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Figure 4: Pyrosequencing with the Roche 454 Platform [18] 

 
Figure 4: pyrosequencing with the Roche 454 

platform. In c, an example cycle is shown: emPCR 

amplified DNA beads are added into wells, along with 

smaller beads containing sulphurylase and luciferase. 

As a single dNTP solution is run across the wells—

cytosine in this example—the dNTP functions in 

conjunction with polymerase to catalyze a series of 

enzymatic reactions that convert inorganic 

pyrophosphate into signals of light. In d, the recorded 

light signals have been converted into a flowgram, 

which is used to determine nucleic acid sequence 

identity. 
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 The past half-decade has borne witness to the rise of what some now term as “third-

generation” and “fourth-generation” sequencing platforms, given that the four previously discussed NGS 

platforms are now being considered as “second-generation” sequencers [18, 24]. Regarding third-

generation sequencers, E. E. Schadt, S. Turner, and A. Kasarskis alternatively describe these platforms as 

“real-time sequencers” (RT-seq), in which single template molecules are not amplified prior to 

sequencing by polymerase elongation. As this method avoids PCR amplification entirely, real-time 

sequencers—of which Pacific Biosciences has since marketed commercially [18]—promise to avoid 

errors that accompany PCR, such as amplification bias and strand de-phasing. By avoiding the time 

constraints for amplification, RT-seq platforms also promise to drastically reduce sequencing time, on 

the order of days to hours or even minutes. Despite these promises, third-generation sequencers (TGS) 

have exhibited a tendency to fall short of the bioinformatics community’s expectations, as they suffer 

from sequence identity inaccuracy ultimately stemming from a lack of sufficient passes around their 

generated circular polymerase reads. [24] 

 Fourth-generation sequencers are a novel technology best publicized by Oxford Nanopore, 

whose sequencing platform aims to employ a proprietary nanopore voltage gating technology to 

sequence small amounts of template material through sub-microscopic changes in voltage potentials as 

the target sequence is read. Like PacBio, the nanopore platform has suffered from a number of key 

challenges, most prominently a critical concern regarding sequence identity inaccuracy rates and 

reproducibility of sequencing experiments between different platform operators. [25] Both PacBio and 

nanopore sequencing platform technologies represent an exciting foray into the future of next-

generation sequencing, and their mechanics lie outside the scope of this work; further exposition on 

these topics is left to the reader. 
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 Overview of RNA-Seq 

 Before proceeding into any lengthy exposition on modern RNA-Seq methods and their 

advantages over the microarray assays they have superseded, it is essential to consider the historical 

methods that long preceded these modern techniques; these approaches continue to hold relevance in 

current, limited-scale gene quantification studies. The Northern blot technique, originally designed in 

the late 1970s, is typically employed to survey expression of small interfering RNAs (siRNAs) or micro 

RNAs (miRNAs) and initially involves size-oriented separation through use of denaturing polyacrylamide 

gel electrophoresis (dPAGE). The RNA molecules are subsequently transferred to a membrane, one that 

is usually composed of nylon, and are bound to the membrane via cross-linking facilitated by ultraviolet 

(UV) radiation. Though use of UV radiation is rapid and inexpensive, it has been suggested that UV 

results in an overabundance of cross-linking, hindering downstream results; Pall and Hamilton have 

proposed a chemically-based alternative for performing the cross-linking step of Northern blotting, 

resulting in more than an order of magnitude improvement to the sensitivity of identifying and 

quantifying small RNA expression. [41] 

 The explosive proliferation of the polymerase chain reaction (PCR) technique throughout the 

early 1990s and 2000s has profoundly altered the landscape of molecular biology and remains a 

dominant technique to this day, seeing continued frequent use within countless next-generation 

sequencing library preparation protocols. PCR derivatives, such as quantitative PCR (qPCR) and reverse 

transcriptase PCR (rtPCR), were developed in the early 1990s to quantify gene expression from samples 

as small as a single cell. However, a well-noted shortcoming of initially designed rtPCR reactions was the 

need to simultaneously observe amplification of the samples up to a certain point, the plateauing point, 

within the log phase of the reactions; preparing samples in this way can be laborious in the extreme. 

Heid et al proposed real-time quantitative PCR (RT-qPCR) as an answer to this issue: through use of 

selected “housekeeping” genes, one may start concurrent RT-qPCR reactions for genes of interest 
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without concern over when certain samples reach their plateauing point. [42] Vandesompele et al later 

proposed a geometric averaging model for further standardizing internal controls of genes submitted 

within the real-time qPCR methodology [43]. While this method and Northern blotting continue to 

demonstrate effectiveness for small-scale studies, the succeeding passages will expound upon the 

advantages of using more exhaustive approaches, such as RNA-Seq. 

 As a key specialty within bioinformatics, the study and performance of RNA-seq primarily 

concerns the transcriptome of a given biological system or organism, which is described by Z. Wang, M. 

Gerstein, 2and M. Snyder to be the complete set and number of transcripts found within a cell, given a 

certain development stage and physiological condition. The purpose behind RNA-seq studies is to 

generally gain greater understanding of whole organismal transcriptomes, given a myriad of 

experimental conditions. Greater comprehension of the transcriptome allows for a better understanding 

of physiological development and the course of genetic disease. [20] 

 From Crick’s Central Dogma of molecular biology, it is well-known that DNA is transcribed into 

RNA prior to being translated into protein macromolecules; during this process, the immediately 

transcribed DNA—as whole (e.g. total) RNA—is spliced into a form known as messenger RNA (mRNA) 

that is subsequently translated. Total RNA is generally composed of two kinds of nucleic acid junctions, 

introns and exons, where introns represent non-coding regions of genes, while exons represent coding 

DNA to be translated into protein. Thus, multiple exonic junctions are typically spliced together to form 

the mRNA coding sequence required for translation into strings of amino acids that are folded and post-

translationally modified to form mature proteins. Regions of nucleic acid that span the distances 

between genes are often referred to as intergenic regions. [1, 3, 19] 

 Contextually, the working definition of a gene in bioinformatics unfortunately suffers from a 

certain degree of ambiguity in the literature: because genes are composed of exonic junctions that are 

spliced together to form variations of a given gene in response to a slew of environmental conditions, a 
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gene may be considered to behave somewhat like a mathematical set, possessing a finite number of 

members. Each member constitutes an isoform of the gene, much like isotopes of given elements from 

the Periodic Table. A subset of these isoforms, those of which occur most commonly for a given gene 

and under homeostatic conditions, may be considered to be the transcript for the select gene, while 

abnormally occurring or disease-related isoforms of the gene may be considered as alternative isoforms. 

[19, 20, 22] 

 Historically, gene expression studies have been executed through use of microarrays, a platform 

designed to allow for the simultaneous observation of many gene expression levels within an entire cell 

line at once [19-22]. While powerful, microarray methods have ultimately suffered from a number of 

key shortcomings, foremost of which concerns the presence of significant background noise in every 

experiment’s analysis, originating from the occurrence of cross-hybridization between various well 

samples in the tiling array [19, 20]. Secondly, microarrays typically feature poor resolution at the single 

nucleotide level, often requiring specialty techniques to correct via usage of pre-existing knowledge 

regarding the given genomic region of interest [20]. Finally, microarrays experience difficulties with 

determining large ranges of dynamic expression for given genes between experimental samples—that 

is, an up-regulation of a given gene on the order of hundreds or thousands of times between 

experimental samples tends to be very difficult to accurately quantify by microarray techniques [19, 20, 

22]. 

 The introduction of next-generation sequencing platforms and techniques to gene expression 

studies, colloquially referred to as RNA-seq analysis, has quickly become one of the most advanced 

specialties within bioinformatics over the past decade [19]. RNA-seq circumnavigates or improves upon 

the critical shortcomings of microarray approaches: because there is no use of a tiling array in RNA-seq 

experiments, cross-hybridization cannot occur, effectively eliminating background noise [19, 20]. 

Additionally, RNA-seq allows for the interrogation of genes at single-base resolution, allowing for a 
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definitive understanding of individual base changes, such as single nucleotide polymorphisms (SNPs) 

[19-21]. Finally, RNA-seq is not limited in the determination of dynamic gene expression levels; once 

corrected and normalized via statistical methods, aligned reads from RNA-seq experiments can reliably 

and reproducibly detect changes in gene expression levels that may differ by orders of magnitude [19, 

20, 22]. 

 A particular newfound strength associated with RNA-seq studies, which was generally not 

possible to achieve in traditional microarray experiments, is the potential capability to detect novel, 

undiscovered isoforms of genes. When combined with the aforementioned capacity to interrogate 

exonic single base-pair identity, it becomes possible for comprehensive RNA-seq studies to determine 

alternative transcripts of known or newly proposed genes. [19, 20] RNA-seq data is also not merely 

limited to differential gene expression analysis across samples within an experiment; data from these 

studies can also be employed to create de novo transcriptome assemblies of species for which their 

reference sequence does not yet exist, or for given genomic regions of interest in which the existing 

reference is inaccurate or incomplete [19-22]. 

 Despite its many strengths, RNA-seq grapples with a number of key computing challenges: 

outside the realm of template preparation and sequencing, data analysis in RNA-seq requires rigorously-

tested computational methods to ensure normalization of stochastic read alignment and reproducibility 

of analyses produced from initial experiment results. Examples of these methods take the form of a 

variety of read alignment algorithms, in-sample normalization methods, and between-sample 

differential expression analysis packages. Canonical pipelines that interweave the input and output from 

various RNA-seq related tools—whose construction, maintenance, and modification are non-trivial—are 

detailed below. [20, 21] 
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 RNA-Seq Analysis Pipelines 

 A. Oshlack, M.D. Robinson, and M. D. Young describe the prototypical pipeline for RNA-seq 

analysis in terms of key steps and methodological components: first, millions of [short] reads are 

gathered and aligned against a reference sequence, which can be a whole genome (often for model 

organisms) or a transcriptome, which itself can either be known or assembled de novo. Following 

alignment, counts of reads in given genomic regions of interest, such as exonic junctions, genes, or 

coding regions are tabulated and statistically normalized so as to remove biases present within the initial 

dataset that stem from the stochastic nature of read alignment in next-generation sequencing 

platforms. Then, tables of resulting data—which can exist in either statistically normalized in-sample 

form or in terms of raw read counts—are input into a differential expression (DE) analysis package. The 

type of input given to the DE tool depends on the underlying model employed to determine differential 

expression of genomic features. Once differential expression results are obtained, for which gene 

expression values can be safely compared between samples (e.g. between-sample normalization), the 

list of significantly differentially expressed genes can be piped through a gene annotation toolkit to 

generate biological insight regarding the metabolic, physiological, and pathogenic pathways particularly 

involved with the set of experimental samples. [26] 
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Figure 5: Overview of RNA-seq Analysis Pipelines [26] 

 
Figure 5: an overview of the general steps involved in 

performing analysis of RNA-seq data. Major pipeline steps 

are colored in red, while methodology components are 

shown in blue. Each methodology component is listed 

with example analysis packages or software used to 

achieve its respective aim; these lists are not intended to 

be comprehensive. 

 

 V. Costa et al provide an alternate, more generalized perspective on RNA-seq pipelines, with 

particular focus on the output of both short read alignment algorithms and read quantification methods. 

[19] 
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Figure 6: A Generalized RNA-seq Pipeline [19] 

 
Figure 6: a generalized overview of RNA-seq analysis pipelines. Particular focus here is first 

demonstrated on the quality control (QC) processes that raw read files undergo prior to serving as 

input for read alignment packages. Three types of aligned reads emerge, with uniquely mapped reads 

being the most straightforward to deal with; multi-mapping and un-mapped reads each present their 

own set of separate bioinformatic challenges. Mapped reads can be fed into quantification analysis 

methods, which are capable of generating a variety of output, including identification of alternative 

isoforms for existing genes, novel isoforms for prospective pseudogenes, and in-sample normalized 

read counts. The normalized in-sample read values [or raw read counts, depending on the 

mathematical model employed by the subsequent analysis suite] are then used as input for differential 

expression analysis. 

 

 R. K. Patel and M. Jain rightly note that NGS data often suffers from a number of key sequencing 

artifacts in its raw short-read output; these issues include base-calling errors that stem from 

inaccuracies present within the sequencing platform, short insertions-or-deletions of erroneous 

sequence data (often referred to as indels), and contamination with primer and/or adapter sequences. 
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Failure to comprehensively address quality control (e.g. QC) issues concerning NGS datasets can easily 

impose significant consequences for downstream analysis, including read alignment, transcript 

quantification, and even differential gene expression analysis results between samples within a study. 

[27] In addressing this challenge, a multitude of NGS quality control toolkits and packages have emerged 

in the past decade, with select examples including the FASTX-Toolkit, FastQC, and the NGS QC Toolkit; 

an example output view from FastQC follows. 

 

Figure 7: Sample Output of Read Quality from FastQC [28] 

 
Figure 7: sample output from a run of FastQC on sequenced reads within a FASTQ dataset. Phred 

scores are linearly reported on the vertical axis, with a higher Phred score indicating a 

logarithmically higher probability that the sequencing platform has correctly called the 

nucleotide identity at that particular base-pair coordinate for a given read. Base-pair positions 

along the sample set of reads are given on the horizontal axis. 
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 Next-generation sequencing data is often reported in the near-universal FASTQ format [or one 

of its variants], in which Phred quality scores accompany each nucleotide along the length of short-reads 

output by an NGS platform. Phred scores logarithmically indicate the probability that a sequencer has 

erroneously miscalled a particular nucleotide within a read and were first described by B. Ewing and P. 

Green at the Cold Spring Harbor Laboratory in the late 1990s [29]: 

������ = −10 ∗ log��(�(������� 

�(��������� = 1 − 10�
���� !
"�� #

 

 Thus, a Phred quality score of 10 indicates that there is a 90% probability that the sequencer 

accurately identified the given nucleotide, a score of 20 indicates a 99% probability of accuracy, a score 

of 30 possesses a 99.9% probability of accuracy, and so on. The QC process in many RNA-seq studies 

often additionally involves clipping of adapter sequences from reads. 

 Following quality control of raw RNA-seq data, analysis pipelines will typically perform 

alignment of “cleaned” reads against a reference, which may be a known or de novo assembled genome 

or transcriptome. As noted by Oshlack et al, there are several categories of algorithms employed by 

modern read alignment tools [26], chief of which is the Burrows-Wheeler transformation, employed by 

the Bowtie-TopHat-Cufflinks pipeline that has been standardized into use as the “Tuxedo” pipeline 

employed by a great number of published RNA-seq studies covering a myriad of model and non-model 

organisms [30]. The first component of the Tuxedo pipeline, Bowtie, was initially presented by B. 

Langmead et al as an ultra-fast, memory efficient alignment tool capable of aligning tens of millions of 

short reads against a given reference sequence per CPU-hour. While employing the Burrows-Wheeler 

transformation to index a given reference sequence, Bowtie additionally introduces a novel set of 

algorithms enabling efficient back-tracking through mismatch-containing partial sequence matches 

found within the Burrows-Wheeler index. Bowtie thusly allows for alignment of error-containing reads 

and variant-prone references at low computational memory consumption. [31] 
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Figure 8: The Burrows-Wheeler Transformation [31] 

 
Figure 8: a sample demonstration of the Burrows-Wheeler Transformation (BWT) given by 

Langmead et al. In a, the BWT matrix of original sequence T, “acaacg”, is generated—where the 

character “$” represents a string not in T and also less than the characters found within T. Thus, 

the Burrows-Wheeler transformation of T, BWT(T), is generated by forming a matrix composed 

of all the cyclic rotations of T$ and re-ordering the matrix lexicographically; the right-most 

column corresponds to BWT(T), “gc$aaac”, and is colored in red. In b, the BWT simplification 

lemma of “last first (LF) mapping” is demonstrated, where LF mapping denotes that the ith 

occurrence of some character x in the right-most column of the BWT(T) matrix corresponds to 

the exact character mapped by the ith occurrence of the same character x in the left-most matrix 

column. In this way, BWT(T) can be employed to regenerate the original sequence T and forms 

the indexing basis of memory-efficient read alignment in Bowtie. 

 

 In the next major step of the Tuxedo pipeline, reads aligned via Bowtie are used as input for 

TopHat, a splice junction-discovering tool initially published by C. Trapnell, L. Pachter, and S. Salzberg in 

2009. In theory, an RNA-seq analysis could more simply be performed by directly aligning quality-

controlled reads against a known reference transcriptome, yet this has often been difficult [and 

generally un-recommended] to perform in the past, due to whole organismal transcriptomes being 

absent or incomplete in the existing literature—even for well-researched model organisms. Thus, the 

TopHat pipeline was designed to address this issue by using whole genome alignment as a proxy for 

transcriptome mapping, quantification of transcript abundance, and discovery of novel gene isoforms. 

[32] A general workflow encompassing Bowtie and TopHat follows. 
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Figure 9: The Bowtie-TopHat Pipeline [32] 

 
Figure 9: a generalized workflow describing the 

TopHat RNA-seq read alignment pipeline, 

beginning with input composed of reads aligned 

against a given reference genome via Bowtie. 

Output from Bowtie comprises reads grouped into 

one of two categories: mapped and initially un-

mapped (IUM) reads. Genome-mapping reads are 

assembled into a consensus of covered regions, 

from which potential gene splicing sites are 

generated through identification of neighboring 

exons. Meanwhile, the IUM reads are assembled 

into a seed table index, and finally, un-mapped 

reads are aligned against potential splice sites via 

the seed-and-extend method through leveraged 

use of the seed table index. 

 

 Once TopHat has been used to reveal the potential set of alternatively spliced isoforms within a 

given transcriptome, the Cufflinks package of RNA-seq utilities—first published by C. Trapnell et al in 

2012—may be employed to statistically quantify normalized transcript abundance at both in-sample and 

between-sample (e.g. differential expression) levels for an experiment. Core utilities within this 

bioinformatics package include: Cufflinks, an assembly generator that employs TopHat-output read 
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alignment files to generate a de novo transcriptome for each experimental condition; Cuffmerge, which 

merges transcriptome assemblies output by Cufflinks to provide a basis for calculating gene and 

transcript expression; Cuffdiff, which takes the TopHat-mapped reads and Cuffmerge-aggregated 

assembly to calculate statistically-tested expression levels and provides an additional layer of differential 

expression analysis; and CummeRbund, a visualization plotting tool that facilitates generation of 

volcano, scatter, and box plots for quantified RNA-seq data. [30] An illustration of the TopHat-Cufflinks 

pipeline follows. 

  



26 

 

Figure 10: The TopHat-Cufflinks Pipeline [30] 

 
Figure 10: a depiction of the TopHat-

Cufflinks pipeline for quantifying RNA-seq 

data. Bowtie-aligned reads are input into 

TopHat, which has been previously 

described (see Figure 9). TopHat-mapped 

reads are subsequently input into Cufflinks, 

which generates transcriptome assemblies 

for each experimental condition and reports 

in-sample transcript quantification values. 

Multiple assemblies are merged using 

Cuffmerge before being input, along with 

the TopHat-mapped reads, into Cuffdiff to 

perform statistically-tested differential 

expression analysis on genes or transcripts 

stemming from samples associated with 

various experiment conditions. 
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 Gene and transcript expression values output from either the Cufflinks (e.g. in-sample 

normalization) or Cuffdiff (e.g. between-sample normalization, differential expression analysis) tools 

within the Tuxedo RNA-seq analysis pipeline typically emerge in the form of “reads per kilobase exon 

per million mapped reads” (RPKM) or “fragments per kilobase exon per million mapped fragments” 

(FPKM) units, where FPKM specifically indicates that the given RNA-seq dataset contains paired-end 

reads [30]. Essentially, the RPKM unit indicates that n many reads will generally be found per kilobase of 

coding DNA (cDNA) for every million mapped reads from the experiment; the unit represents a 

statistical normalization for the stochastic nature of read alignment observed in every NGS experiment. 

The FPKM unit extends this same line of thought, but with the term “fragment”, where each fragment 

exists in place of a set of paired-end reads. [33] The use of paired-end reads as sequencing fragments in 

RNA-seq originated with J. O. Korbel et al in mapping structural variations within the human genome; 

paired-end fragments facilitate higher-quality alignments in repetitive genomic regions, in identifying 

indels, and in presenting spaced reads that map more uniquely to a given genome or transcriptome [34]. 

 There exists a subtle flaw in the metaphysical design behind the RPKM and FPKM units, one 

which L. Pachter remains vocal of: the number of mapped reads in a given sample from an experiment is 

virtually never constant. Thus, the unit value of one RPKM or FPKM from a given experimental sample to 

another, and especially from one RNA-seq experiment to another, is practically never the same. This 

realization suggests that these units were ill-designed, and L. Pachter et al have largely remonstrated 

their previously published [and now, unfortunately, ubiquitously employed] units into a better 

standardized successor, “transcripts per million” (TPM). [33, 35] These units are reported by default with 

use of Kallisto, a modern ultra-fast RNA-seq pseudoaligner and transcriptome quantifier published by L. 

Pachter et al [36]. 
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 The Gene Expression Omnibus and RNA-Seq Atlases 

 The rapid adoption and widespread use of gene expression microarrays and next-generation 

sequencing (NGS) platforms over the past two decades has formatively shaped the future of molecular 

biology and functional genomics. It comes as no surprise, then, that the voluminous nature of data 

produced using these methods inevitably heralded a public outcry among researchers for centralized 

repositories that would house published experimental data; the Gene Expression Omnibus (GEO) project 

at the National Center for Biotechnology Information (NCBI) was created to answer this need and was 

initially designed around the challenge of housing microarray experiment metadata and supplemental 

analysis results. [37] The schema behind the GEO database, which remains in active use today, is 

detailed below. 

 

Figure 11: Schema behind the Gene Expression Omnibus [37] 

 
Figure 11: a depiction of the schema used in construction, 

maintenance, and access of the GEO database. Here, the 

entity-relationship diagram is specified, where each published 

study is referred to by a “Series” accession identifier; each 

series contains one or more sample accession IDs, where 

each sample entry in the database corresponds to a sample 

from the submitted experiment. Each sample may also map 

to n many platform IDs, which has historically implied the use 

of multiple types of microarrays in the given experiment. 

More recently, the presence of multiple platform accession 

identifiers in a given GEO series indicates use of multiple NGS 

platforms. Thus, the list of platforms employed in a given GEO 

series is found through the set union of the platforms listed 

through the series’ constituent samples. 
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 Despite being designed with the express objective of housing microarray study data, the Gene 

Expression Omnibus began accommodating user requests to store next-generation sequencing data in 

the late 2000s, and by 2009, the GEO team had published their initial work regarding storage 

mechanisms and data workflows relating to non-expression microarray data and NGS studies, which 

were grouped under the category of “Omics”-related data [38]. An example of user querying and 

viewing of study-sample metadata for a particular Rat-related series-sample entry in GEO datasets 

follows. 
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Figure 12: Example View of RNA-seq Study-Sample Metadata in GEO 

 
Figure 12: an example view of what GEO users see when browsing through RNA-seq studies 

concerning the Rat species. For each series (e.g. study) accession identifier, the user is presented 

with a summary page concerning the overall objectives and methodology of the experiment, 

including any platform accession identifiers [and their associated metadata] employed in the 

course of the study. These series summary pages include links to sample accession identifier 

pages, each of which describes the physiological conditions (including growth protocol, age, 

gender, strain, and many other potential parameters) under which the sample was obtained. 

Link-outs to study-sample raw data may be present on either the series or sample pages, and 

supplementary analysis (e.g. expression results) may be present on either set of pages. 

 

 Perhaps one of the greatest strengths behind the design of the Gene Expression Omnibus is its 

lack of stringent standards regarding user-entered data; while the database prefers to take binary 

alignment mapping (BAM) read files from NGS studies as the primary form of its raw data, the system 

also accepts a wide variety of alternative formats, including the sequence alignment mapping (e.g. SAM, 

uncompressed BAM) format and FASTQ (e.g. raw, un-aligned) read files. These sequence-related raw 
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data files are taken through GEO as an interface and are physically stored within the Short Read Archive 

(SRA) of NCBI, which requires use of the SRA Toolkit to extract and perform essential manipulations, 

such as BAM-to-FASTQ conversions on raw data [38]. 

 Researchers are permitted to enter whatever metadata they believe to be descriptive of their 

experiments’ underpinnings, with no absolute minimum on the types or kinds of data [or metadata] that 

must be entered into the GEO database. Expression analysis results within GEO datasets are also not 

standardized, with researchers being able to store the following equivalently: raw read counts, which 

represent a deeply biased perspective of actual gene/isoform expression; in-sample normalized 

RPKM/FPKM/TPM values, which often fall short of the true goal of many RNA-seq studies; and complete 

differential expression results obtained through the entirety of the previously described Tuxedo RNA-

seq pipeline or equivalent differential expression (DE) workflows, including use of tools such as edgeR, 

RSEM, or DEseq. 

 The highly flexible standards of data entry for GEO give rise to a certain paradigm regarding its 

NGS metadata, raw data, and expression analysis results: while it is relatively straightforward for 

researchers to input their various types of data into the system, it is far more challenging for 

bioinformaticians to meaningfully extract, translate, integrate, and serve GEO-related experiment data 

and results to end-users in visually digestible ways. To this end, database projects designed to serve as 

repositories and atlases of RNA-seq data have emerged in recent years, with the European Expression 

Atlas serving as perhaps the most canonically well-known example. Analysis results within the 

Expression Atlas are stored and displayed through two fundamental models: “baseline expression” for a 

gene entry within a sample (e.g. in-sample normalization) and “differential expression” (e.g. between-

sample normalization) computed among samples within a given study. [39] 

 It is critically important to note that RNA-seq results stored and displayed by the Expression 

Atlas are not the original results deposited by researchers into GEO and subsequently published into 
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existing scientific literature; the Expression Atlas project employs a homegrown RNA-seq pipeline as a 

“one-size-fits-all” model for re-computing expression results [40]. Thus, this approach technically 

classifies as a form of secondary re-analysis for RNA-seq datasets, and with this method, there exist both 

advantages and disadvantages. Positively, previous studies that lacked complete RNA-seq analyses (e.g. 

those that do not proceed beyond base-calling or determining read-counts per gene loci) justly receive 

ideally complete results for downstream ontology mapping and pathway analysis. However, the act of 

forcing—and exclusively presenting—secondary re-analysis, particularly for datasets whose original 

analyses were sufficiently complete and properly submitted to GEO, generates potentially conflicting 

results displayed by the Expression Atlas. Solely presenting secondary results, which may be discordant 

with their original counterparts, deviates from that which has been published in the literature and may 

undesirably misinform users. 

 

 The Research Question 

 One might resultantly envision a scenario in which ideally translated GEO RNA-seq results are 

presented adjacently beside secondary re-analysis results, such as those produced by the Expression 

Atlas. The work described hereafter was guided by this vision and comprises an effort to effectively and 

meaningfully extract, translate, and database-load GEO series and sample metadata and to 

subsequently link these metadata to translated [and rehabilitated, wherever necessary] supplemental 

expression analysis results. Thus, the primary research question behind this work: “how can one 

transparently and reproducibly construct an RNA-seq atlas from stored metadata and supplemental 

analyses within the Gene Expression Omnibus?” This research question is divided into three series of 

constituent questions addressed by the following chapters: 
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1. How can one reproducibly construct a relational database store from series and sample 

metadata within GEO? 

2. Of what use is the metadata gathered and relationally stored from the previous step? How can 

sample-specific characteristic attributes be further atomized and loaded? 

3. How might supplemental RNA-seq analysis results—for which no robust standard exists or is 

imposed upon their structure—be translated and relationally appended to the database 

generated from the previous steps? 

 

 In the following chapter, the design, implementation, and functionality of GEOMP—a metadata 

parser and relational database constructor for GEO next-generation sequencing datasets—is described. 

In chapter 3, a retrospective analysis of past bioinformatics methods is described, with the purpose of 

investigating the capacity to reproduce past biomedical informatics research; this work is fundamentally 

enabled by the metadata extracted, better atomized, and database-loaded by GEOMP2. In chapter 4, a 

prototypical implementation of GEORGET—an RNA-seq gene expression results translator for GEO-

submitted NGS studies—is described, with results presented from testing of the translation model upon 

a zebrafish training superset and two randomly selected supersets of mouse and human RNA-seq data. 

Chapter 5 concludes this work, with discussion of the many paths in which this work will continue to 

mature in future years. 
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Chapter 2: GEOMP, a Metadata Parser and Relational Database 

Constructor for the Gene Expression Omnibus 

 

 Abstract 

 The proliferation of high-throughput next-generation sequencing technologies over the past 

decade has given rise to a voluminous increase in the amount of data generated by modern biological 

and clinical studies. The Gene Expression Omnibus (GEO), developed as part of the National Center for 

Biotechnology Information at the National Institutes of Health, was originally designed as an 

international repository for housing standards-compliant microarray study metadata and expression 

profiles but has since been updated to handle next-generation datasets. The flexible design of the GEO 

database, which allows researchers to specify their own attributes and thereby modify the metadata 

schema of GEO itself, presents a challenge to bioinformaticians aiming to construct databases from 

studies housed within GEO. 

 We present GEOMP, a package of utilities designed to facilitate and expedite the initiation of a 

database project from GEO study metadata. In its first stage, GEOMP directly queries the Gene 

Expression Omnibus through use of the Entrez programming utilities and the GEO application program 

interface. In its main stage of execution, GEOMP parses through the simple omnibus format in text files 

pulled from GEO and performs any combination of several possible actions: output of a spreadsheet 

through optionally defined user attributes, construction of a SQLite database from parsed metadata, 

and output of unique analysis methods specific to each queried study. GEOMP is capable of 

automatically constructing its own configuration containing the most frequently occurring metadata 

attributes and may additionally be used to pull studies’ publication archives from PubMed Central. 

GEOMP has been implemented in Bash and Modern Perl. 
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 GEOMP aims to serve as an ease-of-use, low-dependency solution to the issue of converting a 

GEO search query into structured, parsed, and relational database-loaded metadata. With significant 

room for continued refinement and additional features, we plan to expand GEOMP in the future. 

 

 Background 

 In 2000, NCBI established the Gene Expression Omnibus (GEO) to serve as a public data 

repository for a variety of functional genomics experiments, most predominantly those related to 

microarray platforms at the time [1]. The infrastructure of the GEO database was designed with great 

flexibility in mind, such that microarray experiment data complying with the MIAME standard [3] could 

be inserted without significant difficulty [1, 2]. With the advent and rapid rise of next-generation 

sequencing (NGS) techniques over the past decade, the flexibility of the GEO database provided an 

advantage in allowing for accommodation of NGS dataset structures without requiring a fundamental 

redesign of infrastructure [1, 2, 4]. Currently, GEO houses data from over 76,000 experiments spanning 

over two million samples; more than 10,700 of those studies have been performed through use of NGS 

platforms. 

 Structurally, the surface of the GEO database consists of tables without limits on the number of 

rows or columns granted to tab-delimited input data; this characteristic confers malleability to the core 

database in adapting to a variety of data structures from microarray- and NGS-related studies. Certain 

columns from input data are recognized for special reserved meaning, and data from these columns are 

extracted to secondary databases that form the core of GEO, which is comprised of three types of 

entities: series, sample, and platform records. Series records are given the “GSE” prefix and define the 

set of samples contained within a given experiment, while also describing the overall research goal and 

methods of the experiment. A sample record is prefixed with “GSM” and contains experimental 

condition information and any unique analysis methods used for a particular sample within its parent 
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(e.g. series, GSE) study. Platform records are prefixed with “GPL” and contain general information 

regarding a given microarray or sequencing platform and also house references to every series and 

sample accession the platform has been used for; platform records thusly have a tendency to balloon 

quickly. [1] 

 Given the significant plasticity of the external GEO database tables, which are later translated 

into the core of the database, it stands to reason that researchers providing novel metadata attributes 

therefore redefine the absolute schema of GEO; this observation has been confirmed by the GEO 

development team [1]. Resultantly, bioinformatics tools aiming to fully interface with GEO must ensure 

that total metadata heterogeneity of the database is captured. Previous work by Davis and Meltzer 

(2007) achieved this objective in the heyday of microarrays and the infancy of NGS techniques through 

development of GEOquery, a utility designed to fetch and parse individually specified series and sample 

accession numbers [5]. Zhu and Davis et al (2008) employed GEOquery in constructing GEOmetadb, a 

database project designed to leverage parsed metadata in building an alternative search engine for the 

core GEO database [6]. 

 An exciting trend has emerged in recent years regarding the construction of expression atlases 

and databases downstream from resources such as GEO and ArrayExpress [7]. The Expression Atlas, a 

large web-tool component of ArrayExpress initiated by the European Bioinformatics Institute (EBI) in 

2008, presents a variety of visualization schemes for RNA-seq data secondarily reanalyzed at both the in-

sample and between-sample (e.g. differential expression) levels [8]. GeneAnalytics, an embedded web 

module of the commercial GeneCards suite developed at the Weizmann Institute of Science, employs a 

proprietary reanalysis strategy for RNA-seq data derived from the GTEx consortium [9, 10]. Gundersen 

and Jagodnik et al (2016) recently published GEN3VA, a web resource enabling on-the-fly 3D principal 

component analysis, in addition to enrichment vector analysis across microarray expression datasets 

spanning multiple studies, allowing for facile meta-analysis [11]. The Lair, a recently published database 
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by Pimentel, Sturmfels, and Pachter et al (2016), performs secondary reanalysis of RNA-seq data from 

the Short Read Archive (SRA) through use of bleeding-edge quantification tools and visualizes the results 

for exploration using the R Shiny package for its web interface [12-14]. 

 There is a growing movement in the bioinformatics community towards the construction of 

databases that aggregate, translate, and (re)analyze published expression data and metadata, in both 

microarray and next-generation sequencing formats. These projects require teams of bioinformaticians 

with significant pooled experience to initiate, in part due to a lack of foundational tools that interface 

fully with well-established resources such as GEO and ArrayExpress. It was for this reason that we 

elected to develop GEOMP; its purpose, and that of its successors, is to serve as a catalyst for 

accelerating development of future database expression and networking projects. 

 

 Implementation 

 Execution of the GEOMP workflow is achieved through use of three tools, whose collective 

domain of operations is outlined in Figure 13. In the first stage, geomp_pull is called from the command 

line interface (CLI) using a GEO-compatible search query; the tool pads the query with proper spacing 

characters before triggering an HTTPS request to the NCBI eSearch E-Utility [15]. Output from eSearch 

emerges in XML format, from which geomp_pull extracts relevant unique identifiers (UIDs). Each UID is 

then passed as another request to the eFetch E-Utility, which returns another XML file that geomp_pull 

stores in memory while extracting a valid GEO accession identifier. The accession identifier is passed as 

part of a request to the GEO URL construction application program interface (API), which returns a 

Simple Omnibus Format in Text (SOFT) file [1]. Finally, the deposited SOFT files are scanned for platform-

to-sample mappings that are subsequently removed; these mappings often point to samples from 

studies outside the domain of the original GEO query or to studies employing organisms undesired by 

the querying user. In our experience, removal of these superfluous mappings can potentially reduce 
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SOFT files by up to 90% of their original volume; mappings between samples and their sequencing 

platforms are preserved through the data structure of sample files. 

 

Figure 13: the operational domain of GEOMP 

 
Figure 13: the GEOMP workflow begins with specification of a GEO Web query to geomp_pull, which produces 

a directory of SOFT metadata files. A user-defined configuration file is subsequently provided [or automatically 

generated] for geomp, which produces three possible outputs: a generalized metadata spreadsheet, an 

atomized SQLite relational database, and a spreadsheet enumerating bioinformatics methods unique to each 

queried study. The methods-oriented output may additionally serve as input for geomp_pmc_pull, which 

generates a directory tree containing Open Access publication archives. 

 

 The main stage of the workflow is performed by geomp itself, which has been implemented in 

functionalized Modern Perl and features both single- and double-flagged input parameters in the Unix 

style of tool development. At minimum, geomp requires only one flag to be specified for execution: a 

directory of SOFT files to interpret. Optionally, users of geomp may specify a species name to generate a 

study-specific metadata attribute detailing the number of child samples that match the provided 
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species. Additionally, a configuration file listing desired series and sample metadata attributes may be 

provided to geomp. A brief example of a possible configuration file: 

 

[ GSE ] 
geo_accession 
title 
pubmed_id 
 
[ GSM ] 
geo_accession 
title 
description 
characteristics_ch1 

 

 If no user-defined configuration file is provided, geomp will automatically generate a 

configuration through the -a flag using the most frequently occurring metadata attributes; this defaults 

to a threshold of reaching the N95 of the provided dataset in descending order of the most frequently 

occurring metadata attributes. Alternatively, a user may override the -a flag with their own N-threshold 

or provide a percentage threshold for geomp to reach in constructing its configuration. 

 Standard output via the -o flag in geomp will result in a tab-delimited spreadsheet representing 

a relational join between every series and its constituent samples, with series and sample attribute 

columns taken from the provided configuration file. The geomp program is also capable of 

simultaneously constructing an attribute-atomized SQLite database, given this same configuration file, 

with one major caveat: the DBD::SQLite Perl module is required to enable this functionality and is the 

only known major dependency required for this workflow. Another minor caveat to consider: if one opts 

to provide a manually specified configuration file, then the “geo_accession” attribute should be listed 

first among both the GSE and GSM attribute lists, as this attribute functions ideally as a primary key. 

Further, geomp can generate an additional tab-delimited table displaying the bioinformatics analysis 

methods unique to and used within each study; this is particularly useful for conducting comparative 

meta-analyses of published bioinformatics work, a subject we intend to revisit in the future. 
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 The third and final stage of the workflow allows for PubMed archives of interpreted GEO studies 

to be pulled from PubMed Central (PMC) via the geomp_pmc_pull utility, which leverages the PMC API 

and its FTP service and tools [16]. Following generation of a list of PubMed IDs (PMIDs) from parsed GEO 

methods metadata, geomp_pmc_pull interfaces with the PMC ID converter to cross-reference a viable 

PubMed Central ID (PMCID) for the given PMID. If successful, the tool then makes a request to the PMC 

Open Access (OA) resource to obtain a list of valid FTP links from which to disseminate archive data. If a 

list presents with PDF and/or tarball links, geomp_pmc_pull obtains the listed content and organizes it 

within directories named after the PMID of the given study. Due to the heavy continuous server load 

exerted upon PMC, geomp_pmc_pull sleeps for several seconds in-between each of its constituent 

processes. 

 

 Results and Discussion 

 A critical concern repeatedly revisited throughout the development process of GEOMP relates 

to its future role: how does it differ from its predecessor, and how can it be expanded upon? In 

addressing the former, we emphasize the lightweight and flexible architecture of the GEOMP workflow, 

which at minimum requires system libraries that are present by default on modern Unix-compliant 

computing platforms. GEOquery, in comparison, requires the BioConductor package within R, in addition 

to at least three package dependencies: XML, RCurl, and httr. Numerous dependencies and abstraction 

within large, complex frameworks complicate and potentially impede the installation and usage process 

for potential users. 

 Methodologically, both GEOquery and GEOMP aim to pull, parse, and interpret study and 

sample metadata from GEO. However, GEOquery, in its design during the microarray era preceding the 

rise of NGS techniques, additionally interprets GEO-standardized microarray expression tables from 

curated datasets. GEOMP, in contrast, focuses on aggregation of metadata from raw GEO datasets, 
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identification of unique bioinformatics methods, automating creation of a relational database housing 

atomized metadata attributes, and fetching of PMC-related study data. Though these two workflows are 

similar in their initial objective of acquiring GEO metadata, their subsequent aims differ significantly. 

Microarray expression tables interpreted by GEOquery lend well to downstream analyses using a variety 

of BioConductor packages; it is for this reason that we do not view GEOMP as an absolute replacement 

for GEOquery, and both workflows should undergo continued development to harmonize well in future 

work. 

 A particular strength of the GEOMP workflow can be found in its first step, which enables 

GEOMP to facilitate a direct “query-to-data(base)” approach; users can copy a GEO Web query and 

provide said query as a direct argument to geomp_pull. This advantage is unavailable to users of 

GEOquery, who must write code to iterate through a list of studies or samples in order to process data. 

The flat text configuration format of geomp is an additional strength, providing the ability to freely 

specify GEO metadata attributes of interest to parse and potentially load into a relational database. The 

capacity of geomp to automatically construct its own configuration provides significant flexibility to 

users aiming to approach the GEO metadata problem from a naïve perspective, and updating of GEOMP-

processed datasets is straightforward: one need only re-run the workflow at future points in time. It 

should be noted that GEOMP does not yet support interpretation and translation of supplemental 

analysis results from NGS studies presented within GEO; this is a complex topic, with a challenging 

variety of file formats and data structures that will be addressed in our future work. Immediate work 

following the release of GEOMP will focus on studying the composition of and atomizing the sample 

characteristics tags defined by researchers submitting study metadata to GEO. 
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 Summary 

 The GEOMP workflow presents as a low-dependency, straightforward, and flexible solution to 

the challenge of transforming a GEO Web query into an atomized data model accessible through various 

avenues of output. Where previous and current solutions to this problem require users to compose 

additional code and perform significant work in order to subset and access parsed metadata, GEOMP 

directly provides users with an interface to target desired metadata attributes through a configuration 

that can be specified either manually or generated naively. Future work will expand the workflow’s 

capacity to atomize sample characteristics tags and will modularize GEOMP within a larger scope in 

order to translate supplemental analyses from published RNA-seq studies. 
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Chapter 3: Assessing Bioinformatics Methods Reproducibility with 

GEOMP2 

 

 Abstract 

 Scientific work possesses two essential characteristics: innovation and reproducibility. The latter 

of these two is a hallmark trait that distinguishes a meaningful result from being a glorified fluke. Rapid 

proliferation of next-generation sequencing platforms over the past 15 years has resulted in an 

explosive abundance of data that has been processed and analyzed in a myriad of ways. Without a well-

established and enforced set of mechanisms for guaranteeing reproducibility of genomics results, 

leadership within the scientific community has expressed serious concerns regarding the potential 

presence of an apparent epidemic of irreproducible results. To investigate this critical concern, we have 

built upon our previous work with GEOMP—a metadata parser for the Gene Expression Omnibus—in 

order to inspect bioinformatics methods reproducibility across RNA-seq experiments spanning the 

zebrafish, mouse, and human research communities. 

 From our previous work with GEOMP, and in parallel with development of GEORGET—an RNA-

seq results translator for the Gene Expression Omnibus—this work assessed the unique bioinformatics 

methods presented by 129 zebrafish, 76 mouse, and 85 human RNA-seq studies from 2010 through 

2017. A five-point reproducibility rubric was generated and used to evaluate the methods, with an 

overwhelming majority of RNA-seq analysis workflows found to be not generally reproducible. Zero 

studies reported hardware specifications. Critically, the largest research communities—mouse and 

human—did not report their methods more reproducibly than the zebrafish community. We also 

present GEOMP2, an expansion upon our previous work that allows for the atomization and relational 

storing of characteristics tags for sample metadata pulled from the Gene Expression Omnibus. 
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 Reproducibility concerns voiced by scientific leadership have been well-placed: we have found 

that a landslide majority RNA-seq analyses cannot be generally replicated. This is a crucial issue for 

future genomics research, and we present several partial solution avenues to explore. 

 

 Background 

 Scientific work is typically described by two qualities: innovation and reproducibility. The latter 

of these two is a hallmark trait that delineates a meaningful scientific result from being a glorified 

anecdote or fluke. The importance of reproducibility is so paramount, in biomedical research, that it 

surpasses the aim for clinical significance; results must minimally be reproducible [1]. In recent years, 

executive leadership at the National Institutes of Health (NIH) have expressed growing concerns that 

biomedical research may not be entirely reproducible, with researchers placing increasing importance 

on the trendiness of journals where novel research is published, rather than the fundamental capacity to 

replicate results. Leadership has also noted that scientists do not fully disclose, in transparency, the key 

details of their methods in an effort to retain a competitive advantage for publishing future work; this 

practice is harmful to the scientific community [2]. 

 The past decade has borne witness to an explosion of genomic datasets with the prolific rise of 

next-generation sequencing (NGS) platforms, resulting in major paradigm shifts for research in 

numerous fields, including molecular biology, clinical genetics, and metabolic biochemistry [3-4]. 

Currently available second-, third-, and fourth-generation sequencers are capable of producing 

massively parallelized sequence reads that have overwhelmingly eclipsed first-generation Sanger 

sequencers in terms of per-run genomic yield, per-base accuracy, and individual read lengths [5]; this 

has cost-effectively enabled the realization of DNA and RNA sequencing experiments previously only 

imagined. RNA-seq, in particular, is a specialized sub-domain within bioinformatics centered on profiling 

gene expression across whole organismal transcriptomes and is key to modern research in 
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developmental biology, pathology, and toxicology [6]. Execution of RNA-seq pipelines is a non-trivial and 

involved process, minimally requiring quality control (QC) of raw sequence data, splice-aware alignment 

to a reference genome or transcriptome, and in-sample-normalized gene expression quantification [7]. 

An additional computational step is required to normalize between samples in order to obtain 

differential gene expression results across whole experiment datasets; the necessity of this step has 

sometimes been misunderstood by RNA-seq researchers [7-8]. 

 The National Center for Biomedical Information’s (NCBI) Gene Expression Omnibus (GEO) 

database was founded in the early 2000s and was originally designed to flexibly capture and provide for 

retrieval of microarray datasets [9]. With the meteoric rise of NGS platforms and both DNA- and RNA-

seq workflows over the past decade, GEO has retrofitted its database structure to accommodate next-

generation sequencing datasets [10]. A key aspect of GEO’s database design is its highly malleable 

metadata layer, in which researchers are invited to define metadata attributes as they wish and may fill 

these self-defined attributes with whatever values deemed appropriate. From an information 

organization perspective, this is a formula for electronic entropy. GEO also presents matrix-formatted 

results for microarray experiments, whereas for RNA-seq studies, no apparent enforcement mechanism 

has been made to ensure that submitted results conform to the MINSEQE standard (e.g. Minimum 

Information regarding a Sequencing Experiment) [11]. This is an involved topic that we explore further in 

our work with GEORGET. 

 This work is primarily concerned with investigating the reproducibility of bioinformatics 

methods within NGS studies—specifically, RNA-seq analyses—submitted to the Gene Expression 

Omnibus. Given the malleable nature of GEO’s metadata database layer, and how researchers are 

encouraged to submit whatever they wish to specify, one might ideally hope that researchers are 

maximally specific regarding methods needed to replicate past in silica methods. This optimism has 

been sobered by discouraging reproducibility results reported in the biological sciences [12]; if 
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disciplined biology “at the bench” cannot reliably report reagents used, then what hope can biomedical 

informatics work possess? Previous work with nested meta-analyses in medical informatics has also 

reported discouraging findings regarding the capacity to replicate previous clinical meta-analyses [13]. 

 

 Methods 

 The purpose of this study was to investigate the reproducibility of bioinformatics methods 

employed in RNA-seq studies whose metadata and supplemental analyses have been submitted to the 

Gene Expression Omnibus. To facilitate this work, our previously presented GEO metadata pipeline, 

GEOMP, was used to pull NCBI universal IDs (uIDs) for zebrafish, mouse, and human RNA-seq studies. 

Given that the bodies of work behind the mouse and human research communities are more than an 

order of magnitude larger than that of the zebrafish community, the number of mouse and human RNA-

seq studies—which numbered in the thousands—needed to be randomly reduced to the scale of the 

zebrafish RNA-seq superset for manual review; this was on the order of approximately 100 studies per 

species. GEOMP was then used to pull, translate, and load these supersets’ metadata into species-

specific SQLite databases. Throughout this process, each superset’s uniquely reported bioinformatics 

methods were output to methods-formatted spreadsheets enabled by the ‘-m’ flag within GEOMP. 

 Each spreadsheet containing RNA-seq methods metadata was then imported into a single Excel 

workbook. A five-point recursive reproducibility scoring rubric was designed, with successively higher 

values being assigned to methods that minimally satisfy the requirements of lower values. As an 

example, an assigned reproducibility value of 3 implies that the given method has already satisfied the 

requirements for values 1 and 2. Rubric values correspond to the following: 
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1. A bioinformatics workflow or pipeline for analysis is clearly articulated 

2. Tools used in the analysis are clearly identified 

3. Tool versioning is explicitly provided 

4. Usage flags and/or parameters are specified for each tool in the workflow or pipeline 

5. Runtime hardware specifications are well-defined 

 

 An assigned value of 4 from the rubric indicates a general capacity to reproduce previous 

results; a value of 5 suggests a nearly absolute ability to replicate previous results. A special note was 

made for methods involving the use of custom-developed tools: if no documentation regarding tool 

retrievability was made apparent, the given method’s reproducibility score was penalized. Critically, 

methods with oscillating reproducibility values from step to step within their analysis descriptions were 

assigned an overall reproducibility score equivalent to their lowest-scoring segment. Once scores had 

been assigned to all reported methods, the uniquely reported methods were assigned weights based 

upon their frequencies of occurrence within their parent studies. The studies were then grouped by 

organism and year and were subsequently averaged by the number of unique studies submitted to GEO 

per year; these finalized values were tabulated by species and plotted. 

 

 Results 

 In total, bioinformatics methods reported by 129 zebrafish, 76 mouse, and 85 human RNA-seq 

studies were assessed for their reproducibility. Years in which a given species’ RNA-seq superset had less 

than 4 studies were discarded from tabulation and subsequent plotting; thus, the range of years for the 

zebrafish superset extended between 2010 and 2016, while the range for the mouse and human 

supersets extended between 2012 and 2017. The average weighted reproducibility scores across all 

years for the zebrafish, mouse, and human supersets were found to be 2.406, 2.593, and 2.071, 

respectively. Figure 14 provides a multi-series histogram of the reproducibility results by year and 

species. 
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Figure 14: RNA-seq Study Reproducibility by Species 

 
Figure 14: RNA-seq study reproducibility by species. Reproducibility values were assigned on a 

five-point scale, with values above three indicating a minimally general capacity to replicate past 

RNA-seq studies’ results. The matrix along the x-axis displays average weighted reproducibility 

values by species per year. 

 

 Given that a rubric-assigned reproducibility value of 4 establishes that a method is “generally 

reproducible”, we observed that the weighted averages of studies across all organisms and inspected 

years fell below this minimum threshold of viability. We additionally noted that zero studies reported 

runtime hardware specifications for computationally demanding pipelines such as Cufflinks [8]. A 

recurring theme encountered when surveying studies’ unique analysis methods: researchers exhibited a 

tendency to swap the exclusive presentation of either rubric requirement #3 or #4; in these cases, 

where tool usage flags were presented without explicit tool versioning, a reproducibility score of 3 was 

assigned. A deeply concerning observation to note from Figure 14: the average weighted reproducibility 
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of human RNA-seq studies falls significantly below that of either the zebrafish and/or mouse 

communities in 80% of the years in which all three communities were jointly assessed. 

 Many human study methods were assigned a reproducibility value of one, largely due to the 

frequent presentation of the highly ambiguous phrase, “adapters were trimmed”. What, exactly, does 

this mean? An Illumina sequencing reaction typically possesses four sequencing components that may 

be described as an “adapter” by downstream bioinformaticians: the sequence reaction’s anchoring 

adapter, the primer used to initiate the sequencing reaction, the sequence indices / barcodes used to 

multiplex samples within a run, and the upstream PCR primer; the lattermost of these is most commonly 

handled as the bioinformatics adapter, yet studies frustratingly lack clarity on what the “adapter” 

precisely is. Worse yet, the phrase “adapters were trimmed” provides no information on what tool was 

used to perform adapter trimming, its versioning, and whatever flags were needed to accomplish this. 

 Aside from the reproducibility results reported here, we also present development of GEOMP2, 

an upgrade to our previous workflow designed to flexibly and automatically extract, translate, and load 

metadata from GEO into a user-specified relational database. GEOMP2 significantly adds the capacity to 

atomize, aggregate, and database-load sample characteristic tags; these are sample-specific 

characteristic attributes that researchers supply when submitting study metadata to GEO. Since no 

explicit limits are made upon what researchers may supply as tags, the potential heterogeneity within 

these fields is vast. Users of GEOMP2 may supply a list of characteristic tags to parse and load; 

alternatively, users may specify a percentage- or N-based threshold of occurrence frequency for tags to 

be considered for normalization and database loading. The capacity to atomize, aggregate, and load 

sample characteristics tags is a feature absent from GEOquery, an R-based predecessor of GEOMP 

published more than a decade ago [14]. 
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 Discussion 

 Results from this study’s inspection of past bioinformatics methods employed in RNA-seq 

studies submitted to GEO are deeply concerning: no studies reported any specification of computing 

hardware employed during analyses, and work performed across all research communities was found to 

not meet minimal requirements for being generally reproducible. Perhaps most concerning is the 

apparent under-performance, in terms of reproducible documentation, of bioinformatics work 

performed in the human research community; this is the domain that would presumably be most critical 

to clinically-related future applications. These results suggest that the larger bioinformatics research 

community continues to suffer from a systemic failure to properly mandate and enforce mechanisms for 

ensuring that novel research may be verified through replication. Without this assurance, it is difficult to 

imagine how submitted research may truly be regarded as quality scientific work. 

 The issue of addressing scientific reproducibility in biomedical research is regarded as a 

foundational challenge, described as such by researchers beginning their careers and by top leadership 

at the NIH [1, 2]. Executive NIH leadership has explicitly stated that the organization cannot solve this 

problem with the “brute force” methodology of directly funding reproducibility efforts en masse; 

instead, the organization has begun allocating resources towards the training of biomedical postdoctoral 

fellows who will strive to be more conscious of reproducibility needs in future work [2]. Others have 

advocated for greater incentivizing of reproducible research from journals; as an example, a publication 

that has been verified by replication of its results may be given special featuring by its publishing journal 

[1]. We echo these ideas and emphasize that the biomedical research community must rally in 

addressing foundational concerns regarding reproducible research; crucially, the training of future 

generations of researchers must place great emphasis on the need for reproducibility in order to ensure 

that this problem abates. 
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 Summary 

 This work concerned the investigation of assessing reproducibility among bioinformatics 

methods submitted to the Gene Expression Omnibus by RNA-seq studies spanning the zebrafish, mouse, 

and human research communities. We found that the overwhelming majority of studies do not 

reproducibly document their analytical workflows or pipelines, further underscoring a continuing trend 

of troubling findings in the biomedical research domain regarding an apparent inability to replicate past 

studies’ results. Future work along this avenue of inquiry should consider investigating methods 

reported directly in the literature, inspection of a larger number of studies’ methods across a broader 

group of model research organisms, inclusion of a greater number of methods reviewers, and 

determination of Cohen’s kappa coefficient between methods reviewers. 
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Chapter 4: GEORGET, an RNA-seq Gene Expression Results Translator for 

the Gene Expression Omnibus 

 

 Abstract 

 The meteoric rise of next-generation sequencing technologies over the past decade and their 

related applications, particularly RNA sequencing analysis tools and workflows for whole transcriptome 

profiling, have resulted in an overwhelming abundance of scientific data and subsequently generated 

results. These gene expression results have canonically been stored within the Gene Expression 

Omnibus and have more recently been re-analyzed for visualization by the Expression Atlas. Various 

additional Web-based systems have emerged in recent years to allow for visualization of specific RNA-

seq datasets or selected supersets, yet no known workflow apparently exists for translating canonical 

gene expression results stored within GEO—those which are later published into the scientific 

literature—into relational database-stored results which can be easily navigated for future Web 

application and bioinformatics tool development. 

 We present our initial implementation of GEORGET, a workflow comprised of numerous tools 

designed to function subsequent to our prior art, GEOMP, in order to pull RNA-seq results from the 

Gene Expression Omnibus and rehabilitate these results, where necessary, for translation and 

subsequent loading into a SQLite relational database that is thereafter indexed for rapid querying of 

translated results. The effective translation rate of GEORGET has been measured to exceed 90% among 

its training superset of zebrafish RNA-seq results and two randomly selected supersets of mouse and 

human RNA-seq results. GEORGET has been implemented with Bourne shell (e.g. Bash) in conjunction 

with standard Unix utilities, GNU Parallel, Modern Perl, and SQLite. 
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 GEORGET aims to serve as the first publicly available workflow of its kind for translating RNA-seq 

results stored within the Gene Expression Omnibus. In contrast to other approaches, GEORGET 

translates deposited results as they are, such that they do not require immediate secondary re-analysis 

and do not deviate from what is reported in the literature. GEORGET-generated databases may ideally 

serve as a relational foundation for future Web applications and tools to browse next-generation 

sequencing datasets. 

 

 Background 

 The rapid proliferation of next-generation sequencing (NGS) platforms over the past decade has 

overwhelmingly captured the decades-long inertia previously held by first-generation Sanger sequencers 

[1]. This upset has been primarily owed to NGS platforms’ capacity to provide genomic yield on the 

order of many megabases to gigabases per sequencing run, representing a per-nucleotide cost reduction 

spanning many orders of magnitude when compared with traditional Sanger platforms [2]. Initial 

second-generation platforms, such as those produced by Roche/454, Applied Biosciences (AB), and 

Illumina relied upon a variety of molecular and biochemical techniques in order to produce short 

sequencing reads at high genomic volume; these methods include pyrosequencing, bridge amplification, 

emulsion PCR, and DNA ligation [2-4]. When first introduced, second-generation platforms boasted 

sequence reads of less than 50 nucleotides (e.g. bases, or bp) in length; the length of these short reads 

have increased over time, such that Illumina now offers 250 bp and 300 bp paired-end kits for its 

modern platforms [4-6]. Third- and fourth-generation sequencers have additionally emerged within the 

past decade; Pacific Biosciences’ RS and Sequel platforms generate circular polymerase reads (e.g. zero-

mode waveguides, or ZMWs) with insert lengths on the order of ten kilobases, while Oxford Nanopore’s 

voltage-gated platforms promise to deliver reads up to an entire megabase in length [7]. 



60 

 

 A particular focal area of NGS-enabled genomics is the domain of research known as RNA 

sequencing (e.g. RNA-seq), which aims to empower researchers with the capacity to profile whole 

organismal transcriptomes for use in both scientific and clinical applications [5, 8-9]. Execution of 

modern RNA-seq pipelines is a non-trivial affair, where analysis typically begins with splice-aware 

alignment of sequenced RNA data to a reference genome or transcriptome [10]. Examples of aligners 

capable of performing this step include TopHat, GSNAP, and STAR [11-13]. Following alignment, one 

may opt to perform full-suite RNA-seq quantification and statistical determination of differential 

expression between samples using a well-established pipeline; the Cufflinks package has been a 

canonical solution for performing this [14]. Alternatively, genomic histograms of read pile-ups may be 

generated from RNA-seq alignments through use of packages such as BEDTools or HTSeq [15-16]; output 

from these pipelines may be used as input for differential expression packages, such as RSEM, edgeR, 

and DESeq [17-19]. A critical aspect of RNA-seq to remain cognizant of: two stages of normalization and 

statistical tests are required to complete analysis—that within each sample, and a second normalization 

step between samples. The former accounts for the dynamic length of genes or isoforms within each 

sample (e.g. not every gene is of identical genomic length), while the latter—more commonly referred 

to as differential expression—accounts for the dynamic number of reads aligned per sample [10, 14]. 

Recent advances have catapulted RNA-seq analysis speed by up to two orders of magnitude: through 

use of pseudo-alignment algorithms, packages such as Kallisto and Sailfish now deliver accurate RNA-seq 

transcript quantification without incurring the heavyweight computational cost of using formal splice-

aware aligners [20-21]. 

 Given the complexity of RNA-seq analysis workflows and their myriad of interchangeable tools 

and resulting pipelines, it come as little surprise that a variety of Web-based frameworks have been 

designed to facilitate visualization of RNA-seq results. The GeneCards platform, a comprehensive [and 

even exhaustive] network of regulatory, pathway, and disease information for the human genome, 
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incorporates RNA-seq data from the GTEx consortium for exploration of gene expression by tissue [22]. 

The Lair has been a more recent entry from the group that designed and introduced the canonical 

Cufflinks RNA-seq workflow [14, 23]. RNA-seq datasets within the Lair are re-analyzed from their raw 

sequence data through use of Kallisto and Sleuth prior to display within an R-Shiny-enabled 

environment, which allows users to explore statistical trends within their datasets [20, 23-24]. The 

European Expression Atlas is a well-known “gold standard” in the realm of RNA-seq Web visualization 

platforms, combining both microarray and RNA-seq experiments collected, manually curated, and 

secondarily re-analyzed for well over a decade [25]. Users of the Expression Atlas can browse 

experiments across a wide variety of model organisms, with baseline and differential gene expression 

results presented with interactive plots and heat-maps; RNA-seq results within this atlas are uniformly 

re-analyzed with a pipeline combining TopHat2, HTSeq, and DESeq [11, 16, 19, 25]. 

 A recurring issue with these platforms is the need to perform secondary re-analysis of RNA-seq 

datasets; this is particularly true with respect to both the Lair and the Expression Atlas [23, 25]. Because 

these analyses can be completed with a variety of methods [10], a single universal workflow does not 

exist for computing differential gene [or isoform] expression between samples, and so these platforms 

attempt to standardize analyses between studies with self-devised pipelines. Consequently, discordance 

exists between RNA-seq results researchers submit for publication in scientific literature and those 

generated from secondary re-analysis that are displayed within existing expression atlases. Thus, there 

exists a need to translate and database-load existing RNA-seq results from the literature, those that are 

stored within the Gene Expression Omnibus (GEO) [26], such that future RNA-seq atlases may be able to 

additionally reflect researchers’ original work. 
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 Implementation 

 Use of GEORGET is predicated on the existence of a SQLite database generated as output from 

our prior work describing GEOMP. A visual outline of the GEORGET workflow follows: 

 

Figure 15: the GEORGET workflow 

 
Figure 15: execution of the GEORGET workflow follows database output from GEOMP. Briefly, 

GEORGET_pull is used to fetch RNA-seq supplementary analysis files from the FTP store of NCBI 

GEO; GEORGET_decompress is then used to inflate the files’ contents, optionally in parallel. 

GEORGET_reformat then corrects files whose line terminators are exclusively composed of 

carriage return characters, and GEORGET_sanitize truncates leading and terminating whitespace 

characters from every file. The final step, GEORGET itself, is responsible for translating, loading, 

and indexing the RNA-seq results into the target SQLite database. 

 

 The first step of this workflow, GEORGET_pull, begins by reading the SQLite database generated 

by GEOMP; the tables containing supplementary analysis files for GEO series and GEO samples (e.g. GSE 
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and GSM content, respectively) are read and filtered for FTP links that are not related to the Short Read 

Archive (SRA) and which are also not archived tarballs containing raw RNA-seq datasets. The remaining 

files are filtered by a size threshold, currently 250 megabytes by default, and are subsequently pulled. 

The following step, GEORGET_cull, is an optional one that requires an input blacklist of studies that are 

to be removed from the translation effort; this is needed for certain studies that are classified as RNA-

seq within GEO’s search querying system but do not contain canonically recognizable results. In our 

experience with the zebrafish training superset of GEO RNA-seq results, at minimum one study 

employed gene editing techniques to modify an organism’s transcriptome without performing gene 

expression quantification or differential expression, thereby making its results unusable in the context of 

this work. 

 Results pulled from the GEO FTP store arrive in gzip format; GEORGET_decompress allows one 

to inflate these files’ contents, with GEORGET_decompress_parallel expediting this process through use 

of GNU Parallel [27]. One may then optionally use GEORGET_truncate, which scans the inflated analysis 

result files for those that pass a defined threshold in file size; those that pass the threshold are removed 

from the translation process. This step may be skipped by default, as GEORGET also contains a threshold 

for ignoring files that surpass a given threshold in file size. GEORGET_reformat is then called, which 

scans all files in a given superset directory for those that are exclusively line-terminated with the 

carriage return character; these files are then converted to Unix-compatible format. The final mandatory 

pre-translation step, GEORGET_sanitize, has both a serial and parallel implementation available; this 

program removes the beginning and trailing whitespace characters from every RNA-seq analysis result 

file in the specified superset directory. Optionally, GEORGET_sanitize_MACS may also be run 

immediately prior to translation; this program prepares output from the model-based analysis for ChIP-

seq (MACS) package for database loading [28]. 
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 GEORGET itself, the final step of this workflow, begins by connecting to the target SQLite 

database and verifying the existence of RNA-seq supplementary analysis tables for both GSE and GSM 

entries. The existence of GXF tables is also verified, a step that will be revisited in further detail. The 

translator scans all valid files within the provided superset directory and initially filters them by 

removing those that appear to be readme (e.g. dataset description) files from the translation queue. 

Additional filtration informs the translator to skip files that do not constitute completed RNA-seq 

analysis results, with the following formats being removed: BED, BedGraph, Wiggle, BigWig (e.g. binary 

Wiggle), SAM, BAM, FASTA, XML, PDF, and JSON. The removal of these file formats from GEORGET’s 

translation queue is based upon the definition of finalized RNA-seq results asserted by the MINSEQE 

standards, which—in major section 3—require that transcriptomics results be clearly presented in 

matrix format [29]. While BED and Wiggle formats and their derivatives are technical matrices, they do 

not contain expression information and are commonly used for display of read pile-up alignments, 

ideally visualized by genome browsers. XML and JSON formats, while being ubiquitous standards 

elsewhere in computer science and informatics, are tree-based data structure formats that do not 

satisfy the MINSEQE requirement. 

 Files that pass the format filter are then tested by GEORGET for their filesystem size; if this 

exceeds a specified threshold, or 500 megabytes by default, the file is skipped during translation. This 

filter exists to prevent attempted translation of RNA-seq results that are read-specific, which are too 

premature within an RNA-seq analysis pipeline to be considered amenable [or desirable] for database 

translation. GEORGET then detects the column separator of filter-passing files and surveys these files for 

their column-count uniformity; that is, the number of columns identified per line throughout the files’ 

contents. If a file is found to be entirely homogeneous with respect to column-count, it is placed through 

one final filter: if the homogeneous column-count equals one, the file is discarded; if the file’s column-
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count equals nine and the file is identified as a GFF or GTF file [30], it is translated as a GXF file; 

otherwise, the file is translated and database-loaded as a uniform RNA-seq results file. 

 Handling of results files possessing a heterogeneous column-count is more involved. First, the 

data structure containing column-counts and their associated frequencies is appended with their 

percentage compositions, and the top-most result is passed through a specified ambiguity threshold. If 

this percentage falls below the threshold, or 95% by default, the file is discarded from the translation 

queue. Next, if the file’s majority column-count equals nine and the file passes the GFF specification, it is 

translated as a series of GXF entries. If a heterogeneous file arrives at this point without being identified 

as a GXF, it is scanned for the first tuple that likely identifies the attributes (e.g. columns) for the 

remainder of the file. A common issue we have experienced with ambiguous results files is that their 

attribute definition line is often one column short of the majority column-count for the remainder of the 

file, and this missing column is likely the feature identification column (e.g. gene, transcript, or feature 

ID). Wherever possible, GEORGET attempts to re-insert this column identifier when needed; if this is 

found to be impossible, the translator discards the ambiguous file, as it is extremely difficult to 

accurately reconstruct column identifiers that match what researchers may have originally intended. 

 Following translation and database loading, GEORGET optionally indexes the populated RNA-seq 

results tables using the SQLite temporary store pragma either set by the user or through use of system 

memory by default. Finally, GEORGET reports its raw and adjusted translation metrics; the adjusted 

translation rate is computed by excluding previously mentioned file formats from the total count of 

results files. The GEORGET workflow has been implemented in Bourne shell (e.g. Bash), GNU Parallel 

[27], and Modern Perl, with a requirement for the DBI and DBD::SQLite Perl modules to be installed in 

order to run. Although installation of GNU Parallel is optional, its use is highly recommended to 

significantly expedite pre-translation preparatory steps. 
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 Results and Discussion 

 To assess the efficacy of GEORGET, we designed two randomized RNA-seq superset trials in 

addition to the translator’s approximately 130-study zebrafish RNA-seq training superset; these random 

supersets were pulled from the human and mouse stores of RNA-seq studies, each of which currently 

house thousands of RNA-seq studies. The effective translation rate of GEORGET was found to be 585 / 

640 files (91.41%) for the zebrafish training superset, 403 / 411 files (98.05%) for the randomized mouse 

superset, and 924 / 992 files (93.15%) for the randomized human superset. While observation of these 

initial results has been gratifying, the translation model has significant room for continued growth. As 

further RNA-seq studies are translated, GEORGET will grow to encompass increasing numbers of 

potential file formats. While it is certain that a theoretically infinite number of RNA-seq results formats 

may exist, the translation model behind GEORGET—in concert with the existing MINSEQE standard—

allows for translation of a pseudo-infinite subset number of results formats that are, at minimum, 

matrix-compliant. This subset facilitates and encourages establishment of a domain of MINSEQE-

permitted standards, rather than a single narrow standard. Future work with GEORGET will address 

incorporation of variant-calling data and may extend to translation of genomic histogram results (e.g. 

BED- and Wiggle-derived formats). The primary focus of this work in the future will be the establishment 

of a Web portal for user exploration of translated RNA-seq results. 

 In considering the scope of GEORGET, one might question how this results translation workflow 

is not unlike classical “screen scraping”, a well-described frustration for the bioinformatics community 

throughout the past two decades [31]. In screen scraping, the informatician generally constructs a form 

of Web crawler that loads database pages served through a Web resource that extracts the HTML 

source of the page; this source mark-up is then parsed for desired information for use in downstream 

applications. This process is inherently fragile, as front-end developers may modify Web resources’ user 

interfaces; this subsequently modifies the page HTML, which requires the informatician to re-factor 
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their screen scraper in order to pull and extract the desired information once again. Additionally, 

database administrators may optimize back-end data structures, which may also result in cascading 

changes to front-end HTML indirectly, requiring the informatician to backtrack yet again. In contrast, 

RNA-seq results deposited to GEO often belong to studies whose results are thereafter published; the 

structures of these datasets are significantly more static than those that are frequently modified from 

Web resources lacking a stable application program interface (API). Of crucial importance is the 

fundamental delineation in structure between screen scraping targets and RNA-seq results stored within 

GEO: Web-based structures are tree-like in nature, yet RNA-seq results, which ideally conform to the 

MINSEQE specification, are presented as matrices. 

 

 Summary 

 The workflow described here, GEORGET, represents an effort to transparently and reproducibly 

extract, translate, and load RNA-seq results stored within the Gene Expression Omnibus (GEO) into a 

relational database store. This store is currently implemented using SQLite but may be changed in the 

future to support larger supersets of RNA-seq data and with greater translational concurrency. To our 

current knowledge, GEORGET appears to be the first workflow of its kind in attempting to translate 

deposited RNA-seq analysis results. Existing gold-standard alternatives specialize in secondary re-

analysis, which—while essential for future statistical accuracy and interoperability between datasets—

may be further augmented with the context of original analyses that are published into existing scientific 

literature. Ideally, we envision a future where output from GEORGET may be integrated with existing 

gene expression atlases. 
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Chapter 5: Conclusion 

 

 Recapitulation 

 The purpose behind this work has been to devise a workflow in which RNA-seq atlases can be 

reproducibly and transparently constructed from metadata and supplemental expression analysis results 

stored within the Gene Expression Omnibus. Expression atlases are of great use to researchers devising 

future research questions; by presenting gene expression results from studies concerning species and 

experimental conditions of interest, atlas users can explore a kaleidoscope of scientific avenues for 

future work and may observe expression patterns integral to research question formation. While the 

European RNA-seq Expression Atlas serves as an established gold-standard for modern biomedical 

literature, it forcibly employs secondary re-analysis of studies without regard for original results 

submitted to GEO, resulting in potential discordance between sufficiently well-analyzed RNA-seq results 

published within the literature and secondary results presented on the Web by the Expression Atlas. 

GEORAC aims to bridge this gap between GEO and the Expression Atlas, such that submitted RNA-seq 

results may ideally be presented in addition to secondary re-analysis results. 

 Chapter 2 from this work concerns the development and implementation of GEOMP, a 

metadata parser and relational database constructor for GEO. Canonically, GEOMP has been preceded 

by GEOquery, an R-based package for pulling and parsing GEO metadata for use in downstream 

microarray applications within the R Bioconductor framework of biostatistics packages. GEOMP 

advances past the preexisting features of GEOquery in numerous ways: while GEOquery requires users 

to specify individual GEO accession IDs to pull and parse study and sample metadata, GEOMP permits 

users to provide a query taken directly from the NCBI GEO Web interface, allowing users to jump 

directly from query to normalized metadata stores; this process conserves user effort on the order of 

hours to days. Further, GEOMP accepts user-defined lists of metadata attributes to normalize and 



71 

 

output in various formats; users may even opt to allow the tool to automatically select a list of chosen 

metadata attributes, ordered by frequency of occurrence, with up to 100% of all occurring attributes 

available for normalization and subsequent use. Finally, GEOMP allows users to create a SQLite 

relational database on demand and may additionally output tables containing uniquely occurring 

bioinformatics methods by study. 

 Chapter 3 aims to make significant use of the bioinformatics methods tables produced by 

GEOMP; reproducibility in biomedical research has long been an increasing concern harbored by 

scientific funding agencies, with the executive director of the NIH authoring a piece within the past half-

decade calling for improved reproducibility measures and accountability within biomedical research. To 

address this critical concern, RNA-seq analysis methods documented within GEO were assessed against 

a five-point rubric for reproducibility among all zebrafish RNA-seq experiments submitted to GEO up to 

early 2017. Because the mouse and human research communities are orders of magnitude larger than 

the rat and zebrafish communities, randomized supersets numbering approximately 100 studies from 

each community were chosen for metadata normalization and subsequent bioinformatics methods 

assessment. Results from this pilot study were found to be both surprising and dire: human RNA-seq 

research appeared to lag behind that of the zebrafish and mouse communities in terms of its capacity to 

be replicated. In a further concerning finding, among nearly 300 studies assessed by this work, none 

were found to report hardware runtime requirements for computationally significant RNA-seq 

workflows. This chapter also presents GEOMP2, an expansion upon its preceding work, in which 

atomization of GEO sample characteristic tags has been enhanced, such that individual tags [and their 

corresponding values] may be directly queried from user-generated SQLite databases. 

 Chapter 4 presents a functional prototype implementation of GEORGET, an RNA-seq 

supplemental results translator for the Gene Expression Omnibus; this work details a multi-step pipeline 

in which supplemental expression analysis results are pulled from the GEO FTP store and are 
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subsequently quality-controlled in preparation for dynamic translation and loading into the relational 

database(s) created via GEOMP2. The translator primarily functions by scanning a given RNA-seq results 

file and, where possible, establishes a constant column-count for the apparent matrix; this assumption is 

based upon the latest release of the MINSEQE standard. If the attribute definition line of the results file 

is found to be in good agreement with the remainder of the file’s tabular contents, then the file is 

translated and loaded into the target GEORAC database. GEORGET additionally handles translation and 

database loading of GFF and GTF (e.g. gene transfer format) formats, with these formats being given 

their own type of translated results table within the resulting GEORAC database. To test the translator, 

GEORGET was assessed against the zebrafish, human, and mouse RNA-seq supersets from the preceding 

chapter; the effective translation rate of RNA-seq supplemental results by GEORGET was found to be 

91%, 93%, and 98%, respectively. 

 

 Future Work 

 Despite the aforementioned successes with prototypical development and implementation of 

the GEORAC workflow, significant room exists to continue enhancing both the flexibility and scalability 

of this RNA-seq atlas construction framework. With respect to GEOMP2, there remains much room for 

improvement: despite early signs of maturity (e.g. capacity to normalize 100% of encountered series and 

sample metadata attributes), the tool continues to lack an effective mechanism for updating large 

metadata repositories. Currently, the most viable updating approach is to pull an entire search query’s 

associated metadata from GEO, parse the contents, and re-instantiate a new or updated SQLite 

database from the pulled contents. While this method remains functional for smaller research 

communities, such as zebrafish or rat, this approach quickly degrades in terms of performance for 

communities that are orders of magnitude larger in size, such as mouse or human. Future work with 

GEOMP2 will primarily aim to add the capacity to pull metadata by submission or update dates from 
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GEO, in addition to the ability to integrate newer metadata stores with existing repositories. Additional 

areas for significant growth include database handling of parsed GEO [sequencing] platforms and 

introductory support for super-series metadata; the latter of these refers to metadata for collections of 

studies. 

 The bioinformatics methods reproducibility pilot study may be significantly improved upon and 

further expanded. Initial results presented here, while edifying, were generated using a single methods 

assessor; recruitment of additional judges will add weight to the significance of the study’s findings, and 

it can be expected that further statistical metrics, such as the computing of study kappa values, will 

quantify the measure of agreement among judges. Given the limited scope presented here, this 

reproducibility study can be expanded to an even larger scope in the future, such that many hundreds of 

studies’ methods may be assessed. This would further strengthen the finding reported here: human 

research, which is integral to the design of clinical trials and the application of precision and 

personalized medicine, requires much greater discipline in terms of documenting biomedical analysis 

methods. A further avenue of inquiry relates to the comparison between bioinformatics methods 

submitted to GEO versus their analogous expositions within the literature; this work would aim to 

determine whether they differ, and if so, how significantly they differ. 

 Functionality of GEORGET’s prototype implementation, while impressive, leaves enormous room 

for future revisions and expansion. Currently, the translator operates in an unsupervised fashion, 

generating dense matrices of rehabilitated and translated supplemental RNA-seq results within 

expression tables of the resulting GEORAC database. This approach works sufficiently well for smaller 

RNA-seq research communities but degrades rapidly in terms of performance as the input data store 

increases exponentially in size. Consider the three supersets previously described by the reproducibility 

study: these same three supersets were employed for the stress-testing of GEORGET’s functionality, and 

both the human and mouse experiments—while successful in terms of results translation—produced 
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SQL databases on the order of hundreds of gigabytes in filesystem footprint size. This may seem 

appropriate, but these were only small slices of the true RNA-seq supersets for these research 

communities, with studies numbering in the many thousands. Thus, a species-wide RNA-seq atlas for the 

mouse or human communities would likely result in a database on the order of many terabytes, and at 

such scale of “big data”, the performance of structured query language (SQL) databases begins to 

degrade significantly, requiring a potential shift in database archetype to NoSQL databases. 

 An alternative path to consider in escaping the translation quandary: a radical re-design of the 

GEORGET translation workflow, such that the translation process would become largely curation-based. 

This would result in effective translation rates approaching 100% and would also limit the produced 

GEORAC expression database to one that is minimally sparse in terms of matrix format, resolving the 

database architecture challenge. In such a scenario, it may be possible to imagine designing a machine 

learning-like feedback process by which the work of bioinformatics results curators may ideally be 

assisted or expedited through machine-learned patterns observed from RNA-seq datasets. 

 

 Closing Remarks 

 The problem domain addressed in part by this work is, without question, a gargantuan one; 

parallel efforts made by the Expression Atlas project over the past decade clearly demonstrate that well 

over a century’s worth of manpower can be easily invested into a research aim of this magnitude. The 

GEORAC project has been, and will continue to be, a divergent effort to resolve the challenges 

associated with accessing and improving upon the structure- and standard-less metadata and 

supplemental expression analysis results archived within the Gene Expression Omnibus. GEORAC aims 

to bridge the gap between literature-reported results from original scientific work and secondary re-

analyses made public to the Web by the Expression Atlas; in doing so, the future of this project lies with 
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making publicly available a curated subset of complete, or partially complete, RNA-seq results for 

numerous species of scientific interest. 
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Appendix A: Licensing 

 License Description 

 This work is distributed under version 4.0 of the international Creative Commons (CC) BY-NC-ND 

license. Given these terms, any future work incorporating content provided here must appropriately 

attribute credit to the original licensor of this work. The material provided here may not be used for 

commercial or for-profit applications or purposes. Future work that expands upon or transforms the 

work described here, or that is partially or fully derived from the present work in any manner, is 

expressly prohibited; derivatives of this work may not be distributed in any public manner. Users of the 

GEORAC framework interested in bug fixes and feature requests are strongly encouraged to address 

these needs through direct contact with the author of this work. A formal copy of the license follows. 

 

 Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

Public License 
 

 By exercising the Licensed Rights (defined below), You accept and agree to be bound by the 

terms and conditions of this Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 

International Public License ("Public License"). To the extent this Public License may be interpreted as a 

contract, You are granted the Licensed Rights in consideration of Your acceptance of these terms and 

conditions, and the Licensor grants You such rights in consideration of benefits the Licensor receives 

from making the Licensed Material available under these terms and conditions. 

 

Section 1 – Definitions 

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or 

based upon the Licensed Material and in which the Licensed Material is translated, altered, 

arranged, transformed, or otherwise modified in a manner requiring permission under the 

Copyright and Similar Rights held by the Licensor. For purposes of this Public License, where the 

Licensed Material is a musical work, performance, or sound recording, Adapted Material is 

always produced where the Licensed Material is synched in timed relation with a moving image. 

b. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright 

including, without limitation, performance, broadcast, sound recording, and Sui Generis 

Database Rights, without regard to how the rights are labeled or categorized. For purposes of 

this Public License, the rights specified in Section 2(b)(1)-(2) are not Copyright and Similar Rights. 

c. Effective Technological Measures means those measures that, in the absence of proper 

authority, may not be circumvented under laws fulfilling obligations under Article 11 of the 

WIPO Copyright Treaty adopted on December 20, 1996, and/or similar international 

agreements. 

d. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation 

to Copyright and Similar Rights that applies to Your use of the Licensed Material. 

e. Licensed Material means the artistic or literary work, database, or other material to which the 

Licensor applied this Public License. 

f. Licensed Rights means the rights granted to You subject to the terms and conditions of this 

Public License, which are limited to all Copyright and Similar Rights that apply to Your use of the 

Licensed Material and that the Licensor has authority to license. 

g. Licensor means the individual(s) or entity(ies) granting rights under this Public License. 
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h. NonCommercial means not primarily intended for or directed towards commercial advantage or 

monetary compensation. For purposes of this Public License, the exchange of the Licensed 

Material for other material subject to Copyright and Similar Rights by digital file-sharing or 

similar means is NonCommercial provided there is no payment of monetary compensation in 

connection with the exchange. 

i. Share means to provide material to the public by any means or process that requires permission 

under the Licensed Rights, such as reproduction, public display, public performance, 

distribution, dissemination, communication, or importation, and to make material available to 

the public including in ways that members of the public may access the material from a place 

and at a time individually chosen by them. 

j. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC 

of the European Parliament and of the Council of 11 March 1996 on the legal protection of 

databases, as amended and/or succeeded, as well as other essentially equivalent rights 

anywhere in the world. 

k. You means the individual or entity exercising the Licensed Rights under this Public License. Your 

has a corresponding meaning. 

 

Section 2 – Scope 

a. License grant 

1. Subject to the terms and conditions of this Public License, the Licensor hereby grants 

You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to 

exercise the Licensed Rights in the Licensed Material to:  

A. reproduce and Share the Licensed Material, in whole or in part, for 

NonCommercial purposes only; and 

B. produce and reproduce, but not Share, Adapted Material for NonCommercial 

purposes only. 

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and 

Limitations apply to Your use, this Public License does not apply, and You do not need to 

comply with its terms and conditions. 

3. Term. The term of this Public License is specified in Section 6(a). 

4. Media and formats; technical modifications allowed. The Licensor authorizes You to 

exercise the Licensed Rights in all media and formats whether now known or hereafter 

created, and to make technical modifications necessary to do so. The Licensor waives 

and/or agrees not to assert any right or authority to forbid You from making technical 

modifications necessary to exercise the Licensed Rights, including technical 

modifications necessary to circumvent Effective Technological Measures. For purposes 

of this Public License, simply making modifications authorized by this Section 2(a)(4) 

never produces Adapted Material. 

5. Downstream recipients.  

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed 

Material automatically receives an offer from the Licensor to exercise the 

Licensed Rights under the terms and conditions of this Public License. 

B. No downstream restrictions. You may not offer or impose any additional or 

different terms or conditions on, or apply any Effective Technological Measures 

to, the Licensed Material if doing so restricts exercise of the Licensed Rights by 

any recipient of the Licensed Material. 

6. No endorsement. Nothing in this Public License constitutes or may be construed as 

permission to assert or imply that You are, or that Your use of the Licensed Material is, 
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connected with, or sponsored, endorsed, or granted official status by, the Licensor or 

others designated to receive attribution as provided in Section 3(a)(1)(A)(i). 

b. Other rights 

1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor 

are publicity, privacy, and/or other similar personality rights; however, to the extent 

possible, the Licensor waives and/or agrees not to assert any such rights held by the 

Licensor to the limited extent necessary to allow You to exercise the Licensed Rights, but 

not otherwise. 

2. Patent and trademark rights are not licensed under this Public License. 

3. To the extent possible, the Licensor waives any right to collect royalties from You for the 

exercise of the Licensed Rights, whether directly or through a collecting society under 

any voluntary or waivable statutory or compulsory licensing scheme. In all other cases 

the Licensor expressly reserves any right to collect such royalties, including when the 

Licensed Material is used other than for NonCommercial purposes. 

 

Section 3 – License Conditions 

Your exercise of the Licensed Rights is expressly made subject to the following conditions. 

a. Attribution 

1. If You Share the Licensed Material, You must: 

A. retain the following if it is supplied by the Licensor with the Licensed Material:  

i. identification of the creator(s) of the Licensed Material and any others 

designated to receive attribution, in any reasonable manner requested 

by the Licensor (including by pseudonym if designated); 

ii. a copyright notice; 

iii. a notice that refers to this Public License;  

iv. a notice that refers to the disclaimer of warranties; 

v. a URI or hyperlink to the Licensed Material to the extent reasonably 

practicable; 

B. indicate if You modified the Licensed Material and retain an indication of any 

previous modifications; and 

C. indicate the Licensed Material is licensed under this Public License, and include 

the text of, or the URI or hyperlink to, this Public License. 

For the avoidance of doubt, You do not have permission under this Public License to 

Share Adapted Material. 

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the 

medium, means, and context in which You Share the Licensed Material. For example, it 

may be reasonable to satisfy the conditions by providing a URI or hyperlink to a resource 

that includes the required information. 

3. If requested by the Licensor, You must remove any of the information required by 

Section 3(a)(1)(A) to the extent reasonably practicable. 

 

Section 4 – Sui Generis Database Rights 

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed 

Material: 

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and 

Share all or a substantial portion of the contents of the database for NonCommercial purposes 

only and provided You do not Share Adapted Material; 
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b. if You include all or a substantial portion of the database contents in a database in which You 

have Sui Generis Database Rights, then the database in which You have Sui Generis Database 

Rights (but not its individual contents) is Adapted Material; and 

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of 

the contents of the database. 

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this 

Public License where the Licensed Rights include other Copyright and Similar Rights. 

 

Section 5 – Disclaimer of Warranties and Limitation of Liability 

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor 

offers the Licensed Material as-is and as-available, and makes no representations or 

warranties of any kind concerning the Licensed Material, whether express, implied, statutory, 

or other. This includes, without limitation, warranties of title, merchantability, fitness for a 

particular purpose, non-infringement, absence of latent or other defects, accuracy, or the 

presence or absence of errors, whether or not known or discoverable. Where disclaimers of 

warranties are not allowed in full or in part, this disclaimer may not apply to You. 

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory 

(including, without limitation, negligence) or otherwise for any direct, special, indirect, 

incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages 

arising out of this Public License or use of the Licensed Material, even if the Licensor has been 

advised of the possibility of such losses, costs, expenses, or damages. Where a limitation of 

liability is not allowed in full or in part, this limitation may not apply to You. 

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a 

manner that, to the extent possible, most closely approximates an absolute disclaimer and 

waiver of all liability. 

 

Section 6 – Term and Termination 

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. 

However, if You fail to comply with this Public License, then Your rights under this Public License 

terminate automatically. 

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates: 

1. automatically as of the date the violation is cured, provided it is cured within 30 days of 

Your discovery of the violation; or 

2. upon express reinstatement by the Licensor. 

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to 

seek remedies for Your violations of this Public License. 

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate 

terms or conditions or stop distributing the Licensed Material at any time; however, doing so 

will not terminate this Public License. 

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License. 

 

Section 7 – Other Terms and Conditions 

a. The Licensor shall not be bound by any additional or different terms or conditions 

communicated by You unless expressly agreed. 

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated 

herein are separate from and independent of the terms and conditions of this Public License. 

 

Section 8 – Interpretation 
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a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, 

limit, restrict, or impose conditions on any use of the Licensed Material that could lawfully be 

made without permission under this Public License. 

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be 

automatically reformed to the minimum extent necessary to make it enforceable. If the 

provision cannot be reformed, it shall be severed from this Public License without affecting the 

enforceability of the remaining terms and conditions. 

c. No term or condition of this Public License will be waived and no failure to comply consented to 

unless expressly agreed to by the Licensor. 

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver 

of, any privileges and immunities that apply to the Licensor or You, including from the legal 

processes of any jurisdiction or authority. 
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Appendix B: GEORAC Source Code 

 geomp_pull 

#!/usr/bin/env bash 
# Aurash 
 
################# DOCUMENTATION ################# 
# This Bash script is designed to 
# obtain uIDs from NCBI for all 
# RNA-seq studies related to the 
# specified species, convert those 
# uIDs into GEO accession IDs, and 
# then fetch the associated GEO SOFT 
# format files. 
#  
# SOFT files specifying SuperSeries 
# entries in GEO are then deleted, 
# while valid SOFTs are truncated 
# by removing platform-to-sample 
# associations. 
#  
# Usage example: 
# ./geomp_pull "Danio rerio" | tee pullGEO.log 
################################################# 
 
if [[ $# -lt 2 || ${1} == "-h" || ${1} == "--help" ]] 
then 
 printf "\nUsage: [./]geomp_pull \"GEO Web query\" outputDirectory 
maxCount\n\n" 
 exit 
fi 
 
query=${1} 
outputDir=${2} 
maxCount=${3} 
 
if [[ ${query} =~ ^RNA-seq= ]] 
then 
 query=$(printf "${query}" | sed 's/^RNA-seq=//; s/ /+/g;') 
 query="Expression+profiling+by+high+throughput+Sequencing[DataSet+Type]+AND+${
query}[Organism]" 
else 
 query=$(printf "${query}" | sed 's/ /+/g') 
fi 
 
if [[ ${maxCount} == "" ]] 
then 
 maxCount=300 
fi 
 
query="${query}&retmax=${maxCount}" 
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# Sanity check 
# printf "\nquery: ${query}\noutputDir: ${outputDir}\n\n" 
# exit 
 
# Use NCBI eSearch to obtain the NCBI 
# uIDs for the first 1,000 studies 
# found within GEO 
printf "\nObtaining NCBI uIDs ... " 
wget -q -O - 
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gds&term=${query}" | 
grep "^\s*<Id>[0-9]*</Id>" | sed 's/^\s*<Id>\|<\/Id>.*$//g' > eSearch.log 
printf 'done!\n' 
 
if [[ $(wc -l < eSearch.log) -eq 0 ]] 
then 
 printf 'No uIDs found!\n' 
 exit 
fi 
 
# Check for the existence of the SOFT 
# sub-directory; if it doesn't exist, 
# create it 
if [[ ! -d ${outputDir} ]] 
then 
 mkdir ${outputDir} 
 printf "SOFT sub-directory generated: ${outputDir}/\n" 
fi 
 
# For each NCBI uID pulled... 
while read id 
do 
 # find the corresponding GEO 
 # accession identifier... 
 acc=$(wget -q -O - 
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=gds&id=${id}" | grep -o 
"Accession: GSE[0-9]*" | sed 's/^Accession: //') 
  
 # and pull its associated 
 # SOFT file 
 printf "Pulling ${id} as ${acc}.soft ... " 
 wget -q -O ${outputDir}/${acc}.soft 
"https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=${acc}&targ=all&view=brief&form=t
ext" 
 printf 'done!\n' 
done < eSearch.log 
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# Move into the SOFT sub-directory 
pushd ${outputDir} 
 
# For every SOFT file in the local 
# directory... 
for file in *.soft 
do 
 # Determine if the given SOFT 
 # file specifies a SuperSeries 
 count=$(grep "^\!Series_summary = This SuperSeries" ${file} | wc -c) 
  
 if [[ ${count} -gt 0 ]] 
 then 
  # Remove SuperSeries SOFT files 
  rm ${file} 
  printf "SuperSeries removed: ${file}\n" 
 else 
  # Modify remaining (e.g. valid) 
  # SOFT files to not specify 
  # samples associated with 
  # experimental platforms and 
  # report on the reduction in 
  # size for each SOFT file 
  startLines=$(wc -l < ${file}) 
  sed '/^!Platform_sample_id/d' ${file} > tmp 
  mv tmp ${file} 
  endLines=$(wc -l < ${file}) 
  reduction=$(printf "%.2f" $(printf "(${startLines} - ${endLines}) / 
${startLines} * 100\n" | bc -l)) 
  printf "${file}: ${reduction}%% reduction from ${startLines} to 
${endLines} lines\n" 
 fi 
done 
 
# Move back to the parent directory 
popd 
printf 'All done!\n\n' 
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 geomp2 

#!/usr/bin/env perl 
# Aurash 
 
# Pragmas 
use strict; 
use warnings; 
use autodie; 
 
# Variable declarations 
my ( %gse, %gseAttr, @printGSEattr, %gsm, %gsmAttr, @printGSMattr, %gpl, %gplAttr, 
@printGPLattr, %char, %charAttr, @printCHARattr ) = (); 
my ( $curSeries, $curPlatform, $curSample ) = (); 
my ( $autoConfig, $configFile, $softDir, $targetOrganism, $defaultEmptyString, 
$outputFile, $methodsOutfile, $dbFile, $charConfig, $tagsFile ) = ( 'N95', ( undef ) 
x 3, 'NA', ( undef ) x 5 ); 
 
# Configuration dispatch tables 
my %doubleFlagParams = 
( 
 auto => { var => \$autoConfig, default => 'N95' }, 
 config => { var => \$configFile, default => undef }, 
 dir => { var => \$softDir, default => undef }, 
 species => { var => \$targetOrganism, default => undef }, 
 null => { var => \$defaultEmptyString, default => 'NA' }, 
 out => { var => \$outputFile, default => '' }, 
 methods => { var => \$methodsOutfile, default => '' }, 
 db => { var => \$dbFile, default => '' }, 
 tags => { var => \$charConfig, default => 'N95' }, 
 tagsFile => { var => \$tagsFile, default => '' } 
); 
my %singleFlagParams = 
( 
 a => { var => \$autoConfig, default => 'N95' }, 
 c => { var => \$configFile, default => undef }, 
 d => { var => \$softDir, default => undef }, 
 s => { var => \$targetOrganism, default => undef }, 
 n => { var => \$defaultEmptyString, default => 'NA' }, 
 o => { var => \$outputFile, default => '' }, 
 m => { var => \$methodsOutfile, default => '' }, 
 b => { var => \$dbFile, default => '' }, 
 t => { var => \$charConfig, default => 'N95' }, 
 T => { var => \$tagsFile, default => '' } 
); 
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# Functions 
sub valid 
{ 
 my $var = $_[ 0 ]; 
 
 if( defined $var && $var ne '' ) { return 1; } 
 else { return 0; } 
} 
 
sub autosetVar 
{ 
 my ( $refVar, $compVar, $append ) = @_; 
 
 if( defined $$refVar && $$refVar eq '' ) 
 { 
  ( $$refVar = $compVar ) =~ s/_SOFT$//; 
  $$refVar .= $append; 
 } 
} 
 
sub parseArgs 
{ 
 for my $i ( 0 .. $#ARGV ) 
 { 
  if( $ARGV[ $i ] =~ m/^--/ ) { parseDoubleFlagArg( $i ); } 
  elsif( $ARGV[ $i ] =~ m/^-/ ) { parseSingleFlagArg( $i ); } 
 } 
 
 die "No directory of SOFT files specified" unless( valid( $softDir ) ); 
 
 $softDir =~ s/\/+$//; 
 autosetVar( \$outputFile, $softDir, '_geomp.tsv' ); 
 autosetVar( \$methodsOutfile, $softDir, '_methods.tsv' ); 
 autosetVar( \$tagsFile, $softDir, '_tags.tsv' ); 
 autosetVar( \$dbFile, $softDir, '.db' ); 
 
 directoryReader(); 
 countSeriesOrganisms(); 
 populateCharTags(); 
 
 if( valid( $configFile ) ) { configReader(); } 
 else { autogenConfig(); } 
 
 normalizeGEO(); 
 
 printGEO() if( valid( $outputFile ) ); 
 
 # Requests from tp5: 
 # Print [unique] data processing methods 
 printDataProcMethods() if( valid( $methodsOutfile ) ); 
 # Print atomized sample characteristic tags 
 printCharTags() if( valid( $tagsFile ) ); 
 
 generateDB() if( valid( $dbFile ) ); 
} 
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sub parseDoubleFlagArg 
{ 
 my ( $i, $arg, $value ) = ( $_[ 0 ], $ARGV[ $_[ 0 ] ], undef ); 
 $arg = substr $arg, 2; 
 ( $arg, $value ) = split '=', $arg; 
 
 if( $arg eq 'help' ) { printHelp(); exit; } 
 
 if( defined $doubleFlagParams{ $arg } ) 
 { 
  if( valid( $value ) ) 
  { 
   ${ $doubleFlagParams{ $arg }{ var } } = $value; 
  } 
  else 
  { 
   ${ $doubleFlagParams{ $arg }{ var } } = $doubleFlagParams{ $arg 
}{ default }; 
  } 
 } 
 else { die "Unrecognized argument: --${arg}"; } 
} 
 
sub parseSingleFlagArg 
{ 
 my ( $i, $arg, $value ) = ( $_[ 0 ], $ARGV[ $_[ 0 ] ], undef ); 
 $arg = substr $arg, 1; 
 $value = $ARGV[ $i + 1 ] if( defined $ARGV[ $i + 1 ] && $ARGV[ $i + 1 ] !~ 
m/^-/ ); 
 
 if( $arg eq 'h' ) { printHelp(); exit; } 
 
 if( defined $singleFlagParams{ $arg } ) 
 { 
  if( valid( $value ) ) 
  { 
   ${ $singleFlagParams{ $arg }{ var } } = $value; 
  } 
  else 
  { 
   ${ $singleFlagParams{ $arg }{ var } } = $singleFlagParams{ $arg 
}{ default }; 
  } 
 } 
 else { die "Unrecognized argument: -${arg}"; } 
} 
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sub printHelp 
{ 
 print << 'EOF'; 
 
GEOMP2: an Automated Metadata Parser and Relational Database Constructor for 
 the Gene Expression Omnibus 
 
 by Aurash Mohaimani 
 
DESCRIPTION: 
 GEOMP2 is a program designed to parse metadata anchors and attributes 
 from the Simple Omnibus Format in Text (SOFT) format exported from 
 the Gene Expression Omnibus (GEO) via the Entrez E-Utils and GEO URL 
 construction APIs. GEOMP2 additionally parses through the unique set 
 of bioinformatics methods employed by each study and may also be used 
 to build an atomized relational database, given a user-defined 
 configuration file of desired GEO metadata attributes. If no config 
 file is available, GEOMP2 can automatically construct one. GEOMP2 is 
 capable of atomizing GEO sample (e.g. GSM) characteristic tags for 
 optional printing to a file and/or loading into a database. 
 
USAGE: 
 [./]geomp2 -d softDirectory [-a[ autoConfig] OR -c configFile] 
 [-s "species"] [-t[ autoTagsConfig] [-n defaultEmptyString] 
 [-o[ outFile]] [-m[ methodsFile]] [-T[ tagsFile]] [-b[ dbFile]] 
 
 OR 
 
 [./]geomp2 --dir=softDirectory [--auto[=autoConfig] OR 
 --config=configFile] [--species="species"] [--tags[=autoTagsConfig]] 
 [--null=defaultEmptyString] [--out[=outFile]] [--methods[=methodsFile]] 
 [--tagsFile[=tagsFile]] [--db[=dbFile]] 
 
OPTIONS: 
 -d softDirectory, --dir=softDirectory 
  REQUIRED: specifies the path to the directory containing the 
  target *.SOFT files. 
 
 -a[ autoConfig], --auto[=autoConfig] 
  Instructs GEOMP2 to automatically generate and use a 
  configuration file. By default, GEOMP2 will aim to include 
  metadata attributes that constitute the N95 of the chosen 
  dataset. Percentage values may alternatively be used. 
  NOTE: choose either this option or the manual config file 
  option below! (default: 'N95') 
 
 -c configFile, --config=configFile 
  Specifies the path to the configuration file containing the 
  GEO series, sample, and characteristic tag attributes that will 
  be parsed and loaded as columns of output data. NOTE: specify 
  either this option or the autoConfig option above! 
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 -s "species", --species="species" 
  Defines the full name of the species to parse; this is the same 
  string used in GEO search queries (examples: "Danio rerio", 
  "Homo sapiens", etc). Providing this will allow GEOMP2 to 
  generate the "targetOrganismCount" series attribute. 
 
 -t[ autoTagsConfig], --tags[=autoTagsConfig] 
  Instructs GEOMP2 to automatically construct a list containing 
  the most frequently occurring sample characteristics tags 
  according to the given N- or percentage-based threshold. 
  (default: 'N95') 
 
 -n defaultEmptyString, --null=defaultEmptyString 
  Defines the normalization string to use for an undefined 
  metadata attribute. (default: 'NA') 
 
 -o[ outFile], --out[=outFile] 
  Enables write-out of parsed metadata to a tab-delimited file. 
  If no file name is provided, the output file will be generated 
  using the given directory name. (default: undefined) 
 
 -m[ methodsFile], --methods[=methodsFile] 
  Enables write-out of tab-delimited bioinformatics methods data 
  to the given file name. If no file name is provided, the file 
  will be generated using the given directory. 
  (default: undefined) 
 
 -T[ tagsFile], --tagsFile[=tagsFile] 
  Enables printing of atomized sample characteristic tags to the 
  specified file. If no file name is provided, then the file name 
  will be generated using the given directory. 
  (default: undefined) 
 
 -b[ dbFile], --db[=dbFile] 
  Enables generation of an atomized SQLite database containing 
  tables corresponding to GEO series and sample entries, with 
  additional tables generated for metadata attributes possessing 
  cardinality of the form 1:N. Attributes are specified by 
  the configuration file or can be automatically chosen via the 
  -a and -t flags. NOTE: installation of the DBD::SQLite module 
  is REQUIRED to enable this option! 
 
 -h, --help 
  Prints this help page. 
 
EOF 
} 
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sub directoryReader 
{ 
 opendir( my $dh, $softDir ); 
 
 while( my $file = readdir( $dh ) ) 
 { 
  next unless( $file =~ m/\.soft$/ ); 
 
  fileReader( $file ); 
 } 
 
 closedir( $dh ); 
} 
 
sub fileReader 
{ 
 my ( $file, $firstChar ) = ( $_[ 0 ], undef ); 
 
 open( my $fh, '<', "$softDir/$file" ); 
 
 while( my $line = <$fh> ) 
 { 
  chomp $line; 
  $line =~ s/\s+$//; 
  $firstChar = substr $line, 0, 1; 
 
  if( $firstChar eq '^' ) { anchorReader( $line ); } 
  elsif( $firstChar eq '!' ) { attributeReader( $line ); } 
 } 
 
 close $fh; 
} 
 
sub anchorReader 
{ 
 my ( $type, $id ) = split ' = ', $_[ 0 ]; 
 $type = substr $type, 1; 
 
 if( $type eq 'SERIES' ) 
 { 
  $curSeries = $id; 
 } 
 elsif( $type eq 'PLATFORM' ) 
 { 
  if( defined $gpl{ $id } ) { $curPlatform = undef; } 
  else { $curPlatform = $id; } 
 } 
 elsif( $type eq 'SAMPLE' ) 
 { 
  $curSample = $id; 
 } 
} 
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sub attributeReader 
{ 
 my $line = substr $_[ 0 ], 1; 
 my ( $attrName, $attrValue ) = split ' = ', $line; 
 my $ref; 
 
 return unless( defined $attrValue ); 
 
 if( $line =~ m/^Series/ ) 
 { 
  $attrName = substr $attrName, 7; 
  $gseAttr{ $attrName }{ count } += 1; 
  $ref = \$gse{ $curSeries }{ $attrName }; 
 } 
 elsif( $line =~ m/^Platform/ ) 
 { 
  return unless( defined $curPlatform ); 
 
  $attrName = substr $attrName, 9; 
  $gplAttr{ $attrName }{ count } += 1; 
  $ref = \$gpl{ $curPlatform }{ $attrName }; 
 } 
 elsif( $line =~ m/^Sample/ ) 
 { 
  $attrName = substr $attrName, 7; 
  $attrName = 'supplementary_file' if( $attrName =~ 
m/^supplementary_file_[0-9]+/ ); 
  $gsmAttr{ $attrName }{ count } += 1; 
  $ref = \$gsm{ $curSample }{ $attrName }; 
 } 
 
 push @{ $$ref }, $attrValue; 
} 
 
sub getAttrText 
{ 
 my $field = $_[ 0 ]; 
 
 if( ref $field eq 'ARRAY' ) { return join( '||', @{ $field } ); } 
 else { return $field; } 
} 
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sub countSeriesOrganisms 
{ 
 foreach my $series ( keys %gse ) 
 { 
  $gseAttr{ totalOrganismCount }{ count } += 1; 
  $gseAttr{ targetOrganismCount }{ count } += 1 if( defined 
$targetOrganism ); 
 
  foreach my $sample ( @{ $gse{ $series }{ sample_id } } ) 
  { 
   $gse{ $series }{ totalOrganismCount } += 1; 
   $gse{ $series }{ targetOrganismCount } += 1 if( defined 
$targetOrganism && getAttrText( $gsm{ $sample }{ organism_ch1 } ) eq $targetOrganism 
); 
  } 
 } 
} 
 
sub populateCharTags 
{ 
 my ( $ref, $tag, $value ) = ( ( undef ) x 3 ); 
 
 foreach my $sample ( keys %gsm ) 
 { 
  $ref = \$gsm{ $sample }{ characteristics_ch1 }; 
 
  next unless( defined $$ref && ref $$ref eq 'ARRAY' ); 
 
  foreach my $line ( @{ $$ref } ) 
  { 
   ( $tag, $value ) = split /:\s+/, $line; 
 
   next unless( defined $value ); 
 
   $char{ $sample }{ $tag } = $value; 
   $charAttr{ $tag } += 1; 
  } 
 } 
} 
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sub configReader 
{ 
 my $ref; 
 
 open( my $fh, '<', $configFile ); 
 
 while( my $line = <$fh> ) 
 { 
  chomp $line; 
 
  next if( $line =~ m/^\s*$|^\s*#/ ); 
 
  if( $line =~ m/^\s*\[/ ) 
  { 
   if( $line =~ m/^\s*\[\s*GSE\s*\]/ ) { $ref = \@printGSEattr; } 
   elsif( $line =~ m/^\s*\[\s*GSM\s*\]/ ) { $ref = \@printGSMattr; } 
   elsif( $line =~ m/^\s*\[\s*CHAR\s*\]/ ) { $ref = \@printCHARattr; 
} 
  } 
  else { push @$ref, $line; } 
 } 
 
 close $fh; 
} 
 
sub autogenConfig 
{ 
 my $cutoff = setAutoConfig( $autoConfig ) / 100; 
 
 autosetAttrs( $cutoff, \%gseAttr, \@printGSEattr ); 
 autosetAttrs( $cutoff, \%gsmAttr, \@printGSMattr ); 
 autosetCharAttrs() if( valid( $charConfig ) ); 
 
 writeAutoConfig( 'auto.conf' ); 
} 
 
sub setAutoConfig 
{ 
 my $param = $_[ 0 ]; 
 
 if( $param =~ m/^[Nn][0-9]+$/ ) { $param =~ s/^[Nn]//; return $param; } 
 elsif( $param =~ m/^[0-9]*(\.[0-9]*)?%$/ ) { $param =~ s/%$//; return $param; 
} 
 else { die "Invalid \$autoConfig parameter: $param"; } 
} 
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sub autosetAttrs 
{ 
 my ( $cutoff, $attrs, $printAttrs ) = @_; 
 my ( $total, $count, $attr ) = ( ( 0 ) x 2, undef ); 
 map { $total += $$attrs{ $_ }{ count }; } keys %$attrs; 
 $cutoff = int( $cutoff * $total - 1 ); 
 
 foreach my $attr ( sort { $$attrs{ $b }{ count } <=> $$attrs{ $a }{ count } || 
$a cmp $b } keys %$attrs ) 
 { 
  push @$printAttrs, $attr; 
  $count += $$attrs{ $attr }{ count }; 
 
  last if( $count > $cutoff ); 
 } 
 
 for my $i ( 0 .. $#$printAttrs ) 
 { 
  $attr = $$printAttrs[ $i ]; 
 
  if( $attr eq 'geo_accession' ) 
  { 
   splice @$printAttrs, $i, 1; 
   unshift @$printAttrs, $attr; 
  } 
 } 
} 
 
sub autosetCharAttrs 
{ 
 my $cutoff = setAutoConfig( $charConfig ) / 100; 
 my ( $total, $count, $attr ) = ( ( 0 ) x 2, undef ); 
 map { $total += $charAttr{ $_ }; } keys %charAttr; 
 $cutoff = int( $cutoff * $total - 1 ); 
 
 foreach my $attr ( sort { $charAttr{ $b } <=> $charAttr{ $a } || $a cmp $b } 
keys %charAttr ) 
 { 
  push @printCHARattr, $attr; 
  $count += $charAttr{ $attr }; 
 
  last if( $count > $cutoff ); 
 } 
} 
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sub writeAutoConfig 
{ 
 my $file = $_[ 0 ]; 
 
 open( my $fh, '>', "$softDir/$file" ); 
 
 print $fh "[ GSE ]\n"; 
 map { print $fh "$_\n"; } @printGSEattr; 
 print $fh "\n[ GSM ]\n"; 
 map { print $fh "$_\n"; } @printGSMattr; 
 print $fh "\n[ CHAR ]\n"; 
 map { print $fh "$_\n"; } @printCHARattr; 
 
 close $fh; 
} 
 
sub normalizeGEO 
{ 
 normalizeData( \%gse, \@printGSEattr ); 
 normalizeData( \%gsm, \@printGSMattr ); 
 normalizeData( \%char, \@printCHARattr ) if( scalar @printCHARattr > 0 ); 
 
 setCardinality( \%gse, \%gseAttr, \@printGSEattr ); 
 setCardinality( \%gsm, \%gsmAttr, \@printGSMattr ); 
} 
 
sub normalizeData 
{ 
 my ( $data, $attrs ) = @_; 
 
 foreach my $entry ( keys %$data ) 
 { 
  foreach my $attr ( @$attrs ) 
  { 
   $$data{ $entry }{ $attr } = $defaultEmptyString unless( defined 
$$data{ $entry }{ $attr } ); 
  } 
 } 
} 
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sub setCardinality 
{ 
 my ( $data, $attrs, $printAttrs ) = @_; 
 my ( $count, $ref ) = ( undef ) x 2; 
 my $dataCount = scalar keys %$data; 
 
 foreach my $attr ( @$printAttrs ) 
 { 
  $count = 0; 
 
  foreach my $entry ( keys %$data ) 
  { 
   $ref = \$$data{ $entry }{ $attr }; 
 
   if( ref $$ref eq 'ARRAY' && scalar @{ $$ref } > 1 ) 
   { 
    $$attrs{ $attr }{ cardinal } = 'multiple'; 
    last; 
   } 
   else { $count += 1; } 
  } 
 
  $$attrs{ $attr }{ cardinal } = 'single' if( $count == $dataCount ); 
 } 
} 
 
sub printGEO 
{ 
 my $ref = undef; 
 
 open( my $fh, '>', "$softDir/$outputFile" ); 
 
 printGEOheader( $fh ); 
 
 foreach my $series ( sort keys %gse ) 
 { 
  foreach my $sample ( @{ $gse{ $series }{ sample_id } } ) 
  { 
   $ref = \$gsm{ $sample }; 
 
   next if( defined $targetOrganism && getAttrText( $$$ref{ 
organism_ch1 } ) ne $targetOrganism ); 
 
   foreach my $seriesAttr ( @printGSEattr ) 
   { 
    print $fh ( getAttrText( $gse{ $series }{ $seriesAttr } ), 
"\t" ); 
   } 
 
   printGEOsamples( $ref, $fh ); 
  } 
 } 
 
 close $fh; 
} 
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sub printGEOheader 
{ 
 my $fh = $_[ 0 ]; 
 
 print $fh join( "\t", @printGSEattr ); 
 map { print $fh "\tsample_$_"; } @printGSMattr; 
 print $fh "\n"; 
} 
 
sub printGEOsamples 
{ 
 my ( $ref, $fh ) = @_; 
 my $sampleAttr = undef; 
 
 for my $i ( 0 .. $#printGSMattr ) 
 { 
  $sampleAttr = $printGSMattr[ $i ]; 
 
  print $fh getAttrText( $$$ref{ $sampleAttr } ); 
 
  if( $i == $#printGSMattr ) { print $fh "\n"; } 
  else { print $fh "\t"; } 
 } 
} 
 
sub printDataProcMethods 
{ 
 my %methods; 
 my ( $method, $date, $ref ); 
 my @header = qw( series_geo_accession pubmed_id submission_date 
bioinformatics_method method_sample_IDs method_sample_count series_total_samples ); 
 
 open( my $fh, '>', "$softDir/$methodsOutfile" ); 
 
 print $fh ( join( "\t", @header ), "\n" ); 
 
 foreach my $series ( sort keys %gse ) 
 { 
  %methods = (); 
  $date = substr getAttrText( $gse{ $series }{ submission_date } ), -4; 
 
  foreach my $sample ( @{ $gse{ $series }{ sample_id } } ) 
  { 
   $method = getAttrText( $gsm{ $sample }{ data_processing } ); 
   $methods{ $method }{ count } += 1; 
   push @{ $methods{ $method }{ samples } }, $sample; 
  } 
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  foreach $method ( sort keys %methods ) 
  { 
   $ref = $methods{ $method }; 
 
   print $fh ( "$series\t", getAttrText( $gse{ $series }{ pubmed_id 
} ), "\t$date\t$method\t", getAttrText( $$ref{ samples } ), "\t$$ref{ count }\t$gse{ 
$series }{ totalOrganismCount }\n" ); 
  } 
 } 
 
 close $fh; 
} 
 
sub printCharTags 
{ 
 return unless( scalar @printCHARattr > 0 ); 
 
 open( my $fh, '>', "$softDir/$tagsFile" ); 
 
 print $fh "series\tsample\ttag\tvalue\n"; 
 
 foreach my $sample ( sort keys %char ) 
 { 
  foreach my $series ( @{ $gsm{ $sample }{ series_id } } ) 
  { 
   map { print $fh "$series\t$sample\t$_\t$char{ $sample }{ $_ }\n"; 
} @printCHARattr; 
  } 
 } 
 
 close $fh; 
} 
 
sub generateDB 
{ 
 use DBI; 
 
 my $dbh = DBI->connect( "dbi:SQLite:dbname=$softDir/$dbFile", undef, undef, { 
AutoCommit => 0 } ); 
 
 generateDBtables( 'gse', $dbh, \%gse, \%gseAttr, \@printGSEattr ); 
 generateDBtables( 'gsm', $dbh, \%gsm, \%gsmAttr, \@printGSMattr ); 
 genCharTagsTable( 'char_tags', $dbh ) if( scalar @printCHARattr > 0 ); 
 
 $dbh->commit; 
 $dbh->disconnect; 
} 
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sub generateDBtables 
{ 
 my ( $prefix, $dbh, $data, $attrs, $printAttrs ) = @_; 
 my $ref = undef; 
 my @singleAttrs = qw( geo_accession ); 
 my @pluralAttrs = (); 
 
 foreach my $attr ( @$printAttrs ) 
 { 
  $ref = \$$attrs{ $attr }{ cardinal }; 
 
  next if( $attr eq 'geo_accession' ); 
  next unless( defined $$ref ); 
 
  if( $$ref eq 'multiple' ) { push @pluralAttrs, $attr; } 
  else { push @singleAttrs, $attr; } 
 } 
 
 createSingleTable( $prefix, $dbh, \@singleAttrs ); 
 createPluralTables( $prefix, $dbh, \@pluralAttrs ); 
 
 populateSingleTable( $prefix, $dbh, \@singleAttrs, $data ); 
 populatePluralTables( $prefix, $dbh, \@pluralAttrs, $data ); 
} 
 
sub createSingleTable 
{ 
 my ( $prefix, $dbh, $attrs ) = @_; 
 my ( $sth, $query, $attr ) = ( undef ) x 3; 
 
 $sth = $dbh->prepare( "DROP TABLE IF EXISTS $prefix;" ); 
 $sth->execute(); 
 
 $query = "CREATE TABLE $prefix ( "; 
 
 for my $i ( 0 .. $#$attrs ) 
 { 
  $attr = $$attrs[ $i ]; 
 
  if( $i == 0 ) { $query .= "`$attr` TEXT PRIMARY KEY, "; } 
  elsif( $i == $#$attrs ) { $query .= "`$attr` TEXT );"; } 
  else { $query .= "`$attr` TEXT, "; } 
 } 
 
 $sth = $dbh->prepare( $query ); 
 $sth->execute(); 
} 
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sub createPluralTables 
{ 
 my ( $prefix, $dbh, $attrs ) = @_; 
 my ( $tableName, $sth ) = ( undef ) x 2; 
 
 foreach my $attr ( @$attrs ) 
 { 
  $tableName = "${prefix}_${attr}"; 
 
  $sth = $dbh->prepare( "DROP TABLE IF EXISTS `$tableName`;" ); 
  $sth->execute(); 
 
  $sth = $dbh->prepare( "CREATE TABLE `$tableName` ( `geo_accession` TEXT, 
`$attr` TEXT );" ); 
  $sth->execute(); 
 } 
} 
 
sub populateSingleTable 
{ 
 my ( $prefix, $dbh, $attrs, $data ) = @_; 
 my ( $sth, $insertAttrs, $insertPHs ) = ( undef ) x 3; 
 
 $insertAttrs = join( ', ', map { "`$_`" } @$attrs ); 
 $insertPHs = join( ', ', map { '?' } @$attrs ); 
 $sth = $dbh->prepare( "INSERT INTO $prefix ( $insertAttrs ) VALUES ( 
$insertPHs );" ); 
 
 foreach my $entry ( sort keys %$data ) 
 { 
  $sth->execute( map { getAttrText( $$data{ $entry }{ $_ } ); } @$attrs ); 
 } 
} 
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sub populatePluralTables 
{ 
 my ( $prefix, $dbh, $attrs, $data ) = @_; 
 my ( $tableName, $sth, $ref ) = ( undef ) x 3; 
 
 foreach my $attr ( @$attrs ) 
 { 
  $tableName = "${prefix}_${attr}"; 
  $sth = $dbh->prepare( "INSERT INTO `$tableName` ( `geo_accession`, 
`$attr` ) VALUES ( ?, ? );" ); 
 
  foreach my $entry ( sort keys %$data ) 
  { 
   $ref = \$$data{ $entry }{ $attr }; 
 
   if( ref $$ref eq 'ARRAY' ) 
   { 
    map { $sth->execute( $entry, $_ ); } @{ $$ref }; 
   } 
   else { $sth->execute( $entry, $$ref ); } 
  } 
 } 
} 
 
sub genCharTagsTable 
{ 
 my ( $prefix, $dbh ) = @_; 
 my ( $sth, $createAttrs, $insertAttrs, $insertPHs ) = ( undef ) x 4; 
 my @attrs = qw( series sample tag value ); 
 
 $sth = $dbh->prepare( "DROP TABLE IF EXISTS $prefix;" ); 
 $sth->execute(); 
 
 $createAttrs = join( ', ', map { "`$_` TEXT" } @attrs ); 
 $sth = $dbh->prepare( "CREATE TABLE $prefix ( $createAttrs );" ); 
 $sth->execute(); 
 
 $insertAttrs = join( ', ', map { "`$_`" } @attrs ); 
 $insertPHs = join( ', ', map { '?' } @attrs ); 
 $sth = $dbh->prepare( "INSERT INTO $prefix ( $insertAttrs ) VALUES ( 
$insertPHs );" ); 
 
 foreach my $sample ( sort keys %char ) 
 { 
  foreach my $series ( @{ $gsm{ $sample }{ series_id } } ) 
  { 
   map { $sth->execute( $series, $sample, $_, $char{ $sample }{ $_ } 
); } @printCHARattr; 
  } 
 } 
} 
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sub main 
{ 
 if( scalar @ARGV == 0 ) { printHelp(); } 
 else { parseArgs(); } 
} 
 
main(); 
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 geomp_pmc_pull 

#!/usr/bin/env bash 
# Aurash 
 
if [[ $# -eq 0 || ${1} == "-h" || ${1} == "--help" ]] 
then 
 printf "\nUsage: [./]geomp_pmc_pull softDirectory/methodsFile\n\n" 
 exit 
fi 
 
methodsFile=${1} 
methodsDir=${methodsFile%/*} 
dirlessMethodsFile=${methodsFile##*/} 
 
if [[ ! -d ${methodsDir} ]] 
then 
 printf "\n\"%s\" is not a valid directory!\n\n" ${methodsDir} 
 exit 
fi 
 
if [[ ! -f ${methodsDir}/${dirlessMethodsFile} ]] 
then 
 printf "\n\"%s\" is not a valid file!\n\n" ${dirlessMethodsFile} 
 exit 
fi 
 
# Sanity check 
# printf "\nmethodsFile: ${methodsFile}\nmethodsDir: 
${methodsDir}\ndirlessMethodsFile: ${dirlessMethodsFile}\n\n" 
# exit 
 
pushd ${methodsDir} > /dev/null 
 
# Create the pdf and tarball 
# directories if they do not 
# exist 
for dir in $(printf "pdf tarball") 
do 
 if [[ ! -d ${dir} ]] 
 then 
  mkdir ${dir} 
  printf "Directory generated: ${dir}\n" 
 fi 
done 
 
column=$(head -n 1 ${dirlessMethodsFile} | sed 's/\t/\n/g' | awk 'BEGIN { count = 0; 
} { count += 1; if( $0 == "pubmed_id" ) { print count; exit; } }') 
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for pubmedID in $(tail -n +2 ${dirlessMethodsFile} | awk -v column=${column} 'BEGIN { 
FS="\t"; } { print $column; }' | grep "^[0-9]\+" | sed 's/||/\n/g' | sort -u) 
do 
 # ID conversion from pubmedIDs 
 # to pmcIDs 
 printf "Attempting ID conversion for pubmedID ${pubmedID} ... " 
 pmcID=$(wget -q -O - 
"https://www.ncbi.nlm.nih.gov/pmc/utils/idconv/v1.0/?ids=${pubmedID}&tool=geomp_pmc_p
ull&email=aurash@uwm.edu" | grep -o "pmcid=\"[^\"]\+" | head -n 1 | sed 
's/^pmcid="//') 
 printf 'done!\n' 
 sleep 2 
 
 if [[ $(printf "${pmcID}" | wc -c) -lt 4 ]] 
 then 
  printf "SKIPPING pubmedID ${pubmedID}, no relevant pmcID found ...\n\n" 
  continue 
 fi 
 
 # FTP link acquisition for 
 # PDFs attached to pmcIDs 
 printf "Attempting to fetch FTP link(s) for pubmedID ${pubmedID} ... " 
 links=$(wget -q -O - 
"https://www.ncbi.nlm.nih.gov/pmc/utils/oa/oa.fcgi?id=${pmcID}&tool=geomp_pmc_pull&em
ail=aurash@uwm.edu" | grep -o "href=\"[^\"]\+" | sed 's/^href="//') 
 printf 'done!\n' 
 sleep 2 
 
 if [[ $(printf "${links}" | wc -c) -lt 11 ]] 
 then 
  printf "SKIPPING pubmedID ${pubmedID}, no FTP links found...\n\n" 
  continue 
 fi 
 
 # Sanity check 
 # printf "${links}\n" 
 
 # Create pubmedID directory 
 # if it does not exist 
 if [[ ! -d pdf/${pubmedID} ]] 
 then 
  mkdir pdf/${pubmedID} 
  printf "Directory generated: pdf/${pubmedID}\n" 
 fi 
 
 # Post-processing of FTP links 
 # to actually download the 
 # desired archives / files 
 pdfLink=$(printf "${links}" | grep "\.pdf$") 
 pdfLinkLength=$(printf "${pdfLink}" | wc -c) 
 tarLink=$(printf "${links}" | grep "\.tar\.gz$") 
 tarLinkLength=$(printf "${tarLink}" | wc -c) 
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 if [[ ${pdfLinkLength} -gt 10 ]] 
 then 
  printf "Downloading PDF file directly ... " 
  wget -q -O pdf/${pubmedID}/${pubmedID}.pdf "${pdfLink}" 
  printf 'done!\n' 
 fi 
 
 if [[ ${tarLinkLength} -gt 10 ]] 
 then 
  printf "Downloading *.tar.gz archive ... " 
  wget -q -O ${pubmedID}.tar.gz "${tarLink}" 
  printf 'done!\n' 
 
  for file in $(tar -tzf ${pubmedID}.tar.gz --wildcards "*.pdf") 
  do 
   name=${file##*/} 
   numComponents=$(printf "${file}" | grep -o "/" | wc -l) 
 
   printf "Extracting ${name} to pdf/${pubmedID}/ ... " 
   tar -xzf ${pubmedID}.tar.gz "${file}" --strip-
components=${numComponents} 
   mv ${name} pdf/${pubmedID} 
   printf 'done!\n' 
  done 
 
  printf "Moving ${pubmedID}.tar.gz ... " 
  mv ${pubmedID}.tar.gz tarball 
  printf 'done!\n' 
 else 
  printf "ERROR, failure to process:\n${links}\n" 
 fi 
 
 echo 
 sleep 2 
done 
 
popd > /dev/null 
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 fixGSElist 

#!/usr/bin/env perl 
# Aurash 
 
use strict; 
use warnings; 
use autodie; 
 
my ( $gse, $pubmed ) = ( undef ) x 2; 
 
open( my $fh, '<', 'gse.list' ); 
 
while( my $line = <$fh> ) 
{ 
 ( $gse, $pubmed ) = split /\t/, $line; 
 
 if( $pubmed =~ m/\|\|/ ) 
 { 
  chomp $pubmed; 
 
  map { print "$gse\t$_\n"; } split( /\|\|/, $pubmed ); 
 } 
 else { print $line; } 
} 
 
close $fh; 
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 genGSEtitles 

#!/usr/bin/env bash 
# Aurash 
 
gseList=${1} 
 
if [[ ${gseList} == "" ]] 
then 
 printf "\nERROR: no GSE list file provided\n\n" 
 exit 
fi 
 
printf "GSE_accession_ID\tpubmed_ID\tpublication_title\n" 
 
while IFS=$'\t' read gseID pubmedID 
do 
 # Sanity check 
 # printf "${gseID}\t${pubmedID}\n" 
 
 pubmedFile="${pubmedID}.efetch" 
 
 if [[ -f ${pubmedFile} ]] 
 then 
  printf "${pubmedFile} already exists\n" 
 else 
  printf "Pulling ${pubmedFile} ... " 
  wget -q -O ${pubmedFile} 
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=${pubmedID}" 
  printf "done\n" 
 fi 
 
 title=$(./slurpEFetch ${pubmedFile}) 
 
 printf "${gseID}\t${pubmedID}\t${title}\n" 
done < ${gseList} 
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 slurpEFetch 

#!/usr/bin/env perl 
# Aurash 
 
use strict; 
use warnings; 
use autodie; 
 
my $file = $ARGV[ 0 ] || undef; 
 
die "Error: no file provided" unless( defined $file ); 
die "Error: input file does not appear to be an EFetch result" unless( $file =~ 
m/\.efetch$/i ); 
 
open( my $fh, '<', $file ); 
read( $fh, my $text, -s $file ); 
close $fh; 
 
if( $text =~ m/^\s*title \{\s*\n\s*name "([^"]+)"/ms ) 
{ 
 my $title = $1; $title =~ s/[.\n]//g; 
 print "$title\n"; 
} 
else { print "Error: no title found for $file\n"; exit; } 
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 georget_pull 

#!/usr/bin/env perl 
# Aurash 
 
use strict; 
use warnings; 
use autodie; 
use DBI; 
use File::Copy 'mv'; 
use Net::FTP; 
 
my ( $dbLoc, $dbFile, $dbDir, $email ) = ( undef ) x 4; 
 
my %opts = 
( 
 -i => { var => \$dbLoc, default => undef }, 
 -e => { var => \$email, default => undef } 
); 
 
sub valid 
{ 
 my $value = $_[ 0 ]; 
 
 if( defined $value && $value ne '' ) { return 1; } 
 else { return 0; } 
} 
 
sub parseArgs 
{ 
 for my $i ( 0 .. $#ARGV ) 
 { 
  parseOpt( $i ) if( substr( $ARGV[ $i ], 0, 1 ) eq '-' ); 
 } 
 
 # Sanity check 
 # print "\$dbLoc: $dbLoc\n\$dbDir: $dbDir\n\$dbFile: $dbFile\n\$email: 
$email\n"; 
 
 die "No database location provided" unless( valid( $dbLoc ) ); 
 die "Database location appears invalid" unless( $dbLoc =~ m/^[^\/]+\/[^\/]+$/ 
); 
 die "No email address provided" unless( valid( $email ) ); 
 die "Email address appears invalid" unless( $email =~ m/^[^@]+@[^@]+$/ ); 
 
 ( $dbFile = $dbLoc ) =~ s/^.*\///; 
 ( $dbDir = $dbLoc ) =~ s/\/[^\/]*$//; 
 
 prepDirs(); 
} 
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sub parseOpt 
{ 
 my ( $i, $opt, $value ) = ( $_[ 0 ], $ARGV[ $_[ 0 ] ], undef ); 
 $value = $ARGV[ $i + 1 ] if( defined $ARGV[ $i + 1 ] && substr( $ARGV[ $i + 1 
], 0, 1 ) ne '-' ); 
 
 if( defined $opts{ $opt } ) 
 { 
  if( defined $value ) 
  { 
   ${ $opts{ $opt }{ var } } = $value; 
  } 
  else 
  { 
   ${ $opts{ $opt }{ var } } = $opts{ $opt }{ default }; 
  } 
 } 
 elsif( $opt eq '-h' || $opt eq '--help' ) { printHelp(); exit; } 
 else { die "Unrecognized option: '$opt'"; } 
} 
 
sub printHelp 
{ 
 print << 'EOF'; 
 
GEORGET_PULL: a Supplemental Analysis Extractor for the Gene Expression Omnibus 
 
 by Aurash Mohaimani 
 
USAGE: 
 [./]georget_pull -i databaseLocation -e emailAddress 
 
OPTIONS: 
 -i databaseLocation 
  REQUIRED: specifies the path to the SQLite database to be used 
  in pulling supplemental analyses from GEO within the NCBI FTP 
  server. This path must be of the form "directory/dbFile". 
 
 -e emailAddress 
  REQUIRED: defines the user email address to be used upon login 
  to the NCBI FTP server. 
 
 -h, --help 
  Prints this help message. 
 
EOF 
} 
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sub prepDirs 
{ 
 chdir $dbDir; 
 
 foreach my $dir ( qw( GSE_supp GSM_supp ) ) 
 { 
  mkdir $dir, 0774 unless( -d $dir ); 
 } 
 
 accessDB(); 
} 
 
sub accessDB 
{ 
 my $dbh = DBI->connect( "dbi:SQLite:dbname=${dbFile}", '', '' ); 
 my $ftp = Net::FTP->new( 'ftp.ncbi.nlm.nih.gov', Debug => 0 ); 
 $ftp->login( 'anonymous', $email ); 
 $ftp->binary; 
 
 accessDBtable( $dbh, 'gse_supplementary_file', 'GSE_supp', $ftp ); 
 accessDBtable( $dbh, 'gsm_supplementary_file', 'GSM_supp', $ftp ); 
} 
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sub accessDBtable 
{ 
 my ( $dbh, $table, $baseDir, $ftp ) = @_; 
 my ( $id, $url, $file, $dir, $ftpPath, $fileSize ) = ( undef ) x 6; 
 my $sth = $dbh->prepare( "SELECT * FROM $table;" ); 
 
 $sth->execute(); 
 
 while( ( $id, $url ) = $sth->fetchrow_array ) 
 { 
  next unless( $url =~ m/^ftp:\/\// ); 
  next if( $url =~ m/\/sra\/sra-instant\/|_RAW\.tar$/ ); 
 
  ( $file = $url ) =~ s/^.*\///; 
  $dir = "${baseDir}/${id}"; 
  ( $ftpPath = $url ) =~ s/^ftp:\/\/ftp\.ncbi\.nlm\.nih\.gov//; 
  $fileSize = $ftp->size( $ftpPath ) / 1000000; 
 
  next if( $fileSize > 250 ); 
 
  # Sanity check 
  # print "$id\t$file\t$fileSize\n"; next; 
 
  mkdir $dir, 0774 unless( -d $dir ); 
 
  if( -e "${dir}/${file}" ) { print "$file exists\n"; } 
  else 
  { 
   print "Pulling $file ... "; 
   $ftp->get( $ftpPath ); 
   mv $file, $dir; 
   print "done\n"; 
  } 
 } 
} 
 
sub main 
{ 
 if( scalar @ARGV == 0 ) { printHelp(); } 
 else { parseArgs(); } 
} 
 
main(); 
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 georget_cull 

#!/usr/bin/env bash 
# Aurash 
 
if [[ $# -eq 0 || ${1} == '-h' || ${1} == '--help' ]] 
then 
 printf "\nUsage: [./]georget_cull blacklistFile directory\n\n" 
 exit 
fi 
 
blacklist=${1} 
mainDir=${2} 
 
if [[ ! -f ${blacklist} ]] 
then 
 printf '\nNo blacklist file provided!\n\n' 
 exit 
elif [[ ${mainDir} == "" ]] 
then 
 printf '\nNo directory provided!\n\n' 
 exit 
elif [[ ! -d ${mainDir} ]] 
then 
 printf "\n${mainDir} is not a valid directory\n\n" 
 exit 
fi 
 
pushd ${mainDir} > /dev/null 
 
while read accID 
do 
 GSEdir="GSE_supp/${accID}" 
 
 if [[ -d ${GSEdir} ]] 
 then 
  rm -r ${GSEdir} 
  printf "${GSEdir} removed\n" 
 fi 
 
 for dir in $(grep "^^SAMPLE" ${accID}.soft | sed 
's/^^SAMPLE\s\+=\s\+/GSM_supp\//; s/\s*$//') 
 do 
  if [[ -d ${dir} ]] 
  then 
   rm -r ${dir} 
   printf "${dir} removed\n" 
  fi 
 done 
done < ../${blacklist} 
 
popd > /dev/null 
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 georget_decompress 

#!/usr/bin/env bash 
# Aurash 
 
dir=${1} 
 
if [[ ${dir} == "" ]] 
then 
 printf '\nNo input directory specified!\n\n' 
 exit 
fi 
 
pushd ${dir} > /dev/null 
 
for dir in $(printf "GSE_supp GSM_supp") 
do 
 if [[ ! -d ${dir} ]] 
 then 
  printf "\n${dir} directory not found" 
  printf '!\n\n' 
  exit 
 fi 
done 
 
for file in $(find . -mindepth 3 -type f -name "*.gz") 
do 
 printf "Unzipping ${file} ... " 
 gzip -d ${file} 
 printf "done\n" 
done 
 
popd > /dev/null 
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 georget_decompress_parallel 

#!/usr/bin/env bash 
# Aurash 
 
dir=${1} 
 
if [[ ${dir} == "" ]] 
then 
 printf '\nNo input directory specified!\n\n' 
 exit 
fi 
 
pushd ${dir} > /dev/null 
 
for dir in $(printf "GSE_supp GSM_supp") 
do 
 if [[ ! -d ${dir} ]] 
 then 
  printf "\n${dir} directory not found" 
  printf '!\n\n' 
  exit 
 fi 
done 
 
find . -mindepth 3 -type f -name "*.gz" | parallel 'gzip -d {}; printf "Unzipped 
{.}\n";' 
 
popd > /dev/null 
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 georget_truncate 

#!/usr/bin/env bash 
# Aurash 
 
if [[ "$#" -lt 2 || ${1} == "-h" || ${1} == "--help" ]] 
then 
 printf "\nUsage: [./]georget_truncate directory fileSizeLimit\n\n" 
 exit 
fi 
 
dir=${1} 
limit=${2} 
 
if [[ ! -d ${dir} ]] 
then 
 printf "\nERROR: ${dir} is not a directory" 
 printf '!\n\n' 
 exit 
elif [[ ! ${limit} =~ ^[0-9]+$ ]] 
then 
 printf "\nERROR: fileSizeLimit must be a positive integer\n\n" 
 exit 
fi 
 
pushd ${dir} > /dev/null 
 
for file in $(du -B 1000000 $(find . -mindepth 3 -type f) | awk -v limit="${limit}" 
'{ if( $1 > limit ) { print $2; } }') 
do 
 rm ${file} 
 printf "Removed: ${file}\n" 
done 
 
popd > /dev/null 
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 georget_reformat 

#!/usr/bin/env bash 
# Aurash 
 
dir=${1} 
 
if [[ ${dir} == "" ]] 
then 
 printf '\nNo input directory specified!\n\n' 
 exit 
fi 
 
pushd ${dir} > /dev/null 
 
for file in $(find . -mindepth 3 -type f) 
do 
 type=$(file -b ${file}) 
 
 if [[ ${type} =~ "with CR line" ]] 
 then 
  mac2unix ${file} 
 fi 
done 
 
popd > /dev/null 
  



117 

 

 georget_sanitize 

#!/usr/bin/env bash 
# Aurash 
 
dir=${1} 
 
if [[ ${dir} == "" ]] 
then 
 printf '\nNo input directory specified!\n\n' 
 exit 
fi 
 
pushd ${dir} > /dev/null 
 
for file in $(find . -mindepth 3 -type f | grep -i "\.csv$\|\.tsv$\|\.txt$") 
do 
 sed 's/^\s*\|\s*$//g' ${file} > ${file}.tmp 
 mv ${file}.tmp ${file} 
 printf "Sanitized ${file}\n" 
done 
 
popd > /dev/null 
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 georget_sanitize_parallel 

#!/usr/bin/env bash 
# Aurash 
 
dir=${1} 
 
if [[ ${dir} == "" ]] 
then 
 printf '\nNo input directory specified!\n\n' 
 exit 
fi 
 
pushd ${dir} > /dev/null 
 
find . -mindepth 3 -type f | grep -i "\.csv$\|\.tsv$\|\.txt$" | parallel 'sed 
"s/^\s*\|\s*$//g" {} > {}.tmp; mv {}.tmp {}; printf "Sanitized {}\n";' 
 
popd > /dev/null 
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 georget_sanitize_MACS 

#!/usr/bin/env bash 
# Aurash 
 
dir=${1} 
 
if [[ ${dir} == "" ]] 
then 
 printf '\nNo input directory specified!\n\n' 
 exit 
fi 
 
pushd ${dir} > /dev/null 
 
for file in $(find . -mindepth 3 -type f | grep -i "\.txt$") 
do 
 match=$(head -n 5 ${file} | grep "generated by MACS version") 
 
 if [[ ${match} =~ "generated by MACS version" ]] 
 then 
  sed '/^\s*#\|^\s*$/d' ${file} > ${file}.tmp 
  mv ${file}.tmp ${file} 
  printf "Sanitized MACS file: ${file}\n" 
 fi 
done 
 
popd > /dev/null 
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 georget 

#!/usr/bin/env perl 
# Aurash 
 
use strict; 
use warnings; 
use autodie; 
use DBI; 
 
my ( $fileSizeLimit, $ambiguityLimit, $genIndexes ) = ( 500, 95, undef ); 
my ( $rawTotal, $adjTotal, $dbTotal ) = ( 0 ) x 3; 
my ( $dbh, $sth, $sthGFF, $dbLoc, $dbDir, $dbFile ) = ( undef ) x 6; 
my %opts = 
( 
 -i => { var => \$dbLoc, default => undef }, 
 -s => { var => \$fileSizeLimit, default => 500 }, 
 -a => { var => \$ambiguityLimit, default => 95 }, 
 -x => { var => \$genIndexes, default => 2 } 
); 
 
sub parseArgs 
{ 
 for my $i ( 0 .. $#ARGV ) 
 { 
  parseOpt( $i ) if( defined $ARGV[ $i ] && substr( $ARGV[ $i ], 0, 1 ) eq 
'-' ); 
 } 
 
 die "\$dbLoc is undefined" unless( defined $dbLoc ); 
 die "\$dbLoc does not appear valid" unless( $dbLoc =~ m/^[^\/]+\/[^\/]+\.db$/ 
); 
 die "\$fileSizeLimit must be a positive integer" unless( $fileSizeLimit =~ 
m/^[0-9]+$/ ); 
 die "\$ambiguityLimit must be a positive integer" unless( $ambiguityLimit =~ 
m/^[0-9]+$/ ); 
 die "\$ambiguityLimit out of bounds" unless( $ambiguityLimit > 0 && 
$ambiguityLimit < 100 ); 
 die "\$genIndexes out of bounds" if( defined $genIndexes && $genIndexes !~ 
m/^[012]$/ ); 
 
 $dbDir = $dbLoc; $dbDir =~ s/\/[^\/]+$//; 
 $dbFile = $dbLoc; $dbFile =~ s/^.*\///; 
 
 chdir $dbDir; 
 
 $dbh = DBI->connect( "dbi:SQLite:dbname=$dbFile", '', '', { AutoCommit => 0 } 
); 
 $dbh->do( "PRAGMA temp_store = $genIndexes;" ); 
 
 map { scanDirectory( $_ ); } qw( GSE_supp GSM_supp ); 
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 $dbh->commit; 
 $dbh->disconnect; 
 
 printMetrics(); 
} 
 
sub parseOpt 
{ 
 my ( $i, $opt, $val ) = ( $_[ 0 ], $ARGV[ $_[ 0 ] ], undef ); 
 $val = $ARGV[ $i + 1 ] if( defined $ARGV[ $i + 1 ] && substr( $ARGV[ $i + 1 ], 
0, 1 ) ne '-' ); 
 
 if( defined $opts{ $opt } ) 
 { 
  ${ $opts{ $opt }{ var } } = defined $val ? $val : $opts{ $opt }{ default 
}; 
 } 
 elsif( $opt eq '-h' || $opt eq '--help' ) { printHelp(); exit; } 
 else { die "Unrecognized option: '${opt}'"; } 
} 
 
sub printHelp 
{ 
 print << 'EOF'; 
 
GEORGET: an RNA-seq Gene Expression Results Translator for the 
  Gene Expression Omnibus 
 
 by Aurash Mohaimani, dedicated to Purrito & B.B. 
 
USAGE: 
 [./]georget -i databaseLocation [-s[ fileSizeLimit]] 
 [-a[ ambiguityLimit]] [-x[ tempStore]] 
 
OPTIONS: 
 -i databaseLocation 
  REQUIRED: specifies the path to the SQLite database to be used 
  when translating and loading RNA-seq results that have been 
  previously pulled from GEO. This path must be of the form 
  "directory/dbFile". 
 
 -s[ fileSizeLimit] 
  Defines the maximum file size, in megabytes, for results files 
  that will be translated and loaded into the database. The 
  provided value must be a positive integer. (default: 500) 
 
 -a[ ambiguityLimit] 
  Specifies the minimum threshold at which an ambiguous file 
  (e.g. a heterogeneous file with a non-uniform number of 
  columns) will be processed for translation. This value must be 
  a positive integer less than 100. (default: 95) 
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 -x[ tempStore] 
  Instructs GEORGET to construct database indexes for each table 
  of translated RNA-seq results. This flag can be specified with 
  an explicit PRAGMA temp_store value of 0, 1, or 2. 
  (default: disabled or 2 when ambiguously declared) 
 
 -h, --help 
  Prints this help message. 
 
EOF 
} 
 
sub scanDirectory 
{ 
 my ( $dir, $ext ) = ( $_[ 0 ], undef ); 
 my $gff = $dir . '_GXF'; 
 
 $dbh->do( "DROP TABLE IF EXISTS $dir;" ); 
 $dbh->do( "DROP TABLE IF EXISTS $gff;" ); 
 
 $dbh->do( "CREATE TABLE $dir ( accessionID TEXT, file TEXT, feature_name TEXT, 
feature_value TEXT, attr_name TEXT, attr_value TEXT );" ); 
 $dbh->do( "CREATE TABLE $gff ( accessionID TEXT, file TEXT, seqID TEXT, source 
TEXT, type TEXT, start TEXT, end TEXT, score TEXT, strand TEXT, phase TEXT, 
attributes TEXT );" ); 
 
 $sth = $dbh->prepare( "INSERT INTO $dir ( accessionID, file, feature_name, 
feature_value, attr_name, attr_value ) VALUES ( ?, ?, ?, ?, ?, ? );" ); 
 $sthGFF = $dbh->prepare( "INSERT INTO $gff ( accessionID, file, seqID, source, 
type, start, end, score, strand, phase, attributes ) VALUES ( ?, ?, ?, ?, ?, ?, ?, ?, 
?, ?, ? );" ); 
 
 chomp( my @files = qx{ find $dir -type f } ); 
 @files = grep { $_ !~ m/readme/i; } @files; 
 $rawTotal += scalar @files; 
 
 foreach my $file ( @files ) 
 { 
  $ext = $file; $ext =~ s/^.*\.//; 
 
  if( $file =~ m/intensit/i || $ext =~ 
m/^bed|^bg|^wig|^big|^bw|^bam|^fn?a|^vcf|^xls|^xml|^pdf|^json/i ) 
  { 
   print "[WARNING] $file :: incompatible format\n\n"; 
  } 
  else { $adjTotal += 1; processFile( $file ); } 
 } 
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 if( defined $genIndexes ) 
 { 
  $dbh->do( "CREATE INDEX idx_${dir} ON $dir ( accessionID, file, 
feature_value, attr_name );" ); 
  print "[IDX] $dir :: database table index generated\n\n"; 
 
  $dbh->do( "CREATE INDEX idx_${gff} ON $gff ( accessionID, file, seqID, 
start, end );" ); 
  print "[IDX] $gff :: database table index generated\n\n"; 
 } 
} 
 
sub processFile 
{ 
 my $file = $_[ 0 ]; 
 my $size = -s $file; $size = int( $size / 1000000 ); 
 
 if( $size >= $fileSizeLimit ) 
 { 
  print "[WARNING] $file :: file size ($size MB) too large\n\n"; 
  return; 
 } 
 
 my $sep = findSeparator( $file ); $sep = qr/$sep/; 
 my ( $lineCount, $numFields ) = ( 0, undef ); 
 my %fields = (); 
 
 open( my $fh, '<', $file ); 
 
 while( my $line = <$fh> ) 
 { 
  $lineCount += 1; 
  $numFields = split /$sep/, $line; 
  $fields{ $numFields }{ count } += 1; 
 } 
 
 close $fh; 
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 if( scalar keys %fields > 1 ) 
 { 
  disambiguateFile( $file, $sep, $lineCount, \%fields ); 
 } 
 else 
 { 
  my ( $columnCount ) = keys %fields; 
 
  if( $columnCount == 1 ) 
  { 
   print "[WARNING] $file :: \@attrs == 1\n\n"; 
   return; 
  } 
  elsif( $columnCount == 9 && isGFF( $file ) ) 
  { 
   print "[GOOD] $file :: is a GFF\n"; 
   insertGFFfile( $file ); 
  } 
  else 
  { 
   print "[GOOD] $file :: appears uniform\n"; 
   insertUniformFile( $file, $sep ); 
  } 
 } 
} 
 
sub findSeparator 
{ 
 my ( $file, $lineCount ) = ( $_[ 0 ], 0 ); 
 my %seps = ( "\t" => 0, ',' => 0 ); 
 
 open( my $fh, '<', $file ); 
 
 while( my $line = <$fh> ) 
 { 
  $lineCount += 1; 
 
  foreach my $sep ( keys %seps ) 
  { 
   $seps{ $sep } += split "$sep", $line; 
  } 
 
  last if( $lineCount == 15 ); 
 } 
 
 close $fh; 
 
 foreach my $sep ( sort { $seps{ $b } <=> $seps{ $a } } keys %seps ) 
 { 
  return $sep; 
 } 
} 
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sub disambiguateFile 
{ 
 my ( $file, $sep, $lineCount, $fields ) = @_; 
 my ( $columnCount, $numFields, $numAttrs ) = ( undef ) x 3; 
 my @attrs = (); 
 
 map { $$fields{ $_ }{ perc } = $$fields{ $_ }{ count } / $lineCount * 100; } 
keys %$fields; 
 
 foreach my $field ( sort { $$fields{ $b }{ count } <=> $$fields{ $a }{ count } 
} keys %$fields ) 
 { 
  $columnCount = $field if( $$fields{ $field }{ perc } >= $ambiguityLimit 
); 
  last; 
 } 
 
 unless( defined $columnCount ) 
 { 
  print "[WARNING] $file :: unable to determine \$columnCount\n"; 
  printColumnFrequency( $fields ); 
  return; 
 } 
 
 if( $columnCount == 9 && isGFF( $file ) ) 
 { 
  print "[GOOD] $file :: is a GFF\n"; 
  insertGFFfile( $file ); 
  return; 
 } 
 
 open( my $fh, '<', $file ); 
 
 while( my $line = <$fh> ) 
 { 
  $numFields = split /$sep/, $line; 
 
  next if( $numFields < $columnCount - 1 ); 
 
  chomp $line; 
  @attrs = split /$sep/, $line; 
  $numAttrs = @attrs; 
  last; 
 } 
 
 if( $numAttrs == 1 ) 
 { 
  printFileReport( "[WARNING] $file :: \@attrs == 1\n", \@attrs, $fields 
); 
  return; 
 } 
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 if( $numAttrs > $columnCount ) 
 { 
  printFileReport( "[WARNING] $file :: \$numAttrs > \$columnCount, \@attrs 
could not be resolved\n", \@attrs, $fields ); 
  return; 
 } 
 elsif( $columnCount - $numAttrs == 1 ) 
 { 
  if( $attrs[ 0 ] =~ m/gene|transcript|refseq|ensembl|id/i ) 
  { 
   printFileReport( "[WARNING] $file :: \$columnCount - \$numAttrs 
== 1 and \@attrs could not be resolved\n", \@attrs, $fields ); 
   return; 
  } 
  else { unshift @attrs, 'featureID'; $numAttrs = @attrs; } 
 } 
 elsif( $columnCount - $numAttrs > 1 ) 
 { 
  printFileReport( "[WARNING] $file :: \$columnCount - \$numAttrs > 1, 
\@attrs could not be resolved\n", \@attrs, $fields ); 
  return; 
 } 
 
 # Prune @attrs of banned characters 
 map { $_ =~ s/["']//g; } @attrs; 
 
 printFileReport( "[OK] $file ::\n-------------\n\$columnCount: 
$columnCount\n", \@attrs, $fields ); 
 insertAmbiguousFile( $file, $sep, $fh, $columnCount, \@attrs ); 
} 
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sub isGFF 
{ 
 my $file = $_[ 0 ]; 
 my ( $totalLineCount, $validLineCount, $validPerc ) = ( ( 0 ) x 2, undef ); 
 my ( $seqID, $source, $type, $start, $end, $score, $strand, $phase ) = ( undef 
) x 8; 
 
 open( my $fh, '<', $file ); 
 
 while( my $line = <$fh> ) 
 { 
  next if( $line =~ m/^\s*#/ ); 
 
  $totalLineCount += 1; 
  ( $seqID, $source, $type, $start, $end, $score, $strand, $phase ) = 
split /\t/, $line; 
 
  next unless( $seqID =~ m/^[[:alnum:].:\^*\$@!+_?\-|]+$/ ); 
  next unless( $type =~ m/^[[:alpha:]]+$|^[Ss][Oo]:[0-9]+$/ ); 
  next unless( $start =~ m/^[0-9]+$/ && $end =~ m/^[0-9]+$/ ); 
  next unless( $score =~ m/^[0-9]+(\.[0-9]*)?([eE]{1,2}[+-]?[0-
9]+)?$|^\.$/ ); 
  next unless( $strand =~ m/^[.+?-]$/ ); 
  next unless( $phase =~ m/^[012.]$/ ); 
 
  $validLineCount += 1; 
 
  last if( $totalLineCount == 10000 ); 
 } 
 
 close $fh; 
 
 $validPerc = $validLineCount / $totalLineCount * 100; 
 
 if( $validPerc >= 95 ) { return 1; } 
 else { return 0; } 
} 
 
sub printFileReport 
{ 
 my ( $string, $attrs, $fields ) = @_; 
 
 print $string; 
 printColumns( $attrs ); 
 printColumnFrequency( $fields ); 
} 
 
sub printColumns 
{ 
 my ( $attrs, $bars ) = ( $_[ 0 ], '-------------' ); 
 
 print ( "$bars\nColumns (", scalar( @$attrs ), "):\n$bars\n", join( "\n", 
@$attrs ), "\n" ); 
} 
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sub printColumnFrequency 
{ 
 my ( $fields, $bars ) = ( $_[ 0 ], '-----------------' ); 
 
 print "$bars\nColumn frequency:\n$bars\n"; 
 map { print "$_\t$$fields{ $_ }{ count }\t$$fields{ $_ }{ perc }\n"; } sort { 
$b <=> $a } keys %$fields; 
 print "\n"; 
} 
 
sub insertGFFfile 
{ 
 my $file = $_[ 0 ]; 
 my @data = (); 
 
 open( my $fh, '<', $file ); 
 
 $file =~ s/^.*\///; 
 my ( $accID, $baseName ) = split /[_.]/, $file, 2; 
 
 while( my $line = <$fh> ) 
 { 
  next if( $line =~ m/^\s*#/ ); 
 
  chomp $line; 
  @data = split /\t/, $line; 
 
  next unless( scalar( @data ) == 9 ); 
 
  $sthGFF->execute( $accID, $baseName, @data ); 
 } 
 
 close $fh; $dbTotal += 1; 
 print "[DB] $file :: successfully inserted\n\n"; 
} 
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sub insertUniformFile 
{ 
 my ( $file, $sep ) = @_; 
 my $lineCount = 0; 
 my ( @attrs, @data ) = (); 
 
 open( my $fh, '<', $file ); 
 
 $file =~ s/^.*\///; 
 my ( $accID, $baseName ) = split /[_.]/, $file, 2; 
 
 while( my $line = <$fh> ) 
 { 
  $lineCount += 1; 
  chomp $line; 
 
  if( $lineCount == 1 ) { @attrs = split /$sep/, $line; } 
  else 
  { 
   @data = split /$sep/, $line; 
 
   map { $sth->execute( $accID, $baseName, $attrs[ 0 ], $data[ 0 ], 
$attrs[ $_ ], $data[ $_ ] ); } ( 1 .. $#attrs ); 
  } 
 } 
 
 close $fh; $dbTotal += 1; 
 print "[DB] $file :: successfully inserted\n\n"; 
} 
 
sub insertAmbiguousFile 
{ 
 my ( $file, $sep, $fh, $columnCount, $attrs ) = @_; 
 $file =~ s/^.*\///; 
 my ( $accID, $baseName ) = split /[_.]/, $file, 2; 
 my @data = (); 
 
 while( my $line = <$fh> ) 
 { 
  chomp $line; 
  @data = split /$sep/, $line; 
 
  next unless( $columnCount == scalar( @data ) ); 
 
  map { $sth->execute( $accID, $baseName, $$attrs[ 0 ], $data[ 0 ], 
$$attrs[ $_ ], $data[ $_ ] ); } ( 1 .. $#$attrs ); 
 } 
 
 close $fh; $dbTotal += 1; 
 print "[DB] $file :: successfully inserted\n\n"; 
} 
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sub printMetrics 
{ 
 my $rawTransRate = sprintf '%.2f%%', $dbTotal / $rawTotal * 100; 
 my $adjTransRate = sprintf '%.2f%%', $dbTotal / $adjTotal * 100; 
 
 print "Raw translation rate: $dbTotal / $rawTotal files 
(${rawTransRate})\nAdjusted translation rate: $dbTotal / $adjTotal files 
(${adjTransRate})\n\n"; 
} 
 
sub main 
{ 
 scalar( @ARGV ) == 0 ? printHelp() : parseArgs(); 
} 
 
main(); 
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