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ABSTRACT 

DEMAND SIDE MANAGEMENT FOR BUILDING ENERGY 
EFFICIENCY THROUGH HYBRID DAYLIGHTING SYSTEM AND 

BATTERY ENERGY STORAGE SYSTEM 

by 

Tonghui Li 

The University of Wisconsin-Milwaukee, 2018 

Under the Supervision of Professor Chris Y. Yuan 

This dissertation aims to investigate demand side management (DSM) to improve 

building energy efficiency and reduce on-peak electricity demand.  Daylighting device and 

battery energy storage system (BESS) for peak shaving are proposed and studied. To reduce the 

cost and improve the efficiency of building lighting, an innovative parabolic trough solar lighting 

and thermal (PTL/T) system is designed and analyzed. In the proposed system, a parabolic 

trough collector (PTC) controlled by two-axis solar tracking system is used as solar collector. 

The collected sunlight is split by a cold mirror into visible light and infrared light. The visible 

light is reflected by the cold mirror, re-concentrated by a second-stage Fresnel lens, and then 

delivered by plastic optical fiber to the buildings for daylighting. The infrared light goes through 

the cold mirror, reaches the thermal system, and is used for heat generation. An economic and 

efficiency model of the PTL/T system is built to optimize the system parameters. A case study is 

conducted to get a specific optimized illumination area and PTC area. Its maximum energy 

savings, and simple payback period in the US are calculated to demonstrate its economic 

feasibility. The results show the proposed PTL/T system is competitive compared with 

traditional solar energy systems. 
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Peak demand charge is a significant portion of building utility cost, and battery energy 

storage system (BESS) is recognized as an effective technology for peak demand reduction. In 

this research, a mathematical model is developed to analyze the economic benefit of using 

lithium-ion BESS for peak shaving. The impacts of four key factors including BESS capacity, 

battery degradation, operation temperature, and utilization rate are quantified and compared for 

the first time. The simulation results show that the Net Present Value of Unit BESS (NPVU) 

decreases with the increase of Normalized Size Percentage (NSP). The benefit from optimizing 

the BESS capacity is limited by relatively low NPV because only around 4% NSP can be chosen. 

Due to the extremely low Utilization Rate (UR), the final cycling loss is at a super low level. The 

average NPVU can be improved by around 7.8% through the optimization of operation 

temperature in the US. In contrast, a 69.9% increase of NPVU is obtained through the increase of 

UR by peak-time charging. Through the comparison of all the analyzed factors, the UR is 

recognized as the most significant factor.  

After, two new DSMs based on sharing economy are proposed to maximize the 

utilization and savings of BESS. Peak shaving is the base function of all proposed sharing 

network. The simple sharing, which shares one BESS among multiple customers, is capable to 

work as a cloud service. The demand reduction for each customer is optimized using genetic 

algorithm (GA).  Simulation results show the sharing among six customers can increase max 

NSP, optimized NSP, NPVU and UR by 97.9%, 102.5%, 515.3% and 180.6% respectively 

without significant battery life impact. The comprehensive sharing, which shares one BESS for 

different services, works in modularized method. All the services that can be conveniently 

applied on the customer side are evaluated, which include TOU peak load shifting, integration of 



iv 
 

PTL/T, power factor correction and combine meter effect. Economic analysis shows all the 

modules can provide considerable additional savings to the DSM system.  
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1. Introduction and Research Objectives 

Demand Side Management (DSM) is the energy consumption management on demand side 

including load management, energy efficiency and energy savings, etc.[1, 2].  DSM has become 

popular in recent years due to the rapid growth of electricity demand and renewable energy. 

According to the international energy outlook 2016 from the U.S. Energy Information 

Administration (EIA), the net electricity demand in the Organization for Economic Cooperation 

and Development (OECD) countries is projected to increase by 38% from 2012 to 2040. 

Meanwhile, the total world net electricity generation including non-OECD countries is predicted 

to increase by 69% during the same period. The growth of electricity demand already has put heavy 

burden on the grid. The share of renewable energy in the grid power accounted for more than 15% 

in 2016 [3]. Volatile renewable energy sources and electro-mobility added extra challenges to the 

grid. Normally, the grid capacity is designed to satisfy the peak power demand rather than the 

average demand, which requires expensive operation of peak-load plants during peak hours. With 

the rapid development of smart grid, energy storage system and energy efficiency technology, 

DSM has become another cheaper alternative to managing the peak power demand. In this thesis, 

three topics are researched to achieve an affordable and efficient DSM system for buildings: 1) 

development of a novel daylighting/thermal system to increase the efficiency of solar lighting 

system, 2) economic analysis of using battery energy storage system (BESS) for peak shaving, 3) 

new business models of sharing BESS.  

1.1 Daylighting 

The sunlight was the main source for the lighting of buildings until the end of 19th century. 

Due to the invention and development of electric lamps, the artificial light takes the place of 

sunlight and becomes the main lighting source in the modern buildings. The Energy consumption 
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from lighting contributes about 7% of the total electricity generated in the U.S. in 2017 [4]. 

Because of the overwhelming energy price, energy savings for lighting system has attracted 

substantial research interests recently. There are mainly two research directions in this field: one 

is inventing more efficient artificial lights such as T5 lamps, LED, etc.; the other one is using 

daylighting system to eliminate the usage of electricity for lighting in day time. This dissertation 

focuses on daylighting and aims to propose an optimum novel parabolic trough lighting and 

thermal system.  

Daylighting is a lighting approach which uses natural sunlight to light the interior spaces 

of buildings during the day time. It is important for sustainable buildings because of its 

psychological and physiological benefits to the worker and its great potential in electricity savings 

[5]. Daylighting exists in most of buildings with windows and skylights as the most common 

approaches. The traditional daylighting systems usually have the problem of glare, heat loss and 

light transmission limitation etc. Many new daylighting devices and systems were developed in 

the last several decades to overcome these problems.  

Daylighting can be categorized by many methodologies. The devices can be divided into: 

side-daylighting systems and top-daylighting systems based on system locations; passive and 

active daylighting systems based on harvesting approach of sunlight; traditional and integral 

hybrid daylighting systems based on their relationships to artificial lighting. The main purpose of 

this research is to find an efficient method to gather and transmit the sunlight. When considering 

how the sunlight is gathered and transmitted, the daylighting systems include the following three 

main categories:  

1) Skylight. Skylight systems are one of the simplest and effective approaches to bring in 

sunlight into interior spaces. Nevertheless, some obvious drawbacks affect the application of this 
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system. The presence of a skylight results in the direct transmission of sunlight into the interior 

space which causes glare and heat loss problems. Skylights are typically easy and cheap to be 

installed for new buildings, but difficult to be added to the existing buildings.  Meanwhile, a 

skylight is limited to only provide daylight to the top floor of a multi-story building or for a single-

story building [6]. Tubular guidance daylight systems (TGDS) are more advanced than the 

traditional skylight system. TGDS uses a domed light collector to collect sunlight and passes the 

light through a tube. A diffuser is utilized at the end of the tube to deliver the light to an interior 

space. This system is capable to reduce the glare and heat loss problems from skylights. However, 

it is still difficult to be installed and has limited lighting capability. 

2) Beam (or redirection) systems. Beam systems includes light shelves, light reflectors, and 

prismatic glazing systems etc. [7]. They use simple reflective or refractive elements to bring the 

sunlight into a room close to the outside. Similar to the skylight, it has drawbacks of glare, heat 

transfer, and changing light levels.  

3) Optical fiber daylighting (OFD) systems. These systems transmit concentrated sunlight 

to interior space using plastic optical fiber (POF). A typical representative of this system is the 

hybrid lighting system (HLS). In HLS, sunlight is concentrated by a solar collector, delivered into 

a building through non-image optical fiber, and then distributed by a diffuser to the end use. In 

order to provide sufficient and consistent lighting, the transmitted daylight in HLS is usually 

integrated with dimmable artificial lights [8]. There are many significant benefits in this system: 

a) evenly lighting without glare is achieved by using diffuser; b) high solar collector efficiency is 

obtained through the use of active solar tracking system; c) daylight can be distributed to deeper 

inner space of buildings using optical fiber; d) it is easy to be installed on the existing building due 
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to no extra construction work requirement. All these advantages make the OFD one of the most 

promising technologies in the daylighting systems.  

The OFD system has been studied worldwide due to its significant application potential. 

This concept was initially proposed in early 1970s. The first OFD system was HIMAWARI which 

was developed in Japan [9]. Hybrid Solar Lighting (HSL) was developed by Oak Ridge National 

Laboratory (ORNL) in the United States [10] as shown in Figure 1. HSL uses parabolic dish as 

solar collector, which is controlled by a two-axis solar tracking system. The concentrated ray is 

reflected and re-concentrated to the optical fiber bundle by an elliptical cold mirror. The visible 

light is then delivered and utilized. The daylighting is integrated with a dimmable electric lighting 

system to achieve constant lighting levels and simultaneously save electrical energy. The primary 

parabolic concentrator and the secondary reflector of the HSL are optimized by using the principles 

of the telecommunications antennas [11]. A successful commercialized HLS system called Parans 

was invented in Sweden [12] as shown in Figure 2. The main difference between Parans and HSL 

is that Parans uses many small Fresnel lenses as solar collectors. Also, a primary cost-effective 

HLS was developed in China [13] aiming to bring down the cost of HLS. An exegetic analysis 

model was established in [14] to study the performance of the OFD system. An OFD design 

guideline was proposed based on the proposed model. A comparative study was done in [15] for a 

light pipe and an OFD system. The results showed more daylight could be harvested and the 

evenness of the lighting is better when using the OFD system. Two sample OFD devices were 

developed and analyzed in South Korea [16]. They focused on obtaining uniform illumination at 

the entrance of optical fibers. Shao et al. researched the feasibility of using optical rods for 

daylighting [17]. Couture et al. suggested another novel daylighting system by combining the 

dome collector and optical fiber together [18]. It showed a special well-designed dome is possible 
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to act as an effective and cheap collector for optical fiber daylighting system. The transmission 

efficiency of optical fiber is critical for fiber daylighting system. The straight and bent optical-loss 

of optical fiber was modelled and validated by Tekelioglu et al. [19]. The same research group [20] 

divided the transmission losses of the optical fiber into basic three sources: effect of interface 

roughness, effect of interface defects and cladding absorption. The losses were theoretically 

modelled. The results were validated by literature data. The light transmission characteristic of 

optical fiber bundle was analyzed by [21]. It revealed that the fiber numbers and combination 

approach greatly influence the transmission capacity of light by fiber bundle. Due to the high 

concentration of sunlight, the heat problem at the entrance of fiber bundle is severe. Cheadle et al. 

modelled this heat generation and transfer process [22]. Some possible solutions were proposed 

according to the simulation results.  Overall, OFD system is technically powerful enough to 

provide sufficient lighting to interior buildings but its cost is prohibitive which hinders its 

popularization. Public data shows that HSL system costs $330 to illuminate 1 m2 when launched 

in 2007 [23].  

 

Figure 1. Hybrid Solar Lighting (HSL) System 
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Figure 2. Parans System 

Solar collector system is one of the most important and expensive parts in OFD. It will be 

convenient and cheap to use successful commercial solar collector in OFD. The parabolic trough 

collector (PTC) is a state of art product and is always set as a benchmark for solar collector. The 

success of this technology is mainly indicated by the operation of nine commercial scale solar 

power plants, such as SEGS and Nevada Solar One [24-28]. However, no systematic study about 

the utilization of PTC in OFD system has been done so far. This thesis proposes a novel structure 

which uses PTC in OFD. The advantage of this application not only lies in the cost effectiveness, 

but also in its ability to increase the overall system efficiency. Infra-red (IR) is treated as harmful 

for OFD system because of heat problem. Due to the structure and cost limitation, IR is usually 

split and abandoned in existing OFD system. Nonetheless, this part of energy can be easily used 

for heating purpose if a PTC is applied in OFD system, which means full spectrum solar energy 

utilization can be achieved and the system energy efficiency can be increased. Actually, full 

spectrum solar energy utilization was already employed by many solar energy projects. The 

concentrating photovoltaic/ thermal (CPV/T) system was developed in Australian National 

University [29]. In this system, the sunlight is split into visible light and infra-red for different 
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purposes. This system electrical and thermal performance was analyzed through modelling in 

TRNSYS [30]. The thermal and electrical efficiencies were found to be around 58% and 11% 

respectively. Therefore, it is proposed to use PTC in optical fiber daylighting system to realize the 

combination of daylighting and heating using full spectrum technology in this research.  

1.2 Battery Energy Storage System (BESS) for Peak Demand Reduction 

Peak demand is the highest power consumption at a specific time interval during a billing 

period. The utility charging rate of the peak demand may be more than 100 times higher than that 

of the electricity usage rate because of the high generation cost during peak demand periods [31]. 

Electricity rate is still increasing quickly year by year as shown in Figure 3. According to the data 

from Industrial Assessment Center (IAC) [32], the peak demand charge takes 31.8% of the total 

electricity bill in small and medium sized US manufacturers in 2015. The detailed demand charge 

percentage in the total electricity bill in small and medium sized US manufacturers is shown in 

Figure 4.  

 

Figure 3. Growth of Electricity Rate 
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Figure 4. Demand Charge Percentage of Small and Medium Sized US Manufacturers 

Peak demand is typically met by peak generators, which are costly, low utilized, less 

efficient, and with high GHG emissions. An alternative approach is to adopt demand response (DR) 

programs, which is to shift power loads from peak time to lower power demand periods to avoid 

power supply shortage. The DR programs could benefit both the utility companies and the 

consumers by balancing power supply and demand. It also encourages the deployment of new 

technologies, such as distributed generation and energy storage, and improves the efficiency and 

reliability of the electric system [1]. Traditional DR often causes interruption of production or 

curtailing of appliances for the participated customers. Over the past decades, the economics and 

technologies of the battery energy storage system (BESS) have been improved [33, 34], which 

makes the BESS based DR popular. Compared with traditional DR, the advantages of BESS based 

system includes instantaneously response, no interruption, precise control, dependability, and 

managing over-generation etc. Behind-the-meter (BTM) BESS has drawn particularly more 
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attention because of its flexibility and possible ability to integrated with other services [35-37], 

such as BTM BESS is also capable of shifting peak load to off peak time for time-of-use (TOU) 

customers, improving the power quality and regulating the frequency for industrial facilities. 

Furthermore, BESS is an essential support for the grid or facilities with renewables because of its 

capability to reduce intermittent behaviors of renewables caused by changing environmental 

conditions [38].  The renewable energy share has been growing quickly in all sectors in the US in 

the last decade, as shown in Figure 5.  

 

Figure 5. The Growth in Renewables 

The price of the battery used to be a key factor that draws back the application of BESS, 

but it is its price is dramatically decreasing every year as shown in Figure 6, which makes its 

application more and more attractive [39]. Most recent research from NREL reveals that the 

demand reduction by BESS is economically possible for nearly 5 million commercial customers 

in the US [40]. There is already 3.375GW reported battery system operating in the world according 

to DOE database [41].  
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Figure 6. Reduction in Battery Price [39] 

Because of its promising potential, the use of BESS for peak shaving has been widely 

researched in recent years, [31, 35, 38, 42-46]. Early research focused on the sizing of the BESS. 

An optimal sizing model was proposed  to investigate the application of limited BESS capacity to 

achieve better peak load shaving performance [45]. Dynamic programming method was used to 

find optimal battery capacity and power for BESS [35]. Although the payback could reach as low 

as three years when applying a small-size BESS, the average payback is around ten years when 

using relatively large BESS [47]. Some case studies showed the payback periods of BESS were 

too long to be applied in industrial field even with optimized size [44, 48]. Due to the long payback 

time and high unit cost of the BESS, many research have been done to increase its utilization rate 

[49, 50] and reduce its ownership cost. A stochastic framework was proposed to size a sharing-

based BESS for peak hour utility applications [46]. The results showed sharing one BESS in a 

community or increasing its utilization can substantially improve the cost savings compared with 
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using dedicated storage system for each individual user. Case studies of multi-using BESS were 

introduced, which revealed the economic potential and regulatory challenge of increasing the 

utilization of the BESS [51]. 

Among various battery technologies available, lithium ion battery is recognized as the best 

technology for BESS [52]. In particular, lithium manganese-oxides batteries have been considered 

as a popular candidate for energy storage systems because of its low cost and good technical 

performance in terms of both energy density and power density [53, 54]. During BESS operations, 

the battery degradation can significantly reduce the available capacity of the BESS [55], and hence 

limit the peak shaving potential. The approaches of reducing lithium ion battery degradation have 

been discussed in some earlier publications [56, 57]. The battery life can be prolonged by 

optimizing charge/discharge schedule and depth of discharge of the BESS [43]. However, the real 

economic impact of battery degradation for peak shavings remains unclear because the capacity 

of the battery was assumed to be unchanged [43, 45, 58-60] or only simplified battery model was 

used during system modeling [61]. Moreover, battery performance strongly depends on operation 

temperature [62], which affects battery degradation, charge/discharge efficiency, and battery 

capacity [63]. Nonetheless, the economic impact of the temperature on the BESS for peak shaving 

has not been researched to the best of our knowledge.  

1.3 Comprehensive Demand Side Management (DSM) System   

The stability of the power grid relies on the balance between the supply side and the 

demand side (i.e. customers). It is not an easy task since there is very little control on the demand 

side [64]. Strbac reported that the utilization of the power generation capacity is below 55% [65]. 

Adding new GHG-intensive generation capacity (in supply side) is neither economical nor 

environmentally friendly as the peak power demand happens infrequently and has no time pattern. 
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To address the imbalanced energy demand and supply, DSM has emerged and endorsed by both 

utility company and government [66]. By shifting the peak demand to off-peak periods or reducing 

the peak demand directly, DSM could economically and effectively reduce the generation capacity 

needs and increase the utilization rate.  

DSM also known as demand side response (DSR), has extensive applications and is defined 

in a variety of methods. It is an integration of approaches to plan, monitor and implement utility 

activities or features that could change the electricity use patterns of the consumers in [65]. The 

main objective of DSM is to encourage the consumers to use less energy during peak hours or to 

shift the time of energy use to off-peak times to alleviate the burdens on the grid during peak 

demand periods [67]. However, DSM can also be defined in a more general method. Warren [68] 

divided the DSM into three categories according to the application methods (energy efficiency, 

demand response and on-site backup). Energy efficiency focused on reducing the overall demand. 

Demand response, mainly motivated by energy price or incentive programs, aims to shift the 

demand to off-peak periods. On-site backup, including generation and storage, is used to smooth 

the load shape and reduce the demand peaks. Similarly, Lund et al. [69] categorized DSM into 

reducing, increasing and rescheduling. “Reducing” aim to obtain peak demand clipping or strategic 

usage conservation; “increasing” would achieve strategic usage growth in all times or during off-

peak periods (valley filling). “Rescheduling” usually applies flexible load shape or load shifting 

techniques. Therefore, DSM in this thesis is a comprehensive portfolio of measures to improve the 

energy system at the side of consumption [70]. It ranges from improving energy efficiency by 

using better materials, over smart energy tariffs with incentives for certain consumption patterns, 

up to sophisticated real-time control of distributed energy resources. A typical DSM system is 

shown in Figure 7 [71]. The proposed DSM systems in this research include most of the 
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components at the customer end, such as advanced metering, energy efficiency, renewables, and 

distributed storage etc.  

 

Figure 7. Typical Demand Side Management System [71] 

BESS is the core component of the DSM systems proposed in this thesis.  Its ability is not 

only limited to the peak demand reduction as mentioned in the above section, it is also a key 

component of DSM in modern smart grid. The entire US is embracing the BESS with an incredible 

speed. A 70 MW of battery energy storage was installed within 6 months to cover a major gas leak 

at Aliso Canyon in California in 2016 [72]. California has signed bill AB 2868 into law in 2016 to 

deploy a total 500 MW of energy storage within three major utility companies and required a total 

of 1.3 GW of storage by 2020 under bill AB 2514. Massachusetts has signed House Bill H.4568 

into law in 2017 to deploy 200 MW of storage by 2020. Oregon has required its main utility 

companies to have a minimum 5 MW of storage in service by January 2020 [73]. A variety of 

incentives are also available across states. California’s most successful incentive program, the 

Self-Generation Incentive Program (SGIP), plans to provide $166 million every year through 2020 
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for energy storage and other technologies; it also provides about $1.6/W incentive to battery energy 

storage installation [74]. New York is also enthusiastic in battery storage promotion. A $2,100/kW 

battery storage incentive is planned to cover half of the project cost aimed at summer peak demand 

reduction. New Jersey’s Renewable Electric Storage Program offers $300/kWh for storage 

projects [75]. BESS is also playing an important role in global energy storage market. A 100 MW 

battery storage was built in South Australia within 100 days in 2017 [76]. Japan has announced a 

BESS incentive program in 2014 worth more than $700 million [77], which could cover up to 67% 

of BESS costs. It also provides additional incentives to support stand-alone renewable energy 

generation with batteries. Germany has a high penetration rate of renewable energy 

implementation. BESS is an ideal method to supplement the renewable energy generation to 

supply the power demand fluctuations. The German government has supported the BESS 

installations coupled with solar PV panels since 2013. It also provides incentives that could cover 

up to 30% of the battery cost [78]. China is the world’s largest energy producer and consumer. 

China has installed the highest wind capacity and the second highest solar PV capacity, which only 

account for less than 3% of total energy production in 2013. Energy storage is listed as one of the 

top 100 national strategic projects in 2016 and will be actively promoted during the 13th Five-Year 

Planning Period (2016-2020) on both the grid-side and behind-the-meter side [79]. 

The function and the economy of the BESS are closely related with the type of BESS. 

Based on the installation location, BESS can be divided into Utility-Scale system owned by utility 

company, Behind-the-Meter (BTM) system operated by individual customer, and Remote Storage 

that works as isolated system [37]. Due to the fact that DSM investigated in this thesis is typically 

the behaver of the end-use customer, the BTM system is the focus of the research. BTM systems 

can provide most services to all stakeholders as shown in Figure 8 [80]. Besides of peak demand 
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reduction for customer, it can also relieve the grid burden and improve electricity quality.  It is 

proposed to share BESS in comprehensive DSM systems to maximize its benefits. BTM storage 

is typically owned by the customers, the other stakeholders could be only free riders in this 

ecosystem. To make the venture economically viable, the customers must have a viable and visible 

value stream from the use of BESS. The values that can be easily received by the customer are 

peak shaving, load shifting, integration of renewables, and power quality services etc.  

 

Figure 8. Overall Battery Energy Storage Functions [80] 

Many studies have been devoted to maximizing the benefit of BESS. Sharing and 

integration with renewables and are two popular directions. Considering the variety services BESS 

can provide, many new business models were developed [81-84]. A cloud energy storage (CES) 
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concept which allowed the users to store and withdraw electrical energy from cloud BESS was 

proposed in [84]. Simulation results showed CES was capable of providing energy storage services 

at a substantially lower cost. Similar energy hub concept was proposed to integrate decentralized 

energy systems at community scale. The energy autonomy was between 64% and 92% in 

researched scenarios [85]. The feasibility of sharing one BESS in a community in real-time pricing 

structure was analyzed using Markov Decision method in [86]. An optimized policy was proposed 

to maximize its economic benefit. Distributed BESSs in the big community can simultaneously 

provide local services individually and system services in aggregate [87]. It is found that 

multitasking can almost double an BESS’s profit as compared with a single-service approach. A 

novel dispatch strategy for shared ownership of BESS between customers and distribution network 

operators was developed to maximize the overall savings [88]. The jointed ownership was 

demonstrated to have higher profits and flexibility. Because of its ability to smooth out the power 

fluctuation in the renewable energy generation and improve the system reliability, the BESS is 

usually integrated together with renewables [89]. A grid connected PV plant with BESS in a 

university is modeled in [90]. In the proposed system the electricity demand is satisfied through 

the PV–BESS and the national grid serves as the backup source. The electricity cost can be reduced 

by 25% compared with using benchmark electricity pricing from the grid. A shared BESS 

management algorithm was proposed for renewable energy integration in a smart grid. The total 

profit of all participated users was increased by 10% over the case that customers own individual 

small-scale BESS [83]. Although improved performances and savings were observed in sharing 

and renewable integration systems, their deployments are still a challenge. More integrated 

services usually mean more savings, but the ownerships and controls are also more complex. 
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Therefore, it is critical to investigate the most valuable services and integrate them in the simplest 

method.  

Sharing BESS among multiple customers or several services is the core concept of the 

proposed DSM system.  It is essential to briefly introduce the red-hot sharing economy herein. 

Sharing economy, which is the collective term for peer-to-peer markets, offers appealing 

alternative options for consumers to obtain access to goods and services via community-based 

online services [91]. Emerging sharing companies, such as Airbnb and Uber, grow rapidly with 

innovating technologies and expanding market demands [92]. Some traditional industries, such as 

bike rental and car rental, rejuvenate and gain increasing attentions during this sharing economic 

era [93]. The booming of sharing economy is a challenge to traditional industries. It also inspires 

benign interactions with traditional business styles. The economic impact was analyzed between 

traditional hotel industry and the short-term accommodation platform (Airbnb) in Texas [92]. 

While the emerging sharing market took away 8-10% of hotel industry’s revenue during peak 

demand, the hotels were more motivated to offer less aggressive room prices to benefit more 

consumers. A report from PwC revealed that 44% of US consumers were familiar with the sharing 

economy and 18% of the total population had involved in sharing economy activities [82]. It 

predicted that five key sharing sectors (travel, car sharing, finance, staffing and music and video 

streaming) have the potential to grow to $335 billion with an amazing expansion of more than 20 

times [94-97]. Several different sharing strategies about BESS will be investigated in this thesis to 

maximize its benefits with least system complexity.  
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1.4 Research Objectives  

The objectives of this dissertation research are to comprehensively investigate hybrid 

daylighting system, using BESS for peak shaving, and maximize their economic benefits in the 

modern DSM systems.  

1). To bring down the cost and increase the efficiency of daylighting, a novel hybrid daylighting 

system which combines daylighting and solar thermal will be proposed and analyzed. The system 

specification will be optimized based on economic analysis. The overall system efficiency and cost 

savings will be evaluated by case studies.  

2).  To investigate how the economic performance of the BESS is affected by various parameters 

and operation conditions when used for peak shaving, a detailed battery model and simulation 

structure will be introduced. Case studies will be carried out to quantitatively compare the 

economic impacts of all key parameters and obtain the most significant impact factor.  

3). To maximize the savings of DSM, several new operation models based on BESS and sharing 

strategy will be designed and simulated. System size and control strategy will be optimized based 

on economic analysis. Possible valuable services which can be integrated into the proposed DSM 

system will be investigated through case studies.  
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2. Parabolic Trough Daylighting/Thermal System 

As one of the most important energy consumption source, lighting plays a major role in the 

global energy efficiency improvement. This chapter will introduce the structure and optimization 

of a novel daylighting system to increase the efficiency of solar lighting. A case study will be 

carried out to analyze the system efficiency, economic performance, and potential sustainability 

benefits. 

2.1 Basic Structure of Parabolic Trough Daylighting/Thermal (PTL/T) System  

An innovative PTL/T system is proposed based on the analysis in the introduction section. 

The proposed system aims to bring down the cost of OFD while increasing the utilization 

efficiency of concentrated solar energy. The system overall structure is shown in Figure 9. The ray 

tracing sketch is shown in Figure 10.  

 
 Figure 9. Overall Structure of Parabolic Trough Lighting/Thermal System  

1, parabolic trough solar collector, which is controlled by a 2-axis solar tracking system; 

2, cold mirror, which is used to split solar light. It is concentric with the PTC and have the same 

shape with the PTC; 3, Fresnel lens, which is connected with optical fiber lighting delivery 

system; 4, thermal system. 



20 
 

 

 
Figure 10. Layout of Ray Tracing 

Based on the track of sunlight, the system can be divided into four stages: 1) the sunlight 

is concentrated by a parabolic trough solar collector (PTC) which is similar to other typical solar 

concentration system; 2) the concentrated sunlight is split by a cold mirror while the visible light 

is reflected to another Fresnel lens system and the IR transmits through the cold mirror and reaches 

the thermal system; 3) the visible light is re-concentrated by Fresnel lens to an optical fiber system 

and then delivered for daylighting; 4) the IR is absorbed by thermal system for heat generation.  

The major advantages of the proposed system are concluded as: 

1) PTC is used as solar collector. PTC is the most successfully commercialized solar 

collector, but has never been used for HLS. This is partly because the HLS needs all 

the sunlight to be concentrated to a small point and then delivered by optical fiber. 

However, the PTC can only concentrate the sunlight into a line. Another Fresnel lens 

system is used in the proposed PTL/T system to re-concentrate line light to point light, 

which can be delivered for daylighting. PTC also has the advantages of easy 

manufacturing, expansion and modularization compared with the parabolic dish. The 

conventional parabolic dish collector area of each HSL module is only about 1m2 and 

capable to provide lighting for about 93m2 indoor spaces [98]. It is technically not 
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convenient to expand the collector area because of manufacturing difficulty. Therefore, 

several modules are usually needed for a single building.  Each module needs 

individual supporting and tracking system, which increases overall system cost. In the 

contrast, PTC can be easily made into any area. All sizes of PTCs are available in the 

market. It is possible to use only one PTC to serve a whole medium size space. Because 

of this high flexibility, it is possible to optimize the collector area for a specific case, 

which will be presented in the following sections.  

2) Full spectrum energy from sunlight is utilized. The total efficiency of the existing HLS 

is relatively low because it has never taken use of IR. The spectrum split technology 

similar with that in PV/T system is used in the proposed daylighting system. The IR 

can be separated from sunlight and utilized for heating purpose using cold mirror. The 

thermal problem related to the lighting system can also be relieved benefitted from the 

use of the cold mirror. The split IR was initially proposed for electricity generation 

using solar panel or Stirling engine in HSL system. However, it has never been realized 

due to the high cost of the suitable electricity generation system. Meanwhile, it is 

difficult to establish a cheap heating system for HSL system because of the structure 

limitation. Therefore, the IR is currently separated but wasted in the existing HLS 

systems. PTC is initially designed for heat generation. Therefore, using IR for heat 

generation in the PTC-equipped PTL/T system is very cheap and straightforward.   

2.2 Analysis of Critical Components and Overall Structure  

2.2.1 Choice of Fibers 

In PTL/T system, the solar light is concentrated from PTC surface, reflected by cold mirror, 

re-concentrated by Fresnel lens, transmitted through POF and then reaches end use space. There 
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are energy losses during each stage of this procedure. The biggest transmission loss is from POF, 

which is 4%-5% per meter. To adopt suitable fiber system is critical for the overall efficiency. Due 

to the transmission capacity limitation of a single fiber, fiber bundle is always utilized in the 

daylighting system. In order to achieve higher efficiency, fiber diameter and bundle combination 

method need to be optimized.  

 

Figure 11. Illustration of Lighting Transfer Difference between Large and Small Fiber Diameter 

The transmission of light in an optical fiber can be illustrated by Figure 11. Light 

propagates within the POF by total internal reflection. It is clear that a smaller diameter of the fiber 

means more reflection times of light compared with a larger diameter fiber, and hence more light 

losses. Shao et al. [17] researched the transmittance of the PMMA (Polymethyl methacrylate) rods 

with different diameters under regular sunlight. When using one-meter length rods for testing, the 

mean transmittance values were found to be 0.439, 0.596 and 0.649 for the 25mm, 50mm and 75 

mm diameters respectively when all the other parameters are the same (the transmittance in this 

experiment was very low because the rods were only placed under regular sunlight. The 
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transmittance would be much higher when the sunlight is focused and the incident angle is smaller). 

Larger fiber diameter can also benefit heat release of the fiber bundle. The heat problem is a critical 

issue that limits the capacity of each fiber bundle, because the POF will deteriorate when the 

working temperature is higher than the required value. The thermal loads of the fiber can be 

divided into two components. First, the heat generation because of transmission loss, which is 

significant but doesn’t cause big heating problem because of the long transmission distance and 

hence large heat release surface. Second, the radiation incident on the pores between optical fibers 

is absorbed by the cladding material and results in heat generation. This proportion is significant 

because the high level of solar flux on the end of fiber bundle and the relatively high pore ratio 

[22]. Larger fiber diameter means smaller surface to volume ratio and results in a reduction of the 

fraction of the area that is covered with cladding. This is helpful to reduce the porosity of the 

bundle, which can result in less heat flux on the cladding material of the fiber, and then less heat 

generation. In order to release the heat, Ullah et al. proposed to use a short section of silica optical 

fiber before the POF[16]. In this way, uniform light ray can be obtained at the entrance of POF, 

which can reduce the possibility of hot spot at the POF surface. Liang et al. introduced the 

utilization of polished fiber bundle, which was proved with a capability to tremendously limit heat 

generation[21]. The end of each fiber was polished to be hexagon. This eliminates the gaps among 

different fibers, which prevents the main heating source. The author also used forced air to cool 

the fiber bundle. The solar flux at the entrance can be as high as 8000kW/m2. However, the 

entrance solar flux in [16] can only be around 650kW/m2. It was tested that the bundle would melt 

if the flux was much higher.  
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Table 1. Optical Fiber Information 

Item Value 

Diameter 3mm 
Core material PolyMethylMethAcrylate 

Cladding layer material Fluorinated polymer 
Transmission 96.5% per meter 

Based on the above analysis, a relatively large fiber diameter and the polished bundle 

structure are selected for the proposed PVL/T system. The fiber diameters range from 0.75mm to 

3mm in some of fiber daylighting systems [10, 16, 23]. The larger diameter fibers also are available 

in the commercial market. Nonetheless, the larger diameter fibers are more expensive. They also 

lack flexibility, because the light can travel without major losses only when the bent radius is no 

less than 8 times the fiber diameter [99]. Therefore, the 3mm diameter POF is chosen for the 

proposed system. The detailed information is shown in Table 1. The fiber is polished to hexagon 

using the method described in [21] at the end to form a bundle. It is estimated that the solar flux at 

the entrance of proposed fiber bundle can be at least as high as 1000kW/m2 because of the 

reduction of heat compared with that in [16].  

2.2.2 PTC Geometric Parameters 

Both optical efficiency and thermal efficiency highly depend on the optimal geometric 

parameters of the PTC. Theoretically, three parameters can absolutely define the performance of 

a PTC, namely, aperture, rim angle and concentration ratio. The optical efficiency of the collector 

highly depends on the aperture. The larger aperture leads to a lower optical efficiency because of 

the severer abnormal incident effect. Nonetheless, the larger collector aperture means a higher 

concentration ratio when the receiver diameter is fixed, which results in lower thermal losses [100]. 

Rim angle is closely related with tracking errors. An optimal rim angle is capable of providing 
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maximum error-tolerances for the whole system [101]. The design of the PTC is not the core part 

of this feasibility research, therefore, the optimized PTC is directly chosen according to the results 

in [100, 102], as shown in Table 2. It was proved the optimal dimensions were effective as long as 

the ratio of collector aperture to length and concentration ratio keep the same. It should be 

mentioned that the final optimal PTC parameters will be calculated based on the thermal and 

tracking system parameters. 

Table 2. Optimal PTC Geometric Parameters 

Item Value 

Ratio of collector aperture to length 0.64 

Rim angle 900 

Concentration ratio 21.2 

 

2.2.3 Illumination Area Analysis 

The area of solar collector module largely determines the capacity of optical fiber 

daylighting system, and further influences the illumination area and possible energy savings. For 

a specific area, the fundamental cost of using a single larger collector is less than that of a multi-

collector system because only one supporting and control system is required. Nonetheless, due to 

the big capacity, long POF is needed to transmit the collected light to further space, which increases 

the fiber cost and reduces the overall transmission efficiency. A smaller collector area means a 

shorter fiber length and a higher transmission efficiency. However, the fundamental cost will take 

a big share in its overall price. Hence, the collector area needs to be optimized based on economic 

analysis.  The optimization procedure is: a) list the basic assumptions related with the system cost; 

b) describe the service area and fiber arrangement method; c) express the total fiber length as a 

function of illumination area; d) calculate the required solar collector area based on system 
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efficiency and requirement; e) calculate the cost of illuminating unit area and get the optimum 

value. 

The basic assumptions about the system cost are: 

1) The cost of the whole system can be divided into three main sections: PTC system, 

fiber system, and other cost, as shown in: 

Ct = Cf + Cp + Co          ( 1 ) 

where, 𝐶𝐶𝑓𝑓 is the fiber cost, 𝐶𝐶𝑃𝑃 is the PTC cost, and 𝐶𝐶𝑜𝑜 is the other cost besides the fiber and 

collector. 𝐶𝐶𝑜𝑜 includes all the other components costs and system installation cost. 

2) Cost of fiber is proportional to its length: 

𝐶𝐶𝑓𝑓 = 𝐶𝐶1𝐿𝐿𝑓𝑓𝑓𝑓          ( 2 ) 

where, 𝐶𝐶1is constant, 𝐿𝐿𝑓𝑓𝑓𝑓 is the total fiber length.  

3) The PTC cost is proportional to its area: 

𝐶𝐶𝑃𝑃 = 𝐶𝐶2𝐴𝐴𝑃𝑃 + 𝐶𝐶3         ( 3 ) 

where, 𝐶𝐶2 , 𝐶𝐶3  are constant, 𝐴𝐴𝑃𝑃  is the PTC area. This relationship was gotten based on 

market price survey of PTC. 

Other cost 𝐶𝐶𝑜𝑜 is constant for each module. The other cost mainly includes the cost of 

tracking system, supporting structure, thermal system and installation.  Because 𝐶𝐶𝑜𝑜  only slightly 

changes when varying the collector area in a small range, it is treated as constant herein. 

The PTL/T system is supposed to be installed closely to the geometric center of the serving 

area. Accordingly, only a very short fiber with a length of 𝐿𝐿0 is needed before it enters a building. 
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To simplify the design, the illuminated area is supposed to be a square space. The fiber can be 

arranged in two ways: 1) the area is divided into many small spaces. Each fiber illuminates a small 

square, as shown in  Figure 12. It is straightforward, requires least lengh of fiber and provides 

highest transmission efficiency, but it lacks flexibility and is very hard to manufacture and install; 

2) the whole space is divided into “n” sections by “n” squares. The fiber is also divided into “n” 

bundles, each of which provides service for one section, as shown in Figure 13. In this way, a 

balance can be found between system efficiency and flexibility by optimization. Therefore, it is 

used in this research. 

According to Figure 13, the bundle length in the buildings at each section equals to the 

production of “a” and “i”. Fiber length for each divided area is: 

𝐿𝐿𝑓𝑓𝑓𝑓 = 𝐿𝐿0 + 𝑎𝑎𝑎𝑎          ( 4 ) 

where, i is the section number, 𝐿𝐿0 is the fiber length before it enters the buildings. The transmission 

efficiency of the fiber is exponentially related with fiber length, which is shown by: 

 𝐸𝐸𝑓𝑓 = 𝐸𝐸𝑓𝑓𝑓𝑓𝐿𝐿𝑓𝑓𝑓𝑓          ( 5 ) 

where, 𝐸𝐸𝑓𝑓𝑓𝑓is unit length efficiency. In this calculation, the major loss due to bending of fiber is 

ignored, which requires the bent radius of the fiber to be larger than 8 times of the fiber diameter 

during installation. The total length of fiber can be calculated by: 

𝐿𝐿𝑓𝑓𝑓𝑓 = ∑ 𝐿𝐿𝑓𝑓𝑓𝑓𝐼𝐼𝑟𝑟𝑟𝑟(2𝑖𝑖−1)𝑎𝑎2

𝐼𝐼𝐼𝐼𝑒𝑒𝐸𝐸𝑑𝑑𝐸𝐸𝑓𝑓
𝑛𝑛
𝑖𝑖=1         ( 6 ) 

where, 𝐼𝐼𝑟𝑟𝑟𝑟 is required luminance in the service space, 𝐼𝐼𝐼𝐼𝑒𝑒 is the maximum endurable amount of 

light at the entrance of each fiber decided by fiber bundle property, and 𝐸𝐸𝑑𝑑  is distribution 

efficiency at the end use. Substituting (4) and (5) into (6), the total length of fiber is: 
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𝐿𝐿𝑓𝑓𝑓𝑓 = ∑ (𝐿𝐿0+𝑎𝑎𝑎𝑎)𝐼𝐼𝑟𝑟𝑟𝑟(2𝑖𝑖−1)𝑎𝑎2

𝐼𝐼𝐼𝐼𝑒𝑒𝐸𝐸𝑑𝑑𝐸𝐸𝑓𝑓𝑓𝑓(𝐿𝐿0+𝑎𝑎𝑎𝑎)
𝑛𝑛
𝑖𝑖=1         ( 7 ) 

 

Figure 12. Illustration of Dividing Serving Space into Many Small Squares 

 

Figure 13. Illustration of Dividing Serving Space into Several Big Areas 
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The required solar collector area is related to the maximum intensity of solar radiation, 

required radiation at the end use, and system efficiency. The HLS is the combination of daylighting 

and artificial lighting. Due to the non-storability of light, the collector capability should be 

designed according to the maximum value of solar radiation intensity other than the average value. 

In this way, all the light can be utilized with no waste of collected light. During cloudy time, the 

insufficient lighting can be complemented by artificial lighting. Because the solar light is filtered 

by cold mirror before entering the POF, only the power and efficacy of visible light are considered 

in the calculation. Following these descriptions, the collector area can be expressed by: 

𝐴𝐴𝑝𝑝 = 𝐼𝐼𝐼𝐼𝑟𝑟/𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚         ( 8 ) 

where, 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚 is the maximum intensity of solar radiation in the service location, 𝐼𝐼𝐼𝐼𝑟𝑟 is the required 

total radiation from sun, which can be expressed by: 

𝐼𝐼𝐼𝐼𝑟𝑟 = 𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟/(𝑉𝑉𝑉𝑉𝑝𝑝𝑉𝑉𝑉𝑉𝑒𝑒𝐸𝐸𝑑𝑑𝐸𝐸𝑓𝑓𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝑜𝑜𝑜𝑜)       ( 9 ) 

where, 𝑉𝑉𝑉𝑉𝑝𝑝 is the power percentage of visible light in the solar light, 𝑉𝑉𝑉𝑉𝑒𝑒 is the efficacy of visible 

light, 𝐸𝐸𝑟𝑟𝑟𝑟 is the reflectivity of PTC, 𝐸𝐸𝑟𝑟𝑟𝑟 is the reflectivity of cold mirror for visible light, 𝐸𝐸𝑓𝑓𝑓𝑓 is the 

Fresnel lens transmittance, 𝐸𝐸𝑜𝑜𝑜𝑜 is the optical fiber entrance efficiency, 𝐼𝐼𝐼𝐼𝑟𝑟𝑟𝑟 = ∑ 𝐼𝐼𝑟𝑟𝑟𝑟(2𝑖𝑖 − 1)𝑎𝑎2𝑛𝑛
𝑖𝑖=1  

is the required total radiation at the end use. Only key components efficiency was considered in 

this expression. The transmission efficiencies from one component to another were all assumed to 

be 1. Finally, we can get: 

𝐴𝐴𝑝𝑝 = ∑ 𝐼𝐼𝑟𝑟𝑟𝑟(2𝑖𝑖−1)𝑎𝑎2

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑉𝑉𝑉𝑉𝑝𝑝𝑉𝑉𝑉𝑉𝑒𝑒𝐸𝐸𝑑𝑑𝐸𝐸𝑓𝑓𝑓𝑓(𝐿𝐿0+𝑎𝑎𝑎𝑎)𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝑜𝑜𝑜𝑜
𝑛𝑛
𝑖𝑖=1       ( 10 ) 

The cost of illuminating unit area is: 

𝐶𝐶𝑢𝑢 = 𝐶𝐶𝑡𝑡/(𝑛𝑛𝑛𝑛)2         ( 11 ) 
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where, (𝑛𝑛𝑛𝑛)2  is the illumination area. Combining the equations together, the unit cost can be 

finally expressed by: 

𝐶𝐶𝑢𝑢 =
𝐶𝐶𝑓𝑓 + 𝐶𝐶𝑝𝑝 + 𝐶𝐶𝑜𝑜

(𝑛𝑛𝑛𝑛)2  

=
�𝐶𝐶1 ∑

(𝐿𝐿0+𝑎𝑎𝑎𝑎)𝐼𝐼𝑟𝑟𝑟𝑟(2𝑖𝑖−1)𝑎𝑎2

𝐼𝐼𝐼𝐼𝑒𝑒𝐸𝐸𝑑𝑑𝐸𝐸𝑓𝑓𝑓𝑓
(𝐿𝐿0+𝑎𝑎𝑎𝑎)

+𝐶𝐶2 ∑
𝐼𝐼𝑟𝑟𝑟𝑟(2𝑖𝑖−1)𝑎𝑎2

𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑉𝑉𝑉𝑉𝑝𝑝𝑉𝑉𝑉𝑉𝑒𝑒𝐸𝐸𝑑𝑑𝐸𝐸𝑓𝑓𝑓𝑓
(𝐿𝐿0+𝑎𝑎𝑎𝑎)𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝐸𝐸𝑓𝑓𝑓𝑓𝐸𝐸𝑜𝑜𝑜𝑜

𝑛𝑛
𝑖𝑖=1 +𝐶𝐶3+𝑛𝑛

𝑖𝑖=1 𝐶𝐶0�

(𝑛𝑛𝑛𝑛)2
           ( 12 ) 

2.3 Case Study 

In this section, the efficiency, possible energy savings and sustainability benefits of PTL/T 

system are analyzed by a complete case study. Firstly, the cost and efficiency of critical 

components are estimated based on literature results. Secondly, the system detailed dimensions 

are decided by the above design analysis approach. Finally, the system energy savings and 

greenhouse gas reductions are calculated and presented. 

2.3.1 Critical Components Parameters 

The price of the PTC is estimated by a linear regression approach based on the price from 

[103], the result is 

𝐶𝐶𝑃𝑃 = 272.7𝐴𝐴𝑃𝑃 + 1055.2         ( 13 ) 

The unit cost of fiber is $0.47/m [104], therefore: 

𝐶𝐶𝑓𝑓 = 0.47𝐿𝐿𝑓𝑓           ( 14 ) 

The average installation cost of HLS is $3520 [105]. The tracking and thermal system cost 

around $1000 [103].  Assume all the other small components cost $1000, then the total other cost 

𝐶𝐶𝑜𝑜 is $5520. All the cost related constants are shown in Table 3.  
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Table 3: Values of Cost Related Constants 

Cost related constants Values ($) 

𝐶𝐶𝑜𝑜 5520 

𝐶𝐶1 0.47 

𝐶𝐶2 272.7 

𝐶𝐶3 1055.2 

The system is supposed to be installed in the centre of the roof top and provide service for 

a big interior area. 3m of fiber is needed before it enters the buildings. The required luminance is 

500lux. Assume the maximum irradiation intensity is 1000W/m2. A fiber bundle composed by 7 

fibers with 3mm diameter is employed. The maximum endurable intensity of solar radiation at the 

entrance of each single fiber is estimated to be at least 1000kW/m2. Only visible light is reflected 

by cold mirror and reaches the entrance of the fiber. The efficacy of the visible light is at least 

200lm/w [106]. Therefore, the maximum amount of light at the entrance of each fiber is around 

1500 lumens. At the sea level, about 52% of the radiation is visible light, 42% is IR [107]. All the 

critical parameters used are listed in Table 4. Plugging in all the coefficients into Equation (12), 

we get: 

𝐶𝐶𝑢𝑢= ∑ 0.189(3+𝑎𝑎𝑎𝑎)(2𝑖𝑖−1)+2.046(2𝑖𝑖−1)
𝑛𝑛20.965(3+𝑎𝑎𝑎𝑎) + 6575.2

(𝑛𝑛𝑛𝑛)2
𝑛𝑛
𝑖𝑖=1      ( 15 ) 

 

Table 4. Parameter Values of Critical Components 

Fiber length before entering the buildings 𝐿𝐿0 3m 

Required luminance at the service space 𝐼𝐼𝑟𝑟𝑟𝑟 500lux 

Maximum amount of light at the entrance of each fiber 𝐼𝐼𝐼𝐼𝑒𝑒 1500lumens 

Maximum radiation intensity 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚 1000W/m2 
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Reflectivity of PTC 𝐸𝐸𝑟𝑟𝑟𝑟 92% 

Reflectivity of cold mirror for visible light 𝐸𝐸𝑟𝑟𝑟𝑟 93% 

Fresnel lens transmittance 𝐸𝐸𝑓𝑓𝑓𝑓 95% 

Optical fiber entrance efficiency 𝐸𝐸𝑜𝑜𝑜𝑜 95% 

Distribution efficiency 𝐸𝐸𝑑𝑑 83% 

Unit length efficiency of fiber 𝐸𝐸𝑓𝑓𝑓𝑓 96.5% 

Power percentage of visible light in the solar light 𝑉𝑉𝑉𝑉𝑝𝑝 52% 

Efficacy of the visible light 𝑉𝑉𝑉𝑉𝑒𝑒 200lumens/W 

 

2.3.2 Results 

According to equation (15), division number “n” and section length “a” are the parameters 

that determine the cost of illuminating unit area. Therefore, the optimization work focus on 

choosing their values. Let n in the equation (15) change from 1 to 7. The optimization results are 

shown in Figure 14. It shows the overall optimum areas are between 500 m2 and 700 m2 when 

considering all the scenarios. The unit cost can be expressed as a function of illumination area as 

shown in Figure 15. It can be seen there is an optimum illumination area for each specific n. The 

unit cost decreases with the increase of illumination area until it reaches the optimum critical point. 

The reason is that the increased illumination area brings down the average constant cost for unit 

area, thus reduces the total unit cost. The unit cost increases slowly after the optimum point, 

because the transmission efficiency becomes lower and lower with the increase of fiber length. On 

the other hand, when illumination area is set as constant, the unit cost decreases with the increase 

of n. It means the illumination area should be divided into some small sections. The fiber length 

of each bundle should be adapted to the corresponding service area. Nonetheless, too many 
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divisions will severely harm the flexibility of the system. According to Figure 14 and Figure 15, 

the cost difference becomes negligible after the n reaches 4. 

 

Figure 14. Relationship among Illumination Area, Unit Cost and N Value 

 

Figure 15. Detailed Results of Unit Cost 
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Therefore, n=4 is selected in this research. The partial view in Figure 15 shows the gain 

from increasing the illumination area is minimal after the area reaches 500, since the unit cost 

begins approaching a relatively steady-state value. Because the system flexibility decreases with 

the increase of illumination area, it is better to choose an illumination area considering both unit 

cost and system flexibility. Therefore, the value 500 is chosen in this case study.  

The thermal subsystem has already been deeply investigated by many researchers and is 

also highly commercialized. The estimated efficiency of the thermal subsystem is used directly 

without the description of the detailed system specifications. The efficiency highly depends on the 

working temperature. It can reach 73% for high temperature usage [108], and is around 55% [109] 

at low temperature utilization. The proposed PTL/T system is a relatively small module when 

compared with big parabolic trough power plant. Thus, the low temperature thermal efficiency of 

55% is used in calculation. Applying all the optimization and assumptions to the PTL/T system, 

the key components parameters are chosen and listed in Table 5. 

Table 5. Critical Parameters of The Case Study 

Item Value 

Illumination area 500 m2 

PTC aperture 2.26m 

PTC length 3.54m 

PTC rim angle 900 

PTC concentration ratio 21.2 

Receiver diameter 35mm 

Cold mirror aperture 55mm 

Fresnel lens length 58mm 

Focal length 60mm 

Shadow area 0.2 m2 
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Effective solar capitation area 7.8m2 

Numerical aperture 0.4 

Calculated acceptance angle 23.43 

Fiber bundle number 61 

Divided sections in illumination area 4 

Fiber 3 of 8.6m with 73.6% efficiency 

9 of 14.2m with 60.3% efficiency 

18 of 19.8m with 49.4% efficiency 

31 of 25.4m with 40.5% efficiency 

Combined fiber efficiency 49% 

Lighting efficiency 16.3% 

Thermal efficiency 23.1% 

Total efficiency 39.4% 

 

2.3.3 Energy Savings and GHG Reductions 

The PTL/T system can contribute to the sustainable development of building systems by 

saving traditional energy and reducing greenhouse gas emission. Because the solar radiations and 

energy consumption structures are different in different places, the location-based sustainability 

benefits are calculated for the US. 

Energy source to be substituted is closely related with the actual energy savings. Although 

the lighting subsystem of PTL/T only makes use of 16.3% of the total insolation, it is capable to 

save lots of electricity because the light delivered to the interior of the building is only visible light. 

The luminous efficacy of the visible light is over 200 lm/w, which is significantly high. The typical 

efficacy of fluorescent bulb is only around 60 lm/w. Because of its widely usage in commercial 

and industrial buildings, the fluorescent bulb is treated as the substituted energy source in our 

analysis.  The analysis results reveal that 1 watt of visible light can save up 3.33 watts of electricity. 
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For the heating section, because the most economical traditional heating approach is natural gas 

heating, the absorbed IR energy by PTL/T is supposed to substitute gas usage.  

The PTC is only capable of collecting the beam radiation. The data of direct normal solar 

radiation from NASA is used [110]. Ten typical cities where solar radiation gradually changes 

from 3.38 to 7.02 kWh/day were chosen. The local average electricity and gas rate from EIA were 

used [111]. Due to the rate difference among residential, commercial and industrial, the savings 

were calculated separately for each sector. The maximum savings and simple payback period were 

calculated based on 24/7 operation hours. The results are shown in Figure 16, Figure 17 and Figure 

18. 

 

Figure 16. Maximum Electricity Savings in Each City 
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Figure 17. Maximum Gas Savings in Each City 

 

 

Figure 18. Simple Payback Period in Each City 
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Figure 19. GHG Reduction in Each City 
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1) The electricity savings is greater than $437/year. The gas savings is around $100/year.  
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4) The commercial building should be the best candidate for the proposed system due to 

the moderate payback period and the high coincidence of its operation hours with the daylighting 

time.  

Although the simple payback of PTL/T for industrial sector is longest, the industrial 

buildings could still be good candidates. The reason is: the electricity usage rate is low for 

industrial customers. The results above only counted the usage savings. Nonetheless, the 

daylighting is also capable to reduce the electricity demand, which is more valuable in most cases. 

This effect is more related with demand management. Therefore, it will be separately investigated 

in the demand side management chapter. The savings and payback period in Honolulu HI is 

calculated because Hawaii has the highest utility rate in the US. The results show it has a payback 

period of less than 4 years. Based on the GHG emission rate of unit electricity and gas consumption 

in each city [112], the GHG reduction is calculated and the result is shown in Figure 19. In most 

of cities, the reduction is more than 4,500 Kg per year. To better illustrate the economic benefits 

of the PTL/T system, a maximum potential cost savings map of the whole US is created as shown 

in Figure 20. The normal solar radiation data from over 1,200 sites [113] is used to calculate the 

average solar radiation for each state. Because only commercial buildings are good candidates for 

this system, the annual average electricity and gas rate for commercial sector of each state is used.  
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Figure 20. Cost Savings Potential in the US 
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3. Battery Energy Storage System for Peak Demand Reduction 

As discussed in the introduction chapter, using BESS for peak demand reduction is a 

rapidly developing market. But high upfront costs are still a major barrier to its growth. BESS 

capacity, utilization rate, battery degradation, and operation temperature are the four critical factors 

for the demand reduction from BESS. However, previous research only focused on one or two 

specific factors. No comprehensive analysis and comparisons among the four key factors have 

been done yet. This research aims to build a mathematical model to thoroughly analyze all the 

factors by comparing their economic effects. 

3.1 Battery Model 

The available capacity of the BESS is a key factor that determines the performance of the 

peak shaving. For current BESS built on lithium ion battery, the battery capacity is continuously 

decreasing during operation due to the battery degradation which is primarily caused by the loss 

of cyclable lithium [114]. The battery capacity loss can be separated into cycling loss resulted from 

charge/discharge cycles and calendar loss due to self-discharge of batteries during energy storage 

time. Both cycling loss and calendar loss are significantly affected by the battery operation 

conditions. High temperature enhances the cycling loss because of the accelerated side reactions 

[63]. The Arrhenius Law is typically used to describe the temperature dependence of the calendar 

loss. A semi-empirical battery degradation model based on commercially available lithium-ion 

battery (Sanyo 18650 cylindrical cell) is adopted in this study to calculate the capacity loss [115]. 

This model combines both battery cycling loss and battery calendar loss in one equation. The 

general capacity loss is a function of temperature, charge throughput, and operation time: 

𝑄𝑄𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,% = (𝑎𝑎 ∙ 𝑇𝑇2 − 𝑏𝑏 ∙ 𝑒𝑒−3𝑇𝑇 + 𝑐𝑐) exp�(𝑑𝑑 ∙ 𝑇𝑇 + 𝑒𝑒) ∙ 𝐼𝐼𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�×∑ 𝐴𝐴ℎ𝑖𝑖𝑖𝑖=𝑖𝑖
𝑖𝑖=1 + 𝑓𝑓 ∙ 𝑡𝑡0.5 ∙ exp(−𝐸𝐸𝑎𝑎/

(𝑅𝑅𝑅𝑅))         𝑖𝑖 = 1,2,3,⋯        (16) 
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where, 𝑄𝑄𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,% is the general capacity loss, i is the month number, T is environmental absolute 

temperature in °K, t is the number of operation days, 𝐼𝐼𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the overall average discharge rate (C 

rate) at the end of “i” month, ∑ 𝐴𝐴ℎ𝑖𝑖𝑖𝑖=𝑖𝑖
𝑖𝑖=1  is the charge throughout of the battery till “i” month. a, b, 

c, d, e and f are constant coefficients.   

The battery capacity is not only related to the battery degradation, but also impacted by the 

operation temperature. For the same battery with the same degradation degree, the discharging 

capacity is lower in cold temperature. The battery capacity at 298.15°K is usually defined as the 

rating capacity. The real discharging capacity or relative capacity at different temperatures are 

determined through experiments [49, 116]. Based on experimental data [63], the relative capacity 

percentage can be expressed as a function of temperature using polynomial regression as shown 

below with an R-square of 0.99: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅% =  (0.0099×𝑇𝑇2 − 5.1818×𝑇𝑇 + 762.05)×100%   (17) 

 

Figure 21. Relationship between Temperature and Relative Capacity 
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3.2 Simulation Structure 

The economic benefits of the BESSs at various BESS sizes, utility data, operation 

temperatures, and operation strategies are simulated to investigate the effects of capacity sizing, 

operating temperature, battery degradation and utilization rate. Key factors and parameters used 

in the simulations and result analysis are: 

1. Net present value (NPV) and net present value of unit BESS (NPVU). The cut off condition 

of the simulation is the lifetime of the BESS, which is 10 years according to the warranty 

of the vendor [117]. To evaluate the lifetime economic benefit of the BESS, the NPV 

considering both real discount rate and electricity price escalation rate are utilized. The rates 

used in our calculation are from US Department of Commerce as shown in Table 6 [118]. 

The NPVU is defined as the NPV of unit kWh of BESS.  

Table 6. Economic Related Values [118] 

Variable Value 

Real discount rate 3% 

Average industrial electricity price 

index (𝑬𝑬𝑬𝑬) 

Increase from 1.00 to 1.08 from 

2018 to 2027 

2. Normalized size percentage (NSP). The electricity demand profiles of various electricity 

accounts are different with each other. The absolute battery size cannot be used to equally 

compare the economic performance across different accounts. To get unbiased comparisons 

of the system performances, the NSP is defined as the ratio between “Size of BESS” and 

“Average Peak Demand”. 
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3. Utilization rate (UR). To quantitatively investigate how often the BESS is used, the 

utilization rate is defined as the ratio between “Discharging Time” and “Total on-peak 

Time”. 

4. Simulation conditions and key parameters. To use the battery model introduced above, it is 

assumed the BESSs in this dissertation are all made from the same battery cell. The 

charging/discharging of the Li-ion battery can cause the battery degradation and capacity 

loss [119]. To reduce the battery degradation, the charging/discharging is usually controlled 

with ∆𝑆𝑆𝑆𝑆𝑆𝑆 lower than 100%, which is limited to 80% in all simulations [90, 120]. As the 

BESS is usually kept in air-conditioned space to avoid extreme temperatures, the simulation 

temperature range is set between 0°C and 40°C [121]. Only part of the energy stored in the 

batteries can be used to do useful work. Based on literature data [122], the average one-way 

charge/discharge efficiency (𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐 and 𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑 ) of 85% is used. Because the peak demand is 

measured monthly, the BESS capacity is calculated at the beginning of each month to 

determine the target peak demand reduction. 

The overall simulation flow chart is shown in Figure 22. It is composed by three core 

sections: calculate target demand, obtain BESS operation status, and calculate economic benefit. 

First, target demand calculation. Target demand is the proposed electricity peak demand of 

a facility with BESS installed. It is a key factor in the proposed simulation structure. Target demand 

determines the charge/discharge operation and hence influence the savings results. In each 15-

minute interval during on-peak time, the BESS is designed to discharge to the facility whenever 

the electricity demand is higher than the calculated target demand. The discharge of the BESS 

yields demand reduction and is the major source of savings. In order to maximize the economic 

benefit, the goal is to use the least BESS to achieve the most demand reduction. Therefore, we 
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always minimize target demand for each scenario to get optimized savings. The target demand is 

determined by BESS capacity, operation temperature, and history utility data. BESS capacity is a 

variable which continue changes with time, cycling and operation condition. The nominal capacity 

rating of the BESS can be calculated using the battery model described in the battery modeling 

section.  A BESS is usually composed of hundreds or even thousands of battery cells, therefore:  

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =  𝑵𝑵×𝐴𝐴ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐×𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/1000      ( 18 ) 

where, 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the nominal capacity rating of the BESS, N is the number of battery cells, 

𝐴𝐴ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =1.5Ah is the capacity rating of the battery cell, and 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =3.7V is the nominal voltage 

rating of the battery cell. Not all the energy stored in BESS can be used for peak shaving. It is 

related with operation temperature, discharge efficiency, and discharge capacity limitation. The 

total available capacity also decreases with the increase of battery degradation. Therefore, at 

certain temperature:  

𝐸𝐸𝑖𝑖,𝑎𝑎𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵×∆𝑆𝑆𝑆𝑆𝑆𝑆×𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑×𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅%, 𝑖𝑖 = 1

𝑄𝑄𝑖𝑖−1,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,%×𝐸𝐸𝑖𝑖−1,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵, 𝑖𝑖 = 2,3,4, … ( 19 ) 

where, 𝐸𝐸𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 is the total available BESS capacity at the beginning of “i” month. With 

𝐸𝐸𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵  and history electricity demand profile known, the minimum target demand 

D𝑖𝑖,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  for each month can be determined. Under typical control strategy, the BESS is only 

charged at off-peak time and discharged at on-peak time.  To investigate the influence of utilization 

rate, the benefit of charging battery at on-peak time is also analyzed in the simulations. Therefore, 

the target demands are calculated for two scenarios: with on-peak time charging and without on-

peak time charging. 

Second, obtain BESS operation status. The charge/discharge status of the BESS can be 

determined based on the target demand and utility data. The major purpose of this step is to 
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calculate battery capacity loss during operations and charge/discharge rates. As shown in equation 

4, capacity loss is needed to calculate available capacity at the beginning of each month. Based on 

the battery model in equation 1, the average C rate and Ah throughput are needed for the 

calculation of 𝑄𝑄𝑖𝑖,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,%.  The average C rate can be calculated using the average discharge power 

and power rating of the BESS, as shown in: 

𝐼𝐼𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∑ 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖=𝑖𝑖
𝑖𝑖=1 /∑ 𝐻𝐻𝑖𝑖𝑖𝑖=𝑖𝑖

𝑖𝑖=1
𝐸𝐸𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎,𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵/(1ℎ)

,   𝑖𝑖 = 1,2,3⋯     ( 20 ) 

where, 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the rating C rate, which is 1.5A based on the specification of the cell used in 

this thesis, 𝐸𝐸𝐸𝐸𝑖𝑖 is total energy discharged from the BESS during on-peak time, H𝑖𝑖 is discharge 

hours of each month. Both H𝑖𝑖 and 𝐸𝐸𝐸𝐸𝑖𝑖 are obtained by applying the target demand to the utility 

data. The Ah throughput is the total discharge energy divided by the cell number and cell voltage: 

𝐴𝐴ℎ𝑖𝑖,𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑝𝑝𝑝𝑝𝑝𝑝,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∑ 𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖=𝑖𝑖
𝑖𝑖=1
𝑁𝑁𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

,     𝑖𝑖 = 1,2,3,⋯      ( 21 ) 

Finally, the NPV of the cost savings is calculated based on the peak demand reduction, 

electricity consumption and utility rate. When the BESS is operated without on-peak time charging, 

the NPV of each month is: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = (𝐷𝐷𝐷𝐷𝑖𝑖×𝑅𝑅𝑑𝑑+𝑅𝑅𝑒𝑒,𝑝𝑝×𝐸𝐸𝐸𝐸𝑖𝑖−𝑅𝑅𝑒𝑒,𝑜𝑜×𝐸𝐸𝐸𝐸𝑖𝑖/(𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑×𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐))×𝐸𝐸𝐸𝐸𝑦𝑦
(1+0.03)𝑦𝑦

,   𝑖𝑖 = 1,2,3⋯ , y = 1,2,3⋯ ( 22 ) 

where, “y” is the year number of month “i”, DR𝑖𝑖 is peak demand reduction of each month, 𝑅𝑅𝑑𝑑 is 

peak demand rate, 𝑅𝑅𝑒𝑒,𝑝𝑝  is on-peak electricity rate, 𝑅𝑅𝑒𝑒,𝑜𝑜  is off-peak electricity rate, 𝐸𝐸𝐸𝐸𝑦𝑦  is the 

average industrial electricity price index of year “y”. When operated with on-peak time charging, 

the NPV of each month should be: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖 = (𝐷𝐷𝐷𝐷𝑖𝑖×𝑅𝑅𝑑𝑑+𝑅𝑅𝑒𝑒,𝑝𝑝×(𝐸𝐸𝐸𝐸𝑖𝑖−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖×(𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑×𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐))−𝑅𝑅𝑒𝑒,𝑜𝑜×(𝐸𝐸𝐸𝐸𝑖𝑖/(𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑×𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐)−𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖))×𝐸𝐸𝐸𝐸𝑦𝑦
(1+0.03)𝑦𝑦 ,   
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 𝑖𝑖 = 1,2,3⋯ , y = 1,2,3⋯        ( 23 ) 

where, 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 is the on-peak time charging energy consumption.  

 

Figure 22. Simulation Flow Chart 
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3.3 Simulation Results and Discussion 

3.3.1 Utility Rates and BESS Cost 

Rate structure of utility company and the cost of BESS significantly impact the economic 

benefit of the BESS. There are two major BESS-friendly electricity rate structures, namely, 

Demand Charge rate and TOU rate. Demand Charge rate is typically designed for medium and big 

commercial and industrial (C&I) customer. Peak demand is usually the monthly maximum power 

(kVa or kW) calculated in certain time interval during on-peak period. Peak demand charges billed 

to customers could vary monthly based on the equipment utilization schedule [123]. TOU rate is 

the most common pricing structure used for residential and small C&I customer. It encourages the 

usage during off-peak time and reduces peak demand load for the grid. The price usually varies 

two to four times a day per the peak demand occurrence periods. Typically, the electricity rate for 

consumers served under TOU program has a lower cost at night and a higher cost during daytime. 

Some utility companies offer an intermediate rate for early morning or late afternoon [124]. Table 

7 illustrates the rate structures of two selected utility companies.  

Due to the focus of this section is peak demand reduction, the Demand Charge Rate is used 

in all simulations. One-year 15-minutes utility data from seven small industrial facilities in 

Wisconsin was collected. The average monthly peak demand of each facility is shown in Table 8. 

It is assumed the electricity consumption profiles are the same for every year when simulating. 

Because “Cg3” tariff in Table 8 is the most common rate structure in the surveyed facilities, it is 

employed for all simulations to eliminate the influence of utility rate. The purpose of this thesis is 

to investigate the maximum potential of the BESS, therefore, all the simulations are based on 

perfect electricity demand prediction, which is also the assumptions made in [42, 59].  
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Table 7. Rate Structures for Different Utility Companies  [125, 126] 

State/Utility 
Company Rate Type Seasons On-peak 

($/kWh) 
Off-peak 
($/kWh) 

Demand 
($/kW) On-peak Periods Criteria 

Wisconsin/We-
Energies 

Residental-
TOU (Rg 2) 

All 
seasons $0.1968 $0.0896 N/A 

Weekdays: 
 7 a.m. to 7 p.m. 

Or 8 a.m. to 8 p.m. 
Or 9 a.m. to 9 p.m. 

Or 10 a.m. to 10 
p.m 

Annual usage > 60,000 kWhs. 

General 
Secondary 

Service (Cg 
3) 

All 
seasons $0.0784 $0.0562 $13.80 Weekdays: 

9 a.m. to 9 p.m. 
Daily usage > 986 kWhs for any 3 

out of 12 month period. 

Arizona/Salt 
River Project 

General 
Service 

TOU (E-32) 

Summer $0.1521 $0.0528 $4.32 Weekdays: 
2 p.m. to 7 p.m. 

May, June, September and 
October. Shouder-peak rate is 

$0.1030/kWh for 11 a.m. to 2 p.m. 
and 7 p.m. to 11 p.m. in weekdays. 

Summer 
Peak $0.1671 $0.0538 $6.65 Weekdays: 

2 p.m. to 7 p.m. 

July and August. Shouder-peak rate 
is $0.1093/kWh for 11 a.m. to 2 

p.m. and 7 p.m. to 11 p.m. in 
weekdays. 

Winter $0.1151 $0.0512 $4.06 Weekdays: 
5 a.m. to 9 a.m. 

November through April. Shouder-
peak rate as $0.1036/kWh for 5 

p.m. to 9 p.m. in weekdays. 
 

Table 8. Average Peak Demand Data of Each Facility 

Facility number 
Facility 

1 

Facility 

2 

Facility 

3 

Facility 

4 

Facility 

5 

Facility 

6 

Facility 

7 

Average peak 

demand (kW) 
172 433 202 85 181 523 812 

The high price of Li-ion battery is a major factor that limits its utilization as an energy 

storage. The industry-wide cost of EV Li-ion battery is around $410/kWh in 2014 [39]. The 

Powerwall from Tesla designed for home and small business application is about $437/kWh. It is 

also equipped together with some support hardware and a Bi-Directional high-efficiency inverter 

which cost additional $300/kW. Based on available research [42] and online quote system, the unit 
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costs of the BESS including installation is expressed as a function of the battery size and the 

inverter size [117]: 

Unit Cost = 437×Battery Size+300×Inverter Size+1000
Battery Size

     ( 24 ) 

where, the units of battery size and inverter size are kWh and kW respectively. The capacity of the 

BESS includes energy capacity determined by the battery pack size and power capacity determined 

by the inverter/converter size. The capacity of the BESS in this research is mainly about the energy 

capacity because it is the major factor that limits the BESS capability [45]. When used for peak 

shaving, the optimized inverter power is at the same level with the battery size [48]. There will be 

economic benefits to optimize the power capacity and try to have a smaller inverter.  However, a 

small investor would limit the power output of the BESS in extreme cases. The smaller inverter 

size also limits the expansion capability of the BESS. Moreover, the unit price of the inverter is 

much less than that of the battery. Therefore, it is assumed the inverter size is the same with the 

battery size when calculating the BESS cost.  

3.3.2 Sizing Effect 

Due to the high cost of BESS, it is critical to properly size BESS for each application. The 

system NPV and NPVU are used as economic indicators to compare the sizing effect. The 

operation temperature is set to be 20°C during sizing analysis.  

To obtain the maximum economic potential of the BESS in each facility, the NPVs of the 

BESSs with various NSPs were calculated for all seven facilities. The results are shown in Figure 

23. The NPVs for seven facilities are totally different with each other. Because all the other 

simulation factors are the same, the only explanation is that the NPV highly depends on the utility 

data. The best NPV changes from negative to more than $35,000. There is no payback for facility 
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4 no matter what size we choose. A positive NPV can be obtained for facility 6 even more than 

30% NSP is chosen. The NPVs of the BESSs will become negative if the NSPs are larger than 

critical values. The critical NSPs for every facility are also different. In most cases, the critical 

NSPs are less than 15%. Overall, the average NPV is largest when the NSP is around 4%.  

 

Figure 23. Influences of NSP on NPV 

The NPV of the whole system is closely related to the absolute size of the BESS. The 

facility with higher demand requires larger BESS size and more investment. To obtain the 

economic benefit of unit size BESS, the NPV of unit BESS (NPVU) is calculated and shown in 

Figure 24. The results show a smaller NSP is always better for the NPVU. The NPVUs are positive 

when the NSPs are lower than 9% excepting facility 4. Utility data clearly impacts NPVU. 

However, the NPVU is not totally proportional to the facility demand. Such as the electricity 

demands of Facility 7 and Facility 5 are ranked first and fifth, but their NPVUs are ranked third 

and second respectively. 
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Figure 24. Influences of NSP on NPVU 

Overall, the benefit of optimizing the size of the BESS is limited by the best NPV. The 

NPVU is negatively related with NSP and highly depended on the utility data. In order to have 

better economic profit, the size of the BESS needs to be very small. Similar results have been 

drawn from other research. Simulations for 98 facilities showed the smaller BESSs had better 

NPVs in [47]. The optimized battery size is between 16kWh and 20kWh for a facility with higher 

than 600kW demand in [48]. With necessary data in hand, the companies can choose the proper 

NSP based on their own preferences using the proposed method. The obtained figures are only an 

estimate based on the case study data and subject to uncertainty. The detailed relationship is highly 

dependent on the BESS cost and the utility data.  
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3.3.3 Degradation and Temperature Effects  

Battery degradation significantly influences the overall system performance. Due to 

degradation, the available capacity of BESS declines during each operation cycle and all the 

standby time. Its peak demand shaving potential also decreases day by day. According to battery 

model, temperature is a key factor that impacts battery degradation. Temperature also influences 

battery relative capacity. Because of their close interaction with each other, the effects of 

degradation and temperature are analyzed in the same section.  Degradation is determined by C 

rate, Ah throughput and temperature. C rate and Ah throughput are highly dependent on the NSP 

and utility data. Therefore, two groups of simulations are carried out.  

First, keep the temperature as constant (use 20°C), the NSP changes from 2% to 35%. 

Simulations are done for all seven facilities. Results are illustrated in. The capacity loss is around 

38.6% after ten years of operation. The differences of the final capacity losses for all cases are less 

than one percent, which means the C rate and Ah throughput nearly have no influence on the 

battery degradations in all case studies. This is can be explained by the super low cycling loss. 

According to the results, the average monthly operation hour and C rate are only 9.2hours and 

0.174 respectively. The utilization rate is calculated to be 3.6%. These results are comparable to 

the results from [47], in which the optimized operation hours of the BESS is between 30 and 

40minutes per day. [58] suggested to use the BESS around 1.5% of the time to maximize the 

savings. The extremely low utilization rate results in less than one percent overall cycling loss 

difference. Therefore, the degradation is mainly caused by calendar loss, which is dominated by 

temperature. The BESS needs to be maintained at a proper temperature to minimize the calendar 

loss and prolong battery life.  
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Figure 25. Final Capacity Losses of Every Facility at Various NSP 

Second, keep the NSP as constant (use 10%), the temperature changes from 0°C and 40°C.  

The results are shown in Figure 26. NPVU slightly declines with the increase of the temperature 

in all scenarios. The final capacity loss steadily increases from 19.3% to 73.2% when the 

temperature increases from 0°C to 40°C. The final available battery capacity is less than 50% of 

the rated capacity if operated at 30°C or higher. The average NPVU at 0°C and 25°C is $147.4 and 

$111.4 respectively, which represents a 24.4% savings difference. When the temperature increases 

from 25°C to 40°C, the average NPVU decreases by 67.4%, which means the savings reduction is 

more than doubled in less temperature increase compared with that of changing the temperature 

from 0°C to 25°C. Therefore, temperature greatly impacts battery degradation. To prolong battery 

life, higher than 25°C operation temperature should be avoided. This result is consistent with the 

analysis from [127], in which the degradation rates of all components of the battery were found to 

increase when the temperature was higher than 25°C. The contiguous United States average 

temperature is 12.4°C in 2015 [128]. When lowering the temperature from 12.4°C to 0°C, the 
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NPVU is increased by 7.8%, which is the average potential savings improvement by optimizing 

the operation temperature.  

 

Figure 26. Impact of Temperature on The NPVU and Capacity Loss 

In conclusion, the cycling loss of the BESS is super low when used for peak shaving due 

to the low operation hours. The temperature related calendar loss is the major capacity loss. The 

NPVU can be maximized by adopting optimized operation temperature, but the average savings 

improvement is only about 7.8%. Currently, the mainstream industrial scale BESS is designed to 

be placed in a container with integrated HVAC system. It is costly to maintain the temperature at 

a specific set point all through the year. Therefore, the aim of the thermal management system 

should be trying to maintain the temperature at an optimized range and to avoid extreme operation 

temperatures which may cause serious battery damages or system failures. The extra heating is 

important in cold climate region such as great lake area to keep the environmental temperature 

above the freezing point. The air condition cooling is necessary in warm area such as sunbelt region 

to cool down the environmental temperature to below 25°C. It is necessary to take the cost of 
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thermal management systems into account and propose the regionally optimized operation 

temperature ranges for different locations in the future. 

3.3.4 Utilization Rate Effect 

When used for peak shaving, the BESS only discharges when the “peak demand” reaches 

the target demand. The so called “peak demand” doesn’t happen all the time in a facility. As 

descripted in the above section, the average discharging time is only 9.2hours in some cases. The 

cycling loss is less than one percent due to the extremely low utilization rate. A typical peak 

shaving effect of one month is simulated and illustrated in Figure 27. It is shown the BESS is 

operated at standby mode for most of the time. Therefore, it is critical to investigate the impact of 

utilization rate on NPVU. As an important approach to increase the utilization rate, on-peak time 

charging strategy is studied in this research. 

 

Figure 27. Illustration of Demand Reduction Effect in One Month 

When used for load shifting, the BESS can only be charged at off-peak time and discharged 

at on-peak time to avoid paying high electricity prices. However, due to the much higher price of 
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electricity demand, the on-peak time charging is possible if the BESS is used for peak shavings. 

According to research, the economic savings of demand charges can easily offset the higher energy 

cost [47]. As shown in Figure 28, the electricity stored in the BESS may be exhausted during A1 

area without on-peak time charging. Therefore, the target demand cannot be achieved because 

there is no available capacity left in the BESS. Nonetheless, if the BESS can be charged during 

A3, it would be capable to support A2 area and thereby provide more demand reduction potential. 

This on-peak time charging can effectively increase the utilization rate of the BESS. 

 

Figure 28. On-peak Time Charging Effect Illustration Using One Day’s Electricity 

Profile 

Simulations were carried out assuming the batteries can be charged whenever the real 

demands were lower than the target demands and the batteries were not fully charged. The 

simulation conditions are 20°C operation temperature and 2%-11% NSP (this is the NSP range 

where most of the BESS may have positive NPVU). The increase of NPVU by adopting on-peak 
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time charging is illustrated in Figure 29. In general, $117.3 to $491.7 more NPVU can be obtained 

using on-peak time charging.  The average increase is $241.5 for all scenarios, which represents a 

significant 69.9% increase compared to the NPVU of without on-peak time charging.  

 

Figure 29. Increase of NPVUs at Various NSPs 

The saving improvement is more critical when the customer is pursuing a larger BESS. 

The comparison of NPVUs using 10% NSP and 20°C temperature is shown in Figure 30. With on-

peak time charging, the NPVUs of facility 1 to 3 are increased from nearly zero to about $200, 

which can change the projects from nearly non-profitable into economically feasible. Because all 

the other conditions are the same, the improvement from on-peak time charging is mainly caused 

by the increase of system utilization. According to the simulations, the utilization rate, and average 

C rate and Ah throughput are increased by 35.2%, 18.1%, and 59.8% respectively. One concern 

of using on-peak time charging is the increase of cycling number may hurt the battery life. 

However, the final capacity losses are only less than one percent more than that of without on-

peak time charging in all scenarios. The reasons are the extremely low lifetime Ah throughput and 
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average C rate. According to the research [115], the cycling loss of 300Ah throughput at 0.5C is 

less than 1%. The overall average C rate and average Ah throughput with on-peak time charging 

are 0.21C and 544Ah in the simulations. Hence, their values are still too low to obviously impact 

the battery cycling degradation. The calendar loss which remains the same is the major capacity 

loss in any cases. Therefore, with the increase of utilization rate resulted from on-peak time 

charging, NPVU of the BESS is greatly boosted with nearly no sacrifice of the battery life. These 

results are similar with the conclusion from [81], in which the utilization rate of the BESS is 

increased by sharing BESS among consumers. The NPV of the BESS is almost doubled and a 

larger BESS becomes profitable.  

Compared with choosing proper sized BESS, reducing battery degradation and optimizing 

operation temperature, the benefits of increasing utilization rate are obvious. The benefit from 

optimizing the size of the BESS is limited by relatively low NPV because only very small NSP 

can be chosen. The optimized NSP also highly depends on the utility data and the preference of 

the customer which subjected to uncertainty. The cycling loss of the BESS used for peak shaving 

is ignorable because of the low utilization rate. Therefore, an effective approach to reduce battery 

degradation is to maintain the storage temperature at the optimized level to limit the calendar loss. 

The average NPVU can only be increased by 7.8% by optimizing the operation temperature and 

reduce the battery degradation in the case studies. Nonetheless, the average NPVU is increased by 

69.9% with the application of on-peak time charging. The utilization rate of the BESS is only about 

5.6% in this situation. There is still a great potential to optimize the operation structure of the BESS 

to further increase its utilization rate. The possible approaches include integrating the BESS with 

other demand response system, sharing one BESS among multiple electricity accounts, and 
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combining the BESS with renewables etc. [58]. Therefore, the utilization rate is recognized as the 

most important factor that impacts the economic benefit of the BESS. 

 

 

Figure 30. Comparison of NPVUs at 10% NSPs 

 

3.3.5 Spatially Potential in the US 

To provide a guideline about the application of BESS, the cost savings for each state in the 

US is estimated using the real electricity rates. The electricity consumption data of 30 big C&I 

sites form 2012 from Open Data [129] is used for simulation. The data includes building types of 

education, light industrial, food sales & storage, and commercial property, which makes it a good 

representative for all kinds of C&I consumers. Because the EIA doesn’t report peak demand rate 

for each state, the rates from major energy suppliers are collected and applied to the BESS model 

(no on-peak time charging, 10% size percentage, 20°C, 10years lifetime), the lifetime cost savings 
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per unit BESS is illustrated in a map as shown in Figure 31. Considering the overall system cost 

of over $600/kWh including invertor, the BESS is only economically feasible in limited states.   

 

 

Figure 31. NPVU of BESS Used for Peak Shaving in Each State ($/kWh) 

 

Due to the complexity of modeling process, it is hard for individual consumers to estimate 

their potential savings from using BESS. A simple estimate approach is proposed by using the 

standard deviation. Theoretically, there would be no demand reduction if the consumption is 

constant during the on-peak time. The fluctuation of the consumption is the source of demand 

reduction. Therefore, the relationship between standard deviation and demand reduction in 30 big 

C&I consumers is analyzed and shown in Figure 32.  10% BESS size percentage is used in the 

simulations. A clear parabolic relationship is observed with an R2 of 0.8671. The demand reduction 

can be expressed as: 
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DR = 0.0062Std
2
 - 0.2358Std + 5.8848      ( 25 ) 

where, DR is demand reduction, Std is standard deviation. The consumer can use this simple 

expression to estimate the possible demand reduction with utility data in hand. 

 

Figure 32. Relationship between Standard Deviation and Demand Reduction 
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4. Comprehensive Demand Side Management (DSM) System   

According to the analysis of the PTL/T system in the second chapter, its cost savings needs 

to be greatly boosted to make it economically feasible in most of the cities. During the initial 

calculation of electricity cost savings, only electricity consumption cost was counted in the 

financial savings. The peak demand reduction was not considered due to the intermittent behavior 

of the sunlight. Daylighting systems need to be integrated with artificial lightings to provide 

consistent lighting. The short period operation of the artificial lightings still results in the increase 

of the on-peak electricity demand. The demand charge is a big part of the total utility bill. Therefore, 

it is essential to reduce both electricity consumption and peak demand using PTL/T system, which 

can be achieved by integrating with BESS. The economic feasibility of using BESS for electricity 

peak shaving is better than PTL/T system but its simple payback period is still relatively long. The 

low utilization rate of the BESS is the key factor that draws back its economic benefits. Based on 

analysis in [51], the BTM energy storage can provide up to 13 services for all stakeholders 

simultaneously. However, its economic benefits for utility services and ISO/RTO services are hard 

to be quantified and collected by the end-use customer. This thesis only focuses on the savings 

that can directly benefit the customers. Therefore, two DSMs based on sharing strategy are 

investigated in this chapter to maximize the cost savings and the reliability of both PTL/T and 

BESS: a) Simple sharing. Under this methodology, one BESS is shared among several customers 

for single service, to reduce the peak demand with its best savings potential; b) Comprehensive 

sharing, which is to share one BESS to provide multiple services such as peak demand reduction, 

TOU bill management, integration of PTL/T, and power quality control etc.    
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4.1 Simple Sharing 

The core value of the sharing economy involves unlocking the value of unused or low 

utilized assets for monetary, environmental, social or other benefits. The low utilization rate and 

high cost of the BESS make it a great potential candidate for sharing economy. Considering many 

small and medium C&I customers are located together in many places, it is proposed to simply 

share one BESS in multiple C&I buildings for peak shaving. An optimized sharing structure is 

introduced to maximize demand reduction. Case studies are carried out to investigate the possible 

savings increase and reliability improvement.  

4.1.1 System Structure in Simple Sharing 

The same BESS model and utility database in Chapter 3 are used in this section. The overall 

design and operation of the simple sharing network are illustrated through Figure 33. The shared 

BESS works similar to a cloud service. Each consumer buys certain capacity of storage, which is 

certain percentage of its average peak demand in the case studies. The optimized target demands 

can be calculated for all customers based on the overall history utility data and the size of BESS. 

During on-peak time, the customer can request discharge from BESS whenever the demand from 

the smart meter is higher than the designed target demand. At off-peak time, the consumer needs 

to charge the BESS according to the electricity it withdraws, which should include efficiency 

compensation during charge/discharge. Because the BESS is BTM energy storage, it is not 

necessary owned by the utility company. It can be owned and maintained by the community based 

on their requested share of capacity. A certain number of sites can be selected to participate the 

sharing network. Considering the restriction of both geometry and market, it is better to limit the 

number of customers in each case, which is set to change from one to six in the simulations. To 

get reliable results, ten sets of simulations are designed for each scenario.  
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Figure 33. System Structure of Simple Sharing Network 

It is worth to mention although the on-peak time charging can greatly boost the savings 

from BESS, it is not used in the simple sharing network. The reasons are: 1) electricity sell among 

end-use-customers are not allowed by most of the utility companies, 2) the frequently 

charge/discharge among different customers is hard to be controlled.  

4.1.2 Optimization of the Target Demands 

Suitable target demand for each site is necessary, otherwise there maybe not enough 

capacity left when needed or too much capacity wasted by idling. Considering the characteristic 

of peak demand charge, a single miss in one month means no savings at all.  Hence, the optimized 

target demand calculation is the core part in this simulation. Due to the uncertainty of the utility 

data, no function can be presented to accurately describe the electricity consumption. Therefore, 
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search-and-test method is used to find the optimized target combination in each scenario. Because 

Genetic Algorithm (GA) works well to solve the problems with flexible efficient solution, or with 

no set function well defined, it is used to search the combined minimum target demand in the 

proposed structure. 

GA is an adaptive heuristic search method inspired by the mechanism of biological 

evolution. It is efficient to be used to solve both constrained and unconstrained optimization 

problems [130]. Benefiting from the development of computer technologies and maturing of the 

computational algorithms, GA was firstly introduced in early 1970s to help researchers to search 

the optimized solutions in changing environment. Some biological terms are adapted to introduce 

the process of genetic algorithm. Chromosome, which consists of genes at particular locations and 

serves as the “blueprint” for all living organisms, is typically referred as a candidate solution for 

the problem. A set of solutions is called population. To create the next generation of solutions, 

recombination, or crossover of randomly selected chromosomes occurs. Mutations, which consist 

of gene change at random location, also occurs at random frequency. The degree of goodness for 

each chromosome is evaluated by a fitness function at each generation. The fitness value is used 

as the criteria to select the chromosomes for next generation. Since the chromosomes with high 

fitness values are more possible to stay in the population, the new generation of chromosomes 

tends to have higher average fitness value than those of the old generation. This screening process 

is then repeated until the termination condition is satisfied [130, 131]. GA discovers and combines 

good “genes” of solutions in a highly parallel fashion. It is an excellent tool to search for optimal 

solutions in complex environment or among large spaces of possible solutions [132]. Therefore, 

GA is a good fit to find the optimized target demand for each consumer in the sharing plan.  
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Figure 34. Target Demand Minimization Process 

The overall target demand minimization procedure is shown in Figure 34. The basic 

simulation conditions are: 20°C temperature, 10% sizing percentage, and 10-years lifetime. SOC 

calculation module is based on the battery model from chapter 3. BESS discharging is based on 

the target demand selected by GA. During on-peak time, set Z to a large number whenever the 

SOC is less than 20%, which means a failure. The calculation of target demand is a constrained 

minimization problem. The control function is: 
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Fn = Min (𝑍𝑍𝑗𝑗)=Min (Sum (𝐷𝐷 i,𝑗𝑗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡))      ( 26 ) 

where, 𝑍𝑍𝑗𝑗  is the proposed target demand for month “j”, 𝐷𝐷i, 𝑗𝑗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡   is the target demand for 

consumer “i” at month “j”. GA optimization tool in Matlab is used to search proper 𝐷𝐷 i,𝑗𝑗,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

which fulfills the requirement of minimizing 𝑍𝑍𝑗𝑗. By participating the sharing plan, the consumer 

certainly is expecting more savings. Therefore, the target demand for single customer application 

(under the same simulation condition) is set as upper boundary, which ensures more DR can be 

achieved for each consumer.  It is also not fair to provide too much DR for one consumer. A 15% 

DR is set as lower boundary to prevent overdraw from single consumer. The other important GA 

parameters are obtained based on convergence speed and quality during simulation tests, which 

are listed in Table 9.  

Table 9. Key Parameters of GA Optimization 

Parameters Values and Conditions 

Population size 200 

Creation function Constraint dependent 

Scaling function Rank 

Selection function Stochastic uniform 

Crossover fraction 0.85 

Mutation and Crossover Constraint dependent 

Generation 150 

Stall Generations 100 
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4.1.3 Results Analysis 

As described in system structure section, six sets of simulations were carried out to 

investigate the impact of simple sharing strategy. Constant operation temperature of 20°C was 

used in all simulations. Because low system utilization rate and high initial equipment cost are the 

major barriers for the application of BESS’s application, BESS utilization and economic benefit 

are used as the key indicators to demonstrate the advantage of simple sharing strategy.  

4.1.3.1 BESS Utilization Analysis 

As concluded in Chapter 3, the low utilization rate is the most significant factor that impacts 

the economic benefit of BESS. The simulation results of the simple sharing strategy reveal great 

utilization rate and average operation hours improvement as shown in Figure 35. The utilization 

rate increases from 4.08% to 11.45%, while the average operation hours increase from 10.5 

hours/month to 29.4 hours/month. More importantly, the increased charge/discharge cycle does 

not significantly impact the battery life. The absolute capacity loss only increases by less than 2% 

as shown in Figure 36. The reason is the average C rate and Ah throughput of the battery cell are 

still relatively low. At the scenario of six customers, the C rate and Ah throughput are 0.38C and 

1123Ah respectively, which means less than eight full cycles per month. Calendar loss still 

dominates the battery degradation.  
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Figure 35. Utilization of BESS in Simple Sharing Network 

 

 

Figure 36. Capacity loss of BESS in Simple Sharing Network 

 

 

 

0%

2%

4%

6%

8%

10%

12%

14%

0

5

10

15

20

25

30

35

1 2 3 4 5 6

U
til

iz
at

io
n 

R
at

e

Av
er

ag
e 

O
pe

ra
tio

n 
H

ou
rs

Number of Customer

Average Operation Hours
Utilization Rate



71 
 

4.1.3.2 Economic Benefit Analysis 

At first, results show a larger size of BESS is generally allowed in the simple sharing 

network. As introduced in Chapter 3, the NSP of the BESS typically needs to be less than 10% to 

achieve a positive NPV. This NSP is called maximum NSP, which is increasing steadily with the 

number of customer under simple sharing strategy. It is higher than 18% in the scenario of six 

customers as shown in Figure 37. Similar results were obtained for the optimized NSP, which is 

about 4% for single application. The small optimized NSP severely limits the size of BESS and 

potential savings. With simple sharing, it reaches 8.1% as shown in Figure 38. These NSPs 

increase mean relatively larger BESS can be applied, hence a higher total NPV can be obtained. 

 

Figure 37. Maximum NSP in Simple Sharing Strategy 
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Figure 38. Optimized NSP in Simple Sharing Strategy 

Second, NPVU gradually increases with the number of customer. As shown in Figure 39, 

the average NPVUs are always better in the scenarios with more customers. For example, the 

average NPVU of single application with NSP of 8% is $85.8, while it is $527.7 in six-customer 

scenario, which represents 515% improvement. These results demonstrate the great economic 

potential of sharing strategy. The advantage of sharing is gradually fading with the increase of 

customer number. The improvement after the number reaches four is insignificant. This 

phenomenon can be explained more clearly through Figure 40. The relative improvement of 

adding one more customer decreases with the growing of customer number and is less than 10% 

when the customer number is higher than four. Because more customers lead to higher system 

complexity, the optimized customer number should be three or four. However, the number of 

customer is only the apparent reason of the observing improvements. The stagger peaks of different 

customers are the primary cause under the surface, which can be explained through analyzing the 

coincidence factor (CF) of all scenarios. CF is the ratio, expressed as a numerical value or as a 

percentage, of the simultaneous maximum demand of a group of electrical appliances or 
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consumers within a specified period, to the sum of their individual maximum demands within the 

same period. Therefore, lower CF means higher staggering possibility and better NPVU. As shown 

in Figure 41, the average CF decreases with the increase of customer number, which helps 

understand why the higher customer number generates more savings. Furthermore, the NPVU 

values in Figure 39 are average values. In some special cases as shown in Table 10, the NPVU of 

four-customers scenario with CF of 0.941 is less than that of three-customers scenario with CF of 

0.935. This mismatch demonstrates that CF is a better indicator to estimate savings compared with 

the number of customer. Generally, the optimized CF is around 0.925 according to the simulation 

results. Moreover, the range of NPVU with more customers is much smaller as shown in Figure 

42. There are ten sets of simulations for each scenario. The less diversity of NPVUs at higher 

customer number scenario indicates the savings are more promising. Therefore, the system 

reliability is improved with the proposed simple sharing network. 

 

Figure 39. NPVU of the BESS with Different NSP in All Six Scenarios 
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Figure 40. Relative Improvement Percentage with The Increase of Customer Quantity 

 

Figure 41. Relationship between Average CF and Number of Customer 
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Figure 42. NPVU at Different Scenarios with NSP of 10% 

 

 

Table 10. Special Cases about CF and Number of Customer 

 Scenario 1 Scenario 2 

Number of customer 3 4 

CF 0.935 0.941 

NPVU $524 $456 

 

4.2 Comprehensive Sharing 

Although the simple sharing of BESS is already attractive with improved savings and 

reliability, it is a challenge to clearly define the ownership. To achieve the best savings, it is better 

to have three or four customers in one network. Due to the flux of energy consumption, it is hard 
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to obtain best demand reduction for everyone. Therefore, an improved comprehensive sharing 

strategy is proposed in this section.  

4.2.1 System Structure  

As shown in introduction section, the BESS economics can be greatly improved when 

sharing one battery for several services. However, the utility company and grid are free-riders for 

the energy storage. Although the BESS can help to achieve distribution and transmission deferral, 

and energy arbitrage etc., the customer lacks the ability to collect corresponding savings from the 

other stakeholders. Therefore, the objective of the proposed comprehensive sharing is to simplify 

the ownership and maximize the sharing. We only include the direct savings for the customers 

themselves in the calculations. The overall system structure is shown in Figure 43. The whole 

system is supposed to have modularized operation. Peak shaving is the base function because of 

its best savings capability. The core optional modules include: TOU application, integration with 

PTL/T and other possible services. The interaction between each model will be simulated using 

the BESS model in Chapter 3. All the basic system specifications are the same with the previous 

sections. The savings improvement potential of each module and the combined benefits will be 

quantified using case studies. 
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Figure 43. Comprehensive Sharing System Structure 

4.2.2 TOU Peak Load Shifting Application 

Only demand reduction or peak demand shaving is analyzed in the previous sections. In all 

the simulations, the BESS is designed and optimized to reduce the peak demand charge of the 

consumer.  Although the electricity rates during on-peak and off-peak are different for the demand 

charge rate customer, its difference is too low to contribute significant amounts of savings. This 

situation would change when using BESS for peak load shifting, in which, the savings only comes 

from utility rate difference between on-peak time and off-peak time. Most of the applications for 

residential and small commercial buildings fall into this category. Typically, the kWh rate in this 



78 
 

situation is much higher than that of big C&I customer. The control and savings calculation of the 

BESS in this situation is relatively simple and can be concluded by: 

1. Charge the BESS at off-peak hours and discharge to the customer at on-peak hours. 

The capacity of the BESS is always 100% utilized during on-peak period. There is no 

direct economic benefit to share BESS for load shifting in multiple customers. 

2. The savings is directly linear with the capacity of the BESS and on-peak/off-peak utility 

rate difference: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑅𝑅𝑒𝑒,𝑝𝑝×𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑 − 𝑅𝑅𝑒𝑒,𝑜𝑜/𝐸𝐸𝐸𝐸𝐸𝐸𝑐𝑐       ( 27 ) 

where, Unit Savings is the savings per unit BESS ($/kWh). A typical savings estimate 

is listed in Table 11.  

Table 11. Typical Savings from Peak Load Shifting 

On-peak rate ($/kWh) [133] 0.20101 

Off-peak rate ($/kWh) 0.09137 

One-way charge/discharge efficiency 85% 

Savings ($/kWh/cycle) 0.063364 

Cycling times in ten years 2550 

Total lifetime savings 162 

It is shown that the savings ($162 per kWh BESS) from load shifting is very low. The 

simple payback is longer than the lifetime of the BESS, which makes it economically impossible 

to install BESS for load shifting alone. However, the important advantages of this application are 

its flexibility and reliability. The BESS can be discharged any time on request as long as it is on-

peak time. When the capacity of the BESS is smaller than the total electricity consumption, it can 
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shift certain amount of electricity usage for each on-peak period without any other constrains. 

These valuable advantages make the load shifting a perfect complimentary application for peak 

shaving. It is possible to design a scenario as shown in Figure 43. The BESS is connected to a 

community transformer to provide load shifting service. Typically, the TOU consumers have the 

right to choose the peak time schedule for themselves [125].  The options are: 7am to 7pm, 8am 

to 8pm, 9am to 9pm, and 10am to 10pm. Due to the peak time for demand charge rate is from 9am 

to 9pm, the 10am to 10pm peak time for TOU rate is chosen for staggering purpose. In this way, 

the remaining capacity of the BESS can be used for load shifting after 9pm, which provides reliable 

additional savings without extra initial battery cost. On the other hand, this load shifting does come 

with a cost of extra battery degradation, which reduces the peak shaving potential. Trade-off 

between capacity loss influence and load shifting savings is necessary. Therefore, the combined 

savings was evaluated through case study to demonstrate its feasibility.  

At first, the load shifting capacity needs to be calculated. According to the simulation in 

chapter 3, there is 93% capacity left for the BESS used for peak shaving as shown in Figure 44. 

The average demand of the 30 big C&I accounts in the database is 211.9kW. Using 80% ΔSOC 

and 85% discharge efficiency, the remining usable capacity of the BESS after 9pm is about 

13.4kWh. On the other hand, the average electricity consumption of 30 TOU accounts between 

9pm and 10pm on regular weekdays is calculated to be 10.2 kWh. It means at least two TOU 

customers is needed under the connected transformer, which is true in most cases in the US. 

Therefore, all the remained capacity after 9pm should be able to be used for load shifting for TOU 

customer.  



80 
 

 

Figure 44. Average Remaining Capacity Percentage of BESS Used for Peak Shavings 

Second, simulations were carried out for three sizes of BESSs at the constant 20°C 

operation temperature to calculate the combined savings. The results are shown in Table 12. 

Generally, the NPVUs of the BESS are improved in all scenarios. Load shifting can generate 

considerable positive cash flow for the sharing network. The advantage is more significant for 

larger NSP due to its small baseline NPVU value. The additional savings from load shifting is 

relatively stable with an average value of $96. The reason is the savings from load shifting are 

nearly constant which is only related with BESS itself and utility rate. The extra battery capacity 

loss caused by load shifting does not significantly reduce the peak demand reduction. With 79.4% 

NPVU improvement at 10% NSP, the load shifting is a valuable service that can be included in 

the proposed comprehensive sharing network, especially when the size of the BESS is large. 

Moreover, the savings from load shifting is almost guaranteed and not influenced by the fluctuation 

of peak demand, which improves the reliability of the overall system.  
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Table 12. NPVU Improvement of Adding Load Shifting Function 

 NPVU 

Parameters 4% NSP 8% NSP 10% NSP 

Only Peak Shaving $570 $235 $126 

Peak Shaving + Load Shifting $662 $331 $226 

Improvement 16.1% 40.9% 79.4% 

At last, it is worth mentioning that the proposed load shifting also significantly benefits 

utility companies because of the “Duck Curve” phenomenon, which represents the imbalance 

between supply and consumption due to solar energy [134]. As shown in Figure 45, the demand 

increasingly occurs during the early evening hours after the sun has set, which requires utility 

company to steeply ramp up generation using peak power plants. This is an increasingly severe 

challenge due to the rapid development of solar energy. Therefore, the load shifting between 9pm 

and 10pm is of more special importance for utility companies.  

 

Figure 45. Duck Curve Effect from CAISO [134] 
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4.2.3 Integration with PTL/T  

 As presented in introduction section, the benefits of both BESS and renewables can be 

increased by integrating them together. Therefore, similar advantage should be available for PTL/T 

system. This section aims to simulate the combination effect of those two systems and evaluate 

the possible performance improvement. Different with previous sections, NPV is not suitable to 

be compared herein due to: 1) the NPVUs of BESS and PTL/T have different units. The economic 

performance of BESS is much better than PTL/T. To optimize the combined NPV will eliminate 

PTL/T directly; 2) it is hard to distribute the additional savings to each individual system, which 

makes the separate NPV evaluation difficult. Therefore, the improvement percentage of total cost 

savings is selected as the performance indicator. Case studies of seven facilities in Wisconsin are 

carried out. 

The simulation structure is shown in Figure 46.  At first, to calculate the electricity savings 

from PTL/T, the optimized unit equipment size and efficiency from Chapter 2 are used directly. 

The hourly average direct normal irradiance data in Wisconsin is applied. Second, combine the 

calculated hourly electricity savings and original utility data from customer, a new set of utility 

data can be generated, which can be used to simulate cost savings using the model presented in 

Chapter 3. Third, the size of both systems need to match with each other to maximize the 

improvement. A two-factor three-level experiment is designed to investigate their main impacts, 

as shown in Table 13. Simulations are carried out for nine scenarios in all seven facilities. The 

results are compared with the situations when no PTL/T applied to get the improvement percentage 

of total cost savings. 
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Figure 46: Simulation Structure of Integrating PTL/T with BESS 

 

Table 13: Experiment Design for the Integration of BESS and PTL/T 

Factors Level 1 Level 2 Level 

NSP of BESS 4% 8% 12% 

Number of PTL/T 3 6 9 

 

Simulation results show a positive relationship between the size of PTL/T and the 

improvement percentage. The average improvement increases from 14.8% to 35.7%. This can be 

explained by the higher electricity savings due to the larger solar collector. Although the solar 

energy is not consistent and subjected to change frequently, its operation time is highly coincident 

with peak time, which helps to reduce peak demand in general. On the other side, the improvement 
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percentage decrease with the increase of NSP. The reason is: when NSP increases, the BESS is 

capable to achieve more demand reduction and cost savings; due to the fact that the combined 

demand savings does not increase as quick as the baseline demand savings, a negative relationship 

exists. It means a small BESS should be enough to support PTL/T system to achieve optimized 

demand reduction. This phenomenon can be further illustrated through the main effects plot as 

shown in Figure 47. The line for the size of PTL/T is steeper, which indicates it is a more 

significance impact factor. Overall, simulation results show 12.4% to 43.5% cost savings 

improvement by combining PTL/T and BESS for peak demand reduction.  

 

Figure 47: Main Factor Effects Plot for Improvement Percentage 

 

4.2.4 Additional Potential 

4.2.4.1 Power Factor Correction 

Power Factor (PF) is the ratio between the “active power” that the system uses to produce 

useful work (in W or kW) and the “apparent power” that the utility company deliveries to the 
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system (in VA or kVA). It is universally expressed using power triangle as shown in Figure 48.  

The difference of the apparent power and the active power is known as the reactive power (VAR 

or kVAR), which is a non-productive power and not recorded by the power meter. Low PF and 

high reactive power mean less delivered power is used to do productive work. The uncorrected PF 

of an industrial facility is typically around 80% [135]. The plant with low power factor would need 

larger transformers and conductors to ensure the adequate power supply for the equipment. Large 

amount of reactive power could deteriorate the voltage stability of power grids and may cause 

power outages if the generated power couldn’t match what is consumed [136]. To discourage this 

bad practice, many utility companies charge penalties to low power factor customers and provide 

incentives for power factor correction projects. Power factor correction usually brings in savings 

for both the utility companies and the end-use consumers. For utility companies, the benefits 

include stabilizing the system voltage, mitigating the risk of power outages, and avoiding 

immediate system upgrades etc. As to the consumers, the benefit is directly reflected on the 

reduced utility bills through avoided penalties and received incentives.  

 

Figure 48. Power Factor Triangle 

Traditionally, capacitor banks are used for PF correction. Capacitor banks can be installed 

at various locations to offset the inductive impact and reduce the excess reactive power.  Due to 

the popularity of solar energy and electric vehicles (EV), using smart bi-directional inverters, 
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power factor compensation has been proposed and analyzed by researchers. In a smart PV system, 

the inverter can be configured to produce more reactive power and bring the factory to a unity 

power factor [137]. In this process, the reactive power capacity of the inverter is used similar to a 

fast-acting capacitor [138]. The V2G connected bi-directional EV charger is capable of fulfilling 

reactive power compensation with/without battery power consumption [139]. Specially designed 

EV inverters can provide optimized PF correction [140, 141]. The basic reason is the existence of 

a big capacitor in the invertor as shown in Figure 49 [139]. When equipped with proper control 

module, the inverter can work as well as a separate capacitor bank. Considering the extremely low 

utilization rate of BESS, its inverter is suitable to be used for PF compensation most of the time. 

Therefore, it is proposed to include PF correction in the shared network when the power factor is 

low.  

 

Figure 49. Typical Bi-directional Invertor Structure [139] 

The additional potential savings can be calculated using a case study. According to PF 

policy of We Energies [133], the penalty and incentive can be calculated through: 

BD0.85 = 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑×[1 + 0.65 ×(0.85−  𝑃𝑃𝑃𝑃𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢)]     (25) 

BD0.95 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑×[1 − 0.5 ×( 𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 0.85)]      (26) 
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As introduced in TOU peak load shifting section, the average peak demand of 30 big C&I accounts 

is 211.9 kW. Using typical uncorrected PF of 0.80 and NSP of 10%, the smart inverter will add 

$367.3 NPVU for the system as calculated in Table 14.  

Table 14. Power Factor Savings Calculation 

 
Actual 

Demand 
(kW) 

Inverter 
Capacity 
(kVAR) 

Power Factor Billed Demand 
(kW) Demand Cost 

Existing 211.9 0 0.80 218.8 $3,019.3 
Proposed 211.9 21.19 0.84 213.3 $2,943.2 

Monthly Savings $76.0 
NPVU increase $ 367.3 

 

4.2.4.2 Combine Meter Effect 

To simplify the ownership and operation, the best option is to have single ownership. In 

this way, the BESS can be solely managed by one shareholder. Nonetheless, single customer 

doesn’t necessarily mean single electricity account. According to the assessment data from IAC in 

UW-Milwaukee, about 40% of the audited facilities have two or more electricity accounts in the 

same site. It is the results of organization expansion in the past decades, which is very common in 

the entire US.  Thereby, a sharing network specially designed for this situation is proposed as 

shown in Figure 50. According to the simple sharing calculation, sharing between two accounts is 

not enough to get optimized savings but the improvement is impressive. More importantly, sharing 

one BESS between two accounts owned by one shareholder can achieve “Combining Two 

Electricity Accounts” effect. Typically, each electricity account is used to determine peak demand 

during a billing period and the customer is billed for summation of two peak demands. Based on 

IAC data, this demand charge can be reduced by about 5% through simply combining two accounts. 

However, due to the extremely high cost of new transmissions when combining accounts, most of 
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these multi-account facilities feel reluctant to invest on this. If shared between two accounts with 

on-peak time charging, the BESS is capable of spreading peak demand between two accounts, 

which helps achieve similar demand reduction as combing meters.  

 

 

Figure 50. Using BESS to Achieve Combining Meters Benefits 

The economic benefit of this special application is simulated through an IAC assessment 

in Wisconsin. The basic information of the customer is shown in Table 15. The demand reduction 

results are shown in Figure 51. Compared with using the same BESS for simple sharing without 

on-peak time charging, the average demand reduction was increased by 85.6%. Meanwhile, the 

NPVU, the utilization rate and ∑𝐴𝐴ℎ𝑖𝑖 were increased by 45.6%, 106.3% and 123.2% respectively, 

which indicated a great promotion of the savings and utilization. The discharging time is 39.0hours 

per month in this case, which is already longer than simple sharing one BESS among six customers. 

The final capacity loss is 42.6%. Therefore, this special sharing situation provides best economic 

benefit in all scenarios analyzed in the comprehensive sharing network.  
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Table 15. Basic accounts information 

Parameters Values 

Account 1 average peak demand (kW) 172.2 

Account 2 average peak demand (kW) 433.2 

Average peak demand by combining accounts (kW) 566.1 

Peak demand rate ($/kW) 13.8 

 

 

Figure 51. Demand Reduction Improvement in Sharing with Combine-Meter Effect 

 

 

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0 2 4 6 8 10 12

D
em

an
d 

R
ed

uc
tio

n 
(k

W
)

Month

Sharing with combine-meter effect Simple sharing

Simulation conditions:
20°C, 60.5kWh BESS



90 
 

 

 

5. Conclusions 

Electricity demand needs to be appropriately managed due to the increasing imbalance 

between supply side and consumption side. Because of its tremendous advantages compared with 

traditional demand response system, BESS based DSM for end use customer is thoroughly 

research in this dissertation.  

5.1 Main Contributions to Knowledge 

In this thesis, a novel PTL/T system is proposed to increase the solar energy utilization 

efficiency, the economic characteristic of using battery energy storage system (BESS) for peak 

demand reduction is evaluated, several new DSMs based on sharing economy are proposed to 

increase the economic benefits of the BESS, the comprehensive demand reduction potential of 

combining daylighting and BESS is calculated. The main contributions are summarized as follows:  

1. The most significant innovation of PTL/T is the utilization of PTC for daylighting and the 

combination of daylighting with heat generation. In the proposed system, solar light is split 

into visible light and IR. The visible light is delivered for indoor lighting and the IR is used 

for heat generation. The critical components of the proposed system are optimized. The 

cost of illuminating unit area is expressed as a function of illumination space dimensions 

and critical components efficiency. The size of the PTL/T module can be optimized on 

economical basis when applying some basic component specification parameters to the 

proposed function. The final optimized system specifications were obtained by a case study. 
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2. According to the case study, the optimized PTL/T is to use a module with 8m2 PTC to 

illuminate 500m2 office areas. A 7-fiber bundle composed by 3mm diameter fiber is 

adopted. The fiber ends are polished in hexagon shape to eliminate heat generation in the 

entrance of fiber. For the PTC, the aperture is 2,26m, the length is 3.54m, and the rim angle 

is 90o. The illumination area is divided into 4 sections. The fiber lengths for each section 

are 8.6m, 14.2m, 19.8m, and 25.4m respectively. The average combined fiber efficiency is 

49%. The overall utilization efficiency of the solar energy is 39.4%. The maximum energy 

savings and simple payback period of PTL/T are calculated when applying in residential, 

commercial and industrial sector for different cities.  The result shows the commercial 

sector is the best candidate for the proposed system. The cost savings potential of unit 

PTL/T in each state is expressed in the map to demonstrate its economic benefit in the US. 

3. The economic benefits of using BESS for peak shavings in have been modelled. Detailed 

battery model is included in the proposed simulation structure. Real utility data from 

facilities and commercial available equipment data are used for calculations. The impacts 

of system capacity, battery degradation, environmental temperature and utilization rate are 

quantified and compared through case studies for the first time. The best NPV of BESS 

can be obtained when the NSP is around 4%, after which, the NPV decreases with the 

increase of NSP. Therefore, the benefit of optimizing the size of the BESS is limited by the 

best NPV. The system is only economically feasible when the NSP is less than 15%. The 

NPVU is negatively correlated with NSP and highly depends on the utility data. The battery 

degradation is significant after ten years’ operation. Due to the low utilization rate and C 

rate, the cycling loss is only less than one percent. Therefore, the battery lifetime can only 

be prolonged by reducing the calendar loss through optimizing the operation temperature. 
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Higher than 25°C temperature should be avoided because the acceleration of both battery 

degradation and NPVU reduction. Because the average environmental temperature is right 

in the range of proper operation temperature, the benefit of optimizing the temperature is 

only about 7.8% in the US.  

4. When used for peak shavings, the utilization rates of the BESS are extremely low when 

operated at traditional control strategy. The average discharging time is less than ten hours 

per month. To evaluate the effect of increasing utilization factor, on-peak time charging 

strategy has been studied. The simulation results show the utilization rate is promoted from 

3.6% to 5.6%. The average NPVU are increased by 69.9% with nearly no increase of the 

battery degradation. Additionally, larger BESS becomes profitable with the increase of 

utilization rate. Compared with the uncertain impact of NSP and 7.8% limitation from 

reducing battery degradation, the utilization rate clearly has the most significant impact on 

the NPVU. Considering there is still great potential of increasing the utilization rate, it is 

recognized as the dominant factor that impacts the economic benefit.  

5. A simple sharing DSM is proposed to increase the utilization rate of the BESS when solely 

used for peak demand reduction. The demand reduction among all customers is optimized 

through GA method. Simulation results show larger size of BESS can be applied using the 

new strategy. The max NSP and optimized NSP reaches 18.8% and 8.1% respectively in 

six-customer scenario. The NPVU is more than doubled in most cases. According to the 

trade-off between reliability and savings improvement, three or four customer number 

should be included in one sharing network.   

6. To simplify ownership and maximize savings, a comprehensive sharing DSM is proposed 

to share one BESS for multiple services. Using peak demand reduction as baseline function, 
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the TOU peak load shifting application is approved to be a reliable addition to the system 

with average increase of $96 in NPVU. The demand reduction can be improved by 

combining daylighting and BESS together because they complement each other. The 

integration of PTL/T is capable to add another 12.4% to 43.5% more savings. Due to the 

proposed three services don’t significantly interact with each other, they can be simply 

combined in one network to maximize the total savings.  

7. Two extra special opportunities are evaluated for the comprehensive DSM. The smart bi-

directional inverter of the BESS can provide PF compensation with extra built in control 

module, which can add extra $367.3 NPVU to the system. A special operation strategy is 

designed for the customer who has multiple accounts. According to a case study, combine-

meter effect can be achieved with 45.6% increase in NPVU by sharing the BESS with on-

peak time charging.  

5.2 Future Research Direction 

The proposed PTL/T system is still pure theory calculations. Although the economic 

benefits of the BESS and PTL/T can be improved by a large margin through the sharing strategies 

proposed in this dissertation, there are still several major barriers for its application. For example, 

the optimized battery size is still relatively small, which limits the total savings. The uncertainty 

of electricity consumption causes extra difficulty for the control algorithm. The future work should 

focus on: 

1. Build a prototype of PTL/T system. The feasibility of the proposed structure was already 

approved. The similar system is being followed by other research team [142]. Integrating PTL/T 

and LED to provide uniform illumination should be the next step. A prototype needs to be 

developed to demonstrate its advantage.  
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2. The proposed peak demand reduction system based on BESS needs to be integrated with 

building energy management system (EMS). Typically, the EMS is capable to response to peak 

demand by adjusting the operation of the energy consumption equipment. Therefore, modelling 

the entire building and integrating the proposed system with EMS is capable to achieve better 

demand reduction and more reliable control. 

3. All the services provided by the BESS in the proposed sharing network are for the 

customers themselves. The benefits for utility companies and ISO/RTO services are still unclear. 

It is necessary to evaluate the cost savings for the other stakeholders. The knowledge of this will 

help the utility companies to design incentive programs to popularize the installation of BESS.  
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