a valuable asset that current research is 

lacking. 

 

With the groundwork in place, an explicit LSDYNA model was developed to study the transient 

heat generation of deformed battery cells, starting with a single cell model as a baseline.  

Ultimately, understanding of the single cell thermal response in a deformed and un-deformed 

state will be useful for battery module and pack simulations. 
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Figure 9. Baseline 6P cell geometry adapted from Avdeev et al. [46]: a) jellyroll, b) core, c) 

case, d) spacer. 

 

First, the single cell model was created in LSDYNA with nodal-element information of un-

deformed and deformed cells from the final deformed geometry after structural simulations 

performed by Avdeev and Gilaki [45], [46].  Their geometry is shown in Figure 9.  The baseline 

un-deformed thermal model is constrained and loaded in accordance with studies by Sievers [69].  

With an initial temperature of 298 K, the temperature of an un-deformed cell after 300 seconds 

reached 320 K; a 22 K increase; see Figure 10. 
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Figure 10. Undeformed thermal response of a cell: (a) outside casing and (b) homogenized 

jellyroll. 

 

With an accurate baseline model, we can study the heat distribution of deformed cells; see 

 

Figure 12 and Figure 13.  Heat generation in a cell can be classified between two situations: 

those resulting from a short circuit and those that are due to normal operating conditions; see 



 

 
 

47 

Figure 11.  Without a short circuit scenario, heat generation is a result of typical charge and 

discharge modes only with varied geometry.   

 

 

Figure 11. Boundary conditions of homogenized volumetric heat generation and 

convection: a) undeformed cell, b) deformed cell. 
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Figure 12. Thermal response of horizontal lug deformation with homogenous heat 

generation: (a) outside casing and (b) homogenized jellyroll. 

 

 

Figure 13. Deformed Thermal response of vertical lug deformation with homogenous heat 

generation, no short circuit: (a) outside casing and (b) homogenized jellyroll. 

 

With a critical short circuit scenario, the heat generation response can lead to potential thermal 

runaway situations.  Two examples of critical impact orientations are vertical and horizontal lug 

orientations.  The source of heat generation after either short circuit situation was assumed to be 

at the point of the short.  Short circuit locations included external lug contacts and for an internal 

short as locations of critical separator stresses above its ultimate strength; Figure 14 shows the 

two critical short circuit load conditions.  Further investigation of cell orientation during internal 

short circuit is depicted by Figure 15 and Figure 16.  The maximum temperature after 300 

seconds reaches 298 K. 
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Figure 14. Volumetric heat generation in response to: (a) external lug contact and  

(b) internal short circuit. 

 

 

 

Figure 15. Thermal response of horizontal lug deformation after internal short circuit: (a) 

protective aluminum case and (b) homogenized jellyroll. 
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Figure 16. Thermal response of vertical lug deformation after internal short circuit: (a) 

protective aluminum case and (b) homogenized jellyroll. 

 

The current assumption for short circuit simulations is that the heat generation value remains the 

same, but is applied only to the location of the short circuit in the deformed model. However, 

more investigation is needed to confirm the heat generation characteristics of a short circuit.  The 

location of short circuit was determined by an algorithm monitoring external lug contact and 

maximum strain of internal jellyroll layers.  Upon contact or a strain value above a critical 

threshold, the elemental data is saved and used as locations for future time steps where heat 

generation will be applied. 

 

The thermal LSDYNA model cell model is a collection of inert and active materials for the 

battery cell. The inert material consists of the plastic spacer and inner tube.  The active materials 

of the cell include all materials associated with the energy production processes; the jellyroll, the 

outer casing and lugs.  The thermal properties for all materials are homogenous except for that of 

the jellyroll.  The tightly wound collection of micro-scale layers results in orthotropic thermal 
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properties larger, i.e. more resistive, in the radial direction than in the axial direction.  This 

assumption is adopted from  Sievers [69].  A summary of the thermal material characteristics is 

shown below in Table 1. 

 

Table 1. Thermal material properties. 
 

 

 

Thermal load of the lithium-ion battery is simplified as a constant value during the duration of 

the simulation.  The thermal load produced within the jellyroll is assumed to be a homogenous 

volumetric heat generation of 300 kW/m
-3

, derived from experimental and analytical findings 

[69], [76], [163], [164].  However, the heat generation in a cell is not constant, Somasundaram 

showed that the heat generation changes with respect to discharge rate, SOC and time [83].  

Future models will use more complex heat generation curves.  Heat is dissipated by natural 

convection with a convection coefficient (h) of 5 Wm-2K-1 [83] and an ambient temperature of 

298.15 K. 

 

Different from structural impact simulations using a time-scale on the order of micro-seconds, a 

longer timescale, on the order of seconds to minutes was used for the thermal simulations.  Not 

only was this timescale selected to show long-term behavior of the thermal cell, but comparative 
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results in literature also used similar timescales [69], [83]]. A time step size of 0.05 seconds and 

total time of 300 seconds were selected for the simulation. 

 

The solver for this simulation was selected to be the diagonal scaled conjugate gradient iterative 

solver among other options such as the bi-conjugate, Choleski, non-symmetric, and symmetric 

direct solvers because of its explicit performance for transient thermal simulations and moreover 

its ability to be used in multi-physics analysis. 

 

4.4. Coupled Field Modeling 

The simulation evolves into a fully coupled-field representation using outputs from both the 

structural and thermal simulations.  Full multi-physics modeling introduces additional non-

linearity into the computation of simulation results making the solution process more complex. 

There are various numerical methods and simulation practices to account for complex multi-

physics problems.  Additionally, in this study the benefits of a parametric model are exemplified 

by introducing SOC, temperature, and damage dependence related to the change in porosity 

variable of the separator.  

 

A numerical investigation of battery model parameters was possible with the parametric abilities 

built into LS-Dyna with the ECM simulation capability.  Specifically, the Randles model 

parameters for Ohmic Resistance (r0), Polarization Resistance (r10), and Polarization 

Capacitance (c10) have the ability to be included in a look-up table as a function of SOC and 

temperature.  The simulation is fed by the empirically derived parameters at various States of 

Charge (SOC) from 10% to 90% at 10% increments and temperatures 25 C, 40 C and 50 C.  The 
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specific cycling method and determination of parameters will be discussed in Section 5.1.2 – 

Parameter Characterization.  With the capability to study damaged parameters, the simulation 

explored the influence of parameters changes in order of magnitude, dependence on SOC, 

temperature, and the parametric changes due to mechanical and thermal stresses.  This is an 

initial framework to objectively and comparatively investigate the impact of design variables by 

following a method of isolating them in an analytical model.  The simulation will require further 

investigation and validation to become an accurate stand-alone design tool. 

 

4.4.1 Multi-physics LS-Dyna Cell Simulation 

The multi-physics li-ion simulation model is primarily built upon an accurate example of the 

latest battery modeling capabilities in LS-Dyna performed by L’Eplattenier et al.  [116].  Within 

the LS-Dyna modeling environment, “keywords” are established to prepare the geometry, 

boundary conditions, loads, run the analysis, and specify what data to save. Pouch cell geometry 

was used to establish this capability beginning from early exploration of a single layer model 

isolating numerical and design variables individually.  A progression of more than one hundred 

simulation iterations was created to achieve the current capability of a fully parametric 2.5 Ah, 

30 layer pouch cell. 

 

A representative three-layer pouch cell was used an iterative model to learn the robust 

capabilities of the LS-Dyna environment and objectively compare results and ECM modeling 

parameters.  Specific LS-Dyna keywords and input files can be found in the Appendix. In more 

detail, the cell geometry dimensions were adopted from a Johnson Controls Inc. 140105 pouch 

cell having anode dimensions (129 mm x 77 mm) and cathode dimensions (127 mm x 73 mm), 
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40 mm wide tabs, with layer thicknesses as follows:  aluminum current collector (12 μm), 

cathode (54 μm), separator (17 μm), anode (58 μm), and copper current collector (14 μm).  In all, 

the 3-layer geometry was meshed an element size of 2 mm totaling 32,430 solid elements and 

67,596 nodes where the 30-layer geometry contains 565,950 solid elements and 1,179,564  

nodes; Figure # and Figure # show the element size distribution in the x-dir/x-dir and thickness 

respectively. 

 

 

Figure 17. Top view of pouch cell geometry and element size 
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Figure 18. Cross-sectional views of pouch cell layer thickness. A) 3-layer geometry, B) 30-

layer geometry 

 

The multi-physics capability of the simulation is introduced from utilization of a Randles Circuit 

ECM battery module in the LS-Dyna software.  A steady state 7.5 A (3C) current was applied to 

the top row of elements on the positive tab and a negative 7.5 A (3C) current was applied to the 

top row of elements on the negative tab.  Input variables for ECM circuit parameters can be a 

function of SOC and Temperature.  It is important to use accurate parameters, especially those 

corresponding to the damaged cells of this study, reinforcing the need for the R0 

charge/discharge, R10 charge/discharge, C10 charge/discharge parameter determination study.  

Additional ECM parameters needed are the Randles unit area, initial SOC, SOC as a function of 

voltage and initial temperature. 

The solution was completed by both the electromagnetism and resistive heating solvers for a 

maximum simulation time of 20 seconds and a time-step of 0.5 seconds.   
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4.4.2 Simulation results 

The simulation is able to predict three dimensional distributions of parameters such as electrical 

potential, charge distribution, ohmic heating power, and temperature distribution as well as 

determine scalar values over time such as voltage and temperature Figure 19.  The current 

density and ohmic heating power, shown in 
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Figure 20 and 

 

Figure 21 respectively, are isolated near the tabs. At these conditions, the temperature at the 

center of the cell, corresponding to a location monitored during thermal experiments, reached 

30.0 °C, Figure 22. 
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Figure 19. Example voltage output of simulation 
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Figure 20. Example Current Density output of simulation 

 

 

Figure 21. Example Ohmic Heating Power output of simulation 
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Figure 22. Example Temperature distribution output of simulation 
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5. Experimental validation 

The validity of computational modeling depends on the accuracy of model parameters such as 

the choice of a material model and material properties.  In collaboration with Avdeev and Gilaki, 

some of the work in this study is conducted to validate structural deformations of crushed 

lithium-ion cells.  The electro-chemical and thermal experimental benchmarking for the models 

in this study are primarily adopted from studies performed previously by researchers in literature. 

The experimental work in this study is conducted in order to develop an accurate representation 

of the multi-physics phenomena of a cell with and without damage.  A macroscale analysis of 

full cell damage is carried out on a spirally wound 6P cell geometry by 3D image segmentation 

of CT scan data.  The effect of mechanical damage on the separator is studied through electro-

chemical experiments on 12.5 mAh 2023 coin cells and thermal effects are studied using 2.5 Ah 

30 layered pouch cell geometry.   

 

5.1. Multi-physics Validation 

Modeling of any system requires validation; the ECM and Numerical models used to 

characterize li-ion cell response in this study are validated by electrochemical and thermal testing 

of custom manufactured cells. 

 

It is our intent to verify simulation numerical and analytical mathematical models used in the 

study with experimental data either taken independently conducted at UWM or used from 

existing drawn from published research.  Experimental data for smaller 18,650 cylindrical cells 
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exists for charge/discharge, thermal, structural, and abuse behavior.  Although this data is 

available, the viability of using 18,650 cell data for a 6P cell   results hasn’t been studied.  It is 

possible that 18,650 data is inadequate for determining an acceptable input for our simulation 

model that we are confident will best represent the system.  We hope to obtain experimental 

validation for the 6P cell geometry or as an alternative, develop a case study for acceptable 

repurposing of thermal, electrical, and chemical parameters between different battery geometries.  

The approach taken is to verify the characteristic chemistry of the lithium-ion cell in pouch form 

because of the availability and relative ease of manufacturing compared to the 6P cylindrical 

cell.  Once the pouch cell computation model is experimentally verified, the 6P model is 

developed with trust in the accuracy of the model and parameters. 

 

Experiments conducted on similar lithium-ion cells can be categorized in terms of monitoring 

charge/discharge aging, thermal, structural, and abuse behavior.  The state-of-charge (SOC) is 

important for understanding the reliability of battery operation [14], [165], [166]. An experimental 

procedure for determining the state-of-charge (SOC) of a lithium-ion cell is to monitor the 

residual capacity relative to the maximum capacity [165].  Knowing the SOC for a cell can 

provide insight into cell performance, efficiency and help identify aging [165].  Thermal behavior 

is closely associated with the exothermic electrochemical response of the cell.  Thermal 

experiments include researchers seeking baseline heat generation values using calorimeters [71] 

as well as some studying extreme environmental conditions following the UN testing manual 

[167].  Predicting thermal phenomenon is essential to understanding battery failure and a critical 

focus of this study.  When a battery fails, extreme heat is dissipated through flammable internal 

fluids creating a danger to the user.  The outside casing of the battery protects the volatile 
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internal components from structural failure and is tested by puncture, impact, drop, and crush 

experiments [76], [167].   

 

During abuse testing of lithium-ion batteries, the goal is to learn from controlled failure at 

extreme conditions.  This type of testing is dangerous.  Most researcher labs, including ours, do 

not have the capability to induce a structural failure on an over charged battery as it is engulfed 

in flame.   Yet again, the benefit of an all-encompassing simulation model can allow for safer, 

more accessible, and more capable battery design.  It is not meant to replace experimental 

testing, which is essential to an accurate model, but it may be able to be used by taking 

information from safer and more common testing results. 

 

5.1.1 Custom Cell Manufacturing 

The experimental investigation uses custom coin and pouch cells manufactured for 

characterization of cell response to mechanical damage. In general, coin cells are made up of an 

electrode, electrolyte, Lithium metal cathode, separator and anode.  The electrolyte solution is a 

combination of carbonate or combination (for example Ethylene Carbonate, Dimethyl Carbonate, 

or Ethyl Methyl Carbonate) plus LiPF6 salt at a concentration of 1.0 M to 1.2 M.  The electrodes 

of the battery are the Cathode and Anode.  The Cathode, often on an Aluminum foil substrate, 

contains a coating of the active material.  The active material slurry is often characteristic for the 

type of application: LiCoO2 (laptops, cell phones), LiNiCoMnO2 or “NMC” (hybrid vehicles), 

LiMn2O4 or “Spinel” (hybrid vehicles), LiNiCoAlO2 or “NCA” (hybrid vehicles), and LiFePO4 

or “Olivine” (used by A123).  The Anode, often on a Copper foil substrate, contains a coating of 

Graphite or Carbon.  Between electrodes, a polymer separator that is ~40% porous allowing for 
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Li-ion transfer between Cathode and Anode while preventing a short circuit between the two.  

The polymer used to create the separator can be Polyolefin Polyethylene, Polyolefin 

Polypropylene, or tri-layered Polyethylene/ Polypropylene/ Polyethylene. 

 

In this study, coin cells made with a copper anode coated with graphite, aluminum cathode 

coated with 92% NMC111, and a Celgard 2325 separator between; see Figure 23. 

 

 

Figure 23 Diagram of Coin Cell using Celgard 2325 Separator 

 

For studying specific effects of battery components, for instance the effects of chemical changes 

in the Cathode or Anode, special cells are manufactured for research purposes called “Half-

cells.”  Although useful, for this investigation of the separator effects, full cells with uniform 

Anode and Cathode parameters are manufactured with separator materials in various states of 

health in terms of mechanical and thermal abuse.  The mechanical integrity of the separator 
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material is put at risk by applying range of loads: 33.71 MPa, 67.42MPa, 101.13MPa and 134.84 

MPa.  The load sequence will be nominally referred to as 33 Mpa, 66 Mpa, 100 Mpa, and 133 

Mpa respectively. The selection a maximum stress corresponds to the point at which the 

separator can be ruptured and create an internal short circuit; results verified by Giliaki’s 

accurate simulation model. The intermediate sections of stress are even increments from no load 

to the maximum load.  Thermal damage is induced by heating the separator material to the point 

at which cells are at risk of thermal runaway at 110C and the designed melting/5 temperature of 

135 C. 

 

5.1.2 Parameter Characterization 

The ECM model parameters were determined using Hybrid Pulse Power Characterization 

(HPPC).  To determine the Randles parameters specific to the battery chemistry of this 

representative 2032 coin cell with a capacity of 12.5 mAh was cycled using the same HPPC 

method.  The first twenty cycles were used for formation at a 1C charge/discharge rate.  

formation, the test method chosen followed a charge/discharge cycle as follows in  

 

 

 

 

 

 

 

Table 2. 
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Table 2. HPPC cycle method. 

 

 

The EMC parameters of Ohmic resistance (R0), charge-transfer resistance (R10), and interfacial 

capacitance (C10) are derived in a similar manner as described by [114]–[116], from the single-

degree RC circuit shown in Figure 8.  Ohmic resistance (R10) is determined by calculating the 
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resistance from the immediate change in voltage at the end of Step 6 and the first point of Step 7; 

Figure 24 and  

Figure 25.  In order to find the charge-transfer resistance (R10) and interfacial capacitance (C10), 

both variables of polarization and sometimes called polarization resistance and polarization 

capacitance respectively, the voltage data from Step 8 and Step 10 are used respectively by using 

a linear least squares fit.  The curve fit determines parameters of a standard exponential function 

used to model the RC circuit; example data shown in Figure 26. 

 

 

 

 

 

Figure 24. HPPC voltage and current pulse correlation 
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Figure 25. Depiction of ECM parameter derivations 

 

 

Figure 26. Curve fit of data for parameter calculation. 

 

 

0 5 10 15 20 25 30 35 40 45
3.63

3.635

3.64

3.645

3.65

3.655

3.66

3.665

3.67
Data and Fitted Curve

 

 

Data

Fitted exponential



 

 
 

69 

5.2. Structural Validation 

Cylindrical Cells 

Cylindrical cells for use in EV applications are the primary focus of this research.  The other coin 

and pouch geometries are used to find ECM parameters and verify response, but characterizing a 

cylindrical cell, module, and pack is the strategic goal of this work.  It is focused on the Johnson 

Controls Inc. 6P cell geometry with a 37 mm diameter, 137 mm height, and nominal capacity of 

3.6V/6.8 Ah, NCA/Graphite. 

 

The experiments conducted with Avdeev and Gilaki included compression and impact testing of 

structural abuse scenarios leading to a short circuit condition.  The impact testing was conducted 

on a custom drop test apparatus.  Two situations of flat plate and rigid rod impact were studied.  

Detailed experimental setup and results were shared by Avdeev et al [46].  However, this series 

of tests did not reliable lead to short circuit conditions.  Thus, compression testing was conducted 

on the cells until short circuit detection was apparent.  The cell was loaded into the experimental 

test equipment with a rigid rod in the center of the cell and monitoring equipment attached to 

each battery lead to detect a short; see Figure 27. In summary, Gilaki found the short circuits 

were detected by monitoring voltage and resistance of the cell.  A short resulted from a rise in 

voltage and decrease in resistance.  This response consistently occurred at approximately 60 kN 

of load. 
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Figure 27. Compression test setup while monitoring cell electrical response: a) undeformed, 

b) deformed. 

 

 

5.2.1. Failure Analysis - CT Scanning 

CT scanning of a single cell is an important step in the battery failure analysis.  It provides 

verification of existing structural results and an insight into how the cell is structurally failing. 

The underlying assumption is that structural deformation/failure in the cell causes either a short 

circuit or a localized area of current discharge that starts an abnormal thermal heat transfer 

process through the cell. 

 

CT scan images give us a non-invasive look inside cell failure.  We are looking for structural 

casing fractures, layer cracking, especially indications of separator failure, as well as any other 

visual queues that there could be a potential problem.  The images below show the internal 

deformations after a rod indentation experiment for which a short circuit is likely to occur.  Two 

distinct areas of interest are (A) highly distorted layers buckling against each other and (B) 
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electrode fracture near the aluminum core (see Figure 28). This information can be used to 

compare and verify structural simulation deformation results.  Notice, in the comparison in 

Figure 29 and Figure 30, the areas of the heterogeneous simulation with highest deformation 

correspond to the regions highly deformed layers in the CT scan image (note to reader: this is an 

assumption that will later be verified or denied).  It also provides verification of internal short 

circuit assumptions used in the multi-physics model. 

 

 

Figure 28. Internal failure location and analysis: (A) highly distorted layers,  

and (B) electrode fracture. 
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Figure 29. Comparison of (A) structural simulation deformation contour and (B) CT scan 

image distorted layers. 

 

 

Figure 30. Rod compression internal failure analysis. 
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Figure 31. Quality control using Mimics software: (A) measurement line, and (B) layer 

differentiation. 

 

 

Figure32. 3D CT reconstruction of rod compression 
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The technique can also be used for quality control purposes.  Mimics can differentiate between 

individual layers through grey value interpretation allowing for an accurate count of the layers; 

see Figure 31.  For the scanned cell of interest, there are about 58 distinct peaks which 

correspond to layers in the cell. 

 

A North Star Imaging scanner was used to perform the CT scanning of the battery cells.  For 

this specific type of cell, the scan parameters were optimized for highest scan resolution while 

maintaining the full diameter of the cell within view of the detector.  Scan parameters included: 

the source voltage, source current, detector magnitude, table magnitude, detector acquisition 

rate, filter thickness, number and angle of radiographs.  The source voltage and current controls 

the amount of power output from the source.  The table magnitude (TM) is the distance between 

the scanned object, in our case a battery cell, and the x-ray source.  The detector magnitude 

(DM) is the distance between the detector and the source.  A depiction of the scan setup and a 

list of scan parameters  values are shown in Figure 33 and Table 3 respectively. This set of 

scanning parameters resulted in scans with a calculated resolution of 30.9 μm while keeping the 

entire cell within the field of view. The scan resolution is sufficient to depict individual layers 

of the jellyroll and is calculated by (5.1. 

 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑝𝑖𝑡𝑐ℎ ×
𝑇𝑀

𝐷𝑀
 

(5.1)  

 

In order to obtain accurate segmentation with sufficient level of fine detail representation, we 

have chosen spatial scan increments of 0.25 degrees, which corresponds to 1,440 scans per cell 
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covering a 360 degree rotation of the target.  Each scan (slice) was saved as a DICONDE (.dcm) 

image for nondestructive evaluation, containing not only information about the image but 

optional fields for saving object and scan parameter information [168].  The DICONDE format 

is a common file type for medical imaging that is an acceptable file type for the reconstruction 

software we have chosen. 

 

 

Figure 33. CT scan diagram: source producing x-rays, target of interest, detector, target 

magnitude (TM), and detector magnitude (DM). 

 

 

 

 

Table 3. Scan parameters. 
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For scans of localized critical areas, such as the deformations around rod indentations, this setup 

is ideal.  However, for a full cell reconstruction at the same resolution, multiple scans need to be 

pieced together since the full cell does not fit within the field of view.  To make assembling 

multiple scans together easier, a steel reference marker was attached near the top and bottom 

section beings scanned.  This positional reference marker was placed so that it appears in every 

scan; thus, it could be located and aligned properly with neighboring scans.   After alignment of 

each scan with its neighbor and post-processing, the separate pieces make up a high-resolution 

full cell scan. 

 

We used the commercial software package Mimics (Materialise) to build a 3-D layered model 

from the CT-scan data. The reconstruction process consisted of three major steps: (1) scan data 

import, (2) segmentation, and (3) 3-D model creation (see Figure 34). 
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Figure 34. Mimics reconstruction process: (A) data scan and mask construction, (B) 

individual 3-D model components, and (C) full cell model (aligned and merged). 

 

Importing the CT scan data is an automated process, only requiring information about the, image 

size, the pixel resolution, and the header information.  The size of each image should be the same 

for each scan but can vary between the scans. Each pixel in the scan corresponds to spatial 

dimensions in the x-, y-, and z-directions. In the example below, the scan resolution was set to 

0.3 mm in the x-, y-, and z-directions.  The header size can drastically effect the representation of 

image data and for our case it is set to a value of zero. 

 

After the images were arranged sequentially in a stack, a selection mask was used to segment 

individual battery components by setting specific density thresholds. This process is depicted in 

Figure 35 and Figure 36.  A CT scan image contains information in the form of greyscale values 

corresponding to different densities.  In the case of a lithium-ion battery scan, the dense copper 

current collector appears as bright white on the scan while the aluminum casing and current 

collectors appear as less intense and the polymer separator layers cannot be perceived at all since 

they do not absorb x-rays.  The corresponding threshold range used for each material can be 
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found in Table 4.  Grey value thresholding upper and lower limits were selected for the mask 

based on accuracy and ease of post processing.  After the mask was created, we manually post 

processed the images in order to eliminate some noise outside the region of interest. 

 

 

Figure 35. Layer processing procedure: (A) initial mask segmentation, (B) cleaning and 

post processing, and (C) final mask segmentation and separation. 
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Figure 36. Thresholding images corresponding to cell components: (A) Aluminum Case, 

(B) Aluminum Rod, and (C) Jellyroll. 

 

 

Table 4. Grey value selection thresholds 

 

 

 

The CT scan results were used by Gilaki et al to verify simulation accuracy.  Additionally, the 

2D and 3D segmentation capability is useful for further analysis of internal and external short 

circuit risk areas of acute damage such as internal short circuits and verifying the deformation of 

the internal structure especially the separator layer. 
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5.2.2. Porosity effects on ECM parameters 

Increasing mechanical loading and operating temperatures were shown by Mason et al to 

decrease the measured porosity of the separator material.  The results summarized in Table 5 

show the porosity correlated to a change in the mechanical integrity. 

 

Table 5. Mercury Intrusion Porosity results 

 

Stress  Undamaged 15K 30K 45K 60K 110°C 135°C 

Porosity 41±1% 35±1% 32±1% 21±3% 18±2% 27±1% 19±5% 

 

The ECM model parameters display a dependence on SOC, temperature, and damage/porosity.  

As the SOC increases from 10% to 90%, take the undamaged results at 25C for example, R0 

increases slightly from 7.44 Ω to 8.36 Ω, an 11.0% change.  As for the R10 and C10 parameters, 

the values remain within 2.15% and 4.33% respectively, showing less of a significant correlation 

to SOC.  Temperature dependence is more of a factor than SOC.  As the temperature increases 

from 25C to 50C averaged parameter values across SOC change by: R0 decreases by 48.9% 

from 5.51 Ω  to 2.70 Ω  , R10 decreases by 56.0% from 7.68 Ω  to 3.38 Ω  , and C10 increases by 

54.0% from 1.26 F to 1.94 F.  Specifically to C10 only, the capacitance values are consistently 

higher during discharge.  Comparisons R0, R10, and C10 of SOC and temperature dependence 

for an undamaged condition can be found by inspection of Figure 37, Figure 38, and Figure 39 

respectively.  The results show inconsistencies at 80% SOC for R0 at 25C during charge, R0 at 

40C during discharge, R10 at 25C, 40C, and 50C during charge and discharge, as well as 25C 
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during charging.  Investigation of the data does not reveal a likely cause of this discrepancy, thus 

in order to better understand the validity or invalidity of the outliers, more data must be obtained. 

 

Figure 37.  R0 vs SOC Temperature dependence 
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Figure 38.  R10 vs SOC Temperature dependence 

 

 

Figure 39.  C10 vs SOC Temperature dependence 

 

The resulting parameters for damaged cells showed a correlation to the negative impact of 

combined damage conditions, 100% of cells cycled at 25C regardless of damage completed the 

HPPC experiment, while only 75% of cells completed the test at 40C, and 50% of cells 

completed the test at 50C.  Mechanical stress on the separator contributed to the malfunction of 

the cells with a significant impact on likelihood of failure above the 100 MPa condition at 40C 

and above the 66 MPa condition at 50C.  A comparison of those cells that passed and failed is 

illustrated in Table 6.  All other cells did not complete the HPPC experiment.  Although not all 

damage increments have associated date to find parameters, it is apparent that any amount of 

damage can significantly limit cell performance and increase risk of malfunction. 
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Table 6. Effect of combined damage on cell reliability (green = pass, red = fail) 

 

 

Results for the cells that did pass the HPPC test can be seen in the comparative figures 

below of the negatively correlated trend of R0, R10, and C10 when damaged.  The Ohmic 

Resistance (R0) dependently increases with mechanical stress; Error! Reference source not 

found..  The charge-transfer resistance (R10) and the internal capacitance (C10) do not 

have a significant correlation based on stresses except for at the 133MPa condition; Figure 

40. Damage effect on Ohmic resistance (R0) 

 

 and Error! Reference source not found.. 
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Figure 40. Damage effect on Ohmic resistance (R0) 

 

 

Figure 41. Damage effect on charge-transfer resistance (R10) 
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Figure 42. Damage effect on internal capacitance (C10) 

 

Additional Figures and data can be found in the Appendix. 

 

5.3. Thermal Validation 

Thermal validation of li-ion cell performance was conducted by monitoring the temperature of a 

pouch cell while cycling over time and at various C-rates using a Xenics Gobi 640 thermal 

camera and an Arbin BT-2000 battery cycler.   

 

5.3.1 Pouch Cell Manufacturing 



 

 
 

86 

The pouch cell manufactured for this study is a 2500 mAh or 2.5 Ah li-ion cell were 

manufactured in a vacuum chamber and consist 30 active layers using a 129 mm wide x 77 mm 

tall copper anode coated with graphite, a 127 mm wide x 73 mm tall aluminum cathode coated 

with NCA, a Celgard 2325 polymer separator and 1.0M LiPF6 (lithium hexafluorophosphate ) in 

EC/PC/EMC/DMC (25/5/40/30) by weight percent using battery grade solvents. 

 

Three pouch cells were manufactured, a baseline and two cells with compressed separator 

material.  A compressed area of approximately 120 mm x 45 mm centered on each piece of the 

separator.  Only the first two increments of nominal compressive stress (33 MPa and 66 MPa) 

were selected for pouch cell thermal validation because more robust safety precautions for 

cycling pouch cells with stress levels of 100 Mpa and 133 Mpa were not established at the time.  

After the layers were assembled, the stack was placed inside the pouch, filled with electrolyte 

and sealed.  The seal was monitored for leaks before cycling.  Since the pouch material is 

reflective to infrared radiation, the outside of the cell was painted matte black to observe the 

temperature distribution on the surface of the pouch. 

 

5.3.2 Pouch Cell Cycling 

The cycling procedure for pouch cells was designed to study the thermal response due to various 

C-rates (1C, 3C, and 5C).  The first three cycles were used for formation at a 1C/1C 

charge/discharge rate up to 4.1 V down to 2.7 V, followed by cycle number 4 to 18 at 3C/3C, 

finishing with cycles 19 and 20 at 1C/5C both of which have a cut-off voltage of 2.1 V. 
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Specific locations on the pouch cell were monitored with digital markers in the Xenics Xeneth 

software.  Markers placement included the center of the cell, each of the four corners of the cell, 

an average of the area created by the four corners, and one marker on each positive and negative 

tab; as shown in Figure 43. 

 

Figure 43. Xeneth Tool Locations (A) center of cell, (B) bottom left, (C) bottom right, (D) 

top left, (E) top right, (F) positive tab, (G) negative tab, (H) ambient 

 

5.3.3 Pouch Cell Results 

After comparatively cycling cells with and without damaged separator material, observations 

were made of how damaged separator material effects the maximum temperature of the cell and 

at what periods of charge/discharge the maximum temperature is observed.  The maximum cell 
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temperatures occurred at the center of the cell reaching  26.8 C, 28.7 C, 31.7 C corresponding to 

the baseline, 33 MPa, (15 Kn) and 66 MPa(30 Kn) respectively.  For a complete list of 

experimental temperatures with predicted maximum temperatures for 100 Mpa and 133 Mpa 

compression corresponding to the numerical simulation results, see Table 7. The thermal trend 

during a representative series of cycles can be seen in Figure 44. 

 

Table 7. Pouch Cell Maximum Temperatures (where * = predicted values) 

 

 

 

Figure 44. Temperature distribution (A) at rest and (B) during discharge 

 

Through observation, the cell produces the most heat by the exothermic reactions during 

discharge to reach a maximum temperature.  During the charge cycle the reaction is slightly 

endothermic as the temperature decreases back to steady state and rapidly decreases near the end 

of the charge cycle.  This rapid increase in temperature is attributed to the relaxation polarization 

phenomenon while cycling from negative to positive current (positive heat flux) and from 
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positive to negative current (negative heat flux). The increases in maximum temperature with 

increases in mechanical stress can be contributed to the decrease in porosity of the separator.  

The change in porosity relates to heat generation by influencing the change in internal resistance 

and the ability of Li-ion charge transfer between the active layers, decreasing the charge 

capacity. 

6. Summary of Results and Contributions 

 

6.1.   Review of Conclusions 

Emerging needs for multi-physics and multi-scale simulation tools and mathematical models that 

can inform the battery design are addressed by this work.  Up to this point, we have defined the 

addressable need for improved lithium-ion battery design procedures focusing on safety.  As an 

extension of structural treatment of battery packs by Avdeev et al. [45], [46], the focus of this 

study is on multi-field analysis, adding thermal, electrical, and chemical analysis capabilities to 

the existing structural model with a focus on studying the impact of damage on battery variables 

and performance.  This is a relatively new concept in the study of lithium-ion battery modeling 

and management.  Contributing to an improved understanding of a numerical tools used for 

battery design is not the only implication of this work; it extends beyond current knowledge with 

a study of scalability and battery design characteristics that are critical to battery safety. 

 

Structural integrity of the battery cell is one primary concern.  The hypothesis was that structural 

damage will change the electrochemical and thermal response of the battery.  CT scanning was 

used for improved accuracy of a structural model by investigating internal deformation 



 

 
 

90 

measurements and for failure analysis by locating short circuit problem areas. The experimental 

procedure and detailed post-processing information is shared. 

 

Relative to the numerical model, a comparison of thermal response is conducted of both the un-

deformed and the deformed battery cells.  First, thermal simulations under normal operating heat 

generation and convection conditions were completed.   Additional analysis includes a study if 

the cell’s response to structural changes exhibiting internal/external short circuits and 

preliminary analysis of thermal runaway. 

   

Under normal thermal load and boundary conditions, the battery cell generated a maximum 

temperature of 320 K, increasing 22 degrees from an initial temperature of 298 K after 300 

seconds, which is similar to the maximum temperatures and predicted temperatures reached for 

the pouch cell thermal experiment.  Further experimental investigation of the temperature 

response of a live 6P cell is required for best accuracy and confirmation of the model validity 

before confirming that the simulation method is an adequate design tool. 

 

Short circuit conditions were assumed to be a localized source of heat generation, expelling the 

same amount of heat generation but at a single location. The maximum cell temperature after 300 

seconds was 298.4 K, a 0.3 K change from the initial temperature of 298.1 K. This number is 

surprisingly low for a structural failure that often leads to catastrophic thermal runaway.  After 

our initial findings we understand that modeling the thermal response of a short circuit condition 

will require additional investigation.  Specifically, to focus into the heat generation details: 

duration of discharge, discharge rate through short  
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A short circuit is created from the electrical nature of in the cell and ultimately leads to thermal 

issues. Preliminary development for incorporating thermal physics in the structural model have 

been conducted using existing heat generation data from literature.  The heat generation was 

provided as an input to the deformed cell geometry obtained from the refined structural 

simulation.  Irregular temperature distributions from a transient simulation indicate the 

importance of understanding the behavior of a full electric vehicle battery pack in a post-crash 

scenario. 

A robust multi-scale and multi-physics tool is powerful for battery design.  Such a resource 

provides an opportunity to design new batteries and optimize existing designs with a focus on 

safety.  Optimization of cell strength, cooling characteristics, and charge capacity are all 

potential possibilities for applications of this tool. 

 

A comprehensive study of a lithium-ion modeling, experimental, and numerical approach for the 

isolation of design variables is achieved.  Specifically, the porosity of the separator is studied 

with empirical modeling techniques in a multi-physics and multi-scale simulation environment, 

LS-Dyna. 

 

Our research showed that the structural and thermal stability of the separator in terms of porosity 

has an impact on the cycling performance.  Mechanical load and heat near the melting 

temperature of the separator closes pores, decreasing cycle life, capacity, and reliability of the 

cell.  Physical damage increases the risk of catastrophic failure and decreases the long-term 

performance of the cell. The data obtained in this study can be used to adjust existing models for 
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use in battery design and battery management systems. Also, and understanding of unhealthy 

operation can add value for condition monitoring of individual cells in the battery pack. For 

example, the trends observed for mechanical damage can add a predictive component to the SOH 

and useful life of the battery.  Specific parameters characterized for SOC, temperature and 

damage dependence in a single network ECM are the ohmic resistance (R0), charge-transfer 

resistance (R10), and the internal capacitance (C10).  The SOC and thermal dependence align 

with trends and nominal values found previously by other researchers, such as the nominal 

ohmic resistance found to be approximately 20 mΩ [57], [63], [67], [115], [122].  The damage 

dependence is a new relationship for ECM parameters.  The trend of internal resistance (R0) 

increases with damage while the other parameters R10 and C10 remain consistent.  It is the 

hypothesis that the parameters change with damage and that the risk of a performance decrease 

or electrochemical malfunction is attributed to a reduction in li-ion intercalation in the volume of 

the bulk electrolyte due to a decrease in porosity; ultimately, increasing the ohmic resistance, cell 

temperature and risk of thermal runaway when using constant charge/discharge cycling currents. 

 

It has been shown that mechanical and thermal damage to the cell, especially the separator layer, 

can create a risk of chronic and acute changes in battery response.  The separator porosity is a 

design variable that is experimentally studied and isolated in modeling efforts.  The focus on one 

design variable’s impact on the electrochemical-thermal response of the cell is a framework for 

future studies. Additional design variables of the separator which would make a logical next step 

and important contribution to the field are: separator thickness and pore size. 
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The extensive experimental investigation did not completely verify the simulation results.  The 

electrochemical results of voltage and temperature correlated within 12% of the experimental 

results. 

 

Even though the results did not closely correlate to experimental validation, future work can be 

done to improve the accuracy and capability of the simulation. 

 

6.2.   Future Work 

Future researchers can use this method as a guide for studies isolating damage effect of other 

components within the cell to improve upon the simulation model can include additional 

investigation of damaged parameters in the parametric environment with close attention to 

validating the parameters by other means than only HPPC itself, such as EIS.    

 

Additional parameter characterization experiments should be conducted in the future for 

validation of results.  When comparing the two sets of baseline HPPC experiments, the data used 

in this study cannot be compared at HPPC pulse steps below 30% SOC because some cells failed 

to operate under normal conditions.  For an illustration of the difference, see Figure 45 and 

Figure 46 of voltage during two sets of baseline (0 MPa) HPPC data. 

 



 

 
 

94 

 

Figure 45. Voltage vs SOC comparison of baseline HPPC experiments. 
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Figure 46. Raw HPPC data for all damaged cells.  Some cells do not have reliable data. 

 

In order to validate the thermal response fully, cycling representative cells manufactured with 

100 MPa and 133 MPa or equivalent mechanically damaged separators can provide missing 

thermal information.  Experimental electro-thermal data was obtained with 0kN, 15kN, and 

30kN pouch cells, but for safety concerns the 45kN and 60kN cells were never created. In the 

future, additional cells must be cycled for an accurate assessment of simulation results.  Another 

set of future experiments would be to verify simulation results of 45 kN and 60 kN crushed 

pouch cells and a cylindrical spirally wound cell.   
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APPENDIX 

 

Table 8. Thermal modeling research matrix. 
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Figure 47.  R0 vs SOC 0kN 

 

 

Figure 48.  R0 vs SOC 15kN 
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Figure 49.  R0 vs SOC 30kN 

 

 

Figure 50.  R0 vs SOC 45kN 
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Figure 51.  R0 vs SOC 60kN 
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Figure 52.  R10 vs SOC 0kN 

 

Figure 53.  R10 vs SOC 15kN 
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Figure 54.  R10 vs SOC 30kN 

 

Figure 55.  R10 vs SOC 45kN 
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Figure 56.  R10 vs SOC 60kN 

 

Figure 57.  C10 vs SOC 0kN 
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Figure 58.  C10 vs SOC 15kN 

 

Figure 59.  C10 vs SOC 30kN 
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Figure 60.  C10 vs SOC 45kN 

 

Figure 61.  C10 vs SOC 60kN
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