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ABSTRACT 

DIFFERENTIAL MIGRATION OF CD4+ AND CD8+ T CELLS DURING AN IMMUNE RESPONSE 

by  

Jacob Parrott 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Douglas Steeber 

 

Lymphocyte migration is critical for recognizing pathogenic challenges in a timely manner and 

generating effective, rapid immune responses. Lymphocyte numbers in secondary lymphoid 

tissues such as lymph nodes are rapidly and dramatically increased during an immune response. 

Lymphocytes use specific adhesion molecules and intracellular signaling cascades to migrate 

and enter secondary lymphoid tissues under resting conditions. It is not clear if the same 

migration and/or entry pathways are utilized when secondary lymphoid tissues are activated 

during an immune response. Previous investigations in our lab have shown that T cell subtypes 

display differential migration patterns to peripheral lymph nodes during an antigen-induced 

immune response. Additional studies began defining the intracellular signaling cascades and 

adhesion molecules that may be responsible for the observed differential migration. In the 

studies presented here, inhibitors of proteins in signaling pathway(s) known to be involved in 

lymphocyte adhesion and migration were used to identify the intracellular signaling cascades 

responsible for the observed differential migration. Further, examination of cryosectioned 

lymphoid tissue by immunofluorescence microscopy sought to elucidate involvement of the 

inhibited pathways in cellular localization in vivo and the expression of peripheral lymph node 
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addressin in the recruitment of T cells to peripheral lymph nodes. Several possible intracellular 

signaling pathways (PI3K and ZAP70) and L-selectin (CD62L) were eliminated as the cause of the 

differential T cell migration during immune responses. 

  



iv 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright by Jacob Parrott, 2018 
All Rights Reserved 

  



v 
 

TABLE OF CONTENTS 

Abstract  ii 

List of Figures  vi 

Acknowledgements  vii 

Epigraph  viii 

1. Significance  1 

2. Rationale  3 

3. Aims and Hypothesis  6 

4. Literature Review  7 

5. Experimental Methods  14  

6. Results  18 

7. Discussion  32 

8. Future Directions and Conclusion  36 

9. References  38 

10. Appendix  44 

 

  



vi 
 

 

LIST OF FIGURES 

Figure 1 Immunization significantly increases the percent of injected CD4+ and CD8+ T cells that migrate 

to PLN ………………………………………………………………………………………………………………………………………4 

Figure 2 Inhibition of Gαi with pertussis toxin (PTX) had no effect on increased recruitment of T cells 

following immunization..……………………………………………………………………………………………………………………….4 

Figure 3 Immunized PLN have significantly increased cellularity compared to control PLN …………………18 

Figure 4 Biotin and CFSE labeling procedures do not affect the migratory ability of T cells.………………..20 

Figure 5 PTX treatment reduces the migration of CD4+ T cells to PLN………………………………………………….21 

Figure 6 Piceatannol treatment did not significantly affect T cell migration to the PLN……………………….22 

Figure 7 Wortmannin treatment did not significantly affect T cell migration to the PLN……………………..23 

Figure 8 Neither wortmannin nor piceatannol treatment significantly affected the localization of CD4+ or 

CD8+ T cells to the T cell zone in the spleen ………………………………………………………………………………………….26 

Figure 9 Piceatannol treatment did not significantly affect the localization of CD4+ or CD8+ T cells 

in the PLN…….…………………………………………………………………………………………………………………………………….29 

Figure 10 CD4+ or CD8+ T cells do not cross the HEV faster in immunized PLN…………….……………………….31 

Figure 11 Cpd1’ significantly reduced DU145 cell viability after treatment for 48 hours and had histone 

deacetylase activity after 24 hours …………………………………………………………………………………………………..…48 

Figure 12 CpD5 did not significantly reduce the % Viability of DU145 cells…………………………………….…..49 

  



vii 
 

ACKNOWLEDGEMENTS 

 I would first like to thank Dr. Douglas Steeber for his generous mentorship and sharing 

his extensive knowledge of immunology during my time at University of Wisconsin-Milwaukee. I 

would not be the researcher I am today without his help. Further, thank you to Dr. Julie Oliver 

and Dr. Heather Owen for their helpful advice and ability to challenge me as a student during 

their time on my graduate committee. Thank you to my present and past lab mates: Joseph 

Skurski, Sreya Biswas, Danny Jaber, Meredith Frank, Kayla Simanek, Samer Alanani, Navjit Lehal 

and Jessye Hale for their help with my work and being a large part of my graduate experience. I 

would like to thank my parents and grandparents for supporting me during my time in graduate 

school (and for buying me groceries more times than I would like to admit). Finally, I would like 

to thank the numerous teachers, professors, coaches, and mentors I have had to this point in 

my life. Although sometimes unrecognized, I hope they know the generosity of their time and 

knowledge has gone a long way to shape their students’ lives. 

  



viii 
 

 

“Basic research is what I am doing when I don't know what I am doing”  

― Wernher von Braun 

 



1 
 

Significance 

Immunotherapy has garnered much interest in the therapeutic world recently. 

Immunotherapy, as defined by the National Cancer Institute, is a type of biological therapy that 

uses substances to stimulate or suppress the immune system to help the body fight cancer, 

infections, and other diseases. Examples of immunotherapy treatments include monoclonal 

antibodies (alemtuzumab, (Campath®), Nivolumab (Opdivo®)), cancer vaccines (Sipuleucel-T 

(Provenge®)), cytokine administration, and chimeric antigen receptor T cell (CAR-T cell) 

transfers. The majority of FDA approved immunotherapies are monoclonal antibody treatments 

for cancer therapies. However, the other areas of immunotherapy have a large amount of 

research interest. Specifically, CAR-T cell treatments have been of much interest lately as 

evidenced by the $605 million in venture capital given to companies developing CAR-T cell 

therapies from 2011-16 (Smith et al., 2016).  

CAR-T cell treatments involve ex vivo expansion and/or genetic modification of tumor-

specific T cells and then adoptive transfer of the cells back into the patient. This has shown 

some promising results (Morgan et al., 2006, Milone et al., 2009). However, the first generation 

of chimeric T cell therapies displayed limited efficacy in clinical trials and had issues with 

toxicity due to self-targeting cells (Kershaw et al., 2006, Lamers et al., 2006). The moderate 

efficacy has been tied to limited migration of the engineered cells (Kersahaw et al., 2006). 

Immunosuppressive factors, such as inhibition by indoleamine-2,3-dioxygenase, programmed 

cell death ligand-1, and regulatory T cells have also been suggested to play a part in reducing 

the efficacy of CAR-T cell treatments (Bellone and Calcinotto, 2013).  
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Understanding the mechanisms underlying T cell migration could help direct the CAR T 

cells to the desired location (tumor site in this case). Indeed, there is interest in this avenue of 

investigation at the preclinical stage (Dai et al., 2016). This control may not be restricted to 

controlling T cell migration in response to cancer. Understanding T cell migration could be 

useful for any type of illness or disease where a directed immune response is desired. 

Characterizing the mechanism for previously observed differential T cell subset migration would 

be a step in this direction (Grailer et al., 2010). 

Related to CAR-T cell therapies, cancer vaccines seek to increase the immune system’s 

anti-tumor immune response. Indeed, tumor-infiltrating lymphocytes are a good prognostic 

factor when predicting patient outcomes in diverse cancer types (Hwang et al., 2012). The most 

common approach is to present the patients’ immune cells with tumor associated antigens (e.g. 

MART-1, gp100) or autologous tumor cells (Butterfield, 2015). Activation of CD8+ T cells is the 

most common outcome sought using these methods. Vaccines that include antigen presenting 

cells, MHC class 1 restricted tumor-associated antigen peptides, tumor cells reengineered to 

express stimulatory cytokines, and oncolytic viruses are ways that have been used to activate 

patient-derived CD8+ T cells (Butterfield, 2015).  

This antigen presentation approach has been applied to autoimmune diseases in 

antigen-specific immunotherapy (ASI) regimens as well. The goal of ASI, like cancer vaccines, is 

to reprogram or otherwise reroute cells reacting to self-antigens (Pozsgay et al., 2017). 

Although these ideas have generated a lot of research interest, clinical trials have only shown 

moderate responses (Butterfield, 2015; Butterfield, 2013). Many have sought to increase the 

efficacy of the vaccine immunotherapies, with some promising results (Diaz et al., 2013; 
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Bluestone et al., 2015). Knowing how to manipulate the migration of immune cells to, or away 

from, disease affected area(s) could help create more efficacious immunotherapies. 

Rationale 

Grailer et al., in our lab, examined the subset recruitment of T and B cells based on 

much earlier observations (Mackay et al., 1988; Abernathy et al., 1990; Kimpton et al., 1989). 

These studies showed subset-specific differences in the migration of CD4+ and CD8+ T cells, and 

B cells. Previous work in our lab also found differences in lymphocyte subset migration during 

an immune response (Figure 1). Specifically, CD4+ T cell migration to the peripheral lymph 

nodes (PLN) peaked earlier following immunization (Day 3) than CD8+ T cell migration (Day 7; 

Figure 1). Attempts were made to tease apart the mechanism(s) regulating differential 

migration during an immune response, including examining adhesion molecules and 

intracellular signaling pathways known to be involved in leukocyte migration. Specifically, these 

studies examined the role of lymph node neovascularization, L-selectin (CD62L) function, 

peripheral lymph node addressin (PNAd) expression, and Gi-dependent chemotaxis. The use 

of vascular endothelial growth factor 2 receptor (VEGFR2) inhibitor SU5416 showed that 

neovascularization did not account for the observed differential migration. L-selectin expression 

was found to be necessary for mediating increased migration to the immunized PLN by 

adoptive transfer of L-selectin-/- lymphocytes into wild type mice. Interestingly, based on 

immunofluorescence microscopy data, PNAd expression did not increase on the vasculature of 

the PLN as a result of immunization. Surprisingly, despite blocking the majority of lymphocyte 

migration into the PLN, inhibiting Gi signaling in lymphocytes with pertussis toxin (PTX) did not 
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prevent increased migration occurring into the immunized PLN (Figure 2). These findings leave 

the mechanism(s) mediating the observed differential migration unclear. A better 

understanding of this process could help improve the current forms of immunotherapy. 

 

Figure 1. Immunization significantly increases the percent of injected CD4+ and CD8+ T cells that 

migrate to PLN. C57BL/6 splenocytes were biotinylated and injected into the lateral tail vein and 

allowed to migrate for 1 hour in immunized mice (days 1 thru 7). PLN were harvested, injected cells 

were labeled with avidin-conjugated fluorophores and subset-specific antibodies then analyzed by flow 

cytometry.  C = unimmunized control values. *; P<0.05. Reproduced from Grailer 2010. 

 

Figure 2. Inhibition of Gαi with pertussis toxin (PTX) had no effect on increased recruitment of T cells 

following immunization. Cells were incubated with PTX (10 µM) for 1 hour before adoptive transfer into 
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recipient mice that had been immunized 3 days earlier. Migration was allowed to occur for 1 hour 

before PLN were harvested and analyzed as in Figure 1. †; P<0.05. Reproduced from Grailer 2010. 

The aims and hypothesis detailed in the next section were investigated to uncover the 

mechanism(s) causing differential migration between CD4+ and CD8+ T cells to secondary 

lymphoid organs during an immune response.  
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Aims and Hypothesis 

Hypothesis 

Differences in migration between CD4+ and CD8+ T cells to secondary lymphoid tissues during 

an immune response are caused by differences in signaling pathway activation and not changes 

in adhesion molecules. 

This hypothesis was tested through the following aims: 

1. Determine the role of kinase signaling in mediating differential CD4+/CD8+ T cell 

migration following antigen stimulation. Migration following treatment of T cells 

with inhibitors against key signaling proteins including ZAP70 and 

phosphatidylinositol 3-kinase (PI3K) was analyzed using flow cytometry and 

immunofluorescence microscopy.  

2. Determine the role of known adhesion molecules (i.e., L-selectin, L-selectin 

ligands) in mediating differential CD4+/CD8+ T cell migration following antigen 

stimulation using chimeric L-selectin fusion protein binding.  
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Literature Review 

Lymphocytes must recirculate in the blood and/or migrate throughout the body for an 

efficient immune response to occur. Recirculation and migration are critical for a proper 

immune response because the odds of a lymphocyte recognizing a given antigen are low. For 

example, the odds of a naive CD8+ T cell being specific for an 8 amino acid epitope on the 

lymphocytic choriomeningitis virus was estimated to be 1 in 200,000 (Blattman et al., 2002). 

Continual movement of lymphocytes through the lymphoid system via recirculation and 

migration must be in place to ensure that a specific lymphocyte will encounter its specific 

antigen. The inability to properly migrate and/or recirculate can lead to the inability of a patient 

to defend his or herself against immune challenges. Leukocyte adhesion deficiency (LAD) is an 

example of such a disorder (Harris et al., 2013). Patients with LAD are unable to clear bacterial 

infections, and usually succumb to the disease at a young age if no treatment is received (Tipu, 

2017). An important part of this defense is the transition from the circulation in the blood to 

migration into the lymph nodes. Lymphocytes achieve this transition by undertaking the 

adhesion pathway. 

The adhesion pathway for transendothelial migration has been well defined (Ley et al., 

2007). There are four overlapping steps in the pathway. Transitory L-selectin binding to PNAd is 

the first step. This transitory binding allows the L-selectin+ cells to roll along the cell membranes 

of PNAd expressing endothelial cells. Secondly, integrins on the rolling cells are activated by 

chemokines decorated on the cell membranes of the PNAd+ cells. The integrins go from an 

inactive state to an active state when the appropriate chemokine(s) are bound. In the third 
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step, the active integrins then bind to their appropriate ligand, primarily intercellular adhesion 

molecule-1 (ICAM-1) in the peripheral lymph nodes, and stop the cell in what is called firm 

adhesion. Finally, cells undergo transendothelial migration (also called extravasation or 

diapedesis), exiting the blood stream and entering the tissue. The chemokines that activate the 

integrins can vary depending on the tissue and immune status. During homeostasis, the 

chemokines CCL19 and CCL21 are the dominant chemokines causing integrin activation. There 

are several other chemokines that are thought to be important in the direction of immune cells 

to lymphoid organs and/or sites of inflammation (Luster et al., 2005). 

L-selectin’s role in the adhesion cascade should be emphasized. Indeed, without L-

selectin expression there is a 70-90% reduction in extravasation into lymph nodes by 

lymphocytes (Steeber et al., 1996). L-, P-, and E-selectin make up the selectin family. L-selectin 

is expressed on all leukocytes, E-selectin is expressed on inflamed endothelial cells (along with 

some P-selectin), and P-selectin is expressed on activated platelets (Grailer et al., 2009). The 

selectins are characterized by a calcium-dependent lectin domain, an epidermal growth factor-

like domain, and short consensus repeat domains (Grailer et al., 2009). L-selectin recognizes the 

6-sulfo sialyl Lewis x (sLex) domain that is expressed in PNAd to mediate its binding (Rosen, 

2004). It is of note that the sLex domain is usually identified by the MECA-79 antibody (Rosen, 

2004).  

Finally, as it pertains to this work, L-selectin contains a membrane proximal cleavage site 

that is not found in the other selectins (Chen et al., 1995; Grailer et al., 2009). Cleavage of L-

selectin is a necessary process for cells to maintain an appropriate amount of surface-bound L-
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selectin. Blocking L-selectin cleavage results in an increase in L-selectin expression levels that 

alter the normal migration patterns of leukocytes (Venturi et al., 2003).  

Chemokines, shortened from chemotactic cytokines, are proteins used to control the 

migration of immune cells (Griffith et al., 2014). Chemokines are 8-12kDa proteins that are 

categorized by the position of conserved N-terminus cysteine residues (Turner et al., 2014). The 

four major subfamilies of chemokines are CC, CXC, C, and CX3C that bind to their respective 

receptors (e.g., CCR, CXCR) (Turner et al., 2014). The chemokines that are most important in 

lymphocyte migration, and therefore most commonly studied, are the CC and CXC chemokines. 

Indeed, CCL21 is an example of a chemokine important for regulating homeostatic lymphocyte 

migration into lymphoid tissues. Further, CCR7, and its ligands CCL21/19, regulate the majority 

of naïve T cell migration. CXCR4 and CXCL12 is another receptor-ligand pair that directs 

migration of naive T cells, albeit to a lesser extent than the CCR7-CCL19/21 paring (Scimone et 

al., 2004). These chemokines, along with the adhesion pathway described above, allow 

lymphocytes to recirculate from the blood to a secondary lymphoid organ and then back to the 

blood every 10 to 20 hours (Mandl et al., 2012).  

G proteins are heterotrimeric guanine nucleotide binding regulatory proteins that are 

responsible for relaying intracellular signals from G-protein coupled receptors (GPCRs) on the 

cell membrane (Syrovatkina et al., 2016). They have been extensively studied and the majority 

of the signaling pathways utilized by GPCRs have been elucidated. GPCRs are of particular 

interest in immunology because of their importance regulating migration of leukocytes (Griffith 

et al., 2014). CCR7, described above, is an example of a GPCR. The G proteins responsible for 

the intracellular signaling activity of GPCR are composed of andsubunits (Syrovatkina et 
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al., 2016). The subunit is known to dissociate from the GPCR as an individual subunit, but the 

andsubunits are tightly associated. These two subunits are considered as one unit when 

examining the signaling pathways used by GPCRs. G proteins can be divided into four families 

based on the sequence similarity of the subunit. The families are Gs, Gi, Gq, and G12 

(Syrovatkina et al., 2016). The Gifamily is the most diverse family of G proteins and are the 

most relevant for signaling in leukocytes (Griffith et al., 2014, Syrovatkina et al., 2016). 

The receptor part of the GPCR consists of seven-transmembrane helices. These 

receptors, in conjunction with the associated G proteins, transmit the signal from outside to 

inside the cell following chemokine binding. Interestingly, CD4+ and CD8+ T cells have different 

transit times through lymph nodes (Mandl et al, 2012). Mandl et al., investigated the cell 

surface molecules that could account for the transit time difference, and found that CCR7 was 

about two-fold higher expressed on CD4+ T cells compared to CD8+ T cells. However, they were 

not able to conclude that the increase in CCR7 expression accounted for the transit time 

difference. 

The GPCR subunit has been shown to interact with phosphoinositide 3-kinase (PI3K) 

to mediate leukocyte migration in response to chemokines (among other chemoattractants) 

(Ward et al., 2011). Indeed, the PI3K p100subunit has been shown to be necessary for 

migratory responses to antigen (Jarmin et al., 2008). Interestingly, there seems to be a 

preference for different catalytic subunits of PI3K based on the signal a lymphocyte receives 

(Thomas et al., 2008). PI3K has several functions in the cell, but the most relevant for 

lymphocyte migration is its role in actin dynamics (Sinclair et al., 2008, Martin et al., 2008, 
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Nombela-Arrieta et al., 2007). Further, the p100subunit of PI3K controls CD62L expression 

through mitogen activated protein kinases (MAPKs) and the mammalian target of rapamycin 

(mTOR) pathway (Sinclair et al., 2008). The PI3K pathway connects with the mTOR pathway to 

mediate lymphocyte differentiation and migration (Powell et al., 2012). Signals that enter the 

mTOR pathway can travel through mTOR Complex 1 (mTORC1) or mTOR Complex 2 (mTORC2) 

(Pollizzi and Powell, 2015). Signaling through PI3K and mTOR has also been found to be at a 

crossroads between T cell metabolism and migration (Sinclair et al., 2008).  

Hypoxia-inducible factor 1 (HIF-1) has also been shown to be required for proper CD8+ T 

cell immune response and is dependent on mTORC1 function (Finlay et al., 2012). Specifically, 

HIF-1 knockout results in CD8+ T cells maintaining CCR7, among other chemokine receptors, and 

L-selectin expression following activation (Finlay et al., 2012). This finding was the result of 

dysregulated glucose uptake by the HIF-1 knockout cells. The maintained expression of these 

molecules was recapitulated by activating CD8+ T cells in a low glucose environment (Finlay et 

al., 2012). These results implicate metabolism, and glucose availability, as important regulators 

of changes in migration patterns of CD8+ T cells during an immune response. 

Rapamycin inhibition of mTOR also results in CD8+ T cells maintaining high levels of CCR7 

and CD62L expression after activation (Sinclair et al., 2008). Activated CD8+ T cells usually have 

low expression of CCR7 and CD62L so that they break out of homeostatic recirculation 

pathways. These activated cells then search for inflammatory sites to perform their cytotoxic 

effector functions. Indeed, rapamycin treatment of IL-2-stimulated CD8+ T cells caused an 

increase in the number of CD8+ T cells found in the lymph nodes and spleen (Sinclair et al., 

2008). 3-phosphoinositide-dependent kinase 1 (PDK1) is a kinase that binds phosphoinositide 
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(3,4,5)-triphosphate (PIP3) that can be released during cell activation (Waugh et al., 2009). 

PDK1 is necessary to then signal downstream to regulate trafficking of CD8+ T cells, in the same 

way as PI3K regulation of the mTOR pathway, during homeostasis and inflammatory responses 

(Waugh et al., 2009). 

ZAP70 is an intracellular protein kinase that binds to the cytoplasmic domain of the T 

cell receptor (TCR) and is phosphorylated when the TCR is engaged by an appropriate major 

histocompatibility complex (MHC) molecule loaded with peptide (Chan et al., 1992). ZAP70 is 

necessary for proper immune function, and one form of severe combined immunodeficiency 

results when ZAP70 is non-functional (Chan et al., 1994). ZAP70 function has also been 

implicated in T cell migration (Lin et al., 2010). Specifically, Lin et al., showed that inhibiting 

ZAP70 affected the directionality of T cell movement in vitro. They also showed that ZAP70 

interacted with integrin talin domains but could not show that ZAP70 phosphorylated these 

domains. Talin domains associate with cytoplasmic portions of integrins after they are activated 

by GPCR signaling (Critchley, 2004). This association allows the proper activation of integrins 

(Boettner and Van Aelst, 2009). Indeed, lack of adhesion is observed when talin is not present 

in cells (Priddle et al., 1998). These results correlate ZAP70 function and integrin activation 

which, as has been discussed above, is a critical step for migration of T cells. Part of the present 

work was to investigate the role of ZAP70 during in vivo migration of T cells during an immune 

response. 

Wortmannin is a metabolite of the plant pathogen Penicillium funiculosum that has 

been used since the early 1990’s as a non-selective covalent inhibitor of PI3Ks (Yano et al., 

1993). The metabolite has been shown to be a more potent inhibitor of PI3Ks than the first 
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synthetic PI3K inhibitor LY294002 (2-4 nM versus 0.5-1 μM respectively). Both of these 

inhibitors, as well as other ‘first generation’ analogues, were examined in clinical trials after 

PI3K signaling was implicated in cancer (Westin et al., 2014). However, these first generation 

PI3K inhibitors were not very successful in trials as intolerable off-target effects and/or 

solubility issues were uncovered (Yap et al., 2008). Both inhibitors have continued to be widely 

used for basic research nevertheless (especially where specificity is not required). Further, 

wortmannin has been used by many groups to study the role of PI3K signaling in immune cell 

migration (Dey et al., 2010, Wain et al., 2002, Reif et al., 2004). 

Piceatannol, the other inhibitor used in the present work, is an analogue of revesterol, 

formed by addition of a hydroxyl group by cytochrome P450 during metabolism, that retains 

revesterol’s antiproliferative and antioxidant effects (Murias et al., 2005, Wolter et al., 2002). 

Piceatannol has also been shown to inhibit ZAP70 signaling (Soede et al., 1998). This inhibition 

has been shown to reduce effector protein secretion and expression in vitro (Kim et al., 2015). 

Piceatannol inhibition of ZAP70 has also been shown to interfere with the directionality of T cell 

migration to cancer spheroids in a 3-D culture system (Lin et al., 2010). Further, previous 

studies in the Steeber lab described a role for ZAP70 in migration of T cells out of the high 

endothelial venules (HEV) and into the PLN (Subramanian et al, 2012). 
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Experimental Methods 

Mice 

C57BL/6 mice (The Jackson Laboratory, Bar Harbor, ME) were housed and bred in 

pathogen-free, climate-controlled conditions according to the Institutional Animal Care and Use 

Committee at the University of Wisconsin-Milwaukee. Both male and female mice aged 

between 8 and 12 weeks old were used.  

Immunization 

Alum-precipitated mariculture Keyhole Limpet Hemocyanin (mcKLH) (Pierce, Waltham, 

MA) was used to create a robust immune response in the mice. The mcKLH (10 mg/mL stock 

concentration) and alum (Pierce, Waltham, MA) was combined in a 1:1 ratio and mixed with a 

magnetic stir rod for 30 minutes at room temperature prior to use. 125 µg of the mcKLH-alum 

in 25 µL volume was injected into the hind and fore footpads on one side of the recipient mice. 

25 µL of PBS (0.15 M NaCl, 155 mM Na2HPO4, 46.6 µM Na2H2PO4 monohydrate) was injected 

into the opposite hind and fore footpads of the mice as a control for injection. The immune 

response was allowed to progress for 3 to 7 days. Cells prepared as described below were 

adoptively transferred into the immunized mice by lateral tail vein injection. 

Adoptive Transfer Assay 

Donor spleens from C57BL/6 mice were dissociated using 27 gauge needles and 

splenocytes were collected after being filtered through a 70 µm nylon mesh. Erythrocytes were 

lysed with a 0.15 M ammonium chloride solution. Cells were counted with a hemacytometer 
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and then 25x106 cells/mL were labeled with EZ-Link Sulfo-NHS-LC-Biotin (Thermo Scientific, 

Waltham, MA) at a final concentration of 80 µg/mL. Alternatively, 12x106 cells/mL were labeled 

with carboxyfluorescein succinimidyl ester (CFSE) (Invitrogen, Carlsbad, CA) at a final 

concentration of 0.5 µM. CFSE labeled or biotinylated cells were incubated with pertussis toxin 

at 100 ng/mL (List Biological Laboratories, Campbell, CA), piceatannol at 10 µM (Enzo Life 

Sciences, Farmingdale, NY), or wortmannin at 100 nM (Upstate Cell Signaling, Lake Placid, NY) 

for 1-hour inhibitor transfer assays. Labeled cells were washed 3 times in PBS and injected i.v. 

through the lateral tail vein of recipient mice. Cells were allowed to migrate for 5 minutes or 1 

hour before the animal was euthanized. Spleen and popliteal and axillary lymph nodes were 

dissected from the recipient mice. The popliteal and axillary lymph nodes were combined, and 

single-cell preparations were made from all tissues as described above for the donor cells. 

Lymph nodes, spleen, and pre-injection cells were labeled with avidin-PE (SouthernBiotech, 

Birmingham, AL), anti-CD4 Alexa Fluor® 647, anti-CD8 Alexa Fluor® 647 (both BD Bioscience, 

San Jose, CA), or isotype control antibodies (SouthernBiotech). Anti-CD4 Alexa Fluor® 647 was 

used at 1:1000 dilution and anti-CD8 Alexa Fluor® 647 was used at 1:250. Cells with the light 

scattering properties of mononuclear cells were gated, and 500-2000 adoptively transferred 

and labeled cells were collected per sample using a FACSCalibur flow cytometer (BD 

Biosciences, San Jose, CA). The percent of injected cells was calculated by dividing the number 

of labeled subtype cells (CD4+ or CD8+ T cells) found in a tissue (e.g. spleen or PLN) by the 

corresponding number of subtype cells injected. Ro/Ri was calculated by dividing the ratio of 

inhibitor vs. control treated cells recovered (Ro) by the ratio of inhibitor vs. control treated cells 

injected (Ri) ((inhibitor vs. control cells recovered) / (inhibitor vs. control cells injected)).  
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Immunofluorescence Microscopy 

 Tissues were harvested from donor mice, placed in a base mold containing Optimal 

Cutting Temperature (OCT) tissue freezing medium (Sakura FineTek, Torrance, CA) and frozen 

on dry ice. Tissues were then stored at -20°C until use. Tissues were sectioned with a Leica 

CM1900 cryostat and collected on Superfrost Plus® microscope slides (VWR International, West 

Chester, PA). Sections were stored at -20°C until use. Slides were allowed to warm to room 

temperature, fixed in cold (-20°C) acetone, and allowed to air dry. Sections were encircled using 

a hydrophobic pen (PAP pen; Biotium, Freemont, CA) before being rehydrated with PBS 

containing 2% (v/v) horse serum (wash buffer) and blocked with 2% normal goat serum in PBS. 

Tissues were then labeled with anti-CD4 or anti-CD8 Alexa Fluor® 647-conjugated antibodies, 

MECA-79 culture supernatant (American Type Culture Collection, Manassas, VA), or isotype 

control antibodies, as specified, in the dark. MECA-79 labeling was detected using DyLight 405-

conjugated AffiniPure goat-anti-rat IgM antibody (Jackson Immuno Research, West Grove, PA). 

Biotin+ cells were revealed by using avidin conjugated with TRITC (Jackson Immuno Research, 

West Grove, PA). Sections were washed with wash buffer at room temperature between 

staining steps, and with PBS at room temperature after all staining steps were completed. 

Finally, slides were mounted under glass coverslips with ProLong™ Gold antifade mountant 

(Invitrogen, Eugene, Oregon) and imaged using a Nikon Eclipse TE-2000U inverted fluorescence 

microscope (Nikon, Melville, New York). Images were captured with a CoolSNAP ES camera 

(Photometrics, Tucson, Arizona) and analyzed using MetaVue software (Molecular Devices, 

Sunnyvale, California). Cells per 1000 μm2 HEV was calculated by adding all of the biotin+ cells 
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counted in the HEV field and then dividing by the total μm2 of HEV found in that field. Total μm2 

of HEV was calculated using the measure tool in MetaVue. 

Statistics 

Data are presented as the mean ± SEM unless stated otherwise. Significant differences 

between sample means was determined by Student’s t test. A p value of <0.05 was considered 

statistically significant. 
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Results 

Mice were immunized with mcKLH-alum in the hind and fore footpads on one side and 

PBS on the contralateral side and allowed to respond for 3 or 7 days. Figure 3 shows that the 

immunization protocol described significantly increased the cellularity of the stimulated PLN 

compared to the contralateral control tissues by day 3. Additional increase in cellularity of the 

immunized lymph nodes was observed at day 7 (data not shown). These data further show that 

the immunization protocol elicited an immune response only on the immunized side of the 

animal. Therefore, this protocol was used to examine differences in lymphocyte migration for 

all future lymphocyte transfer assays.  

 

Figure 3. Immunized PLN have significantly increased cellularity compared to control PLN. Mice were 

immunized with mcKLH-alum in the hind and fore paw on one side and PBS on the contralateral side. 

Mice were allowed to respond for 3 days before PLN were removed. Values represent the mean ± SEM 

total cell counts from at least 4 independent experiments. ***, P<0.001 
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Figure 4 shows flow cytometry data from a control experiment where biotinylated and 

CFSE-labeled cells were untreated, mixed together and allowed to migrate for 1 hour in a 

recipient mouse. The left panel in Figure 4A shows a representative example of how 

biotinylated CD4+ T cells were gated (R2) while gating of CFSE-labeled CD4+ T cells (R3) is shown 

in the right panel. CD8+ T cells were analyzed similarly (data not shown). Figure 4 shows that 

labeling with CFSE or biotin does not affect migration of CD4+ or CD8+ T cells relative to one 

another as indicated by a Ro/Ri ratio of 1. Further, flow cytometry analysis showed that CCR7 

and CD62L expression were not significantly changed at the time the cells were injected due to 

cell handling and/or labeling (data not shown). 

Pertussis toxin (PTX) is known to inhibit the Gi subunit of the GPCR, and therefore 

inhibits Gidependent migration. Specifically, lymphocyte responses to CCL21/19 (as detailed 

above) are dependent on Gisignaling. Figure 5 shows that treatment with PTX virtually 

eliminated migration to PLN for both CD4+ and CD8+ T cells in 1 hour adoptive transfer 

experiments. This serves as a positive control for other inhibitor transfer assays and indicates 

that this assay can detect differences in migration for both CD4+ and CD8+ T cells.  
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Figure 4. Biotin and CFSE labeling procedures do not affect the migratory ability of T cells. Equal 

numbers of biotin- and CFSE-labeled cells (36x106 total cells) were injected into the lateral tail vein of a 

C57BL/6 mouse immunized three days prior and allowed to migrate for 1 hour. A)  Left panel: Biotin-

Avidin-PE-labeled CD4+ T cells are contained in the R2 gate; Right panel: CFSE-labeled CD4+ T cells are 

contained in the R3 gate. The vertical dashed line in each panel indicates transferred biotin+ or CFSE+ 

cells that were recovered. B)  The ratio of CFSE- to biotin-labeled cells recovered in the organ (Ro) was 

divided by the ratio of CFSE- to biotin-labeled cells injected (Ri) to normalize migration results as 

described in the methods section. The horizontal dashed line indicates equal migration of biotin- and 
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CFSE-labeled cells (Ro/Ri = 1). A value over 1 indicates increased migration of the CFSE-labeled cells, and 

a value under 1 indicates decreased migration. In this example both groups of cells were untreated and 

thus a result near 1 is expected. Results are from 1 experiment. 

 

Figure 5. PTX treatment reduces the migration of T cells to PLN. Cells were labeled with either biotin or 

CFSE. CFSE-labeled cells were treated with PTX (100ng/mL) for 1 hour and then mixed with an equal 
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number of vehicle-treated (control) biotin-labeled cells. Combined cells were injected into the lateral tail 

vein of day 3 immunized recipient mice and allowed to migrate for 1 hour. A) Top Left: Control-treated 

CD4+ T cells (R2) in the immunized PLN; Top Right: Pertussis toxin (PTX)-treated CD4+ T cells (R3) in the 

immunized PLN; Bottom Left: Control-treated CD4+ T cells in the spleen; Bottom Right: PTX-treated 

labeled CD4+ T cells in the spleen. B) Recovered cells were compared by the Ro/Ri ratio as above. Results 

are from 1 experiment.  
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Figure 6. Piceatannol treatment did not significantly affect T cell migration to the PLN. Piceatannol 

(10µM) was incubated with splenocytes for 1 hour before being adoptively transferred to recipient mice 

that had been immunized 3 days (A) or 7 days (B) prior and allowed to migrate for 1 hour. Recovered 

cells were compared by the Ro/Ri ratio as above. Bars represent the mean ± SEM of results from 3 

independent experiments. * significantly different from control-treated cells; † significantly different 

from CD4+ T cells; p<0.05. 

Adoptive transfer assays using piceatannol-treated cells to inhibit ZAP70 function were 

performed and analyzed in the same way as the control and PTX treatment experiments 

described above. Recipient mice were immunized 3 or 7 days before adoptive transfer of 

piceatannol- or vehicle-treated control cells. Figure 6 shows that piceatannol treatment did not 

have a significant effect on 1 hour CD4+ or CD8+ T cell migration to control or immunized PLN. 

However, CD8+ but not CD4+ T cell migration was significantly reduced to the spleen for both 

day 3 and 7 transfers. This suggests that signaling through ZAP70 is dispensable for migration to 

PLNs during an immune response.  
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Figure 7. Wortmannin treatment did not significantly affect T cell migration to the PLN. A) Splenocytes 

were prepared, treated with 10nM Wortmannin (A), or 100nM Wortmannin (B) and adoptively 

transferred into recipient mice that had been immunized 3 days prior. Bars represent the mean ± SEM of 

results from 3 independent experiments. * significantly different from control-treated cells; p < 0.05. 

Additional adoptive transfer experiments were performed treating cells with 

wortmannin (10 or 100 nM) to inhibit PI3K activity. Similar to treatment with piceatannol 

treatment, neither concentration of wortmannin significantly reduced migration to control or 

immunized PLN after 1 hour of migration (Figure 7A-B). While a slight reduction in CD8+ T cell 

migration to the spleen was found with the 10 nM wortmannin treatment, this was not 

observed at the higher concentration. These results indicate that the PI3K pathway is not 

required for migration to the PLN under resting or immunized conditions. 

Figures 6 and 7 show that ZAP70 and PI3K signaling are not required for migration of 

CD4+ or CD8+ T cells to the PLN during an immune response. Although there was no significant 

effect on the total number of CD4+ or CD8+ T cells migrating to the PLN, the inhibition of ZAP70 

or PI3K pathways could cause improper localization of treated T cells in the PLN or spleen. To 
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examine this possibility, immunofluorescence microscopy of sectioned lymphoid tissues 

following adoptive transfer of inhibitor-treated cells was used. 

Cells were labeled, treated, and injected as described for Figures 4-7, but the PLN and 

spleen were frozen, sectioned, and examined by immunofluorescence microscopy instead of 

flow cytometry. Figure 8A shows a representative image of labeled transferred cells in a T cell 

zone of the spleen. The image is of piceatannol-treated cells in the spleen but transfer of 

wortmannin-treated cells produced similar images. T cell zones were identified based on CD4 or 

CD8 antibody labeling and outlined using MetaVue software. Biotin+ and CFSE+ cells were 

counted as “In” if they were inside the outlined area and counted as “Out” if they were outside 

of the area. The In and Out counts were used to calculate the In/Out ratio for each treatment 

and cell type. Figures 8B and 8C show that neither wortmannin nor piceatannol prevented CD4+ 

or CD8+ T cell migration to the splenic T cell zones after 1 hour of migration. Interestingly, both 

the CD4+ and CD8+ wortmannin-treated T cells did have higher In/Out ratios compared to 

corresponding control cells in the single experiment.  

In another set of experiments, the effects of piceatannol treatment on T cell migration 

to and within the PLN were examined. Piceatannol treatment of cells and 1-hour adoptive 

transfer was performed as above. The control and immunized PLN were harvested and 

sectioned as described. MECA-79 culture supernatant was used to label the HEV, anti-CD4 or 

CD8 antibodies were used to visualize the T cell subtypes, and avidin-biotin or CFSE labeling was 

used to label the treated (CFSE+) or untreated (biotin+) cells. Figures 9A and 9B show that CD4+ 

or CD8+ T cells treated with piceatannol exited the HEV and migrated similarly to untreated 

CD4+ or CD8+ T cells. This was determined by observing that the treated, transferred CD4+ or 
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CD8+ T cells were not contained in the HEV, and that they localized to similar areas as the 

untreated T cells did in the PLN. Comparison of the immunized PLN images (Figures 9A and 9B) 

to the control PLN (images not shown) showed that the CD4+ and CD8+ T cells exited the HEV 

and localized comparably to the control PLN. In summary, wortmannin or piceatannol 

treatment of the cells did not affect the localization of CD4+ or CD8+ T cells within the PLNs or 

spleen. We next assayed for differences in CD4+ and CD8+ T cell transmigration across the HEV 

during short-term migration to determine whether this could account for the observed 

differential migration. 

A 
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Figure 8. Neither wortmannin nor piceatannol treatment significantly affected the localization of CD4+ 

or CD8+ T cells to the T cell zone in the spleen. A) Representative image of a splenic T cell zone from a 

piceatannol treatment experiment. Single color images were overlaid to create the final image (bottom-

right) used to calculate In/Out ratios (Blue=CD8+ T cells, Green= CFSE+ cells (treated), Red= biotin+ cells 

(untreated)). Thin arrows indicate the presence of transferred biotin+ cells, and thick arrows indicate 

transferred CFSE+ cells. Yellow circle indicates what was considered the T cell zone. Scale bar represents 
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50 μm. B) In/Out Ratio of wortmannin treated and untreated CD4+ or CD8+ T cells. C) In/Out Ratio of 

piceatannol treated or untreated CD4+ or CD8+ T cells. Results are from 1 experiment. 



29 
 

     

B 

A 



30 
 

Figure 9. Piceatannol treatment did not significantly affect the localization of CD4+ or CD8+ T cells in 

the PLN.  A) Representative image of CD4+ T cells in an immunized PLN after piceatannol-treated cells 

were allowed to migrate for 1 hour. B) Representative image of CD8+ T cells in an immunized PLN after 

piceatannol-treated cells were allowed to migrate for 1 hour (Blue=HEV, Green=CFSE+ cells (treated), 

Red= Biotin+ cells (untreated), Yellow=CD4+ or CD8+ cells for A and B, respectively). Thin arrows indicate 

the presence of transferred subtype+ and biotin+ cells, and thick arrows indicate transferred subtype+ 

and CFSE+ cells. Scale bar represents 50 μm. Results are from 1 experiment. 

Results of previous experiments suggested that T cells were transmigrating across the 

HEV faster in immunized PLN than T cells in the control PLN (Grailer, 2010). Therefore, a short-

term adoptive transfer assay was performed to further examine this possibility. Cells were 

biotinylated, adoptively transferred into recipient mice immunized 3 days prior and allowed to 

migrate for 5 minutes instead of 1 hour after transfer. A representative image of the 5-minute 

transfer is shown in Figure 10A. As seen in the image, the labeling was very clean and specific 

allowing for easy quantification of the number of transferred cells located inside versus outside 

of the HEV. Figure 10B shows the number of biotin+ cells per 1,000 µm2 area of HEV. As 

expected for such a short migration time, the majority of the transferred cells were located 

inside of the HEV. Furthermore, in this experiment there was no increase in the number of 

transferred cells located outside of the HEV in the immunized lymph nodes compared to the 

control tissues. Therefore, these initial results do not support the idea that CD4+ or CD8+ T cells 

cross the HEV into the PLN faster during an immune response. 
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Figure 10. CD4+ or CD8+ T cells do not cross the HEV faster in immunized PLN. A) Representative image 

of labeling in lymph node after adoptively transferred cells were allowed to migrate for 5 minutes; Blue= 

CD4+ cells; Red= HEV; Green= biotin+ cells. Arrows indicate biotin+ transferred cells within the HEV. All 

HEV within a tissue section were scored for biotin+ cells. Scale bar represents 50 μm. B) Graph of biotin+ 
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cells per 1000 μm2 of HEV in the immunized or control sections. Results are pooled from two sections 

made from one transfer experiment. 

Discussion 

Overall my work found that the differential migration of CD4+ and CD8+ T cells to 

immunized peripheral lymph nodes was not dependent on ZAP70 or PI3K signaling. In addition, 

ZAP70 and PI3K were not required for proper localization in the PLN or spleen. CD4+ and CD8+ T 

cell migration to the immunized lymph nodes was shown to be dependent on Gαi signaling 

similarly to the control lymph nodes. It was also shown that CD4+ or CD8+ T cells do not cross 

the HEV faster in immunized lymph nodes.  

Piceatannol treatment of splenic cells significantly reduced CD8+ T cell migration to the 

spleen for mice that were allowed to respond to immunization for 3 and 7 days. This could be 

due to the piceatannol reducing the signaling downstream of the T cell receptor (TCR). 

Piceatannol has been shown to downregulate p-Erk, p-Akt, and p-p38 specifically (Kim et al., 

2015). Akt is well known to be involved in intracellular signaling pathways that affect adhesion 

molecules and receptors involved in lymphocyte migration (Knieke et al., 2012; Stombolic and 

Woodgett, 2006). Akt is also known to phosphorylate proteins involved in cell polarization 

during migration (Enomoto et al., 2005). It is possible that piceatannol treatment of the cells 

affected their shape or deformability, which resulted in changes in circulation rates. However, 

this would not explain why CD4+ T cell migration to the spleen was not reduced because the 

proteins mentioned are present in both cell types. Further, it is possible that the reduction in 

CD8+ T cells found in the spleen was because they had increased migration to tissues not 
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sampled such as the lungs, liver, or mucosal lymphoid tissues. Future work could examine the 

amount of CD8+ T cells found in these tissues after piceatannol treatment and transfer. 

Further, piceatannol’s effect on localization of CD4+ and CD8+ T cells in the PLN and 

spleen were examined. Figures 8A, C, and 9A show that piceatannol treatment did not have a 

significant effect on the localization of CD4+ or CD8+ T cells. The quantitation of the ratio of cells 

In/Out of the splenic T cell zones showed that, although there was a slight increase in the 

In/Out ratio of both CD4+ and CD8+ T cells, there would likely not be a significant difference 

between the treated and untreated cells with more independent experiments done. Figures 9A-

B show that there was not a large effect on the localization of piceatannol-treated cells in the 

PLN. This was determined by observing that there were no treated cells ‘trapped’ in the HEV of 

the PLN, and that the treated and untreated cells localized to similar areas once outside of the 

HEV. Quantifying the above observation in the similar ways as Figures 8A-C is complicated by 

the fact that there were no cells observed in the HEV after the 1-hour migration. However, it 

would be necessary to confirm the observations detailed above with quantitation of 3 

independent experiments.  

Piceatannol treatment has been found to reduce activation marker expression in 

activated CD8+ T cells (Kim et al., 2015). It has also been shown to reduce the transmigration of 

CD4+ T cells into resting lymph nodes in 30 minute migration experiments and block the L-

selectin-mediated increase in T cell chemotaxis to CCL21 (Subramanian et al., 2012). In the 

present studies, the migration of lymphocytes to the PLN, either control or immunized, 

following 1 hour of migration was not significantly affected by piceatannol treatment. These 

pieces of data, along with Figure 8A, C, and 9A, suggest that ZAP70 does not play a major role in 
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the differential migration of CD4+ and CD8+ T cells during an immune response. Some groups 

have found that ZAP70 plays a role in the directionality of T cell migration to chemokines in 

vitro (Lin et al., 2010). It is possible that the T cells are able to compensate for the loss of ZAP70 

signaling, and thus its role in integrin signaling, through synergy in the signaling pathways that 

are stimulated by multiple different chemokines engaging the cell at the same time. This 

cytokine ‘milieu’ could allow other pathways to compensate for the loss of one signal due to 

piceatannol inhibition. Indeed, there are reports of different intracellular pathways being 

activated depending on the chemokines, proteins, and T cell subtypes present (Schaeuble et al., 

2011). Also, several reports of synergy between, or among, various chemokine/receptor 

networks have been reported (although the exact mechanism of such interaction networks has 

been hard to disentangle) (Gouwy et al., 2011; Kuscher et al., 2009). The variables of 

chemokine, chemokine receptor, cell type, and cell expression are a few of the parameters of 

the cell migration formula. Although nascent, the development of high-throughput methods for 

characterization of signaling pathway synergy with various perturbations has begun to unwind 

complex networks such as chemokine signaling (Bendall et al., 2011). It would be interesting to 

look for a possible synergy among pathways in piceatannol-treated cells, which allowed the 

cells to compensate for loss of ZAP70 signaling by using a high-throughput method (e.x. single-

cell mass cytometry).  

Previous studies using in vitro transwell migration assays had shown that wortmannin 

treatment of cells does reduce migration to CCL21 (Subramanian, 2012). Given PI3K’s 

importance in signaling, it is surprising that wortmannin inhibition of PI3K did not affect CD4+ or 

CD8+ T migration to the peripheral lymph nodes as shown in Figures 7A-B. Further, 



35 
 

quantification of spleen sections with wortmannin-treated or untreated cells (Figure 8B) 

showed that wortmannin treatment did not influence the localization of CD4+ or CD8+ T cells to 

splenic T cell areas. It is likely that wortmannin treatment of CD4+ and CD8+ T cells would not 

have a significant effect on localization in the PLN, although this was not examined. Some 

previous reports using wortmannin to inhibit PI3K proteins support this result (Matheu et al., 

2007, Asperti-Boursin et al., 2007). As with Figure 6, the discrepancy could be explained by 

crosstalk compensation of the various signaling pathways and chemokines. It is possible that 

the cells can incorporate various other chemokine signaling and/or pathways to allow them to 

make up for the loss of pan-PI3K signaling due to wortmannin treatment. Importantly, Apsperti-

Boursin and others found that cells treated with wortmannin at 100nM maintained PI3K 

inhibition for at least 2 hours. This adds support to the data in Figure 7 in lieu of western blot 

data of my own. Overall, these results support the idea that the mechanism for regulating the 

differential migration of CD4+ and CD8+ T cells during an immune response is not wholly 

dependent on ZAP70 and PI3K signaling. 

Finally, results shown in Figure 10 suggest that CD4+ and CD8+ T cells do not cross the 

HEV significantly faster in immunized compared to control peripheral lymph nodes using 5-

minute migration assays. However, it is possible that a 5-minute migration assay is simply too 

short for migration out of the HEV to occur in either tissue. A difference in migration between 

the resting and immunized PLN might be found if the cells were given a little more time to 

migrate across the HEV. A similar assay with a 10-minute migration time could address this 

question.  
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Future Directions and Conclusion 

Follow up transfer assays with immunofluorescence microscopy should be done to 

quantitate the results qualitatively shown in Figure 9A-B. Although initial images from the first 

experiment suggest there is no difference in migration with piceatannol treatment at this time 

point, this should be confirmed. Interestingly, in Figure 9A-B there seemed to be fewer treated 

cells in the control peripheral lymph node images (CFSE+ cells) compared to the immunized PLN. 

This result is not consistent with the data in Figure 6 that showed there was no reduction of 

CD4+ or CD8+ T cell migration to the control peripheral lymph node with piceatannol treatment. 

It is possible that the lack of CFSE+ cells in the control peripheral lymph node was an artifact of 

the sectioning or labeling of the tissue. Labeling more sections from the same control 

peripheral lymph node tissue could confirm the result. Also, transfer and immunofluorescence 

imaging with wortmannin-treated cells would be a good follow up on Figure 9A-B. 

The majority of groups that study T cell migration examine chemokine signaling as a 

large aspect of the migration ‘equation’. It would be interesting to examine the dynamics of the 

cytokine ‘milieu’ and how it is affected by the immunization procedure used in our studies. 

Using a high-throughput Liquid Chromatography-Mass Spectroscopy approach could provide 

data that would tell us what chemokines are expressed differently in immunized mice 

compared to the unimmunized mice.  

Opposite of chemokine expression are the cells that are sensing and responding to 

them. Examination of CD4+ and CD8+ T cell gene expression and/or transcriptome could 

elucidate some differences in intracellular responses to cytokine exposure that might help 
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explain the differential migration. Indeed, some groups have used high-throughput, ‘systems’ 

methods to examine the intracellular signaling that takes place before cell activation (Hat et al., 

2011, Bordbar et al., 2012, De Simone et al., 2016). Multicolor fluorescence associated cell 

sorting with rtPCR on the single-cell populations would be a good method to look at expression 

of chemokine receptors and/or gene expression in response to chemokine exposure. Those 

methods in conjunction could hint at which chemokine signaling pathways to focus on with 

inhibitors or gene knockouts to tease apart the differential migration. 

The data shown and discussed in this work, although not conclusive, has eliminated 

possibilities for the observed differential migration of CD4+ and CD8+ T cells during an immune 

response and suggested new possibilities. A better understanding of the migration mechanisms 

used by T cells could allow design of T cells with improved migration to tumor sites, as has been 

a noted issue for some immunotherapeutic regimens (Sackstein et al., 2017). This knowledge 

could also add to the development of immunotherapies for autoimmune diseases (Pozsgay et 

al., 2017). In all, this work adds to the ever-growing knowledge of T cell migration and, in the 

future, will hopefully be useful for therapies that help patients’ lives. 
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Appendix 

Introduction 

 Deacetylation of histones by histone deacetylases (HDACs) has been implicated in 

regulation of gene expression for many years (Allfrey et al., 1964). The biochemical pathways 

and wider effects on gene regulation of HDACs have been uncovered since these initial studies 

in the 1960s (Seto and Yoshida, 2014). The role of HDACs in gene regulation has become even 

more appreciated with the advent of epigenetic studies in recent years. HDACs role(s) in cancer 

garnered interest from groups once more information became available about its role in gene 

regulation. HDAC inhibitors (HDACi) have been studied clinically because of this interest (West 

and Johnstone, 2014). There are four FDA-approved HDACi as of 2018 (Vorinostat™, 

Romidepsin™, Panobinostat™, Belinostat™) with strong interest in developing new HDACi as 

evidenced by the 608 on-going or completed clinical studies investigating HDACi (Hervouet, 

2018; Clinicaltrials.gov). However, a lack of specificity, and intolerable levels of toxicity, has 

limited the development of HDACi outside of the currently approved inhibitors. 

 Toxicity issues with current HDACi and continued interest in the development of HDACi 

for cancer lead to the collaboration between the Hossain lab and Steeber lab. The Hossain lab 

had previously synthesized novel HDACi based on the chemical structure of Romidepsin™ 

(FK228). The modifications made by the Hossain group were designed to reduce the toxicity of 

the new HDACi by increasing their class specificity. The Hossain group had synthesized 12 

structural variants, including addition of different functional groups, and termed the variants 

compound 1-6 (Cpd1-6) and Cpd1-6’. The Hossain group delivered batches of the purified 
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compounds to the Steeber lab for testing of the drugs in vitro as described below. The data 

from the assays performed show that one of the compounds (Cpd1’) reduced prostate cancer 

(DU145 cells) viability and inhibited HDAC activity in vitro.  

MTT assay  

Cells were allowed to adhere for 24 hours at 37°C with 5% CO2. Compound 1’ (Cpd1’), 

Compound 5 (Cpd5), FK228, and DMSO control concentrations were diluted in series with 

supplemented DMEM. The media was aspirated off the 96 well plate and the drug, or control, 

concentrations were added to the plate in triplicate. The cells were incubated with the drugs or 

DMSO controls for 48 hours. The drug and control treatments were removed and 200 µg/mL 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Research Products 

International, Mount Prospect, IL) diluted in supplemented DMEM was added to each well. 

Cells were incubated with the MTT for 4 hours at 37°C with 5% CO2. The MTT solution was 

aspirated off and 200 µL DMSO was added to each well. The plate was mixed on a rotator for 10 

minutes at a moderate pace and then the wells were mixed with a pipettor to dissolve all the 

MTT in each well. The plate was read at 570 nm with the reference wavelength at 690 nm on a 

Molecular Devices Versamax plate reader (San Jose, CA). The reference wavelength absorbance 

for each well was subtracted. The average for the triplicate blank wells was calculated and also 

subtracted from each well. The % viability of each concentration was calculated by dividing the 

average absorbance for each drug concentration by the DMSO control for that concentration 

(average drug concentration absorbance/average DMSO control absorbance). 
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H3 Acetylation Assay 

DU145 cells were cultured as above. Cells were counted and resuspended at 60,000 

cells/mL in supplemented DMEM. 1mL of cells at 60,000 cells/mL were added to wells of a 24 

well plate. The cells were allowed to adhere for 24 hours at 37°C with 5% CO2. The media was 

aspirated and Cpd1’ at 50, 5, or 0.5 μM concentrations, or DMSO controls, in supplemented 

DMEM were added to the wells in duplicate. The plate was incubated at 37°C with 5% CO2 for 

24 hours. Cells were fixed with 350-500 μL 4% paraformaldehyde for 10 minutes at room 

temperature after the 24-hour incubation. 400-500 μL Tris buffered saline with 0.1% Tween 20 

and 1% Bovine Serum Albumin (TBS-T w/ 1% BSA) was added to each well for 1 hour at 4°C for 

permeabilization. TBST w/ 1% BSA was removed and 350 to 500 μL rabbit anti-acetyl-Histone 

H3 (Lys9/Lys14) antibody (Cell Signaling Technology, Danvers, MA) at a 1:2000 dilution in TBS-T 

w/1% BSA was added to each well. The primary antibody was incubated with the cells overnight 

at 4°C. The primary antibody was removed and goat anti-rabbit IgG AlexaFluor™ 488 (Jackson 

ImmunoResearch, West Grove, PA) at a 1:500 dilution was added to each well and incubated 

for 1.5 hours at 4°C. The plate was removed from 4°C and 350-500 μL DAPI at 0.3 μg/mL was 

added to each well. DAPI was incubated in dark at room temperature for 15 minutes. Finally, 

wells were imaged with the fluorescence microscope as described in the main article’s 

Materials and Methods section.  

Results 

Cpd1’ had anti-proliferative activity at 50 uM as shown in Figure 11A. There was a 

significant reduction in cellular proliferation at 50 μM compared to 5 μM. However, the activity 
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of Cpd1’ did not extend past the 50 μM concentration. A single follow up experiment showed 

that Cpd1’ had anti-proliferative effects down to about 20-30 μM concentrations (data not 

shown). The histone deacetylase inhibitor (HDACi) activity of Cpd1’ was assayed by 

immunofluorescence labeling of the acetylated form of the histone H3 protein. The antibody 

labeling detected acetylated lysine 9 and lysine 14 on the H3 protein. Increased fluorescence 

would indicate that the compound was not allowing the deacetylation of the H3 protein and 

thus indicate HDACi activity for Cpd1’. Figure 11B shows that the 50 μM concentration of Cpd1’ 

increased the acetylation of the H3 protein compared to the DMSO control in DU145 cells. This 

indicates that Cpd1’ has HDACi activity. The increase of acetylation at the 50 μM dose 
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correlates with the significant decrease in proliferation at the 50 μM dose shown in Figure 11A. 

This suggests that Cpd1’ is reducing cell proliferation via HDACi activity.  

Cpd5 was tested with the same MTT procedure and concentrations as Cpd1’. Figure 12 

shows that Cpd5 did not have detectable anti-proliferative effects on the DU145 cells as 

measured by % viability.  
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Figure 11. Cpd1’ significantly reduced DU145 cell viability after treatment for 48 hours and had histone 

deacetylase activity after 24 hours. A) DU145 cells were treated and MTT conversion was measured as 

above. The % viability was calculated as above. The 50 μM treatment results are from 3 independent 

experiments while the 5, 0.5, and 0.05 μM treatment results are from 2 independent experiments. Error 

bars indicate SEM. Asterisk above bar indicates significant difference between results at either end of 

bar.  * p < 0.05 B) Representative images of histone H3 acetylation after treatment with DMSO or Cpd1’. 

Blue indicates nuclear staining by DAPI and Green indicates the presence of acetylated H3 histone.  

 

Figure 12. Cpd5 did not significantly reduce the % Viability of DU145 cells. The MTT assay was 

performed as described above with the concentrations shown. % viability was calculated as above. 

Results are from 1 experiment. 

 

Discussion and Future Directions 

Previous MTT assays with Cpd5 found that the compound significantly reduced DU145 

cell proliferation at nanomolar concentrations. Figure 12 shows that there was no significant 

reduction in proliferation by Cpd5 even at the 50 μM concentration. This suggests that the 
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compound was not as active as it was in previous experiments. The FK228 positive control 

achieved reduction of proliferation in the previously reported nanomolar range (data not 

shown), and Cpd1’ showed reduction in the micromolar range. Accordingly, it is not likely that 

differences in the MTT assay are to blame. It is possible that the synthesis and/or purification of 

the compound was not the same as in previous assays. Cpd5 received from Dr.Hossain’s group 

will be tested with the MTT assay as described above until an active batch of the compound is 

found. Follow up MTT assays could also be done with Cpd1’ to further define the effective 

range for the compound.  

Figure 11B qualitatively shows that Cpd1’ had strong HDACi activity at the 50 μM 

concentration. Preliminary testing was done on an assay using flow cytometry to quantitate the 

level of H3 acetylation. A quantitative measure of H3 acetylation would allow for stronger 

support of the conclusion that Cpd1’ had significantly higher HDACi activity than the DMSO 

control. It would also further support the correlation between Cpd1’s HDACi activity and anti-

proliferative effects. 

Pharmacokinetic studies of Cpd1’ in mouse model(s) would be the next step in the 

consideration of the compound as a cancer therapeutic. Injecting Cpd1’ intraperitoneally (i.p.) 

at a yet to be determined concentration (presumably in the mg/kg range) and sampling blood 

at 30-minute intervals via a retroorbital eye bleed procedure could be a good start to 

understanding the pharmacokinetics of the drug. It would also be interesting to sample various 

tissues (e.g. spleen, lymph nodes, kidney, heart, intestine) to examine the distribution of the 

drug in the mouse after injection. These tissues could be sampled from control and 

experimental mice at 12, 24, and 48 hours after i.p. injection of the drug as a first experiment. 
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Finally, a dosing study to examine the effectiveness of Cpd1’ in a mouse tumor model 

would be necessary to show effectiveness in vivo. Cpd1’ could be injected i.p. into mice bearing 

tumors. Female Balb/c mice bearing 4T1 tumors in their mammary fat pads to model stage IV 

breast cancer is a model used in the Steeber lab to examine myeloid-derived suppressor cell 

(MDSC) biology in tumors. It would be interesting to see the effects, if any, of Cpd1’ on the 

growth of 4T1 tumors. Most 4T1 tumors are visible as a small bump at the injection site 2 weeks 

post injection. The pharmacokinetics data from the suggested experiments would be useful to 

set up the dosing plan, but an a priori plan could be to dose the mice with Cpd1’ in the mg/kg 

range once weekly starting one week after tumor injection. Tumor area could be measured 

with calipers, and control versus treated tumors would be compared. It would be possible to 

inject the compound and control directly into the tumor if no effect is found with i.p. dosing to 

determine if the dosing was not high enough or if the compound is not effective in vivo.  

These data shown, and future studies suggested, would provide more information on 

the effectiveness of Cpd1’ in vivo. These efforts would hopefully show the compound to be an 

effective cancer therapeutic and be a viable option to help patients with the disease. 
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