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ABSTRACT

Calibration of a Stochastic Price Model

for American Electricity Markets

by

Oliver G. Meister

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Richard H. Stockbridge

Abstract

This thesis discusses models for electricity spot prices from the Midwestern American and

Manitoba market. The models are based on experiences in European markets and rely on a

superposition model with several jump components. The methodology of Bayesian Inference

solved with a Markov chain Monte Carlo algorithm has been applied to find estimators for

the processes of the model. The specific Markov chain Monte Carlo algorithm applied a

Random Walk Metropolis combined with a Gibbs sampler. The different estimators of the

models are evaluated with the posterior predictive value and simulations of the electricity

spot prices. We have modified this methodology to apply to the US market.
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Introduction

Electricity spot prices are influenced by many diverse drivers, for example renewable power

sources or changes on the world market such as the fiscal crisis. The number and variety of

different factors that influence the behavior of the electricity prices complicate a calibration or

prediction of the change in the market. The structure of the price process consists of diverse

components such as different jumps, general trading behavior and several kinds of volatility.

The prediction of electricity spot prices by calibrating models based on observations has been

documented in several papers. One specific paper describes an approach of defining a model

which is based on daily average prices from APXUK and EEX, two European markets. In the

paper, an algorithm is described to calibrate a model using Bayesian inference. Our goal is

to set a model for the daily electricity spot prices of the Midwestern American and Manitoba

market by using the results of the models that have been calibrated through the European

data. We are using LMP five minutes data as a base which requires some modification

of the given algorithm of the related paper since that paper uses daily average price data.

Therefore, in a first step, we are comparing and assessing the similarity of the European and

American data. Main factors to look at will be the structure of the data. The European data

show a high volatility with different kinds of jumps, a certain reversion to the mean level

and different spikes that occur frequently. This structure is a main reason for the approach

of solving the model, so we have to confirm a similar structure in our data. After that,

we take a look at the methodology for calibrating a model. The algorithm used here is

based on a Random Walk Metropolis with a Gibbs Sampler. This method is a common

algorithm for solving a Bayesian Inference by applying Markov chain Monte Carlo. We will
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explain the different techniques and put their relations together to show how the algorithm,

used here, is derived. The analysis will be a key factor for adjusting the model and the

algorithm which is stated in the paper. We will adjust the code to calibrate our model and

find adequate estimators to simulate the spot prices of the MISO market, specifically the

WEC node used by WE Energies. The resulting models will be evaluated by comparing the

final estimators and calculating posterior predictive values for our different processes of the

model. At the end we assess our results by simulating electricity spot prices. The resulting

price processes paths will be compared with our observed prices to show the adequacy of our

model. In addition, we are interested in calibrating a model for our five-minute data. After

the analysis and application of the algorithm, we are interested in evaluating the techniques

for our original five-minute data. Therefore, we will adjust the seasonality of the spot prices,

which will differ from the daily average in that it also displays day and night differences.
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Bayesian Calibration in Electricity Spot

Price Models

I.1 Model

The algorithm that is used for the calibration of the model in electricity spot price markets

from the US is based on the code derived by Jhonny Gonzalez and related paper “Bayesian

calibration and number of jump components in electricity spot price model” by Jhonny

Gonzalez, John Moriarty and Jan Palczewski. The general approach is applying a Markov

chain Monte Carlo (MCMC) to generate samples for calculating posterior functions of the

unknown parameters. In general, it has been observed that electricity spot prices have

structures consisting of jumps, mean reversion and seasonality (see Jhonny Gonzalez and

Palczewski (2016)). Those jumps and their depending mean reversion of the electricity

price is comparable to similar structures in other contexts, such as financial time series. The

application of a superposition model solving with MCMC is common to calibrate an adequate

model. Such a superposition model consists of a diffusion process where the volatility is

realized through a sum of reverting jump processes. The program runs an MCMC algorithm

for a Bayesian inference to find estimators for an Ornstein-Uhlenbeck process compounded

with a sum of multiple jump components. The detailed model is explained in the following

sections.

3



I.1.1 Ornstein-Uhlenbeck Processes

The model and the related processes are based on the observations in the electricity spot

markets United Kingdom APXUK and European EEX. Both markets have a mean level to

which the spot price reverts, as desribed before. In addition, they present different types of

jumps that occur regularly. On one hand there are jumps with a quick decay back to the

mean level. On the other hand, there are spikes with a gradual decay.

For the model, different Ornstein-Uhlenbeck processes are defined. A process Y (t) , θ ≤ t ≤

T , which is right continuous with left limits is called an Ornstein-Uhlenbeck process if it is

a solution to the following stochastic differential equation:

Y (t) = λ−1(µ− Y (t))dt+ σdL(t), Y (0−) = y0t.

The first term of the equation describes the reversion to a constant level µ. λ is the strength

of the return to a mean level. For example, if µ ≤ Y (t), the slope becomes negative, which

ensures a reversion to µ. The second term (µ− Y (t)) describes the reversion. The last part

of the equation is a noise process which describes the volatility of this component, which is

either a Wiener process or a compound Poisson process.

y(t) = µ+ (y0 − µ)e−λ
−1t +

∫ t

0

σe−λ
−1(t−s)dL(s)

For the noise process L(t) we consider two options. A standard Wiener process can be used

for modeling the general trading prices. The resulting process is defined with a conditional

distribution of Y (t+ s) given Y (t), t ∈ [0, T ], s ∈ [0, T − t] is normallz distributed with the

mean

E[Y (t+ s)|Y (t) = y] = µ+ (y − µ)e−λ
−1s
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and variance

V ar[Y (t+ s)|Y (t) = y] = λσ2(1− e−2λ−1s/2).

In the other case, we are using a compound Poisson process

L(t) =
∞∑
j=1

ξjI{t ≥ τj} or L(t) =

N(t)∑
i=1

ξi

in which τj is the time of the jth price jump, ξj is the size of the price jump and N(t) counts

the number of jumps. Both formula describe the same process. The ξi’s are independent

and identically exponentially distributed. Or for the other formula, N(t) is a Poisson process

and describes the number of jumps up to time t. Applying the compound processes as L(t)

in our OU process, we get the following explicit form:

Y (t+ s) = µ+ (Y (t−)− µ)e−λ
−1s +

∑
j:t≤τj≤t+s

e−λ
−1(t+s−τj)ξj

in which µ is the mean level. It follows the summand that defines the reversion with

a speed variable λ. The last term is the noise process with the jumps. It is a sum of iid

random variables with the arrival time between t and s.

I.1.2 The Multi-factor Model for Energy Spot Prices

We define X(t) as the deseasonalised price at time t. X(t) is the sum of three different

Ornstein-Uhlenbeck processes (Yi(t); i = 0, 1, 2), which have been described in I.1.1.

The first process has a Wiener process as the noise as mentioned before. It describes the

general regular trading characteristics with small price variations:
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dY0(t) = λ−1
0 (µ− Y0(t))dt+ σdW (t).

The two other processes are the positive and negative jumps in the spot prices:

dYi(t) = −λ−1
i Yi(t)dt+ dLi(t) for i = 1, · · · , n.

In full, the spot price is defined as a sum of processes:

X(t) =
n∑
i=0

wiYi(t)

in which wi can either be 1 or -1 and determines if the process has a negative or positive

jump, for our model w1 = 1 and w2 = −1. Furthermore, we define the constant ηi as the

intensity rate of the jump process.

At the end X(t) is the resulting superposition model. In this case, the mean level µ is a

constant. The mean level is in contrast to the actual spot price, where µ(t) depends on

the time (seasonal). The seasonal mean is a result of the variation in demand during the

different seasons. The spot price is determined by a product of the deseasonalised prices and

an exponential function representing this seasonal behavior,

S(t) = ef(t)X(t)

with

f(t; a1, · · · , a6) = a1 + a2t+ a3sin(2πt) + a4cos(2πt) + a5sin(4πt) + a6cos(4πt)

6



I.1.3 Jump Intensity Rate

Li is a compound Poisson process with exponentially distributed jump sizes having mean

βi. For the compound Poisson processes Li we define a jump intensity rate. There are two

options that will be considered for the model. The intensity function can either be defined

as constant, which means that we are assuming that the rate is independent of the time,

or we are defining a function that considers a periodicity in the jump. This specification is

relied on the period in Geman and Roncoroni (2006).1

Ii(ηi, θi, δi, t) = ηi

[
2

1 + |sin(π(t− θi)ki)|
− 1

]δi
in which ki describes the periodicity in days, ηi the maximal jump rate and δi the shape of

the periodic function. If we are using the model with a constant intensity function ηi, we

define ϑi = ηi. Otherwise ϑi = (ηi, θi, δi).

I.2 Algorithm

I.2.1 Bayesian Inference

The method which is described in this thesis uses Bayesian inference. Bayesian inference is

a methodology to get estimators for a parameter θ of a specific distribution. The method

differs to common point estimators as follows.

In classical approaches of finding a point estimator for a unknown parameter θ, θ is re-

garded as a fixed value. Therefore, random samples x1, ..., xn from a population indexed by θ

are collected. After that, the sample is used to find an estimator for the unknown θ. Instead

of assuming that θ is a fixed value, the Bayesian approach is to think that θ is a random

variable with a distribution rather than a fixed value. The distribution of the unknown

1”Bayesian calibration and number of jump components in electricity spot price models” by Jhonny
Gonzalez, John Moriarty and Jan Palczewski (Preprint submitted to Elsevier; January 12, 2016)
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parameter is called the prior distribution of θ. It is formed by the experimentor’s beliefs,

which are based on observed values and the experimenter’s experiences. After defining the

prior distribution, a random sample of data is taken to update the prior. As a result, we get

a posterior distribution which is a conditional distribution of the parameter based on the

observed sample of data. The posterior distribution is updated by using the Bayes’ Theorem:

P (A|B) =
P (B|A)P (A)

P (B)
.

We are interested in approximating the posterior distribution π(θ|x). Assume that we have a

prior distribution θ ∼ π(θ) and the samples x1, ..., xn have the distribution f(x|θ). Applying

the Bayes’ Theorem we get:

π(θ|x) =
f(x|θ)π(θ|x)

m(x)
,

where m(x) defines the marginal distribution. We can now calculate the posterior distribu-

tion by maximizing the likelihood function f(x|θ). So at the end we get the following result:

π(θ|x) ∝ f(x|θ)π(θ|x).

in which ∝ denotes that the posterior distribution is proportional to the the likelihood

function times the prior distribution.

I.2.2 MCMC Algorithm

The Bayesian inference describes a general method to find the approximation of a posterior

distribution. Nevertheless, it is not always possible to calculate this distribution directly. An

approach estimating the posterior distribution is the Markov chain Monte Carlo Algorithm.

It consists of two main ideas: The Markov chain and the Monte Carlo Method, which is

8



described in the following section.

We are interested in approximating a parameter θ which can be calculated by finding the

expected value of a function h(X). Let X be a discrete random vector of possible values

xj, j ≥ 1. We are interested in finding θ with

θ = E[h(X)] =
∞∑
j=1

h(xj)P{X = xj}.

The idea is to use a large number of random numbers and get an estimator through the

strong law of large numbers:

lim
n→∞

n∑
i=1

h(xi)

n
= θ = E[h(x)].

We can use the Monte Carlo algorithm to simulate a sequence of independent and identically

distributed random vectors Xj. Hence, it follows that we can estimate θ by simulating a

large number of samples and using the average of these values.

Nevertheless, sometimes it is difficult to generate a sequence of independent values hav-

ing the same mass function P{X = xj}. In this case, we can simulate values to estimate

θ by generating a sequence of pairwise states of a vector Markov chain with the stationary

probability of P{X = x}. By using the Markov chain, the values of the sequence do not

have to be independent (see Ross (2010)).

The algorithm that is described in this paper makes use of a Markov chain whose station-

ary distribution is the posterior distribution of the parameters. Each parameter or group of

parameters is updated separately while the others are fixed. This is realized with the Gibbs

sampler, which operates as follows.

Assume that we have our parameters θi. A single iteration of the cycle of the algorithm

is an update of one parameter:

9



θi = θ
′

1, · · · , θ
′

i−1, θi, θi+1, · · · , θk.

So at iteration i of one step of the algorithm, all parameters before θ
′
j are already updated.

θi = θ
′

1, · · · , θ
′

i−1, θ
′

i, θi+1, · · · , θk,

after the ith iteration θ
′
i is updated and fixed for the next iteration (see Chris Sherlock and

Roberts (2010)).

I.2.3 Random Walk Metropolis

The Gibbs sampler is combined with another methodology. The calculation of the parameters

for the jump components Y1 and Y2 is based on the Random Walk Metropolis, which is one of

the most common Markov chain Monte Carlo algorithms. We are defining X as our current

value that we want to update. For the new value we are proposing a jump Y ∗ that is defined

by Y ∗ = X∗ −X with a density function

r̃(y∗;λ) :=
1

λd
r

(
y∗

λ

)

where λ defines the overall size of our proposed jumps. Updating our value X depends on

our acceptance rate of our jump. That means, we have a acceptance probability for updating

our value

λ(x, y∗) = min

(
1,
π(x+ y∗)

π(x)

)
.

with π as the distribution of our parameter. If we are accepting the jump our new value

X∗ = 3 X + Y ∗. Otherwise, the value stays unchanged.

In other words, a change of X which brings it closer to the local mode of the posterior

10



is always accepted, while a downhill move is accepted with a probability related to how far

below the local mode this move brings X∗. This kind of acceptance rate ensures, that we

find the global mode of the function and do not stick at local mode (see Chris Sherlock and

Roberts (2010)).

I.2.4 Application of the MCMC on the Superposition Process

This chapter develops the MCMC scheme to estimate the parameters developed by Gonza-

lez. For the Bayesian inference, three important functions are needed. The likelihood, prior

distribution and conditional distribution. In the first three sections, the derivation of the

single functions and distribution are explained. We will start with the likelihood function

and the related space augmentation. Secondly, we will briefly state the prior distributions.

After that, we will state the particular steps of the algorithm and the resulting conditional

distributions.

Defining the likelihood functions through space augmentation

Now assume that we have our observations X = {x0, · · · , xN} of the superposition OU pro-

cess and define the times as 0 = t0, · · · , tN = T, and ∆i = ti − ti−1 > 0, i = 1, · · · , N , which

are the time increments between the different observations. The likelihood l(X|µ, λ0, σ, λ1, ϑ, β)

(compare to f(x|θ)) in I.2.1 can neither be solved analytically nor by numerical integration.

Therefore, space augmentation is used to gain independence between the jump components

and the other parameters. Furthermore, an independence improves the Gibbs sampler since

it is easier to update these parameters separately. The methodology is to augment obser-

vations Yy = y1,0, · · · , y1,N of the jump process Y1 at times ti. The likelihood function of

X becomes independent of λ1, ϑ and β. We are defining the variable zi as the change of xi

through the Gaussian process. At the end, we get the following likelihood function based on

the density of a Gaussian OU process:

11



l(X|µ, λ0, σ,Y1) =
N∏
i=1

1√
2π
∑

i

exp{− 1

2
∑2

i

(zi − µ− (zi−1 − µ)e−λ
−1
0 ∆i)2}

where
∑2

i = λ0σ
2(1− e−2λ−1

0 ∆i)/2 and

zi = xi − y1,i, i = 0, · · · , N.

In addition, the compound Poisson process Y1(t) is augmented to make λ1 and (τj, ξj) in-

dependent. Instead of looking at the whole process Y1, the jump times and sizes, τj and

ξj, of the Poisson process are summarized in a new variable Φ. The methodology helps to

improve the mixing in Gibbs samplers since we reach more independence. The state space

is S = [0, T ]× (0,∞), with taking values in the first component an τj an ξj in the second.

Finally, the following likelihood function is defined for Φ.

l(Φ|ϑ, β) = L(ϑ; Φ) · β−NT exp{−(β−1 − 1)

NT∑
j=1

ξj}.

L(ϑ; Φ) is the density, with the unit intensity function I(ϑ, t):

L(ϑ; Φ) = exp

{
NT∑
j=1

logI(ϑ, τj)−
∫ T

0

I(ϑ, t)dt+ T

}
.

At the end we get the following proportional equation for the Bayesian inference, which can

be compared to the general Bayesian inference Model in I.2.1:

π(µ, λ0, σ, λ1, ϑ, β,Φ|X ) ∝ l(X|µ, λ0, σ, λ1,Φ)l(Φ|ϑ, β)π(µ, λ0, σ, λ1, ϑ, β),

12



where π(µ, λ0, σ, λ1, ϑ, β) is the joint prior density of the parameters.

Prior functions

After defining the likelihood functions, the prior functions are stated for the Bayesian infer-

ence. Where IG defines a Inverse-Gamma distribution, Ga a Gamma-distribution and U an

Uniform distribution.

parameter prior distribution
mean level of Gaussian component µ N(aµ, b

2
µ)

volatility of Gaussian component σ2 IG(aσ2)
jump size parameter β IG(aβ, bβ)

mean reversion parameter λi IG(aλi , bλi)
intensity function η Ga(aη, bη)

δ Ga(aδ, bδ)
θ U(aθ, bθ)

Table I.1: Unknown parameter and prior distributions

All distributions are supposed to be independent and are based on the analysis of the

markets. “Prior expectations are based on existing results in the literature, combined with

further exploratory analysis of historical data as necessary (see Jhonny Gonzalez and Pal-

czewski (2016)).

Structured Gibbs samplers and resulting conditioned distributions

After defining the likelihood and prior functions, we can state the actual algorithm and its

conditional distributions. The steps are divided by the Gibbs samplers mixing. The mean

reversion of the jump component (λi) is updated through a random-walk Metropolis Hasting

procedure. A transformation of this parameter with an exponential function was applied

13



Step 1: update µ ∼ π(µ|ρ0, σ, ρ1,X ,Φ)
Step 2: update σ2 ∼ π(σ2|ρ0, ρ1,X ,Φ)
Step 3: update ρ0, ρ1 ∼ π(ρ0, ρ1|µ, σ,X ,Φ)
Step 4: update ϑ ∼ π(ϑ|Φ)
Step 5: update π(β|Φ)
Step 6: update Φ ∼ π(Φ|µ, ρ0, σ, ρ1, ϑ, β,X )
Step 7: Go to step 1.

Table I.2: Overview of particular steps of the algorithm

to ensure a mixing between small and large values. A new parameter for the algorithm

ρi = e−λ
−1
i is defined.

Update µ: Conditional distributions can be derived by the likelihood functions. For µ the

following distribution is specified:

l(X|µ, λ0, σ, ρ1,Φ) ∝ 1∏N
i=1

∑
i

exp{−1

2

N∑
i=1

1∑2
i=1

(zi − zi−1e
−λ−1

0 ∆i + µ (e−λ
−1
0 ∆i − 1))2}

with conditional distribution π(µ|ρ0, σ, ρ1,X , φ):

N

(∑N
i=1(1− e−λ−1

0 ∆i)
∑−2

i (zi − zi−1e
−λ−1

0 ∆i) + aµ
σ2

0∑N
i=1(1− e−λ−1

0 ∆i)2
∑−2

i + 1
b2µ

,
1∑N

i=1(1− e−λ−1
0 ∆i)2

∑−2
i + 1

b2µ

)
.

Update σ2:

π(σ2|ρ0, ρ1,X ,Φ) = IG

(
N

2
+ aσ,

1

λ0

N∑
i=1

si

1− e−2λ−1
0 ∆i

+ bσ

)

with si =
(
zi − zi−1e

−λ−1
0 ∆i+µ(e−λ

−1
0 ∆i−1)

)2
.
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Update ρ0 and ρ1: For updating ρ0 and ρ1 a random-walk Metropolis-Hastings within

Gibbs is used. The conditional distributions are proportional:

π(ρ0|µ, σ, ρ1,Φ) ∝ l(X|µ, ρ0, σ, ρ1,Φ)π(ρ0),

π(ρ1|µ, σ, ρ0,Φ) ∝ l(X|µ, ρ0, σ, ρ1,Φ)π(ρ1).

Update ϑ: For updating ϑ, it is specialized for the two cases of constant intensity and

time-dependent intensity. First, a constant intensity function is considered:

η|Φ ∼ Ga(aη +NT , T + bη).

If the intensity function depends on the time, a random-walk Metropolis-Hastings within

Gibbs algorithm is used to update the parameters η, θ and δ. So the conditional distribution

satisfies:

π(η, θ, δ|Φ) ∝ l(Φ|η, θ, δ)π(η)π(θ)π(δ).

while L(ϑ|Θ) is calculated numerically.

15



Update β: The conditional distribution under the condition of Φ is

β|Φ ∼ IG

(
aβ +NT ,

NT∑
i=1

ξi + bβ

)
.

Update Φ: The latent variable Φ is updated through a random walk Metropolis-Hastings

algorithm related to the work of Geyer and Møller(1994), Roberts et al. (2004) and Fröwirt-

Schnatter and Sögner (2009) on MCMC techniques for simulating point processes, extending

it where appropriate to the case of inhomogeneous Poisson processes (see Jhonny Gonzalez

and Palczewski (2016)).

The current state is defined as

Φ = {(τ1, ξ1), · · · , (τNT , ξNT )}.

NT is the Poisson process of the jump component Y1, and states the number of points with

jump times τj ≤ τ . There are three methods that are used to update the (τ, ξ) that are

chosen randomly with equal probability.

Birth/Death: The update depends on a birth-and-death-step. At one state, a pair of

(τj, ξj) can either be added or removed from the current state. The probability for a birth is

p ∈ (0, 1) while the probability for a death is 1 − p. Our current designation of the data of

the Poisson point process is Φ, and the proposed new state (birth) is reached by Φ∪{(τ, ξ)}.

τ is uniformly distributed over [0, T ] and ξ follows and exponential distribution exp(β). The
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transition kernel is:

q(Φ,Φ ∪ {(τ, ξ)}) = β−1 exp(−(β−1 − 1)ξ)).

For the death, a randomly chosen point is removed from the current realization. The points

are uniformly chosen and a transition kernel is defined as:

q(Φ,Φ{(τi, ξi)}) =
1

NT

.

Recall that NT is the number of points, at the current state.

For the Metropolis-Hastings acceptance ratio of the birth we define:

α(Φ,Φ ∪ {(τ, ξ)}) = min{1, r(Φ, (τ, ξ))}

and for the death:

α(Φ,Φ \ {(τi, ξi)}) = min

{
1,

1

r(Φ \ {(τi, ξi)}, (τi, ξi))

}

in which

r(Φ̃, (τ, ξ)) =

l(X|µ, ρ0, σ, ρ1, Φ̃ ∪ {(τ, ξ)})
l(X|µ, ρ0, σ, ρ1, Φ̃)

π(Φ̃ ∪ {(τ, ξ)}|ϑ, β)

π(Φ̃|ϑ, β)

1− p
p

1

(NT + 1)q(Φ,Φ ∪ {(τ, ξ)})

=
l(X|µ, ρ0, σ, ρ1, Φ̃ ∪ {(τ, ξ)}

l(X|µ, ρ0, σ, ρ1, Φ̃)

1− p
p

T

ÑT

I(ϑ, τ)
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.

Random time change: All jumps times of the Poisson process are assumed to be ordered

τ1 < · · · < τNT . For the update, one jump time τj is randomly picked and changed to a new

jump time τ with a uniform distribution on [τj−1, τj+1]. The point of τi is changed to (τ, ξ)

with ξ = e−λ
−1
1 (τ−τi)ξj. It follows the transition kernel π(τ, ξ|X , µ, ρ0, σ, ρ1, ϑ, β,Φ\{(τj, ξj)}).

The first variable of the j-kernel is uniformly distributed and after, the second variable is a

deterministic transformation of ξj: T (ξ, τ, τ ′) and T = T −1.

The acceptance ratio for the Metropolis-Hastings is |detΘ(ξj, τj, τ)|, related to Tierney

(1998, Section 2). Therefore the acceptance ration is:

r(Φ,Φnew) =
l(X|µ, ρ0, σ, ρ1,Φnew)

l(X|µ, ρ0, σ, ρ1,Φ)

π(τ, ξ|ϑ, β)

π(τj, ξj|ϑ, β)

q̃(τ, τj)

q̃(τj, τ)
|detΘ(ξj, τj, τ)|

=
l(X|µ, ρ0, σ, ρ1,Φnew)

l(X|µ, ρ0, σ, ρ1,Φ)

I(ϑ, τ)

I(ϑ, τj)

e−β
−1ξ

e−β−1ξj
e−λ

−1
1 (τ−τj)

where q̃(τ, τ ′) = (τj+1− τj−1)−1 is the transition density with respect to Lebesgue measure

on (τj−1, τj+1).

Jump size change: All jump sizes are updated independently. Every jump size ξj is

changed to ξ′j = ξjφj with log(φj) ∼ N(0, c2). The variance is chosen inversely to the

current number of jumps. For this update the Metropolis-Hastings acceptance ratio is

α(Φ,Φnew) = min

{
1,
l(X|µ, ρ0, σ, ρ1, ϑ, β,Φnew)

l(X|µ, ρ0, σ, ρ1, ϑ, β,Φ)

}
exp

{
− (β−1 − 1)

NT∑
i=1

(ξ′i − ξi)

}
NT∏
i=1

ξ′i
ξi

,

while
∏NT

i=1
ξ′i
ξi

=
∏NT

i=1 φj.
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Expanding the model to three OU processes

For the 3-OU-Model one further jump component is added. Based on the observations the

jump can either simulate negative spikes or an additional positive spike in the model. We

define Y2(t) as the second component where w2 determines a negative or positive jump. The

resulting superposition model is

X(t) = Y0(t) + w1 Y1(t) + w2 Y2(t).

For the model the data augmentation is adjusted using observations of the first and the

second jump which results in Φ1 and Φ2. Both jump components are subtracted to get the

pure Gaussian process. The likelihood l(X|µ, λ0, σ,Y1,Y2) is given with zj = xj − y1,j − y2,j.

The likelihood of Φ = (Φ1,Φ2) is defined as

π(Φ|ϑ1, ϑ2, β1, β2) = π(Φ1|ϑ1, β1)π(Φ2|ϑ2, β2)

where for i = 1,2,

π(Φi|ϑi, βi) = exp

{ N i
T∑

j=1

logIi(ϑi, t)dt+ T

}
β
N i
T

i exp

{
− (β−1

i − 1)

N i
T∑

j=1

ξi,j

}
,

in which the number of points of Φi is N i
T and

Φi = {(τi,1, ξi,1), · · · , (τi,N i
T
, ξi,N i

T
)}.

All other parameters are a priori independent. Therefore, the other steps are similar to the

2-OU model. ρ1 and ρ2 are updated with a random-walk Metropolis-Hastings algorithm.
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Application to the US Data

II.1 Data

Figure II.1: LMP data of the electricity spot market(WEC) from 2012 and 2013

Figure II.1 illustrates the LMP (locational marginal pricing) in 2012 and 2013. LMP was

defined for electric energy prices and reflects the value of electric energy at different locations

(see lmp (2018)) The first plot represents the values that were measured every five minutes,
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while the other plot shows the average LMP of each day.

Both data are presenting a structure with a mean reversion and different jumps. The plot,

showing the five minute data has two different types of jumps. They differ in their frequency,

intensity, and decay. While small jumps occur frequently with a slow decay, high spikes are

less frequent with a quick reversion to the mean level. Both types can be either negative or

positive jumps. The daily average data have the same structure of jumps. Comparing the

daily data with the five minutes data, the first plot shows a higher volatility with greater

spikes and greater variability in general. The average data values range between 0 and 120

while the 5 minute plot has spikes greater than 2000. This is a result of taking the average

which reduces the variance and eliminates outliers.

For the Bayesian calibration, data from the MISO (Midwestern America and Manitoba)

electricity spot market, node WEC, have been used. The described algorithm in the paper

is applied on daily average data. In the first step, we calculated the average LMP of each

day based on the five minute data. Furthermore, the original code excludes weekend prices,

because of a different trading behavior comparing to the weekdays. In the US data we

removed the weekends, and they are not contained in the plots. If we wanted to calibrate a

model for the five minute data by getting estimators from the daily average first, we have to

scale the parameters. One problem could be that the scale is not linear. On the other side,

we could try to adjust the code by adapting the seasonality.

The electricity spot prices of the United Kingdom APXUK and European EEX that were

described in the paper “Bayesian calibration and number of jump components in electricity

spot prices model”, have a similar structure with two different types of jumps. In addition,

negative jumps occur in the European market. Taking a first look at the data, it seems

reasonable to apply the algorithm on our daily average data. So, our first step will be

to calibrate the Bayesian inference with our daily average data that are derived from the

5-minute LMP.
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II.2 Code Adjustments

The first step in the calibration was to deseasonalise the LMP. All US data are listed in

an Excel sheet. A program, written in R, collects all data and saves them as a time series

which can be more easily handed in MATLAB. After that, they are aggregated by calculat-

ing the average for each day. The resulting average daily values are deseasonalised with an

exponential function. Figure II.2 shows the deseasonalised data. These data have the same

structure as before. They are scaled from 0.5 to 4.5. The mean level is approximately 1.

Compared to the results in the paper the plots look similar.

Figure II.2: Deseasonalised LMP of the electricity spot market(WEC) from 2012 and 2013
(daily average)

The function to deseasonalise the data is

f(t; a1, · · · , a6) = a1 + a2t+ a3sin(2πt) + a4cos(2πt) + a5sin(4πt) + a6cos(4πt).
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Dataset a1 a2 a3 a4 a5 a6

WEC (2012-13) 3.142 0.0034143 -0.027684 -0.032935 0.074056 0.0029311
APXUK (2001-6) 2.5770 0.0008 -0.0817 0.0443 -0.0097 -0.0395

EEK (2000-6) 2.9399 0.0006 0.0055 -0.0803 0.0415 -0.0140
APXUK (2011-15) 3.9005 -0.0001 -0.0014 0.0342 0.0104 -0.0368

EEX (2011-15) 4.0399 -0.0005 -0.0585 -0.0156 0.0298 -0.0315

Table II.3: ai values for the given data set

Parameter Posterior mean Posterior SD
µ 0.991433 0.013706
σ2 0.069317 0.007807
ρ0 0.421206 0.040524
λ0 1.164833 0.131452
ρ1 0.061567 0.035691
λ1 0.349751 0.082700
η 0.189159 0.092524
β 1.016242 0.287719
θ 112.351500 43.652695
δ 0.179000 0.136730

Table II.4: 2-OU-I1 model for US WEC data (2012-2013)

The algorithm uses nlinfit, a Matlab function, to solve a non linear regression problem with

N∑
i=0

(logSobs(ti)− f(ti))
2 → min,

in which Sobs defines the observed spot prices. The resulting parameters for f(ti) are listed in

Table II.2. Compared to the parameters of the European and British market, the parameters

for the US data appear similar but slightly higher.

The first trial was to calibrate a model with one jump component and a non constant

intensity function Ii(ηi, θi, δi, t) which is called 2-OU-I1 in the paper. For the initial parameter

we set (µ, λ0, σ, λ1, η, β,Φ) = (1, 5, 0.1, 2, 0, .1, 0.5, 0) which are the same parameters used

for the data. Looking at the posterior means (Table II.4), the values look similar to the
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resulting parameters for the 2-OU-I1 model for the 2000-2006 EEX data. These data seem

to be the most similar to ours since they have a higher volatility than after the fiscal crisis

and they show negative jumps like those present in our data.

Another option is to calibrate a superposition model with two positive jumps. Two

jumps seem to be more reasonable by looking at our data plots since two different jump sizes

are observed: the jumps with high spikes and fast decays and those with gradual decays.

First, we are trying to use a model with two constant intensity functions for the jump. The

results are presented in Table II.5. In comparison to the model with two jumps the mean of

the electricity price is smaller. This might be a result of our two positive jumps, since the

Gaussian process Y0 is the only process that determines the negative spikes. However, the

variance did not increase which might assume that the simulated data could have smaller

negative spikes than the observed data. A significant difference to the first trial is a high

jump of Y1 (β1 = 2.834976) with a fast decay (λ1 = 2.977244) and a rather small spike for

the second jump Y2 (β2 = 1.431118).

Parameter Posterior mean Posterior SD Posterior mean Posterior SD
(US WEC) (US WEC) (2000-2006 EEX) (2000-2006 EEX)

µ 0.978192 0.062138 1.0146 0.0226
σ2 0.062138 0.008822 0.0119 0.0012
ρ0 0.477978 0.053905 0.8835 0.0150
λ0 1.374713 0.210605 8.2193 1.1698
ρ1 0.337353 0.287506 0.1809 0.0344
λ1 2.977244 33.520654 0.5859 0.0657
ρ2 0.047897 0.031345 0.2230 0.0384
λ2 0.318735 0.077044 0.6687 0.0775
η1 0.056765 0.060683 0.2515 0.0428
η2 0.104151 0.069221 0.1422 0.0320
β1 2.834976 128.235855 0.8998 0.1052
β2 1.431118 8.609116 0.4308 0.0793
θ1 - - 141.3725 3.5071
δ1 - - 0.3408 0.0884

Table II.5: 3-OU model for US WEC data (2012-2013) with 2 positive jumps and the
EEX(2000-2006 EEX)

Looking at our plots again, we assume that a model with two jump components, a
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Parameter Posterior mean Posterior SD Posterior mean Posterior SD
(US WEC) (US WEC) (2000-2006 EEX) (2000-2006 EEX)

µ 1.000359 0.014352 1.0146 0.0226
σ2 0.047755 0.007655 0.0119 0.0012
ρ0 0.447031 0.047868 0.8835 0.0150
λ0 1.255521 0.170665 8.2193 1.1698
ρ1 0.107612 0.047619 0.1809 0.0344
λ1 0.446520 0.091994 0.5859 0.0657
ρ2 0.334034 0.101501 0.2230 0.0384
λ2 0.947172 0.285864 0.6687 0.0775
η1 0.205438 0.072638 0.2515 0.0428
η2 0.060739 0.034204 0.1422 0.0320
β1 0.901904 0.226196 0.8998 0.1052
β2 0.538974 0.232407 0.4308 0.0793
θ1 114.022577 43.083111 141.3725 3.5071
δ1 0.125424 0.094486 0.3408 0.0884

Table II.6: 3-OU-I1 model for US WEC data (2012-2013) and the EEX(2000-2006 EEX)

negative and a positive jump, might be more reasonable. We applied a model with two

jump components and a non constant intensity function (3-OU-I1). The initial state is

(µ, λ0, σ, λ1, η1, β1, λ2, η2, β2,Φ) = (1, 5, 0.2, 5, 0.001, 0.5, 1, 0.001, 0.5, 0).

The mean level is increased to 1.000359, which again seems to fit with the observation

of the data. The volatility of the Gaussian process decreased. This might be a result of

our change in the jump component. Y0 does not have to simulate the negative spikes in the

model since we added a negative jump component. The jumps sizes (β) became significant

smaller, even if the decay for the first jump is similar to our 3-OU model.

We are comparing the results with the European data before the fiscal crisis. The volatil-

ity for WEC seems to be higher. If we are looking at the plot, we can see that the US market

shows variance in the data, so the difference is reasonable.
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Posterior predictive check

The approach for testing the model adequacy is to apply a posterior predictive check. Ac-

cording to the OU-process Y0, we can define εj, j = 1, · · · , N with

Y0(tj) = µ+ (Y0(tj−1)− µ)e−λ
−1
0 δj +

(
σ2λ0

2
(1− e−2λ−1

0 ∆j)

) 1
2

εj.

They are independent and identically distributed as N(0, 1). If we have observations of Y0 at

times tj, we can prove model adequacy by testing if εj is normally distributed. The algorithm

uses, at each iteration k, the current state Θ(k) = {µ(k), λ
(k)
i , σ(k), ϑ

(k)
i , βki } to retain the path

of each jump process y
(k)
i,j . The actual path of Y k

0 can then be computed as

z
(k)
j = xj −

n∑
i=1

wiy
(k)
i,j , j = 0, · · · , N,

where xi is the deseasonalised price at time ti and wi is the sign of the jump component which

determines a negative or positive jump. The noise data are tested with the Kolmogorov-

Smirnov (KS) test for the standard Normal distribution. The resulting p-value is used to

check the model adequacy of the different models.

For the jump components, at each iteration k, a KS test is performed. It is differed

between the set of jump sizes and the set of arrival times at each state. For the jump size,

a KS test is subjected an exponential distribution with mean β
(k)
i . For the arrival times

we either have a homogeneous or a time-varying case. For the constant intensity function

we are using a KS test for an exponential distribution with mean (η
(k)
i )−1. Otherwise, a

two sample KS test is applied which are taken from the inter-arrival times. All posterior

predictive values are reported and stated at the end of the resulting posterior means in the

output of the code.

The interpretation of the posterior predictive value differs from the common value. We
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OU Process Yi 2-OU-I1 3-OU 3-OU-I1 3-OU-
Y0 0.089943 0.079930 0.357189 0.303439

Y1 (jump times) 0.366119 0.492211 0.353426 0.494793
Y1 (jump size ) 0.508801 0.496615 0.502169 0.502399
Y2 (jump times) - 0.497447 0.500015 0.510538
Y2 (jump size) - 0.506229 0.505905 0.502649

Table II.7: Posterior predictive values based on the calibration of the models for the daily
average data 2012-2013

are evaluating the different p-values like Jhonny Gonzalez and Palczewski (2016). The

predictive value is supposed to concentrate around 0.5 if we have a posterior with uncertainty

parameters (see Gelman (2013)).

According to the paper, we are accepting model if the p-value is above the threshold

of 10%. Table II.7 gives the resulting p-values of our models. It shows that a calibration

without a negative jump component is not reasonable since the calculated p-values for Y0

are clearly below the threshold. The p-value for 2-OU-I1 that only includes a positive jump

is 0.089943 and for our 3-OU model that contains two positive jumps we got a p-value equal

to 0.079930. So these two models are rejected.

The remaining models are a superposition model with one negative jump and one positive

jump component. The first one, 3-OU-I1, includes time-varying jump intensities, while the

other model, 3-OU, has a constant jump intensity. The p-values are all above 10%. The

posterior predictive value for Y0 of a model with a non-constant intensity rate is slightly

closer to 0.5 than for a constant intensity function. In contrast to that, the p-value for the

jump size for component Y1 is much closer to 0.5 applying a constant intensity. All in all,

we can say that both models show a p-values that are close to 0.5. Therefore, both model

seem to be acceptable for simulating our data.

Deseasonalised Five Minute Data

After applying the MCMC algorithm on the daily average data that have been calculated

through the LMP, we are interested in calibrating a model for the original five minute LMP
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Figure II.3: The first plot shows the deseasonalised plot of the minute data, the other plot
shows the related deseasonalised data
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data. Recall the seasonality function for the daily data is:

f(t; a1, · · · , a6) = a1 + a2t+ a3sin(2πt) + a4cos(2πt) + a5sin(4πt) + a6cos(4πt)

while our deseasonalised price is determined by

S(t) = ef(t)X(t).

The function removed the effect of different seasons on spot prices during the year. Each t

is divided by a period which is the number of days during the year subtracted by the weekends

(260 days). For our five-minute data we have to adjust the period to 260 days× 288 = 74880,

where 288 is number of 5 minutes intervals over one day.

Furthermore, the seasonality function for the daily data does not include a deseasonali-

sation for the day and night time. In our calibration, before the difference between day and

night have not been included since we took the average of all day. For our five minutes data,

we are adding two more terms of a sin and cos function to include day and night time. The

resulting function f(t; a1, · · · , a8) can be defined as

f(t; a1, · · · , a8) = a1 + a2t+ a3sin(2π
t

74880
) + a4cos(2π

t

74880
)

+a5sin(4π
t

74880
) + a6cos(4π

t

74880
) + a7sin(2π

t

288
) + a2cos(4π

t

288
).

The deseasonalisation is still solved by the Matlab function nlinfit, a function to solve the

non linear least squares problem.

Figure II.2 shows the results of the deseasonalised data. The structure of the original

and new data are the same. The range for our values was restricted to [−1, 2.5].
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Data a1 a2 a3 a4 a5 a6 a7 a8

(2012-13) 3.142 0.0034 -0.0277 -0.0329 0.0741 0.0029 - -
5 minute 6.9103 0.0000 -0.0001 -0.0008 -0.0005 0.0004 -0.0028 -0.0066

Table II.8: ai values for the given data set for the daily data and 5 minutes data

Application to the five-minute data

For the deseasonalised five-minute data we calibrated a model based on our observations on

the data. The plot shows both high positive spikes and high negative spikes. Comparing this

to the results of our daily data simulation, the reasonable models is a model with two jumps,

where one jump component determines the negative jump and the other jump component

the positive spike.

The model that we applied was the 3-OU model with a negative jump. Recall that this

model contains a time homogeneous intensity function.

Parameter Posterior mean Posterior SD Posterior mean Posterior SD
(5-minute) (5-minute) (daily) (daily)

µ 0.104957 0.001678 0.997542 0.018762
σ2 0.000054 0.000004 0.035613 0.006802
ρ0 0.964783 0.002718 0.551822 0.055498
λ0 28.061740 2.208318 1.716843 0.297355
ρ1 0.316932 0.001354 0.078652 0.034537
λ1 0.870276 0.003229 0.390014 0.069508
ρ2 0.394513 0.004757 0.341645 0.113984
λ2 1.075247 0.013980 0.982283 0.360222
η1 0.094283 0.005347 0.208096 0.059393
η2 0.082339 0.003702 0.071908 0.039316
β1 0.204016 0.010773 0.953824 0.219386
β2 0.116257 0.004979 0.561401 0.249962

Table II.9: 3-OU model with one negative jump for US WEC data (2012-2013) for five-minute
and daily data

Table II.9 show the estimators for the 3-Ou model with one negative jump for the five-

minute and daily data. The mean level is reliable since it is close to the mean level that we

would assume by looking at the original data. Even if we got estimators for our model, the

posterior predictive value for our five-minute data did not work. Therefore, there is more

30



research necessary. Looking at the simulated data, the data show a much higher volatility

than the original data. Which might assume that the model can not be applied to our five

minute data. A reason for that, can be that we need more jump components for our model,

since the jumps in the original data seem to differ more than in the daily average.

II.3 Simulation

After calibrating the models, we ran a simulation with the given posterior parameters to

compare the resulting data with the original data. We are using the resulting mean to sim-

ulate a Gaussian process and one or two jump processes depending, on the model used.

2-OU-I1 Model Though if the model with only one positive jump component does not

seem reasonable, we ran a simulation with these parameters. The data, derived by the 2-

OU-I1 Model, are plotted in Figure II.4. The positive jumps occur as frequently as in the

original plot. Also the mean reversion of both plots do not differ significantly. Nevertheless,

the original data show higher negative spikes than the simulated values. This is explained by

the fact that the model used does not contain a negative jump component. Therefore, prices

less than the mean level are just caused by Y0 the Gaussian process. As assumed before, a

model with two jump components, a positive and negative one, seem to be more reasonable

for our model.

3-OU-I1 Model The simulation applying parameters for a 3-OU-Model-I1 is presented in

Figure II.5. We can see in the plotted simulated data that Figure higher spikes, which are

probably caused by the positive jump component, occur more often than in our observations.

If we are looking back at the p-value of the jump time for Y1 (in Table II.7), the value

is 0.353426, which might indicate that a p-value greater than 0.3 is not a good enough

threshold. Nevertheless, the variance and mean level are comparable to the original data. In
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Figure II.4: The first plot shows the deseasonalised plot of the data, the other plot shows
the simulated data after calibrating the 2-OU-I1 model
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Figure II.5: The first plot shows the deseasonalised plot of the data, the other plot shows
the simulated data after calibrating the 3-OU-I1 model
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addition, the extension of positive and negative jumps seem to be correct, which confirms our

expectations since the p-value of both of our jump sizes are nearby 0.5. Also, the negative

jumps occur as often as in the simulated data. All in all, the simulation of the data is similar

to the originals. The different structures and assumptions which have been derived by the

parameters and p-values have been confirmed by looking at the simulation.

3-OU-Model negative jump The other model that seemed to be reasonable according

to our observations was a model with two jump components, one positive and one negative

jump with a homogeneous intensity function. Again, we simulated a Gaussian process and

two jump processes separately and added them for the superposition model. The resulting

data are plotted in Figure II.6. We are comparing the simulated values with the original

data again. The positive spikes of both plots are in the same range. However, there occur

two negative jumps that seem to differ from the original data. Regarding the jump times,

the positive and negative jumps occur as often as in the original data. As a conclusion,

the simulated data are reasonable comparing to the original values. The plot confirms our

expectations derived from the observations of the data and resulting parameter and p-values.

The two negative spikes that are not in the range of the original data can be assumed to be

exceptions or outliers.

II.4 Conclusion

Our goal was to find a adequate model to predict the change of electricity prices from the

Midwestern America and Manitoba market. The model was derived from former analysis of

the European market. We wanted to assess if the results of the European market can be

applied on the American market. Therefore, we took a look at the models and algorithms and

adjusted these for our data. We were able to run an algorithm and get different estimators

for the diverse models that we assessed. Our expectations that the pricing model would

fit the data were confirmed. For the Midwestern American and Manitoba market a model
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Figure II.6: The first plot shows the deseasonalised plot of the data, the other plot shows
the simulated data after calibrating the 3-OU model with one negative jump component
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with at least two jump components has to be applied to get reliable predictions for the price

change. Furthermore, it is necessary to apply a model with a negative jump component to

simulate the negative spikes in the data. We confirmed these results by applying a posterior

predictive value check. The p-values gave us an overview which models seem to be adequate

and which are not applicable for our data. At the end, we simulated the electricity spot

prices and compared them to our data. The simulated data of the 3-OU models with one

negative jump component showed a similar plot as the original data.

II.5 Outlook

Our analysis of the Midwestern America and Manitoba market was already successful. We

were able to calibrate a model which simulates the prices changes adequately and whose

resulting prediction values are similar to the original data. Despite this, the model can still

be improved. First, the model is defined through a superposition model which is a sum of

different Ornstein-Uhlenbeck processes. In our example we assessed model with one or two

jump components. Looking at the plots again, we can see that there are also different sort

of positive jumps. Therefore, it is interesting to see what happens to the model if we add

more jump components. In this case, we would be interested in finding the optimal number

of jump components that predict the price change adequate without overfitting the model.

Another fact are the data that we used to apply our model. If we want to predict a model

for American electricity prices, it would be interesting to see how these models change for

different areas in the USA. The models will probably differ depending on the areas in the

USA. For example, our seasonality will probably be different in the northern parts of the

USA compared to states with less seasonality like Florida or California. In addition, we

can apply more data than the data from 2012 and 2013 which will probably result in better

estimators for our model.
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Appendix

A Main For Daily Data

1 % mainMCMC0.m

2 %

3 % The f o l l ow i ng commands can be used to reproduce the r e s u l t s from

4 %

5 % ’ Bayesian c a l i b r a t i o n and number o f jump components in e l e c t r i c i t y

6 % spot p r i c e models ’ by Jhonny Gonzalez , John Moriarty & Jan Palczewski

7 %

8 %

9 %% ========================================================================

10 %% Plot d e s e a s ona l i s ed data as shown in Figure 1

11

12 plotDeasesonal i sedData US ;

13

14 %% ========================================================================

15 %% Fit ted s ea sona l trend c o e f f i c i e n t s shown in Table A.3

16

17 [ ˜ , beta1 ] = f i tSea sona lTrend 1 ( f a l s e ) ;

18 [ ˜ , beta2 ] = f i tSea sona lTrend 1 ( f a l s e ) ;

19 [ ˜ , beta3 ] = f i tSea sona lTrend 1 ( f a l s e ) ;

20 [ ˜ , beta4 ] = f i tSea sona lTrend 1 ( f a l s e ) ;

21

22 f p r i n t f ( ’%10s %12s %12s %12s %10s %13s \n ’ , ’ a1 ’ , ’ a2 ’ , ’ a3 ’ , ’ a4 ’ , ’ a5 ’ , ’ a6 ’ )
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23 f p r i n t f ( ’

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\

n ’ )

24 di sp ( beta1 )

25 di sp ( beta2 )

26 di sp ( beta3 )

27 di sp ( beta4 )

28

29 %% ========================================================================

30 %% Fit 2−OU model to APXUK 2001 − 2006

31 % Resu l t s shown in Table 1 , Table 3 and Sec t i on 4 . 2 . 4

32 model = ’2−OU’ ;

33 hPar = getHyperparameters (model ) ; % hyperparameters

34 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

35 n = 2000000; % number o f mcmc s t ep s

36 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 0 5 ) ; % var iance o f p roposa l s

d i s t r i b u t i o n s

37 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

38 s t r = s t r c a t ( ’ r e s u l t s /2OU−APXUK1’ , ’ . mat ’ ) ; % path to save r e s u l t s

39 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

40 % run algor i thm

41 rng (0 ) % f o r r e p r o d u c i b i l i t y

42 t i c

43 [ par , Lchain , accRate ] = gibbs (E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

44 toc

45

46 % Diagnos t i c s f o r 2−OU model f i t to APXUK 2001 − 2006

47 % Print p o s t e r i o r mean and SD, and p−va lue s

48 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

49 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

50

51 %% ========================================================================

52 %% Fit 3−OU model to APXUK 2001 − 2006
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53 % Resu l t s shown in Table 2 , Table 3 and Sec t i on 4 . 2 . 4

54 model = ’3−OU’ ;

55 hPar = getHyperparameters (model ) ; % hyperparameters

56 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

57 n = 2000000; % number o f mcmc s t ep s

58 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 1 , ’ lambda1 ’ , 0 . 0 5 , ’ lambda2 ’ , 0 . 0 5 ) ; % var iance

o f p roposa l s d i s t r i b u t i o n s

59 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

60 s t r = s t r c a t ( ’ r e s u l t s /3OU−APXUK1’ , ’ . mat ’ ) ; % path to save r e s u l t s

61 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

62 % run algor i thm

63 rng (0 ) % f o r r e p r o d u c i b i l i t y

64 t i c

65 [ par , accRate ] = gibbs3OU(E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

66 toc

67

68 % Diagnos t i c s f o r 3−OU model f i t to APXUK 2001 − 2006

69 % Print p o s t e r i o r mean and SD, and p−va lue s

70 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

71 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

72

73 %% ========================================================================

74 %% Plot Figure 3

75 % Requires MCMC r e s u l t s f o r the f i t t e d 2−OU and 3−OU models to APXUK 2001 −

2006

76 s t r f i l e 1 = s t r c a t ( ’ r e s u l t s /2OU−APXUK1’ , ’ . mat ’ ) ; % assumed path to saved

r e s u l t s o f 2−OU model

77 s t r f i l e 2 = s t r c a t ( ’ r e s u l t s /3OU−APXUK1’ , ’ . mat ’ ) ; % assumed path to saved

r e s u l t s o f 3−OU model

78 % ! ! ! ! ! ! ! ! ! ! ! ! Error time range

79 %plotPaths ( s t r f i l e 1 , s t r f i l e 2 ) ; % i t may take a whi l e to load f i l e s i f n was

l a r g e

80
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81 %% ========================================================================

82 %% Fit 2−OU model to EEX 2001 − 2006

83 % Resu l t s shown in Table 4 , Table 3 and Sec t i on 4 . 3 . 1

84 model = ’2−OU’ ;

85 hPar = getHyperparameters (model ) ; % hyperparameters

86 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

87 n = 2000000; % number o f mcmc s t ep s

88 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 0 5 ) ; % var iance o f p roposa l s

d i s t r i b u t i o n s

89 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

90 s t r = s t r c a t ( ’ r e s u l t s /2OU−EEX1 ’ , ’ . mat ’ ) ; % path to save r e s u l t s

91 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

92 % run algor i thm

93 rng (0 ) % f o r r e p r o d u c i b i l i t y

94 t i c

95 [ par , Lchain , accRate ] = gibbs (E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

96 toc

97

98 % Diagnos t i c s f o r 2−OU model f i t to EEX 2001 − 2006

99

100 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

101 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

102

103 %% ========================================================================

104 %% Fit 2−OU−I1 model to EEX 2001 − 2006

105 % Resu l t s shown in Table 4

106 model = ’2−OU−I1 ’ ;

107 hPar = getHyperparameters (model ) ; % hyperparameters

108 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

109 n = 2000000; % number o f mcmc s t ep s

110 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 0 5 ) ; % var iance o f p roposa l s

d i s t r i b u t i o n s

111 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n
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112 s t r = s t r c a t ( ’ r e s u l t s /2OU−I1−EEX1 ’ , ’ . mat ’ ) ; % path to save r e s u l t s

113 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

114 % run algor i thm

115 rng (0 ) % f o r r e p r o d u c i b i l i t y

116 t i c

117 [ par , Lchain , accRate ] = gibbs (E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

118 toc

119

120 % Diagnos t i c s f o r 2−OU−I1 model f i t to EEX 2001 − 2006

121 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

122 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

123

124 %% ========================================================================

125 %% Fit 3−OU−minus model to EEX 2001 − 2006

126 % Resu l t s shown in Table 4 , Table 3 and Sec t i on 4 . 3 . 1 f o r 3−OU model

127 model = ’3−OU− ’ ;

128 hPar = getHyperparameters (model ) ; % hyperparameters

129 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

130 n = 2000000; % number o f mcmc s t ep s

131 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 1 , ’ lambda1 ’ , 0 . 0 5 , ’ lambda2 ’ , 0 . 0 5 ) ; % var iance

o f p roposa l s d i s t r i b u t i o n s

132 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

133 s t r = s t r c a t ( ’ r e s u l t s /3OU−minus−EEX1 ’ , ’ . mat ’ ) ; % path to save r e s u l t s

134 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

135 % run algor i thm

136 rng (0 ) % f o r r e p r o d u c i b i l i t y

137 t i c

138 [ par , accRate ] = gibbs3OU(E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

139 toc

140

141 % Diagnos t i c s f o r 3−OU−minus model f i t to EEX 2001 − 2006

142 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

143 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;
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144

145 %% ========================================================================

146 %% Fit 3−OU−I1 model to EEX 2001 − 2006

147 % Resu l t s shown in Table 4 , Table 3 , and Sec t i on 4 . 3 . 1

148 model = ’3−OU−I1 ’ ;

149 hPar = getHyperparameters (model ) ; % hyperparameters

150 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

151 n = 2000000; % number o f mcmc s t ep s

152 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 1 , ’ lambda2 ’ , 0 . 1 ) ; % var iance o f

p roposa l s d i s t r i b u t i o n s

153 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

154 s t r = s t r c a t ( ’ r e s u l t s /3OU−I1−EEX1 ’ , ’ . mat ’ ) ; % path to save r e s u l t s

155 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

156 % run algor i thm

157 rng (0 ) % f o r r e p r o d u c i b i l i t y

158 t i c

159 [ par , accRate ] = gibbs3OU(E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

160 toc

161

162 % Diagnos t i c s f o r 3−OU−I1 model f i t to EEX 2001 − 2006

163 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

164 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

165

166 %% ========================================================================

167 %% Plot Figure 2

168 % Requires MCMC r e s u l t s f o r the f i t t e d 3−OU model to EEX 2000 − 2006

169 s t r f i l e = s t r c a t ( ’ r e s u l t s /3OU−I1−EEX1 ’ , ’ . mat ’ ) ; % assumed f i l e path to

r e s u l t s , change as needed

170 burnin = 5000 ;

171 plotJumpSeasonal i ty ( s t r f i l e , burnin )

172

173 %% ========================================================================

174 %% Prior s e n s i t i v i t y ana l y s i s f o r the 3−OU−I1 model with EEX 2000 − 2006 data
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175 % Resu l t s are shown in Table A. 4 , Pr io r 2 and Pr io r 3 columns

176

177 %−−−−−−−−−−−−−−− Estimate model with Pr io r 2 , new p r i o r f o r sigma

178 model = ’3−OU−I1 ’ ;

179 hPar = getHyperparameters (model ) ; % hyperparameters

180 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

181 n = 2000000; % number o f mcmc s t ep s

182 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 1 , ’ lambda2 ’ , 0 . 1 ) ; % var iance o f

p roposa l s d i s t r i b u t i o n s

183 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

184 s t r = s t r c a t ( ’ r e s u l t s /3OU−I1−EEX1−s e n s i t i v i t y −sigma ’ , ’ . mat ’ ) ; % path to save

r e s u l t s

185 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

186 % run algor i thm

187 rng (0 )

188 [ par , accRate ] = gibbs3OU(E, ’3−OU−I1−s e n s i t i v i t y −sigma ’ , n , x0 , hPar , propVar

, NPhi , s t r ) ;

189 burnin = 5000 ;

190 % di sp l ay r e s u l t s

191 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , t rue ) ;

192

193 %−−−−−−−−−−−−−−− % Estimate model with Pr io r 3 , new p r i o r f o r e t a i

194 s t r = s t r c a t ( ’ r e s u l t s /3OU−I1−EEX1−s e n s i t i v i t y −eta ’ , ’ . mat ’ ) ; % path to save

r e s u l t s

195 rng (0 )

196 [ par , accRate ] = gibbs3OU(E, ’3−OU−I1−s e n s i t i v i t y −eta ’ , n , x0 , hPar , propVar ,

NPhi , s t r ) ;

197 % di sp l ay r e s u l t s

198 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

199

200 %% ========================================================================

201 %% Fit models to 2011 − 2015 data

202
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203 %% ========================================================================

204 %% Fit 2−OU model to APXUK 2011 − 2015

205 % Resu l t s shown in Table 5 and 6

206 model = ’2−OU’ ;

207 hPar = getHyperparameters (model ) ; % hyperparameters

208 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

209 n = 2000000; % number o f mcmc s t ep s

210 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 0 5 ) ; % var iance o f p roposa l s

d i s t r i b u t i o n s

211 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

212 s t r = s t r c a t ( ’ r e s u l t s /2OU−APXUK2’ , ’ . mat ’ ) ; % path to save r e s u l t s

213 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

214 % run algor i thm

215 rng (0 ) % f o r r e p r o d u c i b i l i t y

216 t i c

217 [ par , Lchain , accRate ] = gibbs (E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

218 toc

219

220 % Diagnos t i c s f o r 2−OU model f i t to APXUK 2011 − 2015

221

222 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

223 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

224

225 %% ========================================================================

226 %% Fit 2−OUˆ{−} model to EEX 2011 − 2015

227 % Resu l t s shown in Table 5 and 6

228 model = ’2−OU− ’ ;

229 hPar = getHyperparameters (model ) ; % hyperparameters

230 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

231 n = 2000000; % number o f mcmc s t ep s

232 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 0 5 ) ; % var iance o f p roposa l s

d i s t r i b u t i o n s

233 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n
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234 s t r = s t r c a t ( ’ r e s u l t s /2OU−minus−EEX2 ’ , ’ . mat ’ ) ; % path to save r e s u l t s

235 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

236 % run algor i thm

237 rng (0 ) % f o r r e p r o d u c i b i l i t y

238 t i c

239 [ par , Lchain , accRate ] = gibbs (E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

240 toc

241

242 % Diagnos t i c s f o r 2−OUˆ{−} model f i t to EEX 2011 − 2015

243 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

244 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;

245

246 %% ========================================================================

247 %% Fit 2−OU−I1 model to EEX 2011 − 2015

248 % Resu l t s shown in Table 5

249 model = ’2−OU−I1 ’ ;

250 hPar = getHyperparameters (model ) ; % hyperparameters

251 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

252 n = 2000000; % number o f mcmc s t ep s

253 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 0 5 , ’ lambda1 ’ , 0 . 0 5 ) ; % var iance o f p roposa l s

d i s t r i b u t i o n s

254 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

255 s t r = s t r c a t ( ’ r e s u l t s /2OU−I1−EEX2 ’ , ’ . mat ’ ) ; % path to save r e s u l t s

256 E = f i tSea sona lTrend 1 ( f a l s e ) ; % de s e a s ona l i s e the data

257 % run algor i thm

258 rng (0 ) % f o r r e p r o d u c i b i l i t y

259 t i c

260 [ par , Lchain , accRate ] = gibbs (E, model , n , x0 , hPar , propVar , NPhi , s t r ) ;

261 toc

262

263 % Diagnos t i c s f o r 2−OU−I1 model f i t to EEX 2011 − 2015

264 burnin = 5000 ; % chain was saved one every 100 th i t e r a t i o n

265 r e s u l t s = d i a gno s t i c s ( s t r , model , burnin , f a l s e ) ;
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266

267 %% ========================================================================

268 %% Repeated ana l y s i s o f the 2−OU model on s imulated data

269 % Resu l t s shown in Table A. 2

270 s t r f i l e = ’ r e s u l t s /2c−estimatesSimT1000 .mat ’ ; % f i l e path to save r e s u l t s

271 burnin = 3000 ;

272

273 %{

274 % the true s imu la t i on va lue s are

275 mu = 1 ; % l e v e l o f mean r ev e r s i o n

276 lambda0 = 8 ; % time to mean r ev e r s i o n

277 sigma = 0 . 1 ; % v o l a t i l i t y

278 lambda1 = 2 ; % time to mean r ev e r s i o n

279 beta = 0 . 7 ; % mean jump s i z e

280

281 eta v a r i e s over [ 0 . 0 5 0 .1 0 .2 0 . 3 ]

282 %}

283 % th i s func t i on may take long to complete , > 15 hours

284 % use the p a r a l l e l too lbox i f a v a i l a b l e to improve computat ional time

285 r epea tAna ly s i s ( s t r f i l e ) ;

286 r e s u l t s = proces sRepeatAna lys i s ( s t r f i l e , burnin ) ;

287

288 %% ========================================================================

289 %% Compare ACF with d i f f e r e n t number o f updates o f Phi per MCMC i t e r a t i o n

290 % as shown in Figure A. 1

291 % −−−−−−−−−−−−−− s imulate 3−OU proce s s

292 w = [1 1 ] ; % s i gn o f each jump component

293 Nt = 1000 ;

294 mu = 1 ; sigma = 0 . 1 5 ;

295 lambda0 = 8 ; lambda1 = 3 ; lambda2 = 0 . 5 ;

296 eta1 = 0 . 1 ; eta2 = 0 . 0 5 ;

297 beta1 = 0 . 5 ; beta2 = 1 ;

298 rng (0 )
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299 E = simulate3OUModel (Nt ,mu, lambda0 , sigma , lambda1 , lambda2 , eta1 , eta2 , beta1

, beta2 , w) ;

300

301 model = ’3−OU’ ;

302 hPar = getHyperparameters (model ) ; % hyperparameters

303 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

304 n = 1000000; % number o f mcmc s t ep s

305 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 1 , ’ lambda1 ’ , 0 . 0 5 , ’ lambda2 ’ , 0 . 0 5 ) ; % var iance

o f p roposa l s d i s t r i b u t i o n s

306

307 % −−−−−−−−−−−−−− es t imate 3−OU model with 1 update o f Phi per MCMC i t e r .

308 rng (0 )

309 s t r f i l e 1 = s t r c a t ( ’ r e s u l t s /3OU−s imulat ionNPhi 1 ’ , ’ . mat ’ ) ; % path to save

r e s u l t s

310 NPhi = 1 ; % number o f updates o f Phi per mcmc i t e r a t i o n

311 [ par1 , accRate ] = gibbs3OU(E, model , n , x0 , hPar , propVar , NPhi , s t r f i l e 1 ) ;

312

313 % −−−−−−−−−−−−−− es t imate 3−OU model with 5 updates o f Phi per MCMC i t e r .

314 rng (0 )

315 s t r f i l e 2 = s t r c a t ( ’ r e s u l t s /3OU−s imulat ionNPhi 5 ’ , ’ . mat ’ ) ; % path to save

r e s u l t s

316 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

317 [ par2 , accRate ] = gibbs3OU(E, model , n , x0 , hPar , propVar , NPhi , s t r f i l e 2 ) ;

318

319 % −−−−−−−−−−−−−− p lo t ACFs o f eta

320 burnin = 5000 ;

321 f i g u r e ;

322 hold on

323 ACF1 = autocor r ( par1 ( burnin : end , 5 ) ,800) ;

324 ACF2 = autocor r ( par2 ( burnin : end , 5 ) ,800) ;

325 p lo t (ACF1)

326 p lo t (ACF2)

327 g r id on , box o f f , y l ab e l ( ’ACF of \ e ta 1 ’ )
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328 l egend ( ’One update o f \Phi per MCMC i t e r a t i o n ’ , ’ Five updates o f \Phi per MCMC

i t e r a t i o n ’ )

329 h = gca ; h . FontSize = 11 ;

330

331 %% ========================================================================

332 %% Summary o f p roce s s Phi = (Phi1 , Phi2 ) o f 3−OU model

333 % as shown in Figure A. 2

334

335 % −−−−−−−−−−−−−− s imulate 3−OU proce s s and save t rue p r o c e s s e s Phi1 , Phi2

336 w = [1 1 ] ; % s i gn o f each jump component

337 Nt = 1000 ;

338 mu = 1 ; sigma = 0 . 1 5 ;

339 lambda0 = 8 ; lambda1 = 3 ; lambda2 = 0 . 5 ;

340 eta1 = 0 . 1 ; eta2 = . 0 5 ;

341 beta1 = 0 . 5 ; beta2 = 1 ;

342 rng (0 )

343 [E, LT1 ,LT2 ] = simulate3OUModel (Nt ,mu, lambda0 , sigma , lambda1 , lambda2 , eta1 ,

eta2 , beta1 , beta2 , w) ;

344 s t r f i l e 1 = ’ r e s u l t s /3OU−simulationLT1LT2 .mat ’ ;

345 save ( s t r f i l e 1 , ’E ’ , ’LT1 ’ , ’LT2 ’ )

346

347 % −−−−−−−−−−−−−− es t imate 3−OU model us ing the corre spond ing observed proce s s

348 model = ’3−OU’ ;

349 hPar = getHyperparameters (model ) ; % hyperparameters

350 x0 = g e t I n i t S t a t e s (model ) ; % i n i t i a l s t a t e s

351 n = 1000000; % number o f mcmc s t ep s

352 NPhi = 5 ; % number o f updates o f Phi per mcmc i t e r a t i o n

353 propVar = s t r u c t ( ’ lambda0 ’ , 0 . 1 , ’ lambda1 ’ , 0 . 0 5 , ’ lambda2 ’ , 0 . 0 5 ) ; % var iance

o f p roposa l s d i s t r i b u t i o n s

354 s t r f i l e 2 = s t r c a t ( ’ r e s u l t s /3OU−s imulat ionrng0 ’ , ’ . mat ’ ) ; % path to save

r e s u l t s

355 % run algor i thm

356 rng (0 )
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357 t i c

358 [ par , accRate ] = gibbs3OU(E, model , n , x0 , hPar , propVar , NPhi , s t r f i l e 2 ) ;

359 toc

360

361 % −−−−−−−−−−−−−− p lo t t rue Phi vs est imated Phi

362 plotPhi ( s t r f i l e 1 , s t r f i l e 2 )
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B Fit Seasonal Trend For Daily Data

1 f unc t i on [E, beta ] = f i tSea sona lTrend 1 ( p l o tF i t )

2 %FITSEASONALTREND Fit s ea sona l trend func t i on to datase t s p e c i f i e d by data s t r

3 %

4 % [E, beta ] = f i tSea sona lTrend ( datastr , p l o tF i t )

5 %

6 % Input arguments :

7 % plo tF i t − boolean var i ab l e , i f t rue r e s u l t s are p l o t t ed

8 %

9 % Output arguments :

10 %

11 % E − de s e a s ona l i s ed s e r i e s

12 %

13 % beta − f i t t e d parameters

14 %%

15

16 idx1 = 1 ; idx2 = 501 ; % 01/01/2012 − 31/12/2013

17

18 load ( ’ . . / data/US2012 2013 .mat ’ ) ;

19

20 namedata = ’US ’ ;

21 un i t s = ’ $ ’ ;

22 %Name o f the data

23 %E0 i s the p r i c e

24 E0 = US20122013 . average ;

25

26

27 %index to j u s t get the one be f o r e or a f t e r 2006 DO THAT LATER WHEN I

28 %HAVE ALL THE DATA

29 E0 = E0( idx1 : idx2 ) ’ ;

30 E1 = E0 ;
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31

32 %! ! ! ! probably sk ip that f o r the us data f i r s t

33 % there are 3 l a r g e negat ive p r i c e s on EEX2, average them out with ne ighbours

34 %idx = f i nd (E0<0) ;

35 %i f ˜ isempty ( idx )

36 % E0( idx ( 1 : 2 ) ) = mean(E0 ( [ idx (1 )−1 idx (2 ) +1]) ) ;

37 % E0( idx (3 ) ) = mean(E0 ( [ idx (3 )−1 idx (3 ) +1]) ) ;

38 %end

39

40 % sp e c i f y s ea sona l trend func t i on

41 %! ! ! ad jus t the pe r i od s

42 per iod = 260 ; % per iod 365 days − weekends

43 strendFun = @(a , t ) ( a (1 ) + a (2) ∗ t +a (3) ∗ s i n (2∗ pi ∗ t / per iod )+ a (4) ∗ cos (2∗ pi ∗ t /

per iod ) . . .

44 + a (5) ∗ s i n (4∗ pi ∗ t / per iod )+a (6) ∗ cos (4∗ pi ∗ t / per iod ) ) ;

45

46 % i n i t i a l guess

47 beta0 = [1 1 1 1 1 1 ] ;

48 %time po in t s

49 t = 1 : l ength (E0) ;

50 % se t robust opt ions f o r n l i n f i t

51 % opt ions = s t a t s e t ( ’ n l i n f i t ’ ) ;

52 % opt ions . Robust = ’ on ’ ;

53 % f i t

54 [ beta , R]= n l i n f i t ( t , l og (E0) , strendFun , beta0 ) ;

55 % de s e a s ona l i s e raw data

56 E = E1 ./ exp ( strendFun ( beta , t ) ) ;

57

58 % plo t r e s u l t s ?

59 i f p l o tF i t

60

61 f i g u r e ;

62 p lo t ( l og (E0) )
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63 hold on

64 g r id on

65 p lo t ( strendFun ( beta , t ) , ’ b lack ’ )

66 p lo t (E) , g r id on , box o f f

67

68 x l ab e l ( ’Time ( days ) ’ ) , y l ab e l ( [ un i t s ’ /MWh’ ] )

69 l egend ( [ ’ Dai ly mean ’ namedata ’ log−p r i c e s ’ ] , ’ Seasona l trend ’ , [ ’

Desea sona l i s ed ’ namedata ’ s e r i e s ’ ] )

70 h = gca ; h . FontSize = 11 ;

71 end
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C Fit Seasonal Trend For Five-minute Data

1 f unc t i on [E, beta ] = f i tSea sona lTrend 2 ( p l o tF i t )

2 %FITSEASONALTREND Fit s ea sona l trend func t i on to datase t s p e c i f i e d by data s t r

3 %

4 % [E, beta ] = f i tSea sona lTrend 2 ( datastr , p l o tF i t )

5 %

6 % Input arguments :

7 % plo tF i t − boolean var i ab l e , i f t rue r e s u l t s are p l o t t ed

8 %

9 % Output arguments :

10 %

11 % E − de s e a s ona l i s ed s e r i e s

12 %

13 % beta − f i t t e d parameters

14 %%

15

16 idx1 = 1 ; idx2 = 15061; % 01/01/2012 − 31/12/2013 5 mins

17

18 load ( ’ . . / data/US 5min .mat ’ ) ;

19

20 namedata = ’US ’ ;

21 un i t s = ’ $ ’ ;

22 %Name o f the data

23 %E0 i s the p r i c e

24 E0 = WITHOUTAVERAGEFiltered .LMP;

25

26

27 %index to j u s t get the one be f o r e or a f t e r 2006 DO THAT LATER WHEN I

28 %HAVE ALL THE DATA

29 E0 = E0( idx1 : idx2 ) ’ ;

30 E1 = E0 ;
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31

32

33 % sp e c i f y s ea sona l trend func t i on

34 %! ! ! ad jus t the pe r i od s

35 per iod = 74880; % per iod 365 days − weekends

36 strendFun = @(a , t ) ( a (1 ) + a (2) ∗ t +a (3) ∗ s i n (2∗ pi ∗ t / per iod )+ a (4) ∗ cos (2∗ pi ∗ t /

per iod ) . . .

37 + a (5) ∗ s i n (4∗ pi ∗ t / per iod )+a (6) ∗ cos (4∗ pi ∗ t / per iod ) ) . . .

38 + a (7) ∗ s i n (2∗ pi ∗ t /288)+a (8) ∗ cos (2∗ pi ∗ t /288) ;

39

40 % i n i t i a l guess

41 beta0 = [1 1 1 1 1 1 1 1 ] ;

42 %time po in t s

43 t = 1 : l ength (E0) ;

44 minE0 = min(E0) ;

45 i f (min (E0) <0)

46 E0 = E0 − minE0 +1;

47 end

48 % se t robust opt ions f o r n l i n f i t

49 % opt ions = s t a t s e t ( ’ n l i n f i t ’ ) ;

50 % opt ions . Robust = ’ on ’ ;

51 % f i t

52 [ beta , R]= n l i n f i t ( t , l og (E0) , strendFun , beta0 ) ;

53 % de s e a s ona l i s e raw data

54 E = E1 ./ exp ( strendFun ( beta , t ) ) ;

55

56 % plo t r e s u l t s ?

57 i f p l o tF i t

58

59 f i g u r e ;

60 p lo t ( l og (E0) )

61 hold on

62 g r id on
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63 p lo t ( strendFun ( beta , t ) , ’ b lack ’ )

64 p lo t (E) , g r id on , box o f f

65

66 x l ab e l ( ’Time ( days ) ’ ) , y l ab e l ( [ un i t s ’ /MWh’ ] )

67 l egend ( [ ’ Dai ly mean ’ namedata ’ log−p r i c e s ’ ] , ’ Seasona l trend ’ , [ ’

Desea sona l i s ed ’ namedata ’ s e r i e s ’ ] )

68 h = gca ; h . FontSize = 11 ;

69 end
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D Simulation of the Electricity Prices

1 %simulate US Data :

2 %We use the simulate3OUModel .m to s imulate the data :

3

4 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

5 %3OU−I1 da i l y 2012−13

6 I1 . t0 = 114 .022577 ; % theta

7 I1 . d e l t a = 0 .125424 ; % de l t a

8 I1 . eta = 0 .205438 ; % eta

9 I1 . per iod = 260 ;

10 I2 . t0 = 114 .022577 ; % theta

11 I2 . d e l t a = 0 .125424 ; % de l t a

12 I2 . eta = 0 .060739 ; % eta

13 I2 . per iod = 260 ;

14 [E, LT1 ,LT2 ] = simulate3OUModel (501 ,1 . 000359 ,1 . 255521 , s q r t (0 . 047755)

, 0 . 446520 ,0 . 947172 , I1 , I2 , 0 . 901904 , 0 . 538974 , [ 1 , −1 ] )

15 p lo t (E) ;

16

17 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

18 %3OU− da i l y 2012−13

19 [E, LT1 ,LT2 ] = simulate3OUModel (501 ,0 . 997542 ,1 . 716843 , s q r t (0 . 035613)

, 0 . 390014 ,0 . 982283 ,0 . 208096 , 0 . 071908 ,0 . 953824 ,0 . 561401 , [ 1 , −1 ] )

20 p lo t (E) ;

21 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

22 %2OU−I1 da i l y 2012−13
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23 I1 . t0 = 112 .351500 ; % theta

24 I1 . d e l t a = 0 .179000 ; % de l t a

25 I1 . eta = 0 .189159 ; % eta

26 I1 . per iod = 260 ;

27 [E,LT1 ] = simulateModel (501 , 0 .991433 , 1 .164833 , s q r t (0 . 069317) , 0 .349751 , I1 ,

1 .016242 , 1)

28 p lo t (E) ;

29 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

30 %3OU model (2 p o s i t i v e jumps ) 04172013

31 w =[1 ,1 ]

32 [E, LT1 ,LT2 ] = simulate3OUModel (501 ,0 . 978192 ,1 . 374713 , s q r t (0 . 062138) ,

2 . 977244 ,0 . 318735 ,0 . 056765 , 0 .104151 , 2 .834976 , 1 .431118 , w) ;

33 p lo t (E)

34 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 %3OU− model f i v e minute 15061

36 [E, LT1 ,LT2 ] = simulate3OUModel (15061 ,0 .104957 ,28 .061740 , s q r t (0 . 000054)

, 0 . 870276 ,1 . 075247 ,0 . 094283 , 0 . 082339 ,0 . 204016 ,0 . 116257 , [ 1 , −1 ] )

37 p lo t (E) ;

38

39 %

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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E Simulation of a Model With One Jump Component

1 f unc t i on [E,T,L ] = simulateModel (Nt , mu, lambda0 , sigma , lambda1 , jRate , beta ,

negJ )

2 %SIMULATEMODEL Simulate paths o f the 2−OU models , X = Y0 + Y1

3 %

4 % [E,T,L ] = simulateModel (Nt , mu, lambda0 , sigma , lambda1 , jRate , beta , negJ )

5 %

6 % dY0 = 1/ lambda0 ∗(mu−Y0) dt + sigma∗dWt, Wt i s a Wiener p roce s s

7 %

8 % dY1 = −1/lambda1∗Y1∗dt + dL1 , L1 i s a homogeneous or inhomgeenous

9 % compound Poisson proce s s

10 %

11 % Input arguments :

12 %

13 % Nt − Number o f t imesteps , obse rvat i on per iod i s [ 0 , Nt ] with g r id s i z e 1

14 %

15 % mu − Level o f mean r ev e r s i o n o f Y0

16 %

17 % lambda0 − Time to mean r ev e r s i o n ( i nv e r s e o f speed o f mean r ev e r s i o n )

18 %

19 % sigma − Vo l a t i l i t y

20 %

21 % lambda1 − Time to mean r ev e r s i o n o f Y1

22 %

23 % jRate − i f L1 i s time−homogeneous , jRate i s a s c a l a r r ep r e s en t i ng the

24 % jump i n t e n s i t y ra t e o f L1 . I f L1 i s time−inhomogeneous jRate i s

25 % st ru c tu r e array conta in ing the parameters f o r the i n t e n s i t y

26 % func t i on given in intens i tyFun .m, eg . jRate . t0 = 130 ,

27 % jRate . per iod = 260 , jRate . d e l t a = 0 .15 , jRate . eta = 0 .3

28 %

29 % beta − Mean jump s i z e o f L1
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30 %

31 % negJ − s c a l a r i n d i c a t i n g whether Y1 i s p o s i t i v e ( negJ = 1)

32 % or negat ive ( negJ = −1)

33 %

34 % Output arguments :

35 %

36 % E − Di s c r e t i s e d sample path at g r id t imes 0 , 1 , . . . , Nt , E1 below i s

37 % the exact s o l u t i o n

38 % T − True jump times

39 % L − True jump s i z e s

40

41 % choose jump s i z e d i s t r i b u t i o n

42 % 1 f o r Pareto , 2 Exponential , 3 Gamma

43 jumpDistr ibut ion = 2 ;

44

45 % simulate Poisson proce s s

46

47 i f ˜ i s s t r u c t ( jRate ) % homogeneous

48

49 [ L , jumpTimes ] = homogeneousCPoisson (Nt , jRate , beta , jumpDistr ibut ion ) ;

50

51 e l s e % inhomogeneous

52

53 [ L , jumpTimes ] = compoundPoisson (Nt , jRate . t0 , jRate . per iod , . . .

54 jRate . de l ta , jRate . eta , beta , jumpDistr ibut ion ) ;

55

56 end

57 % simula t i on times , combine f i x time g r id po in t s and jump times

58 [T, IX ] = so r t ( [ 1 : Nt jumpTimes ] ) ; % IX i s the permutation vec to r

59 L = [ z e ro s (1 ,Nt) L ] ; L = L( IX) ; % so r t L over the ’ combined ’ g r id

60

61 lenT = length (T) ; % time

62
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63 % i n i t i a l i s e v a r i a b l e s

64 E1 = ze ro s (1 , lenT ) ;

65 Y0 = ze ro s (1 , lenT ) ;

66 Y1 = ze ro s (1 , lenT ) ;

67 E1(1) = mu; Y0(1) = E1(1) ; % i n i t i a l va lue s at time 0

68 %dt = 1 ;

69

70 % simulate path

71 f o r i = 1 : lenT−1

72 dt = T( i +1) − T( i ) ; % dt can change from step to step

73 temp = exp(−1/lambda0∗dt ) ;

74 Y0( i +1) = mu∗(1−temp) + temp∗Y0( i ) + sigma∗ s q r t ((1−tempˆ2) /2∗ lambda0 ) ∗

randn ;

75 Y1( i +1) = exp(−1/lambda1∗dt ) ∗Y1( i ) + L( i +1) ;

76 E1( i +1) = Y0( i +1) + negJ∗Y1( i +1) ;

77 end

78

79 % E1 conta in s exact s imu la t i on o f the proce s s

80 % the s imu la t i on t imes are conta ined in T

81 % E below conta in s the obs e rva t i on s at t imes 0 , 1 , 2 , . . . , Nt

82

83 E = 0 ; j = 0 ;

84 f o r i =1: l ength (T)

85 i f T( i )==j

86 E( j +1) = E1( i ) ;

87 j = j +1;

88 end

89 end
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F Simulation of a Model With Two Jump Components

1 f unc t i on [E,LT1 ,LT2 ] = simulate3OUModel (Nt , mu, lambda0 , sigma , lambda1 ,

lambda2 , jRate1 , jRate2 , beta1 , beta2 , negJ )

2 %SIMULATE3OUMODEL Simulate the 3−OU model X = Y0 + w1∗Y1 + w2∗Y2

3 %

4 % [E,LT1 ,LT2 ] = simulate3OUModel (Nt , mu, lambda0 , sigma , lambda1 , lambda2 ,

jRate1 , jRate2 , beta1 , beta2 , negJ )

5 %

6 % dY0 = 1/ lambda0 ∗(mu−Y0) dt + sigma∗dWt, Wt i s a Wiener p roce s s

7 %

8 % dYi = −1/lambdai∗Yi∗dt + dLi , Li i s a compound Poisson proce s s with

9 % jump i n t e n s i t y parameters jRate i and Exp( be ta i ) d i s t r i b u t e d jump s i z e s

10 %

11 % Input arguments :

12 %

13 % Nt − Number o f t imesteps , obse rvat i on per iod i s [ 0 , Nt ] with g r id s i z e

1

14 %

15 % mu − Level o f mean r ev e r s i o n o f Y0

16 %

17 % lambda0 − Time to mean r ev e r s i o n ( i nv e r s e o f speed o f mean r ev e r s i o n )

18 % of Y0

19 %

20 % sigma − Vo l a t i l i t y

21 %

22 % lambda1 − Time to mean r ev e r s i o n o f Y1

23 %

24 % lambda2 − Time to mean r ev e r s i o n o f Y2

25 %

26 % jRate i − i f Li i s time−homogeneous , jRat e i i s a s c a l a r r ep r e s en t i ng

27 % the jump i n t e n s i t y ra t e o f Li . I f Li i s time−inhomogeneous jRate i i s
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28 % a s t ru c tu r e array conta in ing the parameters f o r the i n t e n s i t y

29 % func t i on given in intens i tyFun .m, eg . jRat e i . t0 = 130 ,

30 % jRate i . per iod = 260 , jRat e i . d e l t a = 0 .15 , jRat e i . e ta = 0 .3

31 %

32 % beta1 − Mean jump s i z e o f L1

33 %

34 % beta2 − Mean jump s i z e o f L2

35 %

36 % negJ − 2−by−1 vec to r i nd i c a t i n g whether Yi i s p o s i t i v e ( negJ ( i ) = 1)

37 % or negat ive ( negJ ( i ) = −1)

38 %

39 % Output arguments :

40 %

41 % E − Di s c r e t i s e d sample path at g r id t imes 0 , 1 , . . . , Nt , E1 below i s

42 % the exact s o l u t i o n

43 % LT1 − True jump proce s s L1

44 % LT2 − True jump proce s s L2

45 %

46

47 % jump s i z e d i s t r i b u t i o n : 1 Pareto , 2 exponent ia l , 3 Gamma

48 jumpDistr ibut ion = 2 ;

49 % generate jump times and jump s i z e s

50 i f ˜ i s s t r u c t ( jRate1 ) % homogeneous

51 [ L1 , jumpTimes1 ] = homogeneousCPoisson (Nt , jRate1 , beta1 , jumpDistr ibut ion ) ;

52 e l s e % inhomogeneous

53 [ L1 , jumpTimes1 ] = compoundPoisson (Nt , jRate1 . t0 , jRate1 . per iod , . . .

54 jRate1 . de l ta , jRate1 . eta , beta1 , jumpDistr ibut ion ) ;

55 end

56

57 i f ˜ i s s t r u c t ( jRate2 ) % homogeneous

58 [ L2 , jumpTimes2 ] = homogeneousCPoisson (Nt , jRate2 , beta2 , jumpDistr ibut ion ) ;

59 e l s e

60 [ L2 , jumpTimes2 ] = compoundPoisson (Nt , jRate2 . t0 , jRate2 . per iod , . . .
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61 jRate2 . de l ta , jRate2 . eta , beta2 , jumpDistr ibut ion ) ;

62 end

63 % remove i n i t i a l time 0

64 L1 = L1 ( 2 : end ) ; jumpTimes1 = jumpTimes1 ( 2 : end ) ; L2 = L2 ( 2 : end ) ; jumpTimes2 =

jumpTimes2 ( 2 : end ) ;

65 % simula t i on times , combine f i x i n t e r v a l s and jump times

66 [T, IX ] = so r t ( [ 0 : Nt jumpTimes1 jumpTimes2 ] ) ; %IX i s the permutation vec to r

67 %L = [ ze ro s (1 ,Nt) L L3 ( 2 : end ) ] ; L= L( IX) ; %so r t L over the ’ combined ’ g r id

68 % length o f time g r id i n c l ud ing jump times and d i s c r e t e t imes 0 , 1 , . . . , Nt

69 lenT = length (T) ;

70 % proce s s LT1 over t h i s time g r id

71 LT1 = [ z e ro s (1 ,Nt+1) L1 ze ro s (1 , l ength ( jumpTimes2 ) ) ; 0 :Nt jumpTimes1

jumpTimes2 ] ;

72 LT1 = sort rows (LT1 ’ , 2 ) ’ ;

73 % proce s s LT2 over t h i s time g r id

74 LT2 = [ z e ro s (1 ,Nt+1) L2 ze ro s (1 , l ength ( jumpTimes1 ) ) ; 0 :Nt jumpTimes2

jumpTimes1 ] ;

75 LT2 = sort rows (LT2 ’ , 2 ) ’ ;

76 % a l l o c a t e memory f o r p roce s s

77 E1 = ze ro s (1 , lenT ) ; Y0 = ze ro s (1 , lenT ) ; Y1 = ze ro s (1 , lenT ) ; Y2 = ze ro s (1 , lenT )

;

78 % i n i t i a l va lue s at time 0

79 E1(1) = mu; Y0(1) = E1(1) ;

80 %dt = 1 ;

81 f o r i = 1 : lenT−1

82 dt = T( i +1) − T( i ) ;

83 temp = exp(−1/lambda0∗dt ) ;

84 Y0( i +1) = mu∗(1−temp) + temp∗Y0( i ) + sigma∗ s q r t ((1−tempˆ2) /2∗ lambda0 ) ∗

randn ;

85 Y1( i +1) = exp(−1/lambda1∗dt ) ∗Y1( i ) + LT1(1 , i +1) ;

86 Y2( i +1) = exp(−1/lambda2∗dt ) ∗Y2( i ) + LT2(1 , i +1) ;

87 %pr in t ( i +1)

88 %pr in t ( lenT )
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89 E1( i +1) = Y0( i +1) + negJ (1 ) ∗Y1( i +1) + negJ (2 ) ∗Y2( i +1) ;

90 end

91

92 % E1 conta in s exact s imu la t i on o f the process , i n c l ud ing jump times

93 % the s imu la t i on t imes are conta ined in T

94 % E below conta in s the obs e rva t i on s at t imes 0 , 1 , 2 , . . . the days

95 %d i s c r e t i s e (T, E1) ;

96 E = 0 ; j = 0 ;

97 f o r i = 1 : l ength (T)

98 i f T( i )==j

99 E( j +1) = E1( i ) ;

100 j = j +1;

101 end

102 end

65



G Collection of the Data

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 #

3 l i b r a r y ( xts )

4 l i b r a r y ( chron )

5 getDataForMonth <− f unc t i on (newData ) {

6

7 #F i l t e r data by node name

8 #newData = subset ( data , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour ,

LMP) )

9

10 #transform data frame to time s e r i e s

11

12 newData [ , 1 ] = as . POSIXct ( as . cha rac t e r ( newData [ , 1 ] ) , format = ”%m/%d/%Y %H:%M

” )

13 newData = na . omit ( newData )

14

15 newData = pad (newData )

16

17 p r i c e s <− xts ( newData [ , −1 ] , order . by = newData [ , 1 ] , names= c ( ”date ” , ”LMP” ) ,

i n c lude . weekends=FALSE)

18 #subset ( p r i c e s , format . Date ( date , newData ) )

19 #pr i c e s = as . zoo ( p r i c e s , names= c (” date ” ,”LMP”) )

20 p r i c e s = na . i n t e r p o l a t i o n ( p r i c e s , opt ion = ” l i n e a r ” )

21 colnames ( p r i c e s )<−c ( ”LMP” )

22 #pr i c e s da i l y = p r i c e s da i l y [−nrow ( p r i c e s da i l y ) , ]

23 re turn ( p r i c e s )

24 }

25 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

26

27 #Fi r s t get data
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28 f i l e = s p r i n t f ( ”C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2013%02d . csv ”

, 1)

29 year = read . csv ( f i l e )

30 year = subset ( year , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour , LMP) )

31 #year = getDailyAverageDataForMonth ( jan data )

32

33 f o r ( i in 2 : 12 ) {

34 f i l e = s p r i n t f ( ”C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2012%02d .

csv ” , i )

35 d = read . csv ( f i l e )

36 d = subset (d , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour , LMP) )

37 year <− rbind ( year , d )

38 #month = getDailyAverageDataForMonth ( data )

39 #year = rbind . zoo ( year , month)

40 pr in t ( i )

41 }

42

43 f o r ( i in 1 : 12 ) {

44 f i l e = s p r i n t f ( ”C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2013%02d .

csv ” , i )

45 d = read . csv ( f i l e )

46 d = subset (d , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour , LMP) )

47 year <− rbind ( year , d )

48 #month = getDailyAverageDataForMonth ( data )

49 #year = rbind . zoo ( year , month)

50 pr in t ( i )

51 }

52

53 da i l yP r i c e s = getDataForMonth ( year )

54

55 da i l yP r i c e s = da i l yP r i c e s [ ! weekdays ( as . Date ( index ( d a i l yP r i c e s ) ) ) %in% c ( ”

Samstag” , ”Sonntag” ) ]

56
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57 newTimeFormat = format ( as . POSIXct ( time ( d a i l yP r i c e s ) , format = ”%y−%m−%d %H:%M”

) , ”%m/%d/%Y %H:%M” )

58

59 p = data . frame (Date=newTimeFormat , Pr i ce=as . matrix ( d a i l yP r i c e s ) )

60

61 wr i t e . csv (p , f i l e = ’C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2012 13

WITHOUT AVERAGE F i l t e r e d . csv ’ )
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H Calculating the Average Data

1 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2 #

3 l i b r a r y ( xts )

4 l i b r a r y ( chron )

5 getDailyAverageDataForMonth <− f unc t i on (newData ) {

6

7 #F i l t e r data by node name

8 #newData = subset ( data , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour , LMP)

)

9

10 #transform data frame to time s e r i e s

11

12 newData [ , 1 ] = as . POSIXct ( as . cha rac t e r ( newData [ , 1 ] ) , format = ”%m/%d/%Y %H:%M”)

13 newData = na . omit ( newData )

14

15 p r i c e s <− xts ( newData [ , −1 ] , order . by = newData [ , 1 ] , names= c ( ”date ” , ”LMP” ) )

16 #subset ( p r i c e s , format . Date ( date , newData ) )

17 #pr i c e s = as . zoo ( p r i c e s , names= c (” date ” ,”LMP”) )

18 colnames ( p r i c e s )<−c ( ”LMP” )

19 #ca l c u a l t e the average f o r each day

20 p r i c e s da i l y = aggregate ( p r i c e s $LMP, as . Date ( index ( p r i c e s ) ) ,mean)

21 p r i c e s da i l y [ . indexwday ( p r i c e s da i l y ) %in% 1 : 5 ]

22 #pr i c e s da i l y = p r i c e s da i l y [−nrow ( p r i c e s da i l y ) , ]

23 re turn ( p r i c e s da i l y )

24 }

25 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

26

27 #Fi r s t get data

28 f i l e = s p r i n t f ( ”C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2012%02d . csv ”

, 1)
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29 year = read . csv ( f i l e )

30 year = subset ( year , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour , LMP) )

31 #year = getDailyAverageDataForMonth ( jan data )

32

33 f o r ( i in 2 : 12 ) {

34 f i l e = s p r i n t f ( ”C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2012%02d .

csv ” , i )

35 d = read . csv ( f i l e )

36 d = subset (d , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour , LMP) )

37 year <− rbind ( year , d )

38 #month = getDailyAverageDataForMonth ( data )

39 #year = rbind . zoo ( year , month)

40 pr in t ( i )

41 }

42

43 f o r ( i in 1 : 12 ) {

44 f i l e = s p r i n t f ( ”C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2013%02d .

csv ” , i )

45 d = read . csv ( f i l e )

46 d = subset (d , pnodename == ’WEC.PLEASA142 ’ , s e l e c t = c (mkthour , LMP) )

47 year <− rbind ( year , d )

48 #month = getDailyAverageDataForMonth ( data )

49 #year = rbind . zoo ( year , month)

50 pr in t ( i )

51 }

52

53 average = getDailyAverageDataForMonth ( year )

54 average = average [ ! weekdays ( as . Date ( index ( average ) ) ) %in% c ( ”Samstag” , ”

Sonntag” ) ]

55

56 newTimeFormat = format ( as . POSIXct ( time ( average ) , format = ”%y−%m−%d” ) , ”%m/%d/

%Y” )

57
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58

59 p = data . frame (Date=newTimeFormat , Pr i ce=as . matrix ( average ) )

60

61 wr i t e . csv (p , f i l e = ’C: /Uni/Master/ Spring 18/Master/MISO Pr i c ing Data/2012 13

F i l t e r e d . csv ’ )
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