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ABSTRACT

PALEOBIOLOGY AND TAPHONOMY OF EXCEPTIONALLY PRESERVED PUTATIVE MACROALGAE
FROM THE EDIACARAN ZUUN-ARTS BIOTA, ZAVKHAN PROVINCE, MONGOLIA

by

Keenan Hassell

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Stephen Q. Dornbos

The first unequivocal evidence of complex multicellular life appears in exceptionally
preserved Ediacaran (635-541 Ma) fossil deposits. The newly discovered Ediacaran Burgess
Shale-type (BST) Zuun-Arts Biota of Zavkhan Province, Mongolia, contains putative macroalgae
fossils. Morphological measurements of 821 individual specimens including length, width, and
branching angle obtained using Imagel software were used to calculate morphological
parameters including median thallus length (16.75 mm), filament width (0.50 mm), branching
angle (63.63°), and surface area/volume ratio (8.19 mm ). The Zuun-Arts biota contains fossils
of six distinct morphotypes: non-branching, dichotomous branching, monopodial branching,
fan-shaped, shrub-like, and small non-branching, all morphologies are similar to macroalgae
from the Ediacaran Lantian and Miaohe biotas. Morphological and taphonomic data rule out a
non-macroalgae affinity, and SEM-EDS data indicate that the Zuun-Arts fossils are preserved as
aluminosilicate and carbon films. Results indicate that the Zuun-Arts fossils are macroalgae

preserved as aluminosilicate mineral films.
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Introduction

The Ediacaran Period stretches from 635 Ma to 542 Ma and is characterized by important
paleobiological and paleoenvironmental changes. This period between the end of the Snowball
Earth glaciations and the beginning of the Cambrian Period shows the first unequivocal complex
animal life, and may hold the key to a better understanding of the origins of multicellular life
(Xiao et al., 2008). The fossil record indicates a soft-bodied Ediacaran biota appearing as early
as 575 Ma and persisting until around 541 Ma, at the beginning of the Cambrian Period (Xiao et
al., 2008). Interpretations of these organisms have been controversial, and their phylogenetic
affinities are still not entirely understood. Paleontologists first tried to shoehorn the Ediacaran
organisms into Paleozoic phyla, however more recent studies suggest that many of these
organisms belong to an extinct kingdom level taxon known as the rangeomorphs (Seilacher,
1992; Narbonne, 2005). The Ediacaran biota is characterized by rangeomorphs and
erniettomorphs, but also includes microbial colonies, algae, fungi, protists and stem-group

bilaterians and other metazoans (Narbonne, 2005).

The Ediacaran Period also contains fossil deposits of exceptional quality, known as Lagerstatten
(Wang et al., 2014). Ediacaran Lagerstatten preserve a variety of soft-bodied organisms
including enigmatic forms, putative metazoans, and algae that are not normally preserved, and
show a variety of preservation types (Butterfield, 2003). Preservation types include external
molds of soft tissue in fine-grained sand stone, carbonaceous compressions, phosphatization,
pyritization, and silicification (Wang et al., 2014; Cai et al., 2010, Meyer et al., 2012; Brasier et

al., 2011). Deposits that preserve carbonaceous compression fossils in fine-grained marine



siliciclastics, or Burgess Shale-type (BST) deposits, are a specific type of Lagerstatten that does

an excellent job of preserving evidence of soft tissue (Wang et al., 2014).

Ediacaran BST deposits are known from around the world, including the recently described
Zuun-Arts Biota in the Zavkhan terrane of western Mongolia (Dornbos et al., 2016). The
Zavkhan terrane is a Precambrian crustal fragment that was embedded in the core of the
central Asian orogenic belt (Smith et al., 2016). During the Ediacaran Period, arc terranes were
accreting to the south, causing the Zavkhan terrane to begin subducting beneath the
Khantaishir-Dariv arc. This subduction created the foreland basin in which the Zuun-Arts
Formation was deposited (Macdonald et al., 2009). The Zuun-Arts Formation is composed of a
basal stromatolitic limestone, a thin black shale interval with a cherty phosphorite layer, and
then a thick carbonate sequence (Dornbos et al., 2016). The Zuun-Arts Biota is only beginning to
be studied, but so far two new species of putative macroalgae, Chinggiskhaania bifurcata and
Zuunartsphyton delicatum, have been identified (Dornbos et al., 2016). Preliminary data

suggest they are preserved as aluminosilicate films (Dornbos et al., 2016).

The goal of this project was to test the hypotheses that 1) the Zuun-Arts fossils are indeed
macroalgae, and 2) they are preserved as aluminosilicate films. These hypotheses were tested
through thorough micro- and macroscopic study and morphometric analysis of Zuun-Arts fossil
specimens in combination with scanning electron microscope energy dispersive x-ray
spectroscopy (SEM-EDS) and x-ray diffraction (XRD) analysis. Learning more about the

morphology, preservation, and the paleoenvironmental conditions under which these



exceptional fossils were preserved will provide a better understanding of early multicellular life

in the Ediacaran.

Background

Functional morphology in modern macroalgae

BST macroalgae fossils preserve only the exterior morphology of the the organism and can look
similar to other types of fossils, so establishing a macroalgae affinity can be difficult (Xunlai et
al., 1999). Most notabley, macroalgae fossils can look similar to burrow fossils, although they
can be distinguished from burrows by their flattend form, carbonaceous composition, clearly
defined margins, jagged endings, and non-disturbance of adjacent sediment, all of which
burrow fossils lack (Miller, 2007; Osgood, 1970). Macroalgae fossils can look similar to
graptoliet fossils as well, however in scaning electron microscope backscatter (SEM-BSE)
images, graptolite fusellae are clearly visable, while macroalgae lack these structures (Tang et
al., 2017; Muscente and Xiao, 2015). Lastly, large bacterial sheaths produced by photosynthetic
eukaryotes can look morphologically similar to non-branching tubular forms of macroalgae in
the fossil record, however these macroalgae are an order of magnitude larger than the largest

known bacterium with a similar morphology (LoDuca et al, 2017).

Once a macroalgae affinity has been detrmined for a fossil, the biggest obstacle is a lack of any
genetic information required for proper taxonomic classification (Xunlai et al., 1999). In some
cases, 3-dimensional preservation of a thallus may provide additional information about the
internal structure, however such preservation is rare. In most cases the only information

available is gross thallus morphology, so this is the criteria used in the classification of ancient

3



macroalgae (Wang et al., 2014). Due to the role of morphology in classification, understanding
the functional morphology of macroalgae is crucial for classifying and understanding their

evolutionary history (Xiao et al., 2002).

Although many Proterozoic and Cambrian macroalgae have no direct modern ancestors, they
likely filled some of the same ecological roles as modern macroalgae. Extensive research has
been done in order to understand the functional morphology of modern macroalgae, and much

of this can be applied to ancient macroalgae as well (LoDuca and Behringer, 2009).

Littler and Littler (1980) published an extensive study examining the cost/benefit of various
aspects of modern macroalgae morphology to ecological interactions and physiological
function. The evolution of features such as environmental hardiness, defense against predation,
and interference with competition were considered in terms of the energetic cost, material
commitment, and possible incompatibility with basic physiological processes for each feature.
Community succession was examined experimentally by clearing and sterilizing an area of
seafloor and observing which macroalgae species appeared over 12 months. Based on this
experiment, macroalgae were divided into two main groups: opportunistic forms and late

successional/climax forms (Littler and Littler, 1980).

The first macroalgae to appear in the cleared areas are opportunistic forms, which are rapid
colonizers with a simple thallus morphology and high surface area to volume ratio.
Opportunistic thalli are characterized by rapid growth, high reproductive capacity, and a high
and uniform distribution of nutrient value (caloric density) across the entire thallus. These algae

maintain the same morphology throughout their life cycle, and avoid predation by having an



unpredictable spatial and temporal distribution. This life style allows opportunistic macroalgae
to rapidly invade and cover newly exposed areas of seafloor. Since the thallus is made almost
entirely of photosynthetic tissue, these algae are highly productive, allowing them to rapidly
replace any tissue lost to herbivorous predators. Although opportunistic algae are well adapted
for rapid colonization, many aspects of their morphology and life cycle prevent them from long-
term domination of their ecosystems. Although reproduction rates are high, mortality rates for
reproductive bodies are also high. Once later successional forms of taller, more complex
macroalgae begin to invade, opportunistic forms cannot adequately compete for light and

other resources (Littler and Littler, 1980).

Late successional macroalgae appear after opportunistic forms have established a community,
and often push them out of the area. In general, late successional forms have a lower surface
area to volume ratio, grow slower, have a more structurally differentiated thallus, and have a
lower reproductive capacity than opportunistic forms. Although reproductive rates are lower,
mortality rates in reproductive bodies are also lower, and larger size and structural
differentiation of the thallus allows late successional forms to better compete for light. An
overall toughness of the thallus combined with other morphological and chemical
characteristics act as defense mechanisms against herbivorous predators (Littler and Littler,

1980).

Both of these morphologies provide advantages to macroalgae in terms of predation defense
and light acquisition. Below is a summary of adaptations leading to these advantageous

morphological features, some of which should be observable in the fossil record.



Morphological characteristics increasing productivity

The morphology of macroalgae is the most important control of photosynthetic efficiency
(Littler and Littler, 1980). Studies of modern macroalgae have found that sheet-like and finely
branched morphologies result in the highest rates of photosynthetic productivity.
Photosynthetic cells in macroalgae are concentrated in the outer tissue layer, so thalli with
higher surface area to volume ratios will have more photosynthetic cells, and will therefore
have a higher rate of photosynthetic productivity. In sheet-like forms, a higher surface area to
volume ratio is achieved through folding of the thallus, and fine branching increases this ratio
by decreasing branch volume and increasing surface area. In addition to increasing rates of
photosynthesis, these thin morphologies have larger cells, which minimizes internal shelf-

shading by non-photosynthetic wall components (Littler, 1979).

Defense mechanisms

Macroalgae employ a variety of morphological and non-morphological strategies in order to
protect themselves from herbivorous predation (Littler and Littler, 1980). Defense mechanisms
fall into two broad categories: non-coexistence and coexistence (lken, 2012). Non-coexistence
strategies are non-morphological strategies that reduce the number and frequency of
macroalgae-herbivore interactions (lken, 2012). This is achieved through strategic temporal and
spatial occurrences of macroalgae. Taxa using non-coexistence strategies live in locations that
are not easily accessible to predators, or during seasons when herbivorous predators are not

present. For example, some forms of brown algae are only susceptible to predation during early



life cycle stages. These algae reproduce during seasons when herbivores are not in the area.
Once large numbers of predators arrive, many of these macroalgae will be in the adult stage of

their life cycle, so predation is thwarted (Markel and DeWeede, 1998).

Spatial and temporal defenses are often not an option, so macroalgae have evolved several
morphological features for defense against predation (lken, 2012). Producing high numbers of
fleshy, lateral branches was an important morphological innovation leading to an increased
resistance to predation. Filaments can be easily grazed upon, but the high number of lateral
branches, along with the low cost of replacing damaged lateral branches, results in little impact
on photosynthetic capacity (lken, 2012; Van Alstyne, 1989). Littler and Littler (1980) also
observed a morphological trend leading to thalli with a tough central axis containing the
reproductive bodies. The development of a tough central axis with numerous soft lateral
branches allows macroalgae to survive in environments with high populations of herbivorous

predators (lken, 2012; Littler and Littler, 1980).

Based on this functional morphology study, Littler and Arnold (1982) established six functional
form groups (FFGs). FFG 1 consists of thin tubular and sheet-like thalli, FFG 2 consists of
delicately- branched thalli, FFG 3 consists of coarsely-branched thalli, FFG 4 consists of thalli
composed of thick blades and branches, FFG 5 consists of articulated calcareous thalli, and FFG
6 consists of encrusting thalli. These funtional form groups fall on a spectrum of photosynthetic
prouctivey, environmental hardiness, and resistance to predation. The tubular and sheet-like
morphologies in FFG 1 have the highest photosynthetic productivety due to their high surface

area-volume ratio and lack of branches, which reduces self shading. Although FFG 1 is highly



productive, thalli have little to no abiity to resist harsh environmental conditions or herbivorous
predation. From FFG 1 to FFG 6, photosynthetic productivety decreses at a steady rate (Littler

and Littler, 1980; Littler and Arnold, 1982).

Thalli in FFG 6 are the least photosynthetically productive, but have the greatest environmental
hardiness and ability to resist herbivorous predation. These thalli have the most robust
morphologies and highest degree of structural differentiation, allowing them to protect
chloroplasts and reproductive structures inside a tough thallus when not in use (LoDuca, 2017).
The robust morphologies of FFG 6 thalli also account for their low photosynthetic productivety,
since the ratio of photosynthetic to non-photosynthetic tissue is much lower than in FFG 1

(Littler and Arnold, 1982).

Modern macroalgae have developed numerous morphological features which increase their
photosynthetic efficiency and ability to defend themselves against predation (Littler and Littler,
1980). Although evidence of some features, such as chemical defenses and non-coexistence
strategies, cannot be observed in the fossil record, trends towards some morphological

strategies should be observable.

Applying the functional form group concept to the fossil record

Due to the limitations associated with classifying ancient macroalgae, classification is based on
morphogroups, which are groups of fossils with similar morphological features. LoDuca et al.

(2017) performed a detailed survey of all known BST deposits containing macroalgae from the
Cambrian, Ordovician, and Silurian periods and calculated canopy height, maximum length and

surface area for all thalli. Based on these morphological data, nine morphogroups were



established for the early Paleozoic: tubiform, ribbon-like, spherical, delicately dichotomously
branching, coursely dichotomously branching, soloniform, frondose, simple monopodial, and
complex monopodial. Morphogroups were then assigned to a functional form group based on
Littler and Littler (1980). The tubiform, ribbon-like, speherical, and frondose morphogroups
were assinged to FFG 1, delicately dichotomously branching and stoloniform morphogroups
were assigned in FFG 2, the simple monopodial morphogroup was assigned to FFG 2.5, complex
monopodial and most of the coarsely dichotomously branched morphogroups were assigned to
FFG 3, and one specimen from the coarsely dichotomously branched morphogroup was

assigned to FFG 4 (LoDuca et al., 2017).

LoDuca et al. (2017) found several trends in the evolution of macroalgae thallus morphology
from the Cambrian through Silurian periods. First of all, there is a trend of incresing complexity
of morphogroups. The Cambrian Period was dominated by the simplest tubiform and delicately
dichotomously branching morphogroups. In the Ordovician Period, the tubiform morphogroup
disappears, the delicate dichotomously branching morphogroup becomes less common, and
the monopodial branching morphogroup becomes dominant. The Silurian macroalgae record is
similar to the Ordovician, however the ratio of monopodial to delicately dichotomously

branching morphogroups is slightly higher (LoDuca et al., 2017).

A similar pattern is seen in functional form groups, with the Cambrian Period dominated by FFG
1 and FFG 2. In the Ordovician, FFG 1 becomes less common, FFG 2 and FFG 2.5 become the
most common, and FFG 3 first appears. The Silurian Period is similar to the Ordovician, with FFG

2.5 and FFG 3 being the most common. The Silurian Period also contains one example of a FFG



4 specimen. Based on these trends in morphogroups and funtional form groups, there appears
to be a general trend towards incresing complexity in macroalgae thalli from the Cambrian to
the Silurian, with a major diversification occuring during the Ordovician radiation. This trend
from highly efficient, delicate morogroups to less efficient, hardier morphogroups was likely
driven primarily by the evolution of herbivorous predation (LoDuca et al., 2017). In order to
better understand the early Paleozoic evolutionary trends seen in the fossil record of
macroalgae, a better understanding of Proterzoic macroalgae is required, especially during the

Ediacaran Period.

The Proterozoic fossil record of macroalgae

Macroalgae underwent a major diversification event during the Ediacaran Period, however
macroalgae such as Grypania have been found in rocks as old 1.8-2.0 Ga (Han and Runnegar,
1992). Other putative Paleoproterozoic macroalgae include the spherical to cylindrical forms of
Churia, Ellipsophysa, and Tawuia from 1.7-1.8 Ga rocks in North China (Zhu et al., 2000).
Although these putative Paleoproterozoic macroalgae are small and simple, some early
morphological advances can be seen even at this time, including the development of stipe
morphology and possibly the earliest holdfast structures (Xiao and Dong, 2006).
Mesoproterozoic macroalgae include spherical, ellipsoidal, tomaculate and cylindrical thallus
morphologies as well as more complex discoidal holdfasts and transverse annulations (Xiao and
Dong, 2006). Ediacaran BST deposits containing abundant macroalgae fossils include the
Lantian biota of southern Anhui Province, China, the Miaohe biota in the terminal Doushantuo

Formation at Miaohe in Hubei Province, China, and the Zuun-Arts biota of western Mongolia.
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The Lantian Biota

The Lantian Biota of southern Anhui Province, China, is the oldest known Ediacaran BST deposit
containing macroalgae (Yuan et al., 2011). This biota represents a slope basinal depositional
environment within the photic zone, and is regarded as the oldest fossil assemblage containing

macroscopic and morphologically complex life (Yuan et al., 2011).

Two formations are present at this location; the Lantian Formation, which correlates with the
635-551 Ma Doushantuo Formation based on 63C chemostratigraphy, and the Piyuancun
Formation, which correlates with the 551-542 Ma Dengying Formation in the Yangtze Gorges
area (Xunlai et al., 1999). The stratigraphic column consists of 1.8 m of dolostone cap
carbonate, 35 m of finely laminated, fossiliferous black shale, a 34 m unit of dolostone
interbedded with mudstone and ribbon rock, and 20 m of black silty mudstone (Yuan et al.,
2002). The lower shale unit contains the Lantian biota fossils, and its age has been constrained
to 579-565 Ma based on U-Pb radiometric dating (Condon et al., 2016). Fossils here are
exceptionally preserved as carbonaceous compressions in black shale and are up to 40 mm in
length. Several enigmatic forms are present here, including a cone shaped thallus with a
globose holdfast and a splay of filaments at the top, a conical thallus with a fusiform inner
body, and a thin stalk with a cylindrical thallus and a dark axial trace. Interpretations of these
fossils remain controversial due to a lack of modern analogues for comparison (Yuan et al.,
2011). Different morphologies have been interpreted as macroalgae, Cnidarians, bilaterian

worm-like organisms, and bilaterian metazoans (Xiao et al., 2002). Regardless of the taxonomic
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affinities of these fossils, the presence of macroeukaryotes suggests that some amount of free
oxygen must have been present in the environment while these organisms were alive (Yuan et

al., 2011).

The Lantian Biota also contains a diverse assemblage of megascopic, non-calcareous
macroalgae ranging from 10-100 mm in length and 0.1-20 mm in width. Many of these
specimens have holdfasts and include ribbon-like and dichotomous branching morphologies
(Xunlai et al., 1999). Several morphotypes have been identified from the Lantian Biota
macroalgae including thin and thick dichotomous and ribbon-like branching, fan shaped thalli
with dichotomous branching, broom shaped thalli with all branches attached to a single basal
structure, spherical/elliptical forms, and a variety of tube and cone shaped morphologies
composed of many filaments attached to a basal structure. Septation is not common, but some
forms have septated filaments. Filament branching as well as disc/globose holdfasts found in

most specimens suggest that these were erect, benthic macroalgae (Xunlai et al., 1999).

The Lantian Biota macroalgae are preserved as carbonaceous compressions, often associated
with densely packed, framboidal pyrite (Wang et al., 2014; Yuan et al., 2011). The presence of
pyrite in these fossils can be used to interpret the redox history of the basin. Pyrite framboids
form in anoxic conditions, but the presence of macroeukaryotes suggest that there must have
been some free oxygen present in the water. Wang et al. (2014) proposed a cyclical redox

model to explain this apparent dichotomy by suggesting that there was a flux in oxygen levels
between when the organisms were alive and when they died: the basin was largely anoxic,

punctuated by brief oxic episodes. During oxic intervals, the chemocline was below the water-
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sediment interface and macroalgae lived in oxic waters within the photic zone. When oxic
intervals ended, the chemocline shifted up into the water column, killing the algae (Wang et al.,
2014). Algal remains were buried in fine-grained siliciclastics, where they were preserved as
carbonaceous compressions and acted as localized substrates for large pyrite framboids to form
on. This led to primary preservation as carbonaceous compressions with some late stage

Pyritization (Gabbott et al., 2004).

The Miaohe Biota

The other major Ediacaran BST deposit is the Miaohe Biota from the terminal Doushantuo
Formation at Miaohe in Hubei Province, China (Xiao et al., 2002). The Doushantuo Formation at
this location is about 200 m thick, and is composed of extremely finely laminated, organic rich
shale and cherty carbonates deposited in a quiet subtidal environment, likely within a restricted
basin (Wang et al., 1998; Ding et al., 1996). Fossils are within a 2 m thick interval in the upper

shale member (Xiao et al., 2002).

Several distinct morphologies have been identified in the Miaohe Biota, most are multicellular
algae (Xiao et al., 2002). Most algal specimens have holdfasts and dichotomous branching, and
some have reproductive structures preserved (Zhang et al., 1989). Morphologies include
spherical cell-like vesicles, cylindrical forms with monopodial branching, unbranching cylindrical
thalli, straight/zigzag central axis with dichotomous branching (some with several successive
dichotomies), and ribbon-like thalli with or without branching and fan or dumbbell-shaped
thalli composed of a bundle of filaments. Branching and the presence of basal attachment

structures in most morphologies suggest an erect, benthic life habit (Xiao et al., 2002).
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Miaohe Biota fossils are preserved primarily as carbonaceous compressions in fine-grained
marine siliciclastic sediments (Xiao et al., 2002). Like the Lantian Biota, Miaohe carbonaceous
compressions are often associated with framboidal pyrite, or cavities left by framboids that
have weathered out (Wang et al., 2014). The presence of pyrite framboids suggests an
environmental model similar to that of the Lantian Biota in which organisms lived during oxic
episodes in a largely anoxic basin, and were preserved through carbonization and late-stage
pyritization. Although the Lantian and Miaohe Biotas are over 600 km apart, they are both
composed primarily of macroalgae preserved through carbonization and late-stage pyritization,

suggesting that anoxic conditions were wide spread in this basin (Wang et al., 2014).

The Zuun-Arts Biota

The recently discovered Zuun-Arts biota is a late Ediacaran BST deposit in the Zuun-Arts
Formation of Zavkhan Province, western Mongolia (Dornbos et al., 2016). The absolute age of
the Zuun-Arts biota is unclear, however it lies beneath the oldest indisputable trace fossils in
the region (~555 Ma) (Macdonald, 2011), and is therefore likely younger than the Miaohe Biota
(Zhu et al., 2013). The stratigraphic sequence of the Zuun-Arts formation consists of a basal
stromatolitic limestone followed by a shale interval, a cherty phosphorite unit, and a thick
carbonate succession (Figure 1). Fossils are preserved in a roughly 40 cm thick black shale
interval. The Zuun-Arts Formation represents a transgressive lag deposit and has an unclear age
relationship with the Lantian and Miaohe Biotas, although it may correlate with the terminal

Doushantuo Formation at Miaohe (Dornbos et al., 2016).
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Figure 1. The stratigraphic context of the Zuun-Arts Biota. A) Regional map of Mongolia showing the location of the

Zuun-Arts region. B) Stratigraphic column of the Zuun-Arts Formation. C) Detailed stratigraphic column of the
Zuun-Arts Formation at the location of the Zuun-Arts biota. Modified from Dornbos et al. (2016).
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Preliminary study of the Zuun-Arts Biota indicates two species of probable eukaryotic
macroalgae (Dornbos et al., 2016). Chinggiskhaania bifurcata consists of thin filaments that lack
transverse longitudinal ornamentation, are gently curving, and rarely branch. Filaments have
fine length-wise lineations, no consistent distal tapering, and diverge at 43°-85°, with a mean
branching angle of 63°. These specimens are mostly fragmentary, but one well-preserved
specimen shows four filaments that are not densely grouped. Chinggiskhaania bifurcata is not
entirely analogous to any other know Ediacaran macroalgae, but it most closely resembles
Doushantophyton from the Miaohe Biota and Huangshanophyton from the Lantian biota
(Dornbos et al., 2016). The other probable macroalgae species found in the Zuun-Arts biota is
Zuunartsphyton delicatum, which is known from three specimens. Zuunartsphyton delicatum
exhibits a shrub-like morphology less than 3 mm in diameter, composed of tightly curling
filaments lacking branching and longitudinal divisions or ornamentation. Attachment structures
are unknown, and Zuunartsphyton delicatum does not appear to closely resemble any

specimens from the Lantian or Miaohe Biotas (Dornbos et al., 2016).

Preliminary SEM-EDS data show that filaments have high concentrations of Al and Si relative to
other elements, and that Si is not enriched relative to the matrix (Dornbos et al., 2016). Carbon
is locally concentrated in portions of specimens. These results are consistent with preservation
as aluminosilicate clay mineral films. The presence of locally concentrated carbon suggests that
these organisms were originally preserved as carbonaceous compressions, and were
diagenetically altered to aluminosilicate mineral films. One specimen shows a concentration of
Fe in a zone with a high C concentration, and SEM analysis reveals the presence of framboidal

minerals consistent with pyrite. As in the Lantian and Miaohe Biotas, it appears that late-stage
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pyrite formation occurred as a result of sulfate reduction during the decay of filaments,
however aluminosilicate clay mineral preservation contrasts with the carbonaceous
compressions fossils in the Lantian and Miaohe Biotas, as well as most other Ediacaran and

Cambrian BST deposits (Dornbos et al., 2016).

Burgess Shale-type taphonomy

BST preservation is a unique taphonomic pathway that leads to 2-dimensional preservation of
soft tissue as a film of carbon and/or aluminosilicate mineral films with a thickness on the scale
of microns (Orr et al., 2009; Briggs and Williams, 1981). This rare taphonomic window is largely
limited to the Ediacaran- early Ordovician Periods (~ 545-480 Ma) (Van Roy et al., 2010). The
BST preservation pathway begins when a soft-bodied organism is buried in anoxic mud very
soon after death, which isolates delicate morphological features and seals out heterotrophic
microbes (Marshall, 1976). The carcass then begins to degrade, leaving behind only a thin film
of organic carbon. Two primary models attempt to explain when aluminosilicate films form
during fossil diagenesis, and both have implications for how organisms should appear in the

fossil record (Orr et al., 2009; Butterfield et al., 2007).

Orr et al. (2009) proposed an early diagenesis model in which aluminosilicate layers form on the
decaying organism shortly after burial. In this model, the decaying carcass acts as a substrate
for the accumulation of colloids or the precipitation of authegenic clays (Orr et al., 2009; Orr et
al., 1998). Once the carcass decays, aluminosilicate clay that precipitates on the original C film.
Over time, the rock containing the fossil is subjected to regional metamorphism, which alters

the clay to a coherent aluminosilicate film. This model would result in a fossil film composed of
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three layers: a layer of C in the middle with layers of Al above and below, or an Al layer in the

middle with C layers above and below (Figure 2) (Orr et al., 2009; Orr et al., 1998).

Butterfield et al. (2007) suggests an alternative late diagenesis origin of aluminosilicate films. In
this model, the diagenetic process also begins with an organism being buried in anoxic mud,
decaying, and leaving behind a carbon film. The role of clay in early diagenesis and the
formation of aluminosilicate films, however, differ considerably from the early diagenesis
model. In the late diagenesis model, clay minerals in the sediment absorb degradative enzymes
due to their large surface area and high cation exchange capacity, indefinitely delaying the
decay process (Butterfield, 1990; Thang, 1979). The formation of aluminosilicate films does not
require a pre-existing mineral phase (Butterfield et al., 2007), as shown by the replacement
and/or overgrowth of organic- walled graptolite fossils by aluminosilicate films as a result of
metamorphism (Underwood, 1992). Thus, clay plays a vital role in preservation, but does not
form the aluminosilicate film. The late diagenesis model should result in fossils composed
primarily of aluminum, possibly with areas of elevated carbon concentrations (Butterfield,

2007; Orr et al., 2009).

Scanning electron microscopy

SEM-EDS elemental mapping has become a common tool for paleontologists trying to

understand how BST fossils form (e.g. Loydell, 2004; Huggett et al, 2000; Moore and Liberman,
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Figure 2. A summary of the early taphonomic model for BST preservation. A-B result in Al films. A) Al inside, C
outside, plane of plitting through the Al layer. B) C inside, Al outside, plane of splitting through the Al layer. C-D
result in C films. C) Cinside, Al outside, plane of splitting through the C layer. D) Al inside, C outside, plane of
splitting through the C layer. E) Al inside, C outside, plane of splitting through the sedimentary matrix. Modified
from Orr et al. (2009).
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2009). Although EDS analysis can provide a wealth of information about the composition of
fossils, determining the appropriate SEM parameters, especially accelerating voltage, can be
difficult (Orr et al., 2009). BST fossils are extremely thin, often having a thickness of 0.05 um or
less, creating a challenge in EDS analysis. EDS works best at a high accelerating voltage, which
creates a large interaction volume, extending far below the fossil of interest and into the rock
containing the fossil. Orr et al. (2009) addressed this problem using Electron Flight Simulator
software to generate interaction volumes for rocks with C films 2.5 um, 0.175 pm and 0.15 pum
thick at 15 keV (Figure 3), and 0.05 um, 0.03 um and 0.02 um thick at 5 keV (Figure 4). For the
15 keV accelerating voltage, the interaction volume extended far beneath the C film of interest.
The 2.5 um film showed up clearly, the 0.175 um film was faint but visible, and the 0.15 um film
was not seen at all in the spectrum. The large interaction volume associated with a 15 keV
accelerating voltage extended so far into the rock that the signals from the C films were washed
out. At the 5 keV accelerating voltage, the 0.05 um, 0.03 pm and 0.02 um C films were all
detectable in the spectrum. Since the 5 keV accelerating voltage produces a much smaller
interaction volume than 15 keV, more of the signal came from the film and there was less

background noise from the rock, resulting in an increase in resolution (Orr et al., 2009).

Geologic Setting
The Zuun-Arts Formation is located in the Zavkhan terrane of Western Mongolia, a Precambrian

crustal fragment embedded in the core of the central Asian orogenic belt (Fig. 5) (Kroner et al.,
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Figure 3. Simulated interaction volume of a 15 keV accelerating voltage in shale containing carbon films of various
thicknesses. A) 2.5 um thick carbon films, note the large carbon peak in the spectrum. B) 0.175 um thick carbon
films, note the subtle but still distinguishable carbon peak in the spectrum. C) 0.15 um thick carbon film, the
carbon peak is not distinguishable in the spectrum. Red boxes show the portion of the interaction volume
penetrating into the matrix beneath the fossil. Modified from Orr et al. (2009).
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Figure 4. Simulated interaction volumes for a 5 keV accelerating voltage in shale containing carbon films of various
thicknesses. A) 0.05 pm thick carbon film, note the distinct carbon spike on the spectrum. B) 0.03 um thick carbon
films, note the distinct carbon spike on the spectrum. C) 0.02 um thick carbon film, although the carbon speak is
smaller, it is distinguishable in the spectrum. Red boxes show the portion of the interaction volume penetrating
the matrix beneath the fossil. Modified from Orr et al. (2009).
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2010). Accretion of arc terranes occurred to the south of the Zavkhan terrane from the late
Ediacaran through the Ordovician Period. The late Ordovician and Silurian Periods are marked
by extensional magmatism and basin formation. The Zavkhan terrane was buckled during the
arrival of North China from the early Devonian through the Permian Period (Kroner et al.,

2010).

Cryogenian stratigraphy in the Zavkhan terrane begins with 773.3-803.4 Ma felsic igneous rocks
containing ~755 Ma granitic intrusions (Macdonald et al., 2009). The Zavkhan Formation is then
overlain by synrift and passive margin deposits. The Zuun-Arts Formation is within the Tsagaan
Oloom Group, which contains two Cryogenian glacial deposits. The first is the Maikhan-Uul
Formation, which is a Sturtian age diamictite (717-660 Ma) and the Taishie Formation, which is
composed of Sturtian cap carbonates and interglacial strata (Bold et al., 2006). These are
overlain by the Khongor Formation, which has been correlated to Marinoan glacial deposits.
The Ol Formation, which is correlative with 635 Ma basal Ediacaran cap carbonates, overlies the
Khongor Formation. The Ol Formation is overlain by the early Ediacaran Shuurgat Formation,
which consists of 100-500 m of carbonates, and is uncomformably overlain by the late
Ediacaran Zuun-Arts Formation (Bold et al., 2006). The Zuun-Arts Formation was deposited in
the Zavkhan basin. The age of continental arc volcanism, position of the accrectionary wedge
and ophiolites on the northern margin of the Khantayshir-Dariv arc, and north vergent thrusting
in the accrectionary zone all indicate that the Zavkhan basin was created through the

subduction of the Zavkhan terrane beneath the Khantayshir-Dariv arc (Macdonald et al., 2009).
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Chemostratigraphy of 63C isotopic data has been used to interpret the environmental
conditions present within the Tsagaan Oloom Group, including the Zuun-Arts Formation (Fig. 6)
(Macdonald et al., 2009). 63C values in the Maikhan diamictites are moderately negative, and
increase to +8%o in the overlying Tayshir Formation. & 3C then plummets abruptly from +8%o
to -7.5%o during the third transgression in the Tayshir Formation before returning to +8%e.
through the top of the Tayshir Formation (Macdonald et al., 2009). In the Ol Formation, the
813C profile forms a sigmoidal pattern which reaches -6%o and remains negative throughout the
Ol Formation and into the beginning of the Ulaan Bulagyn Formation, where 8'3C abruptly
jumps to + 3%o through the top of the Ulaan Bulagyn Formation. The carbon isotopic profile
observed in the Ulaan Bulagyn Formation is consistent with a mid-Ediacaran age. The Zuun-Arts
Formation overlies the Ulaan Member and has a variable 6!3C profile, which ranges from +2%o
to -5%o, but is mostly negative. Strontium isotopic data shows a high &7Sr/26Sr value of 0.7085 in
the Zuun-Arts Formation (Figure 6). These strontium isotopic values are consistent with values
typically found during the Proterozoic-Phanerozoic transition, indicating a late Ediacaran age for
the Zuun-Arts Biota (Bold et al., 2016). This, in addition to the mid-Ediacaran carbon isotopic
values in the Ulaan Bulagyn Formation, supports the interpretation that there is a hiatus of
about 35 MY between the Zuun-Arts Formation and the underlying Ulaan Bulagyn Formation

(Macdonald et al., 2009).

25



— 75 Dzabkhan Basin,
=
1
H- "
1400 4 f
£E
1
12001 |§
ik
2
1000 - ;
i
; F
o0 | 5
E
==
w {4 B2
1S E=
L e
o] |
-
C
200 <
8 -4
s
0
m | z
Limestone , Grainstone and C Chert
dolomite
2 Debris flow [T microraamine p Phosphorite
wsn Flooding @@ Giant coids
i Rhythmite 4 Stromatolite
V" su gﬁm M Diamictite 85 Trace fossils
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volcanics. Modified from Macdonald et al. (2009).
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Methods

Morphological analysis

Fossils were collected from the Zuun-Arts biota in Zavkhan Provence, Mongolia. Fossils were
first examined under low magnification using a Leica EZ4D light microscope, and then
photographed with a Canon EOS 350D camera under cross-polarized light. ImageJ software was
used to take morphological measurements from the photographs. Morphological
measurements of 821 individual fossil specimens include length, width and canopy height for all
specimens, and branching angle for branching specimens. These morphological measurements
were then used to calculate surface area, volume, and surface area/volume ratio. Fossils were
modeled as cylinders based on one pair of 3-dimensionally preserved part-counterpart fossils
with a tube-like cross section. Surface area, volume, and surface area/volume ratio were

calculated as follows:
Surface area (SA) = 2nrl + 2nr?
Volume (V) = rir?|

Surface area/volume ratio (SA/V) = %

. dth _ )
M) and | is the length of the filament. For

where ris the radius of the filament (

specimens with more than one thallus element, total length and width were calculated as the
sum of all elements. Median length, width, canopy height, branching angle, and surface

area/volume ratio were calculated for all thalli. Canopy height was calculated as the total

27



distance between the seafloor and the top of the thallus in life. For specimens showing
evidence of an erect, benthic lifestyle, canopy height is the total distance from the base of the
thallus to the top of the highest thallus element. Specimens lacking evidence of an erect,
benthic lifestyle were assumed to be either pelagic or benthic organisms that laid flat on the

seafloor. Canopy height for these individuals is the same as width.

To compare the Zuun-Arts fossils to accepted Ediacaran macroalgae, the above measurements
and calculations were also performed on fossils from the Lantian and Miaohe biotas. The

photos used were obtained from Xiao et al. (2008) and Xunlai et al. (1999).

Scanning electron microscopy

SEM-EDS mapping and line scans were used to examine the elemental composition of 39
Chinggiskhaania fossils from the Zuun-Arts biota. All SEM analysis was done on a Hitachi S-
4800 scanning electron microscope with a Bruker Quantax ESPIRIT energy dispersive x-ray
detector in the scanning electron microscopy laboratory at the University of Wisconsin-
Milwaukee. Specimens were cut with a rock saw and mounted on a 1-inch stub using carbon
glue, and the sides of the sample were painted with colloidal carbon paint to increase
conductivity. Fossils were mounted with the long axis of the fossil perpendicular to the beam in
order to examine the distribution of elements on the exterior (Figure 7). All specimens were
coated with carbon using an Edwards’s vacuum coating unit. An accelerating voltage of 10 keV

was used for all specimens to produce SEM-EDS maps for O, C, Al, Si and Fe. Line scans were
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Figure 7. lllustration showing the orientation of fossils with respect to the electron beam. Fossils were mounted
perpendicular to the electron beam in order to examine elemental variations across the exterior surface.
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also produced for C, Si, and Al. Backscatter images were used to locate the outer margins of

fossils before EDS analysis was done.

X-ray diffraction

XRD was used to examine the clay mineral content of the Zuun-Arts shale. Grain size separation
was used to segregate the clay size fraction from 6 samples of shale from the Zuun-Arts
Formation. For each sample, approximately 10 grams of shale was ground with a mortar and
pestle, soaked in deionized water in 200 ml glass beakers overnight, and blended for 3 minutes

in a Waring blender. The fine grain fraction was decanted into plastic tubes for centrifugation.

About 30 mg of sodium pyrophosphate dispersing agent was added to each tube, and samples
were centrifuged at 750 rpm for 3.3 minutes. The clay size fraction was then decanted into a
new tube, and this process was repeated 5-6 times to isolate the clay fraction. To induce
flocculation, 2.2 g of CaCl, were added to each sample. Samples were left overnight to
flocculate, then centrifuged a final time for 3.3 minutes at 750 rpm, concentrating the clay
fraction in the bottom of the tube. Sediment free water was removed with a vacuum hose, and

the remaining samples were mounted on glass slides.

To test for the presence of montmorillonite, three samples were run a second after adding
ethyl glycol to the slides. Samples were run on a Bruker D8 Focus XRD with Diffrac Plus

software, and interpretation was done using Diffrac Plus EVA software.
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Results

Morphology

Two species of putative macroalgae, Chinggiskhaania bifurcata and Zuunartsphyton delicatum,
have been identified in the Zuun-Arts biota (Figure 8; Figure 9). Zuunartsphyton delicatum has a
shrub-like morphology. Chinggiskhaania bifurcata has four different morphologies: non-

branching, single monopodial branching, dichotomous branching, and fan-shaped. A small non-

branching morphology has also been identified, but its affinity is unclear.

Small non-branching morphology

The small non-branching morphology is composed of a single, non-branching element less than
4 mm in length, and is often twisted or curved. Thalli have a median length of 2.87 mm (Figure

10), median width of 0.16 mm and a median surface area/volume ratio of 27.4 mm™* (Figure 11).

Zuunartsphyton: Shrub-like morphology

The shrub-like morphology is composed of up to six thin elements twisted tightly together to

form a shrub-like thallus. Individual elements have a median length of 3.80 mm (Figure 10) and
a median width of 0.27 mm. Elements twist around and overlap one another. The entire thallus
has a median surface area/volume ratio of 16.12 mm™ (Figure 11) and a total width of less than

6 mm.
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Figure 8. The Zuun-Arts morphologies. A,E) dichotomously branching, B) fan-shaped, C) monopodial branching, D)
non-branching, F) shrub-like. Scale bars=3mm.




A

B

C

D

/ 5

Figure 9. lllustrations of the Zuun-Arts morphologies. A) non-branching, B) dichotomously branching, C)
monopodial branching, D) fan-shaped, E) shrub-like, F) small non-branching.
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Figure 10. Box and whisker plot showing total thallus length of the small non-branching and shrub-like
morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X.
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morphologies. Median value is marked by the middle horizontal bar, mean is indicated with an X.
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Figure 12. Box and whisker plot showing total thallus length of the non-branching, monopodial, fan-shaped, and
dichotomous branching morphologies. Median value is marked by the middle horizontal bar, mean is indicated
with an X.
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Figure 13. Box and whisker plot showing surface area/volume ratio of the non-branching, monopodial branching,
fan-like, and dichotomously branching morphologies. Median value is marked by the middle horizontal bar, mean

is indicated with an X.
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Chinggiskhaania: Non-branching morphology

The non-branching morphology is composed of a single, non-branching element with a median
length of 17.9 mm (Figure 12), a median width of 0.48 mm, and a median surface area/volume
ratio of 8.47 mm™ (Figure 13). Non-branching fossils are found straight, slightly curved, or
twisted, and often overlap each other on slabs containing multiple fossils. Non-branching fossils
lack any evidence of basal attachment structures, transverse lineations, or distal tapering in

width across the thallus.

Chinggiskhaania: Single monopodial branching morphology

The single monopodial branching morphology is composed of a central element running the
entire length of the thallus and 1-2 secondary elements branching off the central axis in a
monopodial fashion. The central element is straight or slightly curved and has a median length
of 17.0 mm (Figure 12) and median width of 0.57 mm. Secondary elements have a median
length of 5.10 mm, median width of 0.39 mm and a median branching angle of 50°. Thalli have
an overall median canopy height of 17.0 mm, and surface area/volume ratio of 6.70 mm™

(Figure 13).

Chinggiskhaania: Dichotomously branching morphology

The dichotomous branching morphology consists of one primary element and two
dichotomously branching secondary elements. Primary elements have a median length of 10.7
mm (Figure 12) and median width of 0.44 mm. Secondary elements have a median length of

8.66, median width of 0.45 mm, and a median branching angle of 60.4°. Thalli have an overall
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median canopy height of 15.0 and median surface area/volume ratio of 8.89 mm™ (Figure 13).

All thalli have only one level of branching (1 primary element and 2 secondary elements).

Chinggiskhaania: Fan-shaped morphology

The fan shaped morphology is composed of 2-3 primary elements that come together in a fan
shape. Individual elements have a median length of 8.084 mm (Figure 12) and median width of
0.31 mm. Thalli have an overall canopy height of 8.08 mm and median surface area/volume

ratio of 13.0 mm™ (Figure 13).

Of the 821 individual fossils examined, the non-branching morphology is the most dominant
with 761 specimens (92.7 %). Branching morphologies are the most abundant after non-
branching with 39 dichotomously branching (4.8 %) and 14 monopodial branching (1.7 %)
samples. There are only 3 fossils with a fan morphology (0.4 %), 2 with a small non-branching

morphology (0.2 %) and 2 with a shrub-like morphology (0.2 %) (Figure 14).

Scanning electron microscopy

The results of EDS mapping show no variation in Fe and O concentrations between fossils and
the surrounding matrix. There is, however, variation in C, Al and Si concentrations (Figure 15).
All fossils have increased concentrations of Al and are depleted in Si compared to the matrix.
Some fossils are composed entirely of Al, but most contain some amount of C (Figure 16). Some
fossils have high concentrations of C around the margins and Al with little to no Cin the center,

however most have areas of elevated carbon throughout. Areas of the fossil with
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Figure 14. Pie chart showing the relative abundance of different morphologies in the Zuun-Arts biota. The non-
branching morphology makes up 93% of the biota, with all other morphologies making up the remaining 7%.
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Figure 15. Selected SEM-EDS maps of 5 fossils and surrounding matrix. A) Note high C and Al concentrations and Si
depletion throughout the fossil. Scale bar = 300 um, final magnification = 90x. B) Note high Al concentration and Si
depletion within the fossil and the total absence of C within the fossil. Scale bar = 300 um, final magnification = 90
X. C) Note high C concentrations along the margins of and within the fossil and high Al concentrations and Si
depletion throughout. Scale bar = 300 um, final magnification = 90 x. D) Note high C and Al concentrations and Si
depletion throughout the fossil. Scale bar = 400 um, final magnification = 50 x. E) Note high C concentrations along
the margins and high Al and Si depletion throughout the fossil. Scale bar = 200 um, final magnification = 130 x.



Figure 16. EDS maps of fossils and surrounding matrix showing concentrations of C and Al. Areas of the fossils have
elevated concentrations of C or Al, but never both.
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high Al concentrations are depleted in C, and areas of high C concentrations are depleted in Al.

All fossils are depleted in Si regardless of the distribution of Al and C.

The relationship between C, Al, and Si is especially clear in line scans run perpendicular to the
long axis of the fossils (Figure 17). In most specimens, Si concentrations are initially high in the
matrix, decline sharply when the line passes over the fossil, then increase again when the line
passes over the fossil and back into the matrix on the opposite side. Al concentrations show the
opposite pattern: Al is relatively low in the matrix, increases sharply within the fossil, and then
declines in the matrix on the opposite side. Similar to the elemental maps, line scans show
variable C concentrations within the fossils, but are consistently low in the matrix. In specimens

containing carbon within the fossil, spikes in C correspond to decreases in Al.

In backscatter images of the Zuun-Arts fossils, areas with high C concentrations appear as
conspicuous black to brown spots, and areas of high Al concentrations are not visible (Figure

18).

X-ray diffraction

XRD patterns for all samples have large 206 peaks around 9, 18, 21, and 27, although there is
some variation between samples (Figure 19). For the three samples run with ethyl glycol, there
is no difference in XRD patterns with and without ethyl glycol (Figure 20). In addition, there is
no major difference in XRD patterns between samples from the fossil bearing and non-fossil

bearing intervals.
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Figure 17. Line scans run across the width of fossils, including a small amount of matrix on either side. Fossil
margins are marked by vertical dashed lines. Fossils containing C also have large carbon peaks within the fossil.
Line scan distance vary from 600 um to 1,000 um (see individual graphs).
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Figure 18. Backscatter images of fossils and surrounding matrix. Dark areas indicate high C concentrations, areas
with high Al concentrations are indistinguishable from the surrounding material. Fossils containing high C
concentrations (A-C) are clearly seen in BSE mode, fossils composed primarily of aluminum (D-E) show little to no
contrast against the matrix. All images were taken at an accelerating voltage of 10 keV, see individual images for
scale and final magnification.
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Figure 19. Clay fraction XRD patterns for samples from non-fossil bearing shale (upper) and fossil bearing shale
(ZA_173) from the Zuun-Arts Formation. Notice the similarity of the two.
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Figure 20. Clay fraction XRD patterns for a sample run without ethyl glycol (ZA_378) and with ethyl glycol
(XA_378EG). The similarity of samples run with and without ethyl glycol indicates a lack of smectite.
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Discussion

Morphology

Many body and trace fossils can have an ambiguous, tubular morphology similar to macroalgae,
so a detailed morphological analysis is necessary to determine if the Zuun-Arts fossils are in fact
macroalgae. Fossilized burrows have a tubular, branching morphology formed when an animal
digs a burrow that later fills with sediment. The result is a 3-dimensional, often cylindrical fossil
that can be distinguished from surrounding sediment by its tubular morphology as well as the
burrow margins, which are not always clearly defined (Miller, 2007). In addition, burrows often
result in disturbance of the sediment in the surrounding matrix (Cohen, 2009; LoDuca et al.,
2017). The Zuun-Arts fossils are preserved as 2-dimensional films and are composed of C and/or
Al, they are not 3-dimensional sediment-filled casts. Unlike some burrows, the Zuun-Arts fossils
have sharp margins that are easily distinguishable from the surrounding matrix, and there is no
evidence of disturbance of the surrounding sediment. All morphological data suggest that the

Zuun-Arts fossils are not burrows or any other type of trace fossil.

BST macroalgae fossils can also look similar to hemichordate fossils such as graptolites, since
both have a similar gross morphology and are commonly preserved as carbonaceous
compressions (Muscente and Xiao, 2015). Although macroalgae and graptolites can appear
superficialy similar, close examination of the Zuun-Arts fossils under a microscope failed to
detect any structural features found in graptolites such as theca or zooids. SEM-BSE imaging

also suggests that the Zuun-Arts fossils are not graptolites, since they lack fusellae which would
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suggest a hemichordate affinity (Figure 21) (Tang et al., 2017). Detailed morphological

examination and SEM-BSE imaging suggest that the Zuun-Arts fossils are not hemichordates.

Another alternative interpretation of the Zuun-Arts fossils is that they are bacterial sheaths
preserved as carbonaceous compressions. Some microrganisms living in marine environments
attach to submerged substrates and many individuals align in a filamentous arrangment,
enclosed by a sheath (LoDuca et al., 2017). Bacterial sheaths have morphologies similar to the
non-branching fossils in the Zuun-Arts biota and can be preserved as BST fossils, however the
Zuun-Arts fossils are about ten times larger than the largest known bacterial sheaths (LoDuca et
al., 2017). The size of the Zuun-Arts fossils alone suggests that they are not bacterial sheaths

preserved as carbonaceous compressions.

In addition to ruling out the possibility that the Zuun-Arts fossils are burrows, graptolites or
bacterial sheaths, several morphological features including the length, width, and branching are
also consistent with a macroalgae interpretation. Most of the Zuun-Arts fossils also bear a

morphological resemblance to other types of Ediacaran macroalgae.

The non-branching specimens of Chinggiskhaania have a morphology that closely resembles
the macroalgae genus Sinocylindra, which is common in the Ediacaran Miaohe biota, although
Chinggiskhaania is generally smaller than most specimens of Sinocylindra. Chinggiskhaania has
a median length of 17.865 mm and a median width of 0.481 mm, while Sinocylindra has a
median length of 28.33 mm and median width of 0.481 mm (Xiao et al., 2002). Although
Sinocylindra is larger, two have similar surface area-volume ratios, with Sinocylindra having a

ratio of 7.77 mm™ and Chinggiskhaania having a ratio of 8.47 mm.
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Figure 21. A-C) Backscatter images of (A) BST hemichordate fossil and (B-C) BST macroalgae fossils. Scale bars = 0.2
mm. D-E) BST macroalgae fossils from the Zuun-Arts biota. Scale bars = 0.5mm, final magnification = 90x. Note the
transverse bands in A and lack of bands or any other internal structures in B-E. Modified from LoDuca et al. (2017).
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The fan-shaped morphology of Chinggiskhaania somewhat resembles the Ediacaran
macroalgae Doushantuophyton cometa, although the Chinggiskhaania specimens are much
simpler. Fan- shaped Chinggiskhaania and Doushantuophyton cometa specimens have similar
median lengths of 8.084 mm and 11.92 mm, respectively. With a median width of 0.09 mm,
Doushantuophyton cometa filaments are generally much thinner than Chinggiskhaania
filaments, which have a median width of 0.311 mm (Xunlai et al., 1999). The two also differ with
respect to surface area-volume ratio and number of filaments. Doushantuophyton cometa has a
SA/V of 44.61 mm™ and about 40 filaments on average (Xunlai et al., 1999), Chinggiskhaania
has a SA/V of 13.016 mm™ and only 3 filaments. Based on these morphological data it is unclear
whether the fan-shaped Chinggiskhaania morphology has any direct relationship to
Doushantuophyton cometa. Although the fan-shaped morphology is much simpler than
Doushantuophyton cometa, the general morphological resemblance at least indicates that this

morphology is consistent with a macroalgae interpretation.

The dichotomously branching morphology of Chinggiskhaania bears a general morphological
resemblance to the Ediacaran macroalgae Doushantophyton rigidium. The dichotomous
branching form of Chinggiskhaania and Doushantophyton rigidium both have a similar
morphology consisting of a primary element that terminates in two dichotomous branches, and
similar heights of 14.988 mm and 15.28 mm, respectively. Chinggiskhaania has a median width
of 0.438 mm, has only 2 branches, and has a surface area-volume ratio of 8.891 mm, while
Doushantophyton rigidium has a median width of 0.09 mm, has up to 6 branches, and has a
surface area-volume ratio of 44.58 mm™ (Xiao et al., 2002). Based on the number of branches

and surface area-volume ratio, it appears that Doushantophyton rigidium is more complex than
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the dichotomously branching Chinggiskhaania specimens. Overall, Chinggiskhaania does have a
morphology generally similar to that of Doushantophyton rigidium, indicating that

Chinggiskhaania has a macroalgae affinity.

The single monopodial morphology of Chinggiskhaania resembles a simpler version of
Doushantophyton quyuani, which is composed of a central axis with 6 or more monopodial
branches. The monopodial Chinggiskhaania has a median height of 16.96 mm and
Doushantophyton quyuani has a median height of 8.69 mm, and Chinggiskhaania has only 1-2
monopodial branches. Doushantophyton quyuani also has a greater surface area-volume ratio
of 33.49 mm* (Xunlai et al., 1999), compared to Chinggiskhaania, which has a ratio of 6.704
mm-L. The monopodial branching morphology of Chinggiskhaania is morphologically similar to
Doushantophyton quyuani, but is simpler in terms of the number of branches and surface area-

volume ratio.

The shrub-like thallus of Zuunartsphyton is morphologically similar to the Ediacaran macroalgae
Glomulus filamentous, which consists of a number of fine filaments twisted together into a
colony. The shrub morphology of Zuunartsphyton consists of about 6 filaments forming a
colony with a total width of 3.80 mm, while Glomulus filamentous consists of about 10

filaments forming a colony with a total width of 5 mm (Xiao et al., 2002).

The small non-branching morphology of Zuunartsphyton does not resemble any known form of
macroalgae from the Ediacaran or early Paleozoic. Although it is possible that the small non-
branching form represents a novel morphology, it is more likely that these specimens are

fragments or an earlier life cycle stage of Chinggiskhaania. Reproductive bodies are not
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preserved in the Zuun-Arts fossils, so it is not possible to know with certainty how these
organisms reproduced or what earlier life cycle stages would have looked like. The results of
this morphological analysis indicate that the Zuun-Arts fossils are not trace fossils, graptolites or
bacterial sheaths and that they bear a strong morphological resemblance to other Ediacaran

macroalgae, supporting the hypothesis that these fossils are indeed macroalgae.

Comparison of the Zuun-Arts biota with other Ediacaran BST deposits

Lagerstatten are not common in the Ediacaran, and those that do occur often do not contain
BST preservation, but when BST preservation is present, macroalgae fossils are often preserved
(Xiao, 2002). Two Ediacaran BST deposits, the Lantian biota and the Miaohe biota, preserve a
large number of macroalgae with a variety of morphologies (Xunlai et al., 1999; Xiao et al.,
2002). Compared to the Lantian and Miaohe biotas, the Zuun-Arts fossils are morphologically
simple, and the biota as a whole is low in diversity, although the Zuun-Arts fossils do have
length (Figure 22) and surface area-volume ratios similar to macroalgae in the Lantian and
Miaohe biotas (Figure 23). The Lantian biota contains 13 macroalgae morphotypes (Xunlai et
al., 1999) and the Miaohe biota contains 23 (Xiao et al., 2002), while the Zuun-Arts contains
only 6. The Lantian and Miaohe biotas also include macroalgae with complex morphologies
including a variety of complex dichotomous and monopodial branching thalli and tube-shaped
thalli, some of which contain rhizoidal holdfasts and septation. The Lantian biota also contains
enigmatic fossils that may have a metazoan affinity (Xunlai et al., 1999; Xiao et al., 2002). The
Zuun-Arts biota lacks much of the morphological complexity seen in the Lantian and Miaohe

biotas, and is morphologically simple even when compared to much older deposits (Han and
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Figure 22. Box and whisker plot showing total length values for macroalgae from the Lantian, Miaohe, and Zuun-
Arts biotas. Note how similar the median values are in all three biotas.
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Figure 23. Box and whisker plot showing surface area-volume ratios for macroalgae from the Lantian, Miaohe, and
Zuun-Arts biotas. Median surface area-volume ratios for the Zuun-Arts fossils fall in between those for macroalgae
from the Lantian and Miaohe biotas.
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Runnegar, 1992). Definitive rhizoidal and discoidal holdfasts, annulations, and some degree of

structural differentiation dates back to at least the Mesoproterozoic (Xiao and Dong, 2006).

The Zuun-Arts biota is composed entirely of macroalgae belonging to FFG 1 and FFG 2, although
over 93% of all specimens are in FFG 1 (non- branching). The Miaohe and Lantian biotas include
macroalgae that fall within FFG 1, however most belong the FFG 2 or FFG 2.5. These
morphologies indicate that the Zuun-Arts macroalgae are highly photosynthetically productive
and lack environmental hardiness and the ability to resist herbivorous predation. Specimens of
the genus Doushantophyton tend to have higher surface area-volume ratio than specimens of
Chinggiskhaania, which may suggest that Doushantophyton was more photosynthetically
efficient that Chinggiskhaania, however Doushantophyton specimens also tend to have more
branches than Chinggiskhaania, which could reduce photosynthetic efficiency by increasing

self-shading (Xiao and Dong, 2006).

Ediacaran macroalgae as a whole are simple compared to early Paleozoic macroalgae. The
simplicity of Ediacaran morphologies should not be surprising, since much of the Paleozoic
diversification of thallus morphology was driven by competition for light and adaptation to
herbivorous predation (LoDuca et al., 2017; Littler and Littler, 1980). Macroalgae communities
were just beginning to form in the Ediacaran, and the low number of individual macroalgae in a
given community, especially in the Zuun-Arts biota, suggests there probably was not much
competition for light, unlike in the dense, robust communities that formed in the Paleozoic
(LoDuca et al., 2017). In addition to competition for light, adaptation to predation has been a

major driving force behind macroalgae diversification. Most of the trends in macroalgae
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evolution seen in the Phanerozoic, including an increase in surface area-volume ratio, a higher
degree of thallus differentiation, the advent of lateral monopodial branching, and an overall
increase in thallus toughness, have been driven by herbivorous predation (Littler and Littler,
1980). Although evidence of small-scale herbivorous predation by microscopic organisms may
be impossible to detect in the fossil record, there are no known examples of macro-herbivorous
predation in the Ediacaran fossil record (LoDuca et al., 2017). The lack of predation and
competition for light in Ediacaran macroalgae communities may explain the simplicity of thallus
morphology. Structural differentiation comes with an enormous energy cost, so it makes sense
that macroalgae facing little competition or predation pressure would not expend the energy
required to develop more complex thallus morphologies. Ediacaran macroalgae are
morphologically simple, highly photosynthetically efficient, and seem to be very well equipped

for life in the Ediacaran.

Scanning electron microscopy

The SEM-EDS results indicate BST preservation as Al and sometimes C-rich films. These results
are consistent with the SEM-EDS results from Dornbos et al. (2016), which indicate that the
Zuun-Arts fossils are preserved primarily as aluminosilicate mineral films with some areas of
elevated C content. Overall, these results support the second major hypothesis of this project,
that the Zuun-Arts fossils are preserved through BST preservation as aluminosilicate mineral

films.

Although the goal of this project was not to evaluate the different models for the formation of

BST fossils, the SEM-EDS data obtained may provide some new insight into the process. SEM-
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EDS data for the Zuun-Arts fossils does not necessarily provide support for or against the early
diagenesis or late diagenesis models outlined earlier, but it may have implications for some

aspects of these models.

The early diagenesis model proposed by Orr et al. (2009) suggests a variety of ways that
authegenic clay films can form in early diagenesis, as well as several models of how the
elemental composition of fossils may appear based on the way the fossil splits into part and
counterpart (Figure 2). In the early diagenesis model, the aluminosilicate film can form on the
outside or inside of the cuticle, resulting in an a film composed of an internal C layer with Al
above and below it, or an internal Al layer with C above and below it. Orr et al. (2009) also
suggest that, when the fossil is split into part and counter-part, the split will happen
preferentially through the C layer, the Al layer, or through the sediment encasing the fossil. In
all cases, this model proposes that the splitting plane is confined to a single layer of the fossil,

which should result in a fossil with a homogenous elemental composition.

SEM-EDS results clearly show that some of the Zuun-Arts fossils are composed of Al and C,
which seems to be inconsistent with the early diagenesis model. These results do not disprove
the early diagenesis model as a mechanism for BST preservation, but do suggest that the model
of how fossils split into part and counterpart may need to be revisited. It is possible that BST
films do form in the way proposed in the early diagenesis model, but that the splitting plane is
not always confined to a single layer of the film. Many of the Zuun-Arts fossils are composed

mostly of Al, which is consistent with the splitting plane being confined to a single layer. The

59



Sedimentary matrix

Aluminosilicate mineral film

Carbon film

Future plane of splitting

HHE R

Sedimentary matrix

Aluminum

Carbon

Figure 24. One possible alternative to the splitting paths proposed in the early diagenesis model for the formation
of BST fossils. A-B) cross section view of a zig-zag splitting path breaking through C and Al layers. C-D) the
theoretical SEM-EDS map pattern created by the zig-zag splitting paths shown in A and B. This provides a potential
explanation for the SEM-EDS map patterns seen in the Zuun-Arts fossils that does not necessarily conflict with the
early diagenesis model.
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Zuun-Arts fossils containing Al and C may represent instances where the splitting plane was not

confined to one layer, leading to a fossil showing Al and C in SEM-EDS (Figure 24).

The SEM-EDS results from the Zuun-Arts fossils are generally consistent with the late diagenesis
model for BST fossil formation proposed by Butterfield et al. (2007). This model proposes that
BST films are originally composed of organic C left behind by the organism in early diagenesis,
and that the original C film is gradually overprinted by aluminosilicate minerals in later
diagenesis as a result of low-grade regional metamorphism. Over time, this process should lead
to a film composed entirely of aluminum. This taphonomic model may be able to explain why
some of Zuun-Arts fossils contained C and Al; the original C films had not been completely
overprinted by Al yet when regional metamorphism ended. However, it does seem odd that
there would be any variation in the composition of fossils if regional metamorphism were the
primary control of Al overprinting, since all of the Zuun-Arts fossils are from the same location,
and have gone through the same diagenetic history. Overall, the SEM-EDS data from the Zuun-
Arts fossils are generally consistent with both the early diagenesis and late diagenesis models,

although they do raise minor concerns with both.

X-ray diffraction

Prominent 20 peaks around 18 and 21 in XRD patterns can be accounted for by quartz in all
samples. Besides quartz, the largest 20 peaks in most samples can be accounted for by illite.
XRD results indicate that the clay size fraction of the Zuun-Arts shale is composed primarily of

quartz and illite, although most samples contain additional minerals. In several samples,
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kaolinite, muscovite, and possibly glauconite and vermiculite can account for many of the

smaller peaks.

Interestingly, there appears to be little to no montmorillonite in any of the samples. Some
samples have one or two 26 peaks that match montmorillonite peaks, but none have the large,
low angle peaks that are diagnostic of montmorillonite. In addition, in samples re-run with
ethylene glycol, XRD patterns with and without ethylene glycol are essentially identical.
Smectite will absorb ethylene glycol, causing the XRD pattern to shift to the right (Moore and
Reynolds, 1997). If the clay fraction contained montmorillonite, such a shift would have
occurred after ethylene glycol was added to the slides, but this is not the case. It is possible that
montmorillonite was present in early diagenesis and has since altered to illite. This process of
alteration usually results in mixed layer illite-montmorillonite clays, however XRD analysis did

not show any evidence of mixed layer illite-montmorillonite clay.

Butterfield (1990) suggested that smectite may be important in the BST preservation process
due to its ability to absorb degradative enzymes, delaying soft tissue decay. The lack of
montmorillonite in the Zuun-Arts fossil bearing shale suggests that smectite is not necessary for
BST preservation to occur, although it may be beneficial when present. In addition, the
similarity of the clay fraction in the fossil bearing and non-fossil bearing intervals of the Zuun-
Arts Formation suggests that variation in clay mineral content cannot explain the lack of fossils
in the non-fossil bearing intervals. Despite the lack of smectite in the Zuun-Arts Formation, clay
minerals still play an important role in the BST preservation process. Even non-swelling clays

could absorb degradative enzymes, since they have a large surface area compared to the non-
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clay component of the clay sized fraction. In addition, all minerals in the clay fraction play an
important role early in the taphonomic process by packing around the organism and sealing out
oxygen. If the organism is not sealed tight very soon after death, there is no chance of

preservation.

Conclusions

Morphological analysis of Chinggiskhaania and Zuunartsphyton from the Zuun-Arts biota
indicate six different morphologies: unbranching, dichotomously branching, single monopodial
branching, fan-shaped, shrub-like and small non-branching. The dichotomously branching,
single monopodial branching, and fan-shaped morphologies of Chinggiskhaania generally
resemble species of the macroalgae Doushantophyton and the non-branching morphology
resembles Sinocylindra, while the shrub-like morphology of Zuunartsphyton generally
resembles the macroalgae species Glomulus filamentous (Figure 25). Morphological
measurements including width, length and surface area to volume ratio for the Zuun-Arts fossils
are similar to the macroalgae from the Ediacaran Lantian and Miaohe biotas. In addition,
morphological and SEM-BSE data indicate that the Zuun-Arts fossils are not hemichordates,
trace fossils, or bacterial sheaths. All these data indicate that the Zuun-Arts fossils are indeed
macroalgae, supporting the first hypothesis of this project. The Zuun-Arts biota is dominated by
the non-branching morphology Chinggiskhaania, and lacks much of the macroalgal diversity

preserved in the Lantian and Miaohe biotas.

SEM-EDS data show that the Zuun-Arts fossils are preserved as films composed primarily of Al

with areas of elevated C concentrations in some fossils. These data are consistent with
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Figure 25. A comparison of the Zuun-Arts fossil morphologies with their closest Ediacaran macroalgae
counterparts. A) Doushantuophyton cometa, a macroalgae species from the Lantian biota. B) The Zuun-Arts fan-
like morphology. C) Doushantophyton rigidium from the Miaohe biota. D) The Zuun-Arts dichotomously branching
morphology. E) Doushantophyton quyuani from the Lantian biota. F) The monopodial branching morphology from
the Zuun-Arts biota. G) Sinocylindra sp. from the Lantian and Miaohe biotas. H) The Zuun-Arts non-branching
morphology. I) Glomulus filamentous from the Miaohe biota. J) The Zuun-Arts shrub-like morphology. A,E modified

from Xunlai et al. (1999); C,G,| modified from Xiao et al. (2002).
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preservation through the BST taphonomic pathway as aluminosilicate mineral films, supporting
the second hypothesis of this project. Although these data do not definitively prove or disprove
any of the models proposed for the formation of BST fossils in general, they do offer insights
into how the plane of splitting passes through the fossil when the rock is split into part and
counterpart (Figure 20). The similarity in clay mineral content between shale within and outside
of the Zuun-Arts biota indicates that the lack of fossils outside of the fossiliferous zone is not
due to a lack of swelling clays. In addition, the lack of smectite in the clay fraction of the Zuun-
Arts shale indicates that swelling clay is not necessary for BST preservation to occur. Overall,
although simple compared to the Lantian and Miaohe biotas, the Zuun-Arts biota does provide
a rare view of soft-bodied organisms during an important time in the history of life, and may

lead to a more complete understanding of the origins of complex multicellular life.
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Appendix A:

SEM-EDS maps
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Appendix B:

SEM-EDS map, C and Al overlay
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Appendix C:

SEM-EDS line scans
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Appendix D

Morphological measurements, non-branching
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Appendix E
Morphological measurements, dichotomous branching
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Appendix F
Morphological measurements, single monopodial
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Appendix G
Morphological measurements, fan-shaped
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Appendix H

Morphological measurements, small non-branching
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Appendix |

Morphological measurements, shrub-like
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Appendix J:

XRD patterns
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