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ABSTRACT

ANALYSIS OF DYNAMIC MODE DECOMPOSITION

by

Archana Muniraju

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Zeyun Yu

In this master thesis, a study was conducted on a method known as Dynamic mode

decomposition(DMD), an equation-free technique which does not require to know the

underlying governing equations of the complex data. As a result of massive datasets

from various resources, like experiments, simulation, historical records, etc. has led to

an increasing demand for an efficient method for data mining and analysis techniques.

The main goals of data mining are the description and prediction. Description involves

finding patterns in the data and prediction involves predicting the system dynamics. An

important aspect when analyzing an algorithm is testing. In this work, DMD-a data

based technique is used to test different cases to find the underlying patterns, predict the

system dynamics and for reconstruction of original data. Using real data for analyzing a

new algorithm may not be appropriate due to lack of knowledge of the algorithm perfor-

mance in various cases. So, testing is done on synthetic data for all the cases discussed

in this work, as it is useful for visualization and to find the robustness of the new algo-

rithm. Finally, this work makes an attempts to understand the DMD’s performance and

limitations better for the future applications with real data.
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Chapter 1

Introduction

The data-based techniques have been rapidly developed over the past two decades and

widely used in numerous industrial sectors nowadays. The core of data-based methods is

to take full advantage of the enormous amounts of available data, aiming to acquire the

useful information within. Compared with the well-developed model-based approaches,

data-based techniques provide efficient alternative solutions.Data-based modal decompo-

sition is frequently employed to investigate complex dynamical systems. When dynamical

operators are too sophisticated to analyze directly because of nonlinearity and high di-

mensionality, then in such cases data-based techniques are often more practical. Such

methods numerically analyze empirical data produced by experiments or simulations,

yielding modes containing dynamically significant structures.

In this thesis work, a data-based decomposition method referred to as the dynamic

mode decomposition(DMD) will be discussed and applied to synthetic data, that attempts

to extract dynamic information from the data without depending on the availability of

a model, but instead is based on a sequence of snapshots of data. DMD method can

be applied equally well to numerically generated and experimentally measured data. A

brief description of the underlying idea of this method and related applications will be

discussed. Few example cases will be analyzed to demonstrate the potential of this tech-

nique.
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1.1 A brief history

Introduced in the fluid mechanic’s community, Dynamic Mode Decomposition(DMD)

traces its origins to Bernard Koopman in 1931 and be a particular case of Koopman

theory. Initially, DMD was used to analyze the time evolution of fluid flows. In recent

years DMD has quickly gained its popularity and has emerged as a significant tool for

analyzing dynamics of nonlinear systems. When we see DMD in the last few years alone,

it has made immense progress in both theory and application. When we look into the the-

ory of DMD, it has seen innovations around compressive architectures, multi-resolution

analysis, and de-noising algorithms. DMD has not only made its progress in fluid dy-

namics, but also it has been applied to new domains such as neuroscience, epidemiology,

robotics, and the current application of video processing and computer vision. In the

latter part, there will be a brief discussion on applications of DMD on different domains

to understand the potential of DMD.

The dynamic mode decomposition(DMD) is an equation-free, data-driven matrix de-

composition method. This method can provide accurate reconstructions of coherent

spatiotemporal structures arising in nonlinear dynamical systems or short-time future

estimates of such systems. The DMD method offers a regression technique for the least-

square fitting of snapshots to a linear dynamical system. Dynamic mode decomposition

approximates the modes of the Koopman operator, which is a linear, infinite-dimensional

operator that represents nonlinear, infinite-dimensional dynamics without linearization

and is the adjoint of the Perron-Frobenius operator. The method can be viewed as com-

puting eigenvalues and eigenvectors of a linear model that approximates the underlying

dynamics, even if those dynamics are nonlinear. Unlike Proper Orthogonal Decomposi-

tion(POD) and balanced POD, this decomposition yields growth rates and frequencies

associated with each mode, which can be found from the magnitude and phase of each
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corresponding eigenvalue. If the data generated by a linear dynamical operator, then the

decomposition recovers the leading eigenvalues and eigenvectors of that operator. If the

data generated is periodic, then the decomposition is equivalent to a temporal discrete

Fourier transform (DFT).

Describing a nonlinear system by a superposition of modes whose dynamics are gov-

erned by eigenvalues may seem dubious at first place. After all, one needs a linear operator

to talk about eigenvalues. However, we can see in (Tu, Rowley, Luchtenburg, Brunton, &

Kutz, 2013) that DMD is closely related to a spectral analysis of the Koopman operator.

The Koopman operator is a linear but infinite-dimensional operator whose modes and

eigenvalues capture the evolution of observables describing any (even nonlinear) dynam-

ical system. The use of its spectral decomposition for data-based modal decomposition

and model reduction was proposed first in (Mezić, 2005). DMD analysis can be a nu-

merical approximation to Koopman spectral analysis, and it is in this sense that DMD

applies to nonlinear systems. In fact, the terms DMD mode and Koopman mode are

often used interchangeably in this literature.

1.2 Examples

1.2.1 Foreground and background separation using DMD

As the demand for the accurate and real-time video surveillance techniques increases. The

algorithms that can remove background variations in a video stream are at the frontline

of modern data-analysis research. Most of the modern computer vision applications re-

quire algorithms to be implemented in real-time and that are robust enough to handle

diverse, complicated, and cluttered backgrounds. A variety of iterative techniques and

methods have already been developed to perform background/foreground separation. In

this paper(Grosek & Kutz, 2014), the authors introduce the method of dynamic mode

decomposition (DMD) for robustly separating video frames into the background (low-
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rank) and foreground (sparse) components in real-time. Also, using the Advanced Video

and Signal based Surveillance (AVSS) Datasets, specifically the Parked Vehicle - Hard

and Abandoned Bag -Hard videos, the DMD separation procedure is compared and con-

trasted against the RPCA procedure.

In this application, the data matrix for DMD consists of snapshots of video frames. As

video frames are 2D by nature, they are reshaped into 1D column vector and united into

a single data matrix X. Applying DMD to this dataset yields oscillatory time compo-

nents(DMD modes and eigenvalues) that have contextual implications. The DMD modes

that are near the origin are the stationary background pixels as they represent dynamics

that are unchanging or changing slowly or low-rank components of the data matrix X.

In constrast the DMD modes that are bounded away from the origin are faster and rep-

resent the foreground motion in the video or the sparse components of the data matrix.

When RPCA algorithm is applied to data matrix, it perfectly separates the given data X

according to X = L+S, where L has a low-rank, and S is sparse. The low-rank matrix L

will yield the video of just the background, and the sparse matrix S will yield the video of

the moving foreground objects. The DMD method can attempt to reconstruct any given

frame, or even possibly future frames, by calculating xDMD(t) at the corresponding time

t. The AVSS video stream data is analyzed individually using both the RPCA and DMD

methods.

Frame numbers 500, 1000, and 2000 of the entire video stream is depicted in Fig-

ures 1.1 and 1.2, along with their separation results for easy comparison. DMD method

seems to eliminate more spurious pixels in its sparse results that may pertain to the back-

ground when compared to the RPCAs sparse results. When the dataset contains various

motions, such as walking, standing, and sitting thier shadows are relevant in this video

because they do move with their respective foreground objects, and tend to change the

background significantly enough to be viewed as extensions of the moving objects them-

selves. The RPCA and DMD methods struggle with the dataset of this kind, but DMD
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Figure 1.1: The results for DMD and RPCA background/foreground separation are il-
lustrated for 3 specific frames in the Parked Vehicle video. The 30 frame video segment
that contains frame #500 has 3 vehicles driving in the same lane toward the camera. The
frame #1000 has a man stepping up to a crosswalk as a vehicle passes by, and a second
car in the distance, barely perceptible, starts to come into view. The frame #2000 has
3 vehicles stopped at a traffic light at the bottom of the frame with another 2 vehicles
parked on the right side of the road, and 5 moving vehicles, 2 going into the distance and
3 coming toward the vehicles waiting at the light, the last vehicle being imperceptible to
the eye at this pixel resolution: n = 11520.

method is generous in depicting these movement trails in its sparse results, while the

RCPA method is more conservative. The RPCA and DMD methods have a comparably

good background/ foreground separation results but the real difference in effectiveness

between the RPCA and DMD algorithms is found in the amount of computational time

needed to complete the background/foreground separation. From the results, it was clear

that the DMD method was about two to three orders of magnitude faster than its RPCA.

Finally, it was concluded that DMD method could be used for foreground/background

separation in videos with excellent computational efficiency. The results produced by

DMD method are on par with the quality of separation achieved with the RPCA method

for realistic video scenarios. But the results obtained by DMD were orders of magnitude

faster. When dealing with high-resolution images or many frames per video segment,
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Figure 1.2: The results for DMD and RPCA background/foreground separation are il-
lustrated for 3 specific frames in the Abandoned Bag video. The 30 frame video segment
that contains frame #500 has 3 people stepping slightly closer to an arriving train, and
another person walks behind a support pillar, toward the train in the upper right area of
the frame. The two people closest to the camera walk toward the bottom of the frame.
The frame #1000 has 4 people walking in different directions in the middle of the frame,
one of which comes out from behind a support pillar, while, farther down the platform, 2
people enter the train. The frame #2000 has a woman walk out from behind a support
pillar, moving to the left, and then turned somewhat toward the camera. The train is
moving and the man sitting closest to the support pillar adjusts his backpack.

working with DMD and RPCA can be problematic because of limited memory size and

reduced computational speed.

1.2.2 DMD on infectious Disease data

There is a rapid increase in surveillance systems for infectious disease, capacity for dig-

ital storage and computational resources. A stronger understanding of the underlying

process of infectious disease spread becomes vital to fight against the spread of infectious

disease in the human population. This paper (Proctor & Eckhoff, 2015), demonstrates

has how the DMD method can help in the analysis of infectious disease data. DMD

method is used on three different infectious disease sets including Google Flu Trends
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data, pre-vaccination measles in the UK, and paralytic poliomyelitis wild-type-1 cases in

Nigeria. After applying DMD to this datasets, the dynamic modes obtained describe how

spatial locations are related. Each element in a single dynamic mode has two essential

pieces of information. First being the magnitude of the element(absolute value) provides

a measure of the spatial locations participation in the mode. Second is the angle between

the real and imaginary component of the element provides a measure of a locations phase

of oscillation relative to others for that modes frequency.

Figure 1.3: Example1: Google Flu data and output of DMD

The first example of infectious disease data for DMD analysis is obtained from Googles

Flu Trends tool. This tool provides data for every seven days. Also, data for DMD anal-

ysis is focused solely on the state information to visualize every element of the dynamic

mode on the map of the US. In figure 1.3, four traces of the raw from Alaska (black),

California (red), Texas (green) and New York (blue) are shown for comparison. In figure

1.3 the output of DMD is shown to the right of the data visualizations. The eigenvalue

spectrum indicates some modes that are within the unit circle meaning fast decaying

eigenvalues and modes that do not contribute to the broader structure of the dynamics.

The phase of the dynamic mode associated with the one-year frequency is plotted on the

7



US map.

Figure 1.4: Example2: Pre- vaccination measles data and output of DMD

In the second example, DMD analysis is performed on infectious disease data-set of

pre-vaccination measles cases in the UK. In figure 1.4, four traces of the raw data or

unprocessed data from four cities in the UK: London(black), Liverpool (red), Colchester

(green) and Cardiff (blue), are shown for comparison. In the dataset, sixty cities have

been included, and first 10years data is used for DMD analysis. DMD output is shown on

the right-hand side of figure 1.4. Individual markers are placed down at each citys lati-

tude and longitude with the color indicating the phase. The phase differences for measles

in the UK span a larger range than theGoogles Flu case. For example, the difference

between London and Warrington is approximately 0.39, almost five months.

The final example involves the analysis of data about wild-type1 polio paralytic cases

from Nigeria. The figure 1.5 shows raw data and visualization of all of the sub-province

(LGA) level spatial divisions. The four LGAs plotted are Kano (black), Katsina (red),

Akko (green), and Funakaye (blue). Here for DMD analysis, they focus on 5-years of

data and considers LGAs with more than five cases. The output of the DMD analysis

is shown to the right of the data visualizations. When the eigenvalue spectrum of this

8



Figure 1.5: Example3: Type 1 paralytic polio data and output of DMD

case is compared to the eigenvalue spectrum of last two cases, it is different and having

more eigenvalues near the unit circle and evenly spaced. This is characteristic of a signal

decomposition with a broad frequency content.

1.2.3 DMD on neural recordings

In this paper (Brunton, Johnson, Ojemann, & Kutz, 2016), Dynamic mode decomposi-

tion(DMD) was applied to a large dataset containing neural recordings to analyze the

large-scale data. In this case, data is obtained from tens or thousands of electrodes simul-

taneously recording dynamic brain activity over minutes to hours. So the neuroscience

community requires this big data to be understood and visualized. The dynamic data

acquired from the recording of neural activity are characterized by coherent patterns

across both space and time. Here DMD method is validated on sub-dural electrode ar-

ray recordings from human subjects performing a known motor activation task. Also,

DMD in combination with machine learning is used to develop a method to extract sleep

spindle networks. Dynamic mode decomposition is a robust method which can be used

in the analysis and interpreting of large-scale recordings of neural activity. Few distinct

patterns describe the activity of the complex networks of neurons. Identifying these
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spatial-temporal patterns helps in the reduction of complex measurements. The reduc-

tion can be made by projecting onto coherent structures and therefore it gets easier to

build dynamical models and apply machine learning tools for pattern analysis.

Figure 1.6: An illustration of coupled spatial-temporal modal decomposition by DMD
applied to a 500 msec window of 45-channel ECoG data sampled at 200 Hz. The raw data
X (black traces in ’a’) is approximated as ˆX(t) (blue traces in a). Voltages are shown
in normalized units. ’b’ shows that X̂ is the product of spatial modes Φ and temporal
eigenvalues Λt. ’c’ shows the decrease in reconstruction error as more modes are included
in a truncated, low-rank DMD basis.

The Dynamic mode decomposition’s applicability to large-scale neural recordings is

demonstrated by analyzing sub-dural electrode array recordings from human subjects

in two different contexts. First, DMD is used to derive sensorimotor maps based on a

simple movement task. Next, DMD in combination with machine learning techniques is

used to detect and characterize spindle networks present during sleep. In neuroscience,

we are often interested in electrode arrays that have tens of channels sampled at hun-

dreds of samples per second, so for a data matrix X over a one-second window of data,
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n < (m − 1). Where n is the number of observable locations, and m is the number of

snapshots in time. For instance, these measurements may be voltages from n channels of

an electrode array sampled every ∆t. As the data matrix is n < (m− 1) the application

of the DMD algorithm to arrays of large-scale recordings of neuronal activity may re-

quire an adaptation to the normal procedure. The modified versions of the data matrices

are constructed, appending to the snapshot measurements with time-shifted versions of

themselves, thus augmenting the number of channels to be hn. For our multichannel

recordings, smallest integer h is chosen so that hn > 2M .

In the first case of sensorimotor mapping, DMD was analyzed on datasets recorded

from sub-dural electrode arrays implanted in two patients monitored for seizure localiza-

tion. To verify DMD approach to spatial-temporal pattern analysis sensorimotor maps

were derived based on a simple motor repetition task where the subjects were instructed

to move either their tongue or the hand contralateral to the implanted electrode array.

An analysis of DMD spectrum was performed and derived motor maps of the tongue

and hand movements that are firmly consistent with some of the previously described

results. DMD spectra were computed for each epoch of the motor screen, and DMD

modes within a low frequency band (8 to 32 Hz) and a high-frequency band (76 to 100

Hz) were averaged to derive mean modes in each band. In the second case, DMD was

used to extract and identify sleep spindle networks in human ECoG recordings. DMD

spectra of windowed ECoG data is used in the extraction of spindle network. The DMD

modes corresponding to larger than expected power in the spindle band (11 to 17 Hz)

were collected in a library, whose elements were then clustered to determine stereotypes

of the spindle networks in the recording. Each spindle network stereotype represents the

strength of spatial correlations between electrodes and may be visualized on a grid of

electrode location.
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Figure 1.7: A summary of how spindle networks were extracted based on the DMD
spectra of windowed ECoG data. DMD spectra were computed for windows of raw data,
and DMD modes in the spindle band (11 to 17 Hz, gray) whose power significantly
exceeded the expected 1/fα distribution (blue lines) were extracted and gathered into L.
This library L was then clustered using a Gaussian mixtures model to discover distinct
spindle networks, and the centroids of these clusters were stereotypes of spindle networks
that could be visualized on the ECoG grid. Each spindle network represented correlated
groups of electrodes with activity in the spindle band.

Finally, this paper presented the novel adaption of a modal decomposition technique

known as dynamic mode decomposition (DMD) to analyze and visualize large-scale neu-

ral recordings. The neural recordings are often characterized by coherent patterns of

activity in space (across many channels) at multiple temporal frequencies. Thus this pa-

per demonstrated how DMD could be used to extract the coherent patterns in the data.

This extraction through DMD was validated on a simple motor task where selective and

separable regions of sensorimotor cortex were identified. Later it was used to detect and

analyze sleep spindle networks from large-scale human ECoG recordings.
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Chapter 2

Dynamic Mode

Decomposition(DMD)

2.1 DMD Related Decomposition and Techniques

2.1.1 Arnoldi Method

The Arnoldi Method makes use of iterative schemes to extract global stability modes.

The large stability matrices which are a result of global stability analyses for flows in

complex geometries have put forward considerable strain on computational resources. It

becomes costly to use direct methods, the method of choice for simple problems, and

iterative schemes have thus to be employed to extract the global stability modes.The

Arnoldi Method has been particularly successful in this respect.In this method, reduction

of the high-dimensional System matrix is obtained by projecting it on a lower-dimensional

subspace know as Krylov subspace. In this way, we can make an efficient computation of

the dominant eigenvalues and corresponding eigenvectors of the full system.

Basic Arnoldi algorithm

Let’s say we have a square matrix A of order n if Arnoldis method is carried out for n

steps then an Orthogonal reduction to Hessenberg form is achieved, AV = V H. Where

H is an upper Hessenberg matrix of order n with positive sub-diagonal elements, and V
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is an orthogonal matrix. The first column of V uniquely determines the matrix V and

H, a unit-norm vector v1 = V e1 that is called the initial vector. For some initial vectors,

Arnoldis method fails after m steps, and in that case, the algorithm produces an nxm

matrix Vm with orthogonal columns and an upper Hessenberg matrix of order m, Hm,

that satisfy:

AVmVmHm = 0

Basic Algorithm(Saad, 1992)

Input: Matrix A, number of steps m, and initial vector v1 of norm 1

Output: (Vm, Hm, f, β) so that AVmVmHm = fe∗m, β =‖f‖2

For j = 1, 2, ...,m− 1

w = Avj

Orthogonalize w with respect to Vj (obtaining h1:j,j

hj+1,j =‖w‖2

If hj+1,j = 0, stop

vj+1 = w/hj+1,j

end

f = Avm

Orthogonalize f with respect to Vm (obtaining h1 : m,m)

β =‖f‖2.

In practical situations, the number of steps m, required to obtain good approxima-

tions may be too large. When the number of steps m is too large, it results in storage

problems, and also the computational cost grows in every step. Moreover, the Arnoldi

Method is based on a QR decomposition resulting in a Hessenberg matrix H, in which

eigenvalues represent or approximate the eigenvalues of the linear operator system matrix

A. This results in a stable algorithm, in which the system matrix A should be known. In

physical experiments, this system matrix A is not available. DMD can be interpreted as

an extension of the classical Arnoldi algorithm used to determine eigen-elements of large

size problems.
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2.1.2 Principal Component Analysis(PCA)

Principal Component Analysis (PCA) is a dimensionality-reduction technique that is used

to transform a high-dimensional dataset into a low-dimensional subspace, i.e., into a new

coordinate system. It is a way of identifying patterns in a high dimensional data. In

simplest terms, we can define PCA has a method to transforms the original interrelated

variables into a new set of uncorrelated variables called Principal Components. In the

new coordinate system, the first axis corresponds to the first principal component, which

is the component that explains the highest amount of the variance in the data. Here

variance is defined as the amount of information expressed by each principal component.

Necessary steps to compute PCA are as follows:

1. Data acquisition. Typically, a number of measurements are collected in a single

experiment, and these measurements are arranged into a row vector.

2. Subtracting the Mean. For proper functioning of PCA, we have to subtract the

mean from each of the data dimensions. This produces a data set whose mean is

zero.

3. Calculate the Covariance Matrix.

4. Calculate the Eigenvectors and Eigenvalues of the covariance matrix.

5. Choosing principal components and forming a feature vector.

Lets say the original dataset has two variables, x1 and x2 with the data spread as

shown in the figure 2.1a. Principal components are calculated using PCA, and the first

principal component explains the highest amount of variance. The line in the figure 2.1b

signifies the first principal component. Here we have the 2D data, and if we need to

reduce the data to 1D, then we project the data onto first principal component as shown

in the figure 2.1c (Hamilton, 2014 (accessed April 10, 2018)).
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(a) (b)

(c) (d)

Figure 2.1: 2.1a:Represents 2D data. 2.1b: First principal component. 2.1c:Projecting
Data. 2.1d:Data after projection.

The eigenvalues are ordered from largest to smallest so that it gives us the compo-

nents in order of significance. Here comes the dimensionality reduction part. If we have a

dataset with n variables, then we have the corresponding n eigenvalues and eigenvectors.

It turns out that the eigenvector corresponding to the highest eigenvalue is the principal

component of the dataset and it is our call as to how many eigenvalues we choose to pro-

ceed our analysis with. To reduce the dimensions, we choose the first p eigenvalues and

ignore the rest. We do lose out some information in the process, but if the eigenvalues

are small, then the information lost is negligible.

Mathematically, the principal components are the eigenvectors of the covariance ma-

trix of the original dataset. The covariance matrix is symmetric; the eigenvectors are

orthogonal. The principal components (eigenvectors) correspond to the direction (in the

original n-dimensional space) with the greatest variance in the data. Each eigenvector

has a corresponding eigenvalue. The larger eigenvalue corresponding to the eigenvec-
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tor(principal component) indicates that that principal component explains a large amount

of the variance in the data.

When it comes to applications, PCA is mainly used as a dimensionality reduction

technique in domains like facial recognition, computer vision, and image compression.

Also, it is used for finding patterns in data of high dimension in the field of bioinformat-

ics, finance, data mining, psychology, etc.

2.1.3 Singular Value Decomposition(SVD)

The singular value decomposition (SVD) is one of the most important matrix decompo-

sition technique of the computational era. Singular value decomposition is a stable and

efficient method, and this can be used to split the system into a set of linearly independent

components. With each component having their own energy contribution. Numerically

stable matrix decomposition can be obtained from SVD method and can be used in

various applications. Singular value decomposition is a numerical technique used to di-

agonalize matrices in numerical analysis. SVD can be seen from different points of view.

On the one hand, it can be viewed as a method for transforming correlated variables into

a set of uncorrelated ones that reveal the various relationships among the original data

items. Also, SVD can be seen as a method which identifies and organizes the dimensions

along which data points exhibit the most variation. This leads to one more way of viewing

SVD, which is that once we have identified as where the most changes(variation) are, then

we can find the best possible approximation of the original data points using very few

dimensions. Hence, SVD can be seen as a method for data reduction. The SVD method

will provide a foundation for many other techniques including classification methods, the

Proper orthogonal decomposition (POD) and the Dynamic mode decomposition (DMD).

The Singular Value Decomposition is a data-driven method in which patterns are

discovered purely obtained from the data, without the addition of any expert knowledge
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or intuition. This technique is helpful in determining the dominant patterns underlying

a high-dimensional system. The low-rank approximation for high-dimensional data can

be made using SVD. The SVD may be thought of as a numerically stable computation

that provides a hierarchical representation of the data regarding a new coordinate sys-

tem defined by dominant correlations within the data. The SVD has many applications

beyond dimensionality reduction of high-dimensional data. It is useful in computing the

pseudo-inverse of non-square matrices, Face recognition, providing solutions to underde-

termined or overdetermined matrix equations that are either minimum norm solutions

or solutions that minimize the sum-squared error. Also, SVD is used in a principled

approach to de-noising data sets. The SVD is also essential to characterize the input and

output geometry of a linear map between vector spaces.

Definition

Let’s consider a large data set X:

X =


| | . . . |

x1 x2 . . . xm

| | . . . |

 (2.1)

Where x1, x2...., xm are the column vectors and may represents measurements from

simulations or experiments. For example, In DMD case columns may represent images

that have been reshaped into column vectors with the number of elements equal to the

number of pixels in the image. The column vectors may also represent the state of a phys-

ical system that is evolving in time, such as the fluid velocity at each point in a discretized

simulation or each measurement location in a wind-tunnel experiment. The index r is

a label indicating the rth distinct set of measurements. Often the state-dimension n is

vast, on the order of millions or billions in the case of fluid systems. The columns are

usually called snapshots, and m is the number of snapshots in X. For many systems

nxm, resulting in a tall-skinny matrix, as opposed to a short-fat matrix when n << m.
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SVD breaks a nxm matrix A into three matrices U , Σ and V such that

A = UΣV ∗

. The matrix U is a nxr orthogonal matrix whose column vectors are called the left

singular vectors of A, V is a rxm orthogonal matrix whose column vectors are the right

singular vectors of A, and Σ is a rxr diagonal matrix having the singular values of A

ordered decreasingly. Columns of U form an orthogonal basis for the column space of A.

Since only the first r concepts can be considered are semantic important (the singular

values are high), we can approximate the decomposition as:

A = UrΣrV
∗
r

where Ur contains the first r most important concept vectors, Σr contains the respec-

tive singular values and ΣrVr contains the pseudo-document vectors represented using

the first r concept vectors. In other words, by SVD the original m-dimensional vectors

are projected into a vector space of dimension r(r << m). The SVD approximation

(so-called rank-r SVD) can be created either by trimming the full-SVD matrices or by

usage of a special method designed to perform directly the rank-r SVD.

Theorem (SVD): Let A be an mxn rank-r matrix. Be σ1, ....., σy eigenvalues of a

matrix
√
AAT . There exist orthogonal matrices U = (u1, .....ur) and V = (v1, ....., vr),

whose column vectors are orthonormal, and diagonal matrix Σ = diag(σ1, ....., σr). The

decomposition A = UΣV T is referred to as a singular value decomposition of matrix A

and numbers σ1, ...., σr are singular values of the matrix A. Columns of U(orV ) are re-

ferred to as left (or right) singular vectors of matrix A. Now we have a decomposition of

the original matrix A. Needless to say, the left and right singular vectors are not sparse.

We have at most r nonzero singular numbers, where rank-r is the smaller of the two

matrix dimensions. Because the singular values usually decrease quickly, we only need to

take k greatest singular values and corresponding singular vector coordinates and create
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a r-reduced singular decomposition of matrix A.

Definition: Let us have r, 0 < k < r and SVD of A.

A = UΣV T = (UrU0)

Σr 0

0 Σ0


V T

k

V T
0


A = UrΣrV

T
r is referred to as a r-reduced SVD (rank-r SVD).

Figure 2.2: Singular Value Decomposition.

Image Source (Shang-Hua, 2015(accessed April 10, 2018))

Truncation and hard thresholding

Truncation is an essential factor to consider when dealing with singular value decompo-

sition. Deciding on how many singular values to retain, i.e., where to truncate, is one of

the most critical and contentious decisions when using the SVD. There are many factors,

including specifications on the desired rank of the system, the magnitude of noise, and
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the distribution of the singular values. Often, one truncates the SVD at a rank r that

captures a pre-determined amount of the variance or energy in the original data, such

as 90% or 99% truncation. This is the commonly used technique for truncation. Other

methods involve identifying elbows or knees in the singular value distribution, which may

denote the transition from singular values that represent important signal from those that

represent noise (Brunton-Kutz-Proctor, 2015(accessed April 10, 2018)). Truncation may

be viewed as a hard threshold on singular values, where values greater than a threshold

t are kept while remaining singular values are cutoff. Recent work provides an opti-

mal truncation value, or hard threshold, under certain conditions providing a principled

approach to obtaining low-rank matrix approximations using the SVD.

2.2 Mathematical Introduction to DMD

The DMD algorithm highlights its connections to the Arnoldi algorithm and Koopman

operator theory as initially it was formulated regarding a companion matrix. Here math-

ematical introduction of an SVD-based DMD algorithm is presented which is more nu-

merically stable, and is now generally accepted as the defining DMD algorithm.

2.2.1 Algorithm

Consider the data obtained from n observable locations at times k∆t, where the data at

single snapshot k is saved into a single column vector xk and this is done for every time

step k.

Assuming that the data being generated by linear dynamics and collecting data from m

snapshots in time, we may construct two data matrices X1 and X2 as follows:

X1 =


| | . . . |

x1 x2 . . . xm−1

| | . . . |

 (2.2)
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X2 =


| | . . . |

x2 x3 . . . xm

| | . . . |

 (2.3)

Where X2 is the time-shifted matrix and since we assume that the data is generated

from linear dynamics we can write:

X2 = AX1 (2.4)

The matrix A is referred to as the linear operator or Koopman operator and therefore

the approximating operator A can be defined as:

A = X2X
†
1 (2.5)

where † is the Moore-Penrose pseudoinverse. DMD is defined as the eigenvalue anal-

ysis of the Matrix A, decomposed into eigenvalues Λ and eigenmodes Φ . Also when we

apply DMD algorithm to the data which is generated by nonlinear dynamics, then we

assume that there exists an operator A that approximates those dynamics. The DMD

eigenvalues Λ and modes Φ is expected to approximate the eigenvectors and eigenvalues

of A.

To obtain the approximation of A, it requires the pseudoinverse of X1 to be solved.

An efficient and accurate way to solve the pseudoinverse is by using the singular value

decomposition(SVD). SVD of the matrix X1 is given by the relation:

X1 = UΣV ∗ (2.6)

The matrix U is orthogonal and contains POD modes. And Σ is a diagonal matrix,

where the diagonal values represent the contribution of each mode.Also matrix U and V

are unitary matrices.
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When the Matrix A is large, computing the eigendecomposition of the matrix A may

become very expensive. So we solve the eigenvalue problem for the matrix Ã which is an

approximation to matrix A. The approximation matrix Ã can be found using equations

2.5 and 2.6 and by truncating the SVD of matrix X1 to r singular values.

AX1 = X2

U∗AX1 = U∗X2

U∗A(UΣV ∗) = U∗X2

U∗AUΣV ∗ = U∗X2

U∗AU = U∗X2V Σ−1

Ã = U∗X2V Σ−1

In the next section eigendecomposition of Ã will be solved. By solving the eigenvalue

problem of Ã, one can approximate the eigenvalues of (unknown) matrix A.

2.2.2 Eigendecomposition

The eigenvalues of the matrix Ã represents the inter-snapshot of Propagation Matrix’s A

dynamics(promotor De Mulder, 2016 (accessed April 10, 2018)). This eigenvalue problem

of Ã is characterised by relation:

Ãyi = Λiyi (2.7)

Y −1ÃY = M (2.8)

where Y = [y1, y2.....ym], Λi and Φi are the eigenvalues and eigenmodes, stored in

Eigenvalue Matrix M(diagonal matrix).
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Transforming the eigenvalue problem to Matrix Ã results in the following relation:

Ãyi = (U∗AU)yi = Λiyi

Y −1ÃY = Y −1(U∗AU)Y = M

Or

A(Uyi) = Λi(Uyi) (2.9)

A(UY ) = (UY )M (2.10)

From the equation 2.9 the eigenvectors of the Matrix A are clearly identifi

ed as Φi = Uyi. Hence, dynamic eigenmodes are constructed by Eigenmode Matrix

UY = Φ and the eigenvalue problem is thus rewritten as:

Φ−1AΦ = M

These constructed eigenvectors Φi = (UY )i or dynamic modes are expressed in the POD-

basis of X1 and are characterized by their eigenvalues Λi. In fact these eigenvectors Φi

and corresponding eigenvalues Λi are an approximated eigenpair of the system matrix A.

Hence, the obtained eigenvectors and eigenvalues are only an approximation. Moreover

it is stated that the lower eigenvalues are approximated from the right hand side, while

the higher eigenvalues are approximated from the left hand side.

2.2.3 Reconstruction

By this step, we have calculated the eigenvalues Λi and eigenmodes Φi . It is known that

the eigenvectors Φi represent the spatial distribution and eigenvalues Λi represent the dy-

namical behavior in time, intrinsic to the considered data field. Moreover, it is possible
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to reconstruct the data field based on the eigenmodes and eigenvalues. More specifically,

the reconstruction takes the form of a linear combination of spatial eigenmodes Φi, eigen-

values Λi and an initial amplitude. The end result of this linear combination is given in

equation below:

X̂(t) = Φexp(Ωt)z (2.11)

Where Ω = log(Λ)/∆t is the continuous time eigenvalue, t is time and z is the set of

weights to match the first time point measured such that x1 = Φz.

The Standard DMD and Exact DMD algorithms are summarized as follows(Tu et al.,

2013)

Algorithm1: Standard DMD

1. Arrange the data [x1, x2....., xm] into two matrices

X1 = [x1, x2, ....., xm−1] X2 = [x1, x2, ....., xm]

2. Compute the Singular value Decomposition(SVD) of X1, writing

X1 = UΣV ∗

where U is nxr, Σ is diagonal and rxr, V is mxr, and r is the truncated value.

3. Define the matrix Ã as

Ã = U∗X2V Σ−1

4. Compute eigenvalues and eigenvectors of Ã

Ãy = Λy

5. The DMD mode corresponding to the DMD eigenvalue Λ is then given by

Φ = Uy

In Algorithm 1 the data is assumed to be a sequential set of data vectors. Whereas in

case of Algorithm 2 there is no such restriction, instead we consider data pairs (x1, y1), .......(xm, ym).

In this case, we define data matrices as follows.
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X =


| | . . . |

x1 x2 . . . xm

| | . . . |

 (2.12)

Y =


| | . . . |

y1 y2 . . . ym

| | . . . |

 (2.13)

To relate this method to the standard DMD procedure, we may assume that:

yk = Axk

For the data set arranged as data pairs A is given by,

A = Y X†

Where X† is the pseudoinverse of X. The dynamic mode decomposition of the data pair

(X, Y ) is given by the eigendecomposition of A. That is, the DMD modes and eigenvalues

are the eigenvectors and eigenvalues of the matrix A.

Algorithm2: Exact DMD

1. Arrange the data pairs [(x1, y1), ...(xm, ym)] into matrices X and Y , as

X = [(x1....xm)] Y = [y1....ym]

2. Compute the Singular value Decomposition(SVD) of X1, writing

X1 = UΣV ∗

where U is nxr, Σ is diagonal and rxr, V is mxr, and r is the truncated value.

3. Define the matrix Ã as

Ã = U∗X2V Σ−1

4. Compute eigenvalues and eigenvectors of Ã

Ãy = Λy
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5. The DMD mode corresponding to Λ is then given by

Φ = (1/Y )V Σ−1y

Algorithm 2 is almost identical to Algorithm 1. The only difference lies in the way

that the DMD modes are defined. The eigenvectors with Λ = 0 can also be found using

Algorithm2, but DMD modes corresponding to zero eigenvalues are usually not of interest

since they do not play a role in the dynamics.
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Chapter 3

Testing Examples for DMD

3.1 Interpretation of DMD modes and Eigenvalues

During the analysis of DMD, the fundamental part is to understand the DMD modes

and Eigenvalues. In this section, the interpretation of DMD results is presented.

3.1.1 Interpretation of DMD Modes Φ

The DMD modes or Eigenvectors Φ represent the spatial distributions proper to the

system or data field. These spatial modes are separated patterns on which the data is

decomposed. This is important to estimate the influence range, the spatial distribution,

or magnitude of the specific mode. The DMD modes Φ are also scaled by an amplitude

z which can be seen in 2.11, which is retrieved from the decomposition. This amplitude

is important to determine which mode is more dominant, or in other words, which mode

is more represented in the decomposition. The amplitude gives quantitative information

about the presence of a specific mode.

3.1.2 Interpretation of DMD Eigenvalues Λ

The DMD Eigenvalues Λi are the discrete eigenvalues, and they represent the temporal,

dynamical behavior of their corresponding DMD mode Φi. To interpret the temporal be-

havior, the eigenvalues Λ are transformed to an equivalent continuous-time eigenvalues Ω
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or also called exponential eigenvalues. The spectrum plot of the eigenvalues Λ is realized

by a complex valued Cartesian coordinate system, which is called the complex plane. The

DMD eigenvalues Λ are in the vicinity of the unitary circle. The unitary circle itself rep-

resents stable or stationary flow structures. DMD modes or Eigenmodes corresponding

to eigenvalues inside the circle are decaying modes, Eigenmodes corresponding to eigen-

values outside the circle is growing modes, and Eigenmodes corresponding to eigenvalues

on the circle are stable modes. The interpretation of continuous-time eigenvalues Ωi is

discussed in the next section.

3.1.3 Interpretation of continuous-time Eigenvalues Ω

As mentioned, the DMD eigenvalues Λ are transformed to continuous-time eigenvalues Ω.

This transformation is essential for the interpretation of the dynamical properties. The

continuous-time eigenvalues Ω can be easily interpreted by their corresponding real and

imaginary part respectively. First, the DMD eigenvalue Λ is converted to continuous-time

eigenvalue Ω using the equation 3.1

Ω = log(Λ)/∆t (3.1)

This results in a complex value Ω = β + jω.

eΩt = e(β+jω)t

eΩt = eβt(cos(ωt) + jsin(ωt))

eΩt = eβtcos(ωt) + jeβtsin(ωt) (3.2)

• If β < 0, then it represents that the DMD mode is decaying.

• If β > 0, then it represents that the DMD mode is growing.

• If β = 0, then it represents that the DMD mode is oscillating.
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A sample of the spectrum plot for discrete Eigenvalues Λ and continuous-time Eigen-

values Ω is as shown in the Figure:3.1.

Figure 3.1: Spectrum plot of Eigenvalue Λ and Eigenvalue Ω

For better interpretation of the system dynamics, the time-evolution of eigenvalues Ω

are plotted. We can plot the eigenvalues Ω either by using the real or the imaginary part

of 3.2. A sample of the time-evolution is show in the Figure:3.2.

Figure 3.2: Time Evolution of Eigenvalues Ω
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The time-evolution plot shown in the Figure 3.2 is plotted for three different Eigen-

values Ω. Where,

Ω1 = −0.5004 + j12.4150

Ω2 = 0.0000− j5.3000

Ω2 = 0.1000− j5.8000

Every DMD mode will have its corresponding Eigenvalue(time dynamics). The DMD

mode corresponding to Ω1 will be decaying over time. This can be seen by the blue wave-

form in the Figure 3.2. The DMD mode corresponding to Ω2 will be oscillating over time.

This can be seen by the red waveform in the Figure 3.2. The DMD mode corresponding

to Ω3 will be growing over time. This can be seen by the green waveform in the Figure 3.2.

The temporal mode stability for discrete and continuous-time Eigenvalues is summa-

rized in the Table 3.1. Also, the Figure 3.1 is considered in summarizing this table.

Discrete-time

Eigenvalue Λ

Continuous-time

Eigenvalue Ω

Mode Evolution Spectrum plot

|Λ| < 0 <(Ω) < 0 Decaying Λ: Inside unit

circle,Ω: LHS of

straight line

|Λ| = 0 <(Ω) = 0 Oscillating Λ: On the unit

circle,Ω:On the

straight line

|Λ| > 0 <(Ω) > 0 Growing Λ: Outside unit

circle,Ω: RHS of

straight line

Table 3.1: Temporal Mode Stability
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3.2 CASE 1: DMD on Simple Data

DMD is an equation free modeling technique. The data required for DMD analysis in the

real world does not need to know the governing equations for the data. Here to generate

the synthetic data few equations were used. The primary purpose of testing this data

was to identify the underlying patterns in the data and to predict the dynamics of these

patterns over time. The coding was done in Matlab for all the cases and the code from

(Nthan Kutz Research Group, 2015(accessed April 10, 2018)) was used as a reference.

Generating Synthetic Data

The following three equations were used in generating testing data for case 1. These

three equations were added to obtain the final data matrix. This data serves as the input

for the case1 analysis.

Equation1 = (20− 0.2 ∗X2
m) ∗ exp(2.3j ∗ Tm)

Equation2 = Xm ∗ exp(0.6j + Tm)

Equation3 = 5 ∗ 1/cosh(Xm/2) ∗ tanh(Xm/2) ∗ 2exp((0.1 + 2.8j) ∗ Tm)

Where Xm and Tm are the space and time coordinates.

(a) (b)

Figure 3.3: 3.3a Visualizing Data, 3.3b Eigenvalue plot
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In the data provided for DMD, there were three dominant modes. After applying

DMD to this dataset, DMD was successful in determining those three dominant modes.

This can be seen in the eigenvalue plot shown in the figure 3.3b. The eigenvalues Λi

represent the temporal, dynamical behavior of their corresponding eigenmodes Φi. In

order to interpret the temporal behavior, the discrete eigenvalues Λi are transformed to

an equivalent continuous-time eigenvalue Ωi. The temporal evolution corresponding to

each mode is shown below.

(a) (b)

(c)

Figure 3.4: 3.4a:Temporal Evolution of Mode1, 3.4b:Temporal Evolution of Mode2, 3.4c:
Temporal Evolution of Mode3.

It can be seen clearly from the figure 3.4 that two out of three modes are oscillating and

one mode is growing over time. Thus DMD was successful in determining the underlying

patterns(modes) and their corresponding temporal evolution in the data.
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3.3 CASE 2: DMD on data set with modes oscillat-

ing at different frequency

In case2 analysis, DMD was fed with the data set having modes oscillating at a different

frequency. In this particular case, three modes oscillating at 0.5Hz, 2.5Hz and 5Hz were

generated. The purpose of testing this case was to check whether DMD can capture

these modes oscillating at the different frequency but having the same amplitude. After

applying DMD to this data set, DMD was able to recover those three modes with the

frequencies approximately equal to the original frequencies.

From the below figures, we can see that the reconstructed snapshots are similar to

the original data snapshots.

(a) (b) (c)

Figure 3.5: 3.5a: Data from 20th snapshot, 3.5b: Data from 250th snapshot, 3.5c: Data
from 800th snapshot

(a) (b) (c)

Figure 3.6: 3.6a: Reconstructed data from 20th snapshot, 3.6b: Reconstructed data from
250th snapshot, 3.6c: Reconstructed data from 800th snapshot

The continuous-time eigenvalues obtained for this particular case are: Ω1 = −0.1004+
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31.4150i, Ω2 = −0.1004+3.1427i, Ω3 = −0.1005+15.7078i Therefore giving the frequency

values of 4.9999Hz, 0.5002Hz, 2.5000Hz which are same as the original frequencies.The

temporal evolution of all three modes are as shown in the below figures and all three

modes are decaying over time.

(a) (b)

(c)

Figure 3.7: 3.7a: Temporal Evolution of Mode1, 3.7b: Temporal Evolution of Mode2,
3.7c:Temporal Evolution of Mode3.

Thus in case 2 analysis, DMD was successful in capturing the three modes oscillating

at different frequencies, and the reconstructed data almost approximated the original

data. Also, time dynamics for these modes is shown in the figure 3.7.
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3.4 CASE 3: DMD on data with Circle growing and

decaying

In the case3 analysis, DMD is applied to two different datasets. The first dataset consists

of a single mode which will be strictly growing over time. Also, the second dataset

consists of single mode which is decaying over time. In both the cases, there was no

frequency content. The data visualization for the circle growing and decaying is shown

in the figure. In both the cases its quite hard to identify the pattern visually, as they

appear to be similar.

(a) (b)

Figure 3.8: 3.8a: Temporal Evolution of Growing circle case, 3.8b: Temporal Evolution
of decaying circle case

Figure 3.9: Visualizing data for growing and decaying circles
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When DMD was applied to both the data sets, DMD was able to identify a single

dominant mode in each case. The continuous-time eigenvalue in both the cases were real

numbers. After plotting their respective time behavior; it showed the underlying patterns

which were growing and decaying over time.

3.5 CASE 4: DMD on Linear-Motions

If we observe, we will find that everything in the universe is in motion. However, dif-

ferent objects move differently. Some objects move along a straight line, some move in

a curved path, and some move in some other way. In the translational motion, a body

moves along a line without any rotation. The line may be straight or curved. Translatory

motion is further divided into Rectilinear motion, curvilinear motion and random motion.

A simple dataset with Rectilinear and Curvilinear motion of an object(solid circle)

was generated. DMD was applied to this dataset to figure out whether DMD can be used

for classification of different motion patterns.

3.5.1 Rectilinear Motion

In case of rectilinear motion, the object was made to move along the vertical, horizontal

and diagonal path. In each case, the object was made to move at different speeds from

snapshot to snapshot. Later DMD was applied to each case to observe the reconstruction

of the dataset.

Generating synthetic Data

When generating the dataset for horizontal movement of the object(circle), the cen-

terY was kept constant varying the centerX from snapshot to snapshot. Also to get the

object move at different speed(N), the value of N was chosen for each case. The equation

that was used to get centerX for each snapshot is shown below:

centerX = (N ∗ SnapshotNumber)/imageSizeX
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Next, the dataset for vertical movement of the object(circle) was generated by keeping

the centerX constant and varying the centerY from one snapshot to other snapshot. Even

in this case to get the object move at different speed(N), the value of N was chosen for

each case. The equation that was used to get centerY for each snapshot is shown below:

centerY = (N ∗ SnapshotNumber)/imageSizeY

Finally for generating the dataset for diagonal movement of the object both centerX

and centerY was varied from snapshot to snapshot. The equation that was used to get

centerX and centerY for each snapshot is shown below:

centerX = (N ∗ SnapshotNumber)/imageSizeX

centerY = (N ∗ SnapshotNumber)/imageSizeY

In the figure 3.10, the first column shows the reconstructed data for the object moving

horizontally from slow (3.10a)to fast(3.10j) pace. The second column represents the re-

constructed data for the object moving vertically from slow(3.10b) to fast(3.10k) pace.

The third colum represents the reconstructed data for the diagonal case. For all these

cases the SVD value was truncated to r = 10.

Also, when we compare the results in the first row to the last row in the figure 3.10

we can see that the reconstructed data improves to approximate the original data for all

the three cases. Thus DMD will require the larger number of modes to reconstruct the

original data at lower speeds.

In the below figures the reconstructed data at different speeds for all the three cases

with SVD truncation r = 10 is shown.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.10: 3.10a,3.10d,3.10g,3.10j: Reconstructed data for horizontal case from slow to
fast pace. 3.10b,3.10e,3.10h,3.10k:Reconstructed data for vertical case from slow to fast
pace. 3.10c,3.10f,3.10i,3.10l:Reconstructed data for diagonal case from slow to fast pace.
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The eigenvalue plot at different speeds for the case of rectilinear motion is as shown

below.

(a) (b)

(c) (d)

(e)

Figure 3.11: 3.11a to 3.11e: EigenValue plot for rectilinear motion from slow to fast
motion
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3.5.2 Curvilinear Motion

In case of curvilinear motion, the object was made to traverse along the circular path. In

each case, the object was made to move at different speeds from snapshot to snapshot.

Later DMD was applied to each case to observe the reconstruction of the dataset.

Generating synthetic data When generating the dataset for the curvilinear motion,

the centerX and centerY values were obtained for each snapshot using the following set of

equations. Also to get the object move at different speed(N), the value of N was chosen

for each case.

centerX = ImageCenter + (rotatingradius ∗ cos(SnapshotNumber ∗ 2 ∗ pi/N))

centerY = ImageCenter + (rotatingradius ∗ sin(SnapshotNumber ∗ 2 ∗ pi/N))

(a) (b) (c)

(d) (e) (f)

Figure 3.12: 3.12a to 3.12f: Reconstructed data for curvilinear case from fast to slow
pace with svd truncation r = 1
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: 3.13a to 3.13f: Reconstructed data for curvilinear motion with SVD trunca-
tion r = 10

When we compare the figures 3.12 and 3.13 we can see that as we increase the SVD

truncation values from r = 1 to r = 10, the reconstructed data from DMD improves

greatly. Also, when we compare figures 3.12a , 3.12f and 3.13a, 3.13f we can see that at

relatively faster speed, DMD reconstructed data approximated the original data. Whereas

at slower speed DMD will require r >>> 10 to approximate the original data.

The Eigenvalue plot from the figure 3.11 and 3.14 reveals different patterns at faster

and slower speeds. At faster speed eigenvalues are spread out, and at the slower speed,

the eigenvalues are arranged compactly. Further investigation of these patterns will be

made in the future for classification purpose.

The eigenvalue plot for the curvilinear motion at different speeds is as shown below.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: 3.14a to 3.14f: EigenValue Plot for Curvilinear motion from fast to slow
pace.

Conclusion for CASE4 Analysis

The following conclusion is made while analyzing the DMD on the rectilinear and

curvilinear motion. The datasets for both the cases on which DMD was tested was a
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simple one consisting of a single mode translating along the spatial domain as the system

evolves. Although one would think that the DMD would handle this cleanly, the opposite

happens. Instead of picking up a single, well-defined singular value, the SVD picks up

many. Also, as we tested DMD at different speeds, we could see that when the motion of

the object was very slow, SVD picks up almost all the values. Which can be seen in the

eigenvalue plot of both the rectilinear and curvilinear motion. But when the motion of

the object starts improving the speed, the number of SVD values picked gets lower and

lower. It turns out that when the motion is slow, almost all the DMD modes are needed

to correctly approximate the system.

3.6 CASE 5: DMD on synthetic data that mimics

Human Heart Beat

In the case 5 analysis, the idea was to test DMD whether it can be used for classification.

DMD was applied to a synthetic data that mimics human heartbeat at different rates.

Generating Data

When generating this dataset, a binary circle was created which decreases and in-

creases over time(somewhat mimic human heartbeat). The following equations for radius

was used to achieve this:

radius = 0.1 + 0.05 ∗ exp(+0.1 ∗ t) ∗ cos(2 ∗ pi ∗ t) (3.3)

radius = 0.1 + 0.05 ∗ exp(−0.1 ∗ t) ∗ cos(2 ∗ pi ∗ t) (3.4)

t = Constant ∗ SnapshotNumber ∗ SmaplingT ime(dt) (3.5)

In the equation (3.5) the value of constant term was changed so that when t is used

in the radius equation, it produces different patterns. Meaning pattern mimics human

heartbeat at slow to fast rates. When the radius with the positive exponential value was
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used, circle mimics human heartbeat and also it increases its size over time.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.15: 3.15a, 3.15c,3.15e,3.15g: EigenValue plot for from slow to fast pace with
increasing size of the circle in the data. 3.15b,3.15d,3.15f,3.15h: EigenValue plot for from
slow to fast pace with decreasing size of the circle in the data.

In contrast, when the radius with the negative exponential value was used, circle

mimics human heartbeat and also it decreases its size over time. This was created just

to obtain a rough pattern to analyze normal and abnormal heart rates.
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The Eigenvalue spectrum for both discrete and continuous-time Eigenvalues are plot-

ted for different patterns is as shown in the figures 3.15. From the Spectrum plot 3.15,

it is quite clear that there are slightly different patterns of arrangements of eigenvalues.

We can see the cluster of eigenvalues inside the unitary circle representing a decaying

dynamics. Well in real data it wasn’t an entirely decaying pattern, so DMD fails to

capture the time dynamics of this data and also it fails to reconstruct the original data.

Further investigation on this case will be made in the future work to see whether we can

use these clustered eigenvalues to obtain unique descriptors to classify different motion

patterns.

3.7 CASE 6: DMD for Transient time behavior

In the case6 analysis, DMD was applied to the data set having a single transient time

dynamics. The data displays gaussian popping in and out of existence. The following

equation was used in Matlab to generate this dataset.

D = exp(−(((Xm)/4)2)) ∗ exp(−(((Tm− 5)/2)2)) (3.6)

(a) (b)

Figure 3.16: Data visualization and reconstruction for transient behavior.
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The spectrum plot for discrete and continuous time eigenvalues is as shown in the

figure 3.17.

Figure 3.17: Eigenvalue plot for Transient behavior.

From the results, we can say that DMD it was unable to decompose the data accu-

rately. DMD was successful in identifying the dominant mode, but it failed to predict the

time-behavior of the system. From the Eigenvalue plot, we can see that the mode has

growing time dynamics which is not true for this data. In this case, ideal decomposition

of the data could consist of the superposition of single mode with various eigenvalues.

DMD was not successful in providing the same DMD mode various times with different

eigenvalues with the single application of SVD (Taylor, 2016 (accessed April 10, 2018)).

This drawback of DMD maybe alleviated by its extension called Multi-Resolution

DMD(mrDMD). The multi-resolution DMD (mrDMD) attempts to solve the transient

time behavior problem using a recursive application of the DMD.
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Chapter 4

Conclusion

In this work, a powerful decomposition technique known as Dynamic mode decomposition

was presented. The concept of dimensionality reduction is advantageous to build models

based on dynamics of the data if there exists a subspace or low-dimensional structure in

the high-dimensional data. DMD plays a significant role in dimensionality reduction pro-

vided there exist a subspace in the big data. Therefore DMD can reconstruct the original

data with fewer dimensions. When compared to other modal decomposition techniques,

DMD not only provides modes but also helps in predicting the system dynamics(how

modes evolve). Also, it’s an equation-free technique which can be applied to complex

nonlinear systems. DMD has certain disadvantages as discussed in example cases, de-

spite its limitation DMD is a powerful tool in analyzing and predicting dynamical systems.

As it finds application in various domains such as computer vision, neuroscience, biology,

finance, etc, it would be great for the data scientists from different backgrounds to have

good knowledge of DMD to explore its true potential.
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