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ABSTRACT

Z-STRUCTURES AND SEMIDIRECT PRODUCTS WITH AN
INFINITE CYCLIC GROUP

by

Brian Pietsch

The University of Wisconsin-Milwaukee, 2018
Under the Supervision of Professor Craig Guilbault

Z-structures were originally formulated by Bestvina in order to axiomatize

the properties that an ideal group boundary should have. In this dissertation,

we prove that if a given group admits a Z-structure, then any semidirect

product of that group with an infinite cyclic group will also admit a Z-

structure. We then show how this can be applied to 3-manifold groups and

strongly polycyclic groups.
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1 Introduction

One can seek to understand the algebraic properties of a finitely gen-

erated group by instead studying the geometric properties of a topological

space on which the group acts, and it is this theme that describes what geo-

metric group theory is all about. Terms like “dimension” or “boundary” are

used to describe algebraic objects such as groups, but these terms seem to

have geometric connotations to them and so it makes sense to try to find a

geometric way of defining them. This often becomes a matter of finding a

space on which the group acts, analyzing its properties, and then asking: “is

this a well-defined property of the group, or just a property of the space?”

That is, if you find any other space on which that group acts, must that space

also share the same properties? For example, it is a well known result in ge-

ometric group theory that δ-hyperbolic groups have well-defined boundaries

that can be taken to be the boundary of any space on which the group acts

geometrically. CAT(0) groups, on the other hand, do not have well-defined

boundaries without adding additional hypotheses; there are examples of the

same CAT(0) group acting geometrically on two different spaces with non-

homeomorphic boundaries.

The challenge of geometric group theory then is to find the right bal-

ance between restricting with extra hypotheses, and generalizing to broader

classes of objects, in order to discover just how strong the correspondence is

between algebra and geometry. CAT(0) groups and δ-hyperbolic groups are
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two classes of groups that have received much focus in research, and they

both have their own notions of a group boundary. Bestvina first introduced

the notion of a Z-structure [Bes96] as a way of capturing the idea of a group

boundary as a set of axioms that reflects what happens in both the CAT(0)

an δ-hyperbolic case. This then begs the question: besides CAT(0) and δ-

hyperbolic groups, which other types of groups admit Z-structures? A more

complete listing of what is currently known is given in Section 2, but the goal

of this paper is to prove the following main theorem:

Theorem A. If a group G admits a Z-structure with boundary Z, then any

semidirect product of the form G oφ Z also admits a Z-structure where the

boundary is the suspension of Z.

As a consequence of the above theorem, we are also able to prove the

following two results in Section 9:

Theorem B. Every strongly polycyclic group admits a Z-structure where the

boundary is a sphere of dimension n− 1, where n is the Hirsch length of the

group.

Theorem C. Every closed, orientable 3-manifold group admits a Z-structure.

Remark. Theorem A was anticipated by Bestvina in [Bes96, Ex. 3.1]. The

bulk of the work presented here involves providing a complete and detailed

argument supporting the claim found there. In doing so, our methods diverged

significantly from the hint provided there.
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2 Definitions, Examples, and Main Results

Every space in this paper will be assumed to be separable and metrizable.

Definition 2.1. A locally compact space X is an absolute neighborhood

retract (ANR) if, whenever X is embedded as a closed subset of any space

Y , then some neighborhood of X retracts in Y . An ANR X is an absolute

retract (AR) if, whenever X is embedded as a closed subset of Y , then all

of Y retracts onto X.

Definition 2.2. A closed subset Z of a space X is a Z-set if, there exists

a homotopy α : X × [0, 1]→ X such that α0 = idX and αt(X) ⊂ X − Z for

all t > 0. In this case, α will be referred to as a Z-set homotopy.

Definition 2.3. A group G acting on a space X is said to act properly if

for any compact set K ⊂ X, the set {g ∈ G | gK ∩ K 6= ∅} is finite. The

group is said to act cocompactly if there exists a compact set K such that

the set of translates GK covers X.

Remark. Some authors may give an alternative definition for proper actions,

but the definition given here is what will be used in this paper.

Definition 2.4. A collection of subsets A in a space X is a null family

if, for any open cover U of X, there exists a finite subcollection B ⊂ A such

that for all A ∈ A− B, there exists U ∈ U such that A ⊂ U .

Z-structures were introduced by Bestvina [Bes96] in order to provide

axioms that an ideal group boundary should satisfy. Bestvina originally re-
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quired finite dimensional spaces and free actions, and Dranishnikov [Dra06]

later relaxed the definition to allow for groups with torsion. Work by Moran

[Mor16] has shown that the finite dimensionality condition is also not neces-

sary, and so we arrive at the following definition which appears in [GM18]:

Definition 2.5. A Z-structure on a group G is a pair of spaces (X̂, Z)

satisfying:

(1) X̂ is a compact AR.

(2) Z is a Z-set in X̂.

(3) X = X̂ − Z admits a proper, cocompact action by G.

(4) (Nullity condition) For any compact set K ⊂ X, the collection of subsets

{gK | g ∈ G} is a null family in X̂.

Remark. If the pair also satisfies:

(5) The action of G extends to X̂,

then it is called an EZ-structure. If only properties (1)− (3) are satisfied,

it is called a weak Z-structure, or if properties (1) − (3), (5) hold, it is a

weak EZ-structure.

Because the action is proper and cocompact, in the case of infinite groups,

the nullity condition can be interpreted as saying that translated sets get

small near the boundary. There is no complete classification of which groups

admit Z-structures, but many special cases are known.

Example 2.1. (1) Finite groups: Since a finite group acts properly and co-

compactly on a space consisting of a single point via the trival action, we can
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say that ({x}, ∅) is a EZ-structure for any finite group. That is to say, Z-

structures don’t tell us anything interesting about finite groups as is usually

the case in geometric group theory.

(2) CAT(0) groups: For a group which acts geometrically on a proper CAT(0)

space X, compactifying X with the visual boundary ∂X and giving X ∪ ∂X

the cone topology creates a EZ-structure on the group. [Bes96]

(3) Hyperbolic groups: For a δ-hyperbolic group G, one can create a EZ-

structure by compactifying a Rips complex Pd(G) (where d depends on δ)

with the Gromov boundary of the group. [BM91]

(4) Baumslag-Solitar groups: For integers m and n, the Baumslag-Solitar

group is defined as BS(m,n) = 〈a, b | bamb−1 = an〉. It is known that every

such group admits a EZ-structure. [GMT]

(5) Systolic groups: Systolic groups are defined as any group acting geomet-

rically by simplicial automorphisms on a systolic complex, which is a type

of contractible simplicial complex satisfying certain local combinatorial con-

ditions. Every systolic group admits a Z-structure. [OP09]

(6) Relatively hyperbolic groups: If a group G is hyperbolic relative to a set

of peripheral subgroups H and if it is already known that each of the periph-

eral subgroups H ∈ H admits a Z-structure, then the group G also admits a

Z-structure. [Dah03]

(7) Group extensions of type F groups: A group G is considered to be type F if

it admits a finite K(G, 1) classifying space. One of the bigger open questions

on the existence of Z-structures is whether or not every type F group admits
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a Z-structure. A partial result towards that end is that every extension of a

nontrivial type F group by another nontrivial type F group will admit a weak

Z-structure. [Gui14]

(8) Free products and direct products: Given two groups G and H which are

already known to admit Z-structures (X̂, Z1) and (Ŷ , Z2) respectively, there

are ways to construct Z-structures for the groups G ∗ H and G × H that

utilize the spaces X, Y and the boundaries Z1, Z2 in a natural way. [Tir11].

The work of this paper builds heavily on the direct product construction

to expand to including certain special cases of semidirect products.

Definition 2.6. Let G and Q be groups, and let φ be a homomorphism

φ : Q → Aut(G) where Aut(G) denotes the group of all automorphisms of

G. The semidirect product of G and Q with respect to φ, denoted by

Goφ Q, is defined as follows:

As a set, G oφ Q = G × Q, the ordinary Cartesian product. Multiplication

of group elements is defined by the rule (g1, q1) ∗ (g2, q2) =
(
g1φ(q1)(g2), q1q2

)
In the special case of the above definition when the group Q is infinite

cyclic, the semidirect product is easier to understand since the map φ : Z→

G is completely determined by where φ sends 1. Suppose the group G has

a finite presentation given by 〈S|R〉. Then Goφ Z has a presentation of the

form 〈S, t|R, t−1st = φ(s) for all s ∈ S〉.

The main goal of this paper is to prove the following result:
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Theorem 2.7. If a torsion-free group G admits a Z-structure (X̂, Z), then

any semidirect product of the form GoφZ admits a Z-structure (X̂ ′, Susp(Z)).

The theorem is easiest to state for the case of torsion-free groups as above,

but with additional hypotheses, an analogous result can be stated for when

the group may have torsion. The terms in the following theorem are defined

more precisely in Section 8.

Theorem 2.8. If G admits a Z-structure (X̂, Z) where X is an EG space,

then any semidirect product of the form GoφZ admits a Z-structure (X̂ ′, Susp(Z))

where X ′ is an E(Goφ Z) space.

Rough outline of proof

1. Since G is already assumed to admit a Z-structure, we have a nice space

X on which G acts. We then use X as a building block to construct

an infinite mapping telescope on which Goφ Z acts.

2. Next, we build a carefully controlled homotopy equivalence v from Y

to X × R.

3. Building upon methods developed by Tirel in [Tir11], we compactify

X × R by adding the suspension of X’s boundary, Susp(∂X), as the

boundary. This requires topologizing the boundary in a way that v-

images of a compact set whose translates cover Y form a null family in

X̂ × R.
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4. Lastly, we use a “boundary swapping” technique developed in [GM18]

to pull back the above boundary using v−1. Extra control is built

into the compactification done in Step 3 so that the final result is a

Z-structure for Goφ Z.

3 An illustrative special case of the Main The-

orem

We will start by giving a concrete example that demonstrates the steps laid

out in the above overview. We will begin with the group Z2, which is already

known to admit a Z-structure, and then we will look at taking a semidirect

product with Z.

The discrete Heisenberg group The discrete Heisenberg group H3(Z)

is a well-known group that has been studied in many contexts. It is one of

the simplest examples of an infinite, non-abelian nilpotent group. There are

several well-known presentations for the group, but I am most interested in

thinking of the group as a semidirect product Z2 oφ Z where φ is the auto-

morphism of Z2 given by the matrix [ 1 1
0 1 ]. That is, we have a presentation

given by H3(Z) = 〈x, y, z|[x, y] = z, [x, z] = 1 = [y, z]〉. This presentation

can also be described with matrices by letting
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x =


1 1 0

0 1 0

0 0 1

 , y =


1 0 0

0 1 1

0 0 1

 , z =


1 0 1

0 1 0

0 0 1


H3(Z) can be viewed as Z3 with a different multiplication rule: (x1, y1, z1) ·

(x2, y2, z2) = (x1 + x2 + z1y2, y1 + y2, z1 + z2).

Since H3(Z) is a semidirect Z2 oφ Z and because Z2 is CAT (0) (and hence

admits a Z-structure with X = R2), the Heisenberg group is the type of

group that Theorem 2.7 can be applied to.

We will follow the method outlined in Section 1 for creating a Z-structure

on H3(Z) but with a warning. Things work out more simply in this case than

than in arbitrary semidirect products of the form Goφ Z. This is because in

the case of the Heisenberg group, the automorphism φ can be realized as a

homeomorphism of R2 to itself. In general, we will have to make do with a

nicely controlled proper homotopy equivalence.

Let T 2 denote the standard torus S1× S1. One can construct a space on

which H3(Z) acts by first taking a mapping torus of T 2, where the attaching

map f is a homeomorphism that induces the group automorphism φ on the

level of π1. This space will be denoted Torf (T
2). In the general proof found

later in the paper, f is only guaranteed to be a homotopy equivalence and

not necessarily a homeomorphism, so that is one of the features that makes
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this example simpler. The universal cover of this space then comes with a

natural action of H3(Z).

Figure 1: Several translates of the unit cube

This cover can be understood by creating it in two steps. First, consider

at the cover corresponding to the Z quotient. That is to say, “unwrap” the

mapping torus to create a bi-infinite mapping telescope consisting of mapping

cylinders of the map f : T 2 → T 2 glued end-to-end. Then take the universal

cover of this space. It will be the bi-infinite mapping telescope of the map

10



f̃ : R2 → R2 which is the lift of f . Since f and f̃ are homeomorphisms, their

mapping cylinders are homeomorphic to products. Therefore this new space

created is topologically R3, where we have a countably infinite collection of

planes representing the universal cover of T 2 stacked along the z-axis with

intervals gluing them together in a skewed fashion. However, because of the

way these planes are glued together, the geometry of this space is not that

of standard Euclidean space; the geometry of this space is what defines Nil

geometry.

The next step is to place a boundary on this space. Both E3 and H3 are

equal to R3 as sets, so both can be Z-compactified by adding a boundary

sphere S2 at infinity. The same can be done for this space on which H3(Z)

acts, but a natural question is whether or not this produces a Z-structure

for the group H3(Z). In this case, the nullity condition is the most difficult

to check. How does one topologize neighborhoods near the boundary sphere

so that translates of compact sets are guaranteed to become small near the

boundary? If we ignore the geometry of our bi-infinite mapping telescope

and give R3 the standard compactification (add S2 as a boundary by plac-

ing a point at infinity for each Euclidean ray emanating from (0, 0, 0)), the

nullity condition fails since H3(Z) translates of the unit cube are distorted

when translated in the z-direction (see Figure 1).

The remedy then is to change how that sphere at infinity is attached. This

11



Figure 2: Standard Euclidean rays from the origin, corresponding to points
on the sphere at infinity

Figure 3: Modified rays corresponding to an alternate way of attaching the
sphere at infinity

is done by defining a “slope function” that redefines which curves will be used

in place of the standard Euclidean rays when deciding how to place points

at infinity. In essence, these new rays of constant slope will bend away from

the north and south poles so that those two points at infinity have “larger”

neighborhoods that will swallow up translates of an initial compactum, which

12



appear to be expanding as they are pushed in those directions. This must be

done carefully so that translates in the other directions do not become larger

as a result of the distortions we have introduced. This process is described

more precisely in the general proof found in Section 6 below.

4 The Mapping Telescope

In order to create a Z-structure for G oφ Z, we must first come up with a

candidate space on which that group acts, and then see if it can be compact-

ified with all of the desired properties. The mapping telescope will be that

space. The main goal is to prove Theorem 2.8, but we will begin by proving

the torsion-free case stated as Theorem 2.7. After proving the torsion-free

case, we will return to the case allowing for torsion in Section 8. If we are

considering a group of the form Goφ Z where G is a torsion-free group that

admits a Z-structure (X̂, Z), the following result of Bestvina says that it

may as well be assumed that the space X is the universal cover of a K(G, 1).

Lemma 4.1. [Bes96] If a torsion-free group G admits a Z-structure [resp.

EZ-structure] (X̂, Z), then G admits a finite K(G, 1) complex K and there

is a Z-structure [resp. EZ-structure] of the form (K̃ ∪ Z,Z).

Suppose we have a semidirect product of the form G oφ Z where G ad-

mits a Z-structure (X̂, Z). By Lemma 4.1, assume that X := X̂ − Z is the

universal cover of K = K(G, 1). Throughout the rest of this paper, fix a base
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point x0 ∈ X. Let f : K → K be a cellular map such that f∗ = φ : G→ G.

Note that since φ is an automorphism, the above conditions and Whitehead’s

theorem tell us that f is a homotopy equivalence.

The mapping cylinder for the map f : K → K, denoted M[a,b](f), is the

quotient space (K × [a, b]) tK/ ∼ where ∼ is the equivalence relation gen-

erated by the rule (x, a) ∼ f(x) (where f(x) comes from the disjoint copy of

K). Let q[a,b] : (K × [a, b]) tK →M[a,b](f) be the quotient map. For each

t ∈ (a, b], q[a,b] restricts to an embedding of K × {t} into M[a,b](f) whose

image will be denoted Kr. Kb will be referred to as the domain end of the

mapping cylinder. The quotient map is also an embedding when restricted to

the disjoint copy of K, and its image will be denoted Ka and called the range

end of the mapping cylinder. The choice of [a, b] used to label an interval is

only a matter of convenience for what follows. The notation Telf (K) will be

used to denote the bi-infinite mapping telescope obtained by gluing together

infinitely many mapping cylinders where the domain end of M[k−1,k](f) is

attached to the range end of M[k,k+1](f). That is,

Telf (K) = · · · ∪M[−1,0](f) ∪M[0,1](f) ∪M[1,2](f) ∪M[2,3](f) . . .

The space we are really interested in using and the one that comes equipped

with a proper, cocompact GoφZ action is the universal cover, which is itself

a mapping telescope for the map f̃ : X → X where X = K̃. That is, we will

14



eventually be compactifying the space Telf̃ (X) to construct a Z-structure.

Understanding the mapping telescope: Recall that if the group G has

a finite presentation given by 〈S|R〉, then G oφ Z has a presentation of the

form 〈S, t|R, t−1st = φ(s) for all s ∈ S〉. As one usually does with HNN

extensions, take K and create the mapping torus for the map f . Without

loss of generality, we will assume that K has been given a cell structure

so that its 2-skeleton is the presentation 2-complex for 〈S|R〉, with a single

vertex and one 1-cell for each generator in S. We will also assume that all

of our mapping cylinders have been given the standard cell structure where

the domain and range ends are subcomplexes, the only two vertices are the

domain and range end copies of the single vertex from K, and all but one

1-cell lies in the domain or range end (with that one leftover 1-cell being the

mapping cylinder line connecting the two vertices). We then wish to lift this

cell structure to the telescope Telf̃ (X). By choosing K as described above,

we can arrange that the 1-skeleton of X = K̃ is a Cayley graph and the

2-skeleton is a Cayley 2-complex for Goφ Z. Because the mapping telescope

consists of countably many mapping cylinders, each of which has a copy of X

at their domain end, we end up with a copy of the Cayley graph for G at each

integer level. As a set, the semidirect product Goφ Z is the same as G× Z,

so it is no surprise that the 0-skeleton of the universal cover of this mapping

torus is in 1− 1 correspondence with G×Z. We can visualize this 0-skeleton

of the universal cover as being organized into horizontal strips corresponding

15



to all of the cosets of G contained in the semidirect product. The vertices in

the nth level are labeled by the elements of G preceded by tn. We can then

proceed to fill in the 1-cells within each coset by obeying G’s multiplication

rules. It is the 1-cells that connect these cosets (i.e., multiplication by the

group element t) that sets this semidirect product apart from an ordinary

direct product, and this is what distorts the geometry in how distances are

measured. These 1-cells are all of the lifts of the one exceptional 1-cell that

connected the domain and range vertices in the mapping cylinders down-

stairs. From the identity vertex e, the t edges connect vertically in a straight

line to t, t2, t3, etc., but from any other vertex for some g ∈ G, the t edge

emanating from g needs to connect to the vertex labeled tφ(g). Depending

on the word lengths of the elements φ(g) and g in G, it is possible that the

shortest path between t and tφ(g) leaves the coset tG to take a shortcut

through other cosets. The group action on this space is easy to understand,

however. The group simply acts by isometries with t corresponding to a

vertical shift of the vertices, and the action of any g ∈ G can be seen as a

horizontal shift that is understood by analyzing what it does on the eG coset

and then making sure that all of the 1-cells connecting to other cosets are

dragged along in the appropriate manner. This means that when focusing

on the eG coset, the action of g looks just like multiplying by g, whereas the

action of g on the tnG coset will look like multiplication by φn(g). In the case

that K is not 1-dimensional, the instructions for attaching higher dimension

cells are encoded in the map f : K → K. The mapping telescope Telf̃ (X) is
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built by just taking the universal cover of the mapping torus Torf (K), and

hence the attaching maps for higher dimension cells in the mapping telescope

will just be lifts of whatever attaching maps were used in the mapping torus.

To find a compact set whose translates cover Telf̃ (X), one can first identify

a compact set C ′ ⊂ X whose translates by G cover X and then consider its

mapping cylinderM[0,1](f̃ |C′) =: C. This set C is then a compact set whose

translates under the action of GoφZ will cover Telf̃ (X), and it is translated

by isometries in the manner described above if the metric we use on Telf̃ (X)

is a lift of a path metric on Torf (K).

5 A homotopy equivalence

The goal of this section is to establish a controlled homotopy equivalence

between the infinite mapping telescope Telf̃ (X) and the product X × R.

The desired properties are that the homotopy is G-equivariant (where the G

action on Telf̃ (X) is the restriction of the GoφZ action, and the G action on

X ×R is trivial on the second factor) and “nearly level-preserving,” that is,

M[k,k+1](f̃) is mapped intoX×[k, k+1]. This begins with a close examination

of [Gui14, Lemma 3.2].

Lemma 5.1. [Gui14] If K is a compact connected ANR and f : K → K is

a homotopy equivalence, then the canonical infinite cyclic cover, Telf (K), of

Torf (K) is proper homotopy equivalent to K × R.
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To describe one of the maps involved in the preceding lemma, some no-

tation will need to be established. Let g : K → K be a cellular homotopy

inverse for f and B : K × [0, 1] → K with B0 = idK , B1 = fg. Let q[a,b] :

(K× [a, b])tK →M[a,b](f) be the quotient map that identifies (x, a) ∼ f(x)

for all x ∈ K. Then the homotopy equivalence u′ : K × R → Telf (K) from

the preceding lemma can be described by piecing together the following func-

tions defined for each integer n:

u′n : K×[n, n+1]→M[n,n+1](f) =


u′n(x, r) = q[n,n+1](Br−n(gn(x)), r) n ≥ 0

u′n(x, r) = q[n,n+1](f
−n(x), r) n < 0

where g0 is understood to be idK .

Since our real interest is in developing a homotopy equivalence between

Telf̃ (X) and X×R, we will take advantage of the fact that proper homotopy

equivalences can be lifted to proper homotopy equivalences [Geo08, Section

10.1]. We will end up with a proper homotopy equivalence u : X × R →

Telf̃ (X) that consists of piecing together the following functions defined for

each integer n:

un : X×[n, n+1]→M[n,n+1](f̃) =


un(x, r) = q[n,n+1](B̃r−n(g̃n(x)), r) n ≥ 0

un(x, r) = q[n,n+1](f̃
−n(x), r) n < 0

This lemma and its proof also give us extra control beyond simply being a ho-

motopy equivalence. Because the lemma is first proven to create a proper ho-
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motopy equivalence downstairs, lifting from K to X results in G-equivariance

for all of the maps. Because of the G-equivariance, the proper maps down-

stairs are guaranteed to lift to proper maps in the cover. That is, we end up

with the following proper G-equivariant maps:

u : X × R→ Telf̃ (X)

v : Telf̃ (X)→ X × R

H : Telf̃ (X)× [0, 1]→ Telf̃ (X) with H0 =id and H1 = u ◦ v.

J : X × R→ X × R with J0 =id and J1 = v ◦ u.

Another important degree of control that these maps afford us is the property

that they nearly preserve R-levels, e.g., Im(u|X×[n,n+1]
) ⊂ M[n,n+1](f̃). This

is useful in placing bounds on the homotopies H and J in the sense that one

only has to be concerned with how the homotopy track of a point wanders

in the X direction because we have firm bounds in the R direction.

By inspection of the formula given for u, we see that mapping between X×R

and Telf̃ (X) results in applying the maps f̃ and g̃ to progressively higher

powers as you move towards ±∞ in the Z direction. Since f̃ and g̃ are equiv-

ariant proper homotopy equivalences, they are quasi-isometries. Thus, there

is some level of distortion occuring that gets progressively worse as you move

towards ±∞ in the Z direction. To try to quantify this distortion, we will

begin by considering a compact set C whose translates cover Telf̃ (X), and

we will choose that set as described in Section 4 above by beginning with

a compact set C ′ whose translates by G cover X and taking the mapping

cylinder of f̃ restricted to C ′. If we use the induced path metric on Telf̃ (X),
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we know that the diameter of C in this metric must be less than the diame-

ter of C ′ × [0, 1] under the usual taxicab metric (we know that this must be

true since distances can only shrink from possible shortcuts added by tak-

ing mapping cylinder quotients q[n,n+1] : X × [n, n + 1] → M[n,n+1](f̃) and

by attaching neighboring mapping cylinders to form the bi-infinite mapping

telescope). We know that translates of C within Telf̃ (X) do not change size

since the action is by isometries, and we will use the taxicab estimate of

C ′× [0, 1] for C’s size. When we measure how the size of C compares to the

size of its image once mapped into X × R (where in X × R, we will use the

taxicab metric), this boils down to comparing how much distortion occurs

in the X direction because the maps u and v have the property that they

nearly preserve R-levels. The distortion in the X direction though is mea-

sured precisely by comparing the the sizes in X of C ′ with f̃n(C ′) or g̃n(C ′)

(with the latter depending on which direction in the mapping telescope you

are moving). The amount of stretching that occurs in the X direction is thus

bounded above by an exponential, though knowing the exact formula is not

required. In Section 6, a function η will be introduced to measure the upper

bounds of distortion as required.

6 Z-Compactifying the product

Our goal is a Z-compactification of Telf̃ (X) which satisfies the nullity con-

dition of Definition 2.5 with respect to the corresponding G oφ Z action.
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For this construction, this is the most delicate task. The strategy is to first

compactify the direct product with a suitable boundary and then use the

homotopy equivalence established in Lemma 5.1 to pull back that boundary

to the mapping telescope. The reason this is a delicate task is because as

you translate a compact set in the Z direction of the mapping telescope and

then look at the image of that set under the map v : Telf̃ (X) → X × R,

you are forced to iterate the map f to higher and higher powers as you move

further in the Z direction. This results in a worst-case scenario of the GoφZ

translates having images in X × R that grow exponentially with respect to

their R-coordinate (the amount of distortion depends on the maximum word

length of the image of any generator for G under the map φ). The goal then

becomes to show that the product space can be compactified in a way so

that even these exponentially distorted sets become small near the bound-

ary, and moreover, that they become so small in the product that they still

remain small when pulled back to the mapping telescope when we perform

the boundary swap in the final step of the proof (where the homotopy used is

potentially adding another degree of distortion). Proving this second state-

ment relies on understanding the growth of homotopy tracks as you move

further in the Z direction of the mapping telescope. For these reasons, we

will define a function η to measure such growth.

For what follows, recall that the group G has a Z-structure (X̂, ∂X) and

assume a basepoint x0 has been fixed. The metric on the space X := X̂−∂X
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will be denoted by d, whereas the metric on X̂ will be denoted by d̂. The

action by isometries of G is with respect to the space (X, d); even in the

case of an EZ-structure where the group action extends to the compactified

boundary, the action of G on (X̂, d̂) is not by isometries. There is very little

relationship between the metrics d and d̂, and we will be primarily interested

in the metric d̂ when it comes to establishing the nullity condition. An un-

decorated x will be used to denote a point in X, x̄ will denote a point in ∂X,

and x̂ will denote a point in X̂ when the distinction between boundary or not

is unneeded. Analogous notation will also be used for the group Z: we have

a Z-structure (R̂,±∞), and σ̂ will be used to denote any choice of metric on

the extended real line (the exact choice will not matter). Ball notation, as in

B(x, r), will be used exclusively to refer to closed balls in the space X where

the radius is measured by the metric d, and standard interval notation will

be used for balls in R.

As noted earlier, since GoφZ acts cocompactly on Telf̃ (X), we can choose a

compact set C ⊂M[0,1](f̃) whose translates cover Telf̃ (X). The letter t will

be used to denote the generator of the Z factor. For the following definition,

diameters in X×R will be measured using the taxicab metric (with respect to

the metric d on X and the standard metric on R), and diameters in Telf̃ (X)

will be measured with respect to the path metric previously described.

Definition 6.1. Let η : R+ → R+ be a function satisfying: For all k ∈ N
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η(k) ≥ max


diam

(
v(t±kC)

)
diam

(
H(t±kC × [0, 1]

)
diam

(
J(v(t±kC)× [0, 1]

)
Furthermore, choose η to be monotonic and such that limr→∞ η(r) =∞.

The purpose of this definition is to establish upper bounds on how much

distortion (of translates of our chosen compactum and of homotopy tracks

contained in such translates) is happening when mapping betweenM[k,k+1](f̃)

and X × [k, k + 1] as alluded to at the end of Section 5.

Theorem 6.2. X × R can be compactified to form a Z-compactification

(X̂ × R, Susp(∂X)) that satisfies the following version of the nullity condi-

tion:

For any open cover U of X̂ × R, there exists a compact L ⊂ X × R such

that any set of the form B(x, η(k))× [k, k + 1] that lies entirely outside of L

is contained in some U ∈ U (where k is taken to be an integer here).

This is not quite the same as saying that the collection of sets {B(x, η(k))×

[k, k + 1] | x ∈ X, k ∈ Z} is a null family despite the action being proper,

and that is because there are “too many” choices for x. But after we arrange

for the above property to hold, we can take a subset of that family, and by

applying properness of the action of G on X, we see that {B(gx0, η(k)) ×

[k, k + 1] | g ∈ G, k ∈ Z} is a null family. As stated in Definition 6.1, η was
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defined to provide an upper bound on the diameter of images of our chosen

compactum when translated only in the “vertical” direction of the mapping

telescope (that is, when multiplying by powers of t). However, since the map-

ping telescope was constructed by taking lifts of the map f : K → K, and

since H and J are also lifts of homotopies downstairs, we have G-equivariance

built-in and this means that η in fact provides an upper bound for the diam-

eter of the image of any translate of our chosen compactum found in a given

level of the mapping telescope. For this reason, this version of the nullity

condition will suffice to establish that we do indeed have a Z-structure for

GoφZ after the boundary is pulled back from the product into the telescope.

Much of the following construction follows as in [Tir11], but the “slope”

function needs to be defined much more carefully. It is important to care-

fully select the slope function to compensate for the the potential distortion

that occurs the case of a semidirect product, along with some additional

control to allow for a boundary swap that was not required in [Tir11].

Definition 6.3. Let ψ : R+ → R+ be a function satisfying

ψ(k) ≥ rk where rk is the radius at which balls of radius η(k) in X have

diameter less than 1
k

in X̂. That is, if B(x, η(k)) ∩ B(x0, rk) = ∅, then

diamd̂B(x, η(k)) ≤ 1
k
. The existence of such a radius is always guaranteed

by the fact that (X̂,G) is a Z-structure.

Furthermore, choose ψ to have the following properties:

• For some R ∈ R, ψ(s) ≥ η(s) for all s ≥ R
(
†
)
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• ψ is bijective

• 3ψ(s) ≤ ψ(s+ 1) for all s ≥ R

Definition 6.4. Let p(x) : X → R+ be the function p(x) := ln(ψ−1(d(x, x0))+

1). Let µ(x, r) : X × R→ R be the function given by

µ(x, r) :=



r
p(x)

if p(x) > 0

∞ if p(x) = 0 and r ≥ 0

−∞ if p(x) = 0 and r < 0

The definition of this slope function µ is one of the cruxes of this proof.

While the reasons for all of the requirements placed on η will be referenced

as needed in the coming lemmas, the basic goal is to ensure that p has

arbitrarily small variation when measured on translates of compact sets that

approach the boundary, even when these translates are in fact growing (at

worst) exponentially as they near the boundary.

Definition 6.5. The suspension of ∂X, denoted Susp(∂X), will be defined

as (∂X × [−∞,∞])/ ∼ where 〈x̄,−∞〉 ∼ 〈x̄′,−∞〉 and 〈x̄,∞〉 ∼ 〈x̄′,∞〉 for

all x̄, x̄′ ∈ ∂X

Remark. The choice of [−∞,∞] as the interval used in the definition of

the suspension was purely for notational convenience. The function µ will be

used to parameterize arcs in the boundary that connect the two suspension

points. It should also be noted that Tirel’s construction for more general

product spaces used the join of the two boundaries, and the suspension is a

special case of a join.

25



Remark. Points in the suspension will continue to be denoted by 〈x̄, µ〉 so

as to differentiate them from points (x, r) ∈ X × R. The equivalence classes

of 〈x̄,−∞〉 and 〈x̄,∞〉 will be denoted 〈−∞〉 and 〈∞〉 respectively. This is

done to reflect the independence of the choice of x̄ for those two equivalence

classes in Susp(∂X).

Definition 6.6. Define X̂ × R := X×Rt (Susp(∂X)) where the topology is

generated by all open subsets of X × R together with open subsets along the

boundary of the form:

For 〈x̄, µ〉 ∈ ∂X × (−∞,∞) and ε < µ,

U(〈x̄, µ〉, ε) := {(x, r) ∈ X × R| d̂(x, x̄) < ε, |µ(x, r)− µ| < ε}

∪{〈x̄′, µ′〉 ∈ Susp(∂X)| d̂(x̄′, x̄) < ε, |µ′ − µ| < ε}

For ε > 0,

U(〈−∞〉, ε) := {(x, r) ∈ X × R| σ̂(r,−∞) < ε, µ(x, r) < −1
ε
}

∪{〈x̄′, µ′〉 ∈ Susp(∂X)| µ′ < −1
ε
}

For ε > 0,

U(〈∞〉, ε) := {(x, r) ∈ X × R| σ̂(r,∞) < ε, µ(x, r) > 1
ε
}

∪{〈x̄′, µ′〉 ∈ Susp(∂X)| µ′ > 1
ε
}

Proposition 6.7. X̂ × R is a compactification of X × R
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Proposition 6.8. For any open cover U of Susp(∂X), there exists δ > 0

such that for all 〈x̄, µ〉, there is an element of U containing U(〈x̄, µ〉, δ)

Remark. It should be noted that we allow for the possibility that µ = ±∞ in

Propostion 6.8, meaning the choice of x̄ is unnecessary. That is, the claim is

as true for neighborhoods of the type U(〈x̄, µ〉, δ) as it is for the neighborhoods

we denote by U(〈∞〉, δ). The proofs of the above two propositions are essen-

tially the same as those in [Tir11] where they can be found as Propositions

3.10 and Claim 3.11, but the proofs are also included here for completeness.

Proof. First, observe that the subspace topology X×R inherits from X̂ × R

is the same as the original topology on X × R, and that X × R is open and

dense in X̂ × R. It remains to show that X̂ × R is compact to complete the

claim that it is a compactification of X × R.

Let U be an open cover of X̂ × R by basic open sets. Since Susp(∂X) is

compact (the suspension of a compact set is compact), we may choose a

finite subset {Ui}ki=1 of U which covers Susp(∂X).

To prove Proposition 6.8, we define for each i = 1, ..., k a function hi :

Susp(∂X)→ [0,∞) by

hi(〈x̄, µ〉) :=


0 if 〈x̄, µ〉 /∈ Ui

sup{r > 0 | U(〈x̄, µ〉, r) ⊂ Ui} if 〈x̄, µ〉 ∈ Ui

Each hi is continuous, and for every 〈x̄, µ〉 ∈ Susp(∂X), there is some
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i ∈ {1, ..., k} for which hi(〈x̄, µ〉) > 0. Then, h := max{hi | i = 1, ..., k} is a

continuous, strictly positive function on the compact set Susp(∂X) and so it

has a minimum value δ which is the desired value.

For the rest of the paper, we will now fix an open cover U of X̂ × R

and we will take δ to be the value promised by Proposition 6.8. The next

three propositions work towards proving the modified nullity condition stated

in Theorem 6.2. We can schematically view the product X × R as a two-

dimensional plane where the horizontal direction corresponds to the space X

and the vertical direction corresponds to R. The goal is then to find some

large compact “box” or more specifically, a product of a compact set in X

with a compact set in R, so that sets of the form B(x, η(k))× [k, k + 1] are

contained in some U(〈x̄, µ〉, δ) if they lie entirely outside of the large box we

choose. Proposition 6.9 shows that the box can be chosen in a way that if

one of our sets lies above or below the box in our “plane,” then our set is

guaranteed to be in one of the neighborhoods U(〈±∞〉, δ). Proposition 6.10

shows that the box can be chosen so that sets lying to the left or right of

it are ensured to be in a boundary neighborhood of the form U(〈x̄, 0〉, δ).

Then Proposition 6.11 describes what happens when looking at “diagonal”

translates and how they end up in boundary neighborhoods of the form

U(〈x̄, µ〉, δ) where the slope lies somewhere between 0 and ∞.

Proposition 6.9. For each compact set J ⊂ X, there exists a compact set

PJ ⊂ R such that if (B(x, η(k))×[k, k+1])∩(J×PJ) = ∅ and J∩B(x, η(k)) 6=
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∅, then for one of −∞ or ∞, (B(x, η(k))× [k, k + 1]) ⊂ U(〈±∞〉, δ)

Proof. Without loss of generality, assume that J = B(x0, η(M)) for M ∈ R,

and assume that k > 0.

Choose N large enough so that:

• R̂− [−N,N ] ⊂ Nδ(∂R)

• N ≥M

• N ≥ R where R is as in
(
Definition 6.3 †

)
• N

ln
(
N + 2

) > 1

δ

Let PJ = [−N,N ].

Assuming J ∩B(x, η(k)) 6= ∅, i.e., k > N . Then

min{µ(x′, r′)
∣∣∣(x′, r′) ∈ (B(x, η(k))× [k, k + 1])} =

min{r′|r′ ∈ [k, k + 1]}
max{p(x′)|x′ ∈ B(x, η(k))}

≥ k

ln
(
ψ−1

(
η(M) + 2η(k)

)
+ 1
)

≥ k

ln
(
ψ−1

(
3η(k)

)
+ 1
)

≥ k

ln
(
ψ−1

(
3ψ(k)

)
+ 1
)

≥ k

ln
(
ψ−1

(
ψ(k + 1)

)
+ 1
) > 1

δ
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By the choice of N and the assumption that k > 0, σ̂(r′,∞) < δ for all

r′ ∈ [k, k + 1].

Thus, (B(x, η(k))×[k, k+1]) ⊂ U(r̄,∞). The case where k < 0 is completely

analogous and the neighborhood at 〈−∞〉 is used.

Proposition 6.10. For all each compact set K ⊂ R, there exists a compact

set QK ⊂ X such that if (B(x, η(k)) × [k, k + 1]) ∩ (QK × K) = ∅ and

K∩[k, k+1] 6= ∅, then there exists x̄ ∈ ∂X such that (B(x, η(k))×[k, k+1]) ⊂

U(〈x̄, 0〉, δ)

Proof. Without loss of generality, assume that K = [−N,N ], and again as-

sume that k ≥ 0.

ChooseQK sufficiently large so that d̂(B(x, η(k)), ∂X) < δ
2

and diamd̂(B(x, η(k))) <

δ
2

if B(x, η(k)) ∩ QK = ∅. Note that the latter can be accomplished since

(X̂,G) is a Z-structure and since the assumption that K ∩ [k, k+ 1] ensures

that k is bounded.

If QK = B(x0, η(M)) for some M , then the largest possible slope occurs at a

point (x′, N+1) where d(x′, x0) = η(M), but
N + 1

ln
(
ψ−1

(
η(M)

)
+ 1
) < δ for M

sufficiently large. That is, µ(x′, r′) < δ for all (x′, r′) ∈ B(x, η(k))× [k, k+1],

and there exists x̄ ∈ ∂X such that d̂(x′, x̄) < δ for all x′ ∈ B(x, η(k)).

We are now going to use the previous two propositions, along with some

additional conditions concerning how large certain constants should be, to

specify what we want our large “box” in X × R to be.
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Choose J = B(x0, η(S)) ⊂ X with S � 0 such that for all x ∈ X − J

(where ball notation still indicates closed balls, hence J is closed):

• p(x) > 2
δ

• d̂(x, ∂X) < δ
2

• ψ−1
(
η(S)

)
> R where R is as in

(
Definition 6.3 †

)
• ln

(
ψ−1

(
3η(S)

)
+ 1

ψ−1
(
η(S)

)
+ 1

)
< δ (Note that this can only be done once the

previous bullet is satisfied because ψ only behaves like an exponential for

values greater than R)

Choose K = [−N,N ] ⊂ R with N � 0 such that for all r ∈ R−K and for

all [k, k + 1] ⊂ R−K:

• 1

N
<
δ

2

• σ̄(r, ∂R) < δ
2

• diamσ̄([k, k + 1]) < δ
2

• N > R where R is as in
(
Definition 6.3 †

)
• |r|

ln
(
|r|+ 2

) > 1

δ

Let PJ and QK be as in Propositions 6.9 and 6.10.
(
(J ∪ QK) × (PJ ∪K)

)
is then our large compact “box” that has been referred to.

Proposition 6.11. If
(
B(x, η(k))× [k, k+ 1]

)
∩
(
(J ∪QK)× (PJ ∪K)

)
= ∅,

then there exists 〈x̄, µ〉 ∈ Susp(∂X) (where µ is possibly ±∞) such that(
B(x, η(k))× [k, k + 1]

)
⊂ U(〈x̄, µ〉, δ).

Proof. If B(x, η(k)) ∩ J 6= ∅, then Proposition 6.9 implies the result.

If [k, k + 1] ∩K 6= ∅, then Proposition 6.10 implies the result.
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Assume then that B(x, η(k))∩J = ∅ = [k, k+1]∩K, and to simplify notation

again, assume that k > 0.

Let M ∈ R+ be such that d(x, x0) − η(k) = η(M). Note that such an M

exists since B(x, η(k)) ∩ J = ∅.

Case 1: There exists (x′, r′) ∈
(
B(x, η(k))× [k, k+1]

)
such that µ(x′, r′) ≤ 1

δ
.

By the choice of J, there exists x̄ ∈ ∂X such that d̂(x′, x̄) < δ
2
. By the

choice of K and since we are dealing with the k > 0 case, we know that

σ̄(r′,∞) < δ
2

For any other (x′′, r′′) ∈
(
B(x, η(k))× [k, k + 1]

)
,

|µ(x′′, r′′)− µ(x′, r′)| = |µ(x′′, r′′)− µ(x′′, r′) + µ(x′′, r′)− µ(x′, r′)|

=
∣∣∣ r′′

p(x′′)
− r′

p(x′′)
+

r′

p(x′′)
− r′

p(x′)

∣∣∣
≤ 1

p(x′′)
|r′′ − r′|+ µ(x′, r′)

|p(x′)− p(x′′)|
p(x′′)

<
δ

2
+

1

δ
· |p(x

′)− p(x′′)|
2/δ

and so it remains to show that |p(x′)− p(x′′)| < δ to prove that the slopes of

all points in
(
B(x, η(k))× [k, k + 1]

)
vary no more than δ

Claim: η(M) > ψ(k)
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The smallest possible slope in
(
B(x, η(k))× [k, k + 1]

)
is

µmin =
k

ln
(
ψ−1

(
η(M) + 2η(k)

)
+ 1
)

. By construction, ψ(k) ≥ η(k). Suppose that ψ(k) ≥ η(M).

Then, µmin ≥
k

ln
(
ψ−1

(
3ψ(k)

)
+ 1
) ≥ k

ln
(
ψ−1

(
ψ(k + 1)

)
+ 1
) > 1

δ

But this contradicts the existence of (x′, r′) ∈
(
B(x, η(k)) × [k, k + 1]

)
with µ(x′, r′) ≤ 1

δ
and thus the claim follows.

|p(x′)− p(x′′)| ≤ ln
(
ψ−1

(
η(M) + 2η(k)

)
+ 1
)
− ln

(
ψ−1

(
η(M)

)
+ 1
)

< ln

(
ψ−1

(
3η(M)

)
+ 1

ψ−1
(
η(M)

)
+ 1

)
< δ

Note also that since η(M) > ψ(k), we are guaranteed that diamd̂(B(x, η(k))) <

1
k
< δ

2
. Thus by applying the triangle inequality, we see that

(
B(x, η(k)) ×

[k, k + 1]
)
⊂ U(〈x̄, µ(x′, r′)〉, δ).

Case 2: There does not exist (x′, r′) ∈
(
B(x, η(k)) × [k, k + 1]

)
such that

µ(x′, r′) ≤ 1
δ
.

Then µ(x′, r′) > 1
δ

for all (x′, r′) ∈
(
B(x, η(k)) × [k, k + 1]

)
. Since all of

the slopes are greater than 1
δ
, the choice of K guarantees that

(
B(x, η(k))×

[k, k + 1]
)
⊂ U(〈∞〉, δ).
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Proposition 6.12. X̂ × R is an AR and Susp(∂X) is a Z-set in X̂ × R.

To prove that X̂ × R is an AR and that Susp(∂X) is a Z-set, a slight

modification of Tirel’s approach suffices (where the modifications are due to

the fact that our boundary is a suspension of one boundary and hers is a more

generalized join of two boundaries, and due to the fact that our slope function

here is different). The idea is to construct “rays” from the base point (x0, 0)

to the boundary and then retract along these rays. Note that these need

not be geodesic rays. Since X̂ and R̂ both already have Z-structures, they

come equipped with Z-set homotopies α and β which we may assume are

contractions to x0 and 0 respectively (see [Tir11, Lemma 1.11]). This means

that the homotopy tracks of boundary points in X̂ and R̂ form “rays” to the

base points x0 and 0 using the maps α and β. We will then construct rays in

X ×R by essentially taking a product of the rays defined by α in X and by

β in R, except that we want to have continuity when we extend to X̂ × R.

This means that our rays in the product X × R need to trace out α and

β at varying rates so that each ray has a constant slope near the boundary

(where that slope µ corresponds to which point 〈x̂, µ〉 in the boundary the

ray is approaching). A full proof can be found in [Tir11, Propositions 3.19,

3.20], but the key fact that allows her construction to work is that her slope

function component p is constructed to have the following property (Lemma

6.13). This allows her to reparameterize the Z-set homotopy α for (X̂, ∂X) in
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a way that the rays described above can be constructed from a product of the

reparameterized homotopies for (X̂, ∂X) and (R̂,±∞). Since our function

p was defined differently than Tirel’s, we will first choose to reparameterize

α and β such that the following lemma holds, and then from there Tirel’s

proof will follow.

Lemma 6.13. There are reparameterizations α̂ and β̂ of the Z-set homo-

topies α and β so that p(α̂(x̄, t)) ∈ [1
t
−1, 1

t
+2] and |β̂(±∞, t)| ∈ [1

t
−1, 1

t
+2]

for all t ∈ (0, 1] and for all x̄ ∈ ∂X.

Sketch of proof of Lemma 6.13. That such reparameterizations can be done

may not be obvious, but Tirel proves it as a consequence of the homotopies

first being parameterized with a similar property. For the homotopy α, that

property is: for some sequence 1 = t0 > t1 > t2 > · · · > 0, we have p(α(∂X×

[ti, ti−1))) ⊂ (i−1, i+1]. The fact that α can be reparameterized to first meet

this property before being reparameterized again is an easier observation.

One can picture starting out at the basepoint x0 ∈ X and creating “bands”

emanating outwards that divide X into countably many regions where the

slope component function p has values lying in [i, i + 1]. Then, control the

speed at which the original α contracts to the basepoint x0 and record the

values ti for when the boundary lies in the [i, i + 1] strip of p values. For

more further details, refer to [Tir11, Lemma 3.8].

Now we will build the Z-set homotopy on X̂ × R in a way that the slope

function is respected near the boundary. This is the same proof as found
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in [Tir11] but included here for completeness. Define ξ : [0,∞) → [0, 1] by

ξ(t) = 1
1+t

, and define α′ : X̂ × [0,∞) → X and β′ : R̂ × [0,∞) → R by

α′(x̂, t) := α̂(x̂, ξ(t)) and β′(r̂, t) := β̂(r̂, ξ(t)).

With these definitions and Lemma 6.13, we have that for any t ∈ [0,∞) and

for any x̄ ∈ ∂X, p(α′(x̄, t)) ∈ (t − 1, t + 3). We also have for any t ∈ [0,∞)

that |β′(±∞, t) ∈ (t− 1, t+ 3).

Let γ′ : X̂ × R× [0,∞)→ X × R be given by:

• γ′((x, r), t) :=
(
α′(x, t√

(µ(x,r))2+1
), β′(r, µ(x,r)·t√

(µ(x,r))2+1
)
)

if (x, r) ∈ X × R.

• γ′(〈x̄, µ〉, t) :=
(
α′(x̄, t√

µ2+1
), β′(∞, µ·t√

µ2+1
)
)

if 〈x̄, µ〉 ∈ Susp(∂X) and

0 ≤ µ <∞.

• γ′(〈x̄, µ〉, t) :=
(
α′(x̄, t√

µ2+1
), β′(−∞, µ·t√

µ2+1
)
)

if 〈x̄, µ〉 ∈ Susp(∂X)

and −∞ < µ < 0.

• γ′(〈∞〉, t) :=
(
x0, β

′(∞, t)
)

• γ′(〈−∞〉, t) :=
(
x0, β

′(−∞, t)
)

Note that from the second bullet point, it follows that if 〈x̄, µ〉 is a bound-

ary point where µ = 0, then γ′(〈x̄, 0〉, t) =
(
α′(x̄, t), 0

)
.
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The map γ′ applied to a boundary point in Susp(∂X) traces out a ray

in X ×R which converges in X̂ × R to that boundary point. We then build

a homotopy γ which runs γ′ in reverse, and this is our Z-set homotopy for

X̂ × R. All that needs to be checked is that the map really is continuous,

i.e., that the rays in X × R really do converge on the boundary in X̂ × R.

If the boundary point is one of the suspension points, say 〈∞〉, then γ′(〈∞〉, t) =

(x0, β
′(∞, t)) and we see that β′(∞, t) → ∞ as t → ∞. We also see that

µ(γ′(〈∞〉, t)) = µ((x0, β
′(∞, t))) = ∞ since p(x0) = 0. Thus, γ′(〈∞〉, t) →

〈∞〉 as t→∞.

If the boundary point is of the form 〈x̄, µ〉 for 0 ≤ µ <∞, then for any t, we

have:

µ
(
γ′(〈x̄, µ〉, t)

)
=

β′
(
∞, µ·t√

µ2+1

)
p
(
α′
(
x̄, t√

µ2+1

)) ∈
( µ·t√

µ2+1
− 2

t√
µ2+1

+ 3
,

µ·t√
µ2+1

+ 3

t√
µ2+1

− 2

)

=

(
µ · t− 2

√
µ2 + 1

t+ 3
√
µ2 + 1

,
µ · t+ 3

√
µ2 + 1

t− 2
√
µ2 + 1

)

which implies that µ
(
γ′(〈x̄, µ〉, t)

)
→ µ as t → ∞, and thus γ′(〈x̄, µ〉, t) →

〈x̄, µ〉 as t→∞. This is all summarized by saying that the following map is

continuous:

Let γ : X̂ × R× [0, 1]→ X × R be defined by:
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γ(z, t) :=


z if t = 0

γ′
(
z, ξ−1(t)

)
if t ∈ (0, 1] and r ≥ 0

Note that γ(X̂ × R, t) ⊂ X × R for t > 0.

Once one has the above Z-set homotopy, an application of the following

classical theorem in ANR theory tells you that the compactified space is in

fact an ANR (and hence an AR since it is contractible):

Theorem 6.14 (Hanner’s Criterion). [Han51] If for every open cover U of

X there is an ANR which U-dominates X, then X is an ANR.

Since X is an ANR by hypothesis and R is an ANR, the well-known

fact that a product of ANRs is an ANR gives us that X × R is an ANR.

X × R is then used as the U -dominating space for X̂ × R with the just-

constructed Z-set homotopy providing the necessary maps as described in

[Tir11, Proposition 3.19]. Thus, X̂ × R is a contractible ANR (hence an AR)

with Z-set homotopy γ, and this completes the proof of Proposition 6.12.

7 Boundary Swap

Beginning with the Z-compactification X̂ × R = X × R t Susp(∂X) just

obtained, we will use the map v : Telf̃ (X) → X × R constructed in Sec-

tion 5 along with Proposition 7.1 to obtain a Z-compactification ̂Telf̃ (X) =
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Telf̃ (X) t Susp(∂X). Then we will show that due to the careful geometric

controls built into the Z-compactification of X ×R, the resulting compacti-

fication of Telf̃ (X) satisfies the nullity condition with respect to the action

of Goφ Z.

Recall that the proper homotopy equivalence from Lemma 5.1 consists of

the following proper, G-equivariant maps:

u : X × R→ Telf̃ (X)

v : Telf̃ (X)→ X × R

H : Telf̃ (X)× [0, 1]→ Telf̃ (X) with H0 =id and H1 = u ◦ v.

J : X × R→ X × R with J0 =id and J1 = v ◦ u.

These maps also have the property that they nearly preserve R-coordinates,

e.g., Im(u|X×[n,n+1]
) ⊂M[n,n+1](f̃)

Proposition 7.1 (Boundary Swap). Given the Z-compactification X̂ × R

from Theorem 6.2, ̂Telf̃ (X) :=
(
Telf̃ (X) t Susp(∂X), Susp(∂X)

)
can be

topologized so that it too is a Z-compactification.

The topology on ̂Telf̃ (X): Extend v to a function v̂ : Telf̃ (X)tSusp(∂X)→

X̂ × R by letting v̂ be the identity on Susp(∂X). Then give Telf̃ (X) t

Susp(∂X) the topology generated by the open subsets of Telf̃ (X) and sets

of the form v̂−1(U) where U ⊂ X̂ × R is open, and let ̂Telf̃ (X) denote the

resulting topological space. Clearly, v̂ is continuous and ̂Telf̃ (X) is compact,

Hausdorff, and second countable. It follows that ̂Telf̃ (X) is metrizable and
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separable. The following proposition is originally due to Ferry [Fer00], and

Guilbault-Moran provided an alternate proof with slightly relaxed hypothe-

ses [GM18]. It will be what allows us to claim that Susp(∂X) is a Z-set in

̂Telf̃ (X).

Proposition 7.2. [Fer00],[GM18] Let f : (X,A)→ (Y,B) and g : (Y,B)→

(X,A) be continuous maps with f(X−A) ⊂ Y −B, g(Y −B) ⊂ X−A, and

g ◦ f |A = idA. Suppose further that there is a homotopy H : X × [0, 1]→ X

which is fixed on A and satisfies H0 = idX , H1 = g ◦ f , and H((X − A) ×

[0, 1]) ⊂ X − A. If B is a Z-set in Y , then A is a Z-set in X.

Proof of Proposition 7.1. Before proceeding, we establish some notation. Let

û : X̂ × R → ̂Telf̃ (X) and Ĥ : ̂Telf̃ (X) × [0, 1] → ̂Telf̃ (X) be the obvious

extensions which are the identity on Susp(∂X). Whenever Û denotes a subset

of ̂Telf̃ (X) [resp., X̂ × R], U will denote Û ∩ Telf̃ (X) [resp., Û ∩ (X × R)].

To satisfy the hypotheses of Proposition 7.2, it only needs to be shown that

these maps are still continuous after we have extended them to the boundary.

Claim 1: û is continuous.

Let z = 〈x̄, µ〉 ∈ Susp(∂X). Suppose that v̂−1(Û) is a basic open neighbor-

hood of z in ̂Telf̃ (X), where Û = U(〈x̄, µ〉, ε). The goal is to pick a smaller

open set V̂ ⊂ Û such that û(V̂ ) ⊂ v̂−1(Û). It is clear that v̂ ◦ û(z′) ∈ Û for

any z′ ∈ (Susp(∂X)) ∩ V̂ since both maps are the identity on the boundary.

It remains to be checked that the same holds for all y ∈ V .

Since we know that v ◦ u is homotopic to the identity, if we can show that V

can be chosen small enough so that the homotopy tracks under J of points
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in V do not wander outside of U , then we are done. We know though that

a point (x, k) has a homotopy track bounded in the X direction by η(k)

(this was built into the definition of η, and we know that the homotopy

track is contained in the R direction within the set [k, k + 1]. Therefore, it

suffices to show that we can choose the set V small enough so that for any

x ∈ V, (B(x, η(k)) × [k, k + 1]) ⊂ U . As observed earlier, sets of the form

(B(x, η(k))× [k, k+1]) do not necessarily form a null family in X̂ × R, but if

we restrict to sets of the form (B(gx0, η(k))×[k, k+1]) then we do have a null

family that still covers Telf̃ (X). Any arbitrary set (B(x, η(k))× [k, k+ 1]) is

contained in the star of one of the sets of the form (B(gx0, η(k))× [k, k+ 1]),

and since the family of stars of a null family is itself a null family, the fol-

lowing proposition from Hruska-Ruane accomplishes what we are after:

Proposition 7.3. [HR17] Let A be a null family of compact sets in a metric

space M . Suppose z ∈ M is not contained in any member of the family A.

Then each neighborhood U of z contains a smaller neighborhood V of z such

that each A ∈ A intersecting V is contained in U .

Claim 2: Ĥ is continuous.

Let z = 〈x̄, µ〉 ∈ Susp(∂X). Suppose that Û is a basic open neighborhood of

z in ̂Telf̃ (X). The goal is then to choose a smaller open neighborhood V̂ with

the property that for all y ∈ V , H(y× [0, 1]) ⊂ U and hence Ĥ( ˆV × [0, 1]) ⊂

Û . Because of how ̂Telf̃ (X) was topologized, Û is actually the inverse image

of an open set Û ′ ⊂ X̂ × R. Thus, we want to show that we can choose V
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small enough so that for all y ∈ V , H(y× [0, 1]) ⊂ v−1(U). That is, we want

for all y ∈ V v(H(y × [0, 1])) ⊂ U . Because η was defined to bound the

growth of homotopy tracks of H, v(H(y× [0, 1])) is contained in some subset

of the form (B(x, η(k))×[k, k+1]). Thus, the same Hruska-Ruane null family

argument can be applied to tell us that we can select V small enough so that

if the homotopy tracks of any point of V has nonempty intersection with U ,

then in fact the entire track is contained in U .

The boundary swap was the final step in proving that GoφZ admits a Z-

structure in the case that G is torsion-free, and so we arrive at the following

proposition:

Proposition 7.4. ( ̂Telf̃ (X), Susp(∂X)) is a Z-structure for Goφ Z.

Proof. Assume that we fix open covers U and V for ̂Telf̃ (X) and X̂ × R re-

spectively, and choose them (by refining U if necessary) so that the following

property is satisfied: for each V ∈ V with V ∩ Susp(∂X) 6= ∅, there is a

U ∈ U such that U = v̂−1(V ). We will then choose the number δ corre-

sponding to this cover V as in Proposition 6.8. We then need to check that

the four conditions of Definition 2.5 are satisfied.

We begin by observing that Telf̃ (X) is an ANR due to a classical theorem by

Borsuk-Whitehead-Hanner [Hu65] that says that the mapping cylinder of a

proper map between ANRs is itself an ANR. We already know that X̂ × R is

an AR by Proposition 6.12. We can then apply Hanner’s Theorem (Theorem

6.14) to deduce that ̂Telf̃ (X) is an ANR since it is dominated by X̂ × R
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via the maps v̂, û, and Ĥ. Lastly, since Telf̃ (X) is homotopy equivalent to

X̂ × R, it is contractible and hence an AR.

Proposition 7.1 just showed that ( ̂Telf̃ (X), Susp(∂X)) is a Z-compactification,

i.e., Susp(∂X) is a Z-set in ̂Telf̃ (X).

The proper, cocompact group action is already given on Telf̃ (X), and so

only the nullity condition remains to be verified.

Suppose we are given the compact set C ⊂ ̂Telf̃ (X) for which we want to

show the nullity condition is satisfied. By the choice of δ, Theorem 6.2 says

that a large enough compact set K can be found in X×R so that any image

of a G oφ Z-translate of C, which is disjoint from K, is contained in some

V ∈ V where V ∩ Susp(∂X) 6= ∅. Because v is a proper map, v−1(K) is

still a compact set in Telf̃ (X). Since open neighborhoods on the boundary

in U where chosen to be in correspondence with open sets on the boundary

in V , that is, open sets on the boundary in U are of the form v̂−1(V ) for

some V ∈ V , any Goφ Z-translate of C that is disjoint from v−1(K) will be

contained in some neighborhood U ∈ U . Because the group action is proper,

this is enough to prove the nullity condition. This also completes the proof

of Theorem 2.7.

8 In the case of groups with torsion

Returning to the question of when the group G has torsion and hence we

cannot expect the G action to be free, we see that the correct analog to finite
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K(G, 1)’s is to now consider EG spaces. Note that some authors require an

EG to be a CW complex, but we will use a broader definition that allows us

to work in the category of ANRs.

Definition 8.1. A space X on which a group G acts properly is an EG space

if for all finite subgroups H ⊂ G, the fixed point set of H is contractible.

In the initial case of torsion-free groups, the main tool that kickstarted

everything was Lemma 5.1 which provided a proper, G-equivariant homotopy

equivalence between the infinite mapping telescope and the direct product

space, where the mapping telescope was the universal cover of a mapping

torus of a finite K(G, 1). An analogous result can be proven for when we

do not have finite K(G, 1)’s at our disposal, after which the rest of the

construction for a Z-structure on G oφ Z follows directly. That is, in place

of a map from a K(G, 1) to itself that induces the automorphism φ, we have

the following:

Proposition 8.2. If an ANR X is an EG space on which G acts cocom-

pactly, and φ is any automorphism of G, there exists a proper homotopy

equivalence f : X → X satisfying the following “φ-variance” property: for

all g ∈ G and for all x ∈ X, f(gx) = φ(g)f(x).

Farrell-Jones proved the following result which is close to what we need:

Theorem 8.3. [FJ93, Theorem A.2] Let X and Y be spaces on which G

acts such that X has a cellular G action with finite stabilizers and Y has the
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property that the fixed point sets of all finite subgroups of G are contractible.

Then there is a G-equivariant map from X to Y, and any two G-maps are

homotopic through G-maps.

Remark. Their theorem is stated with a bit more generality, but they do

require that X has a cellular action by G, i.e., X is a CW complex and

the stabilizer of any cell acts trivially on that cell. We wish to remove this

hypothesis so as to allow for a broader class of spaces. However, given a

semidirect product G oφ Z and an EG CW complex X, the Farrell-Jones

theorem could be applied to get a φ-variant homotopy equivalence from X

to X. This is accomplished by letting X denote the space X with it’s given

action by G, and then letting X ′ be the space X but with a different action,

namely, an element g acts on X ′ in the way that φ(g) acts on X. The theorem

then produces a φ-variant map f : X → X ′ (which as a topological function

is really just a map f : X → X since X and X ′ are the same space). By

also applying the theorem in the reverse direction with the map φ−1, one gets

a φ−1-variant map g : X ′ → X (which again will be considered as a map

g : X → X. The compositions f ◦ g : X → X and g ◦ f : X → X are both

G-equivariant, as is the map id : X → X, and hence according to the second

part of Theorem 8.3, f and g are actually homotopy equivalences. If one does

not assume X to be a CW complex, additional work is required.

Proof of Proposition 8.2. Ontaneda [Ont05] proved a similar result in the

case of CAT(0) groups and our proof is based on his. We will assume that

our action is by isometries which, while not required in the definition of a
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Z-structure, causes us no loss of generality [GM18, Proposition 6.3]. We

begin by building a suitable open cover of our space X, and then map into

the nerve of that open cover. This will produce a simplicial complex to which

we can apply the Farrell-Jones theorem.

Since the orbit Gx of any x ∈ X is discrete, there is a radius rx such that

the closed ball B(x, rx) ∩ (Gx) = {x}. This implies that for all g ∈ G,

either B(x, rx
2

) ∩ gB(x, rx
2

) = ∅ or gx = x, with the latter implying that

B(x, rx
2

) = gB(x, rx
2

). Since the action is cocompact, there is a finite collec-

tion V of balls B(x, rx) such that U := {gV | g ∈ G, V ∈ V} is an open cover

of X.

Next, we show that every ball U ∈ U intersects only finitely many ele-

ments in U . If not, then there would be some B(x, rx
4

) and B(y, ry
4

) along

with a sequence {gi} ⊂ G such that infinitely many distinct giB(x, rx
4

) all

have nonempty intersection with B(y, ry
4

). It can be assumed that rx > ry.

Thus, if giB(x, rx
4

) and gjB(x, rx
4

) both intersect B(y, ry
4

), then we know that

y ∈ giB(x, rx
2

)∩gjB(x, rx
2

). By the previous observation that either B(x, rx
2

)∩

gB(x, rx
2

) = ∅ or B(x, rx
2

) = gB(x, rx
2

), this contradicts the giB(x, rx
4

) being

distinct. Thus every U ∈ U intersects only finitely many other elements.

We now construct the nerve of this open cover, denoted by N(U), which is

the simplicial complex consisting of one vertex for every U ∈ U and simplices

of the form [U0, ..., Un] whenever U0 ∩ ... ∩ Un 6= ∅. Because of the previous

paragraph’s observation, we see that N(U) is locally finite and finite dimen-

sional. N(U) also comes equipped with a natural, simplicial action by G
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since U consists of G translates of open sets. Moreover, the stabilizer of any

simplex fixes that simplex pointwise. This follows from the fact that for any

U ∈ U and any g ∈ G, gU ∩ U 6= ∅ implies that gU = U .

We now let X ′ be the space X but where an element g’s action on X ′ is given

by how φ(g) acts on X. Since we have proven that the stabilizers act trivially

on N(U) and since it is assumed that X ′ has contractible fixed point sets, we

may apply the Farrell-Jones theorem to get a G-equivariant map h from N(U)

to X ′, which is equivalent to having a φ-variant map from N(U) to X. To get

the φ-variant map from X to X, we consider h◦β where β is the barycentric

map β : X → N(U). To describe the barycentric map, we first create a par-

tition of unity {λU}U∈U where for a given U0 ∈ U , λU0 : X → [0, 1] is defined

by λU0(x) = d(x,X − U0)/(
∑

U∈U d(x,X − U)). Since our cover is locally

finite, these sums are finite and continuous. The barycentric map is then

defined by β(x) =
∑

U∈U λU(x)vU where vU denotes the vertex represented

by U in the nerve. Because the cover U is generated by G translates of open

sets, the map β is G-equivariant, meaning that the map h ◦ β : X → X ′ is

G-equivariant, and by switching the range to X we get the φ-variant map we

want.

All that remains is to prove that this map is also a proper homotopy equiv-

alence. To show this, we first observe that G acts cocompactly on all of

the spaces involved (X,N(U), X ′) and hence any two G-equivariant maps

between the spaces will be boundedly close, large-scale uniform maps. By

the same method as above, we can construct a φ−1-variant map from X to
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X (or a G-equivariant map from X ′ to X). By composing our φ-variant and

φ−1-variant maps in either direction, we get G-equivariant maps that must

be boundedly close to the identity map. By the following coarse geometry

result found in [GM18], we can conclude that we h ◦ β is indeed a proper

homotopy equivalence:

Lemma 8.4. [GM18, Corollary 5.3] Suppose f, g : X → Y are continuous,

boundedly close, large-scale uniform maps, where X has finite macroscopic

dimension and Y is a uniformly contractible ANR. Then f and g are bound-

edly (hence properly) homotopic.

The fact that our space X satisfies these hypotheses (finite macroscopic

dimension, uniformly contractible) follows from the fact that we have an

ANR with a proper, cocompact action by our discrete group G.

Once we have our φ-variant proper homotopy equivalence, the rest of

the construction for a Z-structure on G oφ Z goes through in the exact

same way, except that we are now focused on a mapping telescope using the

map from Proposition 8.2 instead of a lifted map from a K(G, 1) to itself.

Inspection of the proof of Lemma 5.1 shows that the assumptions of the map

in Proposition 8.2 are enough to get the G-equivariant proper homotopy

equivalence between X ×R and Telf (X). Because it would be convenient to

be able to inductively apply this construction to repeated semidirect products

with infinite cyclic factors, we also need to know that if our construction
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begins with an EG space X that admits a Z-structure, then our constructed

Z-structure for GoφZ is in fact an E(GoφZ) space. To prove this, it needs

to be shown that every finite subgroup in G oφ Z has a contractible fixed

point set in Telf (X), but this is true since every finite subgroup’s fixed point

set is a mapping telescope of the map f restricted to the fixed point set of a

finite subgroup H ⊂ G. By the assumption that X is an EG space, we know

that the fixed point sets of finite subgroups are contractible in X, and the

mapping telescope of a contractible subspace is itself a contractible subspace.

With these observations, the proof of Theorem 2.8 is complete.

9 Applications

In this section, we look at two applications of Theorem 2.7. The first concerns

strongly polycyclic groups, and the second involves 3-manifold groups.

Definition 9.1. A group is polycyclic if it admits a subnormal series with

cyclic factors. A group is strongly polycyclic if each of these factors is infinite

cyclic. The Hirsch length of a polycylic group is the number of infinite cyclic

factors in its subnormal series.

Theorem 9.2. Every strongly polycyclic group with Hirsch length n admits

a Z-structure (X̂, Z) where Z = Sn−1.

Proof. If G has a subnormal series G = G0 / G1... / Gn−1 / Gn = 1 where

each Gi/Gi+1 = Z, then one uses the fact that Gn−1 = Z has a Z-structure
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(R̂,±∞) as the base case of an induction proof, and repeated applications

of Theorem 2.7 to the extensions 1 → Gi+1 → Gi → Gi/Gi+1 → 1 to get

the rest. Because the extension is by Z every time, the boundary becomes

(n− 1)-fold join of S0.

We do not know whether every polycyclic group (and hence every nilpo-

tent group) admits a Z-structure. It is known that every polycylic group

can be expressed as a finite extension of a strongly polycyclic group, so the

above argument could also be used to prove that polycyclic groups admit

Z-structures if it could be taken one step further when extended by a finite

group at the end. Since finite groups tend not to be interesting in the eyes

of geometric group theory (they act properly and cocompactly on a point),

it seems plausible that one could develop a boundary swapping argument

where the same spherical boundary is used. This could involve developing

a proof showing that the finite index subgroup’s action could be extended

to a proper, cocompact action of the full group on the same space, analo-

gous to Bieberbach’s theorems for groups that are virtually Zn, but it would

also suffice to prove that you could construct any AR on which the larger

group acts properly and cocompactly, at which point one could then apply

the following boundary swapping theorem of [GM18].

Theorem 9.3. [GM18] Suppose quasi-isometric groups G and H act geo-

metrically on proper metric ARs X and Y , respectively, and Y can be com-

pactified to a Z-structure (Ŷ , Z) for H. Then X can be compactified, by the
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addition of the same boundary, to a Z-structure (X̂, Z) for G.

The next application of Theorem 2.7 relates to the fundamental groups of

3-manifolds. For further reference on the background material involving 3-

manifold groups, see [AFW15]. Many closed 3-manifold groups were already

known to admit Z-structures by the work of others, and those results are

collected here. It is our Theorem 2.7 that gives us the tool required to place

Z-structures on the fundamental group of manifolds admitting Sol or Nil

geometry, and these were the final pieces in the puzzle for completing the

following theorem:

Theorem 9.4. Every closed, orientable 3-manifold group admits a Z-structure.

Proof. Because of the Prime Decomposition Theorem due to Milnor [Mil62],

we know that every 3-manifold has a unique decomposition as the connect

sum of prime 3-manifolds. Therefore, it suffices to prove the claim for prime

manifolds because if a manifold splits as a connect sum, then it’s funda-

mental group splits as a free product, and Tirel and Dahmani both have

constructions that tell us how to build Z-structures on free products when

the individual factors admit Z-structures [Tir11],[Dah03]. Since there is only

one closed 3-manifold that is prime but not irreducible, and it’s fundamen-

tal group is Z (which is known to admit a Z-structure), it further reduces

to proving the claim for irreducible manifolds. For irreducible manifolds,

there are three essential cases to consider: geometric manifolds, mixed man-

ifolds, and graph manifolds. For our purposes, we will only consider mixed
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and graph manifolds with at least one JSJ torus in their decomposition, and

those without any JSJ tori will be viewed only as geometric manifolds. This

framework also relies on Perelman’s resolution of the Geometrization Theo-

rem [Per03].

A mixed manifold is one whose prime JSJ decomposition includes at least

one hyperbolic block, and Leeb proved that Haken mixed manifolds admit

nonpositively curved Riemannian metrics [Lee94]. If the mixed manifold has

at least one JSJ torus, then the manifold is guaranteed to be Haken and

so Leeb’s theorem applies. This provides a proof that a mixed 3-manifold’s

group admits a Z-structure, namely the CAT(0) boundary on the universal

cover.

A graph manifold is one whose prime JSJ decomposition does not include

any hyperbolic blocks, and Kapovich-Leeb proved that for a Haken graph

manifold M (where we again focus only on the case of graph manifolds with

at least one JSJ torus), one can find a nonpositively curved 3-manifold N

such that there is a bi-Lipschitz homeomorphism between the universal cov-

ers of M and N [KL98]. As a result, π1(M) and π1(N) are quasi-isometric,

where it is then known that π1(N) admits a Z-structure in the form of Ñ ’s

CAT(0) boundary. One can then apply Theorem 9.3 to swap boundaries and

get a Z-structure for π1(M).
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In the case that the 3-manifold admits a geometric structure, it was already

known how to apply a Z-structure to groups for a majority of the geome-

tries. For S3 geometry, the groups are all finite, and these all admit trivial

Z-structures where we have the groups act on a point. For S2×R geometry,

the only group that arises in the orientable case is Z, which is known to ad-

mit a Z-structure. Groups modeled on E3, H3, H2×R are all CAT(0). It is

also a well-known result in 3-manifold theory that S̃L2(R) is quasi-isometric

to H2×R which is CAT(0), so boundary swapping can be used again in that

case. Last is the question of Sol and Nil manifold groups, but these groups

are precisely of the form to which Theorem 2.7 applies. The fundamental

group of a closed 3-manifold that admits Sol or Nil geometry is going to be

a semidirect of the form Z2 oφ Z [AFW15], and since Z2 is a CAT(0) group

and hence admits a Z-structure, we can apply Theorem 2.7 (and in these two

cases, the boundary provided by our construction will be a 2-sphere).

We are hopeful that the above theorem can also be extended to include

non-orientable closed 3-manifold groups, but there is additional work to be

done.

10 Group Extensions

In this section, we briefly discuss an open question in the study of Z-

structures.

Definition 10.1. Let N,G, and Q be groups. If there exists a short exact
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sequence of the form

1→ N → G→ Q→ 1

then we say that G is a extension of N by Q(or Q by N ; the literature is

inconsistent).

Recall that a group G is considered to be type F if it admits a finite

K(G, 1). It is known that an extension of a nontrivial type F group by an-

other nontrivial type F group will admit a weak Z-structure [Gui14], meaning

that all of the conditions required for a Z-structure except the nullity condi-

tion are satisfied. Direct products are also a special case of group extensions,

and it is known how to create Z-structures out of direct products. Theorem

2.7 looks at the special case of extending a group G by Z. This leads to the

following:

Open Question: If N and Q are assumed to admit Z-structures, must

any extension of N by Q also must admit a Z-structure?

We are hopeful that a resolution of the above question could lend in-

sight into resolving the more classical group extension problem, for which no

complete classification is yet known.

Group Extension Problem: Classify all possible extensions of N by Q.
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