
University of Wisconsin Milwaukee
UWM Digital Commons

Theses and Dissertations

May 2018

A Climatology of Extreme South American
Andean Cold Surges
Kevin Prince
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd
Part of the Atmospheric Sciences Commons

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an
authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

Recommended Citation
Prince, Kevin, "A Climatology of Extreme South American Andean Cold Surges" (2018). Theses and Dissertations. 1900.
https://dc.uwm.edu/etd/1900

https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F1900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F1900&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=dc.uwm.edu%2Fetd%2F1900&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/1900?utm_source=dc.uwm.edu%2Fetd%2F1900&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 

A CLIMATOLOGY OF EXTREME SOUTH AMERICAN ANDEAN COLD SURGES 

by 

Kevin Prince 

 

 

 

 

A Thesis Submitted in  

Partial Fulfillment of the 

Requirements for the Degree of 

 

 

Master of Science 

in Atmospheric Science 

 

 

at  

The University of Wisconsin-Milwaukee 

May 2018 

 

 



ii 
 

ABSTRACT 

A CLIMATOLOGY OF EXTREME SOUTH AMERICAN ANDEAN COLD SURGES 

by 

Kevin Prince 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Clark Evans 

 
Interactions between the tropics and midlatitudes have been an ongoing area of research since 

the inception of meteorology. Cold surges represent one of several phenomena by which 

midlatitude features can modulate the atmosphere, both dynamically and thermodynamically, 

deep into the tropics. This study performs a climatology of particularly strong South American 

cold surges that follow along the Andes mountains to quantify the maximum extent to which 

these surges can modulate the atmosphere from the midlatitudes to the tropics. Data was 

collected for Austral winter (JJAS) from 1980-2010 (31 years). To identify events, standardized 

anomalies for 925 hPa meridional wind and temperature are calculated. To ensure the cold 

surges are on the stronger end of the spectrum, steep conditions of anomalies exceeding three 

above (below) zero for meridional wind (temperature) were set as the criteria which must occur 

in conjunction on the meso-alpha scale or larger. Using these criteria, 57 events are identified, 

and composites and area-averages are created, focused on the same fields used to identify the 

events. The duration of these events was approximately four days on average, with the 

strongest event lasting eight days. It is shown that some extreme cold surge events can have 

lasting impacts on the lower parts of atmosphere over much of northern South America, with 

anomalies up to three above (below) zero for meridional wind (temperature) reaching the 

southern Caribbean.  
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1. Introduction 

Cold surge occurrence in northern South America is not only important economically 

through crop destruction (Pezza and Ambrizzi 2005), but also may represent a mechanism by 

which South Pacific synoptic-scale, midlatitude systems can modulate the troposphere deep 

into the tropics (Liebmann et al. 2009). Cold-surge events are not exclusive to South America, 

with cold surges having been documented in the Andes and Brazilian Highlands in South 

America (Garreaud 2000), the Rocky Mountains in North America (Colle and Mass 1995), and 

the Ethiopian highlands in Africa (Wang and Fu 2004; Crossett and Metz 2017), among other 

locations. The purpose of this study is to document the climatology of the strongest cold surges 

in South America, with particular focus on documenting the northward extent of these events 

into the tropics.  

Cold surges have been described as shallow features (up to 850 hPa) that are associated 

with a sharp decline in temperature, an increase in mean sea-level pressure, and a shift in 

winds to an equatorward-directed component (Colle and Mass 1995). Cold-surge events around 

the world often propagate parallel to major mountain ranges. The mountains act to trap these 

shallow features and amplify their equatorward propagation. Since these surges propagate on 

the leeward side of the mountains independent of hemisphere, cold-surge dynamics may be 

described in terms of rotationally trapped waves (also known as edge waves; e.g., Leathers 

1986; Hsu 1987; Tilley 1990).  Cold surges often propagate with speeds up to 20 m s-1 (Colle and 

Mass 1995). The fast propagation speed, resulting from the negative perturbation density 

associated with the cold surge, is associated with strong near-surface winds that are not in 

geostrophic balance (Pezza and Ambrizzi 2005), with the anomalously large Coriolis force 



2 
 

consequently directing the flow to the right (left) in the Northern (Southern) Hemisphere. In 

combination with the dominating role of the Coriolis force pulling these surges toward the left 

(into the Andes), the previously mentioned shallow nature of these surges and the steep terrain 

of the Andes ensure that the potential energy required to lift the flow over the Andes will not 

be met, thus trapping the flow.  

To large extent, cold surges in South America can be described as a topographically trapped 

density currents. This statement is supported by the fact that topographically trapped density 

currents often follow along steep mountain ranges (Andes), are associated with cool, dry air 

that replaces warm, moist air (Amazon basin), and are often associated with a decrease in near-

surface temperature, an increase in mean sea-level pressure, and a sudden wind shift (Mass 

and Albright 1987), all of which are associated with cold surges present in South America 

(Garreaud 2000; Pezza and Ambrizzi 2005; Metz et al. 2013).  

Cold surges in South America typically originate in northern Argentina or southern Paraguay 

and track parallel to the Andes and/or Brazilian Highlands as they track northward (Garreaud 

2000; Lupo et al. 2001; Pezza and Ambrizzi 2005; Metz et al. 2013). In the first pathway, cold 

surges propagate along the Andes Cordillera through eastern Bolivia, into eastern Peru, and 

Colombia, before dissipating in northern Colombia to western Venezuela. The second pathway 

constitutes cold surges which propagate through eastern Brazil (along the Brazilian Highlands) 

to the southern Atlantic Ocean, where they eventually dissipate. In contrast to cold surges that 

follow along the Andes Cordillera, or the Andean pathway (e.g., Fig. 1), cold surges which follow 

the more easterly Brazilian pathway through northern Argentina and southeastern Brazil occur 

in the absence of both an intense surface anticyclone and highly amplified upper-tropospheric 
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longwave pattern. These situations occur in the presence of a surface cyclone off the eastern 

coast of South America, allowing maritime polar air to flow equatorward west of the cyclone’s 

center (Lupo et al. 2001). Conversely, cold surges which follow the Andean pathway are often 

associated with a major surface anticyclone centered over southern Bolivia and a highly 

amplified upper-tropospheric longwave pattern (Fig. 1). This study focuses on Andean cold 

surges, as it is believed that the greater northward extent of the Andes relative to the Brazilian 

Highlands more readily facilitates South American cold surges modulating the lower 

troposphere deep into the tropics. 

Andean cold-surge events are typically associated with the passing of an upper-tropospheric 

anticyclone. This upper-tropospheric anticyclone is associated with a surface anticyclone which 

distorts the climatological lee trough east of the Andes and causes a sudden reversal of the 

lower-tropospheric winds (Pezza and Ambrizzi 2005). In response, southerly wind anomalies 

occur at the southern tip of South America due to geostrophic balance between the developing 

migratory anticyclone near the south Chilean coast and an extratropical cyclone over the 

Atlantic. These wind anomalies are associated with cold-air advection, which hydrostatically 

causes surface pressure to rapidly increase over southern to central South America. The 

generation of this anomalous anticyclone, in conjunction with the topographical trapping by the 

Andes discussed earlier, leads to mass accumulation northwest of the mid-latitude 

anticyclone’s center. This mass accumulation slows down wind speeds, thus reducing the 

magnitude of the Coriolis force. The slowing of wind speeds causes the Coriolis force to reduce 

in magnitude, thus disrupting geostrophic balance through the generation of an ageostrophic 

southerly component to the wind from the now-unbalanced pressure gradient force. This 
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imbalance is critical to the generation of these surges and is a different process from that which 

keeps these surges near steep terrain (Pezza and Ambrizzi 2005). 

Cold surges over South America occur throughout the year but are typically strongest and 

most frequent in Austral winter (June-August). Although surface heating is weaker in the winter 

over the Amazon, it is still sufficiently warm and moist to produce strong upward surface 

sensible and latent heat fluxes, resulting in cold surges typically losing thermodynamic potency 

by the time they reach northern South America (Wang and Fu 2004). Although a cold surge’s 

temperature anomaly may weaken upon interaction with the underlying Amazonian surface, its 

kinematic attributes may be comparatively unaffected immediately thereafter (e.g., Griffin 

2012) due to the gradual adjustment to the synoptic-scale wind fields in response to the 

quicker adjustment of the thermodynamic fields. Cold surges along the Andes that can persist 

despite the intense surface heating over the Amazon and thus reach equatorial regions have 

been hypothesized to potentially result in precipitation that propagates eastward with 

characteristics like those of a convectively coupled Kelvin wave (Liebmann et al. 2009; Metz et 

al. 2013). 

Although Andean cold-surge structure and dynamics have previously been documented 

(e.g., Garreaud 2000; Pezza and Ambrizzi 2005), to date no research has focused on the extent 

to which the strongest of these events can modulate meso- to synoptic-scale weather 

conditions deep into the tropics. Due to the climatologically small variability in both kinematic 

and thermodynamic fields within the tropics throughout the year, looking at raw fields may 

understate the effects cold surges have on thermodynamic and kinematic fields at equatorial 

latitudes. Using standardized anomalies (Hart and Grumm 2001) to identify and quantify the 
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potency of these cold surges can provide an internally consistent method to quantify cold surge 

strength when compared to the spatiotemporally varying climatology (Fig. 2). Standardizing the 

anomalies facilitates the comparison between two locations. For example, an anomaly of 2°C at 

925 hPa over the Amazon basin may be significant, with a similar change not being statistically 

significant over the Atlantic Ocean. Standardized anomalies have been used in a number of 

studies, with a wide range of applications. Representative examples include, but are not limited 

to, ensemble sensitivity analysis (e.g., Torn and Hakim 2008), the use of standardized anomalies 

to assess the potential for rare precipitation events (Junker et al. 2009), and the NWS Ensemble 

Situational Awareness Table for operational forecasting applications (e.g., 

http://satable.ncep.noaa.gov/).  

The objective of this paper is to document the climatology of the strongest Andean cold 

surges with the purpose of determining the northward extent to which these events typically 

propagate and influence tropical weather conditions. Particular attention is paid to the 

evolution of these strong surges in the lower troposphere as they propagate north and interact 

with the warm Amazon River basin. The paper is organized as follows. The datasets and analysis 

procedures used are described in section 2. Section 3 documents the climatology of strong 

Andean cold surges and their mean structure in the days leading up to and following cold-surge 

initiation. A summary and discussion are provided in section 4.  

2. Methods 

a. Data 

Six-hourly data were collected from the European Center for Medium-Range Weather 

Forecasts interim reanalysis dataset (ERA-Interim; Dee et al. 2011). The dataset has roughly 80 
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km resolution on a reduced Gaussian grid with 60 isobaric levels up to 0.1 hPa. Cold surges that 

occur from 1 June through 30 September (122 days) were considered. This period encompasses 

Austral winter, which was considered by several past studies (Garreaud 2000; Lupo et al. 2001; 

Pezza and Ambrizzi 2005) and is the time of year when absolute cold-surge intensity is 

strongest. The variables considered included temperature, specific humidity, zonal and 

meridional winds, and geopotential height. Due to the shallow nature of these events, focus 

was given to data at 1000, 925, and 850 hPa. To evaluate cold-surge impacts on convection 

over the Amazon Basin, outgoing longwave radiation (OLR) data were collected from the 

National Oceanic and Atmospheric Administrations (NOAA) Climate Data Record (Lee 2014). 

This OLR data was daily averaged and was on a 1° x 1° global grid.  

Only one time per day (0000 UTC) was considered to mitigate the effects of the diurnal 

cycle upon the analysis. This would be particularly noticeable in the tropics due to the strong 

daily heating over the Amazon basin. The selection of 0000 UTC results in data considered near 

local sunset during the winter months, giving an idea of how surface temperatures that are 

near but slightly reduced from the daily high compare to climatology.  

All data were analyzed and visualized utilizing the Gridded Analysis and Display System 

(GrADS; Doty and Kinter 1992), and the Matrix Laboratory (MATLAB) software (MathWorks 

2011). 

b. Cold surge identification 

Several previous studies have used mean sea-level pressure to identify cold surges (e.g., 

Colle and Mass 1995; Garreaud 2000), whereas other studies have also relied upon near-

surface temperature (Lupo et al. 2001; Pezza and Ambrizzi 2005; Müller and Berri 2007; Metz et 
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al. 2013) and/or precipitation (Li and Fu 2006) to identify cold surges. For example, a 

generalized frost (taken to represent a cold surge) was defined by Müller and Berri (2007) as a 

day when at least 75% of the meteorological stations within the Wet Pampa region of southern 

Brazil and northeast Argentina recorded a minimum 2-m temperature less than or equal to 0°C. 

Additionally, Pezza and Anbrizzi (2005) used minimum 2-m temperature in conjunction with 

frost observations to identify and categorize cold surges by intensity. Yet other studies have 

utilized methods such as empirical orthogonal function analysis applied to 850 hPa meridional 

wind data (Vera et al. 2002) and potential vorticity (both upper and lower level) (Sprenger et al. 

2013) to identify cold surges. 

Standardized anomalies, defined in Hart and Grumm (2001) along with several other 

studies, were utilized to define specific criteria which must be met in order to classify a cold-air 

outbreak as a strong cold surge. The criteria depend upon two fields at 925 hPa, the meridional 

wind and temperature. To calculate standardized anomalies, climatological means (𝜇) for the 

31-year period from 1979-2010 were calculated using a 30-day average centered on each date 

between 1 June and 30 September. Standard deviations (𝜎) were then computed from these 

31-year means for each date. Finally, the standardized anomaly (𝑁) was computed as the 

departure from the climatological mean divided by the standard deviation:  

 

𝑁 =
𝑋 − 𝜇

𝜎
 

 

(1) 
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where 𝑋 is the desired reanalysis field. All of X, µ, and σ vary in space and time, such that 

standardized anomalies normalize the departure of a field X from climatology µ specific to the 

climatological variation σ at that location and time.  

In addition to helping highlight the extent to which an event is anomalous relative to its 

local climatology, standardizing provides a quantitative metric by which “strong” events relative 

to the observed data distribution can be identified. For a cold surge to be considered as 

“strong,” the 925 hPa meridional wind must have a standardized anomaly of three or more 

standard deviations above normal (e.g., highly anomalous southerly flow relative to the local 

climatology) and the 925 hPa temperature must have a standardized anomaly of three or more 

standard deviations below normal (e.g., highly anomalously cold temperatures relative to the 

local climatology). Furthermore, these standardized anomalies must cover a sufficiently large 

area (meso-alpha-scale or larger) to be considered as a candidate event. Each day that these 

criteria are met is defined as a cold-surge day. A cold-surge event occurs when one or more 

cold-surge days occur in succession, with the end of an event defined as the first day which 

these criteria are not met. Given these criteria, and the typical return rate of a three–

standardized-anomaly event assuming a normal distribution, a strong cold surge is expected to 

occur about once every five to six years. Although only temperature and meridional wind were 

used to identify cold surges, standardized anomalies were also calculated for other fields (e.g., 

mean sea-level pressure, 925 hPa specific humidity), and were shown to provide additional 

information not necessarily shown by the 925 hPa meridional wind and temperature 

standardized anomalies.  
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Using the criteria discussed above, 57 events are identified. The relatively high frequency of 

events when compared to what is suggested by a normal distribution is due to the data 

distribution itself (Fig. 3a). In specific, there are more events with area-averaged 925 hPa 

temperature at or below three standard deviations below normal than would be expected for a 

normally distributed set of events (given the mean and standard deviation of the total 

distribution of events).  

c. Analysis methods 

 To understand the mean cold-surge structure, longevity, intensity, and northward 

extent, composites were built from the identified cases. The requirement that a cold surge be 

strong results in relatively small variance between events than if a broad spectrum of surge 

intensities were allowed, thus enabling the composites to uniquely depict cold-surge evolution 

for “strong” surges. To understand the temporal evolution of these strong events, two sets of 

composites were generated: a start-focused composite, from two days before the start of the 

event to five days after the start of the event, and an end-focused composite, from five days 

before the end of each event to two days after the end of the event. The start- and end-focused 

composites help account for variance within the composite evolutions due to differing cold-

surge durations between the events within the composite. A composite analysis was also 

performed in the vertical from 1000-500 hPa for standardized anomalies. Cross sections were 

chosen as those which displayed the minimum value. This results in the x axis being not only 

representative of space (as the cold surges move northward), but also in time (the time at 

which the minimum value occurs at that degree latitude).  



10 
 

Boxplots of area-averaged fields are plotted for relevant fields to help depict the variance 

between cases for the cold surges as they progress northward. Area-averaged fields are 

computed over seven areas, six of which roughly follow the Andean cold-surge pathway (Fig. 4).  

Area 5 covers a 25° lon x 25° lat area over the majority of northern South America to depict the 

extent to which the identified surge events affect the entirety of the Amazon basin.  

3. Results  

a. Statistics for all events 

Figure 5 shows that the departures of +/- 2 standardized anomalies from normal occur 

every few months, with departures of -3 and +3 standardized anomalies occurring on average 

every 20 to 30 months. There is some spatial variability in the return rates however, with 

different endpoints and widths representing varying frequencies and maximum values present.  

To test for significance, bootstrapping was performed by generating 10,000 synthetic sets of 

57 anomalies randomly chosen from all 3782 days in the full dataset. P-values were then 

obtained from three days before the start of each event, to ten days after. Significance was 

tested at both the 90th and 95th percentiles (Fig. 6).  

On average, the events identified here lasted approximately four days, with the strongest 

event lasting eight days (Fig. 7). The mean standardized anomaly for all events at inception was 

+3.2 for 925 hPa meridional wind and -3.5 for 925 hPa temperature (Fig 8). The propagation 

speed of these events can also be approximated. Given an along track virtual potential 

temperature perturbation at the surface (𝜃𝑣 0
′ ), an along track mean virtual temperature at the 

surface 𝜃𝑣
̅̅ ̅ and an approximate along track average cold surge depth (H), the average speed v of 
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the extreme cold surges as they travel equatorward can be approximated as (Markowski and 

Richardson 2010):  

 

𝑣 = √−
𝜃𝑣 0

′ 𝑔𝐻

𝜃𝑣
̅̅ ̅

 

 

(2) 

 

Given an approximate along track cold surge depth of 1.5 km, with 𝜃𝑣 0
′ = −10 𝐾, 𝜃𝑣

̅̅ ̅ = 300 𝐾 

and 𝑔 = 9.81 𝑚𝑠-2, the along track average propagation speed is 𝑣 ≈ 22 𝑚𝑠-1, which closely 

resembles the suggested propagation speed for individual cold-surge events as can be seen 

from their leading edges (Figs. 9-12, etc.). 

b. Case study of a strong cold surge event from 17-25 June 2001 

 On day one (17 June 2001), 925 hPa temperature standardized anomalies of -4 were found 

in southern Bolivia and extreme northern Argentina (Fig. 9b). The large negative temperature 

standardized anomalies in Fig. 9a were collocated with +4 standardized anomalies in 925 hPa 

meridional wind (Fig. 10a). The anomalously southerly winds, and the relatively cold air they are 

transporting from higher latitudes, remain tightly bound to the Andes before entering the 

Amazon basin at lower latitudes.  

By day two (18 June 2001), the cold surge’s leading edge has propagated into western 

Brazil, Bolivia, and extreme southern Peru (Figs. 9b, 10b). Terrain trapping becomes evident on 

day two, with a westward bowing of -3 925 hPa temperature standardized anomalies that were 

accompanied by a raw 0000 UTC 925 hPa temperature of as low as 8°C. The 925 hPa meridional 

wind standardized anomalies (+3, corresponding to a raw value of ~6-8 ms-1) remain collocated 
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with the 925 hPa temperature standardized anomalies, including the same westward extension 

of anomalously southerly winds. This general structure and northward propagation were 

maintained for the subsequent few days (Figs. 9c-d, 10c-d).  

On days five and six of this eight-day event (21-22 June 2001; Figs. 9e,f, 10e,f), 925 hPa 

temperature standardized anomalies of -2 to -3 encompass the entire Amazon basin, 

accompanied by raw 925 hPa temperatures as low as 16°C. By this time, the 925 hPa meridional 

wind anomalies have propagated further northward, including to the southern Caribbean Sea, 

than their 925 hPa temperature counterparts (Figs. 10e, 10f). Strong surface latent heat fluxes 

in the Amazon basin have weakened and reduced the spatial extent of the negative 

standardized 925 hPa temperature anomalies associated with the cold surge event (not shown), 

but as suggested by Griffin (2012), the 925 hPa meridional wind standardized anomaly field 

remained relatively unaffected to this point.  

Finally, on days seven and eight of this cold surge event (23-24 June 2001; Figs. 9g,h, 10g,h), 

the cold surges temperature anomalies slowly dissipate as surface sensible and latent heating 

warms the overlying air (Figs. 9g,h). The standardized anomalies in Figs. 10g and 10h curve 

slightly eastward as they interact with the raised terrain of extreme northern Colombia and 

Venezuela (Fig. 4). This generates an anomalous westerly component to the wind over the 

extreme southern Caribbean Sea that dissipates a few days later (not shown). 

c. Composites for all 57 events 

While the previous case study provided insight into cold-surge behavior for the strongest 

event in the dataset, it is only somewhat representative of composite cold-surge behavior, 

particularly in terms of its intensity. Therefore, a more thorough treatment of all events is 
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warranted, as in Figs. 11-12. Of note, the composite cold-surge intensity is less than that for the 

case study. Although the composite-mean peak cold-surge intensity for 925 hPa temperature 

over all 57 events is approximately -3.5 standard deviations, the largest composite-mean 

standardized anomaly magnitude is approximately -2.4. Differences in propagation speed, 

intensity, and areal expanse between individual events all contribute to a dampening in 

anomaly intensities relative to an individual case (not shown).  

 As time advances, the composite cold-surge event is consistently associated with 

anomalously cool temperatures at progressively further north latitudes, with 0000 UTC 925 hPa 

temperature decreases in some parts of the Amazon basin as large as 6°C that correspond to a 

composite-mean 925 hPa temperature standardized anomaly of approximately -2.5 (Figs. 11d, 

e). As seen in the case study, below-normal 925 hPa temperatures do reach the equator in a 

weakened state (Fig. 11f), with the composite 925 hPa temperature negative standardized 

anomaly largely eliminated four to five days after the start of the composite event (Figs. 11g, h). 

The positive 925 hPa meridional wind composite-mean standardized anomaly advances 

equatorward more rapidly than does the negative 925 hPa temperature composite-mean 

standardized anomaly, and retain higher magnitudes further north as well, much like what is 

seen in the case study (c.f. Figs. 10 and 12). An interesting artifact of the meridional wind 

composites is the presence of positive anomalies from Venezuela toward the Caribbean Sea. 

The higher terrain of the Guiana shield of eastern Venezuela is made up of generally higher 

altitudes, with some locations with elevations of 1000 m or greater (Fig. 4). The effects of these 

highlands can also be seen in southern Guyana, with a slight northward extension of 

anomalously southerly winds.  
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The propagation speed calculated earlier can not only vary from day to day as the surges 

move northward, but it can also vary from case to case. These differences in propagation speed 

result in variation in the time at which cold surges reach equatorial latitudes, in turn resulting in 

the composite-mean cold surge weakening in intensity but covering a larger area. To mitigate 

this impact, composites were also built based off of the end of each event. This ensures that 

time t in these analyses (Figs. 13f & 14f) is the final day in which the cold-surge criteria are met. 

Largely, the composites for the 925 hPa temperature (Fig. 13) and meridional wind (Fig. 14) are 

largely similar to the event start composites (Figs. 11-12). Stronger signals can be seen in Figs. 

11-12a,b when compared to Figs. 13-14a,b, resulting from the alignment of surge starts in Figs. 

11c and 12c and the lack thereof in Figs. 13c and 14c. A similar pattern, with opposite sign of 

impact, is seen in Figs. 13f and 14f when compared to Figs. 11f and 12f for cold-surge 

termination. 

d. Along-track area-averages and variances 

Although the composites suggest that strong cold surge events can modulate the 

atmosphere throughout much of the Amazon basin and into the southern Caribbean, it is 

imperative that the variance between cases is documented. To do so, area-averages of selected 

fields are computed over each of the areas depicted in Fig. 4. Area-averages and their variances 

are displayed in terms of raw fields (Figs. 15-18) and their standardized anomalies (Figs. 19-22). 

As expected, 925 hPa temperature is substantially decreased relative to days both before 

and after cold-surge initiation in area 1 (Figs. 15a, 19a). At surge initiation, average reductions 

in 0000 UTC 925 hPa temperatures are on the order of 10°C, with abrupt temporal changes 

compared to days before and after (Figs. 15d, 19d). Outliers present on the day of cold-surge 
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initiation and the day after (i.e., time t and t+1) are due to meridional variation in the exact 

position of a cold surge at the time of its initiation (not shown). The cold-surge identification 

criteria used in this study do not require a specific cold-surge origination location, such that a 

few of the identified events originated as far north as western Brazil to southern Peru (area 3 in 

Fig. 4).  

As the cold surges propagate northward, area-averaged 925 hPa temperature returns to its 

pre-surge state over the course of several days. Outliers are also present at later time periods 

(e.g., five to nine days after cold-surge initiation) in area 1 (Southern Bolivia); these outliers 

primarily represent localized anomalously low 925 hPa temperature (Figs. 15a, 19a) collocated 

with anomalously southerly 925 hPa meridional wind (Figs. 16a, 20a). Since cold surges (of any 

intensity) occur with intervals of two weeks year-round over subtropical South America 

(Garreaud 2000), the anomalously low 925 hPa temperature (and anomalously southerly 925 

hPa meridional wind) present many days after the onset of a strong cold surge may be due to a 

subsequent weaker surge event (not shown). The boxplots of area-averaged 925 hPa 

temperature for areas 3 (Western Brazil-Southern Peru) and 6 (Southern Colombia; Figs. 15b,c, 

19b,c) show the cold surges weakening with equatorward extent, but also with diminishing 

variability within the composite. By the time the surges have reached areas 6 (Southern 

Colombia) and 7 (Western Venezuela-Eastern Colombia; Fig. 4), they have lost much of their 

thermodynamic potency and are associated with smaller changes relative to the pre-surge 

atmospheric state (Figs. 15d, 19d). On the larger scale (area 5; Fig. 4), the 925 hPa temperature 

reduction in association with a strong cold surge is subtle (1-2°C), but nevertheless documents 
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the ability for these extreme events to modify lower-tropospheric thermodynamic properties 

over one of the largest jungle basins on Earth.  

Area-averaged southerly winds averaging 10 m s-1 (+2 standardized anomalies) are present 

in area 1 (Southern Bolivia) at cold-surge initiation (Figs. 16a, 20a), with some outliers primarily 

comprising cases with northerly winds. Cases with area-averaged northerly winds at cold-surge 

initiation may stem from meridional variation in the initiation locations for certain cold surge 

events, as was discussed above for 925 hPa temperature. It is found, that the outliers noted in 

the 925 hPa temperature and meridional wind, are indeed due to a few events which began at 

locations atypical to the vast majority. These outliers will also be shown to have effects 

extending throughout the two other fields observed (mean sea level pressure, specific 

humidity). As cold surges progress to and through areas 3 (Western Brazil-Southern Peru) and 6 

(Southern Colombia), the area-averaged 925 hPa meridional wind becomes less southerly and 

less variable (Figs. 16b,c, 20b,c). Although the area-averaged 925 hPa meridional wind becomes 

less southerly with time and northward surge progression (Figs. 16d, 20d), the rate at which it 

does so is less rapid than that at which area-averaged 925 hPa temperature increases (c.f. Figs. 

15,19 and Figs. 16, 20). This is consistent with Griffin (2012), who argued that a cold surge’s 

kinematic properties may remain relatively intact well after cold-surge initiation, particularly as 

compared to a cold surge’s thermodynamic properties. When air masses on the meso-alpha 

scale are motivated to move at speeds approximated in equation 2 (~ 22 m s-1), they carry with 

them a massive amount of momentum. This momentum allows the air which is already in 

motion, to continue propagating equatorward, while the thermodynamic properties of the 

surge are more prone to modulation from the warm and moist Amazon Basin below. Across the 



17 
 

entirety of northern South America (area 5), an average increase of over 2 m s-1 in area-

averaged 925 hPa meridional wind is documented in association with these strong cold surges. 

Although this change is small, when it occurs over an extremely large area such as the entirety 

of northern South America, it signifies a massive amount of anomalous kinetic energy involved 

with these potent systems. 

 While the analysis to this point has relied on the fields used to identify cold-surge 

events, it is also of value to document strong cold-surge impacts on other fields. For example, 

area-averaged 925 hPa specific humidity decreases in association with most cold-surge events 

apart from with the previously discussed outliers at surge initiation (Figs. 17, 21). Likewise, 

area-averaged mean sea-level pressure (Figs. 18, 22) increases in association with most cold 

surge events. For both fields, the cold-surge signal is largest and most variable near surge 

initiation (Figs. 17a, 18a, 21a, 22a), decreasing in both magnitude and between-case variation 

thereafter (Figs. 17c, 18c, 21c, 22c). Previously discussed outlier events are also associated with 

an increase in lower tropospheric humidity (Figs. 17 and 21), and a decrease in pressure (Figs. 

18 and 22), thus strengthening the argument that they arise from anomalously northerly, and 

anomalously warm and moist, winds out of the Amazon basin, suggesting a different initiation 

zone for these outliers. Preceding some of the events in this study is an area of relatively weak 

anomalously northerly flow, bringing with it the warm moist air of northern South America, 

causing slight increases in temperature specific humidity, and slight drops in mean sea level 

pressure and meridional wind (19-22a). Highlighted in the area-averaged mean sea-level 

pressure analysis is the failure for northern South America to return to the pre-surge state (Figs. 

18d, 22d). The area-averaged composite-mean mean sea-level pressure for area 5 three days 
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before surge initiation is 1012 hPa (Fig. 18d), or approximately -0.5 standardized anomaly (Fig. 

22d), whereas ten days after cold-surge initiation the area-averaged composite-mean mean 

sea-level pressure is 1013 hPa (Fig. 18d), or approximately+0.5 standardized anomaly (Fig. 22d). 

While this difference may seem small, it represents an area-averaged mean difference of 1 hPa, 

or 1 standardized anomaly change, over an area covering greater than seven million square 

kilometers. This suggests that not only can these strong cold surges modulate the meridional 

wind field as far north as the southern Caribbean, but they can have lasting effects over all of 

northern South America nearly two weeks after their inception.  

All analysis up to this point has been done either at 925 hPa or the surface. It is now of 

interest to see what shape the mean vertical structure of these surges takes both at initiation, 

and on their trek towards the equator. Temperature standardized anomalies of -1.0 extend well 

into the middle troposphere (> 500 hPa), with the deleterious effects of surface sensible and 

latent heat fluxes from the Amazon basin manifest in the sharp reduction of cold-surge 

intensity (in terms of temperature) below 950 hPa south of 5°S (Fig. 23, top). Anomalously cold 

temperatures extend as far north as 7-8°N between 850-650 hPa, suggesting increased static 

stability over the Amazon basin days after the onset of a strong cold surge (Fig. 23, top). While 

the thermodynamic properties of the surges are greatly affected, the momentum fields remain 

comparatively intact with anomalies of +1.5 reaching > 5°N near the surface (Fig. 23; bottom). 

Not only do the meridional wind anomalies reach further north (> 10°N), their signal remains 

attached to the surface. This finding is consistent with the discussion in the previous paragraph 

suggesting that while the thermodynamic properties of these events immediately sense the 

presence of the warm Amazon Basin below, the momentum associated with the large 
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propagation speed helps to mitigate deleterious effects on the meridional wind field both at 

the surface, and in the boundary layer.   

4. Conclusions and Future Work 

This study provides an in-depth climatology of strong South American cold surges, utilizing a 

technique which helps to highlight changes associated with these events relative to the local 

climatology. It is shown that strong South American cold surges which follow the Andean 

pathway can not only affect the thermodynamic and kinematic fields deep into the tropics but 

can cause changes to the mean properties of the northern South American atmosphere long 

after the cold surge has dissipated.  

Standardizing the fields helps to highlight the extent to which an event is anomalous 

relative to its local climatology and provides a quantitative metric for identifying “strong” 

events relative to the observed data distribution. While many previous studies have looked into 

South American cold surges, this study presents the first in-depth, highly-detailed, analysis of 

strong South American cold surges along the Andean pathway.  

Using the standardized anomalies of the 925 hPa meridional wind and temperature fields, 

57 events were identified. On average, these 57 events transported anomalously cold air (with 

standardized anomalies of -3 or lower) by way of anomalously southerly winds (with 

standardized anomalies of +3 or higher). As strong cold surges progressed northward, they 

were modified through surface sensible and latent heat fluxes from the warm Amazon basin 

below. By the time the surges reached northern South America, their thermodynamic 

properties were substantially weakened, but their kinematic properties remained relatively 

intact. The strongest event in the dataset, which lasted eight days, was associated with 925 hPa 
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temperature standardized anomalies of -3 and 925 hPa meridional wind standardized 

anomalies of +4 to the Equator and Caribbean Sea, respectively. 

 Previous studies have suggested Andean cold surges as a potential pathway by which 

midlatitude southern Pacific Ocean synoptic-scale phenomena can influence westward-moving 

near-equatorial and tropical north Atlantic disturbances many days later (e.g., Liebmann et al. 

2009; Griffin (2012). Although these events can travel into the tropics, they have either been 

weakened too much to have a significant impact on any relevant features in the area or lack the 

alignment necessary to modulate pre-existing features. Using the 57 strongest cold surge 

events over the past 31 years in conjunction with OLR data filtered following Wheeler and 

Kiladis (1999), little to no connection was found between cold surges which follow the Andean 

pathway and convectively coupled Kelvin waves (CCKWs), whether the latter were pre-existing 

or generated in situ (not shown). This lack of connection may be due to the qualitative 

approach used in this study, as opposed to the quantitative approach. If the number of cold 

surges were increased by loosening the criteria, it may be possible to find an event which 

contributed to the development and/or maintenance of a CCKW. It should be noted, however, 

that as the criteria are relaxed, weaker cold surges, which will be less likely to penetrate deep 

into the tropics, will be accepted into the collection of events.  

Furthermore, it has been shown that cold surges in eastern Asia can positively impact pre-

existing tropical cyclones and/or spur the genesis of a new tropical cyclone in the western 

Pacific (Chang and Lau 1980; Wang and Chen 2014). The potential impact that strong Andean 

cold surges may have on passing tropical systems in the tropical north Atlantic, such as African 

easterly waves (AEWs), was also briefly investigated. None of the 57 events in this dataset were 
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shown to have a detectable (given the data used) interaction with a pre-existing AEW, or to 

sufficiently modify the tropical atmosphere to spur the genesis of a new tropical disturbance 

(not shown). A lack of connection between a cold surge and a passing AEW is likely due to the 

same reason why no connection between a cold surge and a passing CCKW was found. Similar 

to the previous discussion, if more, albeit weaker, surges were allowed into the dataset by 

setting less stringent criteria, it is possible that a significant interaction would be found. 

This study identified the strongest 57 Andean cold-surge events between 1980-2010 and 

showed that these potent events can largely survive the strong heating from the Amazon Basin 

below and penetrate as far north as 10°N for the fields selected in this study. Compared with 

similar past studies, this study identified much stronger events and much fewer events. As a 

product of this, the events were in general much longer lived that those in other studies and 

had structures which on average dominated more of the atmosphere (in the horizontal and 

vertical) over South America. This study provides a climatology of the 57 most potent cold surge 

events for the South American Andean pathway over approximately the last 30 years at a level 

of detail yet to be done and provides insight specifically at how these extremely anomalous 

events interact with one of the largest rainforest basins on the planet.   

Potential future works for this study would be to apply the techniques used here to other 

pathways. For example, the Brazilian pathway, albeit lacking the northward extent of the 

Andean pathway, still provides a potential pathway by which cold surges can reach tropical 

latitudes and into the extreme southern parts of the North Atlantic Ocean. Another potential 

future work would be to run a high-resolution numerical simulation to examine impacts to the 
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convective field over the Amazon Basin and any potential impacts on passing CCKWs or AEWs. 

These are planned for future study.  
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Figure 2. Topographic map of South America with the synoptic climatology of cyclone (red) and 
anticyclone (blue) tracks associated with cold air outbreaks. Thicker lines represent higher track 
densities and the crosses represent the climatological position of the Pacific and Atlantic high-
pressure centers. The numbers in this picture represent the climatological-mean mean sea-level 
pressure (units: hPa) associated with each feature. The cold front line approximately shows the 
northern boundary of the cold air propagation with the outbreak (from Pezza and Ambrizzi 
2005). 
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Figure 2. May-October 1980-2010 climatological standard deviations of 925 hPa temperature 
(top; units: °C), and 925 hPa meridional winds (bottom; units: m s-1).  
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Figure 3. Frequency of occurrence of 925 hPa temperature (°C) averaged over areas (a-d) 1-4 
and (e-f) 6-7 (within 0.5°C bins) for all 3782 days in the dataset. The red curve in each panel 
depicts a normal distribution with mean and standard deviation equal to those of the underlying 
data. 
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Figure 4. Terrain height (m; shaded per the color bar at right) with the area-averaged domains 
described in Section 2 overlaid. The orange box is defined as area five. The remaining boxes are 
numbered following the typical path of an Andean cold surge: the red box is defined as area 
one, the green box is defined as area two, the blue box is defined as area three, the yellow box is 
defined as area four, the light blue box is defined as area six, and the black box is defined as 
area seven.  
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Figure 5. Return rates in Months for 925 hPa temperature and meridional wind. The 
standardized anomalies were binned by .25 from -4 to +4.  A cutoff of the line before -4 or +4 
signifies zero occurrences of an event in that particular bin. 
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Figure 6. Plots of P-Values for the composites of all 57 events from three days before the event, 
to ten days after. The solid black line represents a p-value of 0.9, while the dashed black line 
represents a p-value of 0.95. 
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Figure 7. The duration of all 57 events in the dataset in days.   
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Figure 8. The maximum magnitude standardized 925 hPa wind and temperature anomalies for 
all 57 events (0.5 bins).  
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Figure 9. Standardized anomalies (unitless; shaded per the color bar at right) and raw values 
(°C; contoured), for 925 hPa temperature for the strongest event in the dataset (17-25 June 
2001), which lasted eight days. Panels (a) through (h) depict 0000 UTC on days one through 
eight of the cold surge, respectively. 
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Figure 10. As in Fig. 9, except for 925 hPa meridional wind (m s-1).   
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Figure 11. 925 hPa temperature standardized anomalies (unitless; shaded per the color bar at 
right) and raw field (°C, contoured) averaged over all 57 events. The composites are generated 
daily from (a) two days prior to cold-surge initiation to (h) five days after cold-surge initiation. 
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Figure 12. As in Fig. 11, except for 925 hPa meridional wind (m s-1). 
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Figure 13. As in Fig. 11, except from (a) five days prior to cold-surge termination to (h) two days 
after cold-surge termination. 
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Figure 14. As in Fig. 13, except for 925 hPa meridional wind (m s-1). 
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Figure 15. Boxplots of 925 hPa temperature (°C) for areas one, three, and six, with the mean 
plotted in the far bottom right. The x-axis has units of days, with day t representing the start of 
a cold-surge event. The red line in the middle represents the mean, with the blue box extending 
to the 25th and 75th percentiles. The dashed line shows the 10th and 90th percentiles, and red 
crosses represent outliers.  
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Figure 16. As in Fig. 15, except for 925 hPa meridional wind (m s-1). 
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Figure 17. As in Fig. 15, except for 925 hPa specific humidity (g kg-1). 
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Figure 18. As in Fig. 15, except for mean sea-level pressure (hPa). 
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Figure 19. Similar to figure 15, but instead looking at standardized anomalies as opposed to raw 
fields.  
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Figure 20. Similar to figure 16, but instead looking at standardized anomalies as opposed to raw 
fields.  
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Figure 21. Similar to figure 17, but instead looking at standardized anomalies as opposed to raw 
fields. 
 
 
 
 
 
 

t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10

Time in Days

-4

-3

-2

-1

0

1

2

3

4

g
k
g

-1

925 hPa Specific Humidity Area One Anomaly Boxplots

a

t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10

Time in Days

-4

-3

-2

-1

0

1

2

3

4

g
k
g

-1

925 hPa Specific Humidity Area Three Anomaly Boxplots

b

t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10

Time in Days

-5

-4

-3

-2

-1

0

1

2

3

4

g
k
g

-1

925 hPa Specific Humidity Area Six Anomaly Boxplots

c

t-3 t-2 t-1 t t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10

Time in Days

-4

-3

-2

-1

0

1

2

3

4

g
k
g

-1

925 hPa Specific Humidity Area Averaged Anomalous Means

d



44 
 

 
Figure 22. Similar to figure 18, but instead looking at standardized anomalies as opposed to raw 
fields. 
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Figure 23. Composite cross section for temperature (top) and meridional wind (bottom). The x-
axis is spatiotemporal in that the values shown here are for the minimum value at the nearest 
time (for each degree latitude) as the cold surges travel northward.  
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