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ABSTRACT

COMPACTIFICATIONS OF MANIFOLDS

WITH BOUNDARY

by

Shijie Gu

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Craig Guilbault

This dissertation is concerned with compactifications of high-dimensional mani-

folds. Siebenmann’s iconic 1965 dissertation [Sie65] provided necessary and sufficient

conditions for an open manifold Mm (m ≥ 6) to be compactifiable by addition of a

manifold boundary. His theorem extends easily to cases where Mm is noncompact

with compact boundary; however when ∂Mm is noncompact, the situation is more

complicated. The goal becomes a “completion” of Mm, ie, a compact manifold M̂m

containing a compactum A ⊆ ∂Mm such that M̂m\A ≈Mm. Siebenmann did some

initial work on this topic, and O’Brien [O’B83] extended that work to an important

special case. But, until now, a complete characterization had yet to emerge. Here

we provide such a characterization.

Our second main theorem involves Z-compactifications. An important open

question asks whether a well-known set of conditions laid out by Chapman and

Siebenmann [CS76] guarantee Z-compactifiability for a manifold Mm. We cannot

answer that question, but we do show that those conditions are satisfied if and only if

Mm× [0, 1] is Z-compactifiable. A key ingredient in our proof is the above Manifold

Completion Theorem—an application that partly explains our current interest in

that topic, and also illustrates the utility of the π1-condition found in that theorem.

Chapter 1 is based on joint work with Professor Craig Guilbault [GG17].
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At last, we obtain a complete characterization of pseudo-collarable n-manifolds

for n ≥ 6. This extends earlier work by Guilbault and Tinsley to allow for manifolds

with noncompact boundary. In the same way that their work can be viewed as an

extension of Siebenmann’s dissertation that can be applied to manifolds with non-

stable fundamental group at infinity, Pseudo-collarability Characterization Theorem

can also be viewed as an extension of Manifold Completion Theorem in a manner

that is applicable to manifolds whose fundamental group at infinity is not periph-

erally stable.
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Introduction

This dissertation is about compactifications of manifolds. The “nicest” of these

compactifications is the addition of a boundary to an open manifold (or to a man-

ifold with compact boundary). That was the topic of Siebenmann’s iconic 1965

dissertation [Sie65]. When a manifold Mm has noncompact boundary, one seeks

a compactification which completes the boundary of Mm. That is a more deli-

cate problem. Siebenmann addressed a very special case in his 1965 dissertation

[Sie65] and O’Brien [O’B83] extended that work to cases where Mm and boundary

of Mm are both 1-ended. In Chapter 1, we present a full characterization—Manifold

Completion Theorem, thereby completing an unfinished chapter in the study of non-

compact manifolds. In the rest of Chapter 1, we demonstrate a nice application of

Manifold Completion Theorem to Z-compactifications. An important open question

asks whether a well-known set of conditions laid out by Chapman and Siebenmann

[CS76] guarantee Z-compactifiability for a manifold Mm. We cannot answer that

question, but we do show that those conditions are satisfied if and only if Mm× [0, 1]

is Z-compactifiable. Chapter 1 is based on joint work with Professor Craig Guilbault

[GG17].

One of the beauties of Manifold Completion Theorem is the simple structure it

places on the ends of certain manifolds. However, this simplicity largely limits the

class of manifolds to which the theorem applies. Many interesting and important

noncompact manifolds are too complicated at infinity to be completable. Usually,

the periperal stability in Manifold Completion Theorem can be easily violated. So,

it is important to produce a characterzation to classify manifolds satisfying less

rigid structures on their ends. In Chapter 2, we achieve this goal by obtaining a
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complete characterization of pseudo-collarable n-manifolds for n ≥ 6. This extends

earlier work by Guilbault and Tinsley [Gui00, GT03, GT06] to allow for manifolds

with noncompact boundary. In the same way that their work can be viewed as

a natural extension of Siebenmann’s dissertation that can be applied to manifolds

with non-stable fundamental group at infinity, Pseudo-collarability Characterization

Theorem can also be viewed as an extension of Manifold Completion Theorem in a

manner that is applicable to manifolds whose fundamental group at infinity is not

peripherally stable.

2



Chapter 1

Compactifications of Manifolds
with Boundary

This chapter offers an exploration about “nice” compactifications of high-dimensional

manifolds. The simplest of these compactification is the addition of a boundary to

an open manifold. That was the topic of Siebenmann’s famous 1965 dissertation

[Sie65], the main result of which can easily be extended to include noncompact man-

ifolds with compact boundaries. When Mm has noncompact boundary, one may ask

for a compactification M̂m that “completes” ∂Mm. That is a more delicate problem.

Siebenmann addressed a very special case in his dissertation, before O’Brien [O’B83]

characterized completable n-manifolds in the case where Mm and ∂Mm are both

1-ended. Since completable manifolds can have infinitely many (non-isolated) ends,

O’Brien’s theorem does not imply a full characterization of completable n-manifolds.

We obtain such a characterization here, thereby completing an unfinished chapter

in the study of noncompact manifolds.

A second type of compactification considered here is the Z-compactification.

These are similar to the compactifications discussed above—in fact, those are special

cases—but Z-compactifications are more flexible. For example, a Z-boundary for

an open manifold need not be a manifold, and a manifold that admits no completion

can admit a Z-compactification. These compactifications have proven to be useful

in both geometric group theory and manifold topology, for example, in attacks

on the Borel and Novikov Conjectures. A major open problem (in our minds) is

3



a characterization of Z-compactifiable manifolds. A set of necessary conditions

was identified by Chapman and Siebenmann [CS76], and it is hoped that those

conditions are sufficient. We prove what might be viewed the next best thing: If

Mm satisfies the Chapman-Siebenmann conditions (and m 6= 4), then Mm × [0, 1]

is Z-compactifiable. We do this by proving that Mm × [0, 1] is completable—an

application that partly explains the renewed interest in manifold completions, and

also illustrates the usefulness of the conditions found in the Manifold Completion

Theorem.

1.0.1 The Manifold Completion Theorem.

An m-manifold Mm with (possibly empty) boundary is completable if there exists a

compact manifold M̂m and a compactum C ⊆ ∂M̂m such that M̂m\C is homeomor-

phic to Mm. In this case M̂m is called a (manifold) completion of Mm. A primary

goal of this paper is the following characterization theorem for m ≥ 6. Definitions

will be provided subsequently.

Theorem 1.0.1 (Manifold Completion Theorem). An m-manifold Mm (m ≥ 6) is

completable if and only if

(a) Mm is inward tame,

(b) Mm is peripherally π1-stable at infinity,

(c) σ∞(Mm) ∈ lim←−
{
K̃0(π1(N)) | N a clean neighborhood of infinity

}
is zero, and

(d) τ∞ (Mm) ∈ lim←−
1 {Wh(π1(N)) | N a clean neighborhood of infinity} is zero.

Remark 1. Several comments are in order:

1. Dimensions ≤ 5 are discussed briefly in §1.1; our main focus is m ≥ 6.

2. If ∂Mm is compact and Mm is inward tame then Mm has finitely many ends

(see §1.4), so the ends are isolated and disjoint from ∂Mm. In that case

Theorem 1.0.1 reduces to Siebenmann’s dissertation [Sie65]. As such, Theorem

1.0.1 can be viewed as a generalization of [Sie65].

4



3. The special case of the Manifold Completion Theorem, where Mm and ∂Mm

are 1-ended, was proved by O’Brien [O’B83]; that is where “peripheral π1-

stability” was first defined. But since candidates for completion can be infinite-

ended (e.g., let C ⊆ Sm−1 be a Cantor set and Mm = Bm\C), the general

theorem is not a corollary. In the process of generalizing [O’B83], we simplify

the proof presented there and correct an error in the formulation of Condition

(c). We also exhibit some interesting examples which answer a question posed

by O’Brien about a possible weakening Condition (b).

4. If Condition (b) is removed from Theorem 1.0.1, one arrives at Chapman

and Siebenmann’s conditions for characterizing Z-compactifiable Hilbert cube

manifolds [CS76]. A Z-compactification theorem for finite-dimensional mani-

folds is the subject of the second main result of this paper. We will describe

that theorem and the necessary definitions now.

1.0.2 The Stable Z-compactification Theorem for Manifolds

To extend the idea of a completion to Hilbert cube manifolds Chapman and Sieben-

mann introduced the notion of a “Z-compactification”. A compactification X̂ =

XtZ of a space X is a Z-compactification if there is a homotopy H : X̂×[0, 1]→ X̂

such that H0 = idX̂ and Ht

(
X̂
)
⊆ X for all t > 0. Subsequently, this notion has

been fruitfully applied to more general spaces—notably, finite-dimensional mani-

folds and complexes; see, for example, [BM91],[CP95],[FW95],[AG99], and [FL05].

A completion of of a finite-dimensional manifold is a Z-compactification, but a Z-

compactification need not be a completion. In fact, a manifold that allows no com-

pletion can still admit a Z-compactification; the exotic universal covers constructed

by Mike Davis are some of the most striking examples (just apply [ADG97]). Such

manifolds must satisfy Conditions (a), (c) and (d), but the converse remains open.

Question. Does every finite-dimensional manifold that satisfies Conditions (a), (c)

and (d) of Theorem 1.0.1 admit a Z-compactification?

5



This question was posed more generally in [CS76] for locally compact ANRs,

but in [Gui01] a 2-dimensional polyhedral counterexample was constructed. The

manifold version remains open. In this paper, we prove a best possible “stabilization

theorem” for manifolds.

Theorem 1.0.2 (Stable Z-compactification Theorem for Manifolds). An m-manifold

Mm (m ≥ 5) satisfies Conditions (a), (c) and (d) of Theorem 1.0.1, if an only if

Mm × [0, 1] admits a Z-compactification. In fact, Mm × [0, 1] is completable if and

only if Mm satisfies those conditions.

Remark 2. In [Fer00], Ferry showed that if a locally finite k-dimensional polyhedron

X satisfies Conditions (a), (c) and (d), then X × [0, 1]2k+5 is Z-compactifiable.

Theorem 1.0.1 can be viewed as a sharpening of Ferry’s theorem in cases where X

is a manifold.

1.0.3 Outline of this chapter

The remainder of this chapter is organized as follows. In §1.1 we review the status

of Theorem 1.0.1 in dimensions < 6. In §1.2 we fix some terminology and notation;

then in §1.3-1.6, we carefully discuss each of the four conditions present in Theorem

1.0.1. In §1.8-1.9 we prove Theorem 1.0.1, and in §1.10 we prove Theorem 1.0.2. In

§1.11 we provide a counterexample to a question posed in [O’B83] about a possible

relaxation of Condition (b), and in §1.12 we provide the proof of a technical lemma

that was postponed until the end of the chapter.

1.1 Manifold completions in dimensions < 6

The Manifold Completion Theorem is true in dimensions ≤ 3, but much simpler

versions are possible in those dimensions. For example, Tucker [Tuc74] shows that

a 3-manifold can be completed if and only if each component of each clean neigh-

borhood of infinity has finitely generated fundamental group—a condition that is

implied by inward tameness alone.

6



In dimension 5 our proof of Theorem 1.0.1 goes through verbatim, provided it

is always possible to work in neighborhoods of infinity with boundaries in which

Freedman’s 4-dimensional Disk Embedding Theorem holds. That issue is discussed

in [Qui82] and [FQ90, §11.9] in the less general setting of Siebenmann’s thesis, but

the issues here are the same. In the language of [FQ90]: Theorem 1.0.1 holds

provided Condition (b) is strengthened to require the existence of arbitrarily small

neighborhoods of infinity with stable peripheral pro-π1 groups that are “good”. A

caveat is that, whenever [Fre82] is applied, conclusions are topological, rather than

PL or smooth.

Remarkably, Siebenmann’s thesis fails in dimension 4 (see [Wei87] and [KS88]).

Counterexamples to his theorem are, of course, counterexamples to Theorem 1.0.1

as well.

As for low-dimensional versions of Theorem 1.0.2: if m ≤ 3 and Mm satisfies

Condition (a) then Mm is completable (hence Z-compactifiable), so Mm × [0, 1]

is completable and Z-compactifiable. If m = 4, then M4 × [0, 1] is a 5-manifold,

which (see §1.10) satisfies the conditions of Theorem 1.0.1. Whether that leads to

a completion depends on 4-dimensional issues, in particular the “goodness” of the

(stable) peripheral fundamental groups of the ends of M4× [0, 1]. Those groups are

determined by, but are not the same as, the fundamental groups at the ends of M4.

If desired, a precise group-theoretic condition can be formulated from Proposition

1.10.1 and [Gui07].

1.2 Conventions, notation, and terminology

For convenience, all manifolds are assumed to be piecewise-linear (PL). That as-

sumption is particularly useful for the topic at hand, since numerous instances of

“smoothing corners” would be required in the smooth category (an issue that is cov-

ered nicely in [O’B83]). With proper attention to such details, analogous theorems

can be obtained in the smooth or topological category. Unless stated otherwise, an

m-manifold Mm is permitted to have a boundary, denoted ∂Mm. We denote the

7



manifold interior by intMm. For A ⊆ Mm, the point-set interior will be denoted

IntMm A and the frontier by FrMm A (or for conciseness, IntM A and the frontier

by FrM A). A closed manifold is a compact boundaryless manifold, while an open

manifold is a non-compact boundaryless manifold.

For q < m, a q-dimensional submanifold Qq ⊆Mm is properly embedded if it is a

closed subset of Mm and Qq ∩ ∂Mm = ∂Qq; it is locally flat if each p ∈ intQq has a

neighborhood pair homeomorphic to (Rm,Rq) and each p ∈ ∂Qq has a neighborhood

pair homeomorphic to
(
Rm

+ ,R
q
+

)
. By this definition, the only properly embedded

codimension 0 submanifolds of Mm are unions of its connected components; a more

useful type of codimension 0 submanifold is the following: a codimension 0 subman-

ifold Qm ⊆ Mm is clean if it is a closed subset of Mm and FrM Qm is a properly

embedded locally flat (hence, bicollared) (m− 1)-submanifold of Mm. In that case,

Mm\Qm is also clean, and FrM Qm is a clean codimension 0 submanifold of both

∂Qm and ∂(Mm\Qm).

When the dimension of a manifold or submanifold is clear, we sometimes omit the

superscript; for example, denoting a clean codimension 0 submanifold by Q. Simi-

larly, when the ambient space is clear, we denote (point-set) interiors and frontiers

by IntA and FrA

For any codimension 0 clean submanifold Q ⊆ Mm, let ∂MQ denote Q ∩ ∂Mm;

alternatively ∂MQ = ∂Q\ int(FrQ). Similarly, we will let intM Q denote Q∩ intMm;

alternatively intM Q = Q\∂Mm.

1.3 Ends, pro-π1, the peripheral π1-stability, and

the peripheral perfect semistability condition

1.3.1 Neighborhoods of infinity, partial neighborhoods of
infinity, and ends

Let Mm be a connected manifold. A clean neighborhood of infinity in Mm is a clean

codimension 0 submanifold N ⊆ Mm for which Mm\N is compact. Equivalently,

a clean neighborhood of infinity is a set of the form Mm\C where C is a compact

8



clean codimension 0 submanifold of Mm. A clean compact exhaustion of Mm is a

sequence {Ci}∞i=1 of clean compact connected codimension 0 submanifolds with Ci ⊆
IntM Ci+1 and ∪Ci = Mm. By letting Ni = Mm\Ci we obtain the corresponding

cofinal sequence of clean neighborhoods of infinity. Each such Ni has finitely many

components
{
N j
i

}ki
j=1

. By enlarging Ci to include all of the compact components

of Ni, we can arrange that each N j
i is noncompact; then, by drilling out regular

neighborhoods of arcs connecting the various components of each FrM N j
i (further

enlarging Ci), we can also arrange that each FrM N j
i is connected. A clean Ni with

these latter two properties is called a 0-neighborhood of infinity. Most constructions

in this paper will begin with a clean compact exhaustion of Mm with a corresponding

cofinal sequence of clean 0-neighborhoods of infinity.

Assuming the above arrangement, an end ε of Mm is determined by a nested

sequence
(
Nki
i

)∞
i=1

of components of the Ni; each component is called a neighborhood

of ε. More generally, any subset of Mm that contains one of the Nki
i is a neighbor-

hood of ε, and any nested sequence (Wj)
∞
j=1 of connected neighborhoods of ε, for

which ∩Wj = ∅, also determines the end ε. A more thorough discussion of ends can

be found in [Gui16]. Here we will abuse notation slightly by writing ε =
(
Nki
i

)∞
i=1

,

keeping in mind that a sequence representing ε is not unique.

At times we will have need to discuss components {N j} of a neighborhood of

infinity N without reference to a specific end of Mm. In that situation, we will refer

to the N j as a partial neighborhoods of infinity for Mm (partial 0-neighborhoods

if N is a 0-neighborhood of infinity). Clearly every noncompact clean connected

codimension 0 submanifold of Mm with compact frontier is a partial neighborhood

of infinity with respect to an appropriately chosen compact C; if its frontier is

connected it is a partial 0-neighborhood of infinity.

1.3.2 The fundamental group of an end

For each end ε of Mm, we will define the fundamental group at ε by using inverse

sequences. Two inverse sequences of groups A0
α1←− A1

α2←− A3
α3←− · · · and B0

β1←−

9



B1
β2←− B3

β3←− · · · are pro-isomorphic if they contain subsequences that fit into a

commutative diagram of the form

Gi0
<

λi0+1,i1 Gi1
<

λi1+1,i2 Gi2
<

λi2+1,i3 Gi3 · · ·

Hj0
<

µj0+1,j1<

<

Hj1
<

µj1+1,j2<

<

Hj2
<

µj2+1,j3<

<

· · ·

(1.3.1)

where the connecting homomorphisms in the subsequences are (as always) compo-

sitions of the original maps. An inverse sequence is stable if it is pro-isomorphic

to a constant sequence C
id←− C

id←− C
id←− · · · . Clearly, an inverse sequence is

pro-isomorphic to each of its subsequences; it is stable if and only if it contains a

subsequence for which the images stabilize in the following manner

G0 <
λ1

G1 <
λ2

G2 <
λ3

G3 · · ·

Im (λ1) <
∼=<

<

Im (λ2) <
∼=<

<

Im (λ3) <
∼=<

<

· · ·

(1.3.2)

where all unlabeled homomorphisms are restrictions or inclusions. (Here we have

simplified notation by relabelling the entries in the subsequence with integer sub-

scripts.)

Given an end ε =
(
Nki
i

)∞
i=1

, choose a ray r : [1,∞)→Mm such that r ([i,∞)) ⊆
Nki
i for each integer i > 0 and form the inverse sequence

π1

(
Nk1

1 , r (1)
) λ2←− π1

(
Nk2

2 , r (2)
) λ3←− π1

(
Nk3

3 , r (3)
) λ4←− · · · (1.3.3)

where each λi is an inclusion induced homomorphism composed with the change-of-

basepoint isomorphism induced by the path r|[i−1,i]. We refer to r as the base ray

and the sequence (1.3.3) as a representative of the “fundamental group at ε based at

r” —denoted pro-π1 (ε, r). Any similarly obtained representation (e.g., by choosing

a different sequence of neighborhoods of ε) using the same base ray can be seen

to be pro-isomorphic. We say the fundamental group at ε is stable if (1.3.3) is a

stable sequence. A nontrivial (but standard) observation is that both semistability

10



and stability of ε do not depend on the base ray (or the system of neighborhoods if

infinity used to define it). See [Gui16] or [Geo08].

If {Hi, µi} can be chosen so that each µi is an epimorphism, we say that our

inverse sequence is semistable (or Mittag-Leffler, or pro-epimorphic). In this case,

it can be arranged that the restriction maps in the bottom row of (1.3.1) are epi-

morphisms. Similarly, if {Hi, µi} can be chosen so that each µi is a monomorphism,

we say that our inverse sequence is pro-monomorphic; it can then be arranged that

the restriction maps in the bottom row of (1.3.1) are monomorphisms. It is easy to

see that an inverse sequence that is semistable and pro-monomorphic is stable.

Recall that a commutator element of a group H is an element of the form

x−1y−1xy where x, y ∈ H; and the commutator subgroup of H; denoted [H,H]

or H(1), is the subgroup generated by all of its commutators. The group H is per-

fect if H = [H,H]. An inverse sequence of groups is perfectly semistable if it is

pro-isomorphic to an inverse sequence.

G0

λ1
�−−− G1

λ2
�−−− G2

λ3
�−−− · · · (1.3.4)

of finitely generated groups and surjections where each ker(λi) perfect. The following

shows that inverse sequences of this type behave well under passage to subsequences.

Lemma 1.3.1. A composition of surjective group homomorphisms, each having

perfect kernels, has perfect kernel. Thus, if an inverse sequence of surjective group

homomorphisms has the property that the kernel of each bonding map is perfect, then

each of its subsequences also has this property.

Proof. See [Gui00, Lemma 1].
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1.3.3 Relative connectedness, relative π1-stability, the pe-
ripheral π1-stability condition, relatively perfectly se-
mistablility, and the peripheral perfect semistability
condition.

Let Q be a manifold and A ⊆ ∂Q. We say that Q is A-connected at infinity if Q

contains arbitrarily small neighborhoods of infinity V for which A∪V is connected.

Example 1. If P is a compact manifold with connected boundary, X ⊆ ∂P is a

closed set, and Q = P\X, then Q has one end for each component of X but Q is

∂Q-connected at infinity. More generally, if B is a clean connected codimension 0

manifold neighborhood of X in ∂P and A = B\X, then Q is A-connected at infinity.

The following lemma is straightforward.

Lemma 1.3.2. Let Q be a noncompact manifold and A a clean codimension 0

submanifold of ∂Q. Then Q is A-connected at infinity if and only if Q\A is 1-

ended.

If A ⊆ ∂Q and Q is A-connected at infinity: let {Vi} be a cofinal sequence of

clean neighborhoods of infinity for which each A ∪ Vi is connected; choose a ray

r : [1,∞) → intQ such that r ([i,∞)) ⊆ Vi for each i > 0; and form the inverse

sequence

π1 (A ∪ V1, r (1))
µ2←− π1 (A ∪ V2, r (2))

µ3←− π1 (A ∪ V3, r (3))
µ4←− · · · (1.3.5)

where bonding homomorphisms are obtained as in (1.3.3). We say Q is A-perfectly

π1-semistable at infinity (resp. A-π1-stable at infinity) if (1.3.5) is perfectly semistable

(resp. stable). Independence of this property from the choices of {Vi} and r follows

from the traditional theory of ends by applying Lemmas 1.3.2 and 1.3.3. Because

each boundary component of a manifold with boundary is collared, the following

lemma is true because “throwing away” part of the boundary will preserve the ho-

motopy type of the original manifold.
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Lemma 1.3.3. Let Q be a noncompact manifold and A a clean codimension 0

submanifold of ∂Q for which Q is A-connected at infinity. Then, for any cofinal

sequence of clean neighborhoods of infinity {Vi} and ray r : [1,∞) → Q as de-

scribed above, the sequence (1.3.5) is pro-isomorphic to any sequence representing

pro-π1 (Q\A, r).

Proof. It suffices to find a single cofinal sequence of connected neighborhoods of

infinity {Ni} in Q\A for which the corresponding representation of pro-π1 (Q\A, r)
is pro-isomorpic to (1.3.5). Toward that end, for each i let C1 ⊇ C2 ⊇ · · · be a

nested sequence of relative regular neighborhoods of A in Q such that ∩Ci = A. By

“cleanness” of the Vi, each Ci can be chosen so that Ci∪Vi is a clean codimension 0

submanifold ofQ which deformation retracts ontoA∪Vi. ThenNi = (Ci ∪ Vi) \A is a

clean neighborhood of infinity in Q\A and Ni ↪→ Ci ∪Vi is a homotopy equivalence.

For each i there is a canonical isomorphism αi : π1 (A ∪ Vi, r (i)) → π1 (Ni, r (i))

which is the composition

π1 (A ∪ Vi, r (i))
∼=−→ π1 (Ci ∪ Vi, r (i))

∼=←− π1 (Ni, r (i))

These isomorphisms fit into a commuting diagram

π1 (A ∪ V1, r (1))
µ2←− π1 (A ∪ V2, r (2))

µ3←− π1 (A ∪ V3, r (3))
µ4←− · · ·

α1 ↓∼= α2 ↓∼= α3 ↓∼=
π1 (N1, r (1))

λ2←− π1 (N2, r (2))
λ3←− π1 (N3, r (3))

λ4←− · · ·

completing the proof.

Remark 3. In the above discussion, we allow for the possibility that A = ∅. In

that case, A-connectedness at infinity reduces to 1-endedness and A-π1-stability to

ordinary π1-stability at that end.

Definition 1.3.4. Let Mm be a manifold and ε an end of Mm.

1. Mm is peripherally locally connected at infinity if it contains arbitrarily small

0-neighborhoods of infinity N with the property that each component N j is

∂MN
j-connected at infinity.
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2. Mm is peripherally locally connected at ε if ε has arbitrarily small 0-neighbor-

hoods P that are ∂MP -connected at infinity.

An N with the property described in condition (1) will be called a strong 0-neigh-

borhood of infinity for Mm, and a P with the property described in condition (2)

will be called a strong 0-neighborhood of ε. More generally, any connected partial

0-neighborhood of infinity Q that is ∂MQ-connected at infinity will be called a strong

partial 0-neighborhood of infinity.

Lemma 1.3.5. Mm is peripherally locally connected at infinity iff Mm is peripher-

ally locally connected at each of its ends.

Proof. Clearly the initial condition implies the latter. For the converse, let N ′ be an

arbitrary neighborhood of infinity in Mm and for each end ε, let Pε be a 0-neighbor-

hoods of ε, contained in N ′, which is ∂MPε-connected at infinity. By compactness

of the Freudenthal boundary of Mm, there is a finite subcollection {Pεk}
n
k=1 that

covers the end of Mm; in other words, C = Mm − ∪nk=1Pεk is compact. If the Pεk are

pairwise disjoint, we are finished; just let N = ∪nk=1Pεk . If not, adjust the Pεk within

N ′ so they are in general position with respect to one another, then let {Qj}sj=1 be

the set of components of ∪nk=1Pεk and note that each Qj is a ∂MQj-connected partial

0-neighborhood of infinity.

Remark 4. In the next section, we show that every inward tame manifold Mm is

peripherally locally connected at infinity. As a consequence, that condition plays

less prominent role than the next definition.

Definition 1.3.6. Let Mm be a manifold and ε an end of Mm.

1. Mm is peripherally perfectly π1-semistable at infinity (resp. peripherally π1-

stable at infinity) if it contains arbitrarily small strong 0-neighborhoods of

infinity N with the property that each component N j is ∂MN
j-perfectly π1-

semistable at infinity (resp. ∂MN
j-π1-stable at infinity).
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2. Mm is peripherally perfectly π1-semistable at ε (resp. peripherally π1-stable at

ε ) if ε has arbitrarily small strong 0-neighborhoods P that are ∂MP -perfectly

π1-semistable at infinity (resp. ∂MP -π1-stable at infinity).

If Mm contains arbitrarily small 0-neighborhoods of infinity N with the prop-

erty that each component N j is ∂MN
j-perfectly semistable at infinity, then those

components provide arbitrarily small neighborhoods of the ends satisfying the nec-

essary perfectly semistable condition. Thus, it’s clear that peripheral perfect π1-

semistability at infinity implies peripheral perfect π1-semistability at each end.

It is easy to see that peripheral π1-stability at infinity implies peripheral π1-

stability at each end; and when Mm is finite-ended, peripheral π1-stability at each

end implies peripheral π1-stability at infinity. A argument could be made for defining

peripheral π1-stability at infinity to mean “peripherally π1-stability at each end”.

For us, that point is moot; in the presence of inward tameness the two alternatives

are equivalent.

Lemma 1.3.7. An inward tame manifold Mm is peripherally π1-stable at infinity if

and only if it is peripherally π1-stable at each of its ends.

Proof of this lemma is technical, and not central to the main argument. For that

reason, we save the proof for later (see §1.12). Although it is not needed here, it

would be interesting to know whether Lemma 1.3.7 holds without the assumption

of inward tameness.

1.4 Finite domination and inward tameness

A topological space P is finitely dominated if there exists a finite polyhedron K and

maps u : P → K and d : K → P such that d ◦ u ' idP . If choices can be made

so both d ◦ u ' idP and u ◦ d ' idK , i.e., P ' K, we say P has finite homotopy

type. For simplicity, we will restrict our attention to cases where P is a locally finite

polyhedron—a class that contains the (PL) manifolds, submanifolds, and subspaces

considered here.
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Lemma 1.4.1. Let Mm be a manifold and A ⊆ ∂M . Then Mm is finitely dominated

[resp., has finite homotopy type] if and only if Mm\A is finitely dominated [resp.,

has finite homotopy type].

Proof. Mm\A ↪→Mm is a homotopy equivalence, and these properties are homotopy

invariants.

Lemma 1.4.2. A locally finite polyhedron P is finitely dominated if and only if there

exists a homotopy H : P × [0, 1]→ P such that H0 = idP and H1 (P ) is compact.

Proof. Assuming a finite domination, as described above, the homotopy between idP

and d ◦u has the desired property. For the converse, let K be a compact polyhedral

neighborhood of H1 (P ), u : K ↪→ P , and d = H1 : P → K.

A locally finite polyhedron P is inward tame if it contains arbitrarily small

polyhedral neighborhoods of infinity that are finitely dominated. Equivalently, P

contains a cofinal sequence {Ni} of closed polyhedral neighborhoods of infinity each

admitting a “taming homotopy” H : Ni × [0, 1]→ Ni that pulls Ni into a compact

subset of itself. By an application of the Homotopy Extension Property (similar

to [GM17, Lemma 3.4]) we can require taming homotopies to be fixed on FrNi.

From there, it is easy to see that, in an inward tame polyhedron, every closed

neighborhood of infinity admits a taming homotopy.1

Lemma 1.4.3. Let Mm be a manifold and A a clean codimension 0 submanifold of

∂Mm. If Mm is inward tame then so is Mm\A.

Proof. For an arbitrarily small clean neighborhood of infinity N in Mm, let H be a

taming homotopy that fixes FrN . Then H extends via the identity to a homotopy

that pulls A ∪ N into a compact subset of itself, so A ∪ N is finitely dominated.

Arguing as in Lemma 1.3.3, Mm\A has arbitrarily small clean neighborhoods of

infinity homotopy equivalent to such an A ∪N .

1For a discussion of “tameness” terminology and its variants, see [Gui16, §3.5.5].
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Remark 5. Important cases of Lemma 1.4.3 are when A = ∂Mm and when V is a

clean neighborhood of infinity (or a component of one) and A = ∂MV . Notice that

Lemma 1.4.3 is valid when Mm is compact and H is the “empty map”.

A finitely dominated space has finitely generated homology, from which it can

be shown that an inward tame manifold with compact boundary is finite-ended (see

[GT03, Prop.3.1]). That conclusion fails for manifolds with noncompact boundary;

see item (3) of Remark 1. The following variation is crucial to this paper.

Proposition 1.4.4. If a noncompact connected manifold Mm and its boundary each

have finitely generated homology, then Mm has finitely many ends. More specifically,

the number of ends of Mm is bounded above by dimHm−1(Mm, ∂Mm;Z2) + 1.

Proof. Let C be a clean connected compact codimension 0 submanifold of Mm,

with the property that N = Mm\C is a 0-neighborhood of infinity, and let {N j}kj=1

be the collection of connected components of Nn. It suffices to show that k ≤
dimHm−1(Mm, ∂Mm;Z2)+1. For the remainder of this proof (and only this proof),

all homology is with Z2-coefficients.

Note that ∂C is the union of clean codimension 0 submanifolds ∂MC and FrC,

which intersect in their common boundary ∂ (FrC). So by a generalized version of

Poincaré duality [Hat02, Th.3.43] and the Universal Coefficients Theorem, for all i,

we have

Hi (C, ∂MC) ∼= Hm−i (C,FrC) . (1.4.1)

Claim 1. dimHm−1(C, ∂MC) ≥ k − 1.

By the long exact sequence for the pair (C,FrC), we have

· · · → H1(C,FrC) � H̃0(FrC) → H̃0(C)
q q

(Z2)k−1 0

So the claim follows from identity (1.4.1).

Claim 2. rankHm−1(N, ∂MN) ≥ k
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This claim follows from the long exact sequence for the triple (N, ∂N, ∂MN)

→ Hm (N, ∂N) → Hm−1 (∂N, ∂MN) � Hm−1 (N, ∂MN) →
q q
0 (Z2)k

where triviality of Hm (N, ∂N) is due to the noncompactness of all components of

N , and the middle equality is from excision.

The relative Mayer-Vietoris Theorem for pairs [Hat02, §2.2], applied to (Mm, ∂Mm)

expressed as (C ∪N, ∂MC ∪ ∂MN), contains

Hm−1(FrC, ∂ FrC)→ Hm−1(C, ∂MC)⊕Hm−1(N, ∂MN)→ Hm−1(Mm, ∂Mm)

(1.4.2)

from which we can deduce

dim (Hm−1(C, ∂MC)⊕Hm−1(N, ∂MN)) ≤

dimHm−1(FrC, ∂ FrC) + dimHm−1(Mm, ∂Mm)

Since Hm−1(FrC, ∂ FrC) ∼= (Z2)k (from excision), then by Claims 1 and 2 we have

(k − 1) + k ≤ k + dimHm−1(Mm, ∂Mm).

So k ≤ dimHm−1(Mm, ∂Mm) + 1.

Corollary 1.4.5. If Mm is inward tame, then Mm is peripherally locally connected

at infinity.

Proof. By Lemma 1.3.2, it suffices to show that each compact codimension 0 clean

submanifold D ⊆ Mm is contained in a compact codimension 0 clean submanifold

C ⊆ Mm so that if N = Mm\C, then each component N j of N has the property

that N j \ ∂Mm is 1-ended.

Since Mm is inward tame, each of its clean neighborhoods of infinity is finitely

dominated, so Mm\D has finitely many components, each of which is finitely dom-

inated. Let P l be one of those components. Then, FrP l is a compact clean
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codimension 0 submanifold of ∂D, whose interior is the boundary of P l \ ∂Mm.

Since int
(
FrP l

)
and P l \ ∂Mm each have finitely generated homology (P l \ ∂Mm

is finitely dominated), then by Proposition 1.4.4, P l \ ∂Mm has finitely many ends.

Choose a compact clean codimension 0 submanifold Kl of P l \ ∂Mm that intersects

int(FrP l) nontrivially and has exactly one (unbounded) complementary component

in P l \ ∂Mm for each of those ends. After doing this for each of the component P l

of Mm\D, let C = D ∪ (∪Kl).

1.5 Finite homotopy type and the σ∞-obstruction

Finitely generated projective left Λ-modules S and T are stably equivalent if there

exist finitely generated free Λ-modules F1 and F2 such that S ⊕ F1
∼= T ⊕ F2.

Under the operation of direct sum, the stable equivalence classes of finitely generated

projective modules form a group K̃0 (Λ), the reduced projective class group of Λ. In

[Wal65], Wall associated to each path connected finitely dominated space P a well-

defined σ (P ) ∈ K̃0 (Z[π1 (P )]) which is trivial if and only if P has finite homotopy

type. (Here Z[π1 (P )] denotes the integral group ring corresponding to π1 (P ). In the

literature, K̃0 (Z[G]) is sometimes abbreviated to K̃0 (G).) As one of the necessary

and sufficient conditions for completability of a 1-ended inward tame open manifold

Mm (m > 5) with stable pro-π1, Siebenmann defined the end obstruction σ∞ (Mm),

to be (up to sign) the finiteness obstruction σ (N) of an arbitrary clean neighborhood

of infinity N whose fundamental group “matches” the stable pro-π1 (ε (Mm)).2

In cases where Mm is multi-ended or has non-stable pro-π1 (or both), a more

general definition of σ∞ (Mm), introduced in [CS76], is required. Its definition em-

ploys several ideas from [Sie65, §6]. First note that there is a covariant functor K̃0

from groups to abelian groups taking G to K̃0(Z[G]), which may be composed with

the π1-functor to get a functor from path connected spaces to abelian groups; here

we use an observation by Siebenmann allowing base points to be ignored. Next

2The main theorem of [O’B83], which contains [Sie65] as a special case, incorrectly uses σ(Mm)
—the finiteness obstruction of the entire manifold Mm — in place of σ∞ (Mm). We use the
subscripted “∞” to distinguish the two. Siebenmann originally used the notation σ (ε).
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extend the functor and the finiteness obstruction to non-path-connected P (abusing

notation slightly) by letting

K̃0(Z [π1 (P )]) =
⊕
K̃0(Z

[
π1

(
P j
)]

)

where {P j} is the set of path components of P , and letting

σ (P ) =
(
σ(P 1), · · · , σ

(
P k
))

recalling that P is finitely dominated and, hence, has finitely many components—

each finitely dominated.

Now, for an inward tame locally finite polyhedron P (or more generally locally

compact ANR), let {Nj} be a nested cofinal sequence of closed polyhedral neigh-

borhoods of infinity and define

σ∞ (P ) = (σ (N1) , σ (N2) , σ (N3) , · · · ) ∈ lim←−
{
K̃0[Z[π1(Ni)]

}
The bonding maps of the target inverse sequence

K̃0[Z[π1(N1)]← K̃0[Z[π1(N2)]← K̃0[Z[π1(N3)]← · · ·

are induced by inclusion, with the Sum Theorem for finiteness obstructions [Sie65,

Th.6.5] assuring consistency. Clearly, σ∞ (P ) vanishes if and only if each Ni has

finite homotopy type; by another application of the Sum Theorem, this happens

if and only if every closed polyhedral neighborhood of infinity has finite homotopy

type.

Remark 6. Alternatively, we could define σ∞ (P ) to lie in the inverse limit of

the inverse system corresponding to all closed polyhedral neighborhoods of infinity,

partially ordered by inclusion. These inverse limits are isomorphic, and in either

case, the combination of Conditions (a) and (c) of Theorem 1.0.1 is equivalent to the

requirement that all clean neighborhoods of infinity have finite homotopy type—a

property referred to as absolute inward tameness in [Gui16].

We close this section with an observation that builds upon Lemma 1.4.3. Both

play key roles in the proof of Theorem 1.0.1.
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Lemma 1.5.1. Let Mm be a manifold and A a clean codimension 0 submanifold of

∂Mm. If Mm is inward tame and σ∞ (Mm) vanishes, then Mm\A is inward tame

and σ∞ (Mm\A) also vanishes.

Proof. Lemma 1.4.3 assures us that if Mm is inward tame, then so too is Mm\A.

The latter ensures that σ∞ (Mm\A) is defined. Arguing as we did in the proof of

Lemma 1.4.3, Mm\A contains arbitrarily small neighborhoods of infinity which are

homotopy equivalent to A∪N , where N is a clean neighborhood of infinity in Mm.

If σ∞ (Mm) = 0, then N has finite homotopy type; and since A ∪ N = A\N ∪ N ,

where A\N is a compact (m− 1)-manifold, then A ∪ N has finite homotopy type

(by a direct argument or easy application of the Sum Theorem for the finiteness

obstruction). The vanishing of σ∞ (Mm\A) then follows from the above discussion.

1.6 The τ∞-obstruction

The τ∞ obstruction in Condition (d) of Theorem 1.0.1 was first defined in [CS76]

and applied to Hilbert cube manifolds; the role it plays here is similar. It lies in

the derived limit of an inverse sequence of Whitehead groups. For a more detailed

discussion, the reader should see [CS76].

The derived limit of an inverse sequence

G0
λ1←− G1

λ2←− G2
λ3←− · · ·

of abelian groups is the quotient group:

lim←−
1 {Gi, λi} =

(
∞∏
i=0

Gi

)
/ {(g0 − λ1g1, g1 − λ2g2, g2 − λ3g3, · · · )| gi ∈ Gi}

It is a standard fact that pro-isomorphic inverse sequences of abelian groups have

isomorphic derived limits.

Suppose a manifold Mm contains a cofinal sequence {Ni} of clean neighborhoods

of infinity with the property that each inclusion FrNi ↪→ Ni is a homotopy equiv-
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Figure 1.1: Decomposition of Mm into {Wi}∞i=1.

alence3. Let Wi = Ni\Ni+1 and note that FrNi ↪→ Wi is a homotopy equivalence.

See Figure 1.1.

Since FrNi and Wi are finite polyhedra, the inclusion determines a Whitehead

torsion τ (Wi,FrNi) ∈Wh(π1(FrNi)) (see [Coh73]). As in the previous section, we

must allow for non-connected FrNi so we define

Wh(π1(FrNi)) =
⊕

Wh(π1(FrN j
i ))

where
{

FrN j
i

}
is the (finite) set of components of FrNi and

τ (Wi,FrNi) =
(
τ
(
W 1
i ,FrN1

i

)
, · · · , τ

(
W k
i ,FrNk

i

))
.

These groups fit into and inverse sequence of abelian groups

Wh(π1(N1))←Wh(π1(N2))←Wh(π1(N3))← · · ·
3A manifold admitting such sequence of neighborhoods of infinity is called pseudo-collarable.

See [Gui00], [GT03] and [GT06] for discussion of that topic.
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where the bonding homomorphisms are induced by inclusions. (To match [CS76],

we have substituted π1(Ni) for the canonically equivalent π1(FrNi).) Let τi =

τ (Wi,FrNi) ∈Wh(π1(Ni)). Then

τ∞ (Mm) = [(τ1, τ2, τ3, · · · )] ∈ lim←−
1 {Wh(π1(Ni))}

where [(τ1, τ2, τ3, · · · )] is the coset containing (τ1, τ2, τ3, · · · ).
If τ∞ (Mm) is trivial, it is possible to adjust the choices of the Ni so that each in-

clusion FrNi ↪→ Wi has trivial torsion, and hence is a simple homotopy equivalence.

Roughly speaking, the adjustment involves “lending and borrowing torsion to and

from immediate neighbors of the Wi”. The procedure is as described in [CS76, §6],

except that a Splitting Theorem for finite-dimensional manifolds (see [O’B83, p.318])

replaces [CS76, Lemma 6.1]. The reader is warned that the procedure described in

[O’B83, §4] is flawed; we recommend [CS76].

1.7 Geometric characterization of completable man-

ifolds and a review of h- and s-cobordisms

The following geometric characterization of completable manifolds, which has analogs

in [Tuc74] and [O’B83], paves the way for the proof of Theorem 1.0.1. It leads nat-

urally to the consideration of h- and s-cobordisms, which we will briefly review for

later use.

Lemma 1.7.1 (Geometric characterization of completable manifolds). A non-compact

manifold with boundary Mm is completable iff Mm = ∪∞i=1Ci where, for all i:

(i) Ci is a compact clean codimension 0 submanifold of Mm,

(ii) Ci ⊂ IntCi+1, and

(iii) if Wi denotes Ci+1 \ Ci, then (Wi,FrCi) ≈ (FrCi × [0, 1] ,FrCi × {0}).

Proof. For the forward implication, suppose M̂m is a compact manifold, A is closed

subset set of ∂M̂m, and Mm = M̂m \ A. Write A as ∩iFi, where {Fi}∞i=1 is a
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Figure 1.2: Decomposing completed Mm into product cobordisms.

sequence of compact clean codimension 0 submanifolds of ∂M̂m with Fi+1 ⊆ IntFi.

Let c : ∂M̂m × [0, 1] → M̂m be a collar on ∂M̂m with c
(
∂M̂m × {0}

)
= ∂M̂m

and, for each i, let Ci = M̂m \ c (Int(Fi)× [0, 1/i)). Assertions (i) and (ii) are clear.

Moreover,

Wi ≈ Fi × [0, 1/i] \ (IntFi+1 × [0, 1/(i+ 1)))

≈ Fi × [0, 1/i]

via a homeomorphism taking c (Fi × {1/i}) onto Fi × {1/i}. Then, since FrCi =

c (Fi × {1/i} ∪ ∂Fi × [0, 1/i]) ≈ Fi, an application of relative regular neighborhood

theory allows an adjustment of that homeomorphism so that FrCi is taken onto

Fi×{1/i}. A reparametrization of the closed interval completes the proof of assertion

(iii). (Note that this works even when the Fi have multiple and varying numbers of

components. See Figure 1.2.)

For the converse, we reverse the above procedure to embed Mm in a copy of C1.

Details can be found in [Tuc74, Lemma 1].

The above lemma shows that a strategy for completing a manifold is to fill up a
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neighborhood of infinity in Mm with a sequence of cobordisms, then modify those

cobordisms (when possible) so they become products.

Recall that an (absolute) cobordism is a triple (W,A,B), where W is a manifold

with boundary and A and B are disjoint manifolds without boundary for which

A ∪ B = ∂W . The triple (W,A,B) is a relative cobordism if A and B are disjoint

codimension 0 clean submanifolds of ∂W . In that case, there is an associated ab-

solute cobordism (V, ∂A, ∂B) where V = ∂W\ (intA ∪ intB). We view absolute

cobordisms as special cases of relative cobordisms where V = ∅. A relative cobor-

dism is an h-cobordism if each of the inclusions A ↪→ W , B ↪→ W , ∂A ↪→ V , and

∂B ↪→ V is a homotopy equivalence; it is an s-cobordism if each of these inclu-

sions is a simple homotopy equivalence. (For convenience, ∅ ↪→ ∅ is considered

a simple homotopy equivalence.) A relative cobordism is nice if it is absolute or

if (V, ∂A, ∂B) ≈ (∂A× [0, 1] , ∂A× {0} , ∂A× {1}). The crucial result, proof (and

additional discussion) of which may be found in [RS82] , is the following.

Theorem 1.7.2 (Relative s-cobordism Theorem). A compact nice relative cobor-

dism (W,A,B) with dimW ≥ 6 is a product, i.e., (W,A,B) ≈ (A× [0, 1] , A×{0} ,
A× {1}), if and only if it is an s-cobordism.

Remark 7. A situation similar to a nice relative cobordism occurs when ∂W =

A∪B′, where A and B′ are codimension 0 clean submanifolds of ∂W with a common

nonempty boundary ∂A = ∂B′. We call such cobordism a precobordism. By choosing

a clean codimension 0 submanifold B ⊆ B′ with the property that B′\ intB ≈
∂B × [0, 1] we arrive at a nice relative cobordism (W,A,B). When this procedure

is applied, we will refer to (W,A,B) as a corresponding nice relative cobordism. For

notational consistency, we will always adjust the term B′ on the far right of the

triple (W,A,B′), leaving A alone. A precobordism is a one-sided h-precobordism if

one of the pairs of inclusions A ↪→ W or B′ ↪→ W is a homotopy equivalence.

For our purposes, the following lemma will be crucial.

Lemma 1.7.3. Let W be a compact manifold with ∂W = A ∪ B′, where A and B′

are codimension 0 clean submanifolds of ∂W with a common boundary. Suppose
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A ↪→ W is a homotopy equivalence and that there is a homotopy J : W × [0, 1]→ W

such that J0 = idW , J is fixed on ∂B′, and J1 (W ) ⊆ B′. Then B′ ↪→ W is a

homotopy equivalence, so the corresponding nice relative cobordism (W,A,B) is an

h-cobordism.

Proof. Choose p ∈ ∂A = ∂B′, to be used as the basepoint for A, B′ and W .

Let i : A ↪→ W and ι : B′ ↪→ W denote inclusions and define f : A → B′ by

f (x) = J1 (x). Then

ι ◦ f = J1 ◦ i (1.7.1)

Clearly J1 : W → W induces the identity isomorphism on π1 (W, p), and since i

is a homotopy equivalence, it induces a π1-isomorphism. So, from (1.7.1), we may

deduce that f∗ : π1 (A, p) → π1 (B′, p) is injective. Moreover, since f restricts to

the identity function mapping ∂A onto ∂B′, [Eps66] allows us to conclude that f∗

is an isomorphism. From there it follows that ι∗ : π1 (B′, p) → π1 (W, p) is also an

isomorphism.

Let p : W̃ → W be the universal covering projection, Ã = p−1(A), and B̃′ =

p−1(B′). Since i∗ and ι∗ are both π1-isomorphisms these are the universal covers of

A and B′, respectively. By generalized Poincaré duality for non-compact manifolds,

Hk(W̃ , B̃′;Z) ∼= Hn−k
c (W̃ , Ã;Z),

where cohomology is with compact supports. Since Ã ↪→ W̃ is a proper homotopy

equivalence, all of these relative cohomology groups vanish, so Hk(W̃ , B̃′;Z) = 0 for

all k. By the relative Hurewicz theorem, πk(W̃ , B̃′) = 0 for all k, so the same is true

for πk(W,B
′). An application of Whitehead’s theorem allows us to conclude that

B′ ↪→ W is a homotopy equivalence.

1.8 Proof of the Manifold Completion Theorem:

necessity

We will prove necessity of the conditions in Theorem 1.0.1 by a straightforward

application of Lemma 1.7.1.
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Proof of Theorem 1.0.1 (necessity). Suppose M̂m is a compact manifold and A is

closed subset set of ∂M̂msuch that Mm = M̂m \ A. As in the proof of Lemma

1.7.1 write A = ∩iFi, where {Fi} is a sequence of compact clean codimension 0

submanifolds of ∂M̂m with Fi+1 ⊆ IntFi, and let c : ∂M̂m × [0, 1] → M̂m be a

collar on ∂M̂m with c
(
∂M̂m × {0}

)
= ∂M̂m. For each i, let N̂i = c (Fi × [0, 1/i])

and Ni = N̂i\A. Then {Ni} is cofinal sequence of clean neighborhoods of infinity in

Mm with FrNi = c (Fi × {1/i} ∪ ∂Fi × [0, 1/i]). Since Fi×{1/i} ∪ ∂Fi× [0, 1/i] ↪→
Fi × [0, 1/i] and Ni ↪→ N̂i are both homotopy equivalences, then so is FrNi ↪→ Ni;

and since each Ni has finite homotopy type, conditions (a) and (c) of Theorem 1.0.1

both hold (by the discussion in §1.4 and 1.5).

If we let Wi = Ni\Ni+1, then τ∞ (Mm) is determined by the Whitehead torsions

of inclusions FrNi ↪→ Wi (see §1.6). Associate Wi with Fi × [0, 1/i] and FrNi with

Fi×{1/i}∪ ∂Fi× [0, 1/i], as in the proof of Lemma 1.7.1. Then, the fact that both

Fi × {1/i} ↪→ Fi × [0, 1/i] and Fi × {1/i} ↪→ Fi × {1/i} ∪ ∂Fi × [0, 1/i] are simple

homotopy equivalences ensures that τ (Wi,FrNi) = 0. So condition (d) is satisfied.

It remains to verify the peripheral π1-stability condition. Fix i ≥ 1 and let F j
i

be one component of Fi, N̂
j
i = c

(
F j
i × [0, 1/i]

)
and N j

i = N̂ j
i \A. Then ∂MN

j
i =

c (Fi × {0}) \A and N j
i is clearly ∂MN

j
i -connected at infinity. For each k > i, let

F ′k be the union of all components of Fk contained in F j
i , N̂ ′k = c (F ′k × [0, 1/k]) and

N ′k = N̂ ′k\A. By definition, we may consider the sequence

π1

(
∂MN

j
i ∪N ′i+1

) µ2←− π1

(
∂MN

j
i ∪N ′i+2

) µ3←− π1

(
∂MN

j
i ∪N ′i+3

) µ4←− · · · (1.8.1)

where basepoints are suppressed and bonding homomorphisms are compositions of

maps induced by inclusions and change-of-basepoint isomorphisms. Each of those

inclusions is the top row of a commutative diagram

∂MN
j
i ∪N ′k ←↩ ∂MN

j
i ∪N ′k+1

↓ incl ↓ incl

∂MN
j
i ∪ N̂ ′k ∂MN

j
i ∪ N̂ ′k+1

↓ ≈ ↓ ≈
(F j

i × {0}) ∪ (F ′k × [0, 1/k]) ←↩ (F j
i × {0}) ∪

(
F ′k+1 × [0, 1/k + 1]

)
where the bottom row is an obvious homotopy equivalence, as are all vertical maps.
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It follows that the initial inclusion is a homotopy equivalence as well. As a result, all

bonding homomorphisms in (1.8.1) are isomorphisms, so the sequence is stable.

1.9 Proof of the Manifold Completion Theorem:

sufficiency

Throughout this section {Ci}∞i=1 will denote a clean compact exhaustion of Mm with

a corresponding cofinal sequence of clean 0-neighborhoods of infinity {Ni}∞i=1, each

of which has a finite set of connected components
{
N j
i

}ki
j=1

. For each i we will let

Wi = Ni\Ni+1, a compact clean codimension 0 submanifold of Mm. Note that ∂Wi

may be expressed as FrNi ∪ (∂MWi ∪ FrNi+1), a union of two clean codimension 0

submanifolds of ∂Wi intersecting in a common boundary ∂ (FrNi). (Figures 1.2 and

1.1 contain useful schematics.) The proof of Theorem 1.0.1 will be accomplished by

gradually improving the exhaustion of Mm so that ultimately, conditions (i)-(iii) of

Lemma 1.7.1 are all satisfied.

Lemma 1.9.1. If Mm is inward tame and σ∞(Mm) vanishes, then for each i, σ(Ni)

and σ(Ni\∂Mm) are both zero.

Proof. By our discussion in §1.5, if Mm is inward tame and σ∞(Mm) = 0, then each

Ni has finite homotopy type. Since Ni ↪→ Ni\∂Mm is a homotopy equivalence, so

does Ni\∂Mm.

Proposition 1.9.2. If Mm satisfies Conditions (a)-(c) of Theorem 1.0.1 then the

{Ci} and the corresponding {Ni} can be chosen so that, for each i,

1. FrNi ↪→ Ni is a homotopy equivalence, and

2. ∂MWi ∪ FrNi+1 ↪→ Ni is a homotopy equivalence; therefore,

3. the nice relative cobordisms corresponding to (Wi,FrNi, ∂MWi ∪ FrNi+1) are

h-cobordisms.
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Proof. By Lemma 1.9.1 and the definition of peripheral π1-stability at infinity, we

can begin with a clean compact exhaustion {Ci}∞i=1of Mm and a corresponding

sequence of neighborhoods of infinity {Ni}∞i=1, each with a finite set of connected

components
{
N j
i

}ki
j=1

, so that for all i ≥ 1 and 1 ≤ j ≤ ki,

i) N j
i is inward tame,

ii) N j
i is

(
∂MN

j
i

)
-connected and (∂MN

j
i )-π1-stable at infinity, and

iii) σ∞
(
N j
i

)
= 0.

By Lemmas 1.4.3, 1.3.3, and 1.5.1, this implies that

i′) N j
i \∂MN

j
i is inward tame,

ii′) N j
i \∂Mm is 1-ended and has stable fundamental group at infinity, and

iii′) σ∞
(
N j
i \∂Mm

)
= 0.

These are precisely the hypotheses of Siebenmann’s Relativized Main Theorem

([Sie65, Th.10.1]), so N j
i \∂Mm contains an open collar neighborhood of infinity

V j
i ≈ ∂V j

i × [0,∞). Following the proof in [Sie65] (similar to what is done in

[O’B83, Th.3.2]), this can be done so that ∂N j
i \∂Mm (= int(FrN j

i )) and ∂V j
i con-

tain clean compact codimension 0 submanifolds Aji and Bj
i , respectively, so that

(∂N j
i \∂Mm)\ intAji = ∂V j

i \ intBj
i ≈ ∂Aji × [0, 1). See Figure 1.3.

Then Kj
i = N j

i \V
j
i is a clean codimension 0 submanifold of Mm which intersects

Ci in Aji . To save on notation, replace Ci with Ci ∪
(
∪Kj

i

)
, which is still a clean

compact codimension 0 submanifold of Mm, but with the added property that

Ni\∂Mm ≈ int(FrNi)× [0,∞). (1.9.1)

Since adding ∂MNi back in does not affect homotopy types, we also have that

FrNi ↪→ Ni is a homotopy equivalence. (1.9.2)
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Figure 1.3: V j
i ≈ ∂V j

i × [0, 1) contained in N j
i \∂Mm.

Having enlarged the Ci, pass to a subsequence if necessary to regain the property

that Ci ⊆ IntCi+1 for all i.

Letting Ni = Mm\Ci gives a nested cofinal sequence of clean neighborhoods

of infinity {Ni} with the property that each inclusion FrNi ↪→ Ni is a homotopy

equivalence; in other words, we have obtained a pseudo-collar structure on Mm. For

each i ≥ 1, let Wi = Ni\Ni+1, a clean compact codimension 0 submanifold of Mm

with ∂Wi = FrNi ∪ (∂MWi ∪ FrNi+1).

Claim 1. FrNi ↪→ Wi is a homotopy equivalence.

Condition (1.9.2) applied to Ni ensures the existence a strong deformation retrac-

tion Ht of Ni onto FrNi. That same condition applied to Ni+1 ensures the existence

of a retraction r : Ni+1 → FrNi+1, which extends to a retraction r̂ : Ni → Wi. The

composition r̂Ht, restricted to Wi, gives a deformation retraction of Wi onto FrNi.

Claim 2. ∂MWi ∪ FrNi+1 ↪→ Wi is a homotopy equivalence.

By applying Lemma 1.7.3, it is enough to show that there exists a homotopy

H : Wi × [0, 1]→ Wi, fixed on ∂(FrNi), with the property that H1 (Wi) ⊆ ∂MWi ∪
FrNi+1. Toward that end, let B be a collar neighborhood of ∂MWi in Wi and

let D = Wi\B. Use the collar structure on Ni\∂Mm to obtain a homotopy K :
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Ni × [0, 1] → Ni, fixed on ∂(FrNi), which pushes Ni into the complement of D;

in other words K1 (Ni) ⊆ B ∪ Ni+1. Compose this homotopy with the retraction

r̂ : Ni → Wi used in the previous claim to get a homotopy r̂Kt of Wi (still fixed

on ∂(FrNi)) with r̂K1 (Wi) ⊆ B ∪ FrNi+1. Follow this with a homotopy that

deformation retracts B onto ∂MWi while sending FrNi+1 into itself to complete the

desired homotopy and prove Claim 2.

We can now write Mm = C1 ∪W1 ∪W2 ∪W3 ∪ · · · where, for each i,

• Wi is a compact clean codimension 0 submanifold of Mm,

• ∂Wi = FrNi ∪ (∂MWi ∪ FrNi+1), and

• both FrNi ↪→ Wi and ∂MWi ∪ FrNi+1 ↪→ Wi are homotopy equivalences.

As such, the corresponding nice relative cobordisms (as described in Remark 7) are

h-cobordisms.

Proposition 1.9.3. If Mm satisfies Conditions (b)-(d) of Theorem 1.0.1 the con-

clusion of Proposition 1.9.2 can be improved so that, for each i, the nice relative

cobordisms corresponding to (Wi,FrNi, ∂MWi ∪ FrNi+1) are s-cobordisms. In that

case, (Wi,FrNi) ≈ (FrNi × [0, 1] ,FrNi × {0}) for all i, and Mm is completable.

Proof. By the triviality of τ∞ (Mm), it is possible to adjust the choices of the Ni so

that each inclusion FrNi ↪→ Wi has trivial Whitehead torsion, i.e., τ (Wi,FrNi) = 0,

and hence is a simple homotopy equivalence. As was discussed in §1.6, the adjust-

ment involves “lending and borrowing torsion to and from immediate neighbors

of the Wi” as described in [CS76, §6], except that a Splitting Theorem for finite-

dimensional manifolds (see [O’B83, p.318]) replaces [CS76, Lemma 6.1].

To complete the proof, apply the Relative s-cobordism Theorem to each Wi then

apply Lemma 1.7.1.
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1.10 Z-compactifications and the proof of Theo-

rem 1.0.2

In this section we prove Theorem 1.0.2. Since Mm × [0, 1] satisfies Conditions (a),

(c) and (d) of Theorem 1.0.1 if and only if Mm satisfies those same conditions (see

[CS76]), it suffices to prove the following proposition which is based on work found

in [Gui07].

Proposition 1.10.1. If a manifold Mm is inward tame at infinity, then Mm× [0, 1]

is peripherally π1-stable at infinity.

Proof. Apply Corollary 1.4.5 to obtain a cofinal sequence {Ni} of clean neighbor-

hoods of infinity for Mm with the property that, for all i, each component N j
i of

Ni is ∂MN
j
i -connected at infinity. Since {Ni × [0, 1]} is a cofinal sequence of clean

neighborhoods of infinity for Mm × [0, 1] it suffices to show that the correspond-

ing connected components, N j
i × [0, 1], are all ∂M×[0,1](N

j
i × [0, 1])-connected and

(∂M×[0,1](N
j
i ×[0, 1]))-π1-stable at infinity. By Lemmas 1.3.2 and 1.3.3, that is equiva-

lent to showing that, for each N j
i , intM(N j

i )× (0, 1) is 1-ended and has stable pro-π1

at that end. Every connected topological spaces becomes 1-ended upon crossing

with (0, 1), so that condition is immediate. The π1-stability property is proved with

a small variation on the main technical argument from [Gui07]; in particular, Corol-

lary 3.6 from that paper. The “small variation” is necessary because the earlier

argument assumed the product of an open manifold with (0, 1). That issue is easily

overcome by arranging that the analog of homotopy Kt used in [Gui07, Prop.3.3]

sends the manifold interior of IntM(N j
i ) into itself and sends FrN j

i into itself for

all t. That is easily accomplished since FrN j
i has an open collar neighborhood at

infinity.

1.11 A counterexample to a question of O’Brien

We now give a negative answer to a question posed by O’Brien [O’B83, p.308].

Question. (For a 1-ended manifold Mm with 1-ended boundary), let {Vi} be a

32



cofinal sequence of clean 0-neighborhoods of infinity. If {π1(∂Mm∪Vi)}i≥1 is stable,

does it follow that Mm is peripherally π1-stable at infinity?

The key ingredient in our counterexamples is a collection of contractible open

n-manifolds W n (one for each n ≥ 3), constructed by R. Sternfeld in his dissertation

[Ste77]4. Each W n has the property that it cannot be embedded in any compact

n-manifold. Although these W n have finite homotopy type, they are not inward

tame, since they contain arbitrarily small clean connected neighborhoods of infinity

with non-finitely generated fundamental groups. Our counterexamples will be the

(n+ 1)-manifolds W n × [0, 1). First a general observation.

Proposition 1.11.1. Let W n be a connected open n-manifold. If W n has finite

homotopy type, then W n×[0, 1) is 1-ended and inward tame, with σ∞ (W n × [0, 1)) =

0.

Proof. It suffices to exhibit arbitrarily small connected clean neighborhood of infinity

in W n with finite homotopy type. Let N ⊆ W n be a clean neighborhood of infinity

and a ∈ (0, 1). By choosing N small and a close to 1, we can obtain arbitrarily

small neighborhoods of infinity in W n × [0, 1) of the form

V (N, a) = (N × [0, 1)) ∪ (W n × [a, 1)) .

Since V (N, a) deformation retracts onto W n × {a}, it is connected and has finite

homotopy type.

Example 2. Consider the (n + 1)-manifold Mn+1 = W n × [0, 1), where W n is

the Sternfeld n-manifold (n ≥ 3) described above. Then ∂Mn+1 = W n × {0}. A

standard duality argument shows that every contractible open manifold of dimension

≥ 2 is 1-ended. Let {Ni} be a cofinal sequence of clean connected neighborhoods of

infinity in W n, and for each i ≥ 1, let Vi = V
(
Ni,

i
i+1

)
, as defined in the previous

proof. By Seifert-van Kampen, each Vi ∪ ∂Mn+1 is simply connected, so the inverse

sequence {π1(∂Mn+1 ∪ Vi)}i≥1 is pro-trivial, hence, stable.

4There is an error in Sternfeld’s dissertation, which is fixed in [Gu18].
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To see that Mn+1 is not peripherally π1-stable at infinity, first assume that n ≥ 5.

Then, if Mn+1 were peripherally π1-stable at infinity, it would be completable by

Theorem 1.0.1. (The triviality of τ∞ (Mn+1) is immediate since Mn+1 is simply

connected at infinity, which follows from the simple connectivity of the Vi.) But, if

M̂n+1 were a completion, then W n × {0} ↪→ ∂M̂n+1would be an embedding into a

closed n-manifold, contradicting Sternfeld’s theorem.

To obtain analogous examples when n = 3 or n = 4, we cannot rely on the

Manifold Completion Theorem. But a direct analysis of the fundamental group

calculations in Sternfeld’s proof reveals that the peripheral pro-π1-systems arising

in W n × [0, 1) are nonstable in those dimensions as well.

1.12 Proof of Lemma 1.3.7

We now return to Lemma 1.3.7, which asserts that the two natural candidates for

the definition of “peripherally π1-stable at infinity” (the global versus the local ap-

proach) are equivalent for inward tame manifolds. The intuition behind the lemma

is fairly simple. If Mm contains arbitrarily small 0-neighborhoods of infinity N with

the property that each component N j is ∂MN
j-π1-stable at infinity, then those com-

ponents provide arbitrarily small neighborhoods of the ends satisfying the necessary

π1-stability condition. Conversely, if each end ε has arbitrarily small strong 0-neigh-

borhoods P that are ∂MP -π1-stable at infinity, we can use the compactness of the

set of ends (in the Freudenthal compactification) to find, within any neighborhood

of infinity, a finite collection {P1, · · · , Pk} of such neighborhoods which cover the

end of Mm. If we can do this so the Pi are pairwise disjoint, we are finished—just

let N = ∪Pi. That is not as easy as one might hope, but we are able to attain the

desired conclusion by proving the following proposition.

Proposition 1.12.1. Suppose Mm is inward tame and each end ε has arbitrarily

small strong 0-neighborhoods Pε that are ∂MPε-π1-stable at infinity. Then every

strong partial 0-neighborhood of infinity Q ⊆Mm is ∂MQ-π1-stable at infinity.
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Our proof requires that we break the stability condition into a pair of weaker

conditions. An inverse sequence of groups is:

• semistable (sometimes called pro-epimorphic) if it is pro-isomorphic to an in-

verse sequence of surjective homomorphisms;

• pro-monomorphic of it is pro-isomorphic to an inverse sequence of injective

homomorphisms.

It is an elementary fact that an inverse sequence is stable if and only if it is both

semistable and pro-monomorphic.

We will make use of the following topological characterizations of the above

properties, when applied to pro-π1. In these theorems, a “space” should be locally

compact, locally connected, and metrizable.

Proposition 1.12.2. Let X be a 1-ended space and r : [0,∞) → X a proper ray.

Then pro-π1 (X, r) is

1. semistable if and only if, for every compact set C ⊆ X, there exists a larger

compact set D ⊆ X such that for any compact set E with D ⊆ E ⊆ X, every

loop in X\D with base point on r can be pushed into X\E by a homotopy with

image in X\C keeping the base point on r, and

2. pro-monomorphic if and only if X contains a compact set C with the property

that, for every compact set D with C ⊆ D ⊆ X, there exists a compact set

E ⊇ D with the property that every loop in X\E that contracts in X\C also

contracts in X\D.

These are standard. See, for example [Geo08] or [Gui16]. In the case that pro-

π1(X, r) is pro-monomorphic, the compact set C in the above proposition is called

a π1-core for X. Notice that, by Proposition 1.12.2, the property of (1-ended) X

having pro-monomorphic pro-π1(X, r) is independent of the choice of r.

It is a non-obvious (but standard) fact that having semistable pro-π1(X, r) is

also independent of the choice of r. As for the characterization of semistable pro-

π1(X, r), we are mostly interested in the following easy corollary.
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Corollary 1.12.3. If X is a 1-ended space and pro-π1 (X, r) is semistable for some

(hence every) proper ray r, then for each compact set C ⊆ X, there is a larger

compact set D ⊆ X such that, for every compact set E ⊆ X and every path λ :

[0, 1] → X\D with λ ({0, 1}) ⊆ E, there is a path homotopy in X\C taking λ to a

path λ′ in X\E.

We are now ready for our primary task.

Proof of Proposition 1.12.1. Let Q be a strong partial 0-neighborhood of infinity in

Mm. By Lemma 1.3.3, proving that Q is ∂MQ-π1-stable at infinity is equivalent to

proving that the 1-ended space Q\∂Mm has stable pro-π1. We will take the latter

approach.

By Lemma 1.4.3 Q\∂Mm is inward tame, so a modification of the argument

in [GT03, Prop. 3.2] ensures that pro-π1 (Q\∂Mm, r) is semistable. It is there-

fore enough to show that pro-π1 (Q\∂Mm, r) is pro-monomorphic. We will do that

by verifying the condition described in Proposition 1.12.2, i.e., we will show that

Q\∂Mm contains a π1-core.

By hypothesis, each end ε of Q has a strong 0-neighborhood Pε which is ∂MPε-

π1-stable at infinity and lies in IntM Q. Since the set of ends of Q is compact in the

Freudenthal compactification, there is a finite subcollection {Pεi}ki=1 whose union

is a neighborhood of infinity in Q. Place the collection of submanifolds {Pεi}
k
i=1 in

general position.

Claim 1. For each Ω ⊆ {1, · · · , k} the set ∩j∈ΩPεj has finitely many components,

each of which is a clean codimension 0 submanifold of Mm.

General position ensures that each component is a clean codimension 0 subman-

ifold of Mm. Since each Pεj is a closed subset of Mm each component T of ∩j∈ΩPεj

is closed in Mm, and since T cannot also be open in Mm it must have nonempty

frontier. Since
{
Pεj
}
j∈Ω

is in general position, so also is the collection of (compact)

frontiers,
{

FrPεj
}
j∈Ω

. So, for each i 6= j in Ω, ∆i,j = FrPεi ∩ FrPεj is a clean

codimension 1 submanifold of FrPεi and FrPεj . The union of these ∆i,j separate
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∪kj=1 FrPεj into finitely many pieces, and since the frontier of each T is a union of

these pieces, there can only be finitely many such T .

Choose an embedding b : ∂Mm × [0, 1]→Mm with b (x, 0) = x for all x ∈ ∂Mm

and whose image B is a regular neighborhood of ∂Mm in Mm. With some additional

care, arrange that B intersects: Q in b (∂MQ× [0, 1]); each Pεi in b (∂MPεi × [0, 1]);

and (more specifically) each component T of each finite intersection ∩j∈ΩPεj in

b (∂MT × [0, 1]). For each 0 ≤ s < t ≤ 1, let B[s,t] = b (∂Mm × [s, t]), B(s,t) =

b (∂Mm × (s, t)), etc. For A ⊆ ∂Mm, let BA = b (A× [0, 1]) and define B
[s,t]
A , B

(s,t)
A ,

etc. analogously.

By hypothesis and Proposition 1.12.2 we can choose a clean codimension 0 com-

pact π1-core Ci for each Pεi\∂Mm. Then choose t so small that B[0,t]∩(∪ki=1Ci) = ∅.

Let C ′0 ≡ Q\ ∪ki=1 Pεi , then let C0 = C ′0\B[0,t) so that C0 is a compact clean codi-

mension 0 submanifold of Q\∂Mm. Let C = ∪ki=0Ci ⊆ Q\∂Mm. Notice that the

collection
{
B

[0,t]
∂MQ

, Pε1 , · · · , Pεk
}

covers Q\ IntQC.

Choose a clean codimension 0 compact submanifold of D′ ⊆ Q\∂Mm so large

that

i) IntQD
′ ⊇ C,

ii) D′ contains every compact component of ∩j∈ΩPεj for all Ω ⊆ {1, · · · , k}, and

iii) for any compact set E ⊆ Q\∂Mm such that D′ ⊆ E, if λ is a path in T\∂Mm,

where T is an unbounded component of Pεi ∩ Pεj for some i, j ∈ {1, · · · , k},
and λ lies outside D′ with endpoints outside E, then there is a path homotopy

of λ in (T\∂Mm)\C pushing λ outside E. (This uses Corollary 1.12.3 and the

fact that each T , being a clean partial neighborhood of infinity in Mm, has the

property that T\∂Mm has finitely many ends, each with semistable pro-π1.)

Now choose a compact set D ⊆ Q\∂Mm such that

i′) D ⊇ D′,
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ii′) for every Ω ⊆ {1, · · · , k} and every unbounded component T of ∩j∈ΩPεj , each

x ∈ (T\∂Mm)\D can be pushed to infinity in (T\∂Mm)\D′. (This is possible

since there are only finitely such T .)

iii′) if x = b (y, t0) ∈ B\D, then b (y × [0, t0]) ∩D′ = ∅.

Claim 2. D is a π1-core for Q\∂Mm.

Toward that end, let F be a compact subset of Q\∂Mm containing D, then

choose G ⊆ Q\∂Mm to be an even larger compact set with the following property:

(†) for each i ∈ {1, · · · , k}, loops in Pεi\∂Mm lying outside G which contract in

(Pεi\∂Mm)\C, also contract in (Pεi\∂Mm)\F .

Let α : [0, 1]× [0, 1]→ (Q\∂Mm) \D. The interiors of sets
{
B

[0,t]
∂MQ

, Pε1 , · · · , Pεk
}

cover (Q\∂Mm) \D, so we can subdivide [0, 1]2 into subsquares {Rt} so small that

the image of each Rt lies in B(0,t) or one of the Pεi\∂Mm and hence, in B(0,t)\D or

one of the (Pεi\∂Mm)\D. Since each vertex of this subdivision is sent to a point x

in B(0,t)\D and/or T\D, where T is an unbounded component of the intersection of

the Pεi which contain the images of the subsquares containing that vertex, then by

the choice of D we can push x into (Q\∂Mm)\G along a path that does not leave T

and does not intersect D′. In those cases where x = b (y, t0) ∈ B(0,t)\D, push x out

of G along b (y × (0, 1)), so that the track also stays in B(0,t)\D′, by property (iii′).

Doing the above for each vertex adjusts α up to homotopy in (Q\∂Mm)\D′ so

that each vertex of the subdivision is taken into (Q\∂Mm)\G and each Rt is still

taken into the same Pεi (or B(0,t)) as before.

Next we move to the 1-skeleton of our subdivision of [0, 1]2. If an edge e is the

intersection Rt ∩ Rt′ of two squares, i.e., e is not in ∂([0, 1]2), we use property (iii)

to adjust α up to homotopy so e is mapped into (Q\∂Mm)\G, noting that this

homotopy may causes the “new” α to drift into (Q\∂Mm)\C. (If e is sent into

B(0,t), we can use (iii′) to ensure that the push stays in B(0,t)\D′ as well.)

Do the above for each edge until the entire 1-skeleton of the subdivision of [0, 1]2

is mapped into (Q\∂Mm)\G. The image of α now lies in (Q\∂Mm)\C. Notice that
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the restriction of α to each Rt is a map of a disk into a single Pεi (or B(0,t)) missing

Ci with boundary being mapped into Pεi\G. So by the choice of G, we may redefine

α on Rt to be the same on its boundary, but to take Rt into Pεi\F or B(0,t)\F .

Assembling the α|Rt we get a map α′ : [0, 1] × [0, 1] → (Q\∂Mm) \F that agrees

with α on ∂([0, 1]2).



Chapter 2

Characterization of
pseudo-collarable manifolds with
boundary

Although, in previous chapter, peripheral π1-stability at infinity (Condition (a) of

Manifold Completion Theorem) is necessary in order for manifold completion to

exist, such condition is too rigid to characterize many exotic examples related to

current research trends in topology and geometric group theory. For instance, the

exotic universal covering spaces produced by Mike Davis in [Dav83] are not collarable

(because Condition (a) fails) yet their ends exhibit some nice geometric structure.

Other examples such as (open) manifolds that satisfy Conditions (b), (c) and (d) but

Condition (a) can be found in [GT03, Thm.1.3]. Define a manifold neighborhood

of infinity N in a manifold Mm to be a homotopy collar provided FrN ↪→ N

is a homotopy equivalence. A pseudo-collar is a homotopy collar which contains

arbitrarily small homotopy collar neighborhoods of infinity. A manifold is pseudo-

collarable if it contains a pseudo-collar neighborhood of infinity. When Mm is an

open manifold (or more generally, a manifold with compact boundary), Guilbault

[Gui00] initiated a program to produce a generalization of Siebenmann’s collaring

theorem. The idea of pseudo-collars and a detailed motivation for the definition

are nicely exposited in [Gui00]. Through a series of papers [Gui00, GT03, GT06],

a complete characterzation for pseudo-collarable manifolds with compact boundary
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was provided.

Theorem 2.0.4. [GT06] An m-manifold Mm (m ≥ 6) with compact boundary is

pseudo-collarable iff each of the following conditions holds:

(i) Mm is inward tame

(ii) Mm is perfectly π1-semistable at infinity,

(iii) σ∞(Mm) ∈ lim←−
{
K̃0(π1(N)) | N a clean neighborhood of infinity

}
is zero.

Just as Theorem 1.0.1 is a natural generalization of Siebenmann’s dissertation

to manifolds with noncompact boundaries, it is natural to extend the study of

pseudo-collarability to manifolds with noncompact boundaries. Moreover, since all

completable manifolds are pseudo-collarable (a key step in the proof of Theorem

1.0.1), a more general study of pseudo-collarability also generalizes Theorem 1.0.1

in the same way that Theorem 2.0.4 generalized [Sie65]. In this chapter, our main

result is the following characterization theorem.

Theorem 2.0.5 (Pseudo-collarability characterization theorem). An m-manifold

Mm (m ≥ 6) is pseudo-collarable iff each of the following conditions holds:

(a) Mm is inward tame

(b) Mm is peripherally perfectly π1-semistable at infinity,

(c) σ∞(Mm) ∈ lim←−
{
K̃0(π1(N)) | N a clean neighborhood of infinity

}
is zero.

Remark 8. It is worth noting that Condition (b) of Theorem 2.0.5 is strictly weaker

than Condition (a) of Theorem 1.0.1. Furthermore, it reduces to Condition (ii) of

Theorem 2.0.4 when boundary ∂Mm is compact.
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The strategy of our proof is heavily relying on techniques and results developed

by several substantial and technical papers [Sie65], [Gui00, GT03, GT06]. For a full

understanding, the readers should be familiar with the Pseudo-collarability Charac-

terization Theorem in [GT06] and the Manifold Completion Theorem. We will not

reprove all these results, but our goal is to take shortcuts afforded by both papers,

hence, provide a proof of Theorem 2.0.5 efficiently.

About the organization of this chapter: §2.1 sets forth some cruical lemmas.

In §2.2 and §2.3, we prove Theorem 2.0.5. In the final section of this chapter, we

discuss some related open questions.

2.1 Concatenation of one-sided h-precobordisms

The role played by one-sided h-precobordisms in the study of pseudo-collars is illus-

trated by the following easy proposition.

Proposition 2.1.1. Let Wi be a disjoint union of finitely many relative one-sided

h-cobordisms
⊔
j(W

j
i , A

j
i , B

j
i ) with Aji ↪→ W j

i a homotopy equivalence. Let
⊔
j A

j
i and⊔

j B
j
i be Ai and Bi respectively. Suppose for each i ≥ 1, there is a homeomorphism

hi : Bi → Ai+1 identifying a clean codimension 0 submanifold Bj
i ⊂ Bi with a clean

codimension 0 submanifold Aji+1 ⊂ Ai+1. Then the adjunction space

N = W1 ∪h1 W2 ∪h2 W3 ∪h3 · · ·

is a pseudo-collar. Conversely, every pseudo-collar may be expressed as a countable

union of relative one-sided h-cobordisms in this manner.

Proof. For the forward implication, the definition of relative one-sided h-cobordism

implies that FrN = A1 ↪→ W1 ∪h1 · · · ∪hk−1
Wk is a homotopy equivalence for

any finite k. Then a direct limit argument shows that FrN ↪→ N is a homotopy

equivalence. Hence, N is a homotopy collar. To see that Ni is a pseudo-collar, we

apply the same argument to the subset Ni = Wi+1 ∪hi+1
Wi+2 ∪hi+2

Wi+3 ∪hi+3
· · · .

For the converse, assume N is a pseudo-collar. Choose a homotopy collar N1 ⊂
IntN and let W1 = N\ IntN1. Then FrN ↪→ W1 is a homotopy equivalence.
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So, (W1,FrN,FrN1) is a relative one-sided h-cobordism. Denote a component of

N1 by N j
1 . Let N ′2 be the disjoint union of homotopy collars in N j

1 and W j
2 =

N j
1\ IntN ′2. Since FrN j

1 ↪→ W j
2 is a homotopy equivalence, each (W j

2 ,FrN j
1 ,FrN ′2) is

a relative one-sided h-cobordism. Repeating the procedure concludes the argument.

See Figure 2.1.

W1

W2

W3

W3

A1

A2B1
B2 A3

N
N1 N2

1

2

Figure 2.1: A concatenation of relative one-sided h-cobordisms.

By the cleanliness of FrN and FrNi’s, one can re-define relative one-sided h-

cobordisms

(W1,FrN,FrN1), (W j
2 ,FrN j

1 ,FrN ′2), . . .

as precobordisms

(W1,FrN,FrN1 ∪ ∂NW1), (W j
2 ,FrN j

1 ,FrN ′2 ∪ ∂Nj
1
W j

2 ), . . .

Then it’s easy to see that those precobordisms are one-sided h-precobordisms.

The following lemma proved by duality and standard covering space theory is

crucial in this paper.
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Lemma 2.1.2. Let (W,A,B′) be a one-sided h-precobordism with A ↪→ W a homo-

topy equivalence. Then the inclusion induced map

i# : π1(B′)→ π1(W )

is surjective and has perfect kernel.

Proof. The proof is similar to the argument of Theorem 2.5 in [GT03]. Let p :

W̃ → W be the universal covering projection, Ã = p−1(A) and B̂′ = p−1(B′). By

generalized Poincaré duality for non-compact manifolds [Hat02, Thm.3.35, P. 245],

Hk(W̃ , B̂′;Z) ∼= Hn−k
c (W̃ , Ã;Z),

where cohomology is with compact supports. Since Ã ↪→ W̃ is a proper homotopy

equivalence, all of these relative cohomology groups vanish, so Hk(W̃ , B̂′;Z) = 0 for

all k. It follows that H1(W̃ , B̂′;Z) vanishes. Then by considering the long exact

sequence for (W̃ , B̂′), we have H0(B̂′;Z) = Z. Thus, B̂′ is connected. By covering

space theory, the components of B̂′ are 1-1 corresponding to the cosets of i#(π1(B̂′))

in π1(W ). So, i# is surjective. To see the kernel of i# is perfect, we consider the

long exact sequence for (W̃ , B̂′) again. Using H2(W̃ , B̂′;Z) = 0 together with the

simple connectivity of W̃ , H1(B̂′;Z) vanishes. Hence, π1(B̂′) is perfect. By covering

space theory, π1(B̂′) ∼= ker i# is perfect.

The following lemma plays an important role in the proof of Theorem 2.0.5. The

proof follows easily from the Seifert-van Kampen Theorem.

Lemma 2.1.3. Let X be a connected CW complex and Y ⊂ X a connected sub-

complex. Let Y ′ be the resulting space obtained by attaching 2-cells to Y along loops

{li} in Y . Then π1(Y ′) ∼= π1(Y )/N , where N is the normal closure in π1(Y ) of {li}.
Let X ′ = X ∪ Y ′. Suppose i# : π1(Y )→ π1(X) is the inclusion induced map. Then

π1(X ′) ∼= π1(X)/N ′, where N ′ is the normal closure in π1(X) of i#(N). Thus, if

N is perfect, so is N ′ (since the image of a perfect group is perfect and the normal

closure of a perfect group is perfect.)
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Lemma 2.1.4. Let P be a compact (n − 1)-manifold with boundary and {Ai} a

finite collection of pairwise disjoint compact codimension 0 clean (and connected)

submanifolds of P . Let {(Wi, Ai, B
′
i)} be a collection of one-sided h-precobordisms

with Ai ↪→ Wi a homotopy equivalence. Assume each Wi intersects P along Ai. Let

R = P ∪ (∪iWi) and Q = (P\(∪iAi)) ∪ (∪iB′i). Then π1(Q) → π1(R) ∼= π1(P ) is

surjective and has perfect kernel.

Proof. We begin with Q = (P\(∪iAi))∪ (∪iB′i). Choose a finite collection of arcs in

P that connect up the Ai. By adding tubular neighborhoods of these arcs, we get

a clean connected codimension 0 submanifold A of P . Attaching W1 along B′1. See

Figure 2.2.

A1

A2

A3

P

B1
’

B2
’

B3
’

W1

W2

W3

Figure 2.2: Ai is in blue and B′i is in black. The union of red and blue arcs is P .

By Lemma 2.1.2, the inclusion induced map λ1 : π1(B′1) � π1(W1) is surjective

and kerλ1 is perfect. Let L be a wedge of loops in B′1 which together generate

kerλ1 and Y ′1 be the space obtained by attaching 2-cells to the interior B′1 along

these loops. Since A1 ↪→ W1 is a homotopy equivalence, by Lemma 2.1.3,

π1(W1) ∼= π1(A1) ∼= π1(Y ′) ∼= π1(B′1)/N1,
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where N1 = kerλ1 is the normal closure in π1(B′1) of L. Note that A1∩B′1 = ∂A1 =

∂B′1. By Seifert-van Kampen,

π1((Q\B′1) ∪ A1) ∼= π1(Q ∪W1) ∼= π1(Q ∪ Y ′1).

Let ι∗1 : π1(B′1) → π1(Q) be the inclusion induced map. Then Lemma 2.1.3 implies

π1(Q ∪ Y ′1) ∼= π1(Q)/N ′1, where N ′1 is the normal closure in π1(Q) of ι∗1(N1). Hence,

φ1 : π1(Q) � π1(Q ∪W1) is surjective and has perfect kernel.

Attaching W2 along B′2 in Q ∪W1. Repeat the above argument, one can show

that φ2 : π1(Q∪W1) � π1(Q∪W1∪W2) is surjective and has perfect kernel. Assume

there are k Ai’s. By induction, we have the following sequence

π1(Q)
φ1−−−� π1(Q ∪W1)

φ2−−−� · · ·
φk−−−� π1(Q ∪ (∪ki=1Wi)) (2.1.1)

Since each kerφi is perfect, by Lemma 2.1.2, the composition Φ = φk ◦ · · · ◦ φ2 ◦ φ1

yields a desired surjection π1(Q) � π1(R) ∼= π1(P ) and ker Φ is perfect.

2.2 Proof of Theorem 2.0.5: necessity

The proof of the necessity of Conditions (a) and (c) of Theorem 2.0.5 follow readily

by definition of pseudo-collar. Thus, it suffices to show that pseudo-collarability

implies Condition (b).

Proof of Theorem 2.0.5 (necessity). Suppose Mm is pseudo-collarable and N is a

homotopy collar. Then it’s easy to see that each component N j of N is a homotopy

collar. By the definition of pseudo-collarability, we choose a desired cofinal sequence

of clean neighborhoods of infinity {N l
i}
ki
l=1 such that each N l

i is a homotopy collar

contained in N j. Proposition 1.4.4 guarantees that each N l
i\∂Mm is 1-ended — thus,

eachN l
i is ∂MN

l
i -connected at infinity. LetN l

i,i+s = N l
i∩(
⊔ki+s
t N t

i+s) (s = 1, 2, . . . ) is

the disjoint union of finitely many components N t
i+s contained in N l

i . By Proposition

2.1.1, N j (= N1
1 ) can be subdivided into relative one-sided h-cobordisms. That is,

each W l
i = N l

i\N l
i,i+1. By definition, we may consider the sequence

π1(∂MN
1
1 ∪N1

1,2)← π1(∂MN
1
1 ∪N1

1,3)← π1(∂MN
1
1 ∪N1

1,4)← · · · (2.2.1)
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where base rays are suppressed and bonding homomorphisms are compositions of

maps induced by inclusions and change-of-basepoint isomorphisms. Let ∂MN l
i\∂MN l

i,i+1

be Dl
i,i+1 (i = 1, 2, 3, . . . ) and Dl

i,i+2 = Dl
i,i+1 ∪Dl

i+1,i+2. Consider the following dia-

gram. Each bonding map in the top row is an inclusion.

∂MN
1
1 ∪N1

1,2 ←↩ ∂MN
1
1 ∪N1

1,3 ←↩ ∂MN
1
1 ∪N1

1,4 ←↩ · · ·
↑ incl. ↑ incl. ↑ incl.

D1
1,2 ∪ FrN1

1,2 D1
1,3 ∪ FrN1

1,3 D1
1,4 ∪ FrN1

1,4 · · ·

Since each FrN l
i ↪→ N l

i is a homotopy equivalence, all the vertical maps are homo-

topy equivalence. By ¶3 in the proof of Proposition 2.1.1, (W l
i ,FrN l

i ,FrN l
i,i+1 ∪

∂MW
l
i ) is a one-sided h-precobordism. Apply Lemma 2.1.4,

π1(D1
1,i+2 ∪ FrN1

1,i+2) � π1(D1
1,i+1 ∪ FrN1

1,i+1)

is surjective and has perfect kernel.

2.3 Proof of Theorem 2.0.5: sufficiency

We begin the proof of the “sufficiency argument” with three theorems that will be

key ingredients in the proof. Each is a straightforward extension of an established

result from the literature.

The following theorem is a modest generalization of the Pseudo-collarability

Characterization Theorem in [GT06] to some manifolds with noncompact boundary

in the same way the Siebenmann’s “Relativized Main Theorem 10.1” provided a

mild extension of the Main Theorem of [Sie65] to some manifolds with noncompact

boundary.

Theorem 2.3.1 (Relativized Pseudo-collarability Characterization Theorem). Sup-

pose Mm (m ≥ 6) is one-ended and ∂Mm is homeomorphic to the interior of a

compact manifold. Then Mm is pseudo-collarable iff Mm is

1. inward tame,

2. π1(ε(Mm)) is perfectly semistable,
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3. σ∞(Mm) = 0.

Quillen’s famous “plus construction” [Qui71] or [FQ90, Section 11.1] provides a

partial converse to Lemma 2.1.2.

Theorem 2.3.2 (The Relativized Plus Construction). Let B be a compact (n− 1)-

manifold (n ≥ 6) and h : π1(B) � H a surjective homomomorphism onto a finitely

presented group such that ker(h) is perfect. There exists a compact n-dimensional

nice relative cobordism (W,A,B) such that ker(π1(B)→ π1(W )) = kerh, and A ↪→
W is a simple homotopy equivalence. These properties determine W uniquely up to

homeomorphism rel B.

Remark 9. For n = 5, the above theorem still holds as long as H is restricted to

be “good” (see [FQ90, Th. 11.1A, P.195]). For n ≥ 6, the proof is the same as the

proof of Th. 11.1A in [FQ90, P.195] except that 2-spheres on which the 3-handles

are attached embedded simply by general position. When n = 4, the theorem is

false.

When a nice rel one-sided h-cobordism has trivial Whitehead torsion, ie, when

the corresponding homotopy equivalence is simple, we refer to it as a nice rel plus

cobordism.

Theorem 2.3.3 (Relativized Embedded Plus Construction). Let R be a connected

manifold of dimension at least 6; B a compact codimension 0 submanifold of ∂R;

and

G ⊆ ker(π1(B)→ π1(R))

a perfect group which is the normal closure in π1(B) of a finite set of elements.

Then there exists a nice rel plus cobordism (W,A,B) embedded in R which is the

identity on B for which ker(π1(B)→ π1(W )) = G.

Proof. The proof of Theorem 3.2 in [GT06] will work for our situation with simple

replacement of plus construction by the relativized plus construction and duality by

generalized Poincaré duality [Hat02, Thm.3.35, P. 245] for noncompact manifolds.
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Proof of Theorem 2.3.1. For a full understanding, the reader should be familiar with

the proof of the Main Existence Theorem [Gui00]. To generalize all the arguments

made in [Gui00], especially Theorem 5, Lemmas 13-15, one need use frontiers Fr of

generalized k-neighborhoods to replace boundaries ∂. All handle operations should

be performed away from ∂Mm. This is doable for nearly the same reasons given by

Siebenmann for [Sie65, Th.10.1]; in particular, all handle moves in the proof [GT06,

Th. 1.1] can be performed away from ∂Mm. More specifically, the above procedure

will assure the end has generalized (n− 3)-neighborhoods {Ui}. To modify {Ui} to

generalized (n−2)-neighborhoods, one has to replace Theorem 3.2 in [GT06, P.554]

by Theorem 2.3.3. Then imitate the argument in [GT06, P.554-555] via replacing ∂

by Fr and keeping the handle decompositions away from ∂Mm.

The proof of the sufficiency of Theorem 2.0.5 follows readily from the following

result.

Proposition 2.3.4. If Mm satisfies Conditions (a) - (c) of Theorem 2.0.5 then there

exists a clean compact exhaustion {Ci} so that, for the corresponding neighborhoods

of infinity {Ni}, FrNi ↪→ Ni is a homotopy equivalence.

Proof. The proof is a variation on the argument of Proposition 1.9.2. By Lemma

1.5.1 and the definition of peripheral perfect semistability at infinity, we can begin

with a clean compact exhaustion {Ci}∞i of Mm and a corresponding sequence of

neighborhoods of infinity {Ni}∞i=1, each with a finite set of connected components

{N j
i }

ki
j=1, so that for all i ≥ 1 and 1 ≤ j ≤ ki,

i) N j
i is inward tame,

ii) N j
i is (∂MN

j
i )-connected and (∂MN

j
i )-perfectly-semistable at infinity, and

iii) σ∞(N j
i ) = 0.

By Lemmas 1.5.1 and 1.3.3, we have

i’) N j
i \∂Mm is inward tame,
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ii’) N j
i \∂Mm is 1-ended and has perfectly semistable fundamental group at infinity,

and

iii’) σ∞(N j
i \∂Mm) = 0.

These are precisely the hypotheses of Theorem 2.3.1. That means N j
i \∂Mm contains

a homotopy collar neighborhood of infinity V j
i , i.e., ∂V j

i ↪→ V j
i is a homotopy equiv-

alence. Following the proof of Theorem 2.3.1, one can further arrange ∂N j
i \∂Mm

(= int(FrN j
i )) and ∂V j

i contain clean compact codimension 0 submanifolds Aji and

Bj
i , respectively, so that int(FrN j

i )\ intAji = ∂V j
i \ intBj

i ≈ ∂Aji × [0, 1). See Figure

2.3.

Figure 2.3: V j
i is a homotopy collar.

Note that Kj
i = N j

i \V
j
i is a clean codimension 0 submanifold of Mm intersecting

Ci in Aji . To save on notation, we replace Ci with Ci ∪ (∪Kj
i ), which is still a clean

compact codimension 0 submanifold of Mm, but with the additional property that

int(FrNi) ↪→ Ni\∂Mm is a homotopy equivalence. (2.3.1)

Since adding ∂MNi back in does not affect homotopy types, we have

FrNi ↪→ Ni is a homotopy equivalence. (2.3.2)
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Having enlarged the Ci, if necessary, one can easily retain the property that Ci ⊆
IntCi+1 for all i by passing to a subsequence. Then Ni = Mm\Ci gives a desired

nested cofinal sequence of clean neighborhoods of infinity {Ni} with the property

that each inclusion FrNi ↪→ Ni is a homotopy equivalence, i.e., Mm is pseudo-

collarable.

2.4 Questions

The idea of pseudo-collarability is related to a Z-compactification. Obviously, com-

pletable manifolds are both pseudo-collarable and Z-compactifiable. Despite the

fact that many manifolds such as Davis’ manifolds are both pseudo-collarable and

Z-compactifiable but not completable, the relationship between pseudo-collarable

manifolds and Z-compactifiable manifolds are not well-understood. There are sev-

eral interesting questions around such topic.

Question 1. Are pseudo-collarability and Condition (d) of Theorem 1.0.1 sufficient

for manifolds to be Z-compactifiable?

Question 2. Are Z-compactifiable manifolds pseudo-collarable?

We suspect the answer to Question 2 is negative. Crossing manifolds constructed

in [KM62], [Ste77] and [Gu18] with half-open interval [0, 1) might be potential coun-

terexamples. However, the biggest obstacle is closely related to the following ques-

tion in knot theory.

Question 3. Let K be a trefoil knot and WD(K) be a twisted Whitehead double of

K. Is the knot group of WD(K) hypoabelian?

Definition 2.4.1. A group G is said to hypoabelian if the following equivalent

conditions are satisfied:

1. G contains no nontrivial perfect subgroup

2. the transfinite derived series terminates at the identity. (Note that this is

the transfinite derived series, where the successor of a given subgroup is its
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commutator subgroup and subgroups at limit ordinals are given by intersecting

all previous subgroups.)

Question 2 is related to the following open question posed in [GT03]

Question 4. Can a Z-compactifiable open n-manifold fail to be pseudo-collarable?
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