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ABSTRACT

Optimal Deductibles:

A Theoretical Analysis From An Insured’s Perspective

by

Alexander Kreienbring

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Wei Wei

A stop-loss policy as a tool for protection against a large loss is one of the most common

insurance forms. For fixed premiums and therefore a uniquely determined insurance de-

ductible, it has been well-established that the stop-loss form is superior to all other common

insurance forms (Arrow, 1963). Using the expected premium principal, one can relax the

assumption of a fixed premium and allow the insured to choose an arbitrary deductible that

fits their needs.

This thesis presents a stop-loss insurance policy model from an insured’s perspective for a

flexible premium. It shows the existence and uniqueness of an optimal deductible for a single

risk model and derives several properties of the optimal deductibles in a bivariate excess-of-

loss risk model where the insured faces two risks. The theoretical analysis is exemplified by

several utility concepts which do not only illustrate the overall results but also give insights

in the necessity of insurance and the influence of the risk structure on the findings.

ii



Table of Contents

Introduction 1

Preliminaries 3
2.1 Utility Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Exponential Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Quadratic Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Properties of Risks and their modifications . . . . . . . . . . . . . . . . . . . 4

Single Risk Model 7
3.1 Model Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Bivariate Risk Model 15
4.1 Model Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Summary 24

Bibliography 26

Appendix 27

iii



Introduction

Stop-loss insurance as protection against large losses is one of the most common policies for

insurance contracts. This intuitive form, which takes effect after a prearranged retention

level, the so-called deductible, prevents the insured from extreme losses by transferring this

part of the risk to the insurance carrier. Naturally, this insurance form is favored if there

are large claims possible. For example, individual risk takers use it for car insurance and

householder’s comprehensive policies. Furthermore, companies providing health insurance

often insure themselves with stop-loss policies to avoid catastrophic claims.

Once a risk undertaker takes a stop-loss insurance contract into account, he has to decide

for a deductible. Since the insurance premium he has to pay naturally increases with the

portion of the risk he transfers, the risk undertaker wants to find an optimal deductible in

this trade-off situation. The optimal deductible might be influenced by the personal risk

preference of the risk undertaker as well as the structure of the risk.

These considerations can be extended if there is an insured that faces several different

risks he wants to insure against. For instance, a car owner that holds multiple cars has to

think about how much money he is willing to spend to insure his property. But since there

are multiple risks, the question arises how to spread the financial resources over the risks,

i.e. how to choose the deductibles. Apart from the individual’s personal risk preference, the

answer to this question could be influenced by the relative value of the cars, for instance if

one car is higher-priced than another car.

In this thesis, we start by introducing two common utility concepts, the exponential

utility and the quadratic utility. Furthermore, we derive some basic properties of risks and
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their modifications. In the third chapter, we motivate and introduce the single risk model

for stop-loss policies by placing it in context with other research results. We formally state

the optimization problem of finding an optimal deductible, prove that there exists a unique

optimal solution and derive some stronger results by specifying the utility function or the

distribution. In the forth chapter, we expand the model by including a second risk. In this

so-called excess-of-loss model, we derive properties of an optimal solution of the optimization

problem. By specifying the utility function, we can prove the existence and uniqueness of an

optimal solution if the risks are independent. In the final part of the thesis, we discuss the

implications of the results and introduce potential further ideas of interest in this research

area.
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Preliminaries

In this chapter, we examine necessary results for the thesis.

2.1 Utility Functions

In our mathematical framework, we will use the utility function concept to compare the

goodness of insurance contracts for the insured. We introduce the common principle of a

risk-averse individual who buys the insurance policy. In particular, we want a utility function

u(.) that fulfills u′(.) > 0 as well as u′′(.) < 0, i.e. it is a strictly increasing concave function.

We will discuss results for two explicit utility functions we are going to introduce in the next

subsection.

2.1.1 Exponential Utility

We introduce the exponential utility function u(x) = 1 − e−γx, where γ > 0 is a parameter

that measures the risk-aversion of the decision-maker. Consequently, it is u′(x) = γe−γx > 0

and u′′(x) = −γ2e−γx < 0 and the postulated properties of a strictly increasing concave

utility function are fulfilled.

Moreover, the exponential utility concept has an interesting feature because it implies a

constant absolute risk aversion, that is

−u
′′(x)

u′(x)
= γ.
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This property makes decisions independent of the initial wealth a risk undertaker has.

2.1.2 Quadratic Utility

As a special form of the class of power utility functions, we denote with u(x) = −(η−x)2 the

quadratic utility function, where η > 0 is a positive parameter and we restrict the domain

of u(.) to numbers x < η. We obtain u′(x) = 2(η − x) > 0 and u′′(x) = −2 < 0, i.e. the

quadratic utility function is strictly increasing concave.

Furthermore, the absolute risk aversion is

−u
′′(x)

u′(x)
=

1

η − x

which is increasing in x. Therefore, decisions under this utility function are influenced by

the initial wealth.

In general, there are two disadvantages of the quadratic utility function as we introduced

it. First of all, the restricted domain allows us only considerations where the maximum final

wealth is limited. In our setup, the insured owns an initial wealth and buys an insurance

contract to avoid large losses from his risks. In particular, the final wealth is restricted to the

initial wealth and there are no problems as long as we choose the parameter η high enough.

Secondly, the increasing risk aversion is in conflict with empirical studies from the reality.

Nevertheless, we decided to use this utility function as an alternative to the exponential

utility principle.

2.2 Properties of Risks and their modifications

In this thesis, we model risks with a random variable X. We assume X ≥ 0 to be positive

and continuous with density function fX(x). We denote with SX(x) = P(X > x) the survival

function of X.

Furthermore, for a given d ≥ 0, we define the following expressions:

4



1. (X ∧ d) := min{X, d}

2. (X − d)+ := max{X − d, 0}

We use the following observations for calculations in this thesis:

Lemma 2.1. For a risk X ≥ 0 and a constant d ≥ 0 it holds:

1. E[X] = E[(X ∧ d)] + E[(X − d)+]

2. ∂
∂d
E[(X ∧ d)] = SX(d)

3. ∂
∂d
E[(X − d)+] = −SX(d)

Proof:

1. It is

E[(X ∧ d)] + E[(X − d)+] =

∫ ∞
0

min{x, d}fX(x)dx+

∫ ∞
0

max{x− d, 0}fX(x)dx

=

∫ d

0

x fX(x)dx+

∫ ∞
d

d fX(x)dx

+

∫ ∞
d

x fX(x)dx−
∫ ∞
d

d fX(x)dx

=

∫ ∞
0

x fX(x)dx

=E[X]

2. Since f(x, d) := xfX(x) as well as ∂
∂d
f(x, d) = 0 are both continuous in x and d, we

can apply Leibniz rule to calculate the term ∂
∂d

∫ d
0
xfX(x)dx :

5



∂

∂d
E[(X ∧ d)] =

∂

∂d

∫ d

0

x fX(x)dx+
∂

∂d

∫ ∞
d

d fX(x)dx

=d fX(d) · 1− d fX(d) · 0 +

∫ d

0

∂

∂d
x fX(x)dx+

∂

∂d

∫ ∞
d

fX(x)dx

=d fX(d) + 1 · SX(d)− d fX(d)

=SX(d)

3. Follows from the two previous parts together with the fact that ∂
∂d
E[X] = 0.

�

In the later part of the thesis, we are going to compare deductible for different risks.

Therefore, we introduce the following notation:

Definition 2.2. Let X1 and X2 be two risks.

We say X1 is stochastically greater than X2 if FX1(x) ≤ FX2(x) for all x ∈ R and there exists

at least one x0 ∈ R where FX1(x0) < FX2(x0).

Denote X1 � X2.
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Single Risk Model

3.1 Model Introduction

We start by considering a model with a univariate risk X we want to insure against. Our

goal is to find an optimal insurance strategy for the insured. We use the following general

mathematical model:

We denote with I : R→ R an insurance strategy. With this strategy, the risk undertaker

retains I(X) to himself while he cedes the remaining part Ĩ(X) = X − I(X). In order

to transfer parts of his risk, the risk undertaker pays a risk-specific premium π(X). In our

framework, we use the common expected premium principle, i.e. the charged premium equals

the expected value of the risk plus a safety loading θ. Applying this principle to the ceded

risk Ĩ(X), we obtain a premium of π(Ĩ(X)) = (1 + θ)E[Ĩ(X)] = (1 + θ)E[X − I(X)].

Our goal is now to optimize the insurance contract I for the insured in this framework.

There are different interpretations of the term optimization. Cai and Tan (2007) analyzed

a similar model to the one we will introduce where the insured seeks a minimization of the

value-at-risk and the conditional tail expectation. In this thesis, we will focus on another

approach following the expected utility concept. This approach has been well-established

and is commonly used (Huang et al., 2013). We assume that the insured has a monotone

strictly increasing and concave utility function u and he wants to maximize his expected

utility function.

Mathematically, the optimization problem is formulated as

7



max
I∈D

E
[
u(w − I(X)− (1 + θ)E[Ĩ(X)])

]
where w is the initial wealth of the insured before entering the contract and D is the set

of all possible insurance strategies.

If we restrict D to a common strategy class, we obtain a framework that has been well-

established. One main result of the research is that the stop-loss insurance is optimal in this

setup (Arrow, 1963). Therefore, the optimal strategy has the form I(X) = X ∧ d where

d is the deductible or retention level. Consequently, we obtain E[Ĩ(X)] = E[X − X ∧ d] =

E[(X − d)+] and the optimization problem reduces to finding an optimal d. Consequently,

the optimization problem is

max
d≥0

E
[
u(w −X ∧ d− (1 + θ)E[(X − d)+])

]
= max

d≥0
L(d) (3.1)

where L(d) := E
[
u(w−X ∧ d− (1 + θ)E[(X − d)+])

]
is the expected utility of the insured if

he buys the stop-loss insurance policy with deductible d.

3.2 Model Analysis

In this section, we are interested in finding an optimal solution to (3.1). We will find out

that there exists a unique optimal retention level d∗ that maximizes L(d).

Denote with Wd(X) = w − X ∧ d − (1 + θ)E[(X − d)+] the wealth of the insured after

the realization of the risk X. For optimization, we consider the derivative with respect to

d. It might be that the functions u(.) and Wd(X) are only right-side differentiable. In that

case, we consider the right-side derivative instead.

Cai and Wei (2012) show that under appropriate conditions for u() and X, it holds

L′(d) = E
[
u′(Wd(X))

]
= E

[
u′(Wd(X))W ′

d(X)
]

8



where the (right-side) derivatives L′(d) and W ′
d(X) are with respect to d.

Observing that

W ′
d(x) = 0− 1{X>d} − (1 + θ)

(
E[X]− E[X ∧ d]

)′
= −1{X>d} + (1 + θ)SX(d)

allows us to calculate

L′(d) = E
[
u′(Wd(X))((1 + θ)SX(d)− 1{X>d})

]
= SX(d)E

[
u′(Wd(X))

](
(1 + θ)−

E
[
u′(Wd(X))|X > d

]
E
[
u′(Wd(X))

] )

= SX(d)E
[
u′(Wd(X))

](
1 + θ − Φ(d)

)
where Φ(d) =

E
[
u′(Wd(X))|X > d

]
E
[
u′(Wd(X))

] .

Using this explicit form of L′(d), we find a lower limiting value for the optimal deductible:

Lemma 3.1. Let d∗ be an optimal solution to (3.1). Then it holds d∗ ≥ S−1X ( 1
1+θ

).

Proof: Let d < S−1X ( 1
1+θ

) be a smaller retention level. Then

L′(d) = E
[
u′(Wd(X))((1 + θ)S−1X (d)−1{X>d})

]
> E

[
u′(Wd(X))((1 + θ)

1

1 + θ
−1{X>d})

]
≥ 0.

The first inequality holds because of d < S−1X ( 1
1+θ

) while the second inequality holds due to

u′(.) > 0.

Consequently, L(d) is a strictly increasing function in d for d < d∗. Therefore, the function

L(d) reaches its maximum for a d∗ ≥ S−1X ( 1
1+θ

). �

We now analyze the behavior of the function Φ(d). The proof of the following lemma is

similar to Chi and Wei (2018, pp.12–13) who discuss a more general framework.
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Lemma 3.2. As a function of d, Φ(d) is strictly increasing in d for d > S−1X ( 1
1+θ

).

Proof: We define g1(d) = E[u′(Wd(X))|X > d] and g2(d) = E[u′(Wd(X))].

Then Φ(d) = g1(d)
g2(d)

.

We want to show that Φ(d)′(g2(d))2 = g′1g2 − g1g′2 > 0.

Now

g′2(d) =
(
E[u′(Wd(x))]

)′
= E[u′′(Wd(X))W ′

d(X)]

=E
[
u′′(Wd(X))((1 + θ)SX(d)− 1{X>d})

]
=SX(d)(1 + θ)E[u′′(Wd(X))]− E[u′′(Wd(X))1{X>d}]

≤SX(d)(1 + θ)E[u′′(Wd(X))1{X>d}]− E[u′′(Wd(X))1{X>d}]

=
(
(1 + θ)SX(d)− 1

)
E
[
u′′(Wd(X))1{X>d}

]
.

The inequality holds because of u′′(.) < 0.

To analyze the derivative of g1(d), we define the function

l(x, y) = E
[
u′(w − x− (1 + θ)E[(X − d)+])|X > y

]
.

One can easily see that g1(d) = l(d, d).

We observe that l(x, y) is increasing in y, i.e. ∂
∂y
l(x, y) ≥ 0.

On the other hand, it is

∂

∂x
l(x, y) =E

[
u′′(w − x− (1 + θ)E[(X − d)+])|X > d

] ∂
∂x

(
w − x− (1 + θ)E[(X − d)+]

)
=E
[
u′′(w − x− (1 + θ)E[(X − d)+])|X > d

](
0− 1 + (1 + θ)SX(d)

)
=E
[
u′′(w − x− (1 + θ)E[(X − d)+])|X > d

](
(1 + θ)SX(d)− 1

)
.
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We obtain

g′1(d) =

(
∂

∂x
+

∂

∂y

)
l(x, y)|(x,y)=(d,d)

≥E
[
u′′(Wd(X))|X > d

](
(1 + θ)SX(d)− 1

)
.

Finally

Φ(d)′(g2(d))2 =g′1 · g2 − g1 · g′2

≥E
[
u′′(Wd(X))|X > d

](
(1 + θ)SX(d)− 1

)
· E
[
u′(Wd(X))

]
− E

[
u′(Wd(X))|X > d

]
·
(
(1 + θ)SX(d)− 1

)
(1 + θ)E

[
u′′(Wd(X))1{X>d}

]
=
(
(1 + θ)SX(d)− 1

) {
E
[
u′(Wd(X))

]
· E
[
u′′(Wd(X))|X > d

]
− E

[
u′(Wd(X))|X > d

]
· E
[
u′′(Wd(X))1{X>d}

]}
=
(
(1 + θ)SX(d)− 1

)
E
[
u′′(Wd(X))|X > d

]
{
E
[
u′(Wd(X))

]
− E

[
u′(Wd(X))1{X>d}

]}
=
(
(1 + θ)SX(d)− 1

)
E
[
u′′(Wd(X))|X > d

]
E
[
u′(Wd(X))1{X≤d}

]
>0.

The last inequality holds because of d ≥ S−1X ( 1
1+θ

) and u′′() < 0.

Therefore, Φ′(d) > 0. �

Theorem 3.3. There exists a unique solution d∗ to the optimization problem (3.1).

Proof: From Lemma 3.1 we know that an optimal solution d∗ that maximizes L(d) satisfies

d∗ ≥ S−1X ( 1
1+p

). According to Lemma 3.2, it is L′(d) = SX(d)E
[
u′(Wd(X))

](
1 + θ − Φ(d)

)
where Φ(d) is a strictly increasing function in d for d > S−1X ( 1

1+p
). Therefore, the function

L(d) reaches its global maximum for a unique d∗ ≥ S−1X ( 1
1+θ

). �
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Remark 3.4. The optimal solution might be d∗ = ∞. In practice, this means that the risk

owner rejects any insurance contract as optimal solution.

3.3 Examples

In this section, we specify the utility function u(.) to derive more precise results about the

optimal solution d∗.

Example 3.5. Let u(x) = 1 − e−γx be the exponential utility function and the risk X ∼

Exp(λ) be exponentially distributed.

1. The optimal deductible d∗ satisfies d∗ <∞.

2. For γ > 1
λ

, there is a negative relationship between λ and d∗.

Proof:

1. We calculate

Φ(d) =
E[−γe−γWd(X)|X > d]

E[γe−γWd(X)]

=
E[e−γ(w−d−(1+θ)E[(X−d)+])]

E[e−γ(w−X∧d−(1+θ)E[(X−d)+])]

=
eγd

E[eγ(X∧d)]
.

Since the risk X is exponentially distributed, one now can show (see Appendix) that

if λ 6= 1
γ
, it is

E[eγ(X∧d)] =
1

λγ − 1
(ed(γ−1/λ) − 1) (3.2)

12



and therefore

Φ(d) =
λγ − 1

λγe−d/λ − e−dγ
.

Now the optimal deductible d∗ is infinity if and only if it holds Φ(d) < 1 + θ for all d.

But since it is

lim
d→∞

Φ(d) =∞

we can conclude that d∗ <∞.

If λ = 1
γ
, the same procedure yields (see Appendix) E[eγ(X∧d)] = dγ + 1 and therefore

Φ(d) = eγd

γd+1
. Using l’Hospital rule, one can conclude that lim

d→∞
Φ(d) =∞.

Therefore, d∗ <∞ holds.

2. We differentiate Φ(d) = λγ−1
λγe−d/λ−e−dγ with the quotient rule:

∂

∂λ
Φ(d) (λγe−d/λ − e−dγ)2 =(λγe−d/λ − e−dγ)γ − (λγ − 1)(γe−d/λ − γ

λ
e−d/λ)

=λγ2e−d/λ − γe−dγ + γe−d/λ − dγ
λ
e−d/λ − γ2λe−d/λ + dγ2e−d/λ

=(dγ − d

λ
)e−d/λ + e−d/λ − e−γd. (3.3)

The first term of (3.3) is positive for γ > 1/λ. The second and the third term add

to a positive number for γ > 1/λ. Consequently, Φ(d) is increasing in λ for γ > 1/λ.

Regarding the fact that an increase in Φ(d) coincides with a smaller optimal retention

level d∗, this proves the second part of the theorem.

�

Example 3.6. Let u(x) = −(x − η)2 be the quadratic utility function. Then the optimal

deductible d∗ satisfies d∗ <∞.

13



Proof: We calculate

Φ(d) =
2
(
η − E[Wd(X)|X > d]

)
2
(
η − E[Wd(X)]

)
=

η − w + d+ (1 + θ)E[(X − d)+]

η − w + E[(X ∧ d)+] + (1 + θ)E[(X − d)+]
.

Again, the optimal deductible d∗ equals ∞ if and only if it holds Φ(d) < 1 + θ for all d.

But this is not the case: Since E[(X − d)+] approaches 0 for high d and E[X ∧ d] ≤ E[X] is

limited, it follows that Φ(d) is turning to ∞ for large d. The same argument as for the prior

example utility function completes the proof. �
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Bivariate Risk Model

4.1 Model Introduction

We now want to examine equivalent results in a model with multiple risks instead of only

one. In particular, we will study two independent risks X1 and X2. These risks are insured

with two different contracts, i.e. the insured chooses two strategies I1, I2 ∈ D from the

set of allowed insurance strategies. The optimal solution to the corresponding optimization

problem depends on the relationship between the two risk.

If X1 and X2 are independent or positively dependent, Cai and Wei (2012) show that an

insurance policy with two separate stop-loss insurance contracts with the deductibles d1 and

d2 is optimal, a so-called excess-of-loss strategy.

Following the ideas and notation from the previous section, we can state the optimization

problem for the bivariate risk model:

max
d1,d2≥0

E
[
u(w −X1 ∧ d1 −X2 ∧ d2 − (1 + θ)E[(X1 − d1)+]− (1 + θ)E[(X2 − d2)+])

]
= max

d1,d2≥0
L(d1, d2) (4.1)

where L(d1, d2) := E
[
u(w−X1 ∧ d1−X2 ∧ d2− (1 + θ)E[(X1− d1)+]− (1 + θ)E[(X2− d2)+])

]
is the expected utility of the insured if he enters an excess-of-loss insurance policy with

deductibles d1 and d2.

15



Equivalently to the univariate model, we denote with

Wd1,d2(X1, X2) = w −X1 ∧ d1 −X2 ∧ d2 − (1 + θ)E[(X1 − d1)+]− (1 + θ)E[(X2 − d2)+]

(4.2)

the wealth of the insured for realizations of the risks X1 and X2.

4.2 Model Analysis

Using the results from the preliminaries, we can calculate the partial derivatives for the

function Ld1,d2(X1, X2):

∂

∂d1
L(d1, d2) = E

[
u′(Wd1,d2(X1, X2))

∂

∂d1
Wd1,d2(X1, X2)

]
= E

[
u′(Wd1,d2(X1, X2))(−1{X1>d1} + (1 + θ)SX1(d1))

]
= SX1(d1)E

[
u′(Wd1,d2(X1, X2))

](
(1 + θ)− E[u′(Wd1,d2(X1, X2))|X1 > d1]

E[u′(Wd1,d2(X1, X2))]

)
= SX1(d1)E

[
u′(Wd1,d2(X1, X2))

](
1 + θ − Φd2(d1)

)
where Φd2(d1) =

E[u′(Wd1,d2
(X1,X2))|X1>d1]

E[u′(Wd1,d2
(X1,X2))]

.

Computing ∂
∂d2
L(d1, d2), we can derive a symmetric result with analogous definition of

Φd1(d2).

We now investigate results for the partial derivatives Φd1(d2) and Φd1(d2) that are in

some way equivalent to Lemma 3.1 and Lemma 3.2 from the univariate case:

Lemma 4.1. Let (d∗1, d
∗
2) be an optimal solution to the optimization problem in the indepen-

dent case. Then it fulfills d∗i ≥ S−1Xi (
1

1+θ
) where i ∈ {1, 2}.

Lemma 4.2. Let i, j ∈ {1, 2}, i 6= j. As a function of di, Φdj(di) is strictly increasing in di

for di > S−1Xi (
1

1+θ
) and fixed dj.
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The proofs of these two lemmas work equivalently to the ones we gave in the univariate

model. Using the fact that

∂

∂di
W (d1, d2) = −1{Xi>di} + (1 + θ)SXi(di)

is independent of dj, we can use the same argument as in the proof of Lemma 3.1 to prove

Lemma 4.1.

For Lemma 4.2, when considering Φd2(d1), the independence of X1 and X2 allows us

to treat the terms X2 and X2 ∧ d2 as constants even if they are conditioned on X1. In

particular, when computing the partial derivative with respect to d1, all ideas from the proof

of Lemma 3.2 can be applied where we differentiated with respect to d. One can show that

for g1(d1) := E
[
u′(Wd1,d2(X1, X2))

]
, it holds

∂

∂d1
g1(d1) ≤

(
(1 + θ)SX1(d1)− 1

)
E
[
u′′(Wd1,d2(X1, X2))1X1>d1

]
and on the other hand, for g2(d1) := E

[
u′(Wd1,d2(X1, X2))|X1 > d1

]
, it holds

∂

∂d1
g2(d1) ≥ E

[
u′′(Wd1,d2(X))

](
(1 + θ)SX(d)− 1

)
.

Since it is Φd2(d1) = g1(d1)
g2(d2)

, an equivalent estimate to the one in the final part of Lemma 4.2

proves the result after repeating this procedure with changed roles of d1 and d2.

As contrasted with the single risk model, we cannot prove the existence of a unique

solution in the bivariate case with these two lemmas. Instead, we get the following equation

system a potential finite optimal solution has to satisfy:
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Remark 4.3. If an optimal solution (d∗1, d
∗
2) to the optimization problem (4.1) fulfills d∗1 <

∞, d∗2 <∞, then it holds

Φd2(d
∗
1) = Φd1(d

∗
2) = 1 + θ. (4.3)

Proof: L(d1, d2) is a function of two variables d1, d2 ≥ 0 and reaches its maximum some-

where in the open interval (0,∞) × (0,∞). Now since (d∗1, d
∗
2) is a global maximum (and

therefore a local maximum) and L(d1, d2) is defined on a surrounding of (d∗1, d
∗
2), the partial

derivatives of the function L(d1, d2) have to equal zero at (d∗1, d
∗
2). According to prior calcu-

lations, this is the case if and only if Φd1(d
∗
2) = Φd2(d

∗
1) = 1 + θ. �

In the bivariate risk model, there arises naturally the question about the relationship

between the deductibles. We find the following result:

Theorem 4.4. Let X1 and X2 be independent risks, where X1 is stochastically greater than

X2, i.e. X1 � X2 . If there exists a finite optimal solution (d∗1, d
∗
2), then it is d∗1 ≥ d∗2.

Proof: According to Remark 4.3, the solution (d∗1, d
∗
2) satisfies

Φd2(d
∗
1) =

E
[
u′(Wd∗1,d

∗
2
(X1, X2))|X1 > d∗1

]
E
[
u′(Wd∗1,d

∗
2
(X1, X2))

] =
E
[
u′(Wd∗1,d

∗
2
(X1, X2))|X2 > d∗2

]
E
[
u′(Wd∗1,d

∗
2
(X1, X2))

] = Φd1(d
∗
2).

Consequently, it holds

E
[
u′(Wd∗1,d

∗
2
(X1, X2))|X1 > d∗1

]
= E

[
u′(Wd∗1,d

∗
2
(X1, X2))|X2 > d∗2

]
. (4.4)

We now define the two random variables Y1 = d∗1 + X2 ∧ d∗2 and Y2 = d∗2 + X1 ∧ d∗1.

Together with the constant c = w − (1 + θ)E[(X1 − d∗1)+] − (1 + θ)E[(X1 − d∗1)+] and the

definition of Wd∗1,d
∗
2
(X1, X2) we gave at the beginning of this chapter, we can rewrite (4.4) as

E[u′(Y1 + c)] = E[u′(Y2 + c)]. (4.5)
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Now we assume that d∗1 < d∗2.

Then because of X1 � X2, we can conclude that (X1 − d∗1)+ � (X2 − d∗2)+.

It follows

Y1 = d∗1 +X2 ∧ d∗2 = d∗1 + d∗2 − (d∗2 −X2)+ � d∗1 + d∗2 − (d∗1 −X1)+ = d∗2 +X1 ∧ d∗1 = Y2.

Since c is constant, it also holds Y1 + c � Y2 + c.

Furthermore, we assumed that u′() is strictly decreasing, which implies u′(Y1+c) � u′(Y2+c).

But then it follows

E[u′(Y1 + c)] < E[u′(Y2 + c)]

which is a contradiction to (4.5).

Therefore, it is d∗1 ≥ d∗2. �

4.3 Examples

Example 4.5. Let u(x) = 1−e−γx be the exponential utility function. For independent risks

X1 and X2 there exists a unique optimal solution (d∗1, d
∗
2) to the optimization problem (4.1).

Proof: Using u′(x) = γe−γx, we can compute

Φd2(d1) =
E[γe−γ(Wd1,d2

(X1,X2))|X1 > d1]

E[γe−γ(Wd1,d2
(X1,X2))]

=
E[e−γ(w−X1∧d1−X2∧d2−(1+θ)E[γ(X1−d1)+−(1+θ)E[(X2−d2)+])|X1 > d1]

E[e−γ(w−X1∧d1−X2∧d2−(1+θ)E[(X1−d1)+−(1+θ)E[(X2−d2)+]))]

=
E[e−γ(−X2∧d2−(1+θ)]E[(X2−d2)+])]E[e−γ(w−X1∧d1−(1+θ)E[(X1−d1)+])|X1 > d1]

E[e−γ(−X2∧d2−(1+θ)E[(X2−d2)+])]E[e−γ(w−X1∧d1−(1+θ)E[(X1−d1)+])]

=
E[u′(Wd1(X1))|X1 > d1]

E[u′(Wd1(X1))]
= Φ(d1).

We used that X1 and X2 are independent while w, E[(X1 − d1)+] and E[(X2 − d2)+] are
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constants.

As we can see, Φd2(d1) = Φ(d1) is independent of d2 and equivalent to Φ(d) from the sin-

gle risk model. We know that an optimal solution (d∗1, d
∗
2) has to satisfy Φd2(d

∗
1) = Φd1(d

∗
2) =

1 + θ. But since Φdj(di) = Φ(di) is independent of dj, the bivariate optimization problem

reduces here to two univariate optimization problems. Using the results from the previous

section, in particular Theorem 3.3, there is a unique solution. �

This heritage of the independence for the exponential utility function allows us to use

Example 3.5 to derive the following result:

Remark 4.6. Let u(x) = 1 − e−γx be the exponential utility function and the independent

risks X1 ∼ Exp(λ1) and X2 ∼ Exp(λ2) be exponentially distributed.

1. There exists a unique optimal solution (d∗1, d
∗
2) to the optimization problem (4.1) which

is finite.

2. For each i ∈ {1, 2}, there is a negative relationship between λi and d∗i if γ > 1
λi

.

Example 4.7. Let u(x) = −(η − x)2 be the quadratic utility function. Let the risks X1 and

X2 be independent. Then the optimization problem (4.1) has a unique optimal finite solution

(d∗1, d
∗
2).

Proof: We start by calculating the explicit expression Φd2(d1):

Φd2(d1)

=
2
(
η − w + E[X1 ∧ d1 +X2 ∧ d2 + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X2 − d2)+] |X1 > d1]

)
2
(
η − w + E[X1 ∧ d1 +X2 ∧ d2 + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X2 − d2)+]]

)
=

η − w + d1 + E[X2 ∧ d2] + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X1 − d1)+]

η − w + E[X1 ∧ d1] + E[X2 ∧ d2] + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X2 − d2)+]
.
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We now consider the following equation system that is equivalent to the one postulated in

Remark 4.3:

Φd2(d1) = Φd1(d2) (4.6)

Φd2(d1) + Φd1(d2) = 2 + 2θ (4.7)

Taking into account the prior calculations about Φd2(d1) together with the symmetry of

Φd2(d1), we obtain from (4.6):

η − w + d1 + E[X2 ∧ d2] + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X1 − d1)+]

= η − w + d2 + E[X2 ∧ d1] + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X1 − d1)+]

This simplifies to

d1 − E[X1 ∧ d1] = d2 − E[X2 ∧ d2]. (4.8)

Furthermore, (4.7) together with prior calculations and subtracting one on both sides

yields

η − w + d1 + d2 + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X2 − d2)+]

η − w + E[X1 ∧ d1] + E[X2 ∧ d2] + (1 + θ)E[(X1 − d1)+] + (1 + θ)E[(X2 − d2)+]
= 1 + 2θ.

After simplifying, this yields to the equation

d1−(2θ+1)E[X1∧d1]−2θ(1+θ)E[(X1−d1)+] = −d2+(2θ+1)E[X2∧d2]+2θ(1+θ)E[(X2−d2)+]

21



or equivalently

d1 − 2θE[X1]− E[X1 ∧ d1]− 2θ2E[(X1 − d1)+] =

−d2 + 2θE[X2] + E[X2 ∧ d2] + 2θ2E[(X2 − d2)+].

(4.9)

Now both (4.8) and (4.9) describe relationships between the deductibles d1 and d2.

If we denote the left side of (4.8) with f1(d1) = d1 − E[X1 ∧ d1] and the right side with

f2(d2) = d2 − E[X2 ∧ d2], we can calculate ∂
∂d1
f1(d1) = 1 − SX1(d1) > 0 and ∂

∂d2
f2(d2) =

1− SX2(d2) > 0.

Therefore, equation (4.8) describes a positive relationship between d1 and d2. Moreover,

f1 and f2 are strictly increasing and continuous. Observing that f1(0) = 0 ≤ f2(d2) for all

d2 ≥ 0 and lim
d1→∞

f1(d1) = ∞, we conclude that there is for each d1 ≥ 0 exactly one d2 ≥ 0

such that the equation is fulfilled. Denote with f the function that finds to a deductible

d1 > 0 the corresponding d2 = f(d1) such that (4.8) is fulfilled.

We proceed equivalently for (4.9):

Denoting g1(d1) = d1 − 2θE[X1] − E[X1 ∧ d1] − 2θ2E[(X1 − d1)+] yields ∂
∂d1
g1(d1) = 1 −

SX1(d1) + 2θ2SX1(d1) > 0.

On the other hand, for g2(d2) = −d2 + 2θE[X2] + E[X2 ∧ d2] + 2θ2E[(X2 − d2)+] we have

∂
∂d2
g2(d2) = −1 + SX2(d2)− 2θ2SX2(d2) < 0.

We do have a strictly negative relationship between d1 and d2 in (4.9). Since g1(0) < g2(0),

there exists for every d1 ≥ 0 a unique d2 ≥ 0 such that g1(d1) = g2(d2). We denote with g

the function that returns to a d1 ≥ 0 the unique d2 = g(d1) ≥ 0 such that (4.9) is fulfilled.

Due to Remark 4.3, an optimal finite solution has to satisfy f(d∗1) = g(d∗1) = d∗2.

We observe that

lim
d1→∞

f(d1) =∞ and lim
d1→0

f(d1) = 0

and because f, g : R>0 → R>0 are both continuous, f strictly increasing and g strictly

decreasing, it follows that there is a unique critical point (d∗1, d
∗
2) ∈ R2

>0 with f(d∗1) = g(d∗1) =
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d∗2, i.e. where the partial derivatives are 0.

Now look at the behavior of the function L(d1, d2) at the boundaries of the domain, i.e.

if one deductible di approaches zero or infinity. We use the explicit form of the function

Φd2(d1) from the beginning of this proof together with the explicit expression of ∂
∂di
L(d1, d2)

and obtain:

• For any d2 ≥ 0, it is Φd2(0) = 1 < 1 + θ, hence ∂
∂d1
L(0, d2) > 0.

• For any d2 ≥ 0, it is lim
d1→∞

L(d1, d2) =∞, hence ∂
∂d1

lim
d1→∞

L(d1, d2) < 0.

Using the symmetry of d1 and d2, we can conclude that the function L(d1, d2) has a global

maximum and reaches this global maximum only at points in the open interval R2
>0. But

then every global maximum is also a local maximum, that means all partial derivatives equal

zero. Since we found only one point (d∗1, d
∗
2) that fulfills this, we do have a unique finite so-

lution to the optimization problem. �
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Summary

Based on the expected-utility approach, we set up an optimal deductible problem for stop-loss

insurance policies from an insured’s perspective who faces a single risk. We showed that there

exists a unique solution and verified that there is the necessity of an insurance contract both

for the exponential utility concept and for the quadratic utility concept. Including a second

risk into our analysis which was independent to the first one, we expanded the optimization

problem to finding two deductibles for a so-called excess-of-loss insurance policy. We found

out that if one risk is relatively larger than the other one, then the corresponding deductible

in the insurance contract should also be larger. Specifying the utility function again to

exponential or quadratic utility allowed us to prove the existence of a unique optimal solution

in this extended model.

We also showed that there might be a lot of parameters that take influence on the

optimal deductible, such as the dimension of the risk or the personal risk preference of the

individual. These variations get even more complex if there are multiple risks. Consequently,

an insurance company should offer a variety of insurance contracts an individual can choose

from. In an ideal case where welfare is maximized, every policyholder can choose arbitrary

deductibles that fit their personal needs.

An interesting idea for further research is to relax the assumption of independence in the

multivariate risk model. For instance when considering the initial car insurance example,

there might be positive correlations in the risks due to the danger of damage by hail. In order

to include such considerations into the model, one might introduce positively dependent risks.

A mathematical risk model with positive dependencies that might fit our needs could be the
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one Cai and Wei (2012) introduced. Again by specifying the utility concepts, it could be

possible to analyze the behavior of the corresponding deductibles once positive dependencies

occur.
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Appendix

Proof of Example 3.7

Let X ∼ Exp(λ). Then for λ 6= 1
γ
, it is

E[eγ(X∧d)] =

∫ ∞
0

eγ(x∧d)fX(x) dx

=

∫ d

0

eγx
1

λ
e−x/λ dx+

∫ ∞
d

eγdfX(x) dx

=
1

λ

∫ d

0

e(γ−1/λ)x dx+ eγdP(X > d)

=
1

λ

(
1

γ − 1/λ
e(γ−1/λ)x))

∣∣∣∣d
0

+ eγde−d/λ

=
1

λγ − 1
(e(γ−1/λ)d − 1)

On the other hand, if λ = 1
γ
, we obtain

E[eγ(X∧d)] =
1

λ

∫ d

0

e(γ−1/λ)x dx+ eγdP(X > d)

=
1

λ

∫ d

0

1 dx+ eγdP(X > d)

=
d

λ
+ eγde−γd

=dγ + 1
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