
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2018

Design and Implementation of a Domain Specific
Language for Deep Learning
Xiao Bing Huang
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Artificial Intelligence and Robotics Commons, and the Electrical and Computer

Engineering Commons

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations
by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Huang, Xiao Bing, "Design and Implementation of a Domain Specific Language for Deep Learning" (2018). Theses and Dissertations.
1829.
https://dc.uwm.edu/etd/1829

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=dc.uwm.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=dc.uwm.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=dc.uwm.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1829?utm_source=dc.uwm.edu%2Fetd%2F1829&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

DESIGN AND IMPLEMENTATION OF A DOMAIN

SPECIFIC LANGUAGE FOR DEEP LEARNING

by

Xiao Bing Huang

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

May 2018

ABSTRACT

DESIGN AND IMPLEMENTATION OF A DOMAIN
SPECIFIC LANGUAGE FOR DEEP LEARNING

by

Xiao Bing Huang

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Tian Zhao

Deep Learning (DL) has found great success in well-diversified areas such as machine vision,

speech recognition, big data analysis, and multimedia understanding recently. However,

the existing state-of-the-art DL frameworks, e.g. Caffe2, Theano, TensorFlow, MxNet,

Torch7, and CNTK, are programming libraries with fixed user interfaces, internal represen-

tations, and execution environments. Modifying the code of DL layers or data structure is

very challenging without in-depth understanding of the underlying implementation. The

optimization of the code and execution in these tools is often limited and relies on the

specific DL computation graph manipulation and scheduling that lack systematic and

universal strategies. Furthermore, most of these tools demand many dependencies beside

the tool itself and require to be built to some specific platforms for DL training or inference.

This dissertation presents DeepDSL, a domain specific language (DSL) embedded in

Scala, that compiles DL networks encoded with DeepDSL to efficient, compact, and

portable Java source programs for DL training and inference. DeepDSL represents DL

networks as abstract tensor functions, performs symbolic gradient derivations to generate

the Intermediate Representation (IR), optimizes the IR expressions, and compiles the

optimized IR expressions to cross-platform Java code that is easily modifiable and de-

ii

buggable. Also, the code directly runs on GPU without additional dependencies except

a small set of JNI (Java Native Interface) wrappers for invoking the underneath GPU

libraries. Moreover, DeepDSL provides static analysis for memory consumption and error

detection.

DeepDSL1 has been evaluated with many current state-of-the-art DL networks (e.g.

Alexnet, GoogleNet, VGG, Overfeat, and Deep Residual Network). While the DSL code

is highly compact with less than 100 lines for each of the network, the Java source code

generated by the DeepDSL compiler is highly efficient. Our experiments show that the

output java source has very competitive runtime performance and memory efficiency

compared to the existing DL frameworks.

1Our previous results are reported in [115]; design and implementation details are summarized in [114].

iii

© Copyright by Xiao Bing Huang, 2018

All Rights Reserved

iv

TABLE OF CONTENTS

1 Introduction 1

1.1 Deep learning overview . 2

1.1.1 Shallow and Deep learning . 2

1.1.2 The deep learning process . 4

1.2 Convolutional neural networks . 10

1.2.1 Deep neural networks examples 12

1.3 DL challenges . 19

1.4 Contributions . 24

2 DeepDSL Overview 26

2.1 DeepDSL . 26

2.2 DeepDSL core constructs . 29

2.2.1 Tensor . 29

2.2.2 Tensor Function . 30

2.2.3 Fixed Tensor . 31

2.2.4 Function Application and Composition 32

2.2.5 Network as Function Composition 33

2.2.6 Training . 34

3 Formalization 37

3.1 Syntax . 37

3.2 Semantics . 40

3.3 Typing Rules . 42

3.4 Examples . 45

v

3.5 Gradient derivation . 47

4 Optimization 55

4.1 High-level Optimization . 55

4.1.1 Simplification of parameter gradients 55

4.1.2 Vectorization . 57

4.1.3 Examples . 61

4.2 Low-level Optimization . 66

4.3 Code scheduling . 68

4.4 Code generation and runtime . 71

5 Experiments 75

5.1 DL network configuration standards . 75

5.2 Experiment environment description . 76

5.3 GPU-based runtime & memory performance 77

5.4 CPU-based Lenet experiments . 79

6 Related work 81

6.1 DL frameworks . 81

6.2 Core feature comparison between DeepDSL and existing frameworks . . . 93

6.3 Automatic differentiation . 96

6.4 DSL on scientific computing with tensors 97

7 Conclusion 99

7.1 Upcoming releases and future directions 100

References 103

Appendix Proof of Theorem 3.1 110

1 Scalar s type soundness . 111

1.1 Progress . 111

1.2 Preservation . 113

vi

2 Tensor t type soundness . 115

2.1 Progress . 115

2.2 Preservation . 117

3 Scalar ŝ type soundness . 121

3.1 Progress . 121

3.2 Preservation . 121

4 Proof conclusion . 122

CURRICULUM VITAE 123

vii

LIST OF FIGURES

1.1 Complex function in multi-layer representation 3

1.2 Representations expressed with simpler representations of previous layer [37] 3

1.3 A DNN neuron . 4

1.4 A sample DNN . 5

1.5 The conceptual model of convolutional neural network 10

1.6 Reduced number of connections between adjacent layers 11

1.7 LeNet-5 network structure . 13

1.8 Alexnet network structure [60] . 15

1.9 Vgg-16 network structure [90] . 16

1.10 Inception module with dimensionality reduction [96] 17

1.11 GoogLeNet network structure [96] . 18

1.12 A residual learning block [44] . 19

1.13 Resnet network structure [44] . 20

2.1 An overview of Deep DSL . 28

3.1 A formal syntax for DeepDSL, where n is some positive integer and f2 ◦ f1

is defined as x⇒ f2(f1(x)). Note that the shaded syntax is for intermediate

representation at runtime. 38

3.2 Operational Semantics where m = (n1 × . . .× nk)− 1 40

3.3 Operational Semantics - other types of scalar expressions 41

3.4 Typing rules for tensor and scalar expressions 43

3.5 Typing rules for arithmetic scalar expressions 44

3.6 Typing rule for index expressions . 44

viii

3.7 Static single assignment transformation, where y variables are fresh and

we assume that scalar function application does not appear inside a tensor

expression. 50

4.1 Rules for vectorization, where {I} represents the set of indices in I. . . . 58

4.2 Syntax after vectorization . 60

4.3 Gradient derivation of affine transformation 62

4.4 Gradient derivation of convolution . 63

4.5 Gradient derivation of loss expression . 64

4.6 Gradient derivation of log softmax, where f(t) is defined as (in · ik)⇒ t(in). 65

4.7 Sample network . 68

4.8 Scheduled statements, their heights, and live variables at each statement. . 71

5.1 Runtime performance of DeepDSL, Tensorflow, and Caffe (1 forward/back-

ward iteration), where the network names are followed by the batch size.

DeepDSL∗ and DeepDSL† are performance for DeepDSL without tensor

cache and without tensor & workspace cache respectively. Caffe failed to

run GoogleNet (batch 256) and both Caffe and Tensorflow failed to run

ResNet (batch 64) due to GPU memory exhaustion. 78

5.2 Peak GPU memory use of DeepDSL, Tensorflow, and Caffe during training,

where the network names are followed by the batch size. DeepDSL∗ and

DeepDSL† are performance without tensor cache and without tensor &

workspace cache respectively. Caffe failed to run GoogleNet (batch 256)

and both Caffe and Tensorflow failed to run ResNet (batch 64) due to GPU

memory exhaustion. 79

5.3 Runtime CPU performance of DeepDSL, Theano, and Caffe (1 forward/back-

ward iteration) . 80

ix

LIST OF TABLES

5.1 Computer system configuration details 77

6.1 Core feature comparison between DeepDSL and existing frameworks . . . 95

x

ACKNOWLEDGEMENTS

Academic research is a, in many cases, painful and yet fun and rewarding journey. It

repeatedly gives you the hope and motivation to continue every morning and then tells you

that is just a false alarm at night. On the journey, there is satisfaction, excitement; there

is also frustration and many sleepless nights. The most important thing I learned from

this journey, though, is the spirit of the perseverance and strong belief of the inexhaustible

possibilities.

First and foremost, I want to full-heartedly thank my advisor, Professor Tian Zhao.

Needless to say the countless enlightening suggestions and helps he provided in the past

years in my research, to me, he is not only my advisor but also my lifetime friend. He

showed extreme patience when I was addicted to my seemingly good but in reality “dead-

end” ideas. He always encouraged me to find out answers to difficult problems with hints

that kept me out of the comfort zone and yet with sufficient information for me to move

forward. In fact, he is very detail-oriented and never mind going through the painful

points in tough problems together with me. The question “Can we do better?” becomes

the defacto standard of any staged results in our research.

I would also like to extend my sincere thanks to Professor Yu Cao, who has been pro-

viding numerous great suggestions and ideas throughout my research adventure. Professor

Cao also showed me a great research should not just stay theoretical but also be linked

to its own real-world applications whenever possible. Also, I cannot imagine how our

experiment results will be achieved without the fast hardware and software environment

help from Professor Cao and his group.

I want to extend my inexpressible thanks to my parents, who have been always there

whenever I am in need and have been always proud of me no matter what.

xi

I want to wholeheartedly thank my wife, who takes care of all other aspects of life

details in my long journey so that I can focus. More importantly, she gives me great

understanding and space whenever I need dedicated time for concentration. The persistent

love gives me courage to work out the balance between life, work, and research.

Finally, I want to thank all other professors in my thesis committee, Professor Ethan

Munson, Professor Susan McRoy, and Professor Xiangming Mu, who have taken great

efforts and time to go through my thesis and provided important suggestions and comments

so that I can keep improving the quality of the thesis.

xii

Chapter 1

Introduction

Multimedia has become the most valuable resource for insights and information [14] in

recent years. Deep learning, which aims at learning multiple levels of representation and

abstraction to help infer knowledge from the multimedia data, such as text, audio, image,

and video, is making astonishing gains in well-diversified areas such as machine vision,

speech recognition, big data analysis, and multimedia understanding.

While various types of DL networks are being rapidly applied to different research

and industrial domains, the approaches that current DL frameworks adopt to address the

key DL needs remain largely similar. These frameworks usually leverage some general-

purpose language (e.g. C/C++, Python, and etc.) to represent the DL network structures

with purposely designed language constructs in the format of programming libraries, in

order to drive the DL training, validation, and inference or application steps using these

programming constructs. While such method gives the user large maximum freedom in

their DL tasks, it often requires the user to have in-depth knowledge of the programming

language in use, in addition to thorough understanding of the meaning of these constructs.

Also, since the programming constructs are fixed and their internal representation and

transformation are opaque to the user, it is usually very difficult for the user to make

changes or perform optimization. Moreover, since these DL constructs are provided via

the format of programming libraries, the implementation of DL applications requires the

presence of the DL framework and all related dependencies in not only compile-time but

1

also runtime. In addition, error messages during the DL application execution are often

not straightforward and sometimes misleading. Consequently, debugging and testing are

usually difficult due to the loose connection between the exception and the actual cause.

This dissertation addresses these problems with a domain specific design, DeepDSL, to

offer the user a hight level abstraction of the deep learning domain with simple, flexible,

and powerful DSL constructs, while keeping the internal representation fully accessible.

Since this domain specific approach remains fully abstract before the final source code

generation, optimization can be achieved automatically by the DSL compiler without

modifying a single line of the DSL code. In addition, the generated source code is in

the familiar imperative style and very easy to modify for different training and inference

needs. Debugging and testing also become much easier because the entire DL workflow

is captured before the final code is generated so that problems such as incorrect tensor

dimension values can be detected at compile-time.

The rest of this chapter is organized as follows. Section 1.1 provides an overview

of the deep learning process. Section 1.2 describes one of the most important DNNs,

the convolutional neural network (CNN) and surveys some widely used DNN examples.

Section 1.3 discusses the challenges today’s DL frameworks face and introduces DeepDSL

to answer these challenges. Section 1.4 summarizes the main contributions of DeepDSL.

1.1 Deep learning overview

1.1.1 Shallow and Deep learning

Many traditional machine learning models, such as SVM [19], Boosting [34], Logistic

Regression (LR) [20, 107, 33], or back propagation (BP) neural network [37], are sometimes

categorized as shallow learner (SL) [86], in the sense that these models are trained with

some domain specific features based on the user’s prior knowledge1. While widely applied

for decades, the performance of these SLs depends largely on the provided representation

of the data [37]. These SL methods have limited power to represent complex functions
1The network structures of these models usually have either none (e.g. LR), or one hidden layer (e.g.

SVM, Boosting, BP).

2

and hard to be generalized for difficult problems such as multi-class classification. Deep

learning, also known as representation learning, distinguishes itself from shallow learning

in that DL can learn features or representations directly from the input with little to no

prior knowledge. Representations learned from one DL layer are expressed in terms of the

simpler representations of its previous layer (as illustrated in Figure 1.1).

Fig. 1.1 Complex function in multi-layer representation

DL can approximate complex functions and characterize the distribution of input data

with a deep-layered nonlinear structure, and exhibit strong learning power of inherent

features from small input datasets [35].

Fig. 1.2 Representations expressed with simpler representations of previous layer [37]

3

For example, Figure 1.2 shows a DL structure that has three hidden layers in between

the input and output layer for an image recognition task. Although the input only

contains the raw image pixels, the first hidden layer can identify edges and generate

edge descriptions by comparing the brightness of neighboring pixels. With these edge

descriptions, the second hidden layer can search for corners and extended contours using

the collections of edges. In turn, the third hidden layer can detect entire parts of specific

objects using specific collections of contours and corners. These object parts can then be

used to recognize the objects appear in the image. Specifically, the original features of

the input are transformed onto some new feature spaces through the layer-wise feature

extraction and the importance of feature learning is explicitly emphasized in DL.

1.1.2 The deep learning process

As we mentioned in Section 1.1.1, DL models are capable of learning the right features by

itself and require little to no guidance from the model designer/developer. DL is a form of

machine learning that is inspired by the structure of our brain and the network structure

of a DL model usually contains multiple layers and thus is often denoted as deep neural

network (DNN). The fundamental building element of a DNN is called “neuron”, which

essentially inherits the name neuron in biology with much simpler function. Given a set

of inputs and one associated weight per input, a neuron applies some function, either

linear or nonlinear, to the weighted inputs to generate an output. This is illustrated in

Figure 1.3.

Fig. 1.3 A DNN neuron

4

Neural network is formed when we feed the output of a set of neurons as the input

to another set of neurons. DNN is formed if we repeat such steps a few times. That is,

DNN can be constructed with multiple interconnected layers of neurons. Given K the

number of layers and wk
ij the weight for the link from the ith neuron in layer k to the jth

neuron in layer k + 1, where k = 0, . . . , K − 1, a sample DNN is illustrated in Figure 1.4.

Note there are no connections between the neurons in the same layer in the Figure. This

Fig. 1.4 A sample DNN

type of networks is known as feedforward neural network and is the focus of this thesis2.

The basic DNN network structure is formed by three types of layers: the input layer, the

hidden layer(s) (the layer(s) between the input and output layer that is(are) responsible

for capturing the latent/hidden features), and the output layer. Also note:

• the number of neurons in different layers may or may not be the same;

• although Figure 1.4 shows every neuron in the k layer connects to every neuron in

the k + 1 layer, this is not necessarily so; it can well be the case a neuron in one

layer connects to only a subset of neurons in the next layer3.

The input data X for any DNN is usually a multi-dimension tensor. For example, in

Figure 1.4, X consists of a number of samples xi, where i = 0, . . . , N − 1 and each sample

can be a multidimensional tensor, such as the common 3-dimensional tensor representation
2There is another type of neural network named “feedback” or recurrent neural network (RNN) [83]

where the output of some layer may be fed back into the network. This will essentially give the network
some memory and such feedback makes RNN dynamic until it reaches some equilibrium. Changes on the
input will cause the network to move towards another equilibrium state, if any.

3Figure 1.6 demonstrates this in details.

5

(channel, height, and width) for the color image. In fact, all the data involved in a DNN

can be represented as tensors, including the input, the data in between layers and the

output. DeepDSL provides first class support for tensors (See section 2.2 for details).

The input of layer k + 1 is the output of its previous layer k, which is obtained by

applying some function fk to the input of layer k, where fk is the collective effect of each

neuron function in the same layer. Hence the output Y can be represented in terms of

the input X in Equation 1.1.

Y = fk(fk−1(...f1(X)...)) (1.1)

The output Y generally represents some objective of the learning process. For instance, the

output may represent the labels for different image classes (e.g. cars, animals, mountains,

or city skyscrapers) in image classification. The computed output may or may not match

the true training image class label. The DNN training objective is to minimize the number

the mismatched cases, usually represented with some error function E, by optimizing the

parameters of the neurons in all DNN layers. This can be achieved with a backpropagation

process [83]. Specifically, optimizing the parameters is equivalent to move through the

“space” formed by all the possible parameter values for neurons, along the the steepest

descent path of the gradient of the error function E towards minimum. As a result the

changes on the weights should be proportion to the gradient. This is defined as “gradient

descent”, also known as steepest descent in literatures [77]. Mathematically, the value

of gradient descent is calculated by taking the partial derivative of the error function

E of the output layer with respect to its input. Such calculating can be propagated

backwards from the output to the input layer by applying the gradient calculation chain

rule. DeepDSL captures the entire backpropagation process (detailed in Section 3.5) and

supports automatic derivation (described in Section 6.3) during the compilation stage.

Recall in Figure 1.4 we show three types of layers in a typical DNN, besides the input

and output layers, we also have some hidden layers in between. Each hidden layer is

formed with multiple single neurons; the input of neurons of a layer i is the output of

neurons of the previous layer i− 1 and the output of the neurons of layer i is the input

6

of neurons of the next layer i + 1, where i ≥ 2. This structure enables us to train the

multilayer neuron network in a layer-by-layer manner. Section 3.5 shows the details of

how the gradient derivation is supported in DeepDSL.

Generally, the output of a neuron can take any values in range [−∞,∞]. We need to

decide

1. a way to determine when a neuron should be turned on (this is inspired by how the

brain neuron works biologically) to contribute to the DL computation;

2. how much contribution a neuron’s output offers to the overall computation.

In neural network, the control mechanism of turning a neuron on and off is called

the “activation function”. Several activation functions (and their variants) are widely

used in today’s DNN applications, such as the Sigmoid4, Tanh5, and rectified linear

unit (ReLU) [71] function. These activation functions are nonlinear in nature and the

combination of these functions is also nonlinear. This is important as otherwise the

gradient of the activation function will be a constant to cause the neural network delta

rule [84] calculation and further the entire training process to fail. ReLU function takes a

simple form of max(0, x), hence any negative values will have a zero output. ReLU has

the nice property of sparsity. When other activation functions, such as Sigmoid, turn on

almost all the neurons in an analog way (which results in huge computation cost), ReLU

simply turns all the neurons with negative value input off6, which saves the computation

substantially.

The selection of which action function to use largely relies on the function to be

approximated. If the nature of this function is well understood, then using an appropriate

activation function will help approximate the function faster and result in a faster training

process; if this function is unknown, ReLU is often recommended as it consistently offers
4Sigmoid function, a special case of the logistic function, and namely a “S” shape function that returns

value in [0, 1] or [−1, 1] depending on convention.
5Tanh function returns the hyperbolic tangent value of input.
6This benefit does not come without cost. In fact this may cause some of the neurons stop to respond

to variations in input at all, named dying ReLU problem. Mitigation of this problem includes ReLU
variants like leaky ReLU e.g. y = 0.01x for x < 0 to achieve nonzero gradient and recover during training
eventually.

7

promising results. DeepDSL provides direct DSL construct that represents the high-level

built-in GPU support for activation functions like ReLU, see Section 2.2.3 for details.

In practice, the gradient descent method frequently does not result in the global

optimum output when we use nonlinear neurons. Specifically, directly applying the

gradient descent method may cause the objective searching to be trapped in some local

optimum. Stochastic Gradient Descent (SGD) [93] is designed to overcome this drawback

to improve the probability of finding a global optimum. The standard gradient descent

method updates the parameter θ of the objective function J(θ) = 1
n

∑n
i=1 Ji(θ) in iterations

over the entire training set of size n.

θ = θ − ϵ∇J(θ) = θ − ϵ
n∑

i=1
∇Ji(θ) (1.2)

where ϵ is denoted as learning rate or step size. SGD, while updating the parameter θ

similarly as the standard gradient descent method, only samples a single or subset (a.k.a.

mini-batch) of examples at each iteration (Equation 1.3 where i will take its value from 1

to the mini-batch size in each iteration).

θ = θ − ϵ∇Ji(θ; (xi, yi)) (1.3)

This small change improves the standard gradient descent algorithm in two ways. It

reduces the variance during the parameter update which leads to more stable convergence;

in addition it also enables us to take advantage of the existing highly optimized matrix

operations7 for the vectorized computation of the cost and gradient.

Nevertheless, the standard SGD still faces challenges [82] even with careful design:

1. Selecting a proper learning rate and modifying it throughout the learning process is

indeed very difficult and application domain specific. A learning rate that is too

small results in slow convergence, while a learning rate that is too large can hinder

convergence or even diverge results. The adjustment rule on learning rate though
7There are many existing matrix computation routine libraries designed for different system architec-

tures that can be invoked via their standard API.

8

generally entails checking the performance after one or several epochs8 and reduce

it accordingly. The performance checking schedule and thresholds, however, have to

be defined in advance and are thus unrelated to the dataset’s characteristics;

2. Another issue is using the same learning rate for all parameter updates. This does

not incorporate the fact that some datasets are sparse and the features have different

frequencies so that parameter updates require different frequencies accordingly;

3. Also, it is argued [21] that the difficulty of minimizing the non-convex error function

E is not due to the local optima trap but from saddle points, i.e. points where

one dimension slopes up and another slopes down. These saddle points are usually

surrounded by a plateau of the same error, which makes it extremely difficult for

SGD to escape, as the gradient is close to zero in all dimensions.

The standard SGD in Equation 1.3 often leads to very slow convergence after initial

steep gains due to the fact that the SGD results may oscillate among some local optima

as the objective function of deep architecture have the form close to local optima. One

improvement is to set the learning rate ϵ adaptively to help the algorithm converges.

That is, the algorithm selects some initial value of learning rate and then decreases the

initial value with some appropriate rate (the decreasing rate may be fixed in terms of

the iteration progress or may be computed using some function). The momentum [80]

method is used to accelerate gradient descent that accumulates a velocity vector across

iterations in directions of persistent reduction of the objective function [95]; in other words,

momentum is used to force SGD progressing faster along the path towards the global

optimum. We can rewrite Equation 1.3 with Equation 1.4 and 1.5 to add the momentum

factor. In Equation 1.4 ϵ > 0 is the weight for the negative gradient and µ ∈ (0, 1] is the

weight for the previous update. Essentially the momentum value determines how much

the previous gradients are incorporated into the current network parameter update.

Vt+1 = µVt − ϵ∇Ji(θt; (xi, yi)) (1.4)
8In DNN, an epoch is a full pass through over the entire training set.

9

Fig. 1.5 The conceptual model of convolutional neural network

θt+1 = µθt + Vt+1 (1.5)

Many other variants of the gradient descent methods have been designed to tackle the

aforementioned SGD challenges as well, such as Adagrad [28], Adadelta [113], Adam [56],

Nesterov accelerated gradient (NAG) [75], Nadam [27], and the latest AMSGrad [81].

Detailed information is referred to the nice summary in [82].

DeepDSL provides a convenience DSL training construct that can take parameters

like learning rate or momentum directly, see Listing 2.2.6 for an example.

1.2 Convolutional neural networks

In this section, we introduce one of the most popular DL networks, the convolutional

neural network (CNN) [63], to illustrate how the DL network works in general. CNN

is a multilayer neural network, in which each layer is formed by several 2D planes and

each plane has multiple independent neurons. Figure 1.5 demonstrates the simplified

conceptual model of a CNN. The input images are convoluted with 3 trainable filters and

addable biases. The convolution (filtering) process results in 3 feature maps in the C1

layer. The pixels in the feature map are grouped and each group of the pixels are summed,

weighted, and bias added. A sigmoid function is applied at the end to generate the 3

new feature maps in the S2 layer. C3 and S4 layers are formed with the same procedure.

10

Fig. 1.6 Reduced number of connections between adjacent layers

Finally, the pixels from S4 are rasterized to be connected to form a vector. This vector

enters a traditional neural network to produce the final result.

The C layer works as a feature extraction layer. That is, the input of each neuron is

connected to the local receptive field of its previous layer and extracts that local feature.

The spatial relation between the local feature and other features is fixed after the feature

extraction. The S layer works as a feature projection layer. Specifically, each feature

projection produces a plane and the weights of all neurons in the plane share the same

value. Sharing the weights for neurons on the same plane helps reduce the number of free

variables and the complexity of the layer parameter selection. The reduction of parameter

numbers in CNN is indeed the most critical idea for its success. Figure 1.6 illustrates

how this is achieved conceptually. There are two adjacent layers in this figure. The input

layer has M = 5 nodes and the output layer has N = 3 nodes. The left-hand side is the

fully connected case where all the M = 5 nodes in the input layer are connected to all the

nodes in the output layer. This generates M ∗N = 5∗ 3 = 15 connections. The right-hand

side shows the locally connected case where each node in the output layer only connects

to P = 3 (here P is the size of the local receptive field) adjacent nodes in the input layer.

This reduces the connection needed to P ∗N = 3 ∗ 3 = 9.

In detail, suppose we have an image with 1000 * 1000 pixels and 1 million hidden

neurons in the first layer. If the layers are fully connected, i.e., each hidden neuron

11

is connected with a pixel in the image, we will have 1000 ∗ 1000 ∗ 1000000 = 1012

connections. The weights and biases associated with this huge number is formidable to

train. Fortunately we can effectively reduce the data dimensionality by leveraging the

simple fact that the spatial relations between pixels for an image is local. Just as our eyes

sense the image via local receptive field, each neuron does not need to sense the entire

image but only the local image area it is close to. All the sensed results can be summarized

in higher layer to construct the global image information. For example, if we have the

receptive field as 10 ∗ 10, each hidden neuron only needs to connect to the 10 ∗ 10 local

image and thus 1 million neurons will produce 1000000 ∗ 10 ∗ 10 = 108 connections, which

is significantly smaller than 1012. The result 108 number of connections is still huge that

demands further reduction. Since each neuron connects to the 10 ∗ 10 = 100 image area,

if we use the same 100 weights for all neurons, we will only have 100 parameters between

layers no matter how many neurons we have. Note since we apply the same filter, the

result will contain one type of feature. This is not a problem since we can apply different

kind of filters to produce different types of feature projections. For example, We have 3

filters in Figure 1.5 which will generate 3 different types of features for further processing.

Suppose we have 100 feature maps, we still only need to learn 100 ∗ 100 = 10000 weights.

Finally, how many neurons we need in one hidden layer is determined by the image size,

the filter size, and the shift-window of the filter inside the image. For example, given the

1000 ∗ 1000 pixel image with the filter size 10 ∗ 10 that has no overlapping between filter,

the number of neurons in the hidden layer is 1000∗1000
10∗10 = 10000. If we have 100 filters, we

will have 100 feature maps. The number of neurons we need will be 10000 ∗ 100 neurons9.

1.2.1 Deep neural networks examples

This section we describe several deep neural networks that have been widely applied in

a various areas such as image classification, video categorization, weather forecasting,

self-driving vehicles, robotics, real-time behavior analysis, and etc10.
9Since each type of filter has a bias parameter, we also need to add another 100 to the final number of

parameters that require training.
10Note all the diagrams in this section are either modified or ported from the original publication with

citation for convenience.

12

Fig. 1.7 LeNet-5 network structure

LeNet Figure 1.7 shows the network structure of a variant11 of the classic LeNet-5 [64].

This network has 2 convolution and downsampling/pooling layer alternatively arranged

for 2 times, followed by 2 fully-connected layers with a ReLU activation layer in between.

A softmax layer is attached to the very end to produce a normalized K-dimensional vector

of real values in the range [0, 1] that add up to 1.

LeNet DNN was originally designed to recognize visual patterns directly from pixel

images having extreme variability, such as handwritten characters, with robustness to

distortions and simple geometric transformations. Due to its simplicity and latent feature

capturing power, the variations of LeNet-5 have been applied to domains such as facial

recognition, scene labeling, image classification, and etc.

The parameters of the convolution layer consist of learnable kernels or filters. Each

unit of this layer receives input from a set of units located in a small neighboring area in

the previous layer, the neighboring area is called the receptive field. During the forward

pass each filter is convolved with the input to produce a feature map. The weight vector

that generates the feature map is shared to reduce the number of learnable parameters. As

the name feature map implies, the convolution computation between each filter and each

receptive field captures the local feature in that particular area of the input. When all the

convolution computations are finished, features and their locations across the complete

visual input are captured and recorded.

The downsampling layer takes small rectangular block areas from the output of the

convolution layer and computes subsample values (maximum or average value of all the
11This is the network we use for experiments.

13

unit values in the block, etc.). This computation step reduces the spatial size of the

representation, and in turn reduces the number of learnable parameters. CNN differs

from the traditional multilayer perceptrons (MLP) in the sense that it provides certain

level shift and distortion invariance [63]. Such property is mainly achieved with the

downsampling layer, since the subsample values taken by the downsampling layer can still

remain largely unchanged even with some level of shift and distortion on the input images.

The second convolution layer captures features from the output of the previous pooling

layer. These features are learned from a feature space that is different from the feature

space of the input layer. The second pooling layer continues to reduce the dimensionality

of the input from the second convolution layer. In fact, such repeated stack-up pattern is

very powerful in discovering features from different dimensionality spaces and has been

widely used in many successor CNNs.

While locality information is critical for the visual input, the global information or

the latent relation between different local blocks is also very important. This information

is captured by the fully connected layer. The fully connected layer connects all neurons

from the previous layer to each neuron in it to compute the global semantic information.

Depending on the output needs, an activation function (e.g. ReLU) may be applied to

the fully connected layer. This function is used to generate a nonlinear boundary between

the input samples.

Alexnet Figure 1.8 shows the popular Alexnet [60]12. Alexnet is the first DNN that

achieves very good result in the hard ImageNet [25] dataset challenge that consist of

millions images for the classification task with 1000 image categories. The core of Alexnet

consists of eight layers with weights. The first five layers are convolutional (note there are

also several max-pooling layers in between) and the rest three are fully-connected. The

last fully-connected layer outputs to a 1000-way softmax which produces a distribution

over the 1000 class labels.
12Note we also have used Overfeat [88] in our experiments but we will omit the detailed summary of

it since Overfeat largely conforms to the Alexnet network design except a few small tweaks for adding
support for localization and detection in addition to classification.

14

Fig. 1.8 Alexnet network structure [60]

To achieve high computational efficiency, as depicted in Figure 1.8, the kernels of the

second, fourth, and fifth convolution layers are connected only to the kernel maps of the

previous layer that reside on the same GPU. The kernels of the third convolutional layer

are connected to all kernel maps in the second layer. Response-normalization layers are

applied after the first and second convolutional layers. Max-pooling layers13, are used after

both response-normalization layers and fifth convolutional layer. The ReLU activation

function is applied to the output of every convolutional and fully-connected layer. Finally,

the dropout layer is also applied to two of the first fully-connected layers14.

Vgg Vgg [90] addresses an important aspect, the depth, of convolutional networks. Par-

ticularly, will the result precision be improved by increasing the depth of the convolutional

networks while fixing other parameters of the architecture? Vgg answers the question

with an universally used 3× 3 convolution layer15. Authors of Vgg reason the stack of two

3× 3 convolution layers (without pooling layer in between) has an effective receptive field

of 5× 5; similarly, three convolution layers back to back have an effective receptive field

of 7 × 7. In other words, the benefits of both a larger filter and smaller filter sizes are
13Alexnet adopts a modified max pooling strategy to reduce overfitting. A pooling layer consists the

grid of pooling units that are s pixels apart from each other, each summarizing a neighborhood of size z
x z centered at the location of the pooling unit. The traditional local pooling is obtained when s = z;
overlapping pooling is obtained when s < z. Alexnet adopts overlapping pooling with s = 2 and z = 3.

14Since “dropped out” neurons will not be used for forward pass or backpropagation, the neural network
samples a different architecture every time an input is presented, but all these architectures share weights.
A neuron can no longer rely on a particular subset of other neurons; instead, more robust features will be
learned with different random subsets of other neurons.

15The choice of 3× 3 is because this is the smallest size to capture the notion of left/right, up/down,
and center.

15

Fig. 1.9 Vgg-16 network structure [90]

obtained. The main benefit of such setting is the decrease in the number of parameters.

Furthermore, with more convolution layers stacked up, more ReLU layers instead of one

can be used (e.g. three non-linear rectification layers is incorporated instead of a single

one) and in turn the decision function is made more discriminative. Figure 1.9 shows

Vgg-16. In Vgg-16, the aforementioned two or three 3× 3 convolution layers are stacked

up and each stack is followed by a max pooling layer, ending with three fully-connected

layers: the first two have 4096 channels each, the third contains 1000 channels and the

final layer is the soft-max layer.

GoogLeNet Different from the common CNN pattern that stacks convolution and

pooling layers on top of each other sequentially, GoogLeNet [96] leverages a structure noted

as “inception module” (Figure 1.10) to solve the inevitable growing output dimension

problem due to the increase of the number of output layer by layer. Specifically, there are

two two main drawbacks in the traditional CNN network design:

• larger number of parameters of larger size DNN, which makes the enlarged network

more prone to overfitting and;

16

Fig. 1.10 Inception module with dimensionality reduction [96]

• dramatically increased use of computational resources.

GoogLeNet tackles both issues using a small convolution filter and concatenation of different

convolutional and pooling layer outputs to essentially introduce sparsity. As a result,

GoogLeNet has a deep network structure of 22 layers. In inception module, the 1 × 1

convolution layer is used for the dimension reduction. On top of the 1× 1 convolution, the

rectified linear activation is used to add further sparsity and efficient gradient propagation,

etc. Figure 1.11 shows the full GoogLeNet. It is obvious to see that the “inception module”

is the building block of GoogLeNet. The other unique aspect is the 2 auxiliary classifiers

(i.e. Softmax0 and Softmax1). The purpose of the auxiliary classifier is to blend in features

produced by the layers in the middle of the network. These classifiers are connected to

the intermediate layers that stem from earlier stage of the GoogLeNet DNN. The losses

of the 2 classifiers are added to the total loss of the network with a discounted weight

during training and the classifiers are discarded at inference time.

Resnet Resnet [44] concerns the degradation problem in DNN where accuracy gets

saturated with the network depth increasing and degrades rapidly after that. Early

work [43] has shown that such degradation is not caused by overfitting, and adding more

layers to a suitably deep model leads to higher training error. The main idea behind

Resnet is demonstrated in the residual block as shown in Figure 1.12. In the residual

17

Fig. 1.11 GoogLeNet network structure [96]
18

Fig. 1.12 A residual learning block [44]

block, the input x go through convolution → relu → convolution stack, which can be

thought as some function F (x). That result is added to the original input x. If the

desired underlying mapping is denoted as as H (x), instead of hoping every few stacked

layers directly fit a desired underlying mapping, i.e. H (x) = F (x), Resnet lets these

layers fit the residual mapping: H (x) = F (x) + x. In details, instead of computing

that transformation from x to F (x), Resnet only computes the mapping that is added,

F (x) to input x. In other words, the residual learning block computes the “delta” to the

original input x to get a slightly altered representation in comparison to going from x to

F (x) which is a brand new representation that does not keep any information about the

original x in traditional CNNs. The reasoning of such setting is easier to optimize the

residual mapping than to optimize the original, unreferenced mapping. Figure 1.13 shows

a 34-layer residual network in details.

1.3 DL challenges

Deep learning leverages neural network of many layers to perform learning tasks such as

classification. The learning process is iterative where a typical iteration has a forward

inference step to make a prediction using the training data and a backward update step to

adjust each network parameter using the gradient of the loss with respect to the parameter,

where the loss is a scalar that measures the difference between the prediction and actual

19

Fig. 1.13 Resnet network structure [44]

20

value from the training samples. Users specify the structure of the DL network that forms

the forward inference step while the gradient update step is derived from the DL network

directly or through the symbolic derivation from the gradient expressions.

Deep learning is very computationally intensive and most solutions leverage parallel

computing platforms such as GPUs for better performance. For instance, CNN applies

multiple convolution operations (among others) to training data such as images, where

the input image samples are represented as 4-dimensional arrays (or tensors) and the

dimensions represent the number of images in a training batch, the number of channels,

and the height and width of each image. Among the main challenges of implementing DL

networks are runtime and memory efficiency. The runtime efficiency is important since

training a DL network requires many iterations and inefficient solution can take days

to complete for large dataset such as ImageNet. Memory efficiency is important since

operations like convolution can use a great portion of the GPU memory where memory

inefficient solutions can exhaust the GPU memory and cause the training program to

crash.

Optimization is critical to the efficiency of DL applications, which can be implemented

at high level or low level. High-level optimization includes steps such as the simplification of

computation (to eliminate redundancies and reuse intermediate results) and computation

steps reordering to reduce peak memory usage. Low-level optimization improves the

efficiency of individual operations such as convolution and matrix multiplication. For low-

level optimization, there are GPU libraries such as Cuda that supports high-performance

linear algebraic computation and Cudnn that supports DL-specific computation such

as convolution of image tensors. However, these GPU libraries consist of low-level C

functions with complex interfaces and explicit memory management, which are difficult

to use directly and to debug.

The optimization of DL applications is domain specific since the meaning of the

mathematical computation is not recognized by the programming language compiler. The

optimization is also complicated in that the gradient-update step of the DL training loop is

indirectly derived and it can reuse some of the intermediate results of the forward inference

21

step. The degree of reuse depends on how fine-grained the computation abstraction is and

how the gradients are derived. The suitable level of granularity differs at different stages

of the computation. To encode the DL networks, it is convenient to use coarse-grained

abstractions such as DL layers that pass tensor data between them. However, fine-grained

abstractions are more suitable for concrete definition of DL network layers, symbolic

gradient derivation, and optimization. On the other hand, to utilize high-performance

GPU libraries and to automate memory management, the DL computation should be

encoded using abstractions such as tensors and matrices. In short, DL applications need

to use varying levels of domain-specific abstractions during their computation process,

which can be conveniently supported by a domain specific language.

The current state-of-the-art frameworks, such as Caffe/Caffe 2 [51, 30], TensorFlow [1],

MxNet [15], Torch7 [17], Theano/Pylearn2 [13, 39], and Computational Network Toolkit

(CNTK) [111], are programming libraries with fixed bindings for key data structures

such as tensors and opaque internal representation for control flow logic. Most of these

frameworks represent the DL networks using some form of directed acyclic graphs (DAG),

as known as computation graphs. The gradient derivation and optimization are based on

graph transformation while runtime execution and memory management are based on the

manipulation/optimization of the computation graph.

Computation graphs are similar to dataflow graphs that depict the order of execution

in DL programs. However, the graphs are not convenient for program optimization

with multiple levels of abstractions and the heuristics-based optimization of the existing

libraries through graph traversal and transformation are often less than optimal.

Computation graphs are not designed for user-level access, which makes it difficult

to define customized DL applications and debug runtime errors. This also limits the

runtime environments of the DL applications to what the libraries provide. Debugging

errors or making low-level changes to the existing libraries are difficult without in-depth

understanding of how the libraries are designed and implemented. Furthermore, these

frameworks usually have numerous software dependencies and require platform dependent

installation. Most of these frameworks directly or indirectly depend on languages such as

22

C/C++ that require to be compiled to specific platforms, which limits the portability of

DL applications built with these frameworks.

To address these limitations, we developed DeepDSL, a domain specific language

embedded in Scala, for encoding DL networks. DeepDSL differs from other DL frameworks

in several aspects:

1. DeepDSL represents DL network as expressions where indexed scalars define tensor

expressions, tensor functions define DL layers, and function compositions define DL

networks. Gradient derivation and optimization are based on term-rewriting rules

that transform DSL expressions from one form to another. The optimized expressions

are then scheduled to reduce peak memory usage before target code is generated.

Before code generation, the DSL expressions are fully abstract with distinct stages

of symbolic evaluation, optimization, and memory management. Language-based

representation is more flexible for optimization than the computation graph where

parts of the graphs are tied to concrete data structures such as tensors and the

graph’s execution is by invocations of low-level code of a specific language such as

C/C++.

2. Since DeepDSL program is compiled, it can statically detect errors such as incorrect

network composition (as typing error) and report memory consumption at each

computation step, the user can adjust the memory allocation strategy before actual

execution.

3. DeepDSL program is compiled to Java source code16 currently. Unlike other DL

frameworks, compiled source program does not need to repeat the phase of gradient

derivation and optimization. The runtime of initialization is not significant compared

to the training time but it can be important when adjusting the parameters of a DL

network on small datasets.
16Generating target code in other languages is indeed relatively straightforward since the DeepDSL

IR remains fully abstract before code generation. See Chapter 7 for the discussion of potential future
support for target code in other language.

23

4. The target code of DeepDSL is high-level source code that is human readable,

customizable, and easy for debugging. The target code is more portable since it can

run on any platforms with Java Virtual Machine (JVM) and GPU runtime library

available (Other DL frameworks usually have far more dependencies and are specific

to language versions and operating systems).

1.4 Contributions

In this dissertation, we have designed and implemented a new domain specific language,

DeepDSL, to facilitate the deep learning application development process. Our previous

results have been published in the 5th International Conference on Learning Represen-

tations (ICLR) [115] and the full-length design and implementation details have been

submitted to the Journal of Computer Languages, Systems & Structures [114]17. The

source code is now made open source18. Comparing with other current state-of-the-art

frameworks, DeepDSL has the below key contributions:

• It directly encodes the mathematical representation of deep networks and stays

fully abstract before code generation. Since the generated Java program has simple

structure and is human readable, DeepDSL effectively provides two levels of interfaces:

a high-level DSL interface for writing DL networks and a low-level Java interface for

adjusting the training and the inference of DL networks;

• It provides programming language level optimization to improve memory and runtime

efficiency;

• It provides a heuristic execution scheduler by analyzing dependencies statically to

further optimize the memory usage;

• It supports static analysis for memory consumption and error detection, which

allows the user to understand and analyze the exact memory usage at runtime before

actual execution, as well as early bug detection in compile-time;
17Our previous DSL work for the multimedia information retrieval domain can be seen in [46].
18https://github.com/deepdsl/deepdsl.

24

https://github.com/deepdsl/deepdsl.

• Unlike the existing DL frameworks, DeepDSL has minimum requirements on addi-

tional dependencies, besides a small JNI wrapper library for GPU operations;

• Unlike the existing DL frameworks, DeepDSL generates cross platform Java source

code that runs independently without the existence of DeepDSL itself; this makes

DeepDSL highly portable;

• DeepDSL generates highly efficient code that is both user friendly and easily debug-

gable.

25

Chapter 2

DeepDSL Overview

In this chapter we provide an overview of DeepDSL, the primary work of this dissertation.

We introduce the main modules, workflow, core concepts of DeepDSL in Section 2.1,

followed by the discussion of the principal DSL constructs using examples in Section 2.2.

We will continue the extensive details with regard to DeepDSL’s internals in Chapter 3

and 4.

2.1 DeepDSL

Domain specific language (DSL) A domain specific language (DSL) is, in contrast to

a general-purpose language, a programming language or executable specification language

that offers focused expressive power to a particular problem domain, via appropriate

notations and abstractions [103]. The focused expressive power is the key characteristic

in the definition that gives DSL its main benefits. Since DSLs are usually concise and

only offer a restricted set of notations and abstractions, they are also denoted as micro-

languages or little languages [12]. Since many DSLs are declarative and used to describe

specifications, these declarative DSLs are also called application-specific language and

their compilers are denoted as application generator [16].

The main feature of DSL is that it allows its program to be expressed in the idiom

and at the level of abstraction of the problem domain. Consequently, users specialized in

a domain understand and often develop DSL programs by themselves. DSL programs are

26

concise, portable, and in many cases self-documenting. DSLs support fast prototyping

and provide benefits such as productivity, reliability, usability, and maintainability [55].

The domain knowledge encoded in the DSL code is conserved and can be reused later.

DSLs allow validation and optimization at the domain level [9]. DSLs can also improve

testability by following approaches such as [91]. Four popular approaches to implement a

DSL are listed below1 [103]:

• Interpretation or compilation: This is the classic approach of implementing a new

language. Either standard compilers [2] or tools dedicated to the implementation of

DSLs (e.g. Draco [74] or ASF+SDF [102]) can be used.

• Embedded languages / domain-specific libraries: This approach defines the domain

specific syntax, along with existing mechanisms such as definitions for functions or

operators to build a library of domain-specific operations. The syntactic mechanism

of the base (host) language is used to express the idiom of the domain. DeepDSL

falls into this category where the base language is Scala.

• Preprocessing or macro processing: The domain specific constructs are translated

to statements in the base language by a preprocessor in this approach (Examples

include macro systems such as the Template Haskell or DSL embedding for the

converge language [101]).

• Extensible compiler or interpreter: This approach is similar to the previous one

except the preprocessing phase is integrated into the compiler and hence becomes

part of the compile process.

DeepDSL DeepDSL is a DSL hosted in Scala and designed for deep learning. A high-

level overview of DeepDSL is shown in Figure 2.1, where a DSL program is transformed

through the stages of symbolic gradient, optimization, and code generation into a Java

source program. The generated Java program is human readable and runs on Nvidia GPU

through a set of Java JNI interfaces (JCuda. JCudnn, and etc.) to invoke the underneath

Cuda/Cudnn libraries.
1Other implementation techniques may also be used, e.g. aspect-oriented programming [54].

27

Fig. 2.1 An overview of Deep DSL

The core concepts of DeepDSL are abstract tensor and scalar expressions, as well

as tensor functions that transform tensors to tensors and tensors to scalars. DeepDSL

directly encodes the mathematical representation of deep networks, where each layer is

represented as a tensor function and the entire network is represented as the composition

of these functions. The training loss of a DL network is represented as a scalar expression.

The gradients of the loss expression against network parameters are derived symbolically

so that they are also DSL expressions. The gradient and the loss expressions go through

several stages of simplification, optimization, transformation to become expressions of the

intermediate representation (IR), which remain abstract and human readable. A final

stage of code generation transforms the IR expressions to a Java program for DL network

training and inference.

Since DeepDSL programs are fully abstract, DeepDSL compiler can statically infer the

dimensions of tensors in each layer, check whether the layers are properly connected, and

automatically insert tensor reshaping operations as necessary. Errors caused by incorrect

parameter dimensions are caught at compile-time before code generation.

Modification to the the network and layer definitions can be made with minimum

effort. For example, instead of defining the dimensions of the input/output tensors of the

convolution layer as N × C ×M1×M2, where N is the batch size, C is the number of

channels, and M1/M2 are image dimensions, we can switch to N ×M1×M2×C by just

changing a few of lines of DSL code, which slightly improves performance.

28

Changing execution strategy of DeepDSL is relatively painless as well. DeepDSL

analyzes the dependencies of the DSL expressions during optimization stage to determine

when each DSL expression is ready to run. For example, the gradients of the weight and

bias of the convolution layer can start as soon as the backward gradient of the previous

layer is known and before the backward gradients of other layers can be computed. Such

information is obtained by analyzing the variable dependency of the IR expressions. There

is no dedicated data structure such as a graph for representing the relations between

layers. DeepDSL also reorders the execution of IR expressions so that tensor objects

are allocated as late as possible but deallocated as early as possible to reduce the peak

memory consumption.

DeepDSL supports a few computation mechanism and platforms. If JBLAS is sup-

ported, DSL compiler can generate calls to BLAS library for tensor products. If GPU is

available, DSL compiler can generate CUDA calls to run on Nvidia GPU and OpenCL

calls to run on AMD or Intel GPU for tensor products.

2.2 DeepDSL core constructs

DeepDSL is embedded in Scala and its syntax is defined using Scala classes and methods

as syntactic sugar. After evaluation, DeepDSL programs are de-sugared to a form of

abstract syntax tree (AST). In this section, we use examples to illustrate how a DL network

such as LeNet (See Section 1.2.1 for details) is defined using DeepDSL.

2.2.1 Tensor

The core construct in DeepDSL is tensor, which is represented by a Scala type Vec.

A Vec object has an array of dimensions of the type Dim. Each dimension object is

either a dimension variable DimVar or a dimension expression. For example, a 4-D

tensor x of the type VecDec can be declared using a call T._new(N, C, X, Y), where

N, C, X, Y are the dimensions of batch size, channel, width, and height of input samples.

If T._new(F, C, K1, K2), where F, C, K1, K2 are the dimensions of filter numbers,

29

channel, kernel width, and kernel height, represents a convolution kernel k, the convo-

lution of x and k with stride 1 and padding 0 will result in a tensor of the dimension

F, C, X-K1+1, Y-K2+1, where X-K1+1 and Y-K2+1 are dimension expressions2.

The code snippet below defines 2-D tensor w and x and the sum of their product over

the abstract index k of dimension M1, where x(i,k) and w(j,k) represent tensor elements

of x at index i, k and w at index j, k respectively.

1val x = T._new(N, M1)

2val w = T._new(M2 , M1)

3

4T.sum(M1 , k => x(i, k) * w(j, k))

The call T.sum(M1, k => e) returns the sum of the scalar e over the index k of

dimension M1. Note that this expression does not compute a value but is an abstraction

that can be translated to code that does the computation in the code generation stage.

Using this, we can define a fully connected layer (an affine transformation) with weight

k and bias b as follows.

1T.vec(N, M2 , (i, j) =>

2T.sum(M1 , k => x(i, k) * w(j, k)) + b(j)

3)

The call T.vec(N, M2, (i, j) => e) returns a tensor expression defined by the scalar

e over the index i and j of dimension N and M2 respectively.

2.2.2 Tensor Function

In order to compose the fully connected layer with other layers, we can use the tensor func-

tion below to represent the layer, where expression of the form VecFun(x, v) represents

a function that takes input tensor x and returns a tensor represented by v.

1VecFun (x,

2T.vec(N, M2 ,

3(i, j) => T.sum(M1 , k => x(i, k) * w(j, k)) + b(j)

2In general, given stride S and padding P, the last two dimensions are (X-K1+2P)/S+1 and (Y-
K2+2P)/S+1.

30

4)

5)

Putting everything together, the Scala method below takes weight and bias tensor as

parameters and return a tensor function that represents a fully connected layer, where

w.dim(0) returns the first dimension of the tensor w and T.dim creates a new dimension

variable.

1// x: N x M1 w: M2 x M1 b: M2

2def full(w: VecDec , b: VecDec) = {

3val N = T.dim; val M2 = w.dim (0); val M1 = w.dim (1)

4val x = T._new(N, M1)

5

6VecFun (x,

7T.vec(N, M2 ,

8(i, j) => T.sum(M1 , k => x(i, k) * w(j, k)) + b(j)

9)

10)

11}

If we represent the type of a tensor using its dimension list, then the tensor function

returned by the method full has the type of List(N, M1) -> List(N, M2). Note that

for this type, the only dimension variable that must have concrete binding is M2, while N

and M1 can remain abstract since we can find concrete binding for them when connecting

this layer with its previous layers in a DL network.

2.2.3 Fixed Tensor

Common layers in DL networks such as convolution and activation have sophisticated

implementation in dedicated libraries such as Cudnn. To represent this kind of imple-

mentation, DeepDSL uses fixed tensors of the type FixVec. An expression of the form

FixVec(layer, param, dim) represents a fixed implementation for some layer type

that takes a parameter list param and returns tensor of dimensions dim.

31

For example, using this construct, we can define a Scala method relu that returns a

ReLU activation layer as a tensor function, where the parameter n of the method specifies

the number of dimensions of the input x and T._new(n) creates a tensor variable of

dimension n.

1def relu(n: Int) = {

2val x = T._new(n)

3VecFun (x, FixVec (ReLU (), List(x), x.dim))

4}

The reason that we define the fully connected layer differently from the ReLU layer is

that the former will be translated to calls to more fine-grained Cuda operations such as

matrix product and sum while the latter will be translated to a cross-grained Cudnn call

for the activation layer. Despite the difference, the two forms of tensor expressions are

treated uniformly in DeepDSL during the process of gradient derivation and optimization.

They only differ during code generation stage.

Of course, like how we encode the fully connected layer, we can also have direct

encoding of ReLU such that the generated Java code will call the more basic Cuda

functions instead of direct Cudnn functions.

2.2.4 Function Application and Composition

Just like the tensors and tensor functions, the function applications are also abstract.

1val x = T._new (2)

2

3val M1 = T.dim

4val M2 = T.dim (10) // dimension of size 10

5

6// w is named "W" and initialized as Gaussian variable

7val w = T._new(Param.gaussian , "W", M2 , M1)

8// b is named "B" and initialized as constant 0

9val b = T._new(Param.const (0), "B", M2)

10

11val f = full(w, b)

32

12val activate = relu (2)

13

14activate (f(x))

In the example above, the function call f(x) does not directly compute a value since

the tensor function f is abstract and so is x. Instead, f(x) reduces to a DSL expression

of the type VecApp, which is a subtype of Vec. This is expected since the application of a

tensor function to a tensor argument should result in a tensor as well. An expression of

the form VecApp(fun, arg) represents the application of the tensor function fun to the

tensor argument arg. For example, f(x) reduces to VecApp(f, x) and activate(f(x))

reduces to VecApp(activate, VecApp(f, x)).

Now we can define a tensor function that represents the composition of activate and

f as:

1val x = T._new (2)

2VecFun (x, activate (f(x)))

Since functions represent layers and function compositions represent DL networks, DeepDSL

includes an operator o to simplify function composition so that the composition of

activate with f can be written as:

1activate o f

2.2.5 Network as Function Composition

Using some helper functions, we can define the LeNet network as below.

1val cv1 = CudaLayer . convolv ("cv1", 5, 20)

2val cv2 = CudaLayer . convolv ("cv2", 5, 50)

3val mp = CudaLayer . max_pool (2)

4val relu = CudaLayer .relu (2)

5val f = Layer.full("fc1", 500)

6val f2 = Layer.full("fc2", 10)

7val flat = Layer. flatten (4, 1)

8

9val network = f2 o relu o f o flat o

33

10mp o cv2 o mp o cv1

In this example, CudaLayer.convolv("cv1", 5, 20) returns a tensor function repre-

senting convolution layer with 5 by 5 kernel and output channel size 20, with default stride

1 and padding 0. The name cv1 are used to distinguish the weight and bias parameters

of the convolution layer since these parameters need to be distinct from other parameters

in the network. CudaLayer.max_pool(2) returns a max pooling layer that down-samples

its input by a factor of 2. Layer.full("fc1", 500) returns a fully connected layer with

output size 500. Layer.flatten(4, 1) returns a tensor function that flattens a 4-D

tensor into a 2-D tensor by collapsing the 2nd, 3rd, and 4th dimension of the input tensor

into the 2nd dimension of the output tensor3. The last line defines the LeNet network

as function composition, where o is left associative. For example, f2 o relu o f should

read as (f2 o relu) o f.

The type of network is List(N,C,N1,N2)->List(N,10), where the input is a 4-D

tensor, output is a 2-D tensor, N, C, N1, N2 are dimension variables, and the only fixed

dimension, 10, is the number of classes of the training data.

2.2.6 Training

The loss expression c of LeNet (last line below) can be defined as the application of a

tensor function loss o softmax o network to the input x.asCuda, where x represents

training images, x.asCuda represents copying x to GPU memory, and loss is a tensor to

scalar function that represents the loss of softmax o network applying to x.asCuda.

1// batch size , channel , width , and height

2val N = 500; val C = 1; val N1 = 28; val N2 = 28

3val dim = List(N,C,N1 ,N2)

4

5val y = T._new("Y", List(N)) // image class labels

6val x = T._new("X", dim) // training images

7

8val y1 = y. asIndicator (10). asCuda

3In Layer.flatten(4, 1), 4 is the number of dimensions and 1 is the index where the collapsing starts.

34

9val x1 = x. asCuda // load to GPU memory

10

11val softmax = CudaLayer . log_softmax

12val loss = Layer.loss(y1)

13

14val p = network (x1) // p is the prediction

15// c is loss of training

16val c = (loss o softmax o network) (x1)

The variable y represents class labels of the training data, which are one-hot encoded as

indicator vectors using the call y.asIndicator(10), where 10 refers to the number of

classes. The variable p represents the forward inference of the input x.

With forward inference expression and the loss expression, the code to generate Java

source code can be defined as follows.

1val param = c. freeParam

2

3// name , train/test iterations , learn rate , momentum

4// weight decay , gradient clipping bound (0 means none)

5val solver =

6Train("lenet", 100, 10, 0.01f, 0.9f, 0.0005f, 0)

7

8val mnist = Mnist(dim) // training dataSet

9val loop = Loop(c, p, mnist , (x, y), param , solver)

10

11// generate training and testing file

12CudaCompile ("path"). print(loop)

We first extract the network parameters using the call c.freeParam. The variable solver

is simply a collection of parameters that include the output file name, train iteration, test

iteration, learning rate, momentum, weight decay, gradient clipping bound. The variable

mnist refers to the MNIST4 dataset. Finally, we put everything together in the variable

loop and pass it to CudaCompile to generate the Java source code for training and testing,

where the path string indicates where the Java source code should be generated.
4http://yann.lecun.com/exdb/mnist.

35

http://yann.lecun.com/exdb/mnist

Note that gradient derivation and optimization occur inside the class Loop where

it takes the gradients of the loss expression c against the parameters param, opti-

mizes the gradients, and transforms them to IR expressions. The code generator

CudaCompile("path").print(loop) performs a single-pass translation of the IR ex-

pressions to Java source code.

36

Chapter 3

Formalization

In this chapter, we present the formal definition of DeepDSL that includes an abstract

syntax in Section 3.1, an operational semantics in Section 3.2, a type system in Section 3.3,

examples of the application of the typing rules to some important CNN building blocks

in Section 3.4. We conclude this chapter by discussing our accommodation for gradient

descent in Section 3.5.

3.1 Syntax

An abstract syntax for DeepDSL is shown in Figure 3.1, which defines two types of

expressions: tensors (denoted by t) and scalars (denoted by s). A tensor is either a

variable, a function application, a tensor expression, a tensor add, a scalar-tensor product,

or a cast. A scalar is either a function application, a constant, a tensor element, the sum

of a tensor, or an arithmetic expression such as exponentiation and logarithm.

Dimension The symbol d represents a dimension and D represents a list of dimensions,

which can be written as d1 · · · dk. A dimension can be a constant, a dimension variable

dx, a dimension expression d/n, d − dx, d + n, or a dimension product d1
x × · · · × dk

x.

Dimension variables are used for defining functions polymorphic in dimensions such as

the fully-connected layer in Section 2.2.2. Dimension expressions are used for defining the

dimensions of operations such as convolution and pooling. For example, the dimension of

37

e ::= t tensor
| ŝ scalar

t ::= V tensor value
| x, y, z, w variables
| (x⇒ t)(t) application
| F(t) built-in function application
| (i1

x · · · ik
x)⇒ s tensor expression

| t1 + t2 tensor add
| s · t scalar tensor product
| (D) x cast

ŝ ::= (x⇒ ŝ)(t) application
| s

s ::= v constant
| x(I) tensor element
| V(I) tensor element
|

∑
i1

x···ik
x
(s) summation

| log(s) | exp(s) | sn arithmetic expression
| s1 + s2 | s1 × s2 arithmetic expression

f ::= x⇒ e tensor function
| F built-in tensor function

F ::= convolution | pooling | activation | . . .
I ::= i | i · I index list
i ::= m index value

| i× n | i + i′ | i− n index exppression
| ix index variable

D ::= d | d ·D dimension list
d ::= n dimension value

| n | d/n | d− d′ | d + n dimension expression
| d1

x × · · · × dk
x dimension product

| dx dimension variable
τ ::= ⋆ | D types

Fig. 3.1 A formal syntax for DeepDSL, where n is some positive integer and f2 ◦ f1 is
defined as x⇒ f2(f1(x)). Note that the shaded syntax is for intermediate representation
at runtime.

a 1-D convolution between a vector of dimension d1 and a kernel of dimension d2 with

stride 1 and padding 0 is d1 − d2 + 1. Dimension products are used for defining the

flattened dimension of a tensor. For example, if we flatten the last 3 axes of a 4-D tensor

of dimensions d1 · d2 · d3 · d4, the dimension becomes d1 · (d2 × d3 × d4).

Types The type of a tensor is its dimension D while the type of a scalar is ⋆, which

represents a real number type. For example, a DL network can represent its input images

as a 4-D tensor with the type dn · dc · dh · dw, where dn, dc, dh, dw are the dimensions of

the images’ batch size, channel, height, and width respectively.

38

Function A function has the form of x⇒ e, where x is a tensor variable and the e is

either a tensor or a scalar. The built-in functions (denoted by F) always return tensors

and they represent fixed DL layers in libraries.

Note that DeepDSL supports functions of the form (x1, . . . xk)⇒ e that takes multiple

parameters. We only consider the single-parameter function here for simplicity.

Variable Each tensor variable x has an implicitly labeled type D. We assume an

auxiliary function T (x) that returns the type of variable x. We overload it so that T (F)

returns the type of the built-in function F .

Index The symbol i represents an index and I represents a list of indices, which can be

written as i1 · · · ik. An index can be an index variable ix or an index expression i × n,

i + i′, i + n. Each index variable ix has an implicitly labeled dimension d and the value

of ix ranges from 0 to d − 1. We assume an auxiliary function D(ix) that returns the

dimension of ix.

Tensor expression and tensor element The tensor expression I ⇒ s defines a tensor

that has the scalar value of s over the domain of the index list I and the dimensions of this

tensor is the dimensions of I. The tensor element x(I) is the element of a tensor variable

x at index list I. Note that by the definition of the syntax, the scalar expression s may

not contain a function application or any tensor expressions other than tensor variables.

Sum The expression ∑
I(s) represents the summation of s over the index list I. If

I = i1 · · · ik, then ∑
I(s) is equivalent to ∑

i1

∑
i2 · · ·

∑
ik

(s).

Example The index expressions are used in tensor expressions such as convolution. For

example, the 1-D convolution of a vector x and a kernel w (stride 1 and padding 0) can

be written as

i⇒
∑
i′

x(i + i′)× w(i′)

where T (x) = d1, T (w) = D(i′) = d2, D(i) = d1 − d2 + 1.

39

t → t′

(x ⇒ e)(t) → (x ⇒ e)(t′)
E-App

σ = U(T (x), D(V))
(x ⇒ e)(V) → σ(e[V/x])

E-App2

t1 → t′
1

t1 + t2 → t′
1 + t2

E-Plus
t2 → t′

2
V + t2 → V + t′

2
E-Plus2

V = (v0 + v′
0, . . . , vm + v′

m)n1···nk

(v0, . . . , vm)n1···nk + (v′
0, . . . , v′

m)n1···nk → V
E-ValuePlus

s → s′

s · t → s′ · t
E-ScalarTensorProd

t → t′

v · t → v · t′ E-ScalarTensorProd2

v · (v0, . . . , vm)n1···nk → (v × v0, . . . , v × vm)n1···nk E-ValueScale

D(i1) → n1 . . . D(ik) → nk

m1 ∈ {0 . . . n1 − 1} . . . mk ∈ {0 . . . nk − 1}
s[m1/i1, . . . , mk/ik] →∗ v(...(m1×n2+m2)...)×nk+mk

(i1 · · · ik) ⇒ s → (v0, . . . , vm)n1···nk
E-Tensor

t → t′

F(t) → F(t′)
E-BuiltinApp

D(F) = D(V) → D(V ′)
F(V) → V ′ E-BuiltinApp2

n′
1 × . . . × n′

l = n1 × . . . × nk

(n′
1 · · · n′

l) (v0, . . . , vm)n1···nk → (v0, . . . , vm)n′
1···n′

l

E-TensorCast

i1 →∗ m1, . . . , ik →∗ mk

V(i1 · · · ik) → V(m1 · · · mk)
E-IndexSub

V = (v0, . . . , vm)n1···nk 0 ≤ m1 ≤ n1 . . . 0 ≤ mk ≤ nk

V(m1 · · · mk) → v(...(m1×n2+m2)...)×nk+mk

E-TensorElement

V = (v0, . . . , vm)n1···nk ∃j. mj < 0 ∨ mj > nj

V(m1 · · · mk) → 0
E-TensorInvalid

I ⇒ s → (v0, . . . , vm)n1···nk∑
I
(s) → v0 + . . . + vm

E-ScalarSum

Fig. 3.2 Operational Semantics where m = (n1 × . . .× nk)− 1

3.2 Semantics

An operational semantics for tensors and scalars is shown in Figure 3.2 and Figure 3.31.

In this semantics, each tensor expression evaluates to a tensor value V, which is a flat

array of scalar values and a list of dimension values n1 · · · nk. The size of the array must

be equal to the products of the dimensions.

V ::= (v0, . . . , vm)n1···nk Tensor value

where m = (n1 × . . .× nk)− 1. The function D also returns the dimensions of the tensor

values.

D((v0, . . . , vm)n1···nk) = n1 · · · nk

1Note we omit the straightforward operational semantics and typing rules for index and dimension
expressions.

40

s1 → s′
1

s1 + s2 → s′
1 + s2

E-ScalarPlus

s2 → s′
2

v + s2 → v + s′
2

E-ScalarPlus2

s1 → s′
1

s1 ∗ s2 → s′
1 ∗ s2

E-ScalarTimes

s2 → s′
2

v ∗ s2 → v ∗ s′
2

E-ScalarTime2

s→ s′

log(s)→ log(s′)
E-ScalarLog

s→ s′

exp(s)→ exp(s′)
E-ScalarNatExp

s→ s′

sn → (s′)n
E-ScalarExp

Fig. 3.3 Operational Semantics - other types of scalar expressions

A function x⇒ e is polymorphic in dimensions if the dimension list D of x contains

variables. When the function is applied to an argument V , we not only substitute x in e

with V but also substitute the dimension variables of D in e with the matching dimensions

of V by applying the substitution U(D,D(V)) to e[V/x].

U(d, d) = ∅

U(d ·D, d′ ·D′) = U(d, d′) ∪ U(D, D′)

U(dx, d) = {dx 7→ d}

Two tensors with the same dimensions can be added element-wise. A scalar-tensor

product s × t multiples s with each element of t. We assume that the application of

built-in function F to a tensor value V will return a tensor value V ′ so that the types of

V and V ′ match the the parameter and return type of F .

A tensor expression (i1 · · · ik)⇒ s evaluates to a tensor with the dimensions n1 · · · nk,

where n1 · · · nk are values of D(i1) · · · D(ik). Note that for a dimension to evaluate to

a value, the dimension must not contain variables. The jth element of the tensor is the

value of s when i1 = m1, . . . , ik = mk and j = (. . . (m1 × n2 + m2) . . .) × nk + mk. For

example, consider the tensor (i1 · i2 · i3)⇒ s, where the dimensions of i1, i2, and i3 are

4, 5, and 6 respectively. The tensor element when i1 = 1, i2 = 2, and i3 = 3 is the 46th

element of the flat array that stores the tensor since ((1 ∗ 5) + 2)× 6 + 3 = 45.

41

A cast expression (n′
1 · · · n′

l) (v0, . . . , vm)n1···nk changes the dimensions of the tensor

value (v0, . . . , vm)n1···nk from n1 · · · nk to n′
1 · · ·n′

l if they have the same flattened size. For

example, in LeNet-5, the 4-D tensor after the second pooling layer needs to be flattened

to a 2-D tensor before it can be passed to the fully connected layer. This is a cast of

(n′
1 · n′

2) (v0, . . . vm)n1·n2·n3·n4 . When computing backward gradient, such cast changes to

(n1 · n2 · n3 · n4) (v0, . . . vm)n′
1·n′

2 . In both cases, n′
1 = n1 and n′

2 = n2× n3× n4. In general,

cast requires n′
1×n′

2× . . .×n′
l = n1×n2× . . .×nk regardless in which index axis flattening

or unflattening occurs.

A tensor element expression V(m1 · · ·mk) evaluates to either jth element of V , where

j = (. . . (m1 × n2 + m2) . . .)× nk + mk or 0 if one of the indices is out of bound. A sum

expression ∑
I(s) evaluates to the sum of the tensor value evaluated from I ⇒ s.

3.3 Typing Rules

Type judgment has the form of Γ ⊢ e : τ , where Γ maps tensor variables to their types

and it also maps index variables to their dimensions. The typing rules for tensor and

scalar expressions are shown in Figure 3.4 and 3.5.

The type of a function x ⇒ e is τ1 → τ2 where τ1 is the labeled type of x, which

we retrieve through τ(x) and τ2 is the type of e. The type of a function call f(t) is the

return type τ2 of f after applying the substitution U(τ1, τ ′
1), where τ1 is the parameter

type of f and τ ′
1 is the type of t. That is, we instantiate the dimension parameters of f

with the concrete dimensions of t. The type of the tensor expression (i1 · · · ik)⇒ s is the

dimensions of i1 · · · ik. These indices must be index variables with labeled dimensions.

The type of a cast expression (D) x is D and also the flattened dimensions of Γ(x) and D

must match. For example, we can cast a variable of type d1 ·d2 ·d3 ·d4 to d1 · (d2×d3×d4).

The flatten function flat is defined as follows.

flat(d ·D) = flat(d) · flat(D)

flat(d× d′) = flat(d) · flat(d′)

flat(d) = d

42

Γ ⊢ v : ⋆ T-Constant

Γ ⊢ x : Γ(x) T-Var

Γ ⊢ F : T (F) T-Builtin

Γ, x : T (x) ⊢ e : τ

Γ ⊢ x⇒ e : T (x)→ τ
T-Fun

Γ ⊢ f : τ1 → τ2
Γ ⊢ t : τ ′

1 σ = U(τ1, τ ′
1)

Γ ⊢ f(t) : σ(τ2)
T-App

Γ ⊢ (v0, . . . , vm)n1···nk : n1 · · · nk T-TensorValue

Γ, i1 : D(i1), . . . , ik : D(ik) ⊢ s : ⋆

Γ ⊢ (i1 · · · ik)⇒ s : D(i1) · · · D(ik)
T-TensorExp

Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ t1 + t2 : τ
T-TenorPlus

Γ ⊢ s : ⋆ Γ ⊢ t : τ

Γ ⊢ s · t : τ
T-TensorScale

flat(Γ(x)) = flat(D)
Γ ⊢ (D) x : D

T-Cast

Γ, i1 : D(i1), . . . , ik : D(ik) ⊢ s : ⋆

Γ ⊢
∑

i1···ik
(s) : ⋆

T-Sum

Γ ⊢ t : D Γ ⊢ I : D

Γ ⊢ t(I) : ⋆
T-Element

Fig. 3.4 Typing rules for tensor and scalar expressions

The type of a tensor element x(I) is always ⋆ and the type of x must be the same as

the type of I, which is defined by the rules in Figure 3.6.

The type of an index list I is the list of types of each index in I. The type of an

index variable must be added to the environment by either a tensor expression or a sum

expression. Index expressions of the form of i× n, i1 + i2, i− n are used in describing the

indices of convolution operation. For example, an 1-D convolution between a vector x and

a kernel w with stride n1 and padding n2 is defined as (i1)⇒ ∑
i2 x(i1×n1+i2−n2)×w(i2),

where D(i1) = (T (x) + 2n2 −D(i2))/n1 + 1.

43

Γ ⊢ s1 : ⋆ Γ ⊢ s2 : ⋆

Γ ⊢ s1 + s2 : ⋆
T-ScalarPlus

Γ ⊢ s1 : ⋆ Γ ⊢ s2 : ⋆

Γ ⊢ s1 × s2 : ⋆
T-ScalarTimes

Γ ⊢ s : ⋆

Γ ⊢ log(s) : ⋆
T-ScalarLog

Γ ⊢ s : ⋆

Γ ⊢ exp(s) : ⋆
T-ScalarExp

Γ ⊢ s : ⋆

Γ ⊢ sn : ⋆
T-ScalarExp2

Fig. 3.5 Typing rules for arithmetic scalar expressions

Γ ⊢ m : d T-IndexConstant

Γ(ix) = d

Γ ⊢ ix : d
T-IndexVar

Γ ⊢ i : d Γ ⊢ I : D

Γ ⊢ i · I : d ·D
T-IndexList

Γ ⊢ i : (d− 1)/n + 1
Γ ⊢ i× n : d

T-IndexTimes

Γ ⊢ i1 : d1 − d2 + 1 Γ ⊢ i2 : d2

Γ ⊢ i1 + i2 : d1
T-IndexPlus

Γ ⊢ i : d + 2n

Γ ⊢ i− n : d
T-IndexMinus

Fig. 3.6 Typing rule for index expressions

The type of the index expression i1 × n1 + i2 − n2 is derived as follows based on the

rules in Figure 3.6.

Γ(i1) = D(i1), where

D(i1) = (T (x) + 2n2 −D(i2))/n1 + 1

Γ ⊢ i1 : (T (x) + 2n2 −D(i2))/n1 + 1

Γ ⊢ i1 × n1 : T (x) + 2n2 −D(i2) + 1

Γ ⊢ i2 : D(i2)

Γ ⊢ i1 × n1 + i2 : T (x) + 2n2

Γ ⊢ i1 × n1 + i2 − n2 : T (x)

44

The type of the index expression is based on the type derivation of (i1)⇒ ∑
i2 x(i1 ×

n1 + i2 − n2)× w(i2).

Γ ⊢ i1 × n1 + i2 − n2 : T (x)

Γ ⊢ x : T (x) Γ ⊢ i2 : D(i2) Γ ⊢ w : D(i2)

where Γ = Γ′, i1 : D(i1), i2 : D(i2)

Γ′, i1 : D(i1) ⊢
∑

i2 x(i1 × n1 + i2 − n2)× w(i2) : ⋆

Γ′ ⊢ (i1)⇒
∑

i2 x(i1 × n1 + i2 − n2)× w(i2) : D(i1)

Up until now, we have introduced a complete type system for DeepDSL. The soundness

of this type system is described in Theorem 3.1. The proof of the theorem is provided in

the Appendix chapter.

Theorem 3.1. If ∅ ⊢ t : τ , then there exists V such that t→∗ V. If ∅ ⊢ ŝ : τ , then there

exists v such that ŝ→∗ v.

3.4 Examples

Affine transformation A fully-connected layer in DNN is an affine transformation of

a 2-D tensor x that multiplies it with a 2-D filter w and adds an 1-D bias b.

f1
∆= x⇒ (i1 · i3)⇒

∑
i2

x(i1 · i2)× w(i2 · i3) + b(i1)

where D(ik) = dk for k ∈ {1, 2, 3}. The expression x(i1 · i2) evaluates to an element of x

at index i1 at axis 1 and i2 at axis 2. The type of f1 is

∅ ⊢ f1 : d1 · d2 → d1 · d3

where T (x) = d1 · d2, T (w) = d2 · d3, and T (b) = d1.

Flattening A flattening function turns a 4-D tensor into a 2-D tensor by collapsing the

last 3 dimensions into 1. This is a common operation of DNNs that transforms inputs for

45

a fully-connected layer, which applies to 2-D tensors. The function f2 below uses a cast

to turn a 4-D tensor x into a 2-D tensor.

f2
∆= x⇒ (d1 · (d2 × d3 × d4)) x

where T (x) = d1 · d2 · d3 · d4.

Here x is a 4-D tensor and it is cast to a 2-D tensor type where the type of x is

d1 · d2 · d3 · d4, which is the same as flat(d1 · (d2 × d3 × d4)).

∅ ⊢ f2 : d1 · d2 · d3 · d4 → d1 · (d2 × d3 × d4)

Convolution The most common operations in DNN are convolutions. For image

classification, a convolution layer applies 2-D convolution to input images x (or feature

maps) with a kernel w and adds a bias b. The input to the convolution layer is a 4-D

tensor where the 1st axis is the number of images, the 2nd axis is the number of input

channels, and the 3rd and 4th axes are height and width of images. The kernel is also

a 4-D tensor, where the 1st and 2nd axes are the number of output and input channels

while the last two axes are kernel width and height.

The equation below defines a convolution function f3 with stride 1 and padding 0.

f3
∆= x⇒ (in · ik · ih · iw)⇒

∑
ic

∑
iu

∑
iv

x(in · ic · (ih + iu) · (iw + iv))× w(ik · ic · iu · iv) + b(ik)

where D(in) = dn, D(ic) = dc, D(iu) = du, D(iv) = dv, D(ik) = dk, D(ih) = dr−du +1,

D(iw) = ds − dv + 1.

Note that the dimension of ih is dr − du + 1 since the dimension of iu is du and the

dimension of ih + iu must be the same as that of the 3rd axis of x, which is dr.

There are efficient implementation of convolution in libraries and we can treat it as a

built-in function. The type of f3 is

∅ ⊢ f3 : dn · dc · dr · ds → dn · dk · (dr − du + 1) · (ds − dv + 1)

46

where T (x) = dn · dc · dr · ds, T (w) = dk · dc · du · dv, and T (b) = dk.

Loss In supervised learning, loss functions like f4 below are used to compute scalar

values that measure the average error of predicted classification,

f4
∆= x⇒

∑
in

∑
ik

y(in · ik)× x(in · ik)× (− 1
dn

)

where x is the log probability of the prediction and y is the ground truth, and T (x) = dn ·dk.

Note that y is a dn × dk matrix, where the inth row is an indicator vector that represents

the true class of the inth image. The variable x is also a dn× dk matrix and the ikth value

of its inth row is the log probability of the image in being in class ik.

The type of f4 is

∅ ⊢ f4 : dn · dk → ⋆

Log softmax A softmax function like f5 below is used to normalize the results of the

previous layers.

f5
∆= x⇒ x− (in · ik)⇒ log(

∑
il

exp(x(in · il)))

where T (x) = dn · dk, D(in) = dn, D(ik) = D(il) = dk. The type of f5 is

∅ ⊢ f5 : dn · dk → dn · dk

Note that there are efficient implementations of softmax in libraries so that we can treat

it as a built-in function.

3.5 Gradient derivation

The forward inference of a DNN computes a loss expression s that measures the error of

the predicted results against the ground truth values of training data. To train a DNN,

we update each network parameter w with a function of ∂s

∂w
, which is the gradient of the

47

loss expression against w. However, these gradients should not be directly computed and

they should be simplified into computable forms through symbolic derivation.

The gradient of a scalar with respect to a tensor variable ∂s

∂x
is a tensor with the

same type as x. The gradient of a tensor with respect to a tensor variable ∂t

∂x
appears in

tensors of the form t′ · ∂t

∂x
with the typing rule:

Γ ⊢ t′ : D Γ ⊢ t : D Γ ⊢ x : D′

Γ ⊢ t′ · ∂t

∂x
: D′

If we view DNN layers as functions and the loss expression as the application of the
functions on the training data, then the gradient derivation follows Rule 3.1.

∂f(t)
∂y

= f ′(t) · ∂t

∂y
+ ∂f

∂y
(t) (3.1)

where f(t) is the application of function f to tensor t, ∂f(t)
∂y

is the derivative of f(t) with

respect to y, ∂t

∂y
is the derivative of t with respect to y, f ′ is the derivative of f with

respect to its parameter, and ∂f

∂y
is the derivative of f with respect to y.

Note that we write f ′ instead of ∂f

∂x
when f has a single parameter x. If f has multiple

parameters such as x1 and x2, we write ∂f

∂x1
and ∂f

∂x2
instead.

In general, y may appear in both f and t. However, in case where y only appears in

either f or t, either f ′(t) or ∂t

∂y
is zero, which means that ∂f(t)

∂y
equals to either f ′(t) · ∂t

∂y

or ∂f

∂y
(t), the first or second half of the right-hand side of Rule 3.1. Note that f ′(t) is a

tensor if f returns a scalar and it is a tensor gradient if f returns a tensor.

Application of Rule 3.1 The following is the gradient derivation of a scalar s =

f4(f3(f2(f1(x)))) with respect to the parameters w1, w2, and w3, where wi is a parameter

in function fi, ∀i ∈ {1, 2, 3}.

48

∂s

∂w1
= z3 ·

∂f3(f2(f1(x)))
∂w1

= z3 · z2 ·
∂f2(f1(x))

∂w1

= z3 · z2 · z1 ·
∂f1(x)

∂w1

= z3 · z2 · z1 ·
∂f1

∂w1
(x)

∂s

∂w2
= z3 · z2 ·

∂f2(f1(x))
∂w2

= z3 · z2 ·
∂f2

∂w2
(f1(x))

∂s

∂w3
= z3 ·

∂f3(f2(f1(x)))
∂w3

= z3 ·
∂f3

∂w3
(f2(f1(x)))

where z3 = f ′
4(f3(f2(f1(x)))), z2 = f ′

3(f2(f1(x))), and z1 = f ′
2(f1(x)). Note in this

example w1 appears in f1(x) but not in x, w2 appears in f2(f1(x)) but not f1(x), and w3

appears in f3(f2(f1(x))) but not in f2(f1(x)).

Direct computation of the above expressions is not efficient since they contain a lot of

redundancies such as the repeated evaluation of z3. The redundancies can be removed

using common subexpression elimination but it is slow for complex DNN. Fortunately, we

can use the reverse accumulation method [8, 66] to derive parameter gradients efficiently

without redundancy.

Reverse accumulation Before computing gradient derivation of a loss expression s

(assuming s contains a set of tensor subexpressions t̂i where i = 1, · · ·, n), we first perform
the static single assignment (SSA) transformation to s, which results in expression of the
form

y1 ← t̂1;

. . .

yn ← t̂n;

ŝ

where yi ← t̂i is an assignment of t̂i to yi and ŝ is s with its tensor subexpressions replaced

by tensor variables yi.

49

x x

t a t̂ t1[y/x] a′ t̂1

(x⇒ t1)(t) a t̂; y ← t̂; a′ t̂1

t a t̂ s[y/x] a′ ŝ

(x⇒ s)(t) a t̂; y ← t̂; a′ ŝ

t a t̂

F(t) a t̂; y ← t̂; F(y)
t1 a1 t̂1 t2 a2 t̂2

t1 + t2 a1 t̂1; y1 ← t̂1; a2 t̂2; y2 ← t̂2; y1 + y2

t a t̂

s · t a t̂; y ← t̂; s · y

Fig. 3.7 Static single assignment transformation, where y variables are fresh and we assume
that scalar function application does not appear inside a tensor expression.

Let a represent a sequence of assignments.

a ::= ϵ

| y ← t̂; a

Figure 3.7 defines the SSA transformation rules of the form e a; ê, which transforms

expression e to a sequence of assignment a followed by ê. After transformation, the tensor

and scalar has the following syntax.

t ::= V tensor value

| x, y, z, w variables

| F(y) built-in function application

| I ⇒ s tensor exppression

| y1 + y2 tensor expression

| s · y scalar tensor product

| (D) x cast

s ::= v constant

| x(I) tensor element

| V(I) tensor element

|
∑

I(s) summation

| log(s) | exp(s) | sn arithmetic expression

| s1 + s2 | s1 × s2 arithmetic expression

. . .

50

Parameter gradients Given a scalar expression s, the gradient of s with respect to a

parameter wk is defined by
∂s

∂wk

=
∑

i

∂s

∂ti

· ∂ti

∂wk

where each ti is a subexpression of s that contains wk. Similarly, the gradient ∂e

∂tj

defined

by the equation
∂e

∂tj

=
∑

i

∂e

∂ti

· ∂ti

∂tj

where each ti is a subexpression of e that contains tj.

After SSA transformation, each subexpression ti in s and e is replaced by a variable

yi is defined by the assignment yi ← t̂i and the scalar s becomes ŝ. Then, parameter

gradients can be derived as follows:

1. Derive ∂t̂i

∂yj

for each t̂i and for each yj in t̂i.

2. Define the variable zj with the assignments

zj ←


∂ŝ

∂yj

yj appears in ŝ

∑
i

zi ·
∂t̂i

∂yj

yj appears in t̂i

where for simplicity, we assume that variables in ŝ do not appear elsewhere.

3. If wk is a parameter in s, then

∂s

∂wk

=
∑

i

zi ·
∂t̂i

∂wk

where t̂i contains wk.

For the last example s = f4(f3(f2(f1(x))))2, applying SSA transformation to s, we

obtain the following result.
2Note in this example only one parameter exists for each function so that no summation as shown in

item 2 is needed.

51

y1 ← t̂1

y2 ← t̂2

y3 ← t̂3

ŝ

where t̂1 = f1(x), t̂2 = f2(y1), t̂3 = f3(y2), ŝ = f4(y3).
Using reverse accumulation method, we can obtain the following statements, where

the local variables yi and zi (i ∈ {1, 2, 3}) hold intermediate results.

z3 ← f ′
4(y3) ∂s

∂w3
= z3 ·

∂f3

∂w3
(y2)

z2 ← z3 · f ′
3(y2) ∂s

∂w2
= z2 ·

∂f2

∂w2
(y1)

z1 ← z2 · f ′
2(y1) ∂s

∂w1
= z1 ·

∂f1

∂w1
(x)

Gradients of built-in functions If the functions in the above example are all built-in

functions, the gradient derivation is complete and the resulting statements correspond to

calls to forward inference and backward gradient calls of the built-in functions.
For example, if f2 represents convolution function in Cudnn library, then we have the

following correspondence between library functions and tensor expressions.

convolution_forward(y1) f2(y1)

convolution_backward_data(z2, y1) z2 · f ′
2(y1)

convolution_backward_filter(z2, y1) z2 ·
∂f2

∂w2
(y1)

Gradient of tensors and scalars We do not have high-level functions for all types

of DNN layers and some of them have to be implemented using low-level functions. For

example, affine transformation is implemented with a matrix product and a sum. For

these functions, we use the following tensor and scalar gradient derivation rules to derive

gradients of the form f ′(y) and ∂f

∂w
(y) (Note the partial-derivative operator ∂ extends to

the rightmost expressions that in these rules).

52

Gradient derivation rules

∂ t1 + t2

∂y
= ∂t1

∂y
+ ∂t2

∂y
(3.2)

∂ s · t
∂y

= s · ∂t

∂y
(3.3)

∂ (D) x

∂y
= (D′)∂x

∂y
where D′ = T (x) (3.4)

∂x

∂y
= ∂ I ⇒ x(I)

∂y
where D(I) = T (x) (3.5)

∂ I ⇒ s

∂y
= I ⇒ ∂s

∂y
(3.6)

∂s

∂y
= I ⇒ ∂s

∂y(I) where D(I) = T (y) (3.7)

The gradient derivation rules specify how gradient expressions are simplified. For

example, the gradient of t1 + t2 is the sum of the gradients of t1 and t2. The gradient of

s · t is the product of s and the gradient of t, where we assume that s does not contain

any tensor variables.

The gradient of a cast expression (D) x with respect to y is (D′) ∂x

∂y
, where D′ = T (x).

(D′) ∂x

∂y
is a tensor gradient such that the product of a tensor variable z and (D′) ∂x

∂y

results in a cast expression (D′) (z · ∂x

∂y
).

The gradient of a tensor variable x is the gradient of the tensor expression I ⇒ x(I),

where D(I) = T (x). The gradient of I ⇒ s is the scalar gradient ∂s

∂x
indexed over the

domain of I. The scalar gradient ∂s

∂y
is the tensor I ⇒ ∂s

∂y(I) , where I is a list of fresh

indices and D(I) = T (y).

Note that the more obvious reduction of ∂x

∂y
is a gradient consisting of 1s if x = y or a

gradient consisting of 0s if x ̸= y. However, for simplicity, we choose to handle them in

the more general way through Rule 3.5.

Scalar derivation rules The derivation of ∂s

∂y(I) is defined in Rules 3.8 through 3.15.

Most of scalar derivation rules are standard except (Note Rule 3.14 is a generic form of

Rule 3.10, which says that the derivative of the sum
∑
I′

s is the sum of ∂s

∂y(I)) Rule 3.15,

which says that the derivative of a tensor element x(I) with respect to x(I ′) is obtained

through the auxiliary function match(I, I ′), which returns the products of some Kronecker

53

deltas [61].
match(i, i′) = δi i′

match(i · I, i′ · I ′) = δi i′ ×match(I, I ′)

The Kronecker delta δi i′ reduces to 1 if i and i′ evaluate to the same index value and

it reduces to 0 otherwise.

∂ log(s)
∂y(I) = s−1 × ∂s

∂y(I) (3.8)

∂ exp(s)
∂y(I) = exp(s)× ∂s

∂y(I) (3.9)

∂ s1 + s2

∂y(I) = ∂s1

∂y(I) + ∂s2

∂y(I) (3.10)

∂ s1 × s2

∂y(I) = s2 ×
∂s1

∂y(I) + s1 ×
∂s2

∂y(I) (3.11)

sn

∂y(I) = (n× sn−1)× ∂s

∂y(I) (3.12)

∂n

∂y(I) = 0 (3.13)

∂
∑

I′(s)
∂y(I) =

∑
I′

∂s

∂y(I) (3.14)

∂x(I)
∂y(I ′) =

 0 if x ̸= y

match(I, I ′) otherwise
(3.15)

Syntax of gradients The additional syntax for describing the gradients of scalars and

tensors with respect to tensor variables can be summarized as follows, where the symbol

g denotes tensor gradients.

t ::= . . .

| z · g tensor gradient product

g ::= I ⇒ I ′ ⇒ s gradient expression

| g1 + g2 gradient sum

| s · g scalar gradient product

| (D) g gradient cast

| ∂F
∂x

(y) gradient tensor application

s ::= . . .

| δi i′ Kronecker delta

54

Chapter 4

Optimization

As discussed in Section 1.3, optimization is critical to the efficiency of DL applications,

which can be implemented at high level or low level. In this section, we present the

DeepDSL high- and low-level optimization strategy in Section 4.1 and Section 4.2, re-

spectively. We describe our code scheduling strategy in Section 4.3 that offers further

optimization with respect to memory efficiency. We conclude this chapter with the

discussion for code generation and runtime in Section 4.4.

4.1 High-level Optimization

4.1.1 Simplification of parameter gradients

The derivation of parameter gradients ∂s

∂wi

results in tensors of the form z ·g, which should

be simplified. After applying the reduction rules below, all forms of g except ∂F
∂x

(y) are

eliminated from the parameter gradients.

x · (I ⇒ I ′ ⇒ s) = I ′ ⇒
∑

I

x(I)× s (4.1)

x · (g1 + g2) = x · g1 + x · g2 (4.2)

x · (s · g) = s · (x · g) (4.3)

x · (D) g = (D) x · g (4.4)

55

The tensors can be further simplified with reduction rules below in order to remove

the Kronecker deltas. These rules are designed to move the sum operator ∑
ix

inwards as

much as possible until it meets a Kronecker delta δi i′ where i is a function f of ix. By

the index syntax in Figure 3.1, f is an invertible function. Since δi i′ equals to 1 iff i and

i′ reduce to the same value, which is when ix = f−1(i′), we can reduce ∑
ix

δi i′ × s to s

with ix in s replaced by f−1(i′).

∑
I

s + s′ =
∑

I

s +
∑

I

s′ (4.5)

∑
ix

s× s′ = s×
∑
ix

s′ ix is not used in s (4.6)

∑
ix

δf(ix) i′ × s = s[f−1(i′)/ix] (4.7)

∑
ix

δf(ix) i′ = 1 (4.8)

s× (s1 + s2) = s× s1 + s× s2 (4.9)

s · (s′ · t) = (s× s′) · t (4.10)

The reduction rules will eliminate all Kronecker deltas, which are reduced from the

derivative of a tensor element with respect to another tensor element. The index variables

in I in each tensor element x(I) are bound by either a sum expression or a tensor expression.

In the first case, the sum eliminates the deltas. In the second case, x(I) appears in a

tensor of the form I1 ⇒ s, where the index variables in I are defined in I1. The deltas are

in the tensor of the form z · ∂I1 ⇒ s

∂x
, which reduces to z · (I1 ⇒ I2 ⇒

∂s

∂x(I2)
) by Rule 3.6

and 3.7, which reduces to I2 ⇒
∑

I1 z(I1)× ∂s

∂x(I2)
by Rule 4.1. After reduction, the sum

operator will eliminate the deltas from ∂s

∂x(I2)
.

Syntax after simplification After symbolic reduction, the parameter gradients are

reduced to tensors of the following syntax.

56

t ::= . . .

| z · ∂F
∂x

(y) tensor gradient product

i ::= . . .

| i1 − i2 | i + n

where z · ∂F
∂x

(y) represents a backward gradient of F .

Indices of the form i1 − i2 and i + n appear in the gradients of convolution after the

simplification of Kronecker delta and they have the following typing rules.

Γ ⊢ i1 : d1 Γ ⊢ i2 : d2

Γ ⊢ i1 − i2 : d1 − d2 + 1

Γ ⊢ i : d

Γ ⊢ i + n : d + 2n

We have defined typing rules for indices of the forms i1 + i2 and i− n, which are used in

tensor convolution. The rule on i1 − i2 is the inverse of the rule on i1 + i2 while the rule

on i + n is the inverse of the rule on i− n.

In the current form, tensors and parameter gradients can be evaluated. However, the

direct evaluation of tensor expressions of the form I ⇒ s is inefficient. For example, to

evaluate (i1 · i3)⇒ ∑
i2 x(i1 · i2)× w(i2, i3), we need to have a double loop (outer loop for

index i1 and inner loop for i3) where the loop body evaluates ∑
i2 x(i1 · i2)× w(i2, i3). A

more efficient evaluation strategy is to further transform tensors into forms that can be

mapped to functions in high-performance libraries.

Trivial simplification rules We also apply some obvious simplification rules to reduce

tensors and scalar expressions that involve 1 and 0.

For example, 1 · t = t, 0 · t = 0, 1× s = s, 0× s = 0, 0 + s = s, s · 0 = 0, and 0 + t = t,

where 0 represents a tensor of the form I ⇒ 0 or (D) I ⇒ 0.

4.1.2 Vectorization

Tensors of the form of F(y) and z · ∂F
∂x

(y) can be mapped to high-level functions in

libraries such as Cudnn that work with vectors or matrices. This section we focus on

57

I ⇒ sn = (I ⇒ s)n (4.11)
I ⇒ exp(s) = exp(I ⇒ s) (4.12)
I ⇒ log(s) = log(I ⇒ s) (4.13)
I ⇒ s1 × s2 = s1 · (I ⇒ s2) ∀i ∈ {I}, i is not used in s1 (4.14)
I ⇒ s1 × s2 = (I ⇒ s1). ∗ (I ⇒ s2) (4.15)
I ⇒ s1 + s2 = (I ⇒ s1) + (I ⇒ s2) (4.16)
I ⇒ x(I) = x T (x) = D(I) (4.17)∑

I

s1 × s2 = s1 ×
∑

I

s2 ∀i ∈ {I}, i is not used in s1 (4.18)∑
I

s1 × s2 = (I ⇒ s1) · (I ⇒ s2) (4.19)∑
I

s =
∑

(I ⇒ s) (4.20)

I ⇒
∑

I ′ ⇒ s =
∑
|I′|

(I · I ′)⇒ s (4.21)

I ⇒ (I ′ ⇒ s1) · (I ′ ⇒ s2) = (I1 · I ′)⇒ s1 ×|I′| (I2 · I ′)⇒ s2

I = I1 · I2
∀i ∈ {I1}, i is not used in s2
∀i ∈ {I2}, i is not used in s1

(4.22)

I ⇒ s = I ⇒ (I ′ ⇒ s)(I ′) s is not a tensor element, {I ′} ⊂ {I}
∀i ∈ {I}\{I ′}, i is not used in s

(4.23)

Fig. 4.1 Rules for vectorization, where {I} represents the set of indices in I.

transforming tensor expressions into the computation of vectors and matrices so that they

can be directly mapped to low-level functions in high-performance libraries. We call this

reduction step vectorization.

Vectorization rules Figure 4.1 shows the vectorization rules, where Rule 4.11 to 4.16

lift operators on scalars in tensor expressions to the outside so that they become operators

on tensors. For example, I ⇒ exp(s) is a tensor expression where each element is an

exponentiation of a scalar expression s. By Rule 4.12, this is reduced to exp(I ⇒ s),

which is the exponentiation of the tensor I ⇒ s. In Rule 4.15, the product of scalars

becomes the pointwise product .∗ of tensors.

Rule 4.17 simplifies I ⇒ x(I) to just x if the dimensions of I are the same as the type

of x. Rule 4.18 factors out scalars independent of the sum indices. Rule 4.19 reduces the

sum of scalar products to the dot product of two tensors. The sum of scalars is reduced

58

to sum of tensor Rule 4.20. Rule 4.21 turns a tensor expression that contains a tensor

sum into the partial sum of a tensor.

Rule 4.22 converts I ⇒ (I ′ ⇒ s1) · (I ′ ⇒ s2) into tensor contraction if I can be divided

into I1 and I2 without changing order of indices so that indices in I1 are not used in s2

and indices in I2 are not in s1. Note that convolution can be converted to matrix product

through Rule 4.19 and 4.22. However, there are more efficient implementation in existing

libraries such as Cudnn so that convolution should be treated as built-in functions.
There are cases that not all indices in I are used in s in an tensor expression I ⇒ s.

Rule 4.23 factors out the indices not used in s and reduces the tensor expression to
I ⇒ (I ′ ⇒ s)(I ′) so that all indices in I ′ are used in s. I ′ ⇒ s may be reduced further
and evaluated separately. For example,

(i1 · i2)⇒
∑

i3 ⇒ x(i1 · i3)

= (i1 · i2)⇒ (i1 ⇒
∑

i3 ⇒ x(i1 · i3))(i1) Rule 4.23

= (i1 · i2)⇒ (
∑

1
(i1 · i3)⇒ x(i1 · i3))(i1) Rule 4.21

= (i1 · i2)⇒ (
∑

1
x)(i1) Rule 4.17

where ∑
1(i1 · i3)⇒ x(i1 · i3) partially sums up (i1 · i3)⇒ x(i1 · i3) with its lower 1 axis,

which is i3.

Syntax after vectorization The vectorization rules introduce a few types of expres-

sions as shown in Figure 4.2, some of which have direct correspondence to low-level

functions in libraries. The expression exp(t), log(t), or tn is the exponentiation, logarithm,

or power of tensor, which is the same as applying exponentiation, logarithm, or power to

the tensor elements. For these expressions, the tensor can be treated as a vector so that

each operation can be mapped to the corresponding exponentiation, logarithm, or power

library function that is applied to the vector.

The expression t1. ∗ t2 is a pointwise product of two tensors t1 and t2, which have the

same type. This expression can be mapped to a library function for the dot product of

two vectors.

59

t ::= . . .

| z · ∂F
∂x

(y) tensor gradient product

| exp(t) | log(t) | tn

| t1. ∗ t2 pointwise product

| t1 ×n t2 tensor contraction

|
∑

n t partial summation of tensor

s ::= . . .

| t1 · t2 dot product

|
∑

t summation of tensor

| t(I) tensor element

(4.24)

Fig. 4.2 Syntax after vectorization

The partial-sum expression ∑
n t sums up the lower n axis of t and it has the typing

rule:
Γ ⊢ t : D1 ·D2 |D2| = n

Γ ⊢ ∑
n t : D1

The partial-sum of tensor can be mapped to the matrix product A × B, where A is a

n1 × n2 matrix1 converted from t, B is a n2 × 1 matrix consisted of 1s, and ni is the

flattened size of Di, ∀i ∈ {1, 2}, converting the tensor value evaluated from t to A takes

constant time since they have the same array representation.

For example, if t is a tensor with the type 3 · 4 · 5 · 6, then ∑
2 t is a tensor of the type

3 · 4. We can convert t to a 12× 30 matrix A and sum up each row of A to obtain a vector

of size 12, which is the same as ∑
2 t as an array.

The contraction expression t1×n t2 performs dot products of the lower n axis of t1 and

t2 and it has the typing rule:

Γ ⊢ t1 : D1 ·D3 Γ ⊢ t2 : D2 ·D3 |D3| = n

Γ ⊢ t1 ×n t2 : D1 ·D2

The tensor contraction can be mapped to matrix product A×BT , where A is a n1 by n3

matrix converted from t1, B is a n2 by n3 matrix converted from t2, ni is the flattened
1Matrices in this work are row-major.

60

size of Di for i ∈ {1, 2, 3}. Converting the tensor values evaluated from t1 and t2 to A

and B respectively also takes constant time.

For example, if t1 has the type 2 · 3 · 5 · 6 and t2 has the type 4 · 5 · 6, then t1 ×2 t2 has

the type 2 · 3 · 4. We can convert t1 to a 6× 30 matrix and convert t2 to a 4× 30 matrix.

Then A×BT is a 6× 4 matrix, which is the same as t1 ×2 t2 as an array.

The expression t1 · t2 is the dot product of t1 and t2, which have the same type. The

expression ∑
t sums over the tensor t. The expression t(I) represents the element of the

tensor t.

A tensor of the form (I1 · I2)⇒ t(I1), where indices in I2 do not appear in t, is a tensor

where each element of t is replicated n2 times and n2 is the flattened size of D(I2). This

can be implemented as a matrix product A× B, where A is a n1 × 1 matrix converted

from t, n1 is the flattened size of D(I1), and B is a 1× n2 matrix of 1s.

A tensor of the form (I1 · I2)⇒ t(I2), where indices in I1 do not appear in t, is a tensor

that is n1 consecutive copies of t, where n1 is the flattened size of D(I1). This can be

implemented as a matrix product A×B, where A is a n1 × 1 matrix of 1s, B is a 1× n2

matrix converted from t, and n2 is the flattened size of D(I2).

4.1.3 Examples

In this section, we explain the application of rules for the gradient derivation, symbolic

reduction, and vectorization using examples from Section 3.4.

Affine transformation In Figure 4.3, the tensor ty is the output of affine transformation

with input x, weight w, and bias b. Figure 4.3 also shows the reduction of ∂ty

∂x
and the

backward gradient of x zx, which is zy ·
∂ty

∂x
, where zy is the backward gradient of ty.

61

ty = (i1 · i3)⇒
∑
i2

x(i1 · i2)× w(i2 · i3) + b(i1)

∂ty

∂x
= (i1 · i3)⇒ (i′

1 · i′
2)⇒

∂
∑

i2
x(i1 · i2)× w(i2 · i3) + b(i1)

∂x(i′
1 · i′

2) Rule 3.6, 3.7

= (i1 · i3)⇒ (i′
1 · i′

2)⇒
∑
i2

∂x(i1 · i2)
∂x(i′

1 · i′
2) × w(i2 · i3) Rule 3.10, 3.11, 3.15

= (i1 · i3)⇒ (i′
1 · i′

2)⇒
∑
i2

δi1 i′
1
× δi2 i′

2
× w(i2 · i3) Rule 3.15

= (i1 · i3)⇒ (i′
1 · i′

2)⇒ δi1 i′
1
×

∑
i2

δi2 i′
2
× w(i2 · i3) Rule 4.6

= (i1 · i3)⇒ (i′
1 · i′

2)⇒ δi1 i′
1
× w(i′

2 · i3) Rule 4.7

zx = zy ·
∂ty

∂x
= zy · ((i1 · i3)⇒ (i′

1 · i′
2)⇒ δi1 i′

1
× w(i′

2 · i3))

= (i′
1 · i′

2)⇒
∑
i1

∑
i3

zy(i1 · i3)× δi1 i′
1
× w(i′

2 · i3) Rule 4.1

= (i′
1 · i′

2)⇒
∑
i1

δi1 i′
1
×

∑
i3

zy(i1 · i3)× w(i′
2 · i3) Rule 4.6

= (i′
1 · i′

2)⇒
∑
i3

zy(i′
1 · i3)× w(i′

2 · i3) Rule 4.8

= (i′
1 · i′

2)⇒ (i3 ⇒ zy(i′
1 · i3)) · (i3 ⇒ w(i′

2 · i3)) Rule 4.19
= ((i′

1 · i3)⇒ zy(i′
1 · i3))×1 ((i′

2 · i3)⇒ w(i′
2 · i3)) Rule 4.22

= zy ×1 w Rule 4.17

Fig. 4.3 Gradient derivation of affine transformation

Flattening In flattening ty is the result of flattening the lower 3 axis of the tensor x, zy

is the backward gradient of ty, and zx is the backward gradient of x.

ty = (d1 · (d2 × d3 × d4)) x

zx = zy ·
∂ty

∂x

= zy ·
(d1 · (d2 × d3 × d4)) x

∂x

= zy · (d1 · d2 · d3 · d4) ∂x

∂x
Rule 3.4

= (d1 · d2 · d3 · d4) zy ·
∂x

∂x
Rule 4.4

= (d1 · d2 · d3 · d4) zy

where D(x) = d1 · d2 · d3 · d4.

62

ty = (in · ik · ih · iw) ⇒
∑

ic

∑
iu

∑
iv

x(in · ic · ih + iu · iw + iv) × w(ik · ic · iu · iv) + b(ik)

∂ty

∂x
= (in · ik · ih · iw) ⇒

∂
∑

ic

∑
iu

∑
iv

x(in · ic · ih + iu · iw + iv) × w(ik · ic · iu · iv) + b(ik)

∂x
Rule 3.6

= (in · ik · ih · iw) ⇒ (i′
n · i′

c · ir · is) ⇒
∑

ic

∑
iu

∑
iv

δin i′
n

× δic i′
c

× δih+iu ir × δiw+iv is × w(ik · ic · iu · iv) Rule 3.7

3.10
3.11
3.15

= (in · ik · ih · iw) ⇒ (i′
n · i′

c · ir · is) ⇒ δin i′
n

×
∑

ic

∑
iu

∑
iv

δic i′
c

× δih+iu ir × δiw+iv is × w(ik · ic · iu · iv) Rule 4.6

= (in · ik · ih · iw) ⇒ (i′
n · i′

c · ir · is) ⇒ δin i′
n

× w(ik · ic · iu · iv)[i′
c/ic, ir − ih/iu, is − iw/iv] Rule 4.7

= (in · ik · ih · iw) ⇒ (i′
n · i′

c · ir · is) ⇒ δin i′
n

× w(ik · i′
c · ir − ih · is − iw)

zx = zy ·
∂ty

∂x

= (i′
n · i′

c · ir · is) ⇒
∑

in

∑
ik

∑
ih

∑
iw

zy(in · ik · ih · iw) × δin i′
n

× w(ik · i′
c · ir − ih · is − iw) Rule 4.1

= (i′
n · i′

c · ir · is) ⇒
∑

in

δin i′
n

× (
∑

ik

∑
ih

∑
iw

zy(in · ik · ih · iw) × w(ik · i′
c · ir − ih · is − iw)) Rule 4.6

= (i′
n · i′

c · ir · is) ⇒
∑

ik

∑
ih

∑
iw

zy(i′
n · ik · ih · iw) × w(ik · i′

c · ir − ih · is − iw) Rule 4.7

= (i′
n · i′

c · ir · is) ⇒ ((ik · ih · iw) ⇒ zy(i′
n · ik · ih · iw)) · ((ik · ih · iw) ⇒ w(ik · i′

c · ir − ih · is − iw)) Rule 4.19
= (i′

n · ik · ih · iw) ⇒ zy(i′
n · ik · ih · iw) ×3 (i′

c · ir · is · ik · ih · iw) ⇒ w(ik · i′
c · ir − ih · is − iw) Rule 4.22

= zy ×3 (i′
c · ir · is · ik · ih · iw) ⇒ w(ik · i′

c · ir − ih · is − iw) Rule 4.17

Fig. 4.4 Gradient derivation of convolution

The last reduction step, though obvious, takes a few steps to complete by following

the rules:
zy ·

∂x

∂x
= zy · (I ⇒ I ′ ⇒ ∂x(I)

∂x(I ′)) Rule 3.5, 3.6, 3.7

= I ′ ⇒
∑

I(zy(I)× ∂x(I)
∂x(I ′)) Rule 4.1

= I ′ ⇒ zy(I ′) Rule 3.15, 4.7

= zy Rule 4.17

where D(I) = D(I ′) = T (x).

Convolution Let ty be the result of a convolution layer with stride 1 and padding 0

defined in Figure 4.4, where x is input, w is weight, and b is bias. If zy is the backward

gradient of ty, similar like the the previous examples, the gradient of ty against x is ∂ty

∂x

and the backward gradient of x is zy ·
∂ty

∂x
, which can be derived as in Figure 4.4.

63

s =
∑

in

∑
ik

y(in · ik) × x(in · ik) × (−
1

dn
)

zx =
∂s

∂x
= (i′

n · i′
k) ⇒

∂(
∑

in

∑
ik

y(in · ik) × δin i′
n

× δik i′
k

× (−
1

dn
))

∂x(i′
n · i′

k
)

Rule 3.7

= (i′
n · i′

k) ⇒
∑

in

∑
ik

∂(y(in · ik) × δin i′
n

× δik i′
k

× (−
1

dn
))

∂x(i′
n · i′

k
)

Rule 3.14, 3.15

= (i′
n · i′

k) ⇒
∑

in

∑
ik

y(in · ik) ×
∂x(in · ik)
∂x(i′

n · i′
k

)
× (−

1
dn

) Rule 3.11

= (i′
n · i′

k) ⇒
∑

in

∑
ik

y(in · ik) × δin i′
n

× δik i′
k

× (−
1

dn
) Rule 3.15

= (i′
n · i′

k) ⇒ y(i′
n · i′

k) × (−
1

dn
) Rule 4.7

= (−
1

dn
) · (i′

n · i′
k) ⇒ y(i′

n · i′
k) Rule 4.14

= (−
1

dn
) · y Rule 4.17

Fig. 4.5 Gradient derivation of loss expression

Loss The loss expression s and its backward gradient zx are defined in Figure 4.5, where

y is the ground truth and x is the predicted value vector.

Log softmax The gradient derivation of log softmax is shown in Figure 4.6. After
common subexpression elimination of both ty and zx, we can have the following:

x1 ← exp(x)

x2 ←
∑

1
x1

ty = x− f(log(x2))

zx = zy − f(
∑

1
zy). ∗ x1. ∗ (f(x2))−1

where f(t) is defined as (in · ik)⇒ t(in).

Note that in most cases, zy is the backward gradient of the loss expression, which is

(− 1
dn

) · y and each row of y is a unit vector. With this knowledge, we can reduce zx to
1
dn

· (x1. ∗ (f(x2))−1 − y), which is 1
dn

· (exp(ty)− y). However, this reduction is based on

domain knowledge and is out of the scope of rule-based reduction.

64

ty = x − (in · ik) ⇒ log(
∑

il
exp(x(in · il))) = x − f(in ⇒ log(

∑
il

exp(x(in · il)))) Rule 4.23
= x − f(log(in ⇒

∑
(il ⇒ exp(x(in · il))))) = x − f(log(

∑
1(in · il) ⇒ exp(x(in · il)))) Rule 4.13, 4.21

= x − f(log(
∑

1 exp((in · il) ⇒ x(in · il)))) = x − f(log(
∑

1 exp(x))) Rule 4.12, 4.17

∂ty

∂x
=

∂(x − (in · ik) ⇒ log(
∑

il
exp(x(in · il))))

∂x

= ((in · ik) ⇒ (i′
n · i′

k) ⇒
∂x(in · ik)
∂x(i′

n · i′
k

)
) − ((in · ik) ⇒ (i′

n · i′
k) ⇒

∑
il

exp(x(in · il)) ×
∂x(in · il)
∂x(i′

n · i′
k

)∑
il

exp(x(in · il))
) Rule 3.10, 3.6, 3.7

Rule 3.8, 3.9

= ((in · ik) ⇒ (i′
n · i′

k) ⇒ δin i′
n

× δil i′
k

) − ((in · ik) ⇒ (i′
n · i′

k) ⇒
exp(x(in · i′

k)) × δin i′
n∑

il
exp(x(in · il))

) Rule 3.15

zx = zy ·
∂ty

∂x

= ((i′
n · i′

k) ⇒ zy(i′
n · i′

k)) − ((i′
n · i′

k) ⇒
∑

in

∑
ik

zy(in · ik) ×
exp(x(in · i′

k)) × δin i′
n∑

il
exp(x(in · il))

) Rule 4.1, 4.7

= zy − (i′
n · i′

k) ⇒
∑

ik

zy(i′
n · ik) ×

exp(x(i′
n · i′

k))∑
il

exp(x(i′
n · il))

Rule 4.17, 4.6, 4.7

= zy − (i′
n · i′

k) ⇒
∑

ik

zy(i′
n · ik) . ∗ (i′

n · i′
k) ⇒ exp(x(i′

n · i′
k)) . ∗ (i′

n · i′
k) ⇒ (

∑
il

exp(x(i′
n · il)))−1 Rule 4.15

= zy − (i′
n · i′

k) ⇒
∑

ik

zy(i′
n · ik) . ∗ exp((i′

n · i′
k) ⇒ x(i′

n · i′
k)) . ∗ ((i′

n · i′
k) ⇒

∑
il

exp(x(i′
n · il)))−1 Rule 4.12, 4.11

= zy − ((i′
n · i′

k) ⇒
∑

ik ⇒ zy(i′
n · ik)) . ∗ exp(x) . ∗ ((i′

n · i′
k) ⇒

∑
il ⇒ exp(x(i′

n · il)))−1 Rule 4.17, 4.20

= zy − f(i′
n ⇒

∑
ik ⇒ zy(i′

n · ik)) . ∗ exp(x) . ∗ (f(i′
n ⇒

∑
il ⇒ exp(x(i′

n · il))))−1 Rule 4.23

= zy − f(
∑

1

(i′
n · ik) ⇒ zy(i′

n · ik)) . ∗ exp(x) . ∗ (f(
∑

1

(i′
n · il) ⇒ exp(x(i′

n · il))))−1 Rule 4.21

= zy − f(
∑

1

zy). ∗ exp(x). ∗ (f(
∑

1

exp((i′
n · il) ⇒ x(i′

n · il))))−1 Rule 4.17, 4.12

= zy − f(
∑

1

zy). ∗ exp(x). ∗ (f(
∑

1

exp(x)))−1 Rule 4.17

Fig. 4.6 Gradient derivation of log softmax, where f(t) is defined as (in · ik)⇒ t(in).

65

4.2 Low-level Optimization

Inlining Since the generated code calls functions in libraries such as Cuda and Cudnn,

there are opportunities to take advantage of the library functions that perform multiple

computation the same time.

A Cuda or Cudnn function takes a number of tensor and scalar parameters and returns

a number that either means success or is a failure code. The tensor parameters can be for

input, output, or both. For instance, a Cudnn function fcudnn for computing backward

gradient f has the form:

fcudnn(x1, . . . , xn, zy, α, β)

which computes

zy ← α× f(x1, . . . , xn) + β × zy

where x1, . . . , xn are input tensors, zy is the input/output tensor, and α, β are scaling

factors.

To call this function, we pass 1 to α and 0 to β so that it effectively computes:

zy ← f(x1, . . . , xn)

However, zy is often used in gradient update of the form:

y ← α′ × zy + β′ × y

Running the two statements separately not only consumes more time but also extra

memory to hold zy. In this case, it is more efficient to inline the update in the backward

gradient computation to save time and space.

fcudnn(x1, . . . , xn, y, α′, β′)

which computes

y ← α′ × f(x1, . . . , xn) + β′ × y

66

Update statements can also be inlined into other GEMM (general matrix multiplication)

calls such as matrix product. In general, inlining an update statement such as y =

α′ × zy + β′ × y is possible only if zy is not used in other computation.

Other than updates, we can also inline plus operations for some computation. For

example, statements like y ← y1 + y2 and y2 ← f(x1, . . . , xn) can be merged into

y1 ← 1× f(x1, . . . , xn) + 1× y1

if y2 are not used in other computation and y1 is not used in subsequent computation

since it will be overwritten. Also, any occurrences of y is replaced by y1. Here the

y1 ← 1× f(x1, . . . , xn) + 1× y1 corresponds to the library call fcudnn(x1, . . . , xn, y1, 1, 1),

where y1 is the input/output parameter.

In-place computation The results of the operations such as tensor summation, scalar

tensor product, point-wise tensor products, and the forward inference and backward

gradient of activation layers can be stored in the memory of their input tensors if the

inputs are not used in subsequent computation. In-place updates like these are possible

since the input tensor has the same size as the output tensor.

For example, if y ← f(x) computes the forward inference of an activation layer with

input x, then the actual call to the Cudnn function has the form of

y ← 1× f(x) + 0× y

We can avoid allocating memory for y by rewriting it as

x← 1× f(x) + 0× x

For tensor summation, y ← x1 + x2, we write it as

x1 ← x1 + x2

67

To perform in-place computation, the overwritten tensor x must not be used in later

statements. Alternatively, we can always use in-place computation for expressions such as

tensor summation and if the overwritten tensor x1 is used in a later statement, we make a

copy of x1 in that statement.

4.3 Code scheduling

Up to this point, we have the optimized IR code that is nearly ready for the code generation.

In fact, our further optimization will move to the execution order aspect. Specifically, the

next step is to schedule computations based on the def-use dependency (i.e. the use of a

variable must follow its definition) and also use heuristics to reduce peak memory usage.

There are many possible schedules that satisfy the def-use dependency requirement. Since

most of the statements allocate memory to store temporary results, some scheduling will

result in higher peak memory usage than necessary.

Fig. 4.7 Sample network

To illustrate the scheduling process, consider the sample network in Figure 4.7, where

f1 to f5 are tensor to tensor functions and f6 is a tensor to scalar function. Also, w1,

w2, w3, and w5 are the weight parameters in f1, f2, f3, and f5 respectively. The scalar

expression s represents the loss of a network with input x, where

y1 ← f1(x) y2 ← f2(y1) y3 ← f3(x)

s ← f6(y5) y5 ← f5(y4) y4 ← f4(y2, y3)

68

Direct gradient derivation of the loss expression against each parameter results in the

following equations, which contain multiple redundant computation steps.

∂s

∂w1
= f ′

6(y5) · f ′
5(y4) · ∂f4

∂x1
(y2, y3) · f ′

2(y1) · ∂f1

∂w1
(x)

∂s

∂w2
= f ′

6(y5) · f ′
5(y4) · ∂f4

∂x1
(y2, y3) · ∂f2

∂w2
(y1)

∂s

∂w3
= f ′

6(y5) · f ′
5(y4) · ∂f4

∂x2
(y2, y3) · ∂f3

∂w3
(x)

∂s

∂w5
= f ′

6(y5) · ∂f5

∂w5
(y4)

Note that the function f4 has two parameters, which we assume to be x1 and x2. While

for functions of one parameter such as f2, we write its derivative as f ′
2, we write the

derivatives of f4 as ∂f4

∂x1
and ∂f4

∂x2
.

If we use reverse accumulation method, we can obtain the following equations without

redundancy.
z1 ← z2 · f ′

2(y1)

z2 ← z4 ·
∂f4

∂x1
(y2, y3)

z3 ← z4 ·
∂f4

∂x2
(y2, y3)

z4 ← z5 · f ′
5(y4)

z5 ← f ′
6(y5)

zw1 ← ∂s

∂w1
= z1 ·

∂f1

∂w1
(x)

zw2 ← ∂s

∂w2
= z2 ·

∂f2

∂w2
(y1)

zw3 ← ∂s

∂w3
= z3 ·

∂f3

∂w3
(x)

zw5 ← ∂s

∂w5
= z5 ·

∂f5

∂w5
(y4)

For this example, the definition of zw5 is ready to compute after z5 is available. However,

if we schedule the definition of zw5 after zw1 , then some dependencies of the definition of

zw5 (i.e. z5 and y4) will be held in memory longer than necessary. To reduce peak memory

usage, it is preferable to schedule a definition closer to its usages to reduce the overlap

between holding the result of the definition in memory and other computation.

69

However, the dependency relations of the statements form a directed acyclic graph

(DAG). The problem of finding an optimal schedule of computation in terms of minimizing

the memory consumption in a DAG is NP-complete even when all graph nodes have the

same size [89]. Since a DL network can have thousands of statements, it would be too

time-consuming to find the most memory efficient schedule. Note that there exists a

polynomial time solution [5] for optimal scheduling if the dependency relation is a tree,

which unfortunately is not the case here. Therefore, we adopt a simple heuristics by

scheduling statements based on a definition of height in the dependency graph.

1. Let statements form a DAG (V, E) where V is the set of statements and E is the set

of edges. Each edge connects one statement to another. Specifically, (s1, s2) ∈ E iff

s2 depends on s1. We call s1 is the parent of s2 and s2 is the child of s1 in this DAG;

2. Height of a node is initialized to 0 if it has no parent. For other node, initialize its

height as the maximum height of its parents + 1;

3. For each statement for computing parameter gradient zwi
, in increasing order of its

height,

(a) schedule the ancestor nodes of zwi
that have not been computed in increasing

order of their heights;

(b) schedule to compute zwi
.

The purpose of this modified definition of height is to make sure that a statement is

scheduled to run only if its result is ready for use by at least one statement. In other

words, we will not hold results in memory before they are ready for use.

Finally, tensors that hold intermediate results can be deallocated at the earliest point

that it is no longer used. In the scheduled statements in Figure 4.8, we show the tensors

that are alive after executing each statement, where we do not list parameter gradients

such as zw5 since they will be used for updating parameters. In our empirical evaluation,

this algorithm is sufficiently fast and yields memory-efficient scheduling.

70

Statement Height Live Variables
y1 ← f1(x) 0 y1

y3 ← f3(x) 0 y1, y3

y2 ← f2(y1) 1 y1, y2, y3

y4 ← f4(y2, y3) 2 y1, y2, y3, y4

y5 ← f5(y4) 3 y1, y2, y3, y4, y5

z5 ← f ′
6(y5) 4 y1, y2, y3, y4, z5

zw5 ← z5 ·
∂f5

∂w5
(y4) 5 y1, y2, y3, y4, z5

z4 ← z5 · f ′
5(y4) 5 y1, y2, y3, z4

z3 ← z4 ·
∂f4

∂x2
(y2, y3) 6 y1, y2, y3, z4, z3

zw3 ← z3 ·
∂f3

∂w3
(x) 7 y1, y2, y3, z4

z2 ← z4 ·
∂f4

∂x1
(y2, y3) 6 y1, z2

zw2 ← z2 ·
∂f2

∂w2
(y1) 7 y1, z2

z1 ← z2 · f ′
2(y1) 7 z1

zw1 ← z1 ·
∂f1

∂w1
(x) 8

Fig. 4.8 Scheduled statements, their heights, and live variables at each statement.

4.4 Code generation and runtime

For each DNN, we generate a Java class that contains a method to compute the forward

inference and a method to compute the backward gradient by calling Cuda and Cudnn

functions. Users can modify the generated Java source to implement any learning strategies.

While the backward gradient method contains all the computation of the forward inference

method, the former does not call the latter since many local variables of the forward

inference computation are used in the backward gradient computation and these local

variables must be deallocated as soon as possible.

The generated class stores the network parameters as fields, which are either initialized

by specified strategies, e.g. Xavier initialization [36], or loaded from disk. The backward

gradient method updates these parameter fields each time it is called. When training is

completed, the parameter tensors are saved to disk through Java class serialization.

We invoke Cuda and Cudnn functions through some wrapper classes. For instance, the

wrapper class for convolution contains calls for convolution forward, backward gradient of

71

data and filter. The instances of these wrapper classes can be reused so that they are

stored in the fields of the generated class as well. Some wrapper classes for layers such as

batch-norm contain persistent states that can be saved for later use.

Java API The generated Java source program uses the DeepDSL Java API to call

Cuda/Cudnn functions through JCuda. Two of the main classes in the Java API are

JTensorFloat and JCudaTensor, which implement tensor computation in CPU and GPU

respectively. The JTensorFloat class is responsible for storing training data, initializing

network parameters, loading saved parameters from files, and saving trained parameters

into files.

The generated Java program automatically saves trained network parameters into

files by serializing the JTensorFloat objects that store these parameters in a designated

directory. When the user restarts the same Java program, the program will first attempt

to load network parameters from the files in the same directory or initialize the parameters

as specified if the files are not found. The saved network parameters can also be used for

inference.

A JTensorFloat object can be converted to a JCudaTensor object by copying to

GPU memory. JCudaTensor is used for GPU computation and can be converted to

JTensorFloat by copying to CPU memory. The JCudaTensor class also manages GPU

memory usage in two modes. In the memory efficient mode, tensors (and the convolution

workspace) are dynamically allocated and deallocated in GPU memory. In the runtime

efficient mode, tensors are stored in a reusable tensor memory pool and the convolution

workspace is shared and always kept in memory. The tensors and the convolution

workspace are deallocated at the end of the program. In memory efficient mode, less GPU

memory is required but with the cost of higher runtime overhead.

DL network layers supported by Cudnn library are accessed through a small set of

classes such as JCudnnConvolution, which calls Cudnn functions through JCuda. Users

can change parameters of these classes directly for low-level control. For example, users can

set a limit on the total convolution workspace by modifying a field in JCudnnConvolution.

72

Users can also modify fields in JCudnnBatchNorm class to change how the running mean

and variance are computed2.

Runtime memory management Allocating and deallocating memory in Cuda can

incur significant overhead. Therefore, it is preferable to avoid repeated allocation and

deallocation by reusing existing tensor memory. To this end, we can cache tensor memory

by maintaining a pool of allocated memory segments with known sizes. Each time a

tensor is freed, its memory is returned to the pool and each time a tensor is allocated,

the pool is checked for memory segment of sufficient size. New memory is allocated only

when the pool does not have memory segment of suitable size. Using this strategy, user

can observe GPU memory increases during the first iteration of a training loop and the

memory stabilizes once it reached its peak. The memory segments in the pool are freed

at the end of the program.

To reduce peak memory consumption, we can stop using tensor caching and allow

tensor memory to be dynamically allocated and deallocated.

In addition to tensor objects, convolution workspace is also a major source of memory

consumption, which can be very large. Since the convolution operations run sequentially,

we can make them share a cached workspace. The runtime efficient method is to first find

out the largest convolution workspace and allocate that much memory so that it can be

used by any convolution operations. A more memory-efficient but slower method is to

dynamically allocate convolution workspace before it is needed and deallocate it right

after.

Static memory analysis An advantage of DeepDSL is that it can analyze the memory

usage at each computation step statically. Once the statements from backward gradients

are derived and scheduled, we can calculate the tensor memory and workspace required

for running each statements. Based on this, we can determine the current memory

consumption at each statement depending on whether the tensor and/or workspace

memory is cached. Since we can determine the peak memory consumption for a DNN
2The advantage of batch normalization is described in [50].

73

based on runtime memory management strategy, we can statically decide whether it is

possible to run a training program on a particular GPU or use more memory efficient

runtime strategy.

74

Chapter 5

Experiments

We summarize our experiments in this chapter. We start with describing the standards of

the DL network definitions that our experiments conform to in Section 5.1, followed by the

description of the computer system specifications that our experiments run on in Section 5.2.

We summarize and discuss the GPU-based performance comparison experiments between

DeepDSL, Caffe, and Tensorflow in Section 5.3 and conclude this chapter with the

illustration of CPU-based Lenet runtime performance comparison experiments between

DeepDSL, Theano, and Caffe in Section 5.4.

5.1 DL network configuration standards

DeepDSL primarily compiles to a GPU-based Java target program through Nvidia’s

CUDA/CuDNN library for various DNN applications. In addition, DeepDSL also has

limited support for CPU-based computation, such as the classic DNN LeNet Java code

generation against CPU cores.

To achieve consistent evaluation results, DeepDSL, Caffe, and Tensorflow tests all

follow the same Caffe prototxt definitions in the experiments. Specifically, for Alexnet

and GoogleNet, we follow the prototxt from Caffe’s website1; for Vgg (Vgg-16), we follow

prototxt from this link2; for Overfeat, we follow prototxt from IntelLabs3; and for Deep
1github.com/BVLC/caffe/tree/master/models.
2github.com/ruimashita/caffe-train/blob/master/vgg.train_val.prototxt.
3github.com/IntelLabs/Latte.jl/blob/master/benchmarks/overfeat/overfeat.prototxt.

75

github.com/BVLC/caffe/tree/master/models
github.com/ruimashita/caffe-train/blob/master/vgg.train_val.prototxt
github.com/IntelLabs/Latte.jl/blob/master/benchmarks/overfeat/overfeat.prototxt

residual network (ResNet-50), we follow the prototxt from the author’s website4. The

Tensorflow implementation of these networks are either modified from versions of convnet-

benchmarks5 or created from scratch. Finally, we follow Caffe’s prototxt definition of

LeNet6 for CPU performance evaluation.

Note there are two differences between the tests of Tensorflow and those of DeepDSL

and Caffe. First, the training data in the Tensorflow tests is generated from random data

in memory while DeepDSL and Caffe tests load real images from the Lmdb database

(Due to the lack of Lmdb data support in Tensorflow and the synthetic data usage in

Tensorflow only favors Tensorflow in terms of runtime speed; that is, the actual runtime

performance of Tensorflow will be worse with real data). Second, the GoogleNet test of

Tensorflow only includes the main branch of the GoogleNet while DeepDSL and Caffe

train with the full network (This again will favor Tensorflow in terms of runtime speed for

GoogleNet tests). All our experiments are trained with ImageNet images that have been

resized to 224 by 224 (though DeepDSL do support random cropping of images when

their sizes are larger than specified dimensions).

5.2 Experiment environment description

All our experiments are performed on a server with configuration specified in Table 5.1.

We execute all the DNNs in the standard batch mode. That is, the first dimension of the

image data is always the size of the batch. Also, we compute the average time spent on

a full pass of forward and backward across multiple iterations to minimize the random

error in all the runtime evaluations. For the dynamic GPU memory usage check, we have

automated the entire set of experiments with a script that leverages the standard NVIDIA

system management interface with the memory probing interval at 100 milliseconds7 to

capture accurate dynamic memory consumption data.
4github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/

ResNet-50-deploy.prototxt.
5github.com/soumith/convnet-benchmarks.
6http://caffe.berkeleyvision.org/gathered/examples/mnist.html.
7Other smaller numbers have been tested and we observe 100 milliseconds probing internal is sufficient

for all our tests.

76

github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-50-deploy.prototxt
github.com/soumith/convnet-benchmarks

Table 5.1 Computer system configuration details

CPU

Type Intel(R) Xeon(R) CPU E5-2640 v2
Clock 2 GHz
Number 32
Cache 20480 KB

Memory Size 125GB
Hard Disk Size 530GB

GPU
Type NVIDIA Tesla K40c
Clock 3004 MHz
Number 1
Memory 12GB

Operating System Type Linux
Distribution CentOS 7

NVIDIA CUDA Version 8.0.26
NVIDIA CUDNN Version 5.1.3
GCC Version 4.9.2
JCuda JNI Binding Version 0.8.0RC

The primary experiments are performed using GPU. In addition, we also have experi-

ments performed to compare DeepDSL’s CPU runtime performance against Caffe and

Theano using the LeNet-5 CNN handwriting benchmark dataset Mnist8. We summarize

our testing results on GPU in Section 5.3 and CPU in Section 5.4.

5.3 GPU-based runtime & memory performance

We compared the runtime (Figure 5.1) and memory performance (Figure 5.2) of DeepDSL

with Caffe and Tensorflow9 by running several well-known DL networks on a Linux server

with a single Nvidia K40c GPU. The DL networks include Alexnet [60], Overfeat [88],

Googlenet [96], Vgg [90], and Deep residual network (Resnet) [44]. We ran DeepDSL in

both runtime efficient mode (denoted as DeepDSL) and memory efficient mode (denoted

as DeepDSL∗ and DeepDSL†) to compare the tradeoff between time and space. We also

compare CPU performance of DeepDSL with Theano and Caffe using LeNet [64].

When compared with Caffe, DeepDSL is 88% faster in Alexnet, 77% faster in Overfeat,

and 69% faster in Googlenet; DeepDSL is 11% slower in Vgg and 17% slower in Resnet.
8http://yann.lecun.com/exdb/mnist.
9We use the latest version of Caffe and Tensorflow we can obtain at the time of thesis writing.

77

Alex
net

128

Alex
net

256

Over
fea

t1
28

Over
fea

t2
56

Googlen
et

128

Googlen
et

256

Vgg64

Res
Net

32

Res
Net

64

−200
0

200
400
600
800

1,000
1,200
1,400
1,600
1,800
2,000
2,200
2,400
2,600
2,800
3,000
3,200
3,400
3,600

T
im

e
in

m
il

li
se

co
nd

s

DeepDSL DeepDSL∗ DeepDSL† Caffe Tensorflow

Fig. 5.1 Runtime performance of DeepDSL, Tensorflow, and Caffe (1 forward/backward
iteration), where the network names are followed by the batch size. DeepDSL∗ and
DeepDSL† are performance for DeepDSL without tensor cache and without tensor &
workspace cache respectively. Caffe failed to run GoogleNet (batch 256) and both Caffe
and Tensorflow failed to run ResNet (batch 64) due to GPU memory exhaustion.

When compared with Tensorflow, DeepDSL is 41% faster in Alexnet, 118% faster in

Googlenet, and 3% faster in ResNet; DeepDSL is 8% slower in Overfeat and 2% slower in

Vgg. Caffe ran out of memory for Googlenet of batch size 256 and for Resnet of batch

size 64. Tensorflow ran out of memory for Resnet of batch size 64.

When compared with Caffe, DeepDSL uses 8% less memory in Alexnet, 48% less in

Googlenet, and 59% less in Resnet; DeepDSL uses 44% more memory in Overfeat and

16% more in Vgg. Note that while DeepDSL uses 44% more memory in Overfeat than

Caffe, DeepDSL is also 77% faster. DeepDSL is more memory efficient than Tensorflow in

all cases except Vgg.

When compared with DeepDSL in runtime efficient mode, DeepDSL∗ (no tensor

caching) saves 17% memory for Alexnet, 10% for Overfeat, 18% for Googlenet, 14% for

Vgg, and 9% for Resnet. The runtime overhead of DeepDSL∗ is 18% for Alexnet, 10% for

Overfeat, 12% for Googlenet, 4% for Vgg, and 9% for Resnet. DeepDSL† reduces memory

further by allocating convolution workspace dynamically. Significant reduction is achieved

for Googlenet (44% less) and Vgg (17% less) with modest runtime overhead. Note that

78

Alex
net

128

Alex
net

256

Over
fea

t1
28

Over
fea

t2
56

Googlen
et

128

Googlen
et

256

Vgg64

Res
Net

32

Res
Net

64
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
·104

M
em

or
y

in
m

eg
ab

yt
es

DeepDSL DeepDSL∗ DeepDSL† Caffe Tensorflow

Fig. 5.2 Peak GPU memory use of DeepDSL, Tensorflow, and Caffe during training,
where the network names are followed by the batch size. DeepDSL∗ and DeepDSL† are
performance without tensor cache and without tensor & workspace cache respectively.
Caffe failed to run GoogleNet (batch 256) and both Caffe and Tensorflow failed to run
ResNet (batch 64) due to GPU memory exhaustion.

memory reduction is less significant if convolution workspace is a large portion of overall

GPU memory (e.g. 63% of memory use of Overfeat (batch 128) is convolution workspace.)

5.4 CPU-based Lenet experiments

DeepDSL currently provides limited CPU support to help the user achieve fast proto-

typing, such as encoding the complete LeNet network. In addition to applying extensive

optimization on the internal representation (IR) before code generation, DeepDSL employs

the standard copy-on-write optimization mechanism10 to allow sharing on unmodified

data resources. Furthermore, DeepDSL’s CPU mode also supports leveraging OpenCL11

for parallelism to gain further speedup. Such optimization results in a performance that’s

on par with Theano. Figure 5.3 shows our evaluation result of DeepDSL, Theano, and

Caffe on the same machine as described in Section 5.2. The experiments are performed
10https://en.wikipedia.org/wiki/Copy-on-write.
11https://en.wikipedia.org/wiki/OpenCL.

79

16 32 64 128 256 512

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

2,200

2,400

batch size

T
im

e
in

m
il

li
se

co
nd

s

DeepDSL Theano Caffe

Fig. 5.3 Runtime CPU performance of DeepDSL, Theano, and Caffe (1 forward/backward
iteration)

using different batch sizes ranging from 16 to 512 and the result is recorded as the time

spending on a full pass (an iteration that contains a complete forward and backward pass),

in milliseconds. We observe that DeepDSL is able to offer close performance as that of

Theano and Caffe. This is indeed a very impressive result, considering that the generated

source of DeepDSL is entirely Java code while both Theano and Caffe are C/C++ backed.

Also notice that DeepDSL has some warm-up time period in the beginning some iterations

when the internal data structure needs to be initialized at the start time. In fact, if we

deduct the time expense on warm-up, DeepDSL achieves slightly better CPU performance

than Theano.

80

Chapter 6

Related work

In this chapter, we review the current state-of-the-art DL frameworks in Section 6.1 and

provide a comprehensive comparison between DeepDSL and these frameworks in Sec-

tion 6.2. We also briefly describe the automatic differentiation that DeepDSL implements

in Section 6.3. We conclude this chapter with discussions on several DSL researches in

scientific computation using tensors in Section 6.4.

6.1 DL frameworks

In this section, we review some of the most widely accepted DL frameworks that achieve

state-of-the-art results, e.g. Caffe2/Caffe, Theano, TensorFlow, MxNet, Microsoft Cogni-

tive Toolkit (CNTK), and Torch/PyTorch. In addition, we will review other less popular

but decent frameworks, such as deeplearning4j, Apache Singa, BigDL, and Chainer, that

exhibit some unique or best-in-class features such as supporting dynamic network structure

(e.g. Chainer) or asynchronous distributed computation (e.g. Apache Singa). Finally, as

a comprehensive summary of these frameworks, we will also highlight some other small

but elegant frameworks that either have coverage on specific application domain (e.g.

MatConvNet, a MATLAB toolbox) or offer direct support for some particular model

(e.g. RNNMELM for the hybrid RNN and ME model). These frameworks leverage one

or more general-purpose programming languages to support the DL development by

providing either direct encoding of the key DL data structures or abstractions of the

81

coarse-grained DL network description. The majority of these frameworks have either

comprehensive built-in C/C++ core API that encode the DL structure (e.g. TensorFlow

and Caffe2/Caffe) or support the low level unit operations (e.g. CNTK) for arbitrary

network structure. Some frameworks also leverage some C/C++ oriented APIs to achieve

efficient unit mathematical computations. For instance, PyTorch and Torch both use the

TH, THC, THNN, THCUNN C libraries, deeplearning4j uses OpenMP and ND4J for

C/C++ backend code. While we will highlight the most important features for each of

these frameworks, we will mainly focus on three critical aspects:

• DL network structure representation;

• DL computation optimization;

• computation job scheduling.

We will discuss the main differences between DeepDSL and these frameworks with respect

to these three aspects and show the advantages that DeepDSL has over them in Section 6.2.

Caffe/Caffe2 Caffe [51] is one of the first few DL frameworks that uses the concept of

tensor (Caffe’s tensor is defined as a 4D array) and provides a modularized design. Caffe’s

DNN is a directed acyclic graph and constructed by connecting the uniformly defined DL

network layers together using the “Blob” (a 4D tensor array) construct. Caffe separates

its DL network model representation (defined with Protocol Buffers [40]) from the actual

model parameter calculation implementation. Caffe uses the layer-wise coarse-grained

tensor arithmetic computation approach and its node in the computational graph is the

layer. It predicts the amount of memory that is needed for a layer computation and

uses that information to reserve memory in host or GPU. Caffe’s core implementation is

written in pure C++ and achieves similar performance as that of native code in its CPU

or GPU versions (this also means each new layer requires new function implementations

for both CPU and GPU). The user’s protobuf file layer definition is directly mapped to

the internal API calls and thus there is no job scheduling concept in Caffe. Essentially,

Caffe serves the purpose of library calls. The more current Caffe2 [30] improves Caffe in

several few aspects. First, it provides first-class support for large-scale distributed training;

82

Specifically, Caffe2 uses Gloo [47], a communications library, for multi-machine training

and NVIDIA’s NCCL [18] for multi-GPU communications. Second, Caffe2 leverages

Redis [85], an fast in-memory database that is often used as cache or message broker, to

facilitate management of nodes in distributed training. Finally, Caffe2 supports mobile

deployment and can run models on lower powered devices.

Theano Theano [13, 98] is a software library written in Python, C and CUDA1. It is a

domain-specific compiler. Typically the user writes Python code to build a computation

graph and lets Theano compile it. Theano optimizes the graph and generates C and/or

CUDA code to perform the computation. In details, tensor.grad() traverses the graph from

the output back towards the input through all apply nodes (apply nodes are those that

define which computations the graph does). For each such apply node, its op construct

defines how to compute the gradient of the node’s output with respect to its input. If an

op does not provide this information, it is assumed that the gradient is not defined. Using

the chain rule these gradients can be composed in order to obtain the expression of the

gradient of the graph’s output with respect to the graph’s input. Theano optimizes the

graph computation by identifying and replacing certain patterns in the graph with other

specialized patterns that produce the same results but are either faster or more stable.

Optimizations can also detect identical subgraphs and ensure that the same values are

not computed twice or reformulate parts of the graph to a GPU specific version. Theano

normalizes mathematical expressions to remove redundancies and useless calculations;

for instance, one simple optimization Theano uses is to replace the pattern xy
y

by x.

Theano mainly supports computation on numpy.ndarray, but Theano also supports sparse

matrices. It allows users to define symbolic variables and functions (mostly around its

tensor objects from NumPy) to encode DNN and compile these symbolic expressions to C

implementation via its symbolic expression compiler. There is no automatic job scheduling

in Theano2. In practice, Theano has trouble handling large graphs (large number of nodes)

and deep graphs (long chain between input and output), which can lead to crashes or
1there is also a incomplete support of an OpenCL back-end in the latest version.
2In the multiple-GPU case, platoon [31] can be leveraged to coordinate the results of workers by means

of communication between the controller and the workers.

83

long compilation times. There have been a few frameworks evolved from Theano that

have gained popularity. Pylearn2 [39] augments Theano to mainly focus on ease-of-use

aspect. It adds support for reusable sub-component, cross-platform serialization of learned

models by leveraging YAML to allow specifying an entire experiment without having to

write any python code (this is similar to how Caffe leverages Protocol Buffers to describe

the network model), Pylearn2 provides dataset interfaces for populate data types such

as vector, images, or video. Pylearn2 also provides some limited visualization support

such as its model monitor. Blocks [104] is developed in parallel with Fuel [104], a dataset

processing framework. it expands Theano to support parametrized Theano operations

(This is named “Brick”) and it uses pattern matching to select variables and bricks in

large models. It provides monitoring and analyzing facilities during training progress for

both the training and test datasets. Lasagne [62] is a lightweight library to build and

train neural networks in Theano. It supports feed-forward networks as well as recurrent

networks such as Long Short-Term Memory (LSTM). it allows architectures of multi-input

and multi-output, including auxiliary classifiers. It has built-in support for a few activation

functions including Nesterov momentum [75], RMSprop [52] and ADAM [57]. Keras [53]

was initially built on top of Theano and later added TensorFlow as a backend engine.

Like Lasagne, Keras supports convolutional networks and recurrent networks, or the

combination of the two. Like Lasagne, it also supports multi-input and multi-output

training. The difference between Lasagne and Keras is that Keras adds a higher level

wrapper on Theano and recently TensorFlow. The wrapper in Keras is able to describe the

DNN graph structure in an abstract way. Keras adopts an object-oriented design, namely,

everything in Keras, e.g. layers, models, optimizers, is an object. cudamat [70], while

does not have direct support for DNN data structures, is worth mentioning as it provides

some matrix facilities that allows easy CUDA-enabled GPU mathematical calculations.

Specifically, It supports conversions against the Numpy ndarray3 data structure and the

basic GPU matrix calculations. It also maps CUDA errors into Python exceptions which
3A Numpy multidimensional array.

84

eases the user’s troubleshooting. Gnumpy [99], built on top of cudamat, is a Python

module that works in a similar way like Numpy, but does its computations on GPU.

TensorFlow TensorFlow [1] shares many common paradigms as that of Caffe. Its

core is also written in C++ and its computation graph is described with a DAG where

tensors (similar as Caffe’s blobs) and layers are alternatively arranged. However, there are

also a lot of important differences between TensorFlow and Caffe in the core design. In

TensorFlow, each node is a tensor operation (e.g. matrix add/multiply, convolution, and

etc.). That is, the building brick of TensorFlow is in unit computation granularity while

the building block of Caffe is the coarse-grained layers. Such design enables TensorFlow

to provide better flexibility. Specifically, unlike Caffe, TensorFlow no longer needs to

define the full forward, backward, and gradient update functions for new layer types. Also

due to the finer-granularity of the node, there is no need in TensorFlow to provide extra

functions when both CPU and GPU computation need to be supported. TensorFlow

use a PS (parameter server) to analyze and distribute the user defined computational

graph, i.e. the DAG. PS performs some optimization before distributing the DAG and

generates subgraphs from the DAG. The main optimization is done on the operational

aspects such as data communication and memory usage handling. TensorFlow also does

some optimization on the DAG with common subexpression elimination. In summary,

TensorFlow’s global optimization is against the DAG. When the worker node gets the

subgraph for computation, it can perform partial gradient along the backwards path using

the chain rule and only computes the necessary gradient along the way (This means if an

operation has two outputs and the gradient computation for a node only needs one output,

then the gradient function of the other one will be set the zero to avoid unnecessary

calculation). Like Theano and Caffe, TensorFlow separates the execution from the layer

construction. It goes one step further to enable mapping the computation not only to

single device but also multiple devices. In TensorFlow, such mapping is named node

placement. TensorFlow runs a simulated execution using a heuristic to decide which device

a specific branch of the DAG should run on. Like Theano, TensorFlow provides additional

supports such as allowing control flow to be imposed on the DAG, queues that allow

85

different subgraph to execute asynchronously. Finally, unlike Caffe’s 4D array limitation,

TensorFlow’s tensor is a typed (including integer, float, double, complex number, and

string) multi-dimensional array. TensorFlow’s tensor is also different from that of Theano

in that it is persistent mutable. This design consideration has pros and cons. Having

persistent mutable tensor allows the tensor to be carried across executions of a graph and

reused. However, it also increases the difficulty of code optimization and debugging.

MXNet MXNet [15] uses multi-output symbolic expressions, denoted as Symbols, to

declare the computation graph. Symbols are connected by operators, such as simple

matrix operations (e.g. x.__mul__(y) for x ∗ y), or a complex neural network layer (e.g.

convolution layer). An operator can take several input variables, produce more than one

output variables, and have internal state variables. A variable can be either free, which

can be bound with value later, or an output of another symbol. MXNet leverages lazy

evaluation. Before evaluation, MXNet transforms the graph to optimize the efficiency

and allocate memory to internal variables. Since each variable’s lifetime, namely the

period between the creation and the last time used, is known for a computation graph,

MXNet can reuse memory for non-intersected variables. With respect to job scheduling,

MXNet employs two heuristics strategies for memory optimization. The first, in-place,

simulates the procedure of traversing the graph, and keeps a reference counter of depended

nodes that are not used so far. If the counter reaches zero, the memory is recycled. The

second, co-share, allows two nodes to share a piece of memory if and only if they cannot

be run in parallel. Exploring co-share imposes one additional dependency constraint.

In particular, each time upon scheduling, among the pending paths in the graph, the

longest path is searched and required memory allocations are performed. The dependency

engine uses multiple threads to schedule the operations for better resource utilization

and parallelization. Furthermore, MXNet provides both declarative and imperative

programming styles and multiple language supports (by embedding into multiple host

languages and unifying the execution with one backend engine). MXNet is also based on a

multi-dimensional array for tensor computation. Like TensorFlow and CNTK, it resolves

the graph dependencies and schedules the execution against multiple devices (Like CNTK,

86

can be on a different machine and a 2-level data communication mechanism is employed

for the intra- and inter-machine synchronization).

CNTK As a relatively new system, Computational Network Toolkit (CNTK) [111]4

tackles the DL computations in a different way from others. CNTK exposes to the

user a set of pre-defined Network Definition Language (NDL) functions (e.g. Convolve,

MaxPooling) that are internally implemented as computational nodes. Users can also

write their own NDL to describe the particular DL network in consideration. CN is

a DAG with two types of vertices. The first type represents some basic computation

(e.g. Add, Times, Plus) while the second type represents vertices holding operands and

have edges towards a computation node. Such low level computation scheme enables

CNTK to encode arbitrary computational network and the CNTK core can assign each

computation node to a particular CPU/GPU device (these devices may be from different

machines as well). CNTK provides both C++ and Python API interfaces to define models,

learning algorithms, data reading and distributed training. Recent versions also support

Protocol Buffers for these definitions. CNTK decides its computation order via depth-first

traversal of the directed acyclic graph (DAG). CNTK optimize memory usage by 1. using

the same memory across mini-batches (i.e. do not destroy and reallocate memory at

each mini-batch); 2. sharing memory across computation nodes when possible (This is

achieved by analyzing the execution plan and release the memory back to a pool to be

reused whenever possible; for example, when a node finished computing all its children’s

gradients, the matrices owned by that node can all be released). Finally, CNTK leverages

a technology named 1-Bit Quantized SGD [87] to quantize gradients with just 1 bit so

that the communication cost between computation nodes is reduced.

Torch/PyTorch Torch [17] leverages the Lua programming language to provide easy

integration with C (It achieves C-like performance for most of the pure Lua code using

the Lua Just In Time (JIT) compiler). Also, as a relatively long endeavor in fields like

machine learning and neural network, it has accumulated a large set of optimized routines
4Recently the name was modified to Microsoft Cognitive Toolkit but the acronym CNTK remains.

87

to help users gain results faster. In addition to CPU/GPU, it also supports mobile

and FPGA backends. Torch’s core is a N-dimensional array, i.e. Torch Tensor, as well

as a comprehensive set of routines operating on the Tensor, such as indexing, slicing,

transposing, and etc. Torch 7 now supports automatic differentiation by wrapping the

tensor class into a new thin-layer Variable class and performing backward computation

against it. Torch provides a “nn” package that supports many existing neural network

models that work directly against the Tensor. There is neither built-in optimization

support in terms of memory usage or computational speed nor job scheduling in Torch.

Torch is provided rather as a handy toolbox with many out of box routines ready to be

used, given the user understands the neural network forward / backward computation

well and can program in Lua to some extent. As a more recent effort, PyTorch [79],

improves Torch in a few aspects. First, PyTorch supports the more popular Python

language instead of Lua by means of integration with the Numpy package, a Python

version of N-dimensional tensor. Second, it supports distributed computation via its

new torch.distributed package. PyTorch does the distribution using message passing

(coordinate with a master node) between worker nodes, either in a point-to-point manner

or collectively (i.e. all individual processes in a set can communicate with each other).

Finally, it adds custom memory allocators for the GPU to gain better memory usage.

deeplearning4j deeplearning4j [97] is developed mainly with Java and serves as a

distributed neural net library. Similar to Numpy ndarray, deeplearning4j extends its

functionalities from a n-dimensional array class defined in its ND4J module. The most

noticeable feature of deeplearning4j is its integration with the MapReduce [22]5 framework

Spark [112]6 and Hadoop [108]7, through the deeplearning4j-scaleout module. In addition,

deeplearning4j contains a deeplearning4j-modelimport module to import models from

other frameworks for convenience. deeplearning4j leverages OpenMP for better parallel
5MapReduce is a distributed cluster programming model that can process and generate large data

sets in parallel.
6Spark is a MapReduce based distributed computation framework that perform computational tasks

in memory parallelly.
7Hadoop is another MapReduce based framework that supports distributed processing of large data

sets across clusters of computer nodes.

88

performance on CPUs. deeplearning4j improves GPU memory usage by allocating each

GPU memory chunk once and cache it for further reuse. The GPU device constant memory

is used for ShapeInfo and TAD (Tensor along dimension) cache for faster access from kernel

context. deeplearning4j improves the computation efficiency via two parallelism models:

a. Element-level parallelism: threads in grid use the same linear buffer; b. TAD-level

parallelism: grid is split into blocks, each block is linked to one TAD. Finally, in the

Multi-GPU environment, one Java thread is attached to one GPU at any given moment.

Apache Singa Apache Singa [76] defines two core abstractions, Tensor and Device.

The Tensor abstraction encapsulates a multi-dimensional array and its related functions

as well as model variables. The Device manages the memory for a tensor and executes

tensor operations on CPU, Cuda GPU, or OpenCL-based8 generic GPU interfaces. It

then provides a set of higher level data structures, e.g. Layers (for neural network), Loss

(defines the training objective loss functions), or Optimizer (updates the parameters using

methods such as SGD). This design makes it very close to Caffe framework. In fact,

Singa also requires explicit layer definition as well as the associated forward and backward

functions definition and coding. Singa supports a variety of popular deep learning models,

i.e., feed-forward models including convolutional neural networks (CNN), energy models

like restricted Boltzmann machine (RBM), and recurrent neural networks (RNN). Many

built-in layers are provided for users. Singa architecture is sufficiently flexible to run

synchronous, asynchronous and hybrid training frameworks. In addition, Singa supports

different neural net partitioning schemes to parallelize the training of large models, i.e.,

partitioning on batch dimension, feature dimension or hybrid partitioning. Singa uses

ZooKeeper [32] to coordinate the training, and uses ZeroMQ [78] for transferring messages.

BigDL BigDL [49], modeled after Torch, is the latest DNN framework from Intel. The

main focus of BigDL is to be a deep learning library for Apache Spark. Therefore, the

user’s DL algorithm written with the BigDL library works as a standard Spark program.

BigDL allows the user to load pre-trained Caffe or Torch models into Spark programs
8https://en.wikipedia.org/wiki/OpenCL.

89

using BigDL. BigDL also claims it can achieve magnitude faster performance than out-

of-box open source Caffe, Torch or TensorFlow on the intel-based system with the Intel

MKL. Specifically, BigDL achieves comparable performance in intel CPU as that of the

mainstream GPU.

Chainer Chainer [100] concerns the forward (input processing) and backward (gradient

calculation) computation. Comparing to the fixed "define-and-run" paradigm, which

constructs a computational graph and then fetch mini-batch info the graph periodically to

do forward and backward (adopted by many frameworks such as Torch, Theano, and Caffe),

Chainer follows a "define-by-run" pattern which essentially allows modifying the control

flow (such as changing the computation graph in each iteration) during the execution

of a computational graph (achieved by storing the order of operations during the graph

contruction).

MShadow MShadow [26] is a Matrix/Tensor Template Library in C++/CUDA. It sup-

ports writing lazily evaluated expressions and compile-time optimization. The MShadow

code can run on both CPU and GPU without changes, the details are handled internally

by the compilation process. Users of MShadow do not need to preallocate memory for the

Tensor defined, however, they need to specify the details such as shape and stride of the

Tensor for MShadow to allocate the memory at compile-time. The “mshadow-ps” interface

in MShadow allows the user to write multi-gpu and distributed programs in an unified

way by implementing a two-level asynchronous parameter server where the intra-machine

communication is at level 1 and inter-machine communication is at level 2 [65]. It can

apply different consistency models at different levels to trade-off the algorithm efficiency

and system performance as the data communication at level 1 is normally as much as

10X faster than at level 2.

Other C/C++ based frameworks, such as CUV [48], OpenNN [7], cuda-convnet2 [58],

and neuralnetworks [4], while only provide limited functions (e.g. OpenNN requires

non-trivial C++ efforts to implement even a simple and straightforward neural network)

on limited environments (e.g. CUV can only run on certain Linux distributions), are

90

worth mentioning as they provide supports for popular DL computations needs with

special focuses, in the format of programming libraries. For example, CUV supports

the python bindings for easy use of Nvidia CUDA functions on matrices. It also has an

Restricted Boltzmann machine (RBM) [92] [45] and annealed importance sampling [72]

implementation as well as library code to calculate the partition function exactly. OpenNN

supports neural networks parallelization with OpenMP on CPU and CUDA on GPU.

It provides a GUI Neural Designer to support data entry and interpretation of results9.

cuda-convnet2 implements the feedforward neural networks and can model arbitrary layer

connectivity and network depth. Its multi-gpu training supports data parallelism, model

parallelism, and a hybrid approach [59] for cross GPU parallelization. neuralnetworks

provides support for GPU-based computation for training deep neural networks via

OpenCL and Aparapi. It is one of the earliest Java libraries that allows the user to

program the DNN tasks in Java. Its OpenCL interfaces offer the flexibility to run code on

more GPU machines but also restrict it to achieve the best performance comparing to

specialized GPU APIs, such as Nvidia CUDA.

As the major tool for numerical computing, MATLAB [67] has been widely used in

machine learning. Although all are still in early stage at the time of this thesis writing,

there have been some efforts to try integrating deep learning support into Matlab platform

lately, in the format of MATLAB toolboxes10. MatConvNet [106] is a MATLAB toolbox

implementing CNN for computer vision applications. it relies heavily on the VLFeat

library [105]11 internally for the CNN computations. One convenient highlight is that

MatConvNet provides many pre-trained CNNs for image classification, segmentation, face

recognition, and text detection. Like Caffe, ConvNet [23] operates on 4-dimensional tensors.

Two noticeable features are: 1. ConvNet can import and use pre-trained MatConvNet

models; 2. ConvNet implements the Invariant Backpropagation (IBP) [24] and Adversarial

Training (AT) [38] algorithms. LightNet [110] provides MLP, CNN and RNN deep learning
9https://www.neuraldesigner.com.

10The MATLAB toolbox extends the out-of-box MATLAB functionalities to meet some special domain
needs, such as MATLAB machine learning toolbox.

11VLFeat is a C-based library that implements a set of computer vision algorithms for image under-
standing and local features extraction and matching.

91

support purely in the MATLAB environment. Since LightNet relies on the underneath

MATLAB computational power, its major computations are vectorized and is implemented

in just hundreds of lines of code. Simplicity is the biggest advantage of LightNet for the

mathematically oriented users.

There are also some frameworks that are specialized in some certain application domains.

Nengo [11] is a graphical and scripting based Python library for simulating large-scale

neural systems. It is based on the Neural Engineering Framework (NEF) [29] to simulate

the mechanism of the neural structure. NEF is based on three principles: 1. Representation:

A group of neurons represents a vector of a specific length; 2. Transformation: A

connection from one neural group to another computes a function on the represented

value; Dynamics: Recurrent connections generates the complex dynamical models. This

essentially matches with the classic DNN representation. The goal of Neogo, quite different

from implementing existing popular DNNs (such as CNN), is to create biologically plausible

models of cognition [94]. The reason is two-fold. First, it tries to use realistic neurons to

better evaluate neural network theories; second, the generated neural network based on

the three NEF principles can suggest new types of algorithms. Specifically, the neurons

approximate the algorithm during the learning process. There are not only no predefined

neural parameters but also no sophisticated pre-defined functions. The learning process is

forced to use the basic operations that are available for neurons.

NeuralDesigner [6] is a DL tool to solve predictive analytics and data mining applica-

tions. It was originally developed from OpenNN and is mainly for commercial usages (e.g.

business intelligence, health care applications, and etc.). The advantage of NeuralDesigner

is that it provides a complete suite of GUIs during the learning work flow with its Neural

Editor and Neural Designer packages. In other words, it allows the user to perform

visual parameter settings, model selection, training action, result analytics, and model

deployment.

A few C-based libraries also exist. RNNLM [69] is a RNN-based Language models

Toolkit. It leverages RNN to train RNN-based language model and can also train hash-

based maximum entropy model (ME) and RNNMELM [68]: the hybrid of RNN and

92

ME models. RNNLM can help improve existing systems for speech recognition and

machine translation. RNNLIB [42] is another recurrent neural network library focusing

on sequence learning problems. It leverages Long short-term memory (LSTM) [41] to

generate complex sequences with long-range structure by predicting one data point at a

time. RNNLIB predicts in a “fuzzy” way by synthesizing and reconstituting the training

data using RNN’s internal representation to perform a high-dimensional interpolation

between training examples and rarely generating the same thing twice. It avoids the curse

of dimensionality and thus has better performance at modeling real-valued or multivariate

data than exact matches.

6.2 Core feature comparison between DeepDSL and

existing frameworks

There are several unique features that differ DeepDSL from other frameworks. In this

section, we discuss these features and compare DeepDSL with other frameworks in details.

Like a few other mainstream frameworks (e.g. TensorFlow, MXNet, and etc.), DeepDSL

supports automatic differentiation. Unlike the other frameworks, the output expressions

of intermediate representation (IR) remain fully abstract after symbolic gradient, which

allows the DeepDSL compiler to statically infer the dimensions of tensors in each layer,

check whether the layers are properly connected, and automatically insert tensor reshaping

operations as necessary. Errors caused by incorrect parameter dimensions are caught

before code generation.

DeepDSL program directly encodes the mathematical representation of DL networks,

where each layer is represented as a tensor function. The entire network is then rep-

resented as a composition of these functions. The result intermediate representation

(IR) remains abstract and human readable. The biggest advantage of such design is it

allows the DeepDSL compiler to handle the abstract syntax tree (AST) rather than the

computation graph, and thus the processing steps are standardized regardless the structure

and complexity of the computation graph. i.e. DeepDSL compiler can apply a series

93

standard compiler technologies, i.e. simplification, optimization, and transformation to

the DeepDSL program, which largely helps computation optimization, such as redundant

expression calculation removal via common subexpression elimination, code specialization

via vectorization; moreover the IR can be compiled to any target environments with great

flexibility for desired customization.

For automatic task scheduling, DeepDSL analyzes the dependencies of the DSL

expressions during the optimization stage to determine when each DSL expression is ready

to run. Such information is obtained by directly analyzing the variable dependency of

the IR expressions. There is no dedicated data structure such as a graph for representing

the relations between layers. DeepDSL also reorders the execution of IR expressions so

that tensor objects are allocated as late as possible but deallocated as early as possible to

reduce the peak memory consumption.

DeepDSL also provides statement by statement memory usage analysis against the

IR, which gives the user great knowledge of exactly what to expect before executing the

program. The output Java code also runs independently without the presence of DeepDSL

itself. In addition, The java code generated by the DeepDSL compilation can be debugged

easily in any mainstream IDEs that support Java development.

One main drawback of the other framework is the long list of required dependencies

before getting things up and running. DeepDSL, on the contrary, is designed to be

lightweight and portable from the very beginning. In fact, only one major external

dependency group, a set of JNI wrappers used to interface with CUDA/CUDNN APIs,

are needed for the computation. This gives the user the convenience of fast installation

and prototyping. Such “minimalism” design will also simplify efforts for the upcoming

DeepDSL releases that aim at supporting distributed computation and mobile environment.

Table 6.1 summarizes the detailed comparisons between DeepDSL and the other

mainstream frameworks.

94

Table 6.1 Core feature comparison between DeepDSL and existing frameworks
Features DeepDSL Caffe

Caffe2
Theano
Keras
Lasagne
Pylearn2

TensorFlow MXNet CNTK Torch / Py-
Torch

deeplearning4j

computation
optimization

compiler
level opti-
mization on
IR

hardcode
/ partial
optimization

symbolic
gradient
optimization

computation
graph-based
optimization

computation
graph-based
optimization

computation
graph-based
optimization

N.A. threading-
based opti-
mization

memory op-
timization

compile-time
dependency
analysis and
heuristic
for earli-
est unused
memory
recycling

shared mem-
ory and
3rd party
memory op-
timizer with
multiload-
ing: reuse
memory
from previ-
ous blobs in
later blobs

expression
graph-based
optimization

default:
map all
GPU visible
memory to
process; al-
low_growth:
allocate only
as much
GPU mem-
ory based
on runtime
allocations;
per process
gpu memory
fraction:
determine
the fraction
of overall
memory that
each visible
GPU should
be allocated

computation
graph-based
optimization

parameter
sharing of
the same
model
between
multiple
threads

3rd party
memory
optimizer

“Off-heap”
(allocate
memory out-
side of the
JVM) for
NDArrays

automatic
differentia-
tion

yes no yes yes yes yes yes no

automatic
job/task
scheduling

yes no no (can be
partially
support with
3rd party
package)

yes yes yes no no (can par-
tially sup-
port using
YARN12)

debuggability very easy
(can directly
debug in any
mainstream
IDEs / in-
sert any log
statements
in generated
code)

rather
difficult
(requires
certain level
understand-
ing of C++
debugging
skill and in-
depth Caffe
DL imple-
mentation)

difficult
(requires
certain level
Python
knowledge
and theano
details)

difficult
(requires
in-depth un-
derstanding
of Tensor-
Flow and its
tool tfdbg)

rather diffi-
cult (require
certain skills
for debug-
ging C/C++
libraries
called by
Python)

difficult
(can become
easier if
leverage
Microsoft’s
proprietary
IDE Visual
Studio)

difficult
(requires in-
depth Lua
debugging
skills)

difficult
(requires
C++/C de-
bugger such
as gdb13)

Modifiability easy (can
modify both
the DSL and
generated
code)

easy for
network
definition;
difficult for
internal
functions

easy for
surface code,
difficult for
internal
functions

easy for fron-
tend code,
difficult for
internal core

easy for
wrapper
code, dif-
ficult for
C++/C
library code

easy for
surface code,
difficult for
core

intermediary
difficulty
for frontend
Lua code,
difficult for
library code

easy for
wrapper
code, dif-
ficult for
C++/C
native code

Complexity
of dependen-
cies

low (only
one major
JNI library
dependency
to call GPU)

high high medium to
high

medium medium medium high

Run indepen-
dently

yes (can run
without the
presence of
DeepDSL
tool)

no no no no no no no

memory us-
age analysis

compile-time
memory us-
age analysis
in statement
by statement
granularity

no limited with
profiler

very limited no no no

mobile envi-
ronment sup-
port

no (plan
in future
versions)

supported in
Caffe2

no yes yes no no very limited
(does not
support
real-world
dataset/DL
structure)

distributed
computation

no (plan in
next version)

supported in
Caffe2

supported in
Keras

yes yes yes yes (via
torch.distributed
package)

yes (via inte-
gration with
Spark14)

dynamic
computation
graph

no (plan
in future
versions)

no no yes (via Ten-
sorflow Fold)

no supported in
PyTorch

no

95

6.3 Automatic differentiation

The computation of derivatives may be processed via numerical differentiation, symbolic

differentiation (of mathematical expressions), or automatic differentiation (of mathematical

programs) [8].

Numerical differentiation estimates the derivative value from the mathematical def-

inition. For example, the derivative of a function f(x) can be defined by f ′(x) =

limh→0
f(x+h)−f(x)

h
. Numerical differentiation is suitable when the function is unknown

and can only be sampled.

Symbolic differentiation manipulates mathematical expressions. For example, d
dx

(x2 cos(x))

reduces to x(2 cos(x)− x sin(x)). Rules such as product rule and chain rule are applied to

calculate the derivative for each math expression and the result is simplified to achieve

the final output. Symbolic differentiation may lead to inefficient code without sufficient

optimization and it may not be applicable to computation problems that cannot be

expressed as mathematical expressions.

Automatic differentiation [73] manipulates mathematical programs with control flow

logic. Central to automatic differentiation is the application of chain rules to break down

complex expressions into simpler ones and apply either forward or reverse accumulation [66]

to obtain the final result. Forward accumulation directly applies chain rule to expressions.

For example,
df1(f2(f3(x)))

dx

= f ′
1(f2(f3(x)))× df2(f3(x))

dx

= f ′
1(f2(f3(x)))× f ′

2(f3(x))× df3(x)
dx

= f ′
1(f2(f3(x)))× f ′

2(f3(x))× f ′
3(x)

Reverse accumulation first computes f ′
1(f2(f3(x))), then f ′

1(f2(f3(x))) × f ′
2(f3(x)), and

finally f ′
1(f2(f3(x)))× f ′

2(f3(x))× f ′
3(x). Temporary variables are needed to hold inter-

mediate results. For example, we need to have the assignments y1 = f ′
1(f2(f3(x))) and

y2 = y1 × f ′
2(f3(x)) so that the final result is y2 × f ′

3(x).

96

DeepDSL implements automatic differentiation by applying the derivation rules to

the tensor expression that encodes DL network. DeepDSL uses a variation of the reverse

accumulation method, which first transforms the tensor expressions into a SSA (static single

assignment) form and then derives all parameter gradients together without redundant

computation.

6.4 DSL on scientific computing with tensors

A number of DSLs have emerged recent years in the scientific computing applications such

as TCE (Tensor Contraction Engine) [10], UFL (Unified Form Language) [3], SPL [109]

(DSL for signal processing).

TCE [10] is a high-level Mathematica-like DSL for implementing scientific computation

in areas such as quantum chemistry, which involves the contractions of multi-dimensional

arrays (or tensors). The objective is to improve the runtime and memory efficiency of

tensor contractions on parallel platforms. The TCE compiler searches for an optimal

implementation and generates FORTRAN code accordingly. TCE performs a sequence of

steps to achieve such goal. First, algebraic transformations are used to reduce the number

of operations. Second, loop fusion is conducted to minimize the storage requirements. For

the intermediate arrays that are allocated dynamically, TCE provides an algorithm to

search the optimized evaluation order. TCE also provides support for re-computation for

a reduction in storage requirements when the computation fail to fit within the disk limits

and optimize the communication cost together with finding a fusion configuration for

minimizing storage when the target machine has multi-processor. DeepDSL also performs

tensor contraction operation by translating it to matrix product though it is simpler

compared with TCE, which optimizes multiple contraction operations. The computation

dependencies of TCE form a tree that can have optimal schedule for memory while the

computation dependency of DeepDSL forms a graph that is scheduled by heuristics.

UFL [3] provides a DSL to express variational statements of partial differential equations

(PDEs) in near-mathematical notation. Instead of providing a problem solving environment,

97

UFL generates abstract representations of problems that can be used by form compilers

to create concrete code implementations in general programming languages. As a general

purpose DSL for partial differential equations, UFL offers complete notations for the

arithmetic operations in terms of tensor. UFL’s support of tensor and tensor algebra

is similar to DeepDSL in that both define tensors in terms of their indices and related

dimensions. UFL is solely a set of abstractions that can be used to represent partial

differentiation equations or formulas (it relies on separate form compilers to provide

different concrete language bindings), while DeepDSL not only abstracts out the core

deep learning concepts but also provides complete support for all the most important

deep learning aspects, such as gradient computation, optimization, and code generation.

98

Chapter 7

Conclusion

In this thesis research, we have designed and implemented an end-to-end DSL solution,

DeepDSL, for encoding deep learning networks to achieve the training and inference goals.

Both the Code authored with the DSL constructs defined in DeepDSL and the generated

source are easy to understand and modify. The generated source is very portable to run

across platforms, and highly optimized to offer very competitive runtime and memory

efficiency.

The development of DeepDSL also demonstrated the utility of rule-based symbolic

reduction in mathematical computation. DeepDSL programs are encoded in objects that

represent mathematical abstractions. The high-level optimization process, which includes

gradient derivation, simplification, and vectorization, is entirely based on rule-based

symbolic reduction, which is is easy to understand, implement, and enhance.

The result of the high-level optimization remains a sequence of abstract computation

steps, which is further improved with the compilation-based optimization such as common

subexpression elimination and the low-level optimization such as inlining and in-place

computation. The final result of optimization is a sequence of statements that directly

correspond to function calls of the underlying libraries. The sequence of statements are

scheduled based on their dependencies to achieve better memory efficiency before they

are mapped to the output Java source code.

99

DeepDSL generates Java source code. This provides several advantages compared to

other DL libraries. The generated Java program is already optimized so that it does not

incur lengthy startup time like other libraries, which must repeat the same preprocessing

steps each time a DL program is launched. Also, the generated Java program has minimal

dependencies and can run on all major operation systems such as Windows, macOS, and

Linux without any changes or rebuild; these advantages make DeepDSL far more portable

than other DL libraries.

Since it is compilation-based, DeepDSL can statically detect programming errors and

analyze memory consumption so that users can determine whether a DL network can run

on a computer platform at compile-time without actually deploy the code. The generated

Java program is easy to debug with an IDE such as Eclipse or IntelliJ where users can set

break points and inspect intermediate results, which is very difficult for most other DL

libraries.

7.1 Upcoming releases and future directions

Upcoming releases Our current interpreter mode in DeepDSL is only partially imple-

mented to support simple DNNs like em LeNet. We plan to make it full-fledged as the

compiler mode. This will bring benefit for the user who wants to understand the DeepDSL

internal execution of a DL workflow and also help DeepDSL developers to verify things

like tensor computations or internal optimization. In addition, although our main efforts

are on GPU-based code generation and optimization, we will also provide enough support

for CPU-based code generation. This in practice allows the user to quickly examine their

DL network design and verify results on a machine that is not equipped with the Nvidia

GPU.

DeepDSL provides its DSL constructs for encoding a DL network. Most of the existing

DL libraries leverage some external standard description file to define the network structure

and connections between nodes. For example, the prototxt-based configuration file format

in Caffe has been used widely in some benchmarking (e.g. convnet-benchmarks1). We
1https://github.com/soumith/convnet-benchmarks.

100

plan to add support for converting/generating these files automatically to/from the DSL

constructs as input to the DeepDSL compiler. This should help greatly reduce the user’s

time for authoring the DSL code and comparing the DSL code with other frameworks.

This will also increase the interoperability of DeepDSL so that a working network that

runs with other frameworks can also be verified and executed in DeepDSL quickly, and

vise versa.

Future directions DeepDSL is evaluated on convolutional neural networks. As future

directions, we plan to evaluate this approach on other types of neural networks such

as generative adversary network, reinforcement learning networks, and recurrent neural

networks. The static analysis of DeepDSL may also be used for supporting GPU memory

virtualization, where tensors can be temporarily moved from GPU memory to the main

memory when they are not used and be copied back when they are needed in later

computation.

We have leveraged JCuda to fully support the current version of CUDA API. Also

the CuDNN interface is used to run some complete DL functions right within GPU. This

proves to have superior performance than that of the pieced JCuda API calls due to

tremendously reduced CPU ↔ GPU data transfer time. However, such approach relies on

using a generic interface to handle all possible DL input and output which is not optimal

in terms of memory usage in many cases. We plan to add certain support to allow users

to customize and control the API library usages based on their needs.

The current version of DeepDSL only supports generated code to run on a single

GPU. In many advanced hardware environments, multiple GPUs are available on a given

server. Since DeepDSL compiler is capable of analyzing the dependencies in the tensor

computation process to collect the tensor functions that can run in parallel at runtime,

we plan to extend DeepDSL for supporting the multi-GPU environment.

It may be beneficial to leverage some specially designed hardware power with native

languages in some application domains. Generating target code in other languages is

indeed relatively straightforward since the DeepDSL IR remains fully abstract before code

101

generation; we plan to add the support for target code in other language when such need

arises.

Many current mobile devices already come equipped with capable GPUs. With these

increasingly capable hardwares, researchers have started investing more efforts for DNN in

the mobile environment. The Java source code output makes DeepDSL a good candidate

in this emerging research domain. Mobile environment has its unique constraints such as

limited battery life and frequently lost signal. These constraints entail new requirements

to the DeepDSL code execution, for example more balanced computation (for slower

battery draining) and data stored locally vs. remote data loading.

In summary, the aforementioned directions are the few we are considering at the present

stage. Nevertheless the compiler-based lightweight and portable essence of DeepDSL

should make it flexible in many other potential future expansions.

102

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals,
O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2016). TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems. ArXiv e-prints.

[2] Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers, Principles, Techniques.
Addison wesley.

[3] Alnaes, M. S., Logg, A., Olgaard, K. B., Rognes, M. E., and Wells, G. N. (2014).
Unified form language: A domain-specific language for weak formulations of partial
differential equations. ACM Trans. Math. Softw., 40(2):9:1–9:37.

[4] AMD (2011). Aparapi: Opencl gpu and multi-core cpu heterogeneous computing for
java.

[5] Appel, A. and Supowit, K. J. (1987). Generalizations of the sethi-ullman algorithm
for register allocation. Software – Practice and Experience, 17:417–421.

[6] Artelnics (2014). Neural designer for data mining using neural networks.

[7] Artelnics (2015). Opennn: Advanced analytics library.

[8] Bartholomew-Biggs, Michael adn Brown, S., Christianson, B., and Dixon, L. (2000).
Automatic differentiation of algorithms. Journal of Computational and Applied Mathe-
matics, 124(1-2):171–190.

[9] Basu, A., Hayden, M., Morrisett, G., and von Eicken, T. (1997). A language-based
approach to protocol construction. Kamin [43], pages 1–15.

[10] Baumgartner, G., Auer, A., Bernholdt, D. E., Bibireata, A., Choppella, V., Cociorva,
D., Gao, X., Harrison, R. J., Hirata, S., Krishnamoorthy, S., et al. (2005). Synthesis of
high-performance parallel programs for a class of ab initio quantum chemistry models.
Proceedings of the IEEE, 93(2):276–292.

[11] Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D.,
Choo, X., Voelker, A. R., and Eliasmith, C. (2013). Nengo: a python tool for building
large-scale functional brain models. Frontiers in neuroinformatics, 7.

[12] Bentley, J. (1986). Programming pearls: Little languages. Commun. ACM, 29(8):711–
721.

[13] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for Scientific Computing Conference
(SciPy). Oral Presentation.

103

[14] Chen, S.-C., Jain, R., Tian, Y., and Wang, H. (2015a). Guest editorial multimedia:
The biggest big data. Multimedia, IEEE Transactions on, 17(9):1401–1403.

[15] Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C.,
and Zhang, Z. (2015b). Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems. Neural Information Processing Systems, Workshop
on Machine Learning Systems.

[16] Cleaveland, J. C. (1988). Building application generators. IEEE Softw., 5(4):25–33.

[17] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011). Torch7: A matlab-like
environment for machine learning. In BigLearn, NIPS Workshop.

[18] Corporation, N. (2016). NCCL: Optimized primitives for collective multi-gpu com-
munication. https://github.com/NVIDIA/nccl.

[19] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,
20(3):273–297.

[20] Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal
Statistical Society. Series B (Methodological), pages 215–242.

[21] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y.
(2014). Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Advances in neural information processing systems, pages
2933–2941.

[22] Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data processing on large
clusters. Commun. ACM, 51(1):107–113.

[23] Demyanov, S. (2013). Matlab: Cnns for matlab for classification and segmentation.

[24] Demyanov, S., Bailey, J., Kotagiri, R., and Leckie, C. (2015). Invariant back-
propagation: how to train a transformation-invariant neural network. arXiv preprint
arXiv:1502.04434.

[25] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE.

[26] dmlc (2013). Matrix shadow:lightweight cpu/gpu matrix and tensor template library
in c++/cuda for (deep) machine learning.

[27] Dozat, T. (2016). Incorporating nesterov momentum into adam.

[28] Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159.

[29] Eliasmith, C. and Anderson, C. H. (2004). Neural engineering: Computation, repre-
sentation, and dynamics in neurobiological systems. MIT press.

[30] Facebook, I. (2017). platoon: Multi-gpu mini-framework for theano. https://caffe2.ai/.

[31] for Learning Algorithms, M. M. I. (2016). Caffe2: A new lightweight, modular, and
scalable deep learning framework. https://github.com/mila-udem/platoon.

104

https://github.com/NVIDIA/nccl
https://caffe2.ai/
https://github.com/mila-udem/platoon

[32] Foundation, T. A. S. (2014). Apache ZooKeeper: A centralized service for maintaining
configuration information, naming, providing distributed synchronization, and providing
group services. https://zookeeper.apache.org/.

[33] Freedman, D. A. (2009). Statistical models: theory and practice. cambridge university
press.

[34] Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of computer and system sciences,
55(1):119–139.

[35] Geoffrey, H. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507.

[36] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Conference
on Artificial Intelligence and Statistics, pages 249–256.

[37] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[38] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572.

[39] Goodfellow, I. J., Warde-Farley, D., Lamblin, P., Dumoulin, V., Mirza, M., Pascanu,
R., Bergstra, J., Bastien, F., and Bengio, Y. (2013). Pylearn2: a machine learning
research library. arXiv preprint arXiv:1308.4214.

[40] Google (2008). Protocol buffers. google’s data interchange format.

[41] Graves, A. (2013a). Generating sequences with recurrent neural networks. CoRR,
abs/1308.0850.

[42] Graves, A. (2013b). Rnnlib.

[43] He, K. and Sun, J. (2015). Convolutional neural networks at constrained time cost.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5353–5360.

[44] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[45] Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507.

[46] Huang, X., Zhao, T., and Cao, Y. (2014). Pir: A domain specific language for
multimedia information retrieval. Int. J. Multimed. Data Eng. Manag., 5(3):1–27.

[47] Incubator, F. (2017). Gloo: Collective communications library with various primitives
for multi-machine training. https://github.com/facebookincubator/gloo.

[48] Institute for Computer Science VI, U. o. B. (2015). Cuv: A c++ template and
python library.

[49] Intel (2016). Bigdl: Distributed deep learning library for apache spark.

105

https://zookeeper.apache.org/
http://www.deeplearningbook.org
https://github.com/facebookincubator/gloo

[50] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456.

[51] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

[52] Kenney, J. F. and Keeping, E. S. (1962). Root mean square. Mathematics of Statistics,
Pt. 1, 3rd edition, 4.15:59–60.

[53] keras team (2015). Keras: Deep learning library for theano and tensorflow.

[54] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., and Irwin, J. (1997). Aspect-oriented programming. In European conference on
object-oriented programming, pages 220–242. Springer.

[55] Kieburtz, R. B., McKinney, L., Bell, J. M., Hook, J., Kotov, A., Lewis, J., Oliva,
D. P., Sheard, T., Smith, I., and Walton, L. (1996). A software engineering experiment
in software component generation. In Proceedings of the 18th international conference
on Software engineering, pages 542–552. IEEE Computer Society.

[56] Kingma, D. P. and Ba, J. (2014a). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

[57] Kingma, D. P. and Ba, J. (2014b). Adam: A method for stochastic optimization.
CoRR, abs/1412.6980.

[58] Krizhevsky, A. (2014a). cuda-convnet2.

[59] Krizhevsky, A. (2014b). One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997.

[60] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105.

[61] Kronecker, L. (1903). Vorlesungen über die Theorie der Determinanten.

[62] Lasagne (2014). Lasagne: A lightweight library to build and train neural networks in
theano.

[63] LeCun, Y. and Bengio, Y. (1995). Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995.

[64] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[65] Li, M., Andersen, D. G., Park, J. W., Smola, A. J., Ahmed, A., Josifovski, V., Long,
J., Shekita, E. J., and Su, B.-Y. (2014). Scaling distributed machine learning with
the parameter server. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598.

[66] Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. BIT
Numerical Mathematics, 16(2):146–160.

[67] MathWorks (2016). Matlab: The language of technical computing.

106

[68] Mikolov, T., Deoras, A., Povey, D., Burget, L., and Černockỳ, J. (2011a). Strategies
for training large scale neural network language models. In Automatic Speech Recognition
and Understanding (ASRU), 2011 IEEE Workshop on, pages 196–201. IEEE.

[69] Mikolov, T., Kombrink, S., Deoras, A., Burget, L., and Cernocky, J. (2011b). Rnnlm-
recurrent neural network language modeling toolkit. In Proc. of the 2011 ASRU
Workshop, pages 196–201.

[70] Mnih, V. (2009). Cudamat: a cuda-based matrix class for python. Department of
Computer Science, University of Toronto, Tech. Rep. UTML TR, 4.

[71] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814.

[72] Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing,
11(2):125–139.

[73] Neidinger, R. D. (2010). Introduction to automatic differentiation and matlab
object-oriented programming. SIAM Rev., 52(3):545–563.

[74] Neighbors, J. M. (1986). The draco approach to constructing software from reusable
components. In Readings in artificial intelligence and software engineering, pages
525–535. Elsevier.

[75] Nesterov, Y. (1983). A method of solving a convex programming problem with
convergence rate o (1/k2). In Soviet Mathematics Doklady, volume 27, pages 372–376.

[76] Ooi, B. C., Tan, K.-L., Wang, S., Wang, W., Cai, Q., Chen, G., Gao, J., Luo, Z.,
Tung, A. K., Wang, Y., et al. (2015). Singa: A distributed deep learning platform. In
Proceedings of the 23rd ACM international conference on Multimedia, pages 685–688.
ACM.

[77] Petrova, S. S. and Solov’ev, A. D. (1997). The origin of the method of steepest
descent. Historia Mathematica, 24(4):361–375.

[78] project, T. Z. (2010). ZeroMQ: Distributed messagings. http://www.zeromq.org/.

[79] pytorch community (2016). PyTorch: Tensors and dynamic neural networks in python
with strong gpu acceleration. http://pytorch.org/.

[80] Qian, N. (1999). On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151.

[81] Reddi, S. J., Kale, S., and Kumar, S. (2018). On the convergence of adam and
beyond. In International Conference on Learning Representations.

[82] Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747.

[83] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature, 323(6088):533.

[84] Russell, I. (2012). The delta rule. University of Hartford, West Hartford. Accessed, 5.

[85] Salvatore, S., Pieter, N., and Matt, S. (2011). Redis: an in-memory database that
persists on disk. https://redis.io/.

107

http://www.zeromq.org/
http://pytorch.org/
https://redis.io/

[86] Schmidhuber, J. (2014). Deep learning in neural networks: An overview. CoRR,
abs/1404.7828.

[87] Seide, F., Fu, H., Droppo, J., Li, G., and Yu, D. (2014). 1-bit stochastic gradient de-
scent and application to data-parallel distributed training of speech dnns. In Interspeech
2014.

[88] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013).
Overfeat: Integrated recognition, localization and detection using convolutional net-
works. arXiv preprint arXiv:1312.6229.

[89] Sethi, R. (1975). Complete register allocation problems. SIAM journal on Computing,
4(3):226–248.

[90] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556.

[91] Sirer, E. G. and Bershad, B. N. (1999). Using production grammars in software
testing. In ACM SIGPLAN Notices, volume 35-1, pages 1–13. ACM.

[92] Smolensky, P. (1986). Information processing in dynamical systems: Foundations
of harmony theory. Technical report, COLORADO UNIV AT BOULDER DEPT OF
COMPUTER SCIENCE.

[93] Spall, J. C. (2003). Introduction to Stochastic Search and Optimization. John Wiley
& Sons, Inc., New York, NY, USA, 1 edition.

[94] Stewart, T. C. (2012). A technical overview of the neural engineering framework.

[95] Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. (2013). On the importance
of initialization and momentum in deep learning. ICML (3), 28:1139–1147.

[96] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1–9.

[97] Team, D. (2016). Deeplearning4j: Open-source distributed deep learning for the jvm.
Apache Software Foundation License, 2.

[98] Theano Development Team (2016). Theano: A Python framework for fast computa-
tion of mathematical expressions. arXiv e-prints, abs/1605.02688.

[99] Tieleman, T. (2010). Gnumpy: an easy way to use gpu boards in python. Department
of Computer Science, University of Toronto.

[100] Tokui, S., Oono, K., Hido, S., and Clayton, J. (2015). Chainer: a next-generation
open source framework for deep learning. In Proceedings of Workshop on Machine
Learning Systems (LearningSys) in The Twenty-ninth Annual Conference on Neural
Information Processing Systems (NIPS).

[101] Tratt, L. (2008). Domain specific language implementation via compile-time meta-
programming. ACM Transactions on Programming Languages and Systems (TOPLAS),
30(6):31.

[102] Van Deursen, A., Heering, J., and Klint, P. (1996). Language Prototyping: an
algebraic specification approach, volume 5. World Scientific.

108

[103] Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages: An
annotated bibliography. Sigplan Notices, 35(6):26–36.

[104] Van Merriënboer, B., Bahdanau, D., Dumoulin, V., Serdyuk, D., Warde-Farley, D.,
Chorowski, J., and Bengio, Y. (2015). Blocks and fuel: Frameworks for deep learning.
arXiv preprint arXiv:1506.00619.

[105] Vedaldi, A. and Fulkerson, B. (2008). VLFeat: An open and portable library of
computer vision algorithms. http://www.vlfeat.org/.

[106] Vedaldi, A. and Lenc, K. (2015). Matconvnet – convolutional neural networks for
matlab. In Proceeding of the ACM Int. Conf. on Multimedia.

[107] Walker, S. H. and Duncan, D. B. (1967). Estimation of the probability of an event
as a function of several independent variables. Biometrika, 54(1-2):167–179.

[108] White, T. (2009). Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st edition.

[109] Xiong, J., Johnson, J., Johnson, R. W., and Padua, D. (2001). SPL: A language and
compiler for DSP algorithms. In Programming Languages Design and Implementation
(PLDI), pages 298–308.

[110] Ye, C., Zhao, C., Yang, Y., Fermüller, C., and Aloimonos, Y. (2016). Lightnet: A
versatile, standalone matlab-based environment for deep learning. In Proceedings of the
2016 ACM on Multimedia Conference, MM ’16, pages 1156–1159, New York, NY, USA.
ACM.

[111] Yu, D., Eversole, A., Seltzer, M., Yao, K., Huang, Z., Guenter, B., Kuchaiev, O.,
Zhang, Y., Seide, F., Wang, H., et al. (2014). An introduction to computational networks
and the computational network toolkit. Microsoft Technical Report MSR-TR-2014–112.

[112] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. (2010).
Spark: Cluster computing with working sets. In Proceedings of the 2Nd USENIX
Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley,
CA, USA. USENIX Association.

[113] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

[114] Zhao, T. and Huang, X. (2018). Design and implementation of deepdsl: A dsl for
deep learning. Computer Languages, Systems & Structures.

[115] Zhao, T., Xiaobing, H., and Cao, Y. (2017). Deepdsl: A compilation-based domain-
specific language for deep learning. In Proceedings of the 5th International Conference
on Learning Representations, Toulon, France.

109

http://www.vlfeat.org/

Appendix

Proof of Theorem 3.1

We provide the proof for Theorem 3.1 in this chapter. For convenience, we restate the

theorem as below.

Theorem 1 (Scalar ŝ type soundness). If ∅ ⊢ ŝ : τ , then there exists v such that ŝ→∗ v.

Theorem 2 (Tensor t type soundness). If ∅ ⊢ t : τ , then there exists V such that t→∗ V.

We first state two type soundness lemmas, one for dimension and one for index.

Lemma 1 (Dimension type soundness). If ∅ ⊢ D, then ∃ n1 · · ·nk such that D →∗ n1 · · ·nk.

Proof: Straightforward by induction on dimension expression and product, omitted.

Lemma 2 (Index type soundness). If ∅ ⊢ I : D, then ∃ m1 · · ·mk such that I →∗ m1 · · ·mk.

Proof: Straightforward by induction on index expression, omitted.

Recall in the syntax definition (Figure 3.1) scalar ŝ can be either a function application

(x⇒ ŝ)(t) or s. The former has the tensor as its parameter and the scalar ŝ itself in the

function body. Therefore, we proceed our type soundness lemma proofs in the order of

scalar s, tensor t, and (x⇒ ŝ)(t). The proofs of s and (x⇒ ŝ)(t) together completes the

proof of type soundness for scalar ŝ.

110

1 Scalar s type soundness

Theorem 3 (Scalar s type soundness). If ∅ ⊢ s : τ , then there exists v such that s→∗ v.

In this section, we prove the type soundness lemma for the scalar s; we prove the

progress lemma in Section 1.1 and the preservation lemma in Section 1.2.

1.1 Progress

Lemma 3 (Scalar progress s). If ∅ ⊢ s : τ , then either s is a value or ∃ s′ with s→ s′.

If ∅ ⊢ I ⇒ s : τ , then I ⇒ s→ V.

Proof: By induction on a derivation of ∅ ⊢ s : τ (Note second half of the progress lemma for

I ⇒ s is straightforward by leveraging the index type soundness lemma and by induction

hypothesis on s).

Case T-Constant: Γ ⊢ v : ⋆

Immediate for scalar value.

Case T-Sum:
Γ, i1 : D(i1), . . . , ik : D(ik) ⊢ s : ⋆

Γ ⊢ ∑
i1···ik

(s) : ⋆

The only evaluation rule applies is E-ScalarSum. From the premise of T-Sum, we have

Γ ⊢ I ⇒ s : D → ⋆ and hence I ⇒ s → V; applying E-TensorElement to obtain each

element v0, · · ·, vm of V . Applying E-ScalarSum, we have ∑
i1···ik

(s) = v0 + · · ·+ vm, thus∑
i1···ik

(s) is a value.

Case T-Element:
Γ(x) = D Γ ⊢ I : D

Γ ⊢ t(I) : ⋆

If I = m1 · · · mk, then t(I) = V(I) as t(I) has type ⋆, Rule E-TensorElement or

E-TensorInvalid applies; otherwise, we can achieve I = m1 ···mk with E-IndexSub (premise

is satisfied by leveraging the index type soundness lemma).

111

Case T-ScalarPlus:
Γ ⊢ s1 : ⋆ Γ ⊢ s2 : ⋆

Γ ⊢ s1 + s2 : ⋆

By the induction hypothesis, either s1 is a value or ∃ s′
1 with s1 → s′

1, and likewise s2.

If ∃ s′
1 with s1 → s′

1, then E-ScalarPlus applies; if s1 is a value and s2 → s′
2, E-ScalarPlus2

applies; if both s1 and s2 are values, then the conclusion vacuously holds.

Case T-ScalarTimes:
Γ ⊢ s1 : ⋆ Γ ⊢ s2 : ⋆

Γ ⊢ s1 × s2 : ⋆

By the induction hypothesis, either s1 is a value or ∃ s′
1 with s1 → s′

1, and likewise

s2. If ∃ s′
1 with s1 → s′

1, then E-ScalarTime applies; if s1 → v and s2 → s′
2, then

E-ScalarTime2 applies; if both s1 and s2 are values, then the conclusion vacuously holds.

Case T-ScalarLog:
Γ ⊢ s : ⋆

Γ ⊢ log(s) : ⋆

Proof is similar to the T-ScalarTimes case by leveraging evaluation rules E-ScalarLog

and E-ScalarLog2.

Case T-ScalarExp:
Γ ⊢ s : ⋆

Γ ⊢ exp(s) : ⋆

Proof is similar to the T-ScalarTimes case by leveraging evaluation rules E-ScalarNatExp

and E-ScalarNatExp2.

Case T-ScalarExp2:
Γ ⊢ s : ⋆

Γ ⊢ sn : ⋆

Proof is similar to the T-ScalarTimes case by leveraging evaluation rules E-ScalarExp

and E-ScalarExp2.

112

1.2 Preservation

Scalar (s) preservation

Lemma 4 (Preservation). If Γ ⊢ s : τ ∧ s→ s′, then Γ ⊢ s′ : τ .

By induction on a derivation of Γ ⊢ s : τ . We assume the desired properties holds for

all subderivations (s_) at each step of the induction. That is, if Γ ⊢ s_ : τ ′ and s_ → s′
_,

then Γ ⊢ s′
_ : τ ′, whenever Γ ⊢ s_ : τ ′ is proved by the subderivation of the present one.

Our case analysis is proceeded on the last rule used in the derivation.

Case T-Constant: s = v

τ = ⋆

Immediate for scalar value.

Case T-Sum: s = ∑
I(s_)

Γ, i1 : D(i1), . . . , ik : D(ik) ⊢ s_ : ⋆

τ = ⋆

The only evaluation rule with sum operation on the left-hand side by which s→ s′

can be derived is E-ScalarSum.

Subcase E-ScalarSum: s→ s′ s′ = ∑
I(s′) (If s can take a step).

By induction hypothesis, we have Γ, i1 : D(i1), . . . , ik : D(ik) ⊢ s′ : ⋆, applying rule

T-sum we obtain Γ ⊢ s′ : τ .

Case T-Element: s = x(I)

Γ(x) = D Γ ⊢ I : D

113

τ = ⋆

The evaluation rule that applies to x(I) is either E-TensorElement or E-TensorInvalid;

by leveraging the Index type soundness lemma, we have

Subcase E-TensorElement: I = m1 · · ·mk s′ = v(...(m1×n2+m2)...)×nk+mk

Γ ⊢ s′ : τ holds.

Subcase E-TensorInvalid: I = m1 · · ·mk s′ = 0.

Γ ⊢ s′ : τ holds.

Case T-ScalarPlus: s = s1 + s2

τ = ⋆

Proof is by simple induction with 2 subcases E-ScalarPlus and E-ScalarPlus2.

Case T-ScalarTimes: s = s1 × s2

τ = ⋆

Proof is by simple induction with 2 subcases E-ScalarTimes and E-ScalarTimes2.

Case T-ScalarLog: s = log(s)

τ = ⋆

Proof is by simple induction with the subcase E-ScalarLog.

Case T-ScalarExp: s = exp(s)

114

τ = ⋆

Proof is by simple induction with the subcase E-ScalarNatExp.

Case T-ScalarExp2: s = sn

τ = ⋆

Proof is by simple induction with the subcase E-ScalarExp.

With the progress proof in Section 1.1 and preservation proof in Section 1.2, we conclude

the type soundness proof for scalar s.

2 Tensor t type soundness

In this section, we prove the type soundness lemma for the tensor t; we prove the progress

lemma in Section 2.1 and the preservation lemma in Section 2.2.

2.1 Progress

Lemma 5 (Tensor progress). If ∅ ⊢ t : τ , then either t is a tensor value V or ∃ t′ with

t→ t′.

Proof: By induction on a derivation of ∅ ⊢ t : τ .

Case T-Var: Γ ⊢ x : Γ(x)

Based on definition, this case cannot occur since our term definition is closed.

Case T-TensorValue: Γ ⊢ (v0, . . . , vm)n1···nk : n1 · · · nk

115

Immediate for tensor value.

Case T-Fun:
Γ, x : T (x) ⊢ e : τ

Γ ⊢ x⇒ e : T (x)→ τ

Immediate as x ⇒ e is a value (analogous to lambda abstraction in the lambda

calculus).

Case T-Builtin: Γ ⊢ F : T (F)

Immediate; this case is similar to the T-Fun case.

Case T-App:

Γ ⊢ f : τ1 → τ2

Γ ⊢ t : τ ′
1 σ = U(τ1, τ ′

1)

Γ ⊢ f(t) : σ(τ2)

By the induction hypothesis, either t is a tensor value V or ∃ t′ with t → t′. If ∃ t′

with t→ t′, then Rule E-App applies; if t is a tensor value V , then Rule E-App2 applies.

Case T-TensorExp:
Γ, i1 : D(i1), . . . , ik : D(ik) ⊢ s : ⋆

Γ ⊢ (i1 · · · ik)⇒ s : D(i1) · · · D(ik)

By the induction hypothesis, either s is a scalar value v or ∃ s′ with s→ s′. If s is a

value, then Rule E-Tensor applies; if ∃ s′ with s→ s′, then the progress lemma for s we

proved in Section 1.1 applies.

Case T-TenorPlus:
Γ ⊢ t1 : τ Γ ⊢ t2 : τ

Γ ⊢ t1 + t2 : τ

By the induction hypothesis, either t1 is a tensor value V or ∃ t′
1 with t1 → t′

1, and

likewise t2. If ∃ t′
1 with t1 → t′

1, then E-Plus applies; if t1 is a tensor value and t2 → t′
2,

E-Plus2 applies; if both t1 and t2 are values, then E-ValuePlus applies.

116

Case T-TensorScale:
Γ ⊢ s : ⋆ Γ ⊢ t : τ

Γ ⊢ s · t : τ

By the induction hypothesis, ∃ v such that s is a scalar value v or ∃ s′ with s→ s′,

and likewise for t. If ∃ s′ with s→ s′, then E-ScalarTensorProd applies; if s is a scalar

value v and t → t′, then E-ScalarTensorProd2 applies; if both s and t are values, then

E-ValueScale applies.

Case T-Cast:
flat(Γ(x)) = flat(D)

Γ ⊢ (D) x : D

Immediate follows by leveraging the Dimension type soundness lemma.

2.2 Preservation

Tensor (t) preservation of types under substitution

Lemma 6 (Tensor (t) preservation of types under substitution). If Γ, x : τ ′ ⊢ t : τ ∧ Γ ⊢

V : τ ′, then Γ ⊢ [x 7→ V]t : τ .

Proof: By induction on a derivation of the statement Γ, x : τ ′ ⊢ t : τ .

Note we use y to replace x in the original rules to avoid name conflict with environment

variable x whenever applicable; we also assume x ̸= y and y ̸∈ FV (t).

Case T-Var, T-Builtin, T-TensorValue:

Immediate for varible, built-in function, and tensor value types.

Case T-Fun: t = y ⇒ t

τ = T (y)→ τ

Γ, x : τ ′, y : T (y) ⊢ t : τ

117

Using permutation on the given subderivation, we obtain Γ, y : T (y), x : τ ′ ⊢ e : τ . Us-

ing weakening on the other given derivation (Γ ⊢ V : τ ′), we obtain Γ, y : T (y) ⊢ V : τ ′. By

induction hypothesis, Γ, y : T (y) ⊢ [x 7→ V]t : τ . By T-Fun, Γ ⊢ [x 7→ V]y ⇒ t : T (y)→ τ .

Case T-App: t = f(t)

τ = σ(τ2)

Γ, x : τ ′ ⊢ f : τ1 → τ2

Γ, x : τ ′ ⊢ t : τ ′
1 σ = U(τ1, τ ′

1)

By the induction hypothesis, Γ,⊢ [x 7→ V]f : τ1 → τ2 and Γ ⊢ [x 7→ V]t : τ ′
1 σ =

U(τ1, τ ′
1). By T-App, Γ ⊢ [x 7→ V]f([x 7→ V]t) : τ , i.e., Γ ⊢ [x 7→ V](f(t)) : τ .

Case T-TenorPlus and T-TensorScale:

The proof is similar to the proof for T-Fun except we use the induction step twice

(one on t1 and another on t2 for the T-TenorPlus rule; and one on s and another on t for

the T-TensorScale rule) to achieve the conclusion.

Case T-Cast: t : (D) x

τ : D

flat(Γ(x)) = flat(D)

Immediate as the requirements of the lemma is vacuously satisfied.

Tensor (t) preservation

Lemma 7 (Preservation). If Γ ⊢ t : τ ∧ t→ t′, then Γ ⊢ t′ : τ .

Case T-Var:

118

Can’t happen as there is no evaluation rules with a variable as the left-hand side.

Case T-Builtin: t is either F(t) or F(V)

τ = T (F)

Proof is by simple induction with the subcases E-BuiltinApp and E-BuiltinApp2.

Case T-TensorValue: t = (v0, . . . , vm)n1···nk

τ = n1 · · · nk

Can’t happen as there is no evaluation rules with a tensor variable as the left-hand side.

Case T-Fun:

Can’t happen as there is no evaluation rules with a x⇒ e as the left-hand size.

Case T-App: t = (x⇒ t)(t)

τ = σ(τ2)

Γ ⊢ (x⇒ t) : τ1 → τ2

Γ ⊢ t : τ ′
1 σ = U(τ1, τ ′

1)

Subcase E-App: t→ t′ t′ = (x⇒ t′)(t′)

Applying T-App we obtain t′ : τ .

Subcase E-App2: t→ V t′ = (x⇒ t′)(V)

Applying the tensor substitution lemma we obtain t′ : τ .

119

Case T-TensorExp: t = (i1 · · · ik)⇒ s

τ = D(i1) · · · D(ik)

Proof is by simple induction with the subcase E-Tensor and leverage the substitution

lemma for tensor t.

Case T-TenorPlus: t = t1 + t2

τ = τ

Proof is by simple induction with the subcases E-Plus, E-Plus2, and E-ValuePlus.

Case T-TensorScale: t = s · t

τ = τ

Proof is by simple induction with the subcases E-ScalarTensorProd (Note for this case,

we need to leverage the conclusion from the scalar preservation lemma we just proved in

Section 1.2), E-ScalarTensorProd2, and E-ScalarTensorProd.

Case T-Cast: t = (D) x

τ = D

Proof is by simple induction with the subcase E-TensorCast and leveraging the Di-

mension type soundness lemma.

With the progress proof in Section 2.1 and preservation proof in Section 2.2, we

conclude the type soundness proof for tensor t.

120

3 Scalar ŝ type soundness

We have proved the type soundness lemma for scalar s in Section 1, to complete the

type soundness lemma proof for scalar ŝ, in this section we prove the progress lemma in

Section 3.1 and the preservation lemma in Section 3.2 for the function application scalar

(x⇒ ŝ)(t).

3.1 Progress

Lemma 8 (Scalar progress ŝ). If ∅ ⊢ ŝ : τ , then either ŝ is a value or ∃ ŝ′ with ŝ→ ŝ′.

Case T-App:

Γ ⊢ (x⇒ ŝ) : τ1 → τ2

Γ ⊢ t : τ ′
1 σ = U(τ1, τ ′

1)

Γ ⊢ (x⇒ ŝ)(t) : σ(τ2)

By the induction hypothesis, either t is a tensor value V or ∃ t′ with t → t′. If ∃ t′

with t→ t′, then Rule E-App applies; if t is a tensor value V , then Rule E-App2 applies.

3.2 Preservation

Function application scalar (ŝ) preservation of types under substitution

Lemma 9 (Function application scalar (ŝ) preservation of types under substitution). If

Γ, x : τ ′ ⊢ ŝ : τ ∧ Γ ⊢ V : τ ′, then Γ ⊢ [x 7→ V]ŝ : τ .

Proof: By induction on a derivation of the statement Γ, x : τ ′ ⊢ ŝ : τ .

Case T-App: ŝ = f(ŝ)

τ = σ(τ2)

Γ, x : τ ′ ⊢ f : τ1 → τ2

Γ, x : τ ′ ⊢ ŝ : τ ′
1 σ = U(τ1, τ ′

1)

By the induction hypothesis, Γ,⊢ [x 7→ V]f : τ1 → τ2 and Γ ⊢ [x 7→ V]t : τ ′
1 σ =

U(τ1, τ ′
1). By T-App, Γ ⊢ [x 7→ V]f([x 7→ V]ŝ) : τ , i.e., Γ ⊢ [x 7→ V](f(ŝ)) : τ .

121

Function application scalar ŝ preservation

Lemma 10 (Scalar preservation ŝ). If Γ ⊢ ŝ : τ ∧ ŝ→ ŝ′, then Γ ⊢ ŝ′ : τ .

Case T-App: ŝ = (x⇒ ŝ)(t)

τ = σ(τ2)

Γ ⊢ (x⇒ ŝ) : τ1 → τ2

Γ ⊢ t : τ ′
1 σ = U(τ1, τ ′

1)

Subcase E-App: t→ t′ ŝ′ = (x⇒ ŝ)(t′)

Applying T-App we obtain ŝ′ : τ .

Subcase E-App2: t→ V ŝ′ = (x⇒ ŝ)(V)

Applying the function application scalar substitution lemma we obtain ŝ′ : τ .

Combining proofs in Section 1, 3.1, and 3.2, we complete the type soundness lemma

for ŝ.

4 Proof conclusion

With type soundness proof for tensor t in Section 2 and scalar ŝ in Section 3, we conclude

the type soundness proof for Theorem 3.1.

122

CURRICULUM VITAE

Xiao Bing Huang

Education

B.Sc., Tianjin University, China, 1994

Major: Computer Science

M.Sc., Memorial University of Newfoundland, Canada, 2006

Major: Computer Science

Dissertation Title: DEEPDSL: A DOMAIN SPECIFIC LANGUAGE

FOR DEEP LEARNING

123

	University of Wisconsin Milwaukee
	UWM Digital Commons
	May 2018

	Design and Implementation of a Domain Specific Language for Deep Learning
	Xiao Bing Huang
	Recommended Citation

	1 Introduction
	1.1 Deep learning overview
	1.1.1 Shallow and Deep learning
	1.1.2 The deep learning process

	1.2 Convolutional neural networks
	1.2.1 Deep neural networks examples

	1.3 DL challenges
	1.4 Contributions

	2 DeepDSL Overview
	2.1 DeepDSL
	2.2 DeepDSL core constructs
	2.2.1 Tensor
	2.2.2 Tensor Function
	2.2.3 Fixed Tensor
	2.2.4 Function Application and Composition
	2.2.5 Network as Function Composition
	2.2.6 Training

	3 Formalization
	3.1 Syntax
	3.2 Semantics
	3.3 Typing Rules
	3.4 Examples
	3.5 Gradient derivation

	4 Optimization
	4.1 High-level Optimization
	4.1.1 Simplification of parameter gradients
	4.1.2 Vectorization
	4.1.3 Examples

	4.2 Low-level Optimization
	4.3 Code scheduling
	4.4 Code generation and runtime

	5 Experiments
	5.1 DL network configuration standards
	5.2 Experiment environment description
	5.3 GPU-based runtime & memory performance
	5.4 CPU-based Lenet experiments

	6 Related work
	6.1 DL frameworks
	6.2 Core feature comparison between DeepDSL and existing frameworks
	6.3 Automatic differentiation
	6.4 DSL on scientific computing with tensors

	7 Conclusion
	7.1 Upcoming releases and future directions

	References
	Appendix Proof of Theorem 3.1
	1 Scalar s type soundness
	1.1 Progress
	1.2 Preservation

	2 Tensor t type soundness
	2.1 Progress
	2.2 Preservation

	3 Scalar type soundness
	3.1 Progress
	3.2 Preservation

	4 Proof conclusion

	CURRICULUM VITAE

