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ABSTRACT 

SCANNING TUNNELING MICROSCOPY STUDIES OF SUPERCONDUCTING SINGLE 

LAYER IRON SELENIDE ON STRONTIUM TITANATE  

by 

Zhuozhi Ge 

The University of Wisconsin – Milwaukee, 2018 

Under the Supervision of Professor Lian Li and Professor Michael Weinert 

The search for high temperature superconductivity has been a prominent topic in the field of 

condensed matter physics ever since the discovery of this novel phenomenon more than 100 

years ago. In addition to the search for new materials, interfacial superconductivity has shown 

great potential as demonstrated recently in monolayer FeSe grown on SrTiO3 (STO) (001) 

substrate, where superconducting transition temperature (𝑇𝑐) has been enhanced by more than an 

order of magnitude compared to the bulk value. The uniqueness of this approach is the direct 

placement of the superconducting layer on a secondary substrate, which facilitates the 

independent control of interfacial interactions by methods such as electrical doping and optical 

gating. In addition, due to low dimensional nature of single layer film, quantum size effect is also 

expected to modify the superconductivity that allows for further tailoring. However, much is still 

unknown in this single layer FeSe/STO system.  In particular, the substrate doping from the STO 

leads to distinct Fermi surface and band structure for the FeSe, giving rise to the pairing 

symmetry that is different from most of the iron pnictide superconductors. Furthermore, the 

interplay between magnetism and superconductivity at the single layer limit in iron 

chalcogenides also remains largely unexplored.  
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In this dissertation, I report on scanning tunneling microscopy/spectroscopy (STM/S) 

studies of single layer FeSe films grown on STO substrates using molecular beam epitaxy 

(MBE), focusing on the aspects discussed above. By mapping the spatially resolved 

superconducting gaps near the edges of single layer FeSe as a function of the edge orientations, I 

obtain evidence for sign-changing d wave pairing symmetry in single layer FeSe/STO. By 

further synthesizing well-defined rectangular nanoribbons with precisely controlled width, I 

establish the lowest length limit for superconducting single layer FeSe nanoribbons. To 

investigate the interplay between magnetism and superconductivity, I prepared single layer 

FeTe1-xSex films with different Se concentrations. A one-dimensional superconducting channel is 

observed on the edge of magnetically ordered single layer FeTe1-xSex films with Se concentration 

below 10%. This result suggests that the edge of the FeTe1-xSex (x < 0.1) film may help to 

destabilize the antiferromagnetic ordering and induce superconductivity. To identify the role of 

the interface, I prepared STO substrates with coexisting TiO2 and SrO terminations for the FeSe 

growth, and found that the superconducting gap of single layer FeSe grown on SrO is ~ 30% 

smaller than that on TiO2, confirming the critical role of the TiO2 termination in enhancing 

superconductivity.  Those findings contribute significantly to the understanding of enhanced 

superconductivity in the FeSe/STO system, providing crucial insights into the design of 

interfacial control of superconductivity in the iron chalcogenide/oxide system.  
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Chapter 1 Introduction 

Superconductivity has been an active field of research since its discovery. Recently, the 

investigation on the newly discovered iron-based superconductors (FeSCs) family, especially 

single layer iron selenide on strontium titanate, significantly improves our understanding of this 

intriguing phenomenon. Section 1.1 introduces conventional superconductors, and the Bardeen-

Cooper-Schrieffer theory of superconductivity. Section 1.2 summarizes recent work on epitaxial 

single layer iron selenide (FeSe) on strontium titanate (SrTiO3) (001). Section 1.3 is the outline 

of the dissertation. 

 

1.1 Conventional Superconductors 

1.1.1 The Basic Phenomena 

The phenomenon of superconductivity was first observed in mercury by Dutch physicist 

Heike Kamerlingh Onnes in 19111, just 3 years after he had first liquefied helium, which gave 

him the refrigeration technique to reach temperatures of a few degrees Kelvin. When he cooled 

mercury to the temperature of liquid helium, its resistance suddenly dropped to zero (Fig. 1.1a). 

The disappearance of electrical resistance below a critical temperature 𝑇𝑐, also known as perfect 

conductivity, is the first hallmark of superconductivity. This infinite conductivity implies that if a 

current were passed through a superconductor, the current would follow forever without any 

dissipation. 
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Figure 1.1 a, Zero resistivity below the critical temperature in Hg1. b, Schematic of the Meissner 

effect2. 

The next hallmark to be discovered was perfect diamagnetism (Fig. 1.1b), found in 1933 

by Meissner and Ochsenfeld3. They found that not only a magnetic field is excluded from 

entering a superconductor, but also that a field in an originally normal sample is expelled when 

dropping the temperature through 𝑇𝑐. The existence of such a reversible Meissner effect implies 

that superconductivity will be destroyed by a critical magnetic field 𝐻𝑐. 

The perfect diamagnetism is more fundamental for a superconductor than the perfect 

conductivity. For a perfect conductor, the superconducting current density in an electric field �⃑�  is 

given by 

𝑗𝑠⃑⃑ ̇ =
𝑛𝑠𝑒

2

𝑚
�⃑�  

  (1.1) 

where 𝑛𝑠 is the number density of superconducting electrons. Plugging into Faraday equation 

gives 
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∇ ×
𝜕𝑗𝑠⃑⃑ 

𝜕𝑡
= −

𝑛𝑠𝑒
2

𝑐𝑚

𝜕�⃑� 

𝜕𝑡
 

 (1.2) 

From Ampere law 

∇ × �⃑� =
4𝜋

𝑐
𝑗𝑠⃑⃑  

 (1.3) 

we obtain 

∇ × ∇ ×
𝜕�⃑� 

𝜕𝑡
= −

4𝜋𝑛𝑠𝑒
2

𝑚𝑐2

𝜕�⃑� 

𝜕𝑡
 

 (1.4) 

Applying the identity ∇ × ∇ × 𝐶 = ∇(∇ ∙ 𝐶 ) − ∇2𝐶  and Gauss’s law ∇ ∙ �⃑� = 0, we have 

∇2 (
𝜕�⃑� 

𝜕𝑡
) = 𝜆−2 (

𝜕�⃑� 

𝜕𝑡
) 

 (1.5) 

where 

𝜆 = √
𝑚𝑐2

4𝜋𝑛𝑠𝑒2
 

 (1.6) 

 Solving the differential equation (1.5) in 𝑥 direction, we get an exponential decay of 

𝜕�⃑� 𝜕𝑡⁄  with 𝑥, 
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𝜕�⃑� 

𝜕𝑡
= (

𝜕�⃑� 

𝜕𝑡
)

𝑥=0

𝑒−𝑥 𝜆⁄  

 (1.7) 

This equation indicates the magnetic field inside a perfect conductor is constant (no change with 

time). However, considering a superconductor, with a magnetic field 𝐵0
⃑⃑⃑⃑  applied above 𝑇𝑐. If we 

cool down the system below 𝑇𝑐, the Meissner effect says the magnetic field inside the 

superconductor will vanish to zero, rather than remain 𝐵0
⃑⃑⃑⃑  for a perfect conductor. This tells us 

that a superconductor is more than a perfect conductor due to the Meissner effect. 

1.1.2 Bardeen-Cooper-Schrieffer Theory 

After the experimental discovery of superconductivity, tremendous effort has been put in 

search of a microscopic theory. In 1935, brothers Fritz and Heinz London developed the London 

equations to describe the magnetic field penetration length4. Although qualitatively describing 

well the perfect conductivity and perfect diamagnetism, the London equations overestimated the 

experimental measurements. The Ginzburg-Landau theory in 1950, was a phenomenological 

theory using the variational principle of quantum mechanics5. It was used to calculate 

macroscopic quantities of a superconductor assuming the phase transition to be of second order. 

However, it did not explain the foundation of superconductivity. It was not until almost half a 

century after the discovery of superconductivity, at 1957, that the first microscopic theory, 

describing the conceptual and mathematical foundation for conventional superconductivity, was 

established by Bardeen, Cooper and Schrieffer6. 

The Bardeen-Cooper-Schrieffer (BCS) theory assumes that superconductivity arises 

when the attractive Cooper pair interaction is formed between electrons. A Cooper pair is an 
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electron-electron bound state mediated by the exchange of phonons. As demonstrated in Fig. 1.2, 

an electron (electron 1) moving through a crystal lattice will attract positive ions in the lattice 

and the lattice will deform slowly in the time scale of the electron. This positive charge of the 

lattice deformation (phonon) can attract another electron (electron 2) of opposite spin and 

momentum. Due to the retardation, the electron-electron Coulomb repulsion may be neglected. 

The net effect of the phonon is to create an attractive interaction between two electrons and form 

electron-electron Cooper pairs. These Cooper pairs then form a coherent macroscopic condensate 

ground state, which displays a gapped density of states spectrum and perfect diamagnetism. 

 

Figure 1.2 Schematic of the formation of a Cooper pair7. 

The physical foundation of the BCS theory can be illustrated by looking at the formation 

of a single Cooper pair via attractive interaction. The Schrodinger equation of two electrons 𝑚 at 

𝑟1⃑⃑⃑   and 𝑟2⃑⃑  ⃑ with an attractive potential 𝑉(𝑟1⃑⃑⃑  − 𝑟2⃑⃑  ⃑) in the center of mass coordinate system is 
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[−
ℏ2∇𝑅

2

2𝑚∗
−

ℏ2∇𝑟
2

2𝜇
+ 𝑉(𝑟 )]𝜓(𝑟 , �⃑� ) = 𝐸𝜓(𝑟 , �⃑� ) 

 (1.8) 

where �⃑� =
1

2
(𝑟1⃑⃑⃑  − 𝑟2⃑⃑  ⃑) is the center of mass, 𝑟 = 𝑟1⃑⃑⃑  − 𝑟2⃑⃑  ⃑ is the relative displacement, 𝑚∗ = 2𝑚 is 

the total mass and 𝜇 = 𝑚 2⁄  is the reduced mass. Separating the variables as 𝑉(𝑟 ) is independent 

of �⃑� , the solution can be written as 

𝜓(𝑟 , �⃑� ) = 𝜙(𝑟 )𝑒𝑖�⃑⃑� ∙�⃑�  

 (1.9) 

where �⃑⃑�  is the momentum of the center of mass. Then we have 

[−
ℏ2∇𝑟

2

2𝜇
+ 𝑉(𝑟 )]𝜙(𝑟 ) = �̃�𝜙(𝑟 ) 

 (1.10) 

where �̃� = 𝐸 −
ℏ2𝐾2

2𝑚∗ . The system has the lowest energy 𝐸 when �⃑⃑� = 0 (the two electrons have 

opposite momenta). Hence, we consider 𝐸 = �̃� for the following. 

 Converting the Schrodinger equation to the momentum space by Fourier transform, we 

have 

∫𝑑3𝑟 𝑉(𝑟 )𝜙(𝑟 )𝑒−𝑖�⃑� ∙𝑟 = (𝐸 −
ℏ2𝑘2

𝑚
)𝜙(�⃑� ) 

 (1.11) 

Defining the scattering vector 𝑞 = �⃑� − 𝑘′⃑⃑  ⃑ and free electron energy 𝜀𝑘 =
ℏ2𝑘2

2𝑚
, then we have 
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∫
𝑑3𝑘′

(2𝜋)3
𝑉(𝑞 )𝜙(𝑘′⃑⃑  ⃑) = (𝐸 − 2𝜀𝑘)𝜙(�⃑� ) 

 (1.12) 

where 𝑉(𝑞 ) = ∫𝑑3𝑟 𝑉(𝑟 )𝑒−𝑖�⃑� ∙𝑟 . It gives 

Δ(�⃑� ) = −∫
𝑑3𝑘′

(2𝜋)3

𝑉(�⃑� − 𝑘′⃑⃑  ⃑)

2𝜀𝑘′ − 𝐸
Δ(𝑘′⃑⃑  ⃑) 

 (1.13) 

where Δ(�⃑� ) = (𝐸 − 2𝜀𝑘)𝜙(�⃑� ) is the modified wavefunction. 

Taking the mean field approximation, considering an attractive potential within the 

Debye window 

𝑉(�⃑� − 𝑘′⃑⃑  ⃑) = {
−𝑉0          for 0 < 𝜀𝑘, 𝜀𝑘′ < ℏ𝜔𝐷

0             otherwise                    
 

 (1.14) 

where 𝜔𝐷 is the Debye frequency. Here we look for a solution with constant Δ(�⃑� ) = Δ within 

the BCS theory. This implies an even spatial wavefunction and the spins of the two electrons 

must be opposite. Using the identity 

∫𝑔(𝜀)𝑑𝜀 = ∫
𝑑3𝑘

(2𝜋)3
 

 (1.15) 

where 𝑔(𝜀) =
√2𝑚3 2⁄

ℏ3𝜋2 √𝜀 is the density of states (note that we do not have the spin factor of 2 

because the spins of the two electrons are antiparallel), equation (1.13) becomes 
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Δ = ∫ 𝑔(𝜀)𝑑𝜀
ℏ𝜔𝐷

0

𝑉0Δ

2𝜀 − 𝐸
 

 (1.16) 

which gives  

1 =
√2𝑉0𝑚

3 2⁄

ℏ3𝜋2
[√ℏ𝜔𝐷 − √

−𝐸

2
tan−1 (√

2ℏ𝜔𝐷

−𝐸
)] 

 (1.17) 

The minimum value of 𝑉0 for a bound state (𝐸 → 0−) is  

𝑉0,𝑚𝑖𝑛 =
ℏ5 2⁄ 𝜋2

𝑚3 2⁄ √2𝜔𝐷

 

 (1.18) 

This implies that we need a minimum strength of attractive interaction to form a Cooper pair.  

However, in the actual material, only the electrons near the Fermi level will be affected 

by the attractive interaction. We then consider another attractive potential for the electrons above 

the Fermi level 

𝑉(�⃑� − 𝑘′⃑⃑  ⃑) = {
−𝑉0          for 𝜀𝐹 < 𝜀𝑘, 𝜀𝑘′ < 𝜀𝐹 + ℏ𝜔𝐷

0               otherwise                              
 

 (1.19) 

then equation (1.13) becomes 

Δ = ∫ 𝑔(𝜀)𝑑𝜀
𝜀𝐹+ℏ𝜔𝐷

𝜀𝐹

𝑉0Δ

2𝜀 − 𝐸
 

 (1.20) 
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Approximating constant density of states near 𝜀𝐹 within the Debye window, equation (1.20) 

becomes 

2

𝑉0𝑔(𝜀𝐹)
= ln (

2𝜀𝐹 − 𝐸 + 2ℏ𝜔𝐷

2𝜀𝐹 − 𝐸
) 

 (1.21) 

Defining the binding energy 𝐸𝑏 

𝐸𝑏 ≡ 2𝜀𝐹 − 𝐸 =
2ℏ𝜔𝐷

𝑒2 𝑉0𝑔(𝜀𝐹)⁄ − 1
≈ 2ℏ𝜔𝐷𝑒−2 𝑉0𝑔(𝜀𝐹)⁄ > 0 

 (1.22) 

Here, a two-electron bound state will be formed (𝐸 < 2𝜀𝐹) near the Fermi level no matter how 

small the attractive interaction 𝑉0 is. Comparing with the free electron case where a minimum 

attractive potential is required, it indicates that the existence of a well-defined Fermi surface is 

key to the formation of Cooper pairs. 

The weak phonon-mediated attractive interaction is sufficient to destabilize the Fermi sea 

and promote the formation of a Cooper pair (�⃑� ↑, −�⃑� ↓). Many electrons can participate in this 

process and many Cooper pairs are formed, yielding a new state, the superconducting phase, of 

the system.  

For a superconducting system, the modified wavefunction Δ(�⃑� ) is given by (similar to 

equation (1.13)) 

Δ(�⃑� ) = −∑
𝑉(�⃑� − 𝑘′⃑⃑  ⃑)Δ(𝑘′⃑⃑  ⃑)

2𝐸𝑘′
tanh (

𝐸𝑘′

2𝑘𝐵𝑇
)

𝑘′⃑⃑⃑⃑ 

 

 (1.23) 
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where 𝐸𝑘 = √𝜉𝑘
2 + Δ(�⃑� )

2
 and 𝜉𝑘 = 𝜀𝑘 − 𝜀𝐹. Δ(�⃑� ) is also called the gap function, because even 

at the Fermi level, the energy spectrum of a superconductor has a gap of size |Δ(�⃑� )|. In general, 

the gap function Δ(�⃑� ) depends on �⃑� . With different symmetries of the gap function, we can 

define superconductors of different pairing symmetries, e.g. s wave superconductors with 

constant Δ(�⃑� ) = Δ and d wave superconductors where Δ(�⃑� ) changes sign for every rotation by 

𝜋 2⁄ . Within the BCS theory, all conventional superconductors are s wave pairing. The excitation 

energy, which is the minimum energy to break a Cooper pair, is Δ𝐸𝑚𝑖𝑛 = 2Δ. Again, taking the 

mean field approximation, we obtain 

1 = 𝑉0𝑔(𝜀𝐹)∫
𝑑𝜉

√𝜉2 + Δ2
tanh(

√𝜉2 + Δ2

2𝑘𝐵𝑇
)

ℏ𝜔𝐷

0

 

 (1.24) 

At temperature 𝑇 = 0 

Δ0≡ Δ(𝑇 = 0) ≈ 2ℏ𝜔𝐷𝑒−1 𝑉0𝑔(𝜀𝐹)⁄  

 (1.25) 

The critical temperature 𝑇𝑐 is where a non-zero gap first appears. Setting Δ→ 0, we have 

𝑇𝑐 = 1.14
ℏ𝜔𝐷

𝑘𝐵
𝑒−1 𝑉0𝑔(𝜀𝐹)⁄  

 (1.26) 

Combining equations (1.25) and (1.26) gives the universal ratio for conventional 

superconductors 



11 
 

Δ0

𝑘𝐵𝑇𝑐
≈ 1.76 

 (1.27) 

 According to the BCS theory, conventional superconductors are characterized by two 

important properties, the presence of the energy gap Δ and the involvement of phonons. The 

energy gap is manifest in the low temperature specific heat and density of states measurements. 

For a fermionic gas the specific heat 𝐶 =
𝑇

𝑉

𝑑𝑆

𝑑𝑇
 can be calculated from the entropy 

𝑆 = −𝑘𝐵 ∑[(1 − 𝑓𝑘) ln(1 − 𝑓𝑘) + 𝑓𝑘 ln 𝑓𝑘]

𝑘

 

 (1.28) 

where 𝑓𝑘 = 1 (1 + 𝑒𝐸𝑘 𝑘𝐵𝑇⁄ )⁄  is the Fermi-Dirac distribution. At the superconducting transition 

temperature, the specific heat is discontinuous 

Δ𝐶 = 𝐶𝑠 − 𝐶𝑛 = −𝑔(𝜀𝐹) (
𝑑Δ2

𝑑𝑇
)

𝑇=𝑇𝑐

 

 (1.29) 

This is demonstrated by the heat capacities of superconducting aluminum in Fig. 1.3a8. In the 

scanning tunneling spectroscopy measurement, the gap in the density of states of 

superconducting NbS2 is directly shown in Fig. 1.3b9. From equation (1.31), the transition 

temperature depends linearly on the Debye frequency, which is proportional to the inverse square 

root of the ionic mass, i.e. 𝑇𝑐~𝜔𝐷~𝑀−1 2⁄ . This leads to the isotope effect that the 

superconducting transition temperature varies with the isotopic mass, which has been observed 

in mercury (Fig. 1.3c)10,11. 



12 
 

 

Figure 1.3 a, Heat capacities of Al at the normal phase (linear) and the superconducting phase 

(nonlinear)8. b, STS spectrum taken on superconducting NbS2 at 0.1 K9. c, Superconducting 

transition temperature of Hg as a function of isotope mass12. 

 

1.2 Single Layer FeSe on SrTiO3 

1.2.1 Iron-based Superconductors 

 About three decades after the BCS theory was established, cuprate superconductors are 

discovered with 𝑇𝑐 up to 153 K13,14, which breaks the McMillian limit of 40 K of conventional 

superconductors. The discovery of cuprates starts a new chapter, unconventional 

superconductivity (or high temperature superconductivity), in the research history of 

superconducting science. Different from the conventional BCS superconductors, unconventional 

superconductors have higher 𝑇𝑐, which potentially can reach room temperature, and the 

unconventional Cooper pairs are not mediated by phonons15. Physicists have been looking for 

various unconventional superconductors with higher 𝑇𝑐 experimentally (Fig. 1.4) and trying to 

establish a microscopic theory for unconventional electron-electron pairing theoretically. 
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Figure 1.4 Timeline of superconductors16. 

In 2008, superconductivity at 26 K in LaOFeAs with primitive tetragonal structure was 

reported by Hosono’s group17. This is not the first report of superconducting compounds 

containing iron18, but it is the cutting-edge work which leads to the build-up of the iron-based 

superconductors (FeSCs) family. Almost immediately after the LaOFeAs, higher 𝑇𝑐 of ~ 56 K 

was observed in other iron compounds via doping with different rare-earth ions19-21. With the 

discovery of more and more iron-containing superconductors by playing with the chemical 

pressure and physical pressure, the high temperature FeSCs family with two branches of the iron 

pnictides (FePn, where Pn is As or P) and the iron chalcogenides (FeCh, where Ch is S, Se or Te) 

is established22,23. In addition to the potential of finding higher 𝑇𝑐 materials, FeSCs are 

underlyingly interesting because it implies that the high temperature superconducting pairing 

mechanism could be related to the coexistent magnetism due to the presence of iron in the phase 

diagram24. 
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 There are five classes of iron-based superconducting compounds, all with tetragonal 

structures at room temperature22 (Fig. 1.5). All these compounds share a common quasi-two-

dimensional layer consisting of a square lattice of iron atoms tetragonally connected with 

pnictide or chalcogenide atoms. It is widely accepted this common FePn/Ch trilayer is critical to 

support high temperature superconductivity in FeSCs22,23. Hence the 11-type iron chalcogenide 

(FeS, FeSe and FeTe), which has the simplest crystal structure among FeSCs, is a key system to 

investigate the mechanism of iron-based superconductivity25. 

 

Figure 1.5 The five classes of FeSCs22. 

1.2.2 Interface Superconductivity in Single Layer FeSe on SrTiO3 

FeSe is an ideal material to investigate iron-based superconductivity. The tetragonal 

phase α-FeSe with PbO structure (space group: P4/nmm) exhibits bulk superconductivity at 8 
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K26. This 𝑇𝑐 can be increased by applying pressure27,28, intercalating alkali metal atoms29-31 or 

electrical gating32,33. More surprisingly, in 2012, scanning tunneling microscopy (STM) 

measurements from Xue’s group revealed a superconducting-like gap up to 20 meV in single 

layer FeSe films grown on SrTiO3(001) (STO) substrates by molecular beam epitaxy34 (MBE) 

(Fig. 1.6), suggesting dramatically enhanced superconductivity in this heterostructure. 

Considering the 2.2 meV gap of bulk FeSe crystal35 and assuming the same ratio between the 

superconducting gap and the transition temperature, the 𝑇𝑐 of single layer FeSe/STO would be 

estimated of ~ 80 K. Another in situ transport study reported a transition temperature even above 

100 K36, indicating that single layer FeSe/STO has the highest 𝑇𝑐 among all FeSCs. As a 

comparison, MBE grown single layer FeSe on bilayer graphene does not exhibit 

superconductivity cooled down to as low as 2.2 K37. It suggests that the STO substrate is critical 

to the 𝑇𝑐 enhancement. 

Ex situ electrical transport and diamagnetic measurements have also been conducted to 

confirm the high-temperature superconducting nature of single layer FeSe/STO38. However, the 

𝑇𝑐 by ex situ measurement is not as high as expected from the in situ STM34 or angle-resolved 

photoemission spectroscopy39 (ARPES) measurements. In ex situ measurements, the single layer 

FeSe films are always capped by multiple FeTe protection layers to prevent direct air exposure. 

This FeTe capping layer could reduce the charge doping level in the FeSe films. What’s more, 

the magnetic structure of FeTe40 is different from the FeSe layer41, and this difference may have 

a negative influence on superconductivity. Therefore, in situ techniques are preferred for 

investigation on single layer FeSe/STO. 
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Figure 1.6 a, Structure (side view) of single layer FeSe/STO system34. b, STM image of single 

layer FeSe/STO. The dark contrast lines are grain boundaries34. c, dI/dV spectrum taken on 

single layer FeSe/STO at 4.2 K, with a superconducting-like gap34. d, dI/dV spectrum taken on 

bilayer FeSe/STO at 4.2 K, with a semiconducting-like behavior34. 

1.2.3 Structural and Electronic Properties 

The crystal structure of single layer FeSe is shown in Fig. 1.7a. Each Fe atom is 

tetragonally connected with four Se atoms, among which two of the Se atoms are above the Fe 

plane and the other two Se atoms are below the Fe plane. Due to this staggering, the primitive 

unit cell contains two Fe atoms, referred to as two iron unit cell (2 Fe UC). However, because the 

electrons contributing to the superconductivity in FeSe are dominantly from the Fe 3d orbitals, 

one may neglect the Se layers and focus on the Fe plane, where one iron unit cell (1 Fe UC) is 

used. The corresponding one iron and two iron Brillouin zones (BZ) are shown in Fig. 1.7b. 
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Figure 1.7 a, Crystal structure of single layer FeSe. The upper is side view and the lower is top 

view. Both one iron unit cell and two iron unit cell are illustrated42. b, One iron and two iron 

Brillouin zones in the momentum space42. 

The interface structure between FeSe and STO could be complicated based on several 

experimental indications. The first indication is the 2x1 ordering in single layer FeSe/STO from 

STM topographic images34,43 (Fig. 1.8a), which is unexpected because both the FeSe and the 

STO crystal have 4-fold symmetry. Note that this 2x1 ordering has not been universally 

observed44. A more direct evidence of the complex interface structure comes from transmission 

electron microscopy (TEM) measurements, as shown in Fig. 1.8b, where a double TiOx 

termination was imaged at the interface45. This double TiOx structure was also resolved from X-

ray diffraction and electron diffraction experiments46. The extra TiOx termination could impact 

superconductivity in FeSe by facilitating the charge transfer from the STO oxygen vacancies46, 

modifying the electrostatic potential47 or changing the magnetic properties48. 

The Fermi surface and band structure of single layer FeSe/STO were revealed by ARPES 

measurements39,49,50, as shown in Fig. 1.9a. Only electron pockets at the BZ corners (M points) 
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were observed, while no Fermi surface is present at the BZ center (Γ point). This type of Fermi 

surface is similar to that of alkali metal doped FeSe51. Compared with the Fermi surface of bulk 

FeSe52,53, which has a hole pocket at the Γ point, as well as electron pockets at M points, the 

corresponding hole pocket at the Γ point sinks ~80 meV below the Fermi level in single layer 

FeSe/STO (Fig. 1.9b). Measuring the size of the electron pocket at the Γ point yields a carrier 

density of 0.1 electrons per iron atom, indicating the single layer FeSe film is electron doped. 

 

Figure 1.8 a, STM image of single layer FeSe with two grains. The left grain has 2x1 ordering 

along the [100] direction and the right grain has 2x1 ordering along the [010] direction43. b, TEM 

image of single layer FeSe on STO, revealing a double TiOx structure45. 

In unconventional superconductors, Cooper pairs are usually formed via quantum 

fluctuations, other than phonons in the case of BCS superconductors15. Considering the nature of 

the multiband Fermi surface, various pairing symmetries, in addition to s wave with a constant 

sign, are possible for FeSCs. So far, the most widely accepted scenario for iron pnictides is s+- 

pairing54 (Fig. 1.9c), which is mediated by repulsive spin fluctuations from scattering between 

the electron pockets at the BZ corners and the hole pocket at the BZ center (Fig. 1.9d). However, 

for single layer FeSe/SrTiO3, the s+- pairing symmetry is inconsistent with the Fermi surface 

which has only electron pockets and no hole pockets. Taking account of the fully opened gaps by 
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STM and ARPES measurements, four primary pairing candidates involving only electron 

pockets are proposed for single layer FeSe/STO: plain s wave55-57, nodeless d wave58-60, bonding-

antibonding s wave61, and incipient s+- wave62. More investigations, especially by phase 

sensitive probes, will help to determine the gap structure. 

 

Figure 1.9 a, Fermi surface of single layer FeSe/STO at 20 K from ARPES measurement49. b, 

Band structure along the cut 1 (left panel) and along the cut 2 (right panel)49. c, Schematic of 

sign changing s+- wave pairing. The electron pocket at M is blue and positive, and the hole 

pocket at Γ is brown and negative. d, Fermi surface of (Ba0.6K0.4)Fe2As2 at 14 K from ARPES 

measurement49. 

1.2.4 Mechanisms for 𝑻𝒄 Enhancement  

After the discovery of enhanced interface superconductivity in single layer FeSe/STO, 

several factors have been proposed for the 𝑇𝑐 enhancement: the tensile strain due to the lattice 
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mismatch between FeSe and STO, the charge doping from the STO substrate, and the electron-

phonon coupling between the electrons in FeSe and the phonons in STO. 

The strain is an important factor to tune 𝑇𝑐 for FeSCs63,64. The in-plane lattice constant is 

3.77 Å for FeSe65 and 3.91 Å for SrTiO3(001)66 and there is a 3.7% lattice mismatch. Atomic 

resolution STM images have shown that the lattice constant of epitaxially grown single layer 

FeSe films is extended to 3.9 Å50, following the lattice constant of the STO substrate, indicating 

the existence of tensile strain in the FeSe films. To study the role of strain on superconductivity, 

single layer FeSe films were grown on different substrates with various lattice constants67-69. It 

turns out that the 𝑇𝑐 just fluctuates slightly around 60 to 70 K changing the tensile strain from 

0.4% to 6%, showing no rigid dependence on the substrate lattice constant. Therefore, the 

influence of tensile strain on superconductivity in single layer FeSe/STO is not significant. 

Carrier density is another factor that plays a fundamental role in superconductivity. In the 

BCS model, equation (1.26) shows that the 𝑇𝑐 increases with higher density of states at the Fermi 

level. For iron-based superconductors, the situation is more complicated. The phase diagram of 

𝑇𝑐 versus the dopant concentration usually exhibits a dome-like shape22. Nevertheless, optimal 

amount of charge doping can increase the transition temperature. For single layer FeSe/STO, the 

significant role of charge doping is first revealed by studying the post-annealing process39. The 

as-grown single layer FeSe/STO always behaves like an insulator and subsequent annealing is 

necessary to induce superconductivity. During annealing, the electron pockets at the M points 

gradually sinks and enlarges, indicating the charge carrier (electron) concentration is increased. 

Hence the emergence of superconductivity is related with the increase of the charge doping level. 

Another experimental indication is the observation of potassium doping induced 

superconductivity of ~48 K in three layers of FeSe films on STO70. In the FeSe/STO system, 
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only the single layer FeSe film is superconducting and multilayer FeSe films exhibit 

semiconducting-like behavior. It is suspected that the charge doping from the STO substrate is 

dominant in the first layer and the carrier concentration in the upper FeSe layers are too low to 

support superconductivity. By depositing K atoms on top of trilayer FeSe/STO, the charge 

concentration in the upper FeSe layers are increased, thus superconductivity is then realized. 

ARPES results also demonstrate that after K doping the Fermi surface of multilayer FeSe films 

become similar to that of single layer FeSe, with only electron pockets at the M points70. 

Therefore, charge doping plays an important role for the 𝑇𝑐 enhancement in single layer 

FeSe/STO. 

However, the highest 𝑇𝑐 of doping induced superconductivity in multilayer FeSe (~50 K) 

is lower than that of single layer FeSe/STO (above 60 K), implying that the STO substrate plays 

a critical role in boosting the 𝑇𝑐 more than providing charge carriers. Interface-enhanced 

electron-phonon coupling has been suggested as an origin of the dramatic 𝑇𝑐 enhancement in 

single layer FeSe/STO71-73. The experimental evidence first comes from the observation of 

replica bands in single layer FeSe/STO by high-resolution ARPES measurements74. As shown in 

Fig. 1.10a, the primary bands A and B at the M point have two extra fainter replicas A′ and B′ 

with an energy shift of ~100 meV. The band offset of ~100 meV is identified as the surface 

phonon mode energy of the Ti-O bonds in the STO substrate71. The shape of the replica bands is 

identical to their corresponding main bands. In addition, the replica bands persisted at least to 

120 K (Fig. 1.10b), well above the superconducting transition temperature. Moreover, such 

replica bands only exist in the single layer FeSe film and are absent in thicker films (Fig. 1.10c), 

indicating an interfacial origin of this feature. For comparison, superconducting 𝑇𝑐 of 60 K has 

also been observed in single layer FeSe grown on TiO2 substrate, in which the replica bands 
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were detected as well72,75. However, such high 𝑇𝑐 of 60 K has never been reached in any FeSe 

based system without additional coupling to STO or TiO2 substrates. The coincidental 

observation of a high 𝑇𝑐 and the replica bands suggests that the coupling between the FeSe 

electrons and the Ti-O phonons might be responsible for the enhanced superconductivity. 

Despite all the advances that have been made, further investigations are still needed to uncover 

the 𝑇𝑐 enhancement mystery in single layer FeSe/STO. 

 

Figure 1.10 a, ARPES measurement of the band structure of single layer FeSe/STO along a 

high-symmetry cut centered at the M point taken at 16 K, revealing the existence of replica 

bands74. b, The replica bands persist in the M cut at 120 K74. c, The replica bands are absent in 

the M cut on bilayer FeSe/STO74. 

 

1.3 Dissertation Outline 

This dissertation focuses on scanning tunneling microscopy studies of superconductivity 

in single layer FeSe grown on SrTiO3 substrates by molecular beam epitaxy, and is organized as 

follows:  
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Chapter 2 is a brief description of the experimental techniques, including ultrahigh 

vacuum system, molecular beam epitaxy growth method and scanning tunneling 

microscopy/spectroscopy.  

Chapter 3 presents STM/S investigation of single layer FeSe film with edges of different 

orientations and roughness. Spatially resolved tunneling spectra are taken on various edges to 

explore the influence of edge scattering on superconductivity. Then the pairing symmetry in 

single layer FeSe is investigated by analyzing the extrapolation length. 

Chapter 4 presents work on single layer FeSe nanoribbons with well-controlled width. 

The superconducting gap as a function of the FeSe ribbon width is obtained and the critical 

ribbon width, below which superconductivity is suppressed, is determined. Possible mechanisms 

for the ribbon width dependent pair breaking will also be discussed. 

Chapter 5 presents the research of single layer FeTe1-xSex films with various Se 

concentrations and well-defined edges. By comparing the tunneling spectra taken on the edge 

and in the bulk, a one-dimensional superconducting channel is observed on the edge of FeTe1-

xSex with Se concentration below 10%. Results of density functional theory (DFT) calculations 

are utilized to explore the origin of the edge superconductivity. 

Finally, Chapter 6 presents a summary of the main findings presented in this dissertation 

first, followed by preliminary work on FeSe/STO interface engineering, and local 

superconducting gaps on bilayer FeSe. 
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Chapter 2 Experimental Techniques 

The research was carried out in an ultrahigh vacuum system with combined in-situ 

capabilities of material growth and property characterization. The involved techniques were 

ultrahigh vacuum (UHV), molecular beam epitaxy (MBE), and scanning tunneling 

microscopy/spectroscopy (STM/S).  This chapter provides the basic working principles of those 

techniques. Section 2.1 covers ultrahigh vacuum system. Section 2.2 presents molecular beam 

epitaxy. Section 2.3 describes scanning tunneling microscopy /spectroscopy. Section 2.4 

provides details of a home-built MBE-STM system. 

 

2.1 Ultrahigh Vacuum System 

It is critical to keep the experimental system under vacuum to prevent contamination 

from other molecules for surface science research. An important concept to define the degree of 

vacuum is the monolayer formation time, which is the time required for a clean surface to be 

covered by one-layer thickness of gas molecules. For a surface with the sticking coefficient of 1, 

it takes only one hour to absorb one layer of molecules even under a vacuum of 10-9 Torr (Fig. 

2.1). Therefore, to maintain a clean sample surface longer than the usual time for laboratory 

measurements to study the real surface properties, the experiment should be done under ultrahigh 

vacuum (below 10-10 Torr). 
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Figure 2.1 Relationship of several concepts defining the degree of vacuum1. 

There are four types of gas sources in a vacuum chamber. First, the initial atmosphere, 

which is the main gas volume before pumpdown. Second, permeation from the outside. Gas 

molecules, especially the light ones, e.g. hydrogen and helium, can permeate into the vacuum 

chamber due to the pressure difference between the inside and the outside. Third, outgassing 

from chamber surfaces. After pumpdown, the main gas load from the chamber surface is always 

water vapor. Sufficient bakeout above 100 ºC helps to remove the majority of the water. Forth, 

outgassing from materials. Any material put into the vacuum chamber to be studied or processed 

will keep evaporating inside the system. Most solid materials we study have a low vapor pressure 

at room temperature and have little impact on the ultrahigh vacuum. To achieve and sustain 

ultrahigh vacuum, vacuum pumps are necessarily utilized to remove the initial atmosphere and 

the constant gas load from both inside and outside of the chambers. 



31 
 

Different pumps have different pumping speed and vacuum limit. The common pumps 

used in our lab to obtain ultrahigh vacuum are mechanical pump (Fig. 2.2a), turbo pump (Fig. 

2.2c) and ion pump (Fig. 2.2d). The pressure inside the vacuum chambers is monitored by the 

ion gauge (Fig. 2.2g).  

The mechanical pump (or rotary pump) is constituted of a stator and an eccentric rotor 

which has two vanes in a diametral slot (Fig. 2.2b). By rotating the eccentric rotor, gas from the 

vacuum chamber is sucked into the crescent shaped volume through the inlet, compressed and 

then exhausted through the outlet. The pressure limit of a typical mechanical pump is about 10-4 

Torr. The turbo pump is based on the momentum transfer of gas molecules which strike a fast-

moving blade. Most turbo pumps employ multiple stages, each consisting of a quickly rotating 

rotor blade and stationary stator blade pair (Fig. 2.2d). After the gas molecules enter the pump, 

the rotating blades hit the molecules and transfer mechanical energy to the gas. With this newly 

acquired momentum, the gas molecules move into the stator layer, which leads them to the next 

stage where they again collide with the rotor surface. This process is continued, finally leading 

the gas to the backing pump. Turbo pumps work in the pressure range between 10-3 and 10-10 

Torr, and a backing pump (usually a rotary pump) is necessary. 

The ion pump is capable of reaching pressures from 10-6 to 10-13 Torr, without generating 

mechanical vibrations, which makes it ideal for STM chambers. An ion pump ionizes gas 

molecules within the vessel and employs a strong electrical potential, typically 3 to 7 kV, which 

allows the ions to accelerate into and be captured by a solid electrode (usually titanium) (Fig. 

2.2f). Magnets are always used to elongate the trajectory of the ion and increase the ionization 

rate, thus improve the pumping speed. A forepump (usually a turbo pump) is required to start up 

the ion pump. 
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The ion gauge is most widely used high vacuum measuring device. A hot cathode 

ionization gauge uses the thermionic emission of a heated filament, the emitted electrons being 

accelerated by the electrostatic field through the helical grid (Fig. 2.2h). The electrons collide 

with and ionize gas molecules in the enclosed volume. The gas ions are attracted to the ion 

collector and produce an ion current to reflect the pressure inside. 

 

Figure 2.2 a,b, Mechanical pump and the schematic2. c,d, Turbo pump and the schematic3. e,f, 

Ion pump and the schematic4. g,h, Ion gauge and the schematic5. 

 

2.2 Molecular Beam Epitaxy 

Molecular beam epitaxy is the most widely used UHV-based technique to prepare high 

quality epitaxial structures with monolayer control. The principle underlying MBE is based on 

the interaction of one or several molecular or atomic beams that occurs on the surface of a heated 

crystalline substrate. One of our MBE growth chambers is shown in Fig. 2.3a and the schematic 

of a typical MBE system is shown in Fig. 2.3b. The solid sources materials are placed in effusion 
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cells to provide an angular distribution of atoms or molecules in a beam. The substrate can be 

heated to the required temperature for growth.  

 

Figure 2.3 a, Picture of an MBE growth chamber. b, Schematic of an MBE system6. c, Different 

surface processes in MBE growth7. 

There are three phases defined in the MBE process. The first is the crystalline phase of 

the solid structure grown on the substrate. The second is the gas phase of the source molecular 

beams. Under ultrahigh vacuum, the mean free path of the flux is much larger than the MBE 

chamber dimension (Fig. 2.1) that the MBE flux is ballistic and no homogeneous reactions 

happen in the gas phase. Between the crystalline and gas phases, a third phase which is a surface 

transition layer can be identified where the deposited source molecules or atoms react with each 

other and the hot substrate (Fig. 2.3c). This surface transition layer determines the MBE growth 

process. MBE growth has many advantages. First, the grown takes place under ultrahigh vacuum 

and avoids contaminations. Second, the growth rate is low and precise monolayer thickness 

control can be achieved. Third, all sources and the substrate temperature are independently 
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controlled. Finally, the MBE growth is a non-equilibrium growth process, making it possible to 

prepare abundant and novel materials. 

The effusion cell is the most important component of an MBE system. Commercial MBE 

source is usually the Knudsen cell (K-cell) (Fig. 2.4). The main components are (1) crucible, 

made of pyrolytic boron nitride (PBN) or Al2O3. (2) filament, made of tantalum or tungsten. (3) 

heat shield, to create a uniform heating volume. (4) thermocouple, to measure the material 

temperature, with a PID regulator to precisely control the source flux. (5) shutter, to control the 

start and finish of the growth. 

 

Figure 2.4 a, A Knudsen cell. b, Schematic of a Knudsen cell8. 

Sometimes, home-made tantalum boats are used to evaporate high vapor-pressure metals 

or molecules, such as Al, Ag, Cu, Fe, Ga, Bi, Sb, Sn and C60. For materials that need very high 

temperature to evaporate, like W, Mo, Nb, Ta, the e-beam source is used. For gas, liquid 

molecules and high vapor-pressure (easily sublimated) solids, leak valves are used to control the 

input. For active metals, like alkali metals, the generating material is a mixture of an alkali metal 

chromate with a reducing agent and the material is sealed in the alkali metal dispenser. 
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2.3 Scanning Tunneling Microscopy 

Gred Binnig and Heinrich Rohrer, from IBM Zurich, invented scanning tunneling 

microscope in 1982 and were awarded the Nobel Prize in Physics in 1986. STM is an instrument 

using a sharp tip to scan the sample surface. Atomic resolution imaging is achieved by detecting 

the quantum tunneling current between the tip and the sample surface. Both the structural and 

electronic properties of the sample surface are obtained during the scanning. The invention of 

STM boosts the development of surface science and nanotechnology. 

Schematic of STM setup and the tunneling process is shown in Fig. 2.5. The STM tip is 

very close (< 10 Å) on top of a conducting sample surface. When a bias voltage is applied to the 

sample or tip, electrons quantum-mechanically tunnel across the potential barrier between the 

sample and tip, producing a measurable tunneling current (Fig. 2.5a). During imaging, the tip 

scans across the sample surface controlled by 𝑥𝑦 piezoelectric elements. To maintain a constant 

current, a feedback loop is used to adjusts the tip height by 𝑧 piezoelectric element (Fig. 2.5b). 

The tip motion is recorded and displayed as an STM image, which contains both topographic and 

electronic information of the sample surface. 
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Figure 2.5 a, Setup of an STM. b, Schematic of the constant current mode scanning. 

2.3.1 An Elementary Model – One-dimensional Potential Barrier 

Determination of the tunneling current is the crucial part in STM theory. A simple 

quantum mechanical calculation demonstrates that the probability of transmission through the 

potential barrier (between the tip and sample) decreases exponentially with the barrier width and 

the square root of the barrier height relative to the electron energy (a schematic is shown in Fig. 

2.6).  
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Figure 2.6 Schematic of wavefunction tunneling through a one-dimensional potential barrier of 

with 𝑑. 

An electron with mass 𝑚 and energy 𝐸 moving in a one-dimensional (in 𝑧 direction) 

potential 𝑈(𝑧) > 0 is described by a wavefunction 𝜓(𝑧), which satisfies the Schrodinger 

equation 

−
ℏ2

2𝑚

𝑑2

𝑑𝑧2
𝜓(𝑧) + 𝑈(𝑧)𝜓(𝑧) = 𝐸𝜓(𝑧) 

 (2.1) 

In the classically allowed region 𝐸 > 𝑈, solutions are 

𝜓(𝑧) = 𝜓(0)𝑒±𝑖𝑘𝑧 

 (2.2) 

with wave vector 

𝑘 =
√2𝑚(𝐸 − 𝑈)

ℏ
 

 (2.3) 
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and the electron is moving in the positive or negative direction with a constant momentum 𝑝𝑧 =

ℏ𝑘. 

In the classically forbidden region 𝐸 < 𝑈, solutions are 

𝜓(𝑧) = 𝜓(0)𝑒±𝜅𝑧 

 (2.4) 

with decay constant 

𝜅 =
√2𝑚(𝑈 − 𝐸)

ℏ
 

 (2.5) 

and the electron is decaying in the +𝑧 or −𝑧 direction. The probability density of observing an 

electron near a point 𝑧 is proportional to |𝜓(𝑧)|2 = |𝜓(0)|2𝑒±2𝜅𝑧. 

We can interpret the metal-vacuum-metal (sample-vacuum-tip) junction by taking use of 

this elementary model. The Fermi level 𝐸𝐹 is the upper limit of the occupied states in a metal. 

The work function 𝜙 of a metal surface is defined as the minimum energy required to remove an 

electron from the bulk to the vacuum level, thus from the Fermi level to the vacuum level. In a 

sample-vacuum-tip junction, without bias voltage, the sample and tip Fermi levels equalize, thus 

no empty states for net tunneling to happen. By applying a negative sample bias −𝑉, the sample 

Fermi energy will shift up 𝑒𝑉. Electrons with energy 𝐸 between 𝐸𝐹 − 𝑒𝑉 and 𝐸𝐹 at the sample 

surface can tunnel through the vacuum barrier into the tip. The total wavefuntion at sample, 

vacuum (barrier), tip regions are: 

I, sample region 𝑧 < 0 
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𝜓I = 𝑒𝑖𝑘𝑧 + 𝐴𝑒−𝑖𝑘𝑧, 𝑘 =
√2𝑚𝐸

ℏ
 

 (2.6) 

II, barrier region 0 < 𝑧 < 𝑑 

𝜓II = 𝐵𝑒𝜅𝑧 + 𝐶𝑒−𝜅𝑧, 𝜅 =
√2𝑚𝜙

ℏ
 

 (2.7) 

III, tip region 𝑧 > 𝑑 

𝜓III = 𝐷𝑒𝑖𝑘𝑧 , 𝑘 =
√2𝑚𝐸

ℏ
 

 (2.8) 

The coefficients A, B, C and D are calculated by the continuity condition of the wavefunctions at 

the sample-barrier and barrier-tip interface. 

The probability current density is defined as 

𝑗 =
ℏ

2𝑖𝑚
(𝜓∗

𝑑𝜓

𝑑𝑧
− 𝜓

𝑑𝜓∗

𝑑𝑧
) 

 (2.9) 

The incident wavefunction is 𝜓𝐼 = 𝑒𝑖𝑘𝑧, then the incident current is 𝑗𝐼 =
ℏ𝑘

𝑚
. The transmitted 

wavefunction is 𝜓𝑇, then the transmitted current is 𝑗𝑇 =
ℏ𝑘

𝑚
|𝐷|2. The transmission coefficient is 

𝑇 =
𝑗𝑇
𝑗𝐼

=
1

1 +
(𝜅2 + 𝑘2)2

4𝜅2𝑘2 sinh2(𝜅𝑑)
 

 (2.10) 
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In common STM experiments, 𝜙 ~ 4 𝑒𝑉 and 𝑑 ~ 5 Å, the decay constant is large 𝜅 ~ 1 Å−1.  

𝑇~𝑒−2𝜅𝑑 

 (2.11) 

Therefore, with the sample-tip distance change of 1 Å, the tunneling current will change by one 

order of magnitude. This exponential relation between the tunneling current and the sample tip 

separation gives rise to the high imaging resolution of STM. 

2.3.2 Bardeen’s Approach 

A more sophisticated treatment of the tunneling problem by Bardeen is schematically 

shown in Fig. 2.7. Bardeen’s approach is based on time-dependent perturbation theory with some 

additional assumptions. 

 

Figure 2.7 Schematic of the Bardeen’s approach. 
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A well-known result from first-order time-dependent perturbation theory is Fermi’s 

golden rule, which states that the transmission rate from the initial state |𝑖⟩ to a final state |𝑓⟩ is 

given by 

𝑅𝑖→𝑓 =
2𝜋

ℏ
|𝑀𝑓𝑖|

2
𝛿(𝐸𝑖 − 𝐸𝑓) 

 (2.12) 

where 𝑀𝑓𝑖 is the matrix element of the perturbation potential between the initial and final states, 

and the 𝛿-function ensures energy conservation. 

 

Figure 2.8 Schematic of the sample-tip tunneling process. 

This result can be applied to the tunneling process as illustrated in Fig. 2.8. According to 

Fermi’s golden rule, when a negative bias −𝑉 is applied to the sample surface, the tunneling 

current from the sample to the tip for states of energy 𝐸 (with respect to the Fermi level of the 

sample) is 
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𝐼𝑠→𝑡 = 2(−𝑒)
2𝜋

ℏ
|𝑀|2𝜌𝑠(𝐸)𝑓𝑠(𝐸)𝜌𝑡(𝐸 + 𝑒𝑉)[1 − 𝑓𝑡(𝐸 + 𝑒𝑉)] 

 (2.13) 

where the factor 2 accounts for the two spin channels, −𝑒 is the electron charge, 𝑀 is the matrix 

element, 𝜌(𝐸) is the density of states, and 𝑓(𝐸) is the Fermi-Dirac distribution 

𝑓(𝐸) =
1

1 + 𝑒𝐸 𝑘𝐵𝑇⁄
 

 (2.14) 

The tunneling current from the tip to the sample is 

𝐼𝑡→𝑠 = 2(−𝑒)
2𝜋

ℏ
|𝑀|2𝜌𝑡(𝐸 + 𝑒𝑉)𝑓𝑡(𝐸 + 𝑒𝑉)𝜌𝑠(𝐸)[1 − 𝑓𝑠(𝐸)] 

 (2.15) 

The total tunneling current from the sample to the tip is achieved by summing the these two 

current and then integrate over all energies 𝐸 

𝐼 = −
4𝜋𝑒

ℏ
∫ |𝑀|2𝜌𝑡(𝐸 + 𝑒𝑉)

∞

−𝐸𝑓(𝑡𝑖𝑝)

𝜌𝑠(𝐸){𝑓(𝐸)[1 − 𝑓(𝐸 + 𝑒𝑉)] − 𝑓(𝐸 + 𝑒𝑉)[1 − 𝑓(𝐸)]}𝑑𝐸 

 (2.16) 

This expression can be simplified considering all measurements reported in this dissertation were 

conducted at 6 K and the Fermi-Dirac distribution is nearly a step function 

𝐼 ≈
4𝜋𝑒

ℏ
∫ |𝑀|2𝜌𝑡(𝐸 + 𝑒𝑉)

𝑒𝑉

0

𝜌𝑠(𝐸)𝑑𝐸 

 (2.17) 



43 
 

To evaluate the tunneling matrix element 𝑀, Bardeen made some assumptions (Fig. 2.7). 

First, the electron-electron interaction during tunneling is neglected, which is reasonable for low 

temperature measurement. Second, the tip and sample regimes are considered independent, 

which is valid if the tip-sample distance is large enough (more than 4 Å should be sufficient). In 

this scheme, the tip and sample wavefunctions are described by two independent Schrodinger 

equations 

(𝑇 + 𝑈𝑠)𝜓𝑠 = 𝐸𝑠𝜓𝑠 

 (2.18) 

(𝑇 + 𝑈𝑡)𝜓𝑡 = 𝐸𝑡𝜓𝑡  

 (2.19) 

where 𝑇 is the single electron kinetic energy operator, 𝑈𝑠 and 𝑈𝑡 are the sample and tip 

potentials. Considering the tip potential as the perturbation, the tunneling matrix element is 

𝑀 = ⟨𝜓𝑡|𝑈𝑡|𝜓𝑠⟩ = ∫𝜓𝑡
∗𝑈𝑡𝜓𝑠𝑑

3𝑟 

 (2.20) 

According to Bardeen’s assumption that the tip/sample potential drops exponentially to zero into 

the sample/tip region, a separation surface 𝑆 is introduced that at the tip/sample region, 𝑈𝑠 =

0/𝑈𝑡 = 0. Using 𝑀∗ = ⟨𝜓𝑠|𝑈𝑡|𝜓𝑡⟩ and equations (2.18) and (2.19), the integral is nontrivial only 

in the tip region 

𝑀∗ = ∫ 𝜓𝑠
∗𝑈𝑡𝜓𝑡𝑑

3𝑟
Ω𝑡

= ∫ (𝜓𝑠
∗𝑈𝑡𝜓𝑡 − 𝜓𝑡𝑈𝑠𝜓𝑠

∗)𝑑3𝑟
Ω𝑡
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= ∫ [𝜓𝑠
∗(𝐸𝑡 − 𝑇)𝜓𝑡 − 𝜓𝑡(𝐸𝑠 − 𝑇)𝜓𝑠

∗]𝑑3𝑟
Ω𝑡

 

 (2.21) 

For elastic tunneling, 𝐸𝑡 = 𝐸𝑠, the matrix element becomes 

𝑀 = ∫ [𝜓𝑡
∗𝑇𝜓𝑠 − 𝜓𝑠𝑇𝜓𝑡

∗]𝑑3𝑟
Ω𝑡

 

 (2.22) 

where Ω𝑡 is the tip region volume. This volume integral can be converted to a surface integral by 

partial integration 

𝑀 = ∫ [𝜓𝑠∇𝜓𝑡
∗ − 𝜓𝑡

∗∇𝜓𝑠]𝑑𝑆
𝑆

 

 (2.23) 

where is 𝑆 the is the separation surface. The tunneling matrix element is independent of the 

energy difference between the two side of the barrier, i.e. the matrix remains unchanged even if 

the sample transits from the normal state to the superconducting state. 

2.3.3 Tersoff-Hamann Model 

From Bardeen’s approach, it is necessary to know the tip and sample wavefunctions to 

calculate the matrix element. In principle it is possible to calculate all tunneling matrix elements 

with ab-initio methods to gain the tunneling current. However, experimentally the tip structure is 

not straightforward to access, making it challenging to compute the actual tip wavefunction. 

Tersoff and Hamann suggested replacing the unknown electronic structure of the tip with a 
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simple model, in which the wavefunction of the outmost tip atom is assumed to be an atomic 𝑠 

wave function. Therefore, the STM image is related to the properties of the sample surface alone.  

 

Figure 2.9 Schematic of the TH model. 

As shown in the schematic Fig. 2.9, the tip is modeled as a local 𝑠 wave function of 

radius 𝑅 and centered at �⃑� 𝑡. As the tip and sample regimes are independent, in the separation 

surface both the tip and sample wavefunctions satisfy the Schrodinger equation 

−
ℏ2

2𝑚
Δ𝜓 = −𝜙𝜓 

 (2.24) 

where 𝜙 is the surface work function. With the approximation that the tip is a single atom with 𝑠 

wave function, we take the regular solution that is characterized by an exponential decay from 

the tip to vacuum 

𝜓𝑡(𝑟 − 𝑅𝑡
⃑⃑⃑⃑ ) = 𝐶

𝑒−𝜅|𝑟 −𝑅𝑡⃑⃑ ⃑⃑ |

𝜅|𝑟 − 𝑅𝑡
⃑⃑⃑⃑ |

 

 (2.25) 
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where 𝑟  is a position in the vacuum (thus no singularity), 𝐶 is a normalization constant and 𝜅 =

√2𝑚𝜙

ℏ
. Inserting into the expression for the tunneling matrix element and carrying out the 

integration lead to 

𝑀 = −
2𝜋𝐶ℏ2

𝜅𝑚
𝜓𝑠(𝑅𝑡

⃑⃑⃑⃑ ) 

 (2.26) 

Hence the tunneling current at low temperature is 

𝐼 =
16𝜋3𝐶2ℏ3𝑒

𝜅2𝑚2
𝜌𝑡 ∫ 𝜌𝑠(𝑅𝑡

⃑⃑⃑⃑ , 𝐸)𝑑𝐸
𝑒𝑉

0

 

 (2.27) 

where 𝜌𝑡 is constant in the TH model, 𝜌𝑠(𝑅𝑡
⃑⃑⃑⃑ , 𝐸) = ∑ |𝜓𝑠(𝑅𝑡

⃑⃑⃑⃑ )|
2
𝛿(𝐸𝑠 − 𝐸)𝑠 .  

For a small bias voltage 𝑉, 𝜌𝑠 is treated as constant and the tunneling current simplifies to  

𝐼 =
16𝜋3𝐶2ℏ3𝑒2

𝜅2𝑚2
𝑉𝜌𝑡𝜌𝑠(𝑅𝑡

⃑⃑⃑⃑ , 𝑒𝑉) 

 (2.28) 

The differential conductance is 

𝑑𝐼

𝑑𝑉
=

16𝜋3𝐶2ℏ3𝑒2

𝜅2𝑚2
𝜌𝑡𝜌𝑠(𝑅𝑡

⃑⃑⃑⃑ , 𝑒𝑉) 

  (2.29) 

which is proportional to the sample local density of states 𝜌𝑠(𝑅𝑡
⃑⃑⃑⃑ , 𝑒𝑉) at energy 𝑒𝑉 and position 

𝑅𝑡
⃑⃑⃑⃑ . 
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2.3.4 Operation Modes 

Topography 

STM is most commonly used to get the sample surface topography. During imaging the 

tip scans the surface at a fixed bias voltage, and the detected tunneling current goes into a 

feedback system to control the 𝑧 piezo voltage to keep the tunneling current constant at the 

setpoint 𝐼𝑠𝑒𝑡. Recording the voltage to the 𝑧 piezo during scanning maps the height variation of 

the sample surface. From equation (2.28), the tunneling current depends on both the tip-sample 

separation and the local density of states on the sample surface. Hence the topography is a 

convolution of the geometric corrugation and the electronic density of states. 

Spectroscopy 

From equation (2.29), the differential conductance at bias 𝑉 is proportional to the sample 

local density of states 𝜌𝑠(𝑅𝑡
⃑⃑⃑⃑ , 𝑒𝑉). Holding the tip at a constant height, 𝜌𝑠(𝑅𝑡

⃑⃑⃑⃑ , 𝑒𝑉) can be 

measured by sweeping the bias voltage and recording 𝑑𝐼 𝑑𝑉⁄ . We can measure 𝐼(𝑉) and take a 

numerical derivative to get 𝑑𝐼 𝑑𝑉⁄ , but the result will be noisy. A better way is to use a lock-in 

amplifier with a small AC modulation of 𝑉 to directly measure the difference conductance. The 

modulated voltage is 

𝑉(𝑡) = 𝑉0 + 𝑉𝑚𝑐𝑜𝑠(𝜔𝑡 + 𝜑) 

 (2.30) 

then the measured current is 

𝐼( 𝑉(𝑡)) = 𝐼(𝑉0) +
𝑑𝐼

𝑑𝑉
|𝑉0

𝑉𝑚𝑐𝑜𝑠(𝜔𝑡 + 𝜑) + ⋯ 

 (2.31) 
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where the first harmonic gives the differential conductance. The 𝑑𝐼 𝑑𝑉⁄  spectrum can be taken at 

a single point to get the local density of states. It can also be taken when the tip is scanning the 

surface, giving a spectroscopic imaging. 

 

2.4 Home-build MBE-STM System 

Experiments reported in this dissertation are done in a home-built MBE-STM 

combination system (Fig. 2.10a). The system was first pumped down by mechanical pumps and 

turbo pumps to 10-7 Torr, then baked at 150 °C to reach a base pressure of 10-10 Torr. The 

ultrahigh vacuum is sustained by ion pumps or turbo pumps for different chambers.  

 

Figure 2.10 a, The home-built MBE-STM system. b, The FeSe MBE chamber. c, The Omicron 

STM. 

Figure 2.10b shows the MBE chamber for single layer FeSe growth. The iron source 

comes from an e-beam evaporator, and the Se/Te source are controlled by Knudsen cells. A 

commercial Omicron STM is connected with the ultrahigh vacuum system (Fig. 2.10c). The as-

prepared sample can be transferred to the STM chamber for characterization with air exposure, 
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which is critical for samples with an active surface, e.g. single layer FeSe. The STM chamber is 

placed on an air-table with four air-legs to reduce vibrational noise. Electronic noise is reduced 

by adding ceramic feedthrough to electronically isolate the STM, using the same grounding to 

get rid of ground loops and integrating filters. The STM head, with sample stage and tip, is 

surrounded by two layers of circular column tanks, which can be filled with liquid nitrogen or 

liquid helium, to cool down the sample to as low as 6 K.  

Two types of STM tips are used in our lab, the mechanically cut platinum iridium (PtIr) 

tip (fig) and the electrochemically etched tungsten (W) tip (fig) (Fig. 2.11). All the tips are in-

situ processed on epitaxially grown silver islands to achieve an ideal condition for imaging and 

spectroscopy. 

 

Figure 2.11 a, Illustration of tip cutting. b, Image of a cut PtIr tip. c, Setup of tip etching9. d, 

Image of an etched W tip9.  
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Chapter 3 Nodeless d-wave Superconductivity in 

Single Layer FeSe/SrTiO3 Probed by Quasiparticle 

Scattering off Step Edges 

 

3.1 Introduction 

A central milestone in the search for high temperature Fe-based superconductors 

(FeSCs)1,2 is the determination of the symmetry of the pairing gap3-6. The commonly presumed 

gap structure for FeSCs is sign reversing s+- pairing, which results from interband scattering 

between hole pockets around Γ point and electron pockets around M point in the Brillouin zone 

(BZ)3,7. This mechanism, however, presents a conundrum in the case of the recently discovered 

single layer FeSe/STO(001) with the highest superconducting temperature (TC) to date amongst 

all FeSCs8-10. Due to charge doping from the substrate, the Fermi surface of FeSe consists of 

only electron pockets centered at the corner (M), with the zone center (Γ) states completely 

pushed below the Fermi level11-14. Clearly, this poses a challenge for pairing theories that involve 

both pockets3,9. While isotropic plain s-wave pairing was suggested based on earlier ARPES 

observations and STM measurements of quasiparticle interference (QPI)11,15, more recent 

ARPES measurements indicate gap anisotropy16. This anisotropy is naturally explained by a 

nodeless d-wave state, for which the observed gap minima are a manifestation of nodes that have 

not formed17. However, gap anisotropy is not a robust probe of pairing symmetry and direct 

confirmation of any pairing symmetry by phase sensitive measurements is sorely needed3. 
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One such approach is corner junction measurements18,19, which have revealed d-wave 

pairing in YBa2Cu3O7-δ. However, this is challenging for the single layer FeSe system, because 

the interfacial Josephson current will be suppressed for all states except a plain vanilla s-wave 

state due to gaps of opposite signs on different bands. Alternatively, quasiparticle interference 

measurements using STM can provide phase sensitive information, however, if the atomic 

impurities are located at the top surface atomic plane, i.e., Se layer, and not embedded within the 

Fe plane that is responsible for superconductivity, such scattering and interference patterns may 

not provide sufficient information on the pairing symmetry9,20. 

Within weak-coupling theory21, quasiparticle scattering at the boundary of a 

superconductor is determined by the symmetry of the order parameter (OP) and hence provides 

another avenue to probe the pairing symmetry. For example, a superconducting OP with phase 

changes can lead to antiphase interference and suppress superconductivity at the boundary for 

certain orientations22. This effect can be described by the de Gennes extrapolation length b23, 

which reflects the spatial evolution of the OP near the boundary (Fig. 3.1a)24. For example, for 

elastic scattering off a specular one-dimensional (1D) edge in two-dimensions, the 𝒒 vector is 

always perpendicular to the edge (Fig. 3.2a). Thus the extrapolation length depends critically on 

the orientation of the boundary for d-wave, but not for conventional s-wave superconductors, 

providing a definitive signature for anisotropic pairing (Fig. 3.2b-e). In the case of single layer 

FeSe/STO9, for nodeless d-wave pairing (Fig. 3.1c)17,25,26, the order parameter will change sign 

after a 90° rotation, where destructive interference can diminish the OP and reduce the pairing 

gap near the boundary. On the other hand, for s-wave pairing (Figs. 3.1d-f)27-30, the phase of the 

order parameter is preserved after a 90° rotation in the one Fe BZ, resulting in a constant gap 

upon reflection at the boundary. An additional consequence for d-wave pairing is the appearance 
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of Andreev bound states within the gap31-34. In the case of single layer FeSe, antiphase 

quasiparticle scattering should lead to in-gap states at specular [110]Fe edges, but not [010]Fe 

edges.  As summarized in Table I, the measurements of de Gennes extrapolation length and in-

gap states near 1D boundaries with different orientations can provide a viable means to 

determine the paring symmetry in single layer FeSe. 

 

Figure 3.1 a, Schematic diagram of the superconducting extrapolation length. The dashed blue 

line represents the boundary between a superconductor and the vacuum. The inclined solid black 

line shows the diminishment of the superconducting order parameter near the boundary. The 

inclined dotted black line demonstrates linear extrapolation of the order parameter into the 

vacuum. Δ0 is the order parameter right at the boundary. The slope of the order parameter profile 

can be used to determine the extrapolation length b. b, Crystal structure of single layer FeSe. The 

Fe square lattice is rotated 45° to the Se square lattice. The edge orientations [010]Fe and [110]Fe 
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are defined in the Fe plane. Both one Fe unit cell (1 Fe UC) and two Fe unit cell (2 Fe UC) are 

shown and in different colors. c-f, Schematics of nodeless d wave, plain s wave and incipient s 

wave pairing in the one Fe Brillouin zone (1 Fe BZ), and bonding-antibonding s wave pairing in 

the two Fe Brillouin zone (2 Fe BZ). The ellipses represent the gap structure and the arrows 

demonstrate the quasiparticle scattering on the [010]Fe and [110]Fe edges. The two colors indicate 

the two signs (blue is positive and brown is negative) of the order parameter. 

 

Figure 3.2 a, Scattering at a specular edge, where the 𝒒 vector is always perpendicular to the 

edge. b,c, Scattering at [110] and [010] edges for d-wave pairing. d,e, Scattering at [110] and 

[010] edges for s-wave pairing. 
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Table I Expected extrapolation length b and in-gap states (IGS) at different edges of single layer 

FeSe for different pairing symmetries. 

Here, we present a systematic investigation of edge scattering on superconductivity in 

MBE grown single layer FeSe/STO(001). In-situ STM/S reveals a positive and finite 

extrapolation length of 8.0 nm for scattering off the [110]Fe edges, indicating strong Cooper pair 

destabilization. On the specular [010]Fe edge, the extrapolation length is nearly infinite. These 

results are consistent with the nodeless d wave pairing for single layer FeSe film on STO, 

contrary to previous studies15. Our study thus demonstrates a new phase sensitive approach to 

probe the pairing symmetry by boundary scattering in Fe-based superconducting thin films. 

 

3.2 Results and Discussion 

Two type of single layer FeSe films were grown on SrTiO3(001) substrates by MBE in an 

ultrahigh vacuum system with a base pressure below 1.0×10-10 Torr. Nb-doped STO(001) (0.05 

wt%) substrates were first annealed at 950 oC for 30 min to produce an atomically flat surface. 

Then both FeSe films were grown under Se-rich conditions (Fe/Se: 1/10) where Fe flux was 

provided by electron beam evaporation, and Se from a Knudsen cell with a 0.2 monolayer per 

minute growth rate. The FeSe films followed a layer-by-layer growth mode, and were post-

annealed at ~550 oC for 2-3 hours to remove excess Se on the surface to reach a superconducting 

state. Afterward, FeSe film #1 was further annealed at ~650 oC for 4 hours and FeSe film #2 was 

further annealed at ~620 oC for 4 hours to produce single layer films with different types of 

edges. STM/STS measurements were conducted in an ultrahigh vacuum system with a base 

pressure of 2.0×10-11 Torr, which is directly connected to the MBE growth chamber. 
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Electrochemically etched polycrystalline W tips, or mechanically sharpened Pt/Ir tips were used 

for STM imaging at room temperature and liquid helium temperature with the bias voltage 

applied to the sample. Tunneling spectra were taken at 6 K with a lock-in amplifier (with an AC 

modulation of 0.4 mV at 860 Hz). 

Shown in Figs. 3.3a,c are STM images of two superconducting single layer FeSe films on 

SrTiO3(001) with different edge structures. The as-grown films are conformal to the step-terrace 

morphology of the STO substrates8, and not superconducting, likely due to the presence of 

excess Se as a result of Se-rich growth conditions (Fig. 3.4). Both films were then extensively 

annealed to induce superconductivity, as verified by in situ STM/S and angle-resolved 

photoemission spectroscopy (ARPES) measurements (Figs. 3.5&3.6). Furthermore, different 

annealing conditions were used to produce different types of step edges, as discussed in more 

detail below.  



57 
 

 

Figure 3.3 a, Large scale STM image of the annealed single layer (1 UC) FeSe film #1 on 

SrTiO3(001) (Vs= 1.0 V, It= 0.1 nA). After annealing, there is a high density of low contrast 

trench grain boundaries and some pits. b, Atomic resolution image of specular [110]Fe edges on 

FeSe #1 (Vs= 0.5 V, It= 0.1 nA). The single layer FeSe film assumes the in-plane lattice constant 

of STO(001), thus is slightly under tensile strain. There are two types of [110]Fe edges here, one 

is the trench grain boundary (in the middle) and the other is the FeSe-to-STO edge (on the 

bottom right corner). c, Large scale STM image of the annealed single layer FeSe film #2 (Vs= 

1.2 V, It= 0.1 nA). The film edges are randomly oriented. d, STM image showing a specular 

[010]Fe edge on FeSe #2 (Vs= 1.0 V, It= 0.1 nA). Inset is an atomic resolution image indicating 

the crystalline directions (Vs= 0.5 V, It= 0.1 nA). 
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Figure 3.4 a, Large scale STM image of the as-grown single layer FeSe film #1 on SrTiO3(001) 

(Vs= -1.0 V, It= 0.1 nA). b, Atomic resolution image of a specular FeSe-to-STO [110]Fe edge on 

FeSe #1 (Vs= 0.75 V, It= 0.13 nA). Some Se atoms along the edge are missing during annealing. 

c, STM image showing a rough [010]Fe edge on FeSe #2 (Vs= 1.2 V, It= 0.1 nA). Inset is an 

atomic resolution image indicating the crystalline directions (Vs= 0.5 V, It= 0.1 nA).  

 

Figure 3.5 a. Two dI/dV spectra taken on FeSe #1 (black) and FeSe #2 (red). The average 

superconducting gap on FeSe #2 (13 to 15 meV) is smaller than that on FeSe #1 (17 to 19 meV), 

probably due to the different FeSe/STO interface structures and post-annealing temperatures. b. 

dI/dV spectra taken on FeSe #1 at temperatures marked. c, Measured superconducting gaps (red 
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diamond), and BCS-like fitting (black curve), indicating a superconducting transition 

temperature of 49 K. 

 

Figure 3.6 a, In-situ ARPES spectra of single layer FeSe film grown on insulating STO 

substrate, taken across Γ-point (left) and M-point (middle) along the directions as marked in the 

right 2D intensity plot. b, Spectra across M-point measured at 10 K (top) and 70 K (bottom). c, 

Temperature dependent energy distribution curves (EDCs) and symmetrized EDCs at the Fermi 

crossing, showing the superconducting gap opening between 50 and 60 K. 

In the first case, single layer FeSe films (Fig. 3.3) exhibit two types of edges: edges of 

pits, and those at the low-contrast trench grain boundaries. Figure 3.3b is an atomic resolution 

image of the edges, showing that both are specular without much disorder (also see Fig. 3.4b). 
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The square arrays of bright features correspond to Se atoms that terminates the surface. The Fe 

square lattice lies in the layer below and is diagonally aligned to the surface Se along the labeled 

x/y directions. Thus, both the edges along the pits and grain boundaries are specular [110]Fe 

edges. A superconducting gap of 19 meV is found by dI/dV spectroscopy measurements (Fig. 

3.5a). The superconducting transition temperature of 49 K is determined from BCS-like fitting of 

temperature dependent gaps (Fig. 3.5c), consistent with our ARPES measurements (Fig. 3.6) and 

earlier works8,35. 

In the second case, the FeSe films exhibit randomly oriented high-contrast boundaries, as 

shown in Fig. 3.3c. This difference in topography is likely due to different post-annealing 

conditions, and/or the FeSe/STO interface15. The superconducting gap of this types of sample is 

also slightly smaller than that on FeSe #1 (Fig. 3.5a), but within the variation from sample to 

sample that is typically observed. Interestingly, specular [010]Fe edges are formed along the 

steps, shown in Fig. 3.3d, with an atomic resolution image showing the Se square lattice rotated 

45 degrees from the x/y directions. Rough [010]Fe edges are also present in this type of samples 

(Fig. 3.4c). 

To determine the superconducting extrapolation length, spatially resolved dI/dV spectra 

were taken on the both the specular [110]Fe edge on FeSe #1 (Figs. 3.7a,c) and the specular  

[010]Fe edge on FeSe #2 (Figs. 3.7b, d). For the specular [110]Fe edge, dI/dV spectra taken along 

the black arrow from point 1 (away from the edge) to point 21 (right at the edge) are shown in 

Fig. 3.7c. A superconducting gap is observed for all spectra (The procedure to determine the 

superconducting gap size is illustrated in Fig. 3.8).  However the magnitude varies: it is nearly 

constant at 18.0 ± 0.2 meV for the first 3.5 nm, and then monotonically decreases to 12.8 meV 

towards the edge. We note that this reduction in the superconducting gap is constant along the 
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edge, as shown in Fig. 3.9, indicating that suppression in superconductivity is not a local effect. 

The spatial dependence of the superconducting gap is summarized in Fig. 3.7e, which yields an 

extrapolation length of 8.0 nm.  

 

Figure 3.7 a, STM image of a specular FeSe #1 [110]Fe edge (Vs= 1.0 V, It= 0.1 nA). b, STM 

image of a specular FeSe #2 [010]Fe edge (Vs= 1.0 V, It= 0.1 nA). c, Spatially resolved dI/dV 

spectra taken on the [110]Fe edge, along the black arrow in a. The gap size is reduced 

approaching the edge. The dashed black lines are guide to the evolution of the gap. d, Spatially 

resolved dI/dV spectra taken on the [010]Fe edge, along the blue arrow in b. The gap size is 

constant of 13.9 ± 0.8 meV. e, Profile of the measured superconducting gaps on the [110]Fe 

(black dots) and [010]Fe (blue dots) edges as a function of the position. The solid red line is a 

linear fit of the gap close to the [110]Fe edge and the dotted red line is the linear extrapolation. 

The fitting function is (13.3-1.67x) for the [110]Fe edge, where x is the distance from the edge 

and the origin of x is right on the edge. The solid blue line marks the average gap close to the 

[110]Fe edge and the dotted blue line is the linear extrapolation.  
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Figure 3.8 a, A cubic fit of the background of a superconducting dI/dV spectrum. The solid red 

curve is the raw data and the dashed black curve is the cubic fit. b, Normalized dI/dV spectrum 

from a by dividing the raw spectrum (the red curve) by the cubic background fit (the black 

curve). The normalized spectrum has well-defined coherence peaks yielding a superconducting 

gap of 19.4 ± 0.2 meV. 

 

Figure 3.9 a, STM image of the specular FeSe [110]Fe film edge in Fig. 3a inset (Vs= 1.0 V, It= 

0.1 nA). b,c, Spatially resolved dI/dV spectra taken along two lines parallel to the edge. The blue 

spectra in b are taken along the blue arrow in a, which is 7 nm away from the edge. The red 
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spectra in c are taken along the red arrow in a, which is 1 nm away from the edge. The dashed 

black lines are guide to the evolution of the gap. The gap sizes are 18.0 ± 0.4 meV in b and 14.5 

± 0.3 meV in c.  

For the specular [110]Fe edge along grain boundaries on the same sample, a similar 

analysis of spatially resolved dI/dV spectra reveals a similar extrapolation length of 7.8 nm (Fig. 

3.10). This is consistent with the previously proposed grain boundary model34, and confirms that 

the FeSe step edge and edges at trench boundaries can be considered effectively the same for 

quasiparticle scattering.  For the specular [110]Fe edge on the second type of FeSe, the 

extrapolation length is also positive and finite at 9.6 nm (Fig. 3.11), further confirming a 

consistent behavior for a given edge orientation. 

 

Figure 3.10 a, STM image of a specular FeSe #1 [110]Fe grain boundary (Vs= -0.5 V, It= 0.1 

nA). b, Spatially resolved dI/dV spectra taken on the [110]Fe grain boundary, along the black 

arrow in a. The dashed black lines are guide to the evolution of the gap. c, Profile of the 
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measured superconducting gaps on the [110]Fe grain boundary as a function of the position. The 

solid red line is a linear fit of the gap close to the edge and the dotted red line is the linear 

extrapolation. The fitting function is 11.5-1.48x, where x is the distance from the edge and the 

origin of x is right on the edge.  

 

Figure 3.11 a, STM image of a specular FeSe #2 [110]Fe edge (Vs= 1.0 V, It= 0.1 nA). b, 

Spatially resolved dI/dV spectra taken on the [110]Fe edge, along the black arrow in a. The 

dashed black lines are guide to the evolution of the gap. c, Profile of the measured 

superconducting gaps on the [110]Fe edge as a function of the position. The solid red line is a 

linear fit of the gap close to the edge, and the dotted red line is the linear extrapolation. The 

fitting function is 9.6-1.0x, where x is the distance from the edge and the origin of x is right on 

the edge.  

The behavior is quite different for the specular [010]Fe edge on sample FeSe #2 (Fig. 

3.7b). As shown by the spatially resolved dI/dV spectra taken along the blue arrow from point 1 



65 
 

to point 18 in Fig. 3.7d, the gap size is nearly constant at 13.9 ± 0.8 meV at all positions, 

indicating a nearly infinite extrapolation length (Fig. 3.7e). 

For the [110]Fe edge of single layer FeSe/STO, the positive and finite extrapolation 

length, about two to three times that of the superconducting coherence length (~3.2 nm15), 

indicates a strong pair breaking effect. On the contrary for the [010]Fe edge, the nearly infinite 

extrapolation length indicates no suppression of superconductivity. This orientation dependent 

pair breaking effect suggests a 2-fold anisotropy in the superconducting order parameter, which 

is expected for nodeless d-wave pairing, but not for s-wave pairing. For nodeless 𝑑𝑥2−𝑦2 wave 

pairing (Fig. 3.1c), the OP changes sign under 90° rotation (C2 symmetry) in momentum space, 

and has symmetry such that Δ(𝒌𝒊𝒏) = −Δ(𝒌𝒐𝒖𝒕) for [110]Fe edge scattering, where 𝒌𝒊𝒏 and 𝒌𝒐𝒖𝒕 

are the incoming and reflected scattering wave vectors. The antipahse interference between 

Δ(𝒌𝒊𝒏) and Δ(𝒌𝒐𝒖𝒕) will diminish the order parameter and suppress superconductivity near the 

[110]Fe edge. For the [010]Fe edge scattering, the OP has a symmetry that warrants Δ(𝒌𝒊𝒏) =

Δ(𝒌𝒐𝒖𝒕), thus will not change the pairing gap. Hence no pair breaking effect is expected at the 

[010]Fe edge for nodeless d-wave pairing. 

On the other hand, for plain s-wave (Fig. 3.1d) and other types of s-wave pairing (Figs. 

3.1e&f), the phase of the order parameter is preserved under 90° rotation, thus Δ(𝒌𝒊𝒏) = Δ(𝒌𝒐𝒖𝒕) 

for both the [110]Fe and [010]Fe edge scatterings. Thus, the s-wave superconducting gap will be 

constant and the extrapolation length will be infinite regardless of the edge orientation. This is 

consistent with earlier observations of nearly constant superconducting gaps near the edge of Pb 

islands with conventional s-wave pairing36. 
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The pair breaking effect should also be sensitive to the roughness of the edges22. In the 

presence of nanoscale disorder, the scattering angle cannot be precisely defined as it will be a 

mixture of several possible directions including [110]Fe. Hence antiphase interference will take 

place regardless of the edge orientation, and superconductivity can be suppressed even at the 

[010]Fe edge of the single layer FeSe with nodeless d-wave pairing. Note that in this case the pair 

breaking effect is weaker and the extrapolation length will be longer than that of the specular 

[110]Fe edge where scattering is coherent. Shown in Fig. 3.12a is an STM image of a rough 

[010]Fe edge on sample FeSe #2, and spatially resolved dI/dV spectra (Fig. 3.12b).  Clearly, a 

reduction in the superconducting gap size from 13.8 to 10.1 meV is observed towards the edge 

(Figs. 3.12b,c). A linear fit indicates an extrapolation length of 16.3 nm, which is finite but 

longer than that for the specular [110]Fe edge (Figs. 3.7c,e), in excellent agreement with that 

would be expected for scattering off of a rough edge in a nodeless d-wave superconductor. 
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Figure 3.12 a, STM image of a rough FeSe #2 [010]Fe edge (Vs= 1.2 V, It= 0.1 nA). b, Spatially 

resolved dI/dV spectra taken on the rough [010]Fe edge, along the black arrow in a. The dashed 

black lines are guide to the evolution of the gap. c, Profile of the measured superconducting gaps 

on the [010]Fe edge as a function of the position. The solid red line is a linear fit of the gap close 

to the edge and the dotted red line is the linear extrapolation. The fitting function is (9.97-0.61x), 

where x is the distance from the edge and the origin of x is right on the edge. 

Our experimental observation of anisotropic extrapolation length is also inconsistent with 

the plain s++ and incipient s-wave pairing (Figs. 3.1d&e, respectively) where only one phase of 

the superconducting OP around the M point exists and hence no antiphase interference is 

expected. For bonding-antibonding s-wave pairing (Fig. 3.1f), the OP has two phases around the 

M point, hence antiphase interference can, in principle, occur via interband scattering between 

the electron pockets. However, here the pair breaking effect is independent of edge orientation, 

and would occur on both specular [110]Fe and [010]Fe edges. This is inconsistent with our 

observations (Fig. 3.7), where the large anisotropy in the extrapolation length observed between 

the specular [110]Fe and [010]Fe edges indicates a C2 angular symmetry of the superconducting 

order parameter. Therefore, our findings indicate that of the possible candidate gap structures 

(Figs. 3.1c-f) proposed, nodeless d wave pairing is the most likely pairing symmetry for single 

layer FeSe on STO. 

We note that the weak-coupling theory previously developed for the extrapolation length 

assumes a single band Fermi surface21. However, single layer FeSe is multiband and this plays a 

key feature in the nodeless d-wave pairing state17. If the FeSe were single band, then any d-wave 

state has to have nodes. The fact that two bands have energy differences less than the gap energy 

in some momentum-space directions is what allows for nodeless pairing. In these cases, 
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interband pairing can now play a role. The multiband Fermi surface in single layer FeSe thus 

presents a difficulty in using previous calculations to determine the extrapolation length. 

However, once the band splitting is greater than the gap energy, then the usual theory can be 

used. This applies to most of the Fermi surface of single layer FeSe, except a narrow range near 

where the nodes should have been. Hence the nodeless d-wave order parameter will have sign 

changes as in earlier theories and the pairing symmetry analysis from the extrapolation length 

can be applied to our experiment. 

As discussed above (c.f. Table I), a nodeless d-wave pairing will also give rise to in-gap 

states at finite energies for specular [110]Fe edges, in contrast to the usually expected zero energy 

states for a nodal d-wave superconductor. To better visualize the appearance of in-gap states, we 

normalize the spatially resolved dI/dV spectra shown in Figs. 3.7c,d by subtracting spectrum 1 

(away from the edge), as shown in Figs. 3.13a,b. The normalized zero bias conductance (ZBC) is 

summarized in Fig. 3.13c. For the specular [110]Fe edge, in-gap states (peaked at ± (6 ± 1) meV) 

appear at 3 to 4 nm from the edge and enhances significantly towards the edge. In contrast, for 

the specular [010]Fe edge, only weak fluctuations are observed in the normalized dI/dV spectra 

with no in-gap states present. For the rough [010]Fe edge, in-gap states do appear (Fig. 3.14) as a 

result of contributions from different scattering angles. Comparison to the expected signatures of 

several pairing gap structures proposed as summarized in Table I, our findings indicate nodeless 

d-wave pairing symmetry for single layer FeSe/STO. 
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Figure 3.13 a, The same set of spatially resolved dI/dV spectra on the specular [110]Fe edge as in 

Fig. 3.7c, except that the spectrum at point 1 is subtracted as the background to highlight the in-

gap density of state. b, The same set of spatially resolved dI/dV spectra on the specular [010]Fe 

edge as in Fig. 3.7d, except that the spectrum at point 1 is subtracted as the background to 

highlight the in-gap density of state. c, Zero bias conductance (ZBC), extracted from a and b, 

evolution approaching the [110]Fe edge (black dots) and the [010]Fe edge (blue dots). 
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Figure 3.14 a, The same set of spatially resolved dI/dV spectra on the rough [010]Fe edge as in 

Fig. 3.12b, except that the spectrum at point 1 is subtracted as the background to highlight the in-

gap density of state. b, Zero bias conductance (ZBC), extracted from a, evolution approaching 

the rough [010]Fe edge (black dots). 

 

3.3 Summary 

In conclusion, we have epitaxially grown superconducting single layer FeSe films on 

STO(001) substrates with various types of edges: the specular [110]Fe and [010]Fe, and the rough 

[010]Fe edges. For the specular [110]Fe edge, spatially resolved dI/dV spectroscopy reveals a 

suppression of superconductivity near the edge with an extrapolation length of 8.0 nm, indicating 

strong pair breaking. In contrast, at the specular [010]Fe edge, no suppression of superconductivity 

is observed with a near infinite extrapolation length. At the rough [010]Fe edge, a longer 

extrapolation length of 16.3 nm is observed, as a result of the mixed scattering directions. This 

edge orientation dependence on pairing destabilization is consistent with nodeless d-wave pairing 

symmetry. Our findings further demonstrate that quasiparticle scattering at the boundaries of 

nanostructures is a viable phase sensitive probe of pairing symmetry of Fe-based superconductors. 

 

 

  



71 
 

References 

1 Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. 

Nature Physics 6, 645 (2010). 

2 Stewart, G. R. Superconductivity in iron compounds. Reviews of Modern Physics 83, 1589-

1652 (2011). 

3 Hirschfeld, P. J., Korshunov, M. M. & Mazin, I. I. Gap symmetry and structure of Fe-based 

superconductors. Reports on Progress in Physics 74, 124508 (2011). 

4 Hirschfeld, P. J. Using gap symmetry and structure to reveal the pairing mechanism in Fe-

based superconductors. Comptes Rendus Physique 17, 197-231(2016). 

5 Chubukov, A. Pairing Mechanism in Fe-Based Superconductors. Annual Review of 

Condensed Matter Physics 3, 57-92 (2012). 

6 Wang, F. & Lee, D.-H. The Electron-Pairing Mechanism of Iron-Based Superconductors. 

Science 332, 200-204 (2011). 

7 Mazin, I. I., Singh, D. J., Johannes, M. D. & Du, M. H. Unconventional Superconductivity 

with a Sign Reversal in the Order Parameter of LaFeAsO1-xFx. Physical Review Letters 101, 

057003 (2008). 

8 Wang, Q.-Y. et al. Interface-Induced High-Temperature Superconductivity in Single Unit-

Cell FeSe Films on SrTiO3. Chinese Physics Letters 29, 037402 (2012). 

9 Huang, D. & Hoffman, J. E. Monolayer FeSe on SrTiO3. Annual Review of Condensed 

Matter Physics 8, 311-336 (2017). 

10 Ge, J.-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3. 

Nature Materials 14, 285 (2014). 

11 Liu, D. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe 

superconductor. Nature Communications 3, 931 (2012). 

12 Tan, S. et al. Interface-induced superconductivity and strain-dependent spin density waves 

in FeSe/SrTiO3 thin films. Nature Materials 12, 634 (2013). 

13 Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe 

films on SrTiO3. Nature 515, 245 (2014). 

14 He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity 

at 65 K in single-layer FeSe films. Nature Materials 12, 605 (2013). 

15 Fan, Q. et al. Plain s-wave superconductivity in single-layer FeSe on SrTiO3 probed by 

scanning tunneling microscopy. Nature Physics 11, 946 (2015). 

16 Zhang, Y. et al. Superconducting gap anisotropy in monolayer FeSe thin film. Physical 

Review Letters 117, 117001 (2016). 

17 Agterberg, D. F., Shishidou, T., O’Halloran, J., Brydon, P. M. R. & Weinert, M. Resilient 

nodeless d-Wave superconductivity in monolayer FeSe. Physical Review Letters 119, 

267001 (2017). 



72 
 

18 Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. 

Experimental determination of the superconducting pairing state in YBCO from the phase 

coherence of YBCO-Pb dc SQUIDs. Physical Review Letters 71, 2134-2137 (1993). 

19 Van Harlingen, D. J. Phase-sensitive tests of the symmetry of the pairing state in the high-

temperature superconductors - Evidence for 𝑑𝑥2−𝑦2 symmetry. Reviews of Modern Physics 

67, 515-535 (1995). 

20 Liu, C. et al. Extensive impurity-scattering study on the pairing symmetry of monolayer 

FeSe films on SrTiO3. Physical Review B 97, 024502 (2018). 

21 Monthoux, P., Balatsky, A. V. & Pines, D. Weak-coupling theory of high-temperature 

superconductivity in the antiferromagnetically correlated copper oxides. Physical Review 

B 46, 14803-14817 (1992). 

22 Alber, M. et al. Surface boundary conditions for the Ginzburg-Landau theory of d-wave 

superconductors. Physical Review B 53, 5863-5871 (1996). 

23 De Gennes, P. G. Boundary effects in superconductors. Reviews of Modern Physics 36, 

225-237 (1964). 

24 Fink, H. J., Haley, S. B., Giuraniuc, C. V., Kozhevnikov, V. F. & Indekeu *, J. O. Boundary 

conditions, dimensionality, topology and size dependence of the superconducting 

transition temperature. Molecular Physics 103, 2969-2978 (2005). 

25 Maier, T. A., Graser, S., Hirschfeld, P. J. & Scalapino, D. J. d-wave pairing from spin 

fluctuations in the KxFe2-ySe2 superconductors. Physical Review B 83, 100515 (2011). 

26 Fa, W. et al. The electron pairing of KxFe2-ySe2. EPL (Europhysics Letters) 93, 57003 

(2011). 

27 Fang, C., Wu, Y.-L., Thomale, R., Bernevig, B. A. & Hu, J. Robustness of s-Wave Pairing 

in Electron-Overdoped A1-yFe2-xSe2 (A = K, Cs). Physical Review X 1, 011009 (2011). 

28 Yang, F., Wang, F. & Lee, D.-H. Fermiology, orbital order, orbital fluctuations, and 

Cooper pairing in iron-based superconductors. Physical Review B 88, 100504 (2013). 

29 Chen, X., Maiti, S., Linscheid, A. & Hirschfeld, P. J. Electron pairing in the presence of 

incipient bands in iron-based superconductors. Physical Review B 92, 224514 (2015). 

30 Mazin, I. I. Symmetry analysis of possible superconducting states in KxFeySe2 

superconductors. Physical Review B 84, 024529 (2011). 

31 Satoshi, K. & Yukio, T. Tunnelling effects on surface bound states in unconventional 

superconductors. Reports on Progress in Physics 63, 1641 (2000). 

32 Nagato, Y. & Nagai, K. Surface and size effect of a dxy-state superconductor. Physical 

Review B 51, 16254-16258 (1995). 

33 Hu, C.-R. Midgap surface states as a novel signature for 𝑑𝑥𝑎
2−𝑥𝑏

2-wave superconductivity. 

Physical Review Letters 72, 1526-1529 (1994). 



73 
 

34 Misra, S. et al. Formation of an Andreev bound state at the step edges of Bi2Sr2CaCu2O8+δ 

surface. Physical Review B 66, 100510 (2002). 

35 Zhi, L. et al. Molecular beam epitaxy growth and post-growth annealing of FeSe films 

on SrTiO3: a scanning tunneling microscopy study. Journal of Physics: Condensed Matter 

26, 265002 (2014). 

36 Kim, J. et al. Visualization of geometric influences on proximity effects in heterogeneous 

superconductor thin films. Nature Physics 8, 464 (2012). 

 

  



74 
 

Chapter 4 Width-dependent Suppression of 

Superconductivity in Single Layer FeSe Nanoribbons 

 

4.1 Introduction 

Superconductivity is characterized by multiple length scales. In bulk superconductors, 

London penetration depth, the distance to which a magnetic field penetrates into a 

superconductor, and the coherence length, the minimum length to sustain superconducting phase 

coherence, are fundamental parameters that establish the limit for superconductivity. At the 

reduced dimensions, however, a critical minimum length scale for sustaining superconductivity 

arises from size effects. Superconductivity is usually suppressed at the length scale smaller than 

the coherence length in conventional superconductors. For 0D nanoparticles1-3, Anderson 

criterion1 determines the critical superconducting particle size where the quantum confinement 

induced Kubo gap4 (the mean energy level spacing) equals the bulk superconducting gap. For 1D 

nanowires, the proliferation of phase slips, resulting from thermal or quantum fluctuations, 

determines the minimum diameter that can sustain superconductivity5,6. 

For high-temperature superconductors, the minimum length scale is elusive due to the 

challenges in synthesizing nanostructures. Fe-based superconductor (FeSC) is a representative 

family of high-temperature superconductors and the superconductivity is believed to originate 

within the common two-dimensional (2D) X-Fe-X (X can be pnictogen or chalcogen) layers7,8. It 

is therefore ideal to produce superconducting single-layer X-Fe-X nanoribbons of various width 

to study the size effect on high-temperature superconductivity. Recently discovered single layer 
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FeSe on SrTiO3(001) consists of the simplest Se-Fe-Se structure with probably the highest Tc 

amongst all FeSCs and can be a model system to study the superconducting size effect9,10. 

Here we present a systematic investigation of size-dependent superconductivity in single 

layer FeSe nanoribbons. High-temperature superconducting single layer FeSe films were grown 

on SrTiO3(001) substrate by MBE, followed by extensive annealing at 650 oC to produce well-

defined FeSe nanoribbons with width ranging from a few to tens of nanometers. In-situ STM/S 

reveals three types of tunneling spectra: the superconducting gap, the V shape and the U shape. 

For ribbons larger than 9.0 nm, the dI/dV spectra have a superconducting gap with well-defined 

coherence peaks of up to 20 meV. Between 7.2 and 9.0 nm, the gap can still be resolved, while 

the coherence peaks are no longer well-defined. Below the critical width of 7.2 nm, 

superconductivity is suppressed in the FeSe nanoribbon. The spectra are V-shaped between 5.0 

and 7.2 nm, and U-shaped below 5.0 nm. The U shape regime is likely a result of quantum 

confinement and the V shape regime is consistent with antiphase edge scattering induced gap 

suppression for d-wave superconductivity. Our findings confirm the destabilization of 

superconductivity in iron-based superconductors at reduced scale and determine the critical 

superconducting FeSe ribbon width. 

 

4.2 Results and Discussion 

Single layer FeSe films were grown on STO(001) substrates by MBE in an ultrahigh 

vacuum system with a base pressure below 1.0×10-10 Torr. Nb-doped STO(001) (0.05 wt%) 

substrates were first annealed at 950 oC for 30 min to produce an atomically flat surface. Then 

FeSe films were grown under Se-rich conditions (Fe/Se: 1/10) where Fe flux was provided by 
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electron beam evaporation, and Se from a Knudsen cell with a 0.2 monolayers per minute growth 

rate. The FeSe films followed a layer-by-layer growth mode, and were post-annealed at ~550 oC 

for 2-3 hours to remove excess Se on the surface to reach a superconducting state, and then 

further annealed at ~650 oC for 10 hours to produce FeSe nanoribbons. 

Figure 4.1a shows an STM image of superconducting single layer FeSe on STO, where 

the film is conformal to the step-terrace morphology of the STO(001) substrates9. The film is 

also characterized by a high density of grain boundaries (GBs), appearing as a network of 

meandering lines with low contrast (Fig. 4.1a). Consistent with earlier studies, the as-grown 

FeSe films are not superconducting, likely due to the presence of excess Se as a result of Se-rich 

growth conditions11. After annealing at 550 oC for ~2 hours to remove the excess Se, scanning 

tunneling spectroscopy reveals a superconducting gap of ~20 meV, measured by half of the 

energy difference between two coherence peaks (Fig. 4.1b), also consistent with earlier work9,12. 

Furthermore, the originally meandering GB network also evolves into straight trenches after the 

annealing12, as shown in Fig. 4.1c. The film now consists of larger grains ~50 nm in size, with 

crystallographic axes aligned with the STO(001). However, as shown in the atomic resolution 

image, the two grains across the grain boundary can exhibit a relative shift of one half of the 

lattice constant, i.e., the different grains within the FeSe film likely have different epitaxial 

relationships to the underlying STO(001) substrate. 
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Figure 4.1 a, Large-scale STM image of a single layer FeSe film on SrTiO3 (Vs= -0.9 V, It= 0.1 

nA). The arrow marks a meandering grain boundary. b, dI/dV spectrum taken on single layer 

FeSe at 6 K. A 20 meV gap is defined by half the coherence peak-to-peak spacing. c, Atomic 

resolution STM image of a trench grain boundary (Vs= 0.7 V, It= 0.1 nA). The single layer FeSe 

film assumes the in-plane lattice constant of STO(001), thus is slightly under tensile strain. The 

dotted lines are guides to show the relative shift in alignment between the two grains. d, STM 

image of single layer FeSe nanoribbons after extensive annealing (Vs= 0.5 V, It= 0.1 nA). 

Further annealing at 650 oC leads to the partial desorption of FeSe film and the formation 

of FeSe nanoribbons, ranging from a few to several tens of nanometers in width, measured from 

line profiles of STM images (Fig. 4.1d). Two types of ribbons are found: completely isolated 
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with only FeSe-to-STO edges, and neighbored with FeSe-to-STO edges on one side and trench-

like GBs on the other side. As tunneling spectra reveal similar electronic structures for both types 

of nanoribbons of the same size, they are hence treated with no distinction in the following 

analysis.  

dI/dV tunneling spectra were taken on FeSe nanoribbons of width ranging from 4.1 to 

19.0 nm to investigate size effects on superconductivity, as shown in Fig. 4.2. For wide ribbons 1 

and 2, at 19 and 12 nm, the spectra show clear superconducting gaps of 18 and 19 meV, 

respectively, similar to those taken on continuous FeSe films (e.g., Fig. 4.1b). At a reduced width 

of 7.3 nm (ribbon 3), while its tunneling spectrum is still gapped, the coherence peaks are no 

longer well defined.  At 6.6 nm width (ribbon 4), the tunneling spectrum appears as V-shaped, 

indicating that superconductivity is suppressed. Further reducing the ribbon width to 4.7 (ribbon 

5) and 4.1 nm (ribbon 6), the tunneling spectra become U-shaped with a gap of ~60 meV 

centered around the Fermi level, indicating that superconductivity is completely destabilized. 

 



79 
 

Figure 4.2 a, STM image of FeSe ribbons of various widths (Vs= 1.0 V, It= 0.1 nA). b, dI/dV 

spectra taken at six ribbons of different widths from 19.0 nm to 4.1 nm, labeled as ribbon 1 to 6 

in a. 

Another spatially resolved tunneling spectra along a ribbon with varying width suggest 

that only the shorter dimension (i.e., the width in term of nanoribbons) plays the dominant role in 

modifying superconductivity. This effect is shown in Fig. 4.3 where spatially resolved STSs are 

taken on a ribbon of varying width (3.5, 6.5, and >15 nm).  For points 1 through 4 where the 

shorter dimensions (widths) are 3.5 and 6.5 nm, tunneling spectra are U-shaped for points 1 and 

2, and V-shaped for points 3 and 4, indicating the suppression of superconductivity.  For points 5 

and 6 where the dimensions are >15 nm, the spectrum is gapped with coherence peaks at +/-19 

meV, indicating superconductivity. The fact that only the shorter dimension, and not the aspect 

ratio, matters is further confirmed by examining “quantum dots”, where the aspect ratios are 

close to 1, such as the example shown in Fig. 4.3c inset. Tunnel spectrum taken on this quantum 

dot exhibits a U-shape (Fig. 4.3c), revealing that again superconductivity is suppressed. These 

results indicate that as long as one dimension of the nanoribbons is less than a critical width, 

superconductivity is suppressed, irrespective of the length of the other dimension, or aspect ratio. 
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Figure 4.3 a, STM image of a FeSe nanoribbon of varying width (Vs= 1.0 V, It= 0.1 nA). b, 

dI/dV spectra taken at points 1-6 marked in a. c, dI/dV spectrum taken on a square-shaped FeSe 

quantum dot shown in the inset (Vs= 1.2 V, It= 0.1 nA). 

Further analysis of tunneling spectra of additional similar FeSe nanoribbons confirms a 

critical ribbon width of 7.2 nm, below which superconductivity is suppressed (Fig. 4.4). For 

ribbons wider than 7.2 nm, superconducting gaps between 15 and 20 meV are observed that are 

relatively independent of the ribbon width. Note that between 7.2 and 9.0 nm, the 

superconducting coherence peaks start being suppressed (e.g. point 3 in Fig. 4.2). Between 5.0 

and 7.2 nm, tunneling spectra generally exhibit a V shape, and below 5.0 nm a U shape with 

quantum well states (c.f. Fig. 4.5b). This evolution of the tunneling spectra clearly shows the 

suppression of the superconducting gap in FeSe nanoribbons with ribbon widths. The presence of 

two distinct V-shaped and U-shaped regime indicates different mechanisms for the suppression 

of superconductivity below the critical width.  
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Figure 4.4 Plot of superconducting (SC) gaps as a function of single layer FeSe ribbon width. 

The green regime has well-defined superconducting gaps, the yellow regime has V-shaped 

spectra with no coherence peaks and the blue regime has U-shaped spectra. 

The U-shaped regime below 5.0 nm probably results from quantum confinement induced 

reduction of density of states (DOS) near the Fermi level, evidenced by the quantum well states 

observed in our experiment for ribbons smaller than 5.0 nm. Figs. 4.5a&b are larger scale dI/dV 

spectra taken at two ribbons of 20 and 4.8 nm wide. It evidently reveals that quantum well states 

(multiple peaks in the dI/dV spectrum) show up (from about -200 to -300 meV) when 

superconductivity is completely suppressed (at 4.8 nm). Density function theory (DFT) 

calculation also confirms the existence of singularities and reduced DOS between the 

singularities in FeSe nanoribbons at reduced widths (Figs. 4.5c&d). Note that due to the lack of 

constraint in the ribbon length direction, this quantum confinement effect is different from the 

Anderson criterion where absolute empty DOS near the Fermi level is required1. 

 

Figure 4.5 a, dI/dV spectrum taken at a 20 nm wide ribbon. b, dI/dV spectrum taken at a 4.8 nm 

wide ribbon. c, Calculated bands for a 4.5 nm ribbon. d, Calculated density of states of a 4.5 nm 

ribbon. 
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Different from the U-shaped regime where the normal state has changed, the V-shaped 

regime shows a complete suppression of superconducting coherence. Recent ARPES 

experiment13 and theory14 study suggest d-wave pairing for single layer FeSe/STO. For d-wave 

superconductivity, it has been shown that antiphase scattering could induce gap reduction near 

the film edge (Figs. 4.6a,c) as discussed in Chapter 3. Reducing the width, multiplied antiphase 

scattering between the two close edges will further suppress superconductivity in narrow ribbons 

(Fig. 4.6b). Our observed critical ribbon width range of 7.2 nm is about twice the scale (~3.5 nm 

from Chapter 3) that the edge scattering effect starts to diminish the superconducting gap in 

single layer FeSe, hence consistent with the scenario of suppression of superconductivity by 

antiphase edge scattering under d-wave pairing. Note that the V-shaped regime is wider than the 

superconducting coherence length (3.2 nm15), thus cannot be explained by the phase slips for 1D 

nanowires16. 

 

Figure 4.6 a, Edge scattering in a wide FeSe nanoribbon. The 𝑞 vector is always perpendicular 

to the edge. b, Multiplied edge scattering in a narrow FeSe nanoribbon. a, Antiphase scattering 

on the edge for d wave pairing. The vertical black line represents the reflection edge. The ellipses 
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represent the gap structure and the two colors indicate the two signs (blue is positive and brown 

is negative) of the order parameter. 

 

4.3 Summary 

In summary, we have epitaxially synthesized high-temperature superconducting single 

layer FeSe nanoribbons with well-defined width from a few to several tens of nanometers on 

SrTiO3(001) substrates. dI/dV spectra taken on different ribbons can be classified to 3 types by 

the lineshape: the superconducting gap, the V shape and the U shape. These 3 types of spectra 

suggest 3 different phases as a function of the ribbon width. Wide FeSe ribbons (width larger 

than 7.2 nm) are in the gap regime under superconducting phase. Reducing the width that two 

edges of the ribbon are close enough to induce multiplied antiphase scattering, the pair breaking 

effect will strongly suppress the superconductivity and destroy the coherence peaks in the 

tunneling spectrum. This is the V shape regime for ribbons between 5.0 and 7.2 nm, and here the 

normal state still preserves. Further reducing the ribbon width to below 5 nm, quantum well 

states dominate the band structure and the normal state is changed, resulting in the U shape 

regime. Our work, for the first time, determines the critical superconducting FeSe ribbon width 

and highlights the critical role dimensionality plays in high-temperature superconductivity. 
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Chapter 5 Superconductivity on Edge: One-

dimensional Superconducting Channel on the Edge of 

Antiferromagnetic Single Layer FeTeSe Nanoribbons 

 

5.1 Introduction 

Superconductivity normally emerges only as the static antiferromagnetic (AFM) order is 

suppressed in Fe-based superconductors1-3. The parent compound of iron chalcogenides, FeTe, 

consists of quasi-planar Te-Fe-Te trilayers (space group: P4/nmm) with a square lattice of iron (2 

Fe atoms in the crystallographic cell) in tetragonal coordination to tellurium4. This trilayer is the 

common building block for all Fe-based superconductors, and it is widely believed the 

interactions leading to high-temperature superconductivity originate from the Fe atoms within 

the layer2,3. Bulk FeTe crystal at ambient conditions also exhibits a distinct long-range 

bicollinear AFM ordering5-9, with Fe moments ferromagnetically aligned along one diagonal 

direction of the Fe sublattice and antiferromagnetically along the other. Alloying with Se 

suppresses the bicollinear AFM order and superconductivity emerges with Tc of 10 K at a critical 

Se concentration of x = 0.310,11. This phase transition can be further manipulated by reducing the 

thickness of FeTe1-xSex to a single atomic layer. Recent work has shown an increase of Tc to 50 

K in epitaxial single layer FeTe1-xSex grown on STO substrates at an even lower critical Se 

concentration of x = 0.112. Despite those advances, how superconductivity emerges when the 

bicollinear AFM is suppressed in FeTe1-xSex is still unknown. 
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Here, we explore the effect of dimensionality on the interplay between magnetic ordering 

and superconductivity by investigating nanoribbons of single layer FeTe1-xSex films. Scanning 

tunneling microscopy/spectroscopy reveals a 2 nm wide 1D superconducting channel on the edge 

of the ribbons, where their bulk exhibits bicollinear AFM order and is not superconducting. 

Tunneling spectroscopy shows an edge superconducting gap of 12 meV, and its temperature 

dependence indicates a superconducting transition temperature of 40 K. This superconducting 

channel can be suppressed for ribbons with width below 10 nm, likely due to quantum size 

effects. DFT calculations suggest that both alloying with Se and the presence of the edge 

destabilize the ordered BCL magnetic phase, resulting in a paramagnetic region near the edge 

with strong checkerboard fluctuations and an electronic structure similar to that of single layer 

FeSe that is conducive to the superconductivity. 

 

5.2 Results and Discussion 

Four single layer FeTe1-xSex (0 ≤ x ≤ 1) films were grown on SrTiO3(001) substrates by 

molecular beam epitaxy (MBE) in an ultrahigh vacuum system with a base pressure below 

1.0×10-10 Torr. Fe flux was provided by electron beam evaporation and Se and Te were from 

Knudsen cells. Se(Te) concentration is tuned by adjusting the Se(Te) evaporating temperature. 

All the films followed a layer-by-layer growth mode with a 0.2 monolayers per minute growth 

rate. Nb-doped STO (001) (0.5%wt) substrates were first annealed at 950 ℃ for 30 min to 

produce an atomically flat surface. The FeSe film was grown under Se-rich condition (TSe = 

95 ℃, Fe/Se: 1/10 to 15), and was post annealed at 650 ℃ for 10 hours to produce FeSe 

nanoribbons. The FeTe film was grown under Te-rich condition (TTe = 255 ℃, Fe/Te: 1/5 to 10), 
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and then annealed at 450 ℃ for 4 hours to produce partially covered single layer FeTe flakes. 

The FeTe1-xSex (x < 0.1) film was grown under Se-lack and Te-rich condition (TSe = 80 ℃, TTe = 

262 ℃, Fe/Se/Te: 1/1/10 to 15), and the FeTe1-xSex (x > 0.1) film was grown under Se-rich and 

Te-rich condition (TSe = 95 ℃, TTe = 262 ℃, Fe/Se/Te: 1/(10 to 15)/(10 to 15)). Both the FeTe1-

xSex (x < 0.1) and the FeTe1-xSex (x > 0.1) films were post annealed first at 450 ℃ for 5 hours 

and then at 650 ℃ for 10 hours to produce nanoribbons. It is challenging to determine the exact 

Se concentration due to post growth annealing, which typically induces the substitution of Te 

with Se. STM/STS measurements were conducted in an ultrahigh vacuum system with a base 

pressure of 2.0×10-11 Torr, which is directly connected to the MBE growth chamber. 

Electrochemically etched polycrystalline W tips, or mechanically sharpened Pt tips were used for 

STM imaging at room temperature and liquid helium temperature with the bias voltage applied 

to the sample. Tunneling spectra were taken at 6 K with a lock-in amplifier (at bias modulation 

of 0.4 mV at 860 Hz). 

 The as-grown FeTe1-xSex films are conformal to the step-terrace morphology of the STO 

substrates (Fig. 5.1). They are not superconducting, likely due to the presence of excess Se as a 

result of Se-rich growth conditions13,14. The films were then extensively annealed at 450 oC to 

induce superconductivity. Afterwards, the samples are annealed at higher temperatures (e.g., 650 

oC) to produce different types of edges at: 1) FeTe1-xSex steps, and 2) trench-like grain 

boundaries (GBs) (Figs. 5.2a-d).  
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Figure 5.1 a, STM image of the as-grown FeTe1-xSex (x < 0.1) film (Vs= 1.0 V, It= 0.1 nA). b, 

STM image of the FeTe1-xSex (x < 0.1) film after annealing at ~450 ℃ for 5 hours (Vs= 1.0 V, 

It= 0.1 nA). 10 more hours annealing at ~650 ℃ will result in nanoribbons as in Fig. 5.2b. 
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Figure 5.2 a-d, STM images of partially covered single layer FeTe, FeTe1-xSex (x < 0.1), FeTe1-

xSex (x > 0.1) and FeSe films (Vs= 1.2 V, It= 0.1 nA). There is a 2nd layer FeSe island in a. e-h, 

Atomic resolution images on FeTe (Vs= -0.5 V, It= 0.1 nA), FeTe1-xSex (x < 0.1) (Vs= 50 mV, It= 

0.1 nA), FeTe1-xSex (x > 0.1) (Vs= 50 mV, It= 0.1 nA) and FeSe (Vs= 50 mV, It= 0.1 nA). i-l, 

dI/dV spectra taken at 6 K in the bulk (black curves) and on the edge (red curves) of the four 

monolayer FeTe, FeTe1-xSex (x < 0.1), FeTe1-xSex (x > 0.1) and FeSe. 

As shown in the atomic resolution images in Figs. 5.2e-h, a (1x1) structure is apparent for 

all Se concentrations, with the exception of the second case FeTe1-xSex with x < 0.1, where 

additional (2x1) ordering can also be observed at different bias, as discussed in more details 

below. There also other notable differences between these films. For example, the FeTe film 

exhibits a number of vacancies (likely Te) (Fig. 5.2e), while the FeSe film is more uniform (Fig. 

5.2h).   

The electronic properties of the FeTe1-xSex films are further probed by dI/dV tunneling 

spectroscopy. In the case of FeTe, dI/dV spectra taken in the bulk of the ribbons and near the 

edges are both V-shaped, with no gaps at the Fermi level (Fig. 5.2i). For Se concentrations larger 

than 10%, both the bulk and edge are gaped (Figs. 5.2k,l): for FeSe, 18 ± 2 and 13 ± 2 meV, and 

for FeTe1-xSex (x > 0.1), 15 ± 2 and 13 ± 2 meV, respectively. The bulk gap values are consistent 

with earlier works13,14, and the reduced gap at the edge has been attributed to antiphase scattering 

in Chapter 3. Interestingly, for FeTe1-xSex films with Se concentration below 10%, while the film 

itself is not gapped in the bulk, a robust 1D superconducting channel is observed along the edges, 

whose properties and possible mechanisms are discussed below. Our ARPES measurement (Fig. 

5.3) confirms that the FeTe1-xSex (x > 0.1) film has a superconducting FeSe-like electron pocket 

at M point and hole pocket below the Fermi level at Γ point15-17, while the band structure of the 



90 
 

FeTe1-xSex (x < 0.1) film is more non-superconducting FeTe-like, with no features at M point but 

a hole-like band at Γ point18,19. 

 

Figure 5.3 a,b, Evolution of the ARPES intensity plot near Γ and M for single layer FeTe1-

xSex/STO (0 ≤ x ≤ 1) at 80 K. The dashed red lines mark the Fermi level.  

Figure 5.4a shows an atomic resolution STM image of an FeTe1-xSex (x < 0.1) ribbon 

with a step edge on the left decorated with bright features. Within the bulk of the ribbon multiple 

(2x1) domains are evident with the domain boundaries, as marked by dashed white lines. 

Different domains are shifted by one Te/Se atom row, indicated by the red and blue arrows. 

Similar domain boundaries have been observed on the surface of multilayer epitaxial FeTe films 

on STO20 and Fe1+yTe0.9Se0.1 crystals21, and, as discussed below, are likely correlated with BCL 

magnetic domains. Near the edges within 2-3 atomic rows, bright features are seen along the 

edges, likely due to defects such as missing atoms22, leading to a disordered (2x1) structure.  

Similarly, at trench-like grain boundaries (Fig. 5.4b), disordered (2x1) structures are also seen. 

At the right grain, where the (2x1) is parallel to the edge, the edge structure is more disordered 



91 
 

than that on the left with the (2x1) perpendicular to the edge, where the (2x1) ordering extends 

almost to the outermost atomic row. 

 

Figure 5.4 a, Atomic resolution STM image of a ribbon edge (Vs= -50 mV, It= 0.7 nA). The 

dashed lines are domain boundaries between two domains with one lattice shift, marked by the 

red and blue arrows. b, STM image of a trench-like GB (Vs= -50 mV, It= 0.5 nA). The 2x1 

patterns of the left and right grains are rotated by 90 degrees. c, STM image on the annealed 

FeTe1-xSex (x < 0.1) film, showing both type of edges (Vs= 500 mV, It= 0.1 nA). d, STM image 

of the same location as in c, but at a different bias (Vs= 50 mV, It= 0.1 nA). e, Line profiles along 

lines marked by two arrows in c&d. f, dI/dV spectra taken in the bulk (black) and on the edge 

(red) of a ribbon at 6K. The shadow area indicates larger integrated density of states on the edge 

(red area) than that of in the bulk (dark area). 
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All the edges exhibit similar electronic structures, as shown in the STM images in Figs. 

5.4c,d taken at different bias voltages. At 500 mV above the Fermi level (Fig. 5.4c), both types 

of edges appear featureless, and at 50 mV above (Fig. 5.4d), the edges appear bright. The 

appearance of the edge channel not only depends on the bias voltage, but is also sensitive to the 

set-point used (Fig. 5.5), where a smaller set-point (larger tip-sample distance) yields greater 

contrast at the edges, at the expense of reduced atomic resolution.  

 

Figure 5.5 a, STM image of the FeTe1-xSex (x < 0.1) ribbon-to-STO edge (Vs= 50 mV, It= 0.1 

nA). The edge is on the very right. b, STM image of the same edge as in a, but with a larger 

scanning current setpoint (Vs= 50 mV, It= 0.2 nA).  

Line profiles across the same edge marked by the arrows in Figs. 5.4c,d are presented in 

Fig. 5.4e. Both profiles show a 2 nm transitional region before the profile reaches the “bulk” 

value: a 2 nm “bump” for 50 mV where the edge appears bright, and a ~2 nm “uptake” for the 

500 mV where the edge appears dark, indicating an edge channel width of ~2 nm. More detailed 

analysis of the bias dependent imaging shows that this edge contrast remains up to ±100 mV, 

independent of the bias polarity (Fig. 5.6). As the contrast in STM imaging reflects the difference 

in the integrated local density of states (LDOS), Fig. 5.4d illustrates that the integrated LDOS 
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from the Fermi level to the applied bias (the area below the dI/dV curve from the Fermi level to 

the bias voltage) is larger on the edge (the red area) than in the bulk (the black area) when the 

bias is smaller than 50 mV in magnitude. 

 

Figure 5.6 a-d, STM images of the same FeTe1-xSex (x < 0.1) ribbon edge at different biases as 

marked in the images. 

The contrasting electronic property for the edge and bulk is further confirmed by spatially 

resolved tunneling spectra taken at 6 K, as shown in Fig. 5.7a. The spatially dependent dI/dV 

spectra taken perpendicular to the edge show well-defined gap and coherence within 2 nm of the 

edge, consistent with the width of the bright edge channel in the STM image (c.f., Figs. 5.4d,e).  
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Figure 5.7 a, Spatially resolved dI/dV taken along a line marked as a black arrow in the inset. 

The starting point 1 (red) is on the edge and the ending point 9 (blue) is in the bulk. The inset is 

an STM image of a FeTe1-xSex (x < 0.1), showing the ribbon edge (Vs= 600 mV, It= 70 pA). b, 

dI/dV spectra taken on the ribbon edges at temperatures indicated. c, s-wave Dynes function 

fitting of normalized dI/dV spectrum at 6 K in b. Black curve is the processed data, and red 

curve is the Dynes function fitted with Γ = 4.6 meV, Δ = 8.8 meV. d, Fitting the superconducting 

gaps from the Dynes function fitting (red diamond) to the BCS theory (black line) indicates a 

superconducting transition temperature of 40 K. 

 The superconducting nature of the observed edge gap is confirmed by temperature-

dependent dI/dV measurements as shown in Fig. 5.7b. The gap can be defined up to 30 K, and 

beyond 50 K the spectra are mostly V-shaped. Figure 5.7c shows the s-wave Dynes function23 

𝑑𝐼 𝑑𝑉⁄ = 𝑅𝑒 |(𝑒𝑉 − 𝑖𝛤) √(𝑒𝑉 − 𝑖𝛤)2 − 𝛥2⁄ | fitting of the background subtracted dI/dV 

spectrum shown in Fig. 5.7b (details of data processing24 are in Fig. 5.8). With fitting parameters 
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Γ = 4.5 meV and Δ = 8.8 meV,  excellent fits to the Dynes function are found, strongly 

suggesting that the gaps in the dI/dV spectra taken near the edge of single layer FeTe1-xSex (x < 

0.1) ribbons  originate from superconducting pairing. This is further supported by fitting the 

temperature dependent gap to BCS theory25 (Fig. 5.7d), yielding a superconducting transition 

temperature of 40 K, which is the Tc record of 1D superconductivity26. 

 

Figure 5.8 a, Raw dI/dV spectra taken on the FeTe1-xSex (x < 0.1) ribbon edge at 6 K (red curve, 

below Tc) and 50 K (black curve, above Tc). b, Background correction. dI/dV spectrum taken at 

6 K in a divided by the spectrum taken at 50 K in a. c, Symmetrization. Average of the spectrum 

from b and its mirror with respect to zero bias. 

To examine the impact of ribbon width on this superconducting channel, dI/dV tunneling 

spectroscopy was conducted on four FeTe1-xSex (x < 0.1) ribbons with widths of 3.2, 8.6, 10.0, 

and 20.0 nm, as shown in Fig. 5.9. For ribbons width greater than 10 nm (Figs. 5.9c,d,g,h), well-

defined superconducting gaps are seen at the edges while the bulk spectra are V-shaped, similar 

to those discussed above (c.f., Fig. 5.4f). At a critical width of 8.6 nm however, both ribbon edge 

and bulk exhibit V-shaped spectra, indicating that edge superconductivity is suppressed (Fig. 

5.9b,f), likely due to quantum size effects27 and as discussed in Chapter 4. This is consistent with 
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the observation of significantly diminished density of states for a ribbon with 3.2 nm width (Fig. 

5.9a,e). 

 

Figure 5.9 a-d, STM images of FeTe1-xSex (x < 0.1) nanoribbons of 3.2 nm, 8.6 nm, 10 nm and 

20 nm, respectively (Vs= 1.2 V, It= 0.1 nA). e-h, dI/dV spectra taken in the center (marked by 

black dots) and near the edge (red dots), marked by the black and red dots, respectively in a-d. 

To gain insight into the observed superconductivity at the edge of FeTe1-xSex (x < 0.1) 

ribbons but not in the bulk, we first calculate the changes in the electronic (and magnetic) 

properties of single layer FeTe1-xSex films with Se concentration by DFT. For pure FeSe/STO, 

our recent calculations indicate a ground state of frustrated paramagnetic phase characterized by 

the checkerboard (CB) quantum fluctuations28. Thus, the competition between the CB and BCL 

configurations is calculated for unsupported and STO-supported FeTe1-xSex monolayers for 0, 

6.25, and 12.5% Se (Fig. 5.10a). For pure FeTe, the BCL is favored by 17.2 meV/Fe for the free 

monolayer, which decreases to 9.3 meV/Fe when the monolayer is supported on STO. At 6% Se, 

these differences decrease to 10.1 and 2.8 meV/Fe, respectively; for 12.5% Se for the STO-

supported layer, the CB configuration is now more stable than the BCL by 3.6 meV/Fe. (For 
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calculations neglecting SOC, the CB is additionally favored by 3-4 meV/Fe.) The DFT results 

suggest that around 10% Se, the STO-supported monolayer BCL phase will be destabilized in 

favor of a paramagnetic phase with strong CB fluctuations28, resulting in an electronic structure 

similar to that of FeSe which is conducive to superconductivity, consistent with our experimental 

observations (c.f., Fig. 5.2). (As is the case also for FeSe, the stripe collinear phase is calculated 

to be lower in energy, which is both consistent and necessary28 for the system to be in the 

frustrated paramagnetic phase characterized by CB quantum fluctuations.)  

 

Figure 5.10 a, Calculated energy difference between the CB and BCL structures as a function of 

Se concentration for free and STO-supported FeTe1-xSex layers, both with and without spin-orbit. 

The critical concentrations for both bulk and unsupported FeTe1-xSex are greater than for the 

monolayer on STO. b, Simulated constant current STM images (10-5 e/Å3 isosurface of occupied 

states, 0.5 eV bias) for FeTe in the BCL and CB configurations, with and without spin-orbit 

coupling. Red (blue) balls represent Fe (Te) atoms.  

The significant differences in the electronic structure of the BCL and CB magnetic 

configurations are reflected in the STM images. Simulated (constant current) STM images of 



98 
 

FeTe (Fig. 5.10b) for the BCL agree with the same (2x1) structure observed in the experiments 

(Figs. 5.4a,b). The (2x1) structure is not related to atomic distortions, but rather is a consequence 

of the combination of magnetic configuration and spin-orbit coupling (SOC); while the possible 

connection between the (2x1) pattern and the BCL ordering has been made previously8,20,24, the 

essential role played by SOC has not been appreciated. Simulated images that use the identical 

atomic structure, but do not include SOC, show a (1x1) pattern (Fig. 5.10b). This simulation 

confirms that the BCL magnetic phase induced (2x1) ordering in FeTe detectable by normal 

STM imaging (a spin-polarized tip is not necessary), consistent with earlier work8,12,20. For 6% 

Se doped single layer FeTe, which mimics the case of our FeTe1-xSex (x < 0.1) ribbon bulk, the 

simulated STM image shows a (2x1) pattern (Fig. 5.11a), consistent with the STM images (Figs. 

5.4a,b). Thus, the meandering domain boundaries in Fig. 5.4a are magnetic in nature (Fig. 

5.11b), rather than structural grain boundaries. 
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Figure 5.11 a, Simulated STM for the 6% Se monolayers, with bicollinear AFM order and 

corresponding 2x1 pattern. Red atoms are Fe, blue Te (yellow Se). b, FeTe perpendicular 

bicollinear ribbon with spin defect. Spin defects give rise to shifts in lines. The experimental 

“domain boundaries” in the 2x1 regions (Figs. 5.4a,b) are likely shifts in spins, not actual atomic 

shifts. This also is a simpler explanation of why the boundary is not straight across the ribbon.  

Although these results suggest a switch from a magnetically BCL ordered phase to one 

with CB-like electronic (superconducting) behavior similar to FeSe with increasing Se 

concentration, additional effects are needed to account for the observed superconductivity at the 

FeTe1-xSex (x < 0.1) ribbon edge but not in the bulk. The experimental results suggest that the 

superconductivity in this case (for x < 0.1) is limited to within 2 nm from the edge. To address 

this possibility, we consider 6.8 nm FeTe ribbons and compare the relative energies of different 

magnetic configurations. (We limit these calculations to pure FeTe for computational simplicity.)  

For 2 nm CB regions along the edges, the energy difference between the BCL and CB phases 

decreases significantly to 5.4 meV/Fe (from 17.2 meV/Fe) for BCL stripes parallel to the edge 

(c.f., the right domain in Fig. 5.4b). Figure 5.12a is a simulated STM image for an FeTe ribbon 

with BCL ordering in the bulk (parallel to the edge) and CB-AFM on the edge (2 nm). (For BCL 

stripes perpendicular to the edge, the reduction is only 1-2 meV/Fe, reflecting the different 

interfaces between the phases and suggesting that the BCL region will extend closer to the edge 

in this case, consistent with Fig. 5.4b. A simulated STM image is shown in Fig. 5.13a.) Thus, 

near the edge the BCL phase (for stripes running parallel to the edge) is destabilized relative to 

the CB. These calculations for FeTe, together with results for different Se concentrations, 

indicate that the edge of FeTe1-xSex ribbons with Se concentrations less than 10% will exhibit the 
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CB-like electronic structure – and can be superconducting – while the bulk of the ribbon remains 

in the BCL magnetic phase.  

 

Figure 5.12 a, Simulated FeTe ribbon with bicollinear AFM in the bulk (parallel to the edge) 

and checkerboard AFM on the edge (2 nm). b, k-projected local bands of FeTe ribbon with 

bicollinear AFM in the bulk (parallel to the edge) at different locations. The middle panel is 1 nm 

in from the edge. The weighting is over the whole thickness of the ribbon, not in the vacuum 

region probed by the STM/STS tip.  
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Figure 5.13 a, Simulated FeTe ribbons with bicollinear AFM in the bulk (perpendicular to the 

edge) and checkerboard AFM on the edge (2 nm). b, k-projected local bands of FeTe ribbon with 

bicollinear AFM in the bulk (perpendicular to the edge) at different locations. Similar to Fig. 

5.12b, but for rotated magnetic order. The bulk bicollinear looks different, but it is simply 

because the ribbon projection is rotated. The color scheme is the same for all the different panels. 

Especially for the edge states, k and -k are different because of the broken time reversal. 

The k-resolved local electronic bands for BCL parallel to the edge are shown in Fig. 

5.12b (bands for BCL perpendicular to the edge are shown in Fig. 5.13b). The bands in the CB 

region near the edge of the FeTe ribbon closely resemble the projected bands of a FeSe 

monolayer on STO: electron pockets derived from M and no Fermi surface around the center of 

the zone15-17. (In the ribbon geometry, Γ-X projects to Γ, and X-M project to X.)  In the region 

near the edge, there are edge states that still have weight 1 nm from the edge. In the BCL region, 
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the bands have the characteristic features and dispersions for the bands along the FM direction of 

the stripes. The picture that emerges from these calculations is that both Se doping and the 

presence of the edge destabilize the ordered BCL magnetic phase, resulting in a paramagnetic 

region near the edge with strong CB fluctuations that locally lead to an FeSe-like electronic 

structure conducive to the superconductivity. Therefore, even though the Se concentration is 

inadequate (less than 10%) to induce bulk superconductivity in single-layer FeTe1-xSex ribbon, 

the presence of edge suppresses the BCL sufficiently that it becomes superconducting. 

DFT calculations were done using the Full-potential Linearized Augmented Plane Wave 

(FLAPW) program flair29 and the Vienna ab initio simulation package (VASP)30,31. The in-plane 

constant was fixed to that of SrTiO3(001), 3.9052 Å. 4x4 supercells where used to address the Se 

doping; calculations for the STO substrate were modeled by a symmetric TiO2-terminated 

SrTiO3 slab with FeTe1-xSex layers on both sides. A 15 Å vacuum region separated images. 

Additionally, the 6.8 nm FeTe ribbons had a 13.7 Å vacuum region between edges. The Te/Se 

heights were relaxed, and spin-orbit coupling was included except as noted. The calculations 

used k-point meshes equivalent to 40x40 Monkhorst-Pack for the 1x1 cell, and the PBE GGA 

parameterization was used. VASP calculations used a plane wave cutoff of 400 eV, while the 

FLAPW ones used a 200 (2000) eV cutoff for the wave functions (density/potential). 

 

5.3 Summary 

In summary, we have epitaxially grown non-superconducting single layer FeTe1-xSex (x < 

0.1) ribbons with well-defined straight ribbon edges on SrTiO3(001) substrates. Scanning 

tunneling microscopy/spectroscopy reveals a 2 nm 1D superconducting channel on the edge of 
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the ribbons, while the bulk of the ribbons is not superconducting. DFT calculations suggest the 

emergence of this edge superconductivity is related to the enhanced suppression of bicollinear 

AFM order near the edge, which destabilizes the ordered BCL magnetic phase, and results in a 

paramagnetic region with strong checkerboard fluctuations that locally leads to an FeSe-like 

electronic structure conducive to superconductivity. This work highlights the role of 

dimensionality in the interplay between superconductivity and magnetism, and demonstrates that 

nanostructuring can be an effective route towards inducing and enhancing superconductivity in 

Fe-based superconductors. 
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Chapter 6 Summary and Outlook 

6.1 Summary 

The recently discovered single layer FeSe on SrTiO3 substrate exhibits the highest 𝑇𝑐 in 

the iron-based superconductors family and unique structural and electronic properties different 

from lots of the already known superconductors. This dissertation research investigates the 

mechanism of superconductivity and explores tuning factors to modify the superconducting 

phase. 

By tuning the post annealing temperature, we prepared single layer FeSe films on STO 

with [110]Fe and [100]Fe edges. Spatially resolved tunneling spectra show that the 

superconducting gap is suppressed on the specular [110]Fe edge, but remains constant on the 

specular [100]Fe edge. By fitting the gap as a function of position, we obtain a finite and positive 

superconducting extrapolation length of 8.0 nm on the specular [110]Fe edge and an infinite 

extrapolation length on the specular [100]Fe edge. Additionally, on the rough [100]Fe edge, 

superconductivity is also suppressed. The finite extrapolation length on the [110]Fe edge and its 

edge orientation and roughness dependent behavior is consistent with d wave pairing symmetry 

in single layer FeSe/STO. 

Further increasing the post annealing time and temperature, we prepare single layer FeSe 

nanoribbon of well-controlled width from a few to tens of nanometers. dI/dV spectra conducted 

on various ribbons show a ribbon width dependent suppression of superconductivity. For FeSe 

ribbons wide than 9.0 nm, the tunneling spectra have well-defined superconducting gaps. 

Between 7.2 to 9.0 nm, the gap can still be defined while the coherence peaks are suppressed. 
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Below the critical ribbon width of 7.2 nm, Cooper pairs are destabilized. For ribbons between 5.0 

and 7.2 nm, the dI/dV spectra are in V shape. Below 5.0 nm, quantum well states dominate the 

density of states spectra, exhibiting U-shaped spectra. The gap versus ribbon width relation 

demonstrates that unconventional paring can be modified by reducing the superconductor size 

and determines the critical length scale for superconducting FeSe nanoribbons. 

By introducing another source Te, we synthesize single layer FeTe1-xSex (0 ≤ x ≤ 1) 

films with different Se concentrations on STO. After post annealing, we investigate the tunneling 

spectra on the edge and in the bulk of different films. As expected, FeTe is not superconducting 

both on the edge and in the bulk. FeSe and FeTe1-xSex (x > 0.1) is superconducting everywhere 

on the film. Surprisingly, on single layer FeTe1-xSex (x < 0.1), there is a one-dimensional 

superconducting channel of 2 nm wide on the edge, while the bulk is non-superconducting. The 

edge superconductivity is confirmed by the gap closing at raised temperature and Dynes function 

fitting of the dI/dV spectra. The 2x1 ordering from STM images and DFT simulations suggest 

the bulk of the FeTe1-xSex (x < 0.1) film is in bicollinear antiferromagnetic phase. DFT 

calculations further suggest that the film edge helps to destabilize the bicollinear magnetic order 

and locally induce single layer FeSe-like band structure which is conducive to the 

superconductivity. This observation demonstrates that nanostructure boundaries can also act as a 

factor to modify the interplay between magnetism and superconductivity. 
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6.2 Outlook 

6.2.1 Interface Engineering  

The STO substrate plays a significant role in the superconducting 𝑇𝑐 enhancement in 

single layer FeSe/STO1,2. Modifying the STO surface termination and tracing the response of the 

superconducting gap help to specifically determine the role of the interface structure. It has been 

reported that STO crystal with mixed TiO2 and SrO termination can be prepared by adjusting the 

annealing temperature and atmosphere3. By annealing in O2, we prepared STO substrates with 

coexisting TiO2 and SrO terminations. STM and atomic force microscopy images demonstrate 

the presence of TiO2 and SrO surfaces (Figs. 6.1a,b). Closeup STM imaging illustrates that there 

is a √13 × √13 surface reconstruction on TiO2 and a 3 × 1 reconstruction on SrO surface (Figs. 

6.1c,d). Single layer FeSe grown on this substrate shows 1 × 1 lattice in FeSe/TiO2 and 3 × 1 

ordering in FeSe/SrO (Fig. 6.2a). And the superconducting gap size of FeSe/SrO is about 30% 

smaller than the gap of FeSe/TiO2 (Fig. 6.2b). To identify the tuning factor behind this gap size 

difference, more investigation on the surface reconstruction and the band structure of TiO2 and 

SrO surface is expected. 
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Figure 6.1 a, STM image of STO annealed in O2 with TiO2 (domain A) and SrO (domain B) 

terminations (Vs= 1.0 V, It= 0.1 nA). b, Atomic force microscopy image of lateral friction on the 

same STO sample with TiO2 and SrO terminations. c, STM image of the TiO2 surface (Vs= 50 

mV, It= 0.1 nA). There is a √13 × √13 reconstruction. d, STM image of the SrO surface (Vs= 

2.0 V, It= 0.1 nA). There is a 3 × 1 reconstruction. 
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Figure 6.2 a, Atomic resolution STM image of single layer FeSe on STO with mixed TiO2 and 

SrO terminations (Vs= 50 mV, It= 0.1 nA). On the right is FeSe/TiO2. On the left is FeSe/SrO, 

and there is a 3 × 1 ordering. The inset is fast Fourier transform of FeSe/SrO, showing the 3 × 1 

ordering. b, dI/dV spectra taken on FeSe/TiO2 and FeSe/SrO. The superconducting gap is 11 

meV for FeSe/SrO and 17 meV for FeSe/TiO2. 

 

6.2.2 Local Superconducting-like Pairing 

In the FeSe/STO system, only single layer FeSe on STO is superconducting4,5. For 

bilayer or thicker layer films, the tunneling spectra are in U shape, showing a semiconducting-

like behavior. However, we observe superconducting-like gaps locally at some extended defects 

on bilayer FeSe (Fig. 6.3) at 6 K. The length scale of the extended defect is 2 to 3 nm, and the 

local gap size is about 17 meV, which is the same as the gap on the first layer FeSe. Though 

more investigations on the response of the local gap to increased temperature and applied 

magnetic field are still needed, this result sheds light on revealing the superconducting pairing 

mechanism in FeSe. 
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Figure 6.3 a, Atomic resolution STM image of bilayer FeSe on STO (Vs= -2.0 V, It= 0.1 nA). 

There is an extended defect (bright spot at the top right) on the film. b, dI/dV spectrum taken at 

the extended defect in a. The gap is 17 meV. 
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