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ABSTRACT 

ONLINE SOCIAL NETWORKS’ INVESTIGATIONS OF INDIVIDUALS’ 
HEALTHY AND UNHEALTHY LIFESTYLE BEHAVIORS AND SOCIAL 

FACTORS INFLUENCING THEM —THREE ESSAYS 
 

by 
 

Mahyar Sharif Vaghefi 
 
 

The University of Wisconsin Milwaukee, 2018 
Under the Supervision of Professor Fatemeh (Mariam) Zahedi 

 
 
 

More than half of U.S. adults suffer from one or more chronic diseases, which account for 86% 

of total U.S. healthcare costs. Major contributors to chronic diseases are unhealthy lifestyle 

behaviors, which include lack of physical activity, poor nutrition, tobacco use, and drinking too 

much alcohol. A reduction in the prevalence of health-risk behaviors could improve individuals’ 

longevity and quality of life and may halt the exponential growth of healthcare costs. Prior 

studies in the field have acknowledged that a comprehensive understanding of health behaviors 

requires the examination of individual’ behaviors in supra-dyadic social networks. In recent 

years, the growth of online social networks and popularity of location-based services have 

opened new research opportunities for observational studies on individuals’ healthy and 

unhealthy lifestyle behaviors. The goal of this three-essay dissertation is to examine the effect of 

various social factors, shared images, and communities of interest on healthy and unhealthy 

lifestyle behaviors of individuals. This dissertation makes novel contributions in terms of 

theoretical implications, data collection and analysis methods, and policy implications for 

promoting healthy lifestyle behaviors and inhibiting unhealthy behaviors. 
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Essay 1 draws on a synthesis of social cognitive and social network theories to 

conceptualize a causal model for healthy and unhealthy behaviors. To test the conceptualized 

model, we developed a new method—dynamic sequential data extraction and integration—to 

collect and integrate data over time from Twitter and Foursquare. The captured dataset was then 

combined with relevant data from the U.S. Census Bureau. The final dataset has more than 

32,000 individuals from all states in the United States. Using this dataset, we derived variables to 

measure healthy and unhealthy lifestyle behaviors and metrics for factors representing 

individuals’ social support, social influence, and homophily, as well as the socioeconomic status 

of the communities where they live. To capture the impacts of social factors, we collected 

individuals’ behaviors in two separate time periods. We used zero-inflated negative binomial 

regression method for data analysis. The results of this study uncover factors that have 

significant impacts on healthy and unhealthy lifestyle behaviors.   

Essay 2 focuses on embedded images in self-disclosed posts related to healthy and 

unhealthy lifestyle behaviors. While online photo-sharing has become widely popular, and 

neuroscience has reported the influence of images in brain activities, to our knowledge, there is 

no published research on the impacts of shared photos on health-related lifestyle behaviors. This 

study addresses this gap and examines the moderating role of shared images and the direct 

impacts of their contents. We relied on social learning and multimodality theories to argue that 

images can attract individuals’ attention and enhance the process of observational learning in 

online social networks. We developed a novel method for image analysis that involves the 

extraction, processing, dimensionality reduction, and categorization of images. The results show 

that the presence of photos in self-disclosed unhealthy lifestyle behaviors positively moderates 
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friends’ social influence. Moreover, the results indicate that the contents of shared photos 

influence individuals’ health-related behaviors.  

Essay 3 focuses on the role of personal interests in individuals’ health-related lifestyle 

behaviors. Prior studies have demonstrated that health promotional programs can benefit from 

targeting individuals based on their interests. Specifically, prior studies have emphasized the role 

of interests as a factor influencing behaviors. However, current literature suffers from two major 

gaps. First, there is no systematic and comprehensive approach to capture individuals’ interests 

in online social networks. Second, to our knowledge, the role of interests in individuals’ healthy 

and unhealthy lifestyle behaviors as disclosed online has not been investigated. To address these 

gaps, we examine the role of individuals’ interests in their health-related behaviors. The 

theoretical foundation of this study is a synthesis of homophily and self-determination theories.  

We developed a novel method—the homophily-based interest detection method—that involves 

network simplification, network clustering, cluster labeling, and interest metrics.  This method 

was applied to social networks of individuals in Essay 1 to measure individuals’ interests. The 

results show that health-related interests are associated with individuals’ healthy and unhealthy 

lifestyle behaviors. Our findings indicate that other forms of interest, such as music taste and 

political views, also play a role.  Moreover, our results show that belonging to healthy 

(unhealthy) communities of interest has an inhibitive role that prevents postings of unhealthy 

(healthy) behaviors.  
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CHAPTER 1 

 

Introduction 

 

 

In recent years, chronic diseases are increasingly becoming prevalent in different countries. 

Individuals’ unhealthy lifestyle behaviors including lack of physical activities, poor nutrition, 

tobacco use, and drinking too much alcohol have been considered as the major causes of such 

diseases (CDC 2015). Thus, a reduction in the prevalence of health-risk behaviors could improve 

individuals’ longevity and considerably reduce the cost burdens on health care systems. 

Developing a comprehensive understanding of social factors contributing to individual’ healthy 

and unhealthy lifestyle behaviors is a big step towards controlling unhealthy lifestyle behaviors 

and promoting healthy lifestyle behaviors. Individuals’ interests and preferences, and friends’ 

social support and social influence are factors that can be highly influential in formation of 

lifestyle behaviors. This dissertation plans to study the effect of these social factors within online 

social networks. 

In 2015, it was estimated that people spend an average of 1.7 hours daily on online social 

networks.1 This time was reported to be 9 hours for teens.2 Such pervasive reliance on online 

social networks, particularly for the younger generation, calls for a deeper understanding of how 

online social factors influence individuals’ health-related lifestyle choices. In our studies, we rely 

                                                
 
1 http://www.globalwebindex.net  
2 http://www.cnn.com/2015/11/03/health/teens-tweens-media-screen-use-report/  
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on individuals location-based check-ins in online social networks. It was argued that the shared-

location of individuals can represent individuals’ type of activities (Cramer et al. 201). Thus, we 

consider the check-ins of individuals at health-related venues (gym and fitness center, bar, and 

fast food restaurants) as the proxy for capturing their healthy and unhealthy lifestyle behaviors. 

Throughout the chapters, we develop several tools, frameworks, and models to capture the effect 

of social factors on individuals’ health-related lifestyle behaviors as observed in online social 

networks.  

This dissertation advances the theory and techniques for analyzing individuals’ behaviors 

as observed in online social networks. It consists of three research essays. The first essay offers a 

dynamic sequential approach for capturing, extracting and integrating data from online social 

networks and introduces the Health-related Lifestyle Behavior (HLB) model for analyzing 

individuals’ health-related lifestyle behaviors as observed in online social networks. The second 

essay expands the introduced HLB model offered in the first essay by considering the role of 

friends’ posted images – from healthy and unhealthy places – in formation of individuals’ health-

related lifestyle behaviors. The third essay offers a theory-based method for detection of 

individuals’ interests and preferences from online social networks. Our analysis shows that 

detected interests and preferences can explain individuals’ disclosed healthy and unhealthy 

lifestyle behaviors in online social networks.   

 

Essay 1: Impact of Social Factors on People’s Health-related Lifestyle Behaviors: A 

National Observational Study in Online Social Networks. 

Prior studies have captured the influential power of online social networks in formation of 

political mobilization (Bond et al. 2012), and adoption of paid services (Bapna and Umyarov 
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2015). However, no observational studies have examined the role of online social networks in 

formation of health-related lifestyle behaviors. Considering the huge imposed cost of unhealthy 

lifestyle behaviors to healthcare systems, examining the role of online social networks in 

changing health-related lifestyle behaviors could demonstrate the power of online social 

networks and help in formulating policies to harness this power to promote healthy lifestyle 

behaviors.  Therefore, we pose the following research questions: (i) How can we observe 

individuals’ health-related lifestyle behaviors on online social networks? (ii) What are the online 

social factors that contribute to individuals’ health-related lifestyle as observed on online social 

networks?    

To answer these questions, we develop a new dynamic sequential approach to collect data 

from public online social networks and integrate that with data from U.S. census bureau. We also 

rely on Berkman framework (Berkman et al. 2000) to build a contextualized model for studying 

the individuals’ health-related lifestyle behaviors within online social networks. Our findings 

show that individuals’ health-related lifestyle behaviors are significantly influenced by their 

friends’ behaviors. This study contributes to both theory and practice and provides great insights 

for health practitioners and policy makers. 

 

Essay 2: The Moderating Impact of Friends’ Posted Images on Observed Healthy and 

Unhealthy Lifestyle Behaviors of Individuals in Online Social Networks 

Shared images in online social networks consists of personal recommendations that make 

them influential (Eftekhar et al. 2014). A recent experimental study shows that adolescents tend 

to post pictures of unhealthy foods in their online social network pages (Holmberg et al. 2016). 

This raises the concerns about the effects of shared photos in online social networks on 
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individuals’ health-related lifestyle behaviors. Thus, we build on top of the HLB model to 

investigate about the role of posted images on individuals’ healthy and unhealthy lifestyle 

behaviors. In this study, we seek to answer the following research questions: (i) Does the 

presence of photos moderate impact of friends’ healthy and unhealthy lifestyle behaviors? (ii) Do 

contents of posted photos contribute to friends’ healthy and unhealthy lifestyle behaviors? 

In answering these research questions, we collect the images posted along with 

individuals’ healthy and unhealthy lifestyle behaviors and analyze them through a novel image 

processing framework. The results of this study show that presence of images along with posted 

unhealthy lifestyle behaviors can increase the social influence of reported unhealthy lifestyle 

behaviors within online social networks. Our findings also indicate that the content of images 

can be influential on observed individuals’ behaviors.   

 

Essay 3: Communities of Interest in Online Social Networks: Detection Method and its 

Application in Explaining Self-Disclosed Lifestyle Behaviors 

Research has demonstrated that online social network platforms can be used for health 

promotional purposes (Valle et al. 2013, Pechmann et al. 2015, Ramo et al. 2015). There are 

programs to promote healthy lifestyle behaviors and prevent diseases, disability, and premature 

death. Examples are VERB and TRUTH—programs by non-profit organizations to increase the 

level of physical activities and reduce smoking among adolescents (Huhman et al. 2004, Evans 

2006).  For such programs to succeed, there is a need identify individuals’ interests, preferences, 

and values.  Online social networks have become valuable sources to gain understanding of 

individuals’ behaviors through their online social environments.  This requires discovering their 

communities of interest and investigating the role of such communities in individuals’ health-
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related lifestyles. Thus, we pose the following research questions (i) how individuals’ interests 

and preferences can be detected within online social networks? and, (ii) how self-disclosed 

health-related lifestyle behaviors of individuals in online social networks are associated with 

their observed interests and preferences? 

In answering our research questions, we develop a Homophily-based Interest Detection 

(HID) method that rely on the structure of individuals’ social network for detection on their 

interest-based attributes. Our method could detect wide variety of individuals’ interests such as 

their music taste, and political view. Then, we use the detected interests of individuals to 

investigate about the association between individuals’ healthy and unhealthy lifestyle behaviors 

and their observed health-related interests. Our findings show that type of individuals’ interests 

and existing norms within communities of interest can explain the observed individuals’ lifestyle 

behaviors.  
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CHAPTER 2 

 

Essay 1 - Impact of Social Factors on Peoples’ Health-related Lifestyle 
Behaviors: 

A National Observational Study in Online Social Networks 
 

 

2.1. Introduction 

 

More than half of adults in the U.S. suffer from one or more chronic diseases, which account for 

86% of total healthcare costs (CDC 2015).  Major contributors to chronic diseases are unhealthy 

lifestyle behaviors that include the “lack of exercise or physical activity, poor nutrition, tobacco 

use, and drinking too much alcohol” (CDC 2015).  A reduction in the prevalence of health-risk 

behaviors could improve individuals’ longevity and quality of life and may halt the exponential 

growth of healthcare costs (CDC 2015).  Moreover, an increase in healthy lifestyle behaviors 

reduces the substantial economic burdens associated with chronic diseases (Scarborough et al. 

2011).  For example, compared with medical costs of normal-weight people, obese people pay 

42% more to deal with their medical issues (Finkelstein et al. 2009).3  

Healthy behavior is an ongoing process that has multiple social and personal dimensions.  

McNeill et al. (2006) have found that advising individuals to have physical activities without 

considering social norms and environmental factors is unlikely to lead to behavioral changes. 

                                                
 
3 A 2008 estimate shows that the medical cost for obesity has increased to $147 billion per year, comprising about 10 percent of 
all medical spending (Finkelstein et al. 2009).   
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Literature reports the influence of peer groups in studies of specific behavior such as smoking, 

substance abuse, drinking, or physical activity (Eisenberg et al. 2005, Trogdon et al. 2008, Chen 

et al. 2001, Kaplan et al. 2001, Clark and Lohéac 2007, Leung et al. 2014, Andrews et al. 2002, 

Lundborg 2006).  However, such studies have limitations. First, offline health-related studies 

have relied mostly on relationships of people in schools or family settings. Such settings have 

geographical, cultural and political limitations in terms of development of relationships with 

others, thus limiting observations of lifestyle behaviors to a few number of friends in a given 

period and not accounting for individuals’ entire social networks.  By studying individuals’ 

online social networks, we address this limitation.  With pervasive use of mobile technologies 

and online social networks, the structure and sphere of human relationships have expanded.  

Online social networks allow people to observe and follow all friends’ lifestyle behaviors daily, 

even hourly, or in some cases in real time, particularly in location-based social networks.  This 

facilitates the process of observational learning for individuals. Thus, studying health-related 

lifestyle behaviors in online social networks allows us to account for the broader social forces 

influencing individuals’ health-related lifestyle choices.     

Second, another limitation is the focus on dyadic relations, thus ignoring the 

compounding effects of social influence emanating from different types of relationships and 

multiple groups to which an individual may belong.  Research has already acknowledged the 

need for using supra-dyadic social networks to examine how health-related lifestyle behaviors 

can spread across social networks (Smith and Christakis 2008).  The focus on online social 

networks provides a suitable lens that accounts for the spread of health-related lifestyle behaviors 

across social networks.   

Third, samples in prior studies are limited to one small segment of a population and 
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focused on a specific disorder or activity, limiting the generalizability of the findings to the entire 

population.  We address this limitation by collecting representative samples from across the 

United States to investigate multiple health-related lifestyle behaviors.   

Fourth, social networks affect individuals’ health related life-style behaviors through 

multiple factors, including social influence, social support, and socioeconomic status.  Prior 

studies have focused on a single factor, thus limiting the generalizability of results.  We address 

this limitation by relying on the framework developed by Berkman et al. (2000) to develop a 

model that captures multiple pathways through which online social networks influence 

individuals’ health-related lifestyle behaviors.  

Fifth, data collection in the prior studies relies on participants’ self-reported behaviors. 

Although valuable in understanding individuals’ perceptions, self-reported data in this context 

could be biased due to the subjects’ under-reporting unhealthy behaviors or over-reporting 

healthy behaviors.  Moreover, the Hawthorne effect could also introduce bias in self-reported 

data (Adair 1984).  The Hawthorne study has shown that participants’ awareness of being the 

subject of research could modify and influence their behaviors.  The extant literature has shown 

that the Hawthorne effect exists in self-reported and directly observed experimental data, leading 

to a call for a new approach to data collection in health-related behavioral research 

(McCambridge et al. 2014).  Our work addresses this need since our dataset is collected and 

assembled from observing individuals as they post about their health-related lifestyle behaviors.   

Online social networks have opened new research opportunities (Kane et al. 2014, Utz 

2015). There is an emerging body of literature using online social networks on health-related 

topics, investigating willingness to disclose health information (Anderson and Agarwal 2011), 

sentiment about healthy and unhealthy foods (Widener and Li 2014) and vaccination (Salathé 
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and Khandelwal 2011), diffusion of various diseases (Achrekar et al. 2011, Culotta 2010), 

registration in online health forums (Centola 2010), urban-rural health disparity (Goh et al. 

2016), and geographical analysis through tweets (Chen and Yang 2014, Widener and Li 2014, 

Ghosh and Guha 2013). Compared to offline social networks, online social networks provide a 

lower level of social presence and information richness for individuals (Chan and Cheng 2004). 

In recent years, location-based social networks have gained popularity. These mobile-based 

social networks provide location services and allow people to share their lifestyle behaviors with 

their friends through posting their location information.  

Posts on location-based social networks open a window for observing individuals’ 

lifestyle behaviors as they take place.  Research has argued that while privacy concerns 

negatively impact intention to disclose location-related information, perceived benefits have a 

stronger positive influence (Zhao et al. 2012). While research has reported online social 

networks can influence political voting (Bond et al. 2012), and adoption of paid services (Bapna 

and Umyarov 2015), no observational studies have examined the role of online social networks 

in health-related lifestyle behaviors.  With the skyrocketing cost of healthcare, examining the 

role of online social networks in changing health-related lifestyle behaviors could demonstrate 

the power of online social networks and help in formulating policies to harness this power to 

promote behaviors that improve individuals’ health.     

In addressing these gaps, we use data from open online social network platforms to 

answer the following research questions: (i) How can we observe individuals’ health-related 

lifestyle behaviors on online social networks? (ii) What are the online social factors that 

contribute to individuals’ health-related lifestyle as observed on online social networks?  We 

define health-related lifestyle behaviors as lifestyle choices that people pursue in their daily life 
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that could have positive or negative health consequences.  These consequences may not 

necessarily be the main goals of such behaviors (Ingledew et al. 1996).   

To answer the first research question, we captured and integrated data from two popular 

public online social platforms—Twitter and Foursquare (a location-based social network)—as 

well as data from the U.S. Census.  We developed a novel method to extract, integrate, and 

interpret individuals’ health-related lifestyle behaviors by observing their self-disclosed 

locational check-ins related to fitness, alcohol & smoking, and fast food diets.  We established 

friendship networks using Twitter and observed location-based health-related lifestyle behaviors 

that have been shared through Foursquare in Twitter.  Using this method resulted in a dataset for 

more than 32,000 individuals in all 50 U.S. states plus the District of Columbia over a twenty-

week period. 

To answer the second research question, we draw on the Berkman framework (Berkman 

et al. 2000) and social learning theory as well as social-network metrics to conceptualize a model 

that identifies salient factors associated with health-related lifestyle behaviors.  We applied a new 

technique, the zero-inflated negative binomial method, to estimate the model.  Our results show 

that the online social network of friends, online social support, the strength of friendship ties, 

homophily (gender similarity and geographical proximity) have significant impacts on 

individuals’ health-related lifestyle behaviors.  The results also show the role of socioeconomic 

status in such behaviors. 

To the best of our knowledge, this paper is the first national study to integrate friendship 

networks from online social networks with real-time posts of individuals’ location-based check-

ins.  This work is also the first observational study of how online friends’ health-related lifestyle 

behaviors change individuals’ health-related lifestyle behaviors.  This paper makes a number of 
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important contributions to theory, practice, and policymaking. It provides an integrated multi-

period model for the study of people’s health-related lifestyle behaviors and the factors that 

change such behaviors.  This model expands the nature of online friendship to include the 

strength of friendships, social support, and two types of homophily, thus contributing to the 

theoretical treatment of online friendships.  The practical implications of this work highlight the 

importance of considering these factors when developing policies and incentives that promote 

healthy lifestyle behaviors and counter chronic diseases caused by unhealthy lifestyles.   

 

2.2. Literature Review and Theoretical Foundation 

 

2.2.1. Literature on Health-related Lifestyle Behaviors. 

We define health behaviors as behaviors that could have positive or negative health 

consequences, and could be goal directed or lifestyle related. Goal-directed behaviors are 

purposeful actions directed to accomplish a goal (Bühler 1957), and goal-directed health-related 

behavior is a healthy person’s behavior to “prevent a disease or detect it in an asymptomatic 

stage.” (Kasl and Cobb 1966, p. 246).  Many health studies have focused on the goal-directed 

behaviors (Wit et al. 2011, Bayliss et al. 2014, Esposito et al. 2016). 

Lifestyle behaviors are defined as “patterns of choices made from the alternatives that are 

available to people according to their socioeconomic circumstances and the ease with which they 

are able to choose certain ones over others.” (Milio 1981, p. 76). Lifestyle behaviors are self-

determined (Deci 1992) and discretionary (Wiley and Camacho 1980).  We define health-related 

lifestyle behaviors as those that have direct health consequences, including physical activities, 

alcohol consumption & smoking, and dietary habits.  Table 2.1 reports a selected set of studies 
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about the health consequences of these behaviors. 

A meta-analysis of 15 studies has shown that a combination of healthy lifestyle behaviors 

can reduce the risk of diseases (Loef and Walach 2012).  However, with the exception of 

Djoussé et al. (2009), health studies focus on a single health-related lifestyle behavior—physical 

activities, alcohol & smoking, or dietary habits (Fielding 1985, Hung et al. 2004, Room 2005, 

Haskell et al. 2009).  Our study addresses all the three sets of behaviors. 

Table 2.1 Overview of Literature on Health-Related Lifestyle Behaviors 
Context Study Finding 

Ph
ys

ic
al

 A
ct

iv
ity

 

Haskell et al. 2007 
To promote and maintain health, people should engage in moderate 
physical activity for half an hour on five days each week or vigorous 
physical activity for 20 minutes on three days each week.  

Haskell et al. 2009 The importance of physical activities and the health risks of inactivity. 

Powell et al. 2011 
Even a light level of physical activity can provide positive health 
consequences. They showed that there is a dose-response relation 
between physical activity and health risks. 

Lee et al. 2012a 

Inactivity can cause premature mortality and is the main cause for 
around 10% of type 2 diabetes, breast cancer and colon cancer. They 
also estimated that a 25% decrease in physical inactivity could prevent 
more than 1.3 million deaths worldwide. 

D
ie

ta
ry

 
H

ab
its

 Currie et al. 2010 Proximity to fast-food restaurants increases the risk of obesity in young 
teens and pregnant women. 

McEvoy et al. 
2012 

A review of 80 papers showed that vegetarian diets and low meat plant-
based diets reduce the risk of disease such as cardiovascular diseases and 
type 2 diabetes. 

A
lc

oh
ol

 C
on

su
m

pt
io

n 
&

 S
m

ok
in

g  Sesso et al. 2008 
Heavy alcohol consumption increases the risk of high blood pressure. 
The results showed that light-to moderate levels of alcohol consumption 
decrease hypertension risk in women but increase the same risk in men.   

Rehm et al. 2010 

Moderate alcohol consumption can increase the likelihood of major 
diseases in individuals. There is a dose-response relationship between 
alcohol consumption and health risks—an increase in the alcohol 
consumption leads to increase in level of risk. 

Bulloch et al. 2012 Alcohol dependence can increase the risk of major depressive episodes. 

Wong et al. 2007 Smoking has a negative effect on bone density and contributes to 
osteoporotic fractures. 

Pope et al. 2009 Light smoking has the same risk for cardiovascular disease as daily 
smoking. 

Jha et al. 2013 Quitting smoking increases the life expectancy of people in various age 
ranges. 

Social groups facilitate the process of learning and influence lifestyle and health 

behaviors (Bruhn 1988). Studies of health-related lifestyle behaviors in large social groups are 
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scarce with the exception of the works by Christakis and colleagues that investigated the spread 

of smoking, alcohol consumption and obesity in an offline social network and reported on the 

significance of social ties (Christakis and Fowler 2007, 2008, Rosenquist et al. 2010).  This 

scarcity is partly because identifying and collecting data from all groups to which an individual 

may belong is a formidable task.  Online social networks have brought to light groups of friends 

with whom individuals regularly interact through online platforms and follow their lifestyle 

behaviors on a daily basis.  While online social networks, compared to offline social networks, 

expand the level of connections among individuals, they involve a lower level of social presence 

and a lesser degree of information richness in different social contexts (Chan and Cheng 2004). 

Therefore, it is not clear whether online social networks influence health-related lifestyle 

behaviors, and if so, what pathways are involved. This study addresses this gap by focusing on 

the three main behaviors (physical activities, alcohol consumption & smoking, and dietary 

habits) to develop a nationwide self-disclosed observational dataset from public online social 

networks and to conceptualize a theoretical model for identifying factors that impact such 

behaviors. 

 

2.2.2 Literature on Theories 

There is an abundance of theories in health studies that conceptualize the health effects of 

individuals’ social environments (Bowlby 1969, Link and Phelan 1995, Berkman et al. 2000).  

We rely on an integrative framework by Berkman et al. (2000)–henceforth called the Berkman 

framework–to conceptualize our model. Berkman et al. (2000) developed their framework using 

a synthesis of social psychology and network theories.   

The Berkman framework includes a comprehensive set of social factors (at macro- and 
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micro-levels) impacting individuals’ health through three pathways—health behavioral, 

psychological, and physiological (Berkman et al. 2000).  In this study, we focus on health-related 

lifestyle behaviors, which form a subset of health behavioral pathways. Two factors influence 

health-related lifestyle behaviors: social support and social influence.  Individuals’ social 

network structure and characteristics provide the setting for these factors to influence health-

related lifestyle behaviors. This is in line with the social network theory, which argues that the 

types of ties and structures of social networks facilitate the impact of social influence and social 

support (Borgatti et al. 2009). Research has argued that sphere of social influence and social 

support extend beyond immediate family and close spatial proximity to include individuals’ 

social networks that surpass such boundaries (Barnes 1954, Bott 1957).  

The Berkman framework also includes social factors at a macro level—cultural, political 

and socioeconomic factors. Prior studies in health-related lifestyle behaviors emphasize the role 

of socioeconomic status at this level (Lynch et al. 1997, Hanson et al. 2012). We therefore 

include socioeconomic status in our analysis.  In sum, this study focuses on social support and 

social influence at the micro level and socioeconomic status at the macro level as factors that 

could influence individuals’ lifestyle behaviors.  

 

2.3. Model Conceptualization 

 

The conceptualized model is presented in Figure 2.1 and discussed below. 
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Figure 2.1. The Health-related Lifestyle Behavior (HLB) Model 

2.3.1. Social Support 

The Berkman framework argues that individuals’ social network opens two main pathways for 

psychosocial mechanisms to influence individuals’ health behaviors: (i) social support (ii) social 

influence (Berkman et al. 2000).  Social support is a process that forms through human 

interactions (Rutter 1987) and constitutes one of the most important aspects of relationships in 

social networks (Appel et al. 2014).  Social support is defined as “social resources that persons 

perceive to be available or that are actually provided to them by nonprofessionals in the context 

of both formal support groups and informal helping relationships” (Cohen el al. 2000, p. 4).  

Social support positively impacts individuals’ health (Berkman et al. 2000, Bloom 1990, Fiori et 

al. 2006, Uchino 2006, Vandervoort 1999), and enhances individuals’ ability to deal with 

personal health issues (Gallant 2003).  

Research shows gaining social support requires connectedness (Langford et al. 1997), 

interactions (Barrera 1986, Vangelisti 2009), and feedback mechanisms (Caplan 1974, Barrera 



 16 

and Ainlay 1983).  Focusing on these three elements has led researchers to study the concept of 

social support from sociological, communicational, and psychological perspectives (Vangelisti 

2009, Goldsmith 2004, MacGeorge et al. 2011).  The sociological perspective focuses on the 

availability of social support, and measures it by the level of individuals’ connectedness or 

embeddedness into different social groups (Langford et al. 1997).  The communicational 

perspective relies on interactions to conceptualize social support as the type of activity that 

others perform to support the recipient (Barrera 1986, Vangelisti 2009). The psychological 

perspective focuses on the functional aspects, including emotional (express emotion), 

informational (provide knowledge), instrumental (practical help), companionship (availability to 

participate in activities), and feedback (evaluate the appropriateness of behaviors) (Cohen et al. 

2000, Vaux 1988, Wills 1991). These perspectives are at play in online social networks, 

particularly through the feedback mechanisms that provide functional social support.   

In online social networks, people are connected to their family and friends (Ellison et al. 

2007, Lampe et al. 2006) to inform them about their own activities (Hampton et al. 2011, 

Hampton 2016)—a type of self-disclosure that anticipates feedback from recipients (Lu and 

Hampton 2016).  Personal feedback provides valuable information for the recipients to evaluate 

the appropriateness or normativeness of their behaviors (Cohen et al. 2000, DiClemente et al. 

2001) and can be a source of motivation and inspiration for them (DiClemente et al. 2001). 

Research has shown that feedback received by individuals can play a major role in changing 

their health-related lifestyle behaviors (DiClemente et al. 2001, Kreuter et. al 1999), including 

alcohol consumption and smoking or dietary behaviors (DiClemente et al. 2001). A recent study 

on the association of online social networking and maternal well-being showed that sharing 

successful parenting experiences, receiving feedback from family and friends, and learning from 
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others’ experiences can enhance the perception of social support (McDaniel et al. 2012). 

Feedback can range from generic to personalized types (DiClemente et al. 2001, Kreuter 

et. al 1999).  In the most generic format, individuals receive general information that can be valid 

for a whole population. As feedback becomes more personalized, people receive information 

based on their own characteristics such as age, location, gender, ethnicity, or even based on the 

assessment of their own behaviors. The main advantage of personalized feedback is that people 

find it more relevant to themselves (DiClemente et al. 2001). Online social network platforms 

such as Facebook, Twitter and Foursquare make personalized feedback an easy process, enabling 

individuals to develop relationships with others, share various information about themselves and 

their activities, and receive positive feedback, affirmation and support in the form of “likes” and 

“favorites” for their behavior. The positive feedback can promote behavior continuance. Hence, 

Hypothesis 1: Individuals who have received a higher level of online positive feedback in 
online social networks for their (a) healthy lifestyle behaviors at time t, are more likely to 
engage in healthy lifestyle behaviors at time t+1 (b) unhealthy lifestyle behaviors at time 
t, are more likely to engage in unhealthy lifestyle behaviors at time t+1. 
 

2.3.2. Social Influence 

The Berkman framework argues for the role of social influence as a pathway from social 

network to health behavior (Berkman et al. 2000). Social influence is considered an important 

factor in the development of individuals’ personality, physical characteristics and behavioral 

tendencies (Coleman 1980, Epstein 1989). Social influence is present when the likelihood of 

performing a particular action depends on engagement of the individual’s peers in the same 

action (Agarwal et al. 2009, Aral 2011).  Theoretically, social influence has roots in social 

learning, network externality, or pressure from the reference groups (Agarwal et al. 2009). While 

the latter two mechanisms emphasize the role of pressure from social groups for adoption of a 
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specific behavior, the social learning mechanism argues that people learn new behaviors not only 

from their own personal experiences, but also by observing others’ behaviors and the 

consequences of those behaviors (Bandura 1969, Latané 1981, Bandura 1986, Duflo and Saez 

2002, Munshi 2004). In doing so, they compare and then align their behavior with their reference 

groups (Marsden and Friedkin 1993, Friedkin 2001). We focus on social learning as the source 

of social influence in the online social networks.   

Research in individuals’ different behaviors has argued that social influence is an 

important factor in propagation of most human behaviors through social networks (Christakis 

and Fowler 2009, Smith and Christakis 2008).  Prior studies found three major challenges in 

detection of social influence in human behavior. First, it is difficult to distinguish between the 

endogenous effects (existence of social influence), and correlated effects (unobserved common 

characteristics) (Manski 1993). Second, behavior modification of social influence involves time-

dependent factors (Van den Bulte and Lilien 2001, Risselada et al. 2014). Third, people tend to 

interact with similar others more frequently (McPherson et al. 2001) and it is expected that they 

behave similarly (“birds of a feather flock together.”). We address these concerns in two ways 

(1) by using a dynamic approach in which we study the impact of friends’ behaviors at time t on 

individuals’ behaviors at time t+1 (Agarwal et al. 2009), (2) by separating social influence from 

the influence of individuals’ similarities with their friends.   

Studies in specific health issues have repeatedly demonstrated the significance of person-

to-person social influence in the spread of obesity (Christakis and Fowler 2007), alcohol 

consumption & smoking (Christakis and Fowler 2008, Rosenquist et al. 2010), dietary behavior 

(Hutchinson and Rapee 2007, Cruwys et al. 2015), and poor fitness (Carrell et al. 2011).  

However, it is not clear whether social influence operates in the same manner in online social 
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networks.  Although online social networks provide a lower level of information richness for 

individuals (Chan and Cheng 2004), individuals are exposed to all online friends’ health-related 

lifestyle behaviors daily or hourly as they interact with friends online and check their status.  In 

the case of location-based social networks (the focus of our study), posted behaviors explicitly 

and concretely show the activities individuals’ friends are doing, almost in real time.  This 

extensive exposure provides a rich environment for the influence of online social networks in 

changing individuals’ health-related behaviors since they provide more opportunities for what is 

called observational learning (Kwon et al. 2014).   

Thus, we argue that social influence in terms of friends’ health-related lifestyle behaviors 

could impact individuals’ disclosed online health-related lifestyle behaviors.  Hence,  

Hypothesis 2: Individuals’ (a) healthy lifestyle behaviors at time t+1, are positively 
influenced by their online friends’ healthy lifestyle behaviors at time t (b) unhealthy 
lifestyle behaviors at time t+1 are positively influenced by their online friends’ unhealthy 
lifestyle behaviors at time t. 
 

While social influence forms one of the main pathways from social networks to individuals’ 

health behavior in the Berkman framework, friendship in social networks has different levels of 

strength. The strength of ties demonstrates the intensity and tightness of a friendship (Risselada 

et al. 2014, Van den Bulte and Wuyts 2007). Strong ties increase friends’ influences due to a 

higher level of trust and more interactions (Bapna et al. 2017, Iyengar et al. 2011, Coleman 

1988), and can be measured in multiple ways (Bapna et al. 2017, Aral and Walker 2014). In 

offline social networks, the strength of ties is a perceptual concept in which individuals may face 

difficulties in judging the directionality and strength of their friendship (Almaatouq et al. 2016).  

Whereas the capability to view and traverse network connections is one of the main features of 

online social networks that distinguishes them from offline social networks (Kane et al. 2014). 
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This feature provides direct observational information for the assessment of strength of 

friendship in networks. Reciprocity and embeddedness are considered manifestations of 

friendship strength in online social networks (Bapna et al. 2017, Aral and Walker 2014). 

Reciprocity in online social networks is defined as bidirectional friendship of two individuals.  

Embeddedness is defined by the number of common friends between two individuals with 

reciprocated friendship (Aral and Walker 2014, Easley and Kleinberg 2010).  Research has 

demonstrated that a higher number of common friends in embedded relationships increases the 

level of trust between individuals, and exerts greater social influence (Aral and Walker 2014).  

Recent studies on online social networks have argued that two-way relationships are stronger 

than one-way relationships (Shi et al. 2014, Kwak et al. 2010) and are instrumental for spreading 

online behaviors (Bond et al. 2012).  Applied to health-related lifestyle behaviors, we posit that 

the higher ratio of strong-tie friends’ healthy behaviors at time t should positively influence 

individuals’ healthy behaviors at time t+1.  Similarly, the higher ratio of strong-tie friends’ 

unhealthy behaviors at time t should positively impact individuals’ unhealthy behaviors at time 

t+1.  

Hypothesis 3: The higher ratio of strong-tie friends’ (a) healthy lifestyle behaviors at 
time t positively influence individuals’ healthy lifestyle behaviors at time t+1, (b) 
unhealthy lifestyle behaviors at time t positively influence individuals’ unhealthy lifestyle 
behaviors at time t+1 
 

Homophily is another source of influence. It is a measure of similarity of friends in social 

networks that can lead to similar behaviors. The mechanisms of social influence and homophily 

are not mutually exclusive (Bapna and Umyarov 2015).  Research shows that individuals are 

more likely to trust and endorse others who are similar to them (Feick and Higie 1992), and that 

can increase the level of social influence in social relationships (Risselada et al. 2014, Nitzan and 
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Libai 2011, Choi et al. 2010).  In the context of online social networks, research has reported that 

geographical proximity (Dubois and Gaffney 2014) and demographic similarities (Nahon and 

Hemsley 2014) impact the magnitude of social influence.  

Geographical proximity is considered one of the main sources of similarity in the social 

network theory (Borgatti et al. 2009) and social influence literature (Choi et al. 2010, Agarwal et 

al. 2009). Prior studies of online social networks considered geographical location as one of the 

main sources of homophily (Yuan and Gay 2006, Choudhury 2011, Pelechrinis and 

Krishnamurthy 2012). This factor has also been widely used in the assessment of friendships and 

behaviors (Choi et al. 2010, Agarwal et al. 2009, Wang et al. 2011, Back et al. 2008). Research 

in the role of geographical proximity has reported that geographical proximity can exert a strong 

level of social influence on people (Wang et al. 2011). Geographical proximity represents a 

shared environment in which individuals can have physical interactions with friends (Agarwal et 

al. 2009) and influence friends’ short term decisions (Choi et al. 2010). Location similarity can 

affect individuals’ online behavior (Tang et al. 2015). Prior studies of location-based social 

networks emphasize on the importance of geographical proximity in the formation of social 

influence among friends (Zhang et al. 2012).  

The second source of similarity is gender.  Studies show that similarity can go beyond 

geographical proximity (Fischer 1978, Van Alstyne and Brynjolfsson 2005) and can be defined 

by other demographic characteristics. Studies have reported the importance of gender similarity 

in social settings (Lewis et al. 2011, Linden-Andersen et al. 2008).  The tendency to have same-

gender friendships has a long history (Lewis et al. 2011).  In ancestral environments, same-

gender friendships helped men in hunting, warfare and related skills.  Same-gender friendships 

helped women gain knowledge about food, pregnancy, nursing and childcare.  It is argued that in 
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modern societies, people still benefit more from their same-gender friendships as a source of 

assistance in social and emotional issues (Lewis et al. 2011). Research has shown that gender 

similarity has a role in online behavior (Aral and Walker 2012, Tang et al. 2015).   

Therefore, in this study homophily entails geographical proximity and gender similarity.  We 

argue that the higher ratio of similar friends’ healthy behaviors at time t should positively 

influence individuals’ healthy behaviors at time t+1.  Similarly, the higher ratio of similar 

friends’ unhealthy behaviors at time t should positively impact individuals’ unhealthy behaviors 

at time t+1.  

Hypothesis 4. The higher ratio of similar friends’(a) healthy lifestyle behaviors at time t 
positively influence individuals’ healthy lifestyle behaviors at time t+1, (b) unhealthy 
lifestyle behaviors at time t positively influence individuals’ unhealthy lifestyle behaviors 
at time t+1 

 

2.3.3. Socioeconomic Status 

There are opposing views related to health-related lifestyle choices (Lynch et al. 1997).  One 

view considers lifestyle behaviors with health consequences as “intra-individual” resulting from 

individuals’ lifestyle choices.  The second view argues that while individuals are responsible for 

their choices, their socioeconomic status limit their available options.  In this view, individuals’ 

socioeconomic status influence health behaviors in a society—a view supported by the Berkman 

framework.  Following the Berkman framework, we argue that individuals’ health-related 

lifestyle behaviors are associated with their socioeconomic status (SES).  Studies have shown 

that social inequalities in income, opportunities, resources and social status are factors associated 

both with health and healthy behaviors (Naidoo and Wills 2009) and with mortality rates (Phelan 

2004).  Individuals from low SES groups have unhealthier lifestyle behaviors, such as physical 

inactivity and poor diet (Lynch et al. 1997, Hanson et al. 2012), and suffer from poor health 
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(Pickett and Pearl 2001).   

The reason is that socioeconomic status shapes individuals’ physical environments, social 

environments, psychological patterns and health-related lifestyle behaviors (Adler et al. 1994).  

A higher crime rate and a lack of safety can decrease the level of physical activity (Foster and 

Giles-Corti 2008).  Moreover, neighborhood studies have shown the health consequences of 

individuals’ lack of adequate access to food stores (Moore and Diez Roux 2006, Zenk et. al 

2005). For instance, a study of neighborhoods in a metropolitan area in Michigan observes that 

inadequate access to supermarkets leads to less-nutritious diets, leading to chronic, diet-related 

diseases (Zenk et. al. 2005).  In Berkman framework, SES is been considered a macro-level 

factor that should be taken into account when studying health-related behaviors.  Furthermore, it 

is shown that social and physical attributes of communities and neighborhoods can be good 

predictors of individuals’ health-related lifestyle behavior (Diez Roux and Mair 2010).  Since, 

individuals’ online health-related check-ins are posts about actual behaviors in their physical and 

social environments, health-related lifestyle behaviors should be associated with their SES.  We 

focus on association (rather than causality) because SES does not change in the short term from 

one period to the next. Thus, based on the Berkman framework and empirical studies supporting 

the Berkman framework, we posit that: 

Hypothesis 5: SES is (a) positively associated with observed healthy lifestyle behaviors of 
individuals in online social networks (b) negatively associated with observed unhealthy 
lifestyle behaviors of individuals in online social networks. 
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2.4. Data Collection 

We relied on three data sources in assembling a panel of data: Twitter4, Foursquare5 and US 

census data (American Community Survey 5-year data 2013). Twitter is a popular online social 

network platform that can be used for real-time information sharing. Users of this platform are 

willing to share information about different aspects of their life such as their activities and 

locations. In order to facilitate this process, Twitter allows their users to integrate their accounts 

with other social network applications such as Foursquare.  In Foursquare, members identify the 

location of venues they visit—called check-ins—and share their check-ins with friends. The 

integration capability of Twitter allows users to share their check-in information in their Twitter 

account right from the Foursquare platform. We took advantage of this integration and developed 

an extensive set of tools to capture, match, extract, and analyze information downloaded from 

Twitter, Foursquare and U.S. Census Bureau APIs. The data collection was conducted in three 

stages: user identification, data collection at times t and t+1, and complementary data collection.  

At the first stage, we captured check-ins of users in Twitter for a twelve-week period (January 28 

– April 22 2014). In this period, we selected users in the U.S. who post at least one check-in 

every two weeks after their initial captured check-in. Of our collected data, 32,700 unique 

individuals met this requirement. During the first stage, the selected users posted on average 3.8 

check-ins each week. At the second stage, we captured user check-ins at time t for a four-week 

period and then for time t+1 for another four-week period. At the third stage, we captured 

                                                
 
4 Twitter is a social networking service that provides microblog features in which users can post 140-character messages on their 
own page and simultaneously keep in touch with their friends and followers. 
5 Foursquare is a location-based social networking service that provides location searching and sharing capabilities for their users. 
In May of 2014, Foursquare decided to split its mobile application into two parts: (1) Foursquare (2) Swarm. In the new plan, 
Foursquare (the main app) only provides information about locations and helps people to discover their desired place. Swarm (the 
new app) handles the social check-ins to help people share their location.  As this migration took place during our data collection, 
we used both “Swarm” and “Foursquare” keywords to collect data from Twitter API. 
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complementary information about the pattern of social network connections, the socioeconomic 

status of users, the foursquare venue categories from which users shared their check-ins, the 

number of Favorites that users received for their posted check-ins, and the demographic 

information. Our approach involved a series of steps to identify individuals from their tweets and 

capture and integrate their publicly available data. We developed eleven tools with a variety of 

complexity to capture, extract, integrate, and compute data as shown in Figure 2.2. 

 
Figure 2.2. The Process of Data Capture, Extraction, Integration, and Computation  

The tool numbers in Figure 2.2 indicate the sequence of data extraction and integration. The 

tools were coded in Python, R, and MySQL. We captured more than 5 million check-in tweets, 

1,127,420 distinct venues in the U.S. and 259,255 unique individual users before reducing the 

sample to active users. 
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2.5. Behavior Observations and Representations 

 

2.5.1. Representing Health-Related Lifestyle Behaviors 

In this study, individuals’ behaviors are observed based on what they have posted online as the 

places visited—type of venues in their Foursquare check-ins.  We first discuss how we identified 

the venue types, and then present the arguments why visiting given venue types represents 

health-related lifestyle behaviors.   

In order to capture the venue types, we used two steps.  First, we extracted the Venue IDs 

from the hyperlinks in check-ins’ text.  Second, we used the Foursquare API to collect data about 

venues. There are various venues on Foursquare, such as restaurants, shopping, movie theaters 

and others.  Our dataset has a total of 1,127,420 venues. Foursquare categorizes venues, and had 

599 categories of venues at the time of our data collection.  We used these categories to identify 

healthy lifestyle and unhealthy lifestyle check-ins. In doing so, we examined the types of 

establishment that fall under each category of venues for a better understanding of the categories. 

Per Table 2.1 (in the Literature Review section), physical activities are considered as 

healthy lifestyle behaviors, whereas alcohol consumption & smoking and unhealthy diet are 

unhealthy lifestyle behaviors.  Hence, we combined the salient categories in Foursquare to 

identify three types of venues associated with health-related lifestyle behaviors: fitness center & 

gym, bar, and fast food restaurant. Table 2.2 lists the Foursquare categories and number of 

venues in each type.  
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Table 2.2. List of Categories 
Venue 
Type Foursquare Categories # of 

Venues 

Fitness 
Center & 
Gym 

Badminton Court, Baseball Field, Basketball Court, Boxing Gym, Climbing Gym, 
College Basketball Court, College Cricket Pitch, College Football Field, College Gym, 
College Hockey Rink, College Soccer Field, College Tennis Court, Cricket Ground, 
Gym, Gym / Fitness Center, Gym Pool, Gymnastics Gym, Hockey Field, Paintball Field, 
Rock Climbing Spot, Roller Rink, Rugby Pitch, Skate Park, Skating Rink, Soccer Field, 
Sports Club, Squash Court, Swim School, Tennis Court, Volleyball Court, Yoga Studio 

36,047 

Bar 
Apres Ski Bar, Bar, Beach Bar, Beer Garden, Beer Store, Champagne Bar, Cocktail Bar, 
Dive Bar, Gastropub, Gay Bar, Hookah Bar, Hotel Bar, Irish Pub, Karaoke Bar, Piano 
Bar, Pub, Sake Bar, Sports Bar, Whisky Bar, Wine Bar 

66,687 

Fast Food 
Restaurant 

BBQ Joint, Fast Food Restaurant, Food Court, Fried Chicken Joint, Hot Dog Joint, Mac 
& Cheese Joint, Pizza Place, Wings Joint 109,575 

2.5.2. Representing Healthy Lifestyle Behaviors 

We argue that going to fitness center & gym venues represents healthy lifestyle behaviors. In the 

selection of venues for this type, we distinguished between venues where people go to engage in 

physical activities and venues where people watch sports. Accordingly, we omitted all venues 

labeled as stadium.  Fitness center & gym venues provide facilities for various physical activities 

and exercises. Individuals pay membership dues to utilize the machines, tools, trainers, classes, 

pools and other facilities these venues offer.  The primary reasons for individuals going to such 

venues is to engage in physical activities and exercises—healthy lifestyle behaviors. 

In order to examine the behavior focus of people at fitness center & gym venues, we 

collected and analyzed Foursquare highlighted keywords for these venues.  Foursquare analyzes 

the tips (short reviews) by people who go to the venues and highlights the repeated words that 

represent the nature of the venue.  Figure 2.3 shows examples of users’ reviews and boldface-

highlighted keywords that were repeated by users.  We analyzed all the highlighted keywords 

based on venue type (Figure A.1. in Appendix A).  Figure A.2. (Appendix A) reports top ten 

keywords with highest frequencies for fitness center & gym venues.  These keywords are all 

focused on physical activities and exercise, thus providing a strong support for our argument that 

going to fitness center & gym venues represents engagement in physical activities, thus healthy 
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lifestyle behaviors.   

 
Figure 2.3. Example of Foursquare Boldface-Highlighted Keywords 

 

2.5.3. Representing Unhealthy Lifestyle Behaviors 

We argue that going to bars and fast food restaurants represent two types of unhealthy lifestyle 

behaviors.  The main purpose of bars is to sell alcoholic beverages.  Some bars offer Hookah 

smoking as well.  Moreover, although smoking is banned in most U.S. bars, twenty states still 

allow cigarette/cigar smoking in some towns. 6  Even though many go to bars to socialize, the 

main activities in bars are drinking (and in some cases smoking), and socialization in such 

venues involves drinking.  Alcohol increases appetite, making people crave food (Caton et al. 

2004).  However, bar foods are not healthy.  Research has reported food quality is not an 

important factor for people who drink beers; the preference is for foods such as pizzas and fried 

food (Pettigrew and Charters 2006) that complement drinks, facilitate more drinking (Pettigrew 

and Charters 2006) and are associated with obesity (Arruda et al. 2016). 

                                                
 
6 There are 1208 Hookah bar venues in our dataset; There are 20 states in the U.S. that do not follow the complete ban of 
smoking in bars, namely, Alabama, Alaska, Arkansas, Florida, Georgia, Idaho, Indiana, Kentucky, Louisiana, Mississippi, 
Montana, Nevada, Oklahoma, Pennsylvania, South Carolina, Tennessee, Texas, Virginia, West Virginia, and Wyoming. More 
information is available on http://www.no-smoke.org/goingsmokefree.php?id=519      
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In order to examine the validity of our argument, we analyzed the Foursquare highlighted 

keywords for bar venues.  As reported in Figure A.3. (Appendix A), the ten most frequent 

keywords describing this venue type refer to types of drinks and bar foods.  The results indicate 

that those who go to bars primarily engage in drinking and in some cases (such as Hookah bars) 

in smoking as well.  Going to bars represents an unhealthy type of lifestyle behavior. 

The second type of venue that represents unhealthy lifestyle behavior is going to fast food 

restaurants. People who choose such venues look for quick, convenient and inexpensive foods 

(Rydell et al. 2008).7  Fast food tends to be high in fat, energy dense, poor in micronutrients, low 

in fiber, high in glycemic load and excessive in portion size, which provides more energy than 

required for daily activities (Isganaitis and Lustig 2005, Rosenheck 2008). A systematic review 

on fast food consumption studies found that eating fast food is positively associated with gaining 

weight (Rosenheck 2008).  Hence, going to fast food restaurants represents another type of 

unhealthy behavior. 

To validate this argument, we analyzed the Foursquare highlighted keywords for fast 

food restaurant venues.  As reported in Figure A.4. (Appendix A), the ten most frequent 

keywords describing this type of venue emphasize food names, supporting our argument that 

those who visit this type of venue engage in eating fast foods. 

 

2.6. Variable Measurements 

 

An individual’s healthy and unhealthy lifestyle behaviors are measured as the number of days 

                                                
 
7 In prior studies, vegetarian, vegan, and low meat diets were considered healthy (Currie et al. 2010, McEvoy et al. 2012).  Since 
the check-in data for vegetarian and vegan venues were too few and low-meat venues were not identifiable, healthy diet venues 
were not included in this analysis.   
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that each individual posted check-ins from venues within each type (fitness center & gym for 

healthy and bar and fast food restaurant for unhealthy lifestyle behaviors). The reason for this 

measure was that some users had repeated check-ins for a given type repeatedly on a given day.  

This causes bias in the data.  Considering at most one check-in for each category per day 

removes this bias.  Variable measurements are reported in Table 2.3 and discussed below. 

 

Table 2.3. Variable Measurements at Individual Level 
Model Variable Definition Metric and Computation 
Dependent Variables 
Individual’s healthy 
lifestyle behavior at 
time t+1 

lifestyle behaviors that 
promote health 

Individual’ total number of days with check-ins at fitness center & 
gym type of venues at time t+1 

Individual’s 
unhealthy lifestyle 
behavior at time t+1  

lifestyle behaviors that 
inhibit health 

Individuals’ total number days with check-ins at time t+1 
measured for two venue type separately: 
1. Bar. 2. Fast food restaurant. 

Independent Variables, all lagged to measure impacts 
Online social support 
healthy (or 
unhealthy) lifestyle 
behaviors at time t 

The support provided 
via feedback in online 
social networks for 
individuals’ healthy 
(or unhealthy) lifestyle 
behaviors 

1. For healthy lifestyle: Average number of Favorites an 
individual receives for check-ins at fitness center & gym venues at 
t, computed as the sum all Favorite counts received for fitness 
center & gym check-ins divided by number of days with fitness 
center & gym check-ins.   
2. For unhealthy lifestyle: the fitness counts are replaced once by 
bar counts and again by fast food restaurant counts in the above 
computation. All computed at time t. 

Social influence of 
friends’ healthy 
(unhealthy) lifestyle 
behaviors at time t 

The influence of 
friends’ engagement in 
the same healthy 
(unhealthy) lifestyle 
behaviors 

1. For healthy lifestyle: the average of friends’ number of days 
with fitness center & gym check-ins at time t, computed as: sum of 
all friends’ number of days with fitness center & gym check-ins 
divided by number of friends. 
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and again by fast food restaurant check-ins in the 
above computation. All computed at time t. 

Social influence of 
strong ties’ healthy 
(unhealthy) lifestyle 
behaviors at time t 

The impact of strong 
friendship ties in 
social influences of 
friends’ engagement in 
the same healthy 
(unhealthy) lifestyle 
behaviors 

1. For healthy lifestyle: the ratio of weighted average strong ties’ 
number of days with check-ins at fitness center & gym venues 
divided by non-weighted average of friends’ number of days with 
check-ins at fitness center & gym venues. This ratio is computed 
for the first measurement period. The weights for strong ties are 
computed as follows: (i) Non-reciprocated friends’ lifestyle 
behavior gets no weight, (ii) Reciprocated friends’ lifestyle 
behavior gets weight proportional to the number of common 
friends with focal individual. 
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and again by fast food restaurant check-ins in the 
above computation. All computed at time t. 
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Social influence of 
similar friends’ 
healthy (unhealthy) 
lifestyle  behaviors at 
time t 

The impact of 
similarity with 
friends/homophily in 
social influences of 
friends’ engagement in 
the same healthy 
(unhealthy) lifestyle 
behaviors 

1. For healthy lifestyle: The ratio of weighted average of similar 
friends’ number of days with check-ins at fitness center & gym 
venues divided by non-weighted average of friends’ number of 
days with check-ins at fitness center & gym venues. This ratio is 
computed for the first measurement period. The weights for 
similar friends are computed as follows: (i) Friends get .5 
similarity score if they reside in 0-10 miles of the focal individual 
(ii) Friends get .5 similarity score if they have similar gender as 
focal individual (iii) Friends’ lifestyle behavior gets weight 
proportional to the final calculated similarity score.  
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and again by fast food restaurant check-ins in the 
above computation. All computed at time t.    

Socioeconomic Status 
Socioeconomic status 
(SES) 

Socioeconomic status 
of the community in 
which each individual 
resides 

A factor loading derived from the exploratory factor analysis of 
income, education and poverty levels of the city/town in which 
each individual resides. 

Control Variables 
Activity level in 
social network at 
time t+1 

Activity level in online 
social network at time 
t+1 

Individuals total number of check-ins in online social network at 
time t+1 

Individuals’ healthy 
(unhealthy) lifestyle 
behavior at time t 

Individuals’ healthy 
(unhealthy) lifestyle 
behavior  at time t 

Individuals’ healthy (unhealthy) lifestyle behavior at time t 

 

2.6.1. Online Social Support 

One reason online social networks are so popular is the opportunity such media provide to its 

members to receive social support from their friends and other network members.  Literature has 

shown that a number of forces influence people’s reflective/reasoned behaviors, including other 

people’s opinions, which may have positive or negative consequences (Thaler and Sunstein 

2008).  Social support through people’s opinions could have emotional, informational, 

instrumental, companionship, and feedback forms (Cohen et al. 2000). In online social networks, 

social support is expressed in feedback form. We argue that social support in feedback form is 

expressed in reactions such as “like” or “comment” in Facebook and “favorite” or “retweet” in 

Twitter. When individuals tweet Foursquare check-ins, their friends get a chance to designate 

them as a favorite, indicating positive support for the check-ins. Since check-in tweets are rarely 
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retweeted in Twitter, we use favorite counts for each check-in as a measure of social support in 

the form of positive feedback. Therefore, we measured social support for healthy and unhealthy 

lifestyle check-ins by the average number of favorites that each individual received for his/her 

fitness center & gym, bar, and fast food restaurant check-ins at time t. Following Bray (2012), 

who reported on the time it takes for all favorites to be posted, the check-in favorites were 

collected six months after the completion of data collection to make sure all favorites were 

captured. 

 

2.6.2. Social Influence: Friends’ Healthy and Unhealthy Lifestyle Behaviors 

Friends’ healthy and unhealthy lifestyle behaviors were computed by the same method as 

individuals’ healthy and unhealthy lifestyle behaviors.  Friends were identified in an egocentric 

network of individuals. In social network theory, an egocentric network is defined as the network 

of a single individual (ego) together with his or her friends (alters).  In these networks, the 

relationship between individuals can be directional or un-directional. Facebook is an example of 

an un-directional social network, in which a friendship link forms only when both of the 

individuals consent to create the relationship. In contrast, Twitter allows directional relationships 

in its platform in which individuals can follow each other without permission. In a directional 

social network, individuals can only see the activities of people who they directly follow. In 

Twitter terminology, the person who follows others is called “follower” and the person who is 

followed by others is called “friend”.  As individuals can only see the behavior of their friends 

and not their followers, in the first step, we identified all the friends of each individual in our 

dataset.  Then, for each friend, the number of days with check-ins in fitness center & gym, bar, 

and fast food restaurant venues in the first measurement period were counted. The sum of fitness 
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center & gym check-ins of friends divided by the total number of friends with reported 

Foursquare check-ins in Twitter measured the healthy lifestyle behaviors of the individual’s 

friends. Taking the average accounted for individuals’ differences in the number of friends.  

Similarly, the sum of bar check-ins of friends divided by the total number of friends as well as 

the sum of fast food restaurant check-ins divided by the total number of friends were used as two 

measures of the unhealthy lifestyle behaviors of the individual’s friends. 

 

2.6.3. Social Influence: Ratio of Strong Ties’ Healthy and Unhealthy Lifestyle Behaviors.  

In online social networks, one-way relationships are more fragile than two-way relationships 

(Shi et al. 2014). According to Kwak et al. (2010) the likelihood of breaking the relationships 

(unfollow) is twice as high in one-way relationships as in two-way relationships. It is argued that 

reciprocated friendships can indicate emotional closeness for both users. Moreover, the number 

of common friends between two individuals demonstrate how these two individuals are 

embedded inside the egocentric networks of each other. Higher embeddedness in a social 

network increases trust between individuals (Uzzi 1997). Thus, to measure the role of strong ties, 

we computed the following: (1) we identified reciprocated friends (two-way relationships) in the 

online social network, (2) for each individual, we computed the weighted average of reciprocated 

friends’ healthy lifestyle behavior, in which each reciprocated friend’s behavior got weight 

proportional to his/her number of common friends with the ego (focal individual), and (3) we 

divided this weighted average of the strong ties’ healthy lifestyle behavior by the non-weighted 

average of all friends’ healthy lifestyle behavior.  For unhealthy lifestyle behaviors, this 

computation was repeated for bar check-ins and fast food restaurant check-ins to measure the 

ratio of strong ties’ unhealthy behaviors.  
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2.6.4. Social Influence: Ratio of Similar Friends’ Healthy and Unhealthy Behaviors.  

To analyze the effect of homophily on social influence, we measured homophily based on 

geographical proximity and gender similarity. To estimate the geographical proximity of 

individuals we applied a two-step approach.  (1) We computed the center point of each user’s 

check-ins in his or her state. Appendix B provides a short description of the computation.  (2) 

We computed the Euclidean distance of center points of each individual and his or her friends.  

The distances of check-in center points for individuals and their friends ranged from 0.05 to 

6034.4 miles. Figure 2.4 shows the probability distribution graph of distances of check-in center 

points. To identify close proximity, we partitioned the distance range into four bins (near, 

moderate, long and far away) with equal probability (p = 0.25), resulting in ranges in miles for 

Bin1=(0-10.3), Bin2=(10.3-216.4), Bin3=(216.4-1324.4), and Bin4=(1324.4-6034.4) miles. 

Appendix C provides detailed information about the distance frequency in each bin. We used 

near (Bin1) distance for measuring geographical proximity among individuals. 

  

Figure 2.4. Probability Distribution of Distance in Miles 

In order to combine the two homophily metrics, we computed the homophily score for 

each relationship between two individuals in the network, in which all similarities have equal 

weights (Nitzan and Libai 2011, Risselada et al. 2014).  In our case, geographical proximity and 
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gender similarity received 0.5 each.  Thus, if two individuals were similar in proximity and 

gender, their homophily score was 1, for no similarity the score was zero, and for one similarity 

the score was 0.5.  The homophily score was used as the weight for the connection between two 

individuals in the computation of the healthy and unhealthy lifestyle behaviors of an individuals’ 

friends in the network.  

To measure the role of homophily of friends, we computed the ratio of similar friends’ 

healthy lifestyle behaviors as follows: (1) for each individual, we computed the weighted average 

(where homophily scores are used as weights) of friends’ healthy lifestyle behavior, (2) we 

divided this weighted average by the non-weighted average of all friends’ healthy lifestyle 

behavior.  This gave us the ratio of similar friends’ healthy lifestyle behaviors.  Likewise, we 

repeated this computation for unhealthy lifestyle behaviors by replacing for bar and fast food 

restaurant check-ins in the above steps.  

2.6.5. Socioeconomic Status 

To measure the socioeconomic status of individuals, we used the data extracted from American 

Community Survey 5-year data (2013) to extract associated individuals’ income, education and 

poverty levels at the city/town level, as identified from their Twitter profiles.  These variables 

together represent the socioeconomic status of the community and are highly correlated.  We 

used the explanatory factor analysis (EFA) to combine these factors and use one single 

representative factor for socioeconomic status. The load factors for income, education and 

poverty were 0.86, 0.62, and -0.94, respectively. This indicated an acceptable level of load to 

represent socioeconomic status. 
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2.6.6. Control variables 

In order to infer causality of different factors, we controlled for past behaviors in the model. 

Accordingly, we included individuals’ healthy and unhealthy lifestyle behaviors at time t as a 

control variable at time t+1. Moreover, individuals have different levels of activity on online 

social networks, impacting the frequency of their posts in the online social networks.  To control 

for this variability, we included activity level in online social networks as a control variable in 

our model. 

 

2.7. Data Analysis and Model Estimation 

 

The correlation matrices for the behavior groups are reported in Tables D.1-D.3 in Appendix D. 

 

2.7.1. Checking for Selection Bias 

We checked for selection bias in a number of ways.  First, our dataset covers all U.S. states, as 

reported in Figure 2.5. 

 
Figure 2.5. Number of Individuals in Each State  
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Second, using data from the latest available Census Bureau report on individuals’ Internet 

usage by state in 20128, we computed the ratio of internet usage in each state (state usage divided 

by the country total)—called the state ratio.  We also computed the ratio of individuals in each 

state in our sample, called the sample ratio.  Figure 2.6 reports the deviation of the two ratios 

(sample ratio – state ratio) for each state. 

Figure 2.6 shows that the sample and state ratios are relatively close.  The under-

representation in our sample is quite small (maximum underrepresentation is -0.008).  Four states 

with large metropolitan cities are slightly over-represented in our sample: New York, Illinois, 

Texas, and California (maximum over-representation is 0.066). This could have been caused by a 

higher level of Internet growth in large cities since 2012.  Overall, Figure 2.6 indicates that our 

sample is a good representation of the U.S. States.   

 
Figure 2.6. Deviation of Sample Ratio from State Ratio  

Third, we computed the gender distribution of Twitter users based on the data published in the 

                                                
 
8 https://www.census.gov/data/tables/2012/demo/computer-internet/computer-use-2012.html  
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Pew report9 and Census Bureau for 201410, which showed that 52% of U.S. Twitter users are 

male and 48% are female. In our dataset, 60% of users are male and 40% are female, indicating a 

relatively close match.   

Fourth, using the same sources, we compared the average age of Twitter users in 2014, 

which was 37 years, with an approximation of the average age of users in our dataset.  While we 

do not have access to the ages of all users in our dataset, we used a text analysis approach to 

collect the age of a sample of users who mentioned their age in their profile description. The 

average age of users in this sample is 31 years. Considering older people are less willing to post 

their ages, the average age in our sample is relatively close to the average of the 2014 Twitter 

user population.  These checks indicated that selection bias did not pose a serious threat in our 

dataset. 

 

2.7.2. Model Estimation 

The distributions of individual check-ins in the second measurement period (Appendix E) 

indicated the presence of over-dispersion—greater variability than expected in data—which 

could be caused by high occurrences of zero values (Lee et al. 2012b).  We tested for over-

dispersion using the alpha test (Cameron and Trivedi 1990), which showed the presence of over-

dispersion.  In our case, zeros resulted from either not having such check-ins or not reporting 

them online.   

When the data are over-dispersed, negative binomial estimators are the preferred 

estimation methods (Cameron and Trivedi 2013).  When over-dispersion is accompanied with 

                                                
 
9 http://www.pewinternet.org/data-trend/internet-use/latest-stats/ 
and  http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/ 
10 http://factfinder.census.gov/faces/tableservices/jsf/pages/productview.xhtml?src=bkmk  
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excessive zeros, then the zero-inflated negative binomial (ZINB) is a suitable estimation method.  

In order to check the appropriateness of ZINB for our analysis, we compared ZINB estimation 

results with the equivalent models of standard negative binomial regression using the Vuong test 

(Vuong 1989).  A Vuong statistic greater than 1.96 indicates a preference to use the ZINB 

method (Long 1997). For our models, the lowest Vuong statistic was 26.17, indicating the 

superiority of ZINB as the estimation method in our case (Faraj et al. 2015).   

The ZINB model identifies two latent groups who could generate zero value for the 

dependent variable (Y). (In our case, we have three dependent variables: individuals’ posts about 

one healthy and two unhealthy lifestyle behaviors.)  The first latent group consists of individuals 

who post about a given health-related lifestyle behavior—Group A. For a given Y, for each 

individual in Group A, Y≥0, depending on the count of individual’s posts about check-ins of a 

venue type. For a given Y, the latent Group B consists of individuals who do not post about their 

healthy (or unhealthy) lifestyle behaviors in online social networks.  For those in Group B, Y=0 

by definition—inflating the zero values of Y.  Zero values in Group A represent the lack of 

individuals’ check-ins for the given behaviors, whereas zeros in Group B indicate individuals’ 

unwillingness to post their behaviors in online social networks.   

Each observation has a probability of belonging to either Group A or Group B.  The 

result of a Bernoulli trial determines which process occurs.  For each observation i, 𝜑"#$% is the 

occurrence probability of Group B at time t+1, and 1 − 𝜑"#$% is the occurrence probability of 

Group A at time t+1, which has a count generated from a process that has negative binomial 

distribution 𝑓(𝑦"#$%|𝑋"#): 
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𝑦",#$%~1
0																							𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝜑",#$%				

	 		

𝑓>𝑦",#$%?𝑋",#)				𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	1 − 𝜑",#$%
 

The probability of the dependent variable is:  

 

𝑃>𝑌" = 𝑦",#$%?𝑋",#, 𝑍",#D = 1
𝜑>𝛾𝑍",#D + G1 − 𝜑>𝛾𝑍",#DH𝑓>0?𝑋",#D										𝑖𝑓	𝑦",#$% = 0

	
G1 − 𝜑>𝛾𝑍",#DH𝑓>𝑦",#$%?𝑋",#D																							𝑖𝑓	𝑦",#$% > 0

					, 

where Xi,t is the vector of independent variables for individual i at time t, 𝑍",#	is a vector of 

covariates that contribute to not adopting the target behavior (zero-inflated part) by individual i 

at time t; 𝛾 is the vector of estimated zero-inflated coefficients, 𝜑",#$% is a function (𝜑) of 𝛾𝑍",#, 

𝜑>𝛾𝑍",#D represents the probability of not engaging in the behavior, and G1 − 𝜑>𝛾𝑍",#DH𝑓>0?𝑋",#D	is 

the probability of engaging in the target behavior but not posting.  Z is a vector of independent 

variables that are associated with not engaging in the target behavior.  We investigated the role 

of all independent variables in not engaging in the target behavior.  We used R for model 

estimation (R Development Core Team 2016). 

 

2.7.3 Estimation Results 

Tables 2.4, 2.5, and 2.6 report the estimations of the HLB model for fitness center & gym, bar, 

and fast food restaurant.11 The estimation method was ZINB. The HLB model is estimated in 

Group A—testing the hypotheses about individuals who post their check-ins on online social 

networks.  Group B is the zero-inflated estimation that provides additional information about the 

                                                
 
11 In order to capture the effect of strong ties and homophily on the individuals’ healthy and unhealthy lifestyle behaviors, we had 
to consider only those individuals who have friends with non-zero average value for the same health-related lifestyle behavior. 
That reduced the number of observations in each model, as reported in Tables 2.4-2.6.  We used the same number of observations 
in the estimations reported in each table.  We also ran Models 1, 2, and 4 in each table using the full 32, 700 observations and got 
similar results. 



 41 

role of factors in reducing or increasing the inhibition of individuals who do not post.   

Table 2.4. Estimated HLB Model: Healthy Lifestyle Behaviors (Fitness Center & Gym) 
 Model 1 Model 2 Model 3 Model 4 
Group A/Count   
Control Variable: Activity level in online social network @ t+1 .002*** .002*** .002*** .022*** 
Control Variable: Individual’s healthy lifestyle behavior @ t .185*** .185*** .185***  
H1a.Online social support: healthy lifestyle behavior @ t .140*** .145*** .142***  
Social Influence  
H2a.Friends’ healthy lifestyle behavior @ t  .025*** .026***  
H3a.Ratio of strong ties’ healthy lifestyle behavior @ t   .016  
H4a.Ratio of similar friends’ healthy lifestyle behavior @ t   .048**  
H5a.Socioeconomic status: SES     .339*** 
Constant -.052* -.095 *** -.160*** -.502*** 
Group B/Zero Inflated.  
Control Variable: Activity level in online social network @ t+1 -.082*** -.084*** -.083*** -.803*** 
Control Variable: Individual’s healthy lifestyle behavior  @ t -1.405*** -1.399*** -1.398***  
Online social support: healthy lifestyle behaviors @ t 0.005 -.0006 -.0001  
Social Influence 
Friends’ healthy lifestyle behavior @ t  -.037** -.039**  
Ratio of strong ties’ healthy lifestyle behavior @ t   -.081**  
Ratio of similar friends’ healthy lifestyle behaviors @ t   -.015  
Socioeconomic status: SES    .323 
Constant 1.889*** 1.948*** 2.039*** 2.443*** 
Log Likelihood -21,521 -21507 -21,499 -24,165 
Wald 𝑥K 2,345*** 2,364*** 2,374*** 463*** 
N=22,423; *p<.05; **p<.01; ***p<.001.  

Table 2.5. Estimated HLB Model: Unhealthy Lifestyle Behaviors (Bar) 
 Model 1 Model 2 Model 3 Model 4 
Group A/Count   
Control Variable: Activity level in online social network @ t+1 .005*** .005*** .005*** .015*** 
Control Variable: Individual’s unhealthy lifestyle behavior @ t .180*** .176*** .175***  
H1b.Online social support: unhealthy lifestyle behaviors @ t .102*** .106*** .104***  
Social Influence 
H2b.Friends’ unhealthy lifestyle behavior @ t  .039*** .039***  
H3b.Ratio of strong ties’ unhealthy lifestyle behavior @ t   .052***  
H4b.Ratio of similar friends’ unhealthy lifestyle behavior @ t   .020  
H5b.Socioeconomic status: SES    -.411*** 
Constant .007 -.069*** -.133*** .267*** 
Group B/Zero Inflated  
Control Variable: Activity level in online social network @ t+1 -1.079*** -1.072*** -1.072*** -1.251*** 
Control Variable: Individual’s unhealthy lifestyle behavior @ t -.106*** -.102*** -.101***  
Online social support: unhealthy lifestyle behavior @ t -.163* -.173* -.168*  
Social Influence 
Friends’ unhealthy lifestyle behavior @ t  -.058** -.059**  
Ratio of strong ties’ unhealthy lifestyle behavior @ t   .000  
Ratio of similar friends’ unhealthy lifestyle behaviors @ t   -.092  
Socioeconomic status: SES    -.300 
Constant 3.064*** 3.182*** 3.270*** 3.196*** 
Log Likelihood -39,416 -39,359 -39,347 -42,241 
Wald 𝑥K 6,837*** 6,959*** 6,990*** 1,590*** 
N= 28594; *p<.05; **p<.01; ***p<.001 
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Table 2.6. Estimated HLB Model: Unhealthy Lifestyle Behaviors (Fast Food Restaurant) 
 Model 1 Model 2 Model 3 Model 4 
Group A/Count   
Control Variable: Activity level in online social network @ t+1 .009*** .009*** .009*** .019*** 
Control Variable: Individual’s unhealthy lifestyle behavior @ t .156*** .156** .154**  
H1b.Online Social support: unhealthy lifestyle behaviors @ t .050** .051** .051**  
Social Influence 
H2b.Friends’ unhealthy lifestyle behavior @ t  .016*** .017***  
H3b.Ratio of strong ties’ unhealthy lifestyle behavior @ t   -.011  
H4b.Ratio of similar friends’ unhealthy lifestyle behavior @ t   .028*  
H5b.Socioeconomic status: SES    -.116** 
Constant -.131*** -.152*** -.168*** -.011 
Group B/Zero Inflated  
Control Variable: Activity level in online social network @ t+1 -.606*** -.606*** -.606*** -.680*** 
Control Variable: Individual’s unhealthy lifestyle behavior @ t -.086*** -.081*** -.081***  
Online social support: unhealthy lifestyle behaviors @ t -.033 -.042 -.042  
Social Influence 
Friends’ unhealthy lifestyle behavior @ t  -.100*** -.098***  
Ratio of strong ties’ unhealthy lifestyle behaviors @ t   -.021  
Ratio of similar friends’ unhealthy lifestyle behaviors @ t   .052  
Socioeconomic status: SES    -.338 
Constant 2.6018*** 2.745*** 2.714*** 2.765*** 
Log Likelihood -32,516 -32,503 -32,501 -33,752 
Wald 𝑥K 4,641*** 4,647*** 4,652*** 2,394*** 
N=27,253; *p<.05; **p<.01; ***p<.001 

In each table, variables were progressively added as Models 1-3.  The increases in log likelihood 

and Wald 𝑥K values (comparing each model to the base model with no variables) as the level of 

the estimation increases indicate the improvement in the fit as the factors are added to the model.  

Model 4 tests the association of behaviors with SES and is reported separately.12   

Group A/Count: In H1(a/b), we hypothesized that online social support in terms of 

positive feedback on healthy/unhealthy lifestyle behaviors at time t has positive impact on 

individuals’ healthy/unhealthy behaviors at time t+1.  H1a was supported in Models 1-3 for 

healthy lifestyle behaviors (fitness center & gym check-ins).  Similarly, H1b was supported for 

unhealthy lifestyle behaviors (bar at p<0.001 and fast food restaurant at p<0.01) in Models 1-3.   

In H2(a/b), we hypothesized that social influence is at work on healthy/unhealthy 

                                                
 
12 The reasons for omitting other variables in this model are twofold: First, while the SES variable can define individuals’ health 
related lifestyle behaviors both at time t and time t+1, then individuals’ lagged behavior cannot be used as the control variable. 
Second, the coefficient of other variables become meaningless without the individuals’ lagged behavior variable. 
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lifestyle behaviors and argued that friends’ healthy/unhealthy lifestyle behaviors at time t have a 

positive effect on individuals’ healthy/unhealthy lifestyle behaviors at time t+1.  These 

hypotheses were supported for both healthy and unhealthy lifestyle behaviors (fitness center & 

gym, bar, fast food restaurant check-ins) at p<0.001 in Models 2-3.  Furthermore, in H3(a/b) we 

hypothesized that the strength of friendships in online social networks exerts additional social 

influence on individuals’ health-related lifestyle behaviors.  These hypotheses were supported for 

bar at p<0.001, but not for fast food restaurant and healthy lifestyle behaviors (fitness center & 

gym).   

In H4(a/b), we hypothesized the additional influence of similarity (homophily) as 

measured by geographical proximity and gender similarity of individuals.  These hypotheses 

were supported for healthy lifestyle behaviors (fitness center & gym) at p<0.01 and unhealthy 

lifestyle behaviors (fast food restaurant) at p<0.05 in Model 3, but not for bar.  

Thus, the results showed a mixed support for strength of social ties (H3) and friends’ 

similarity, in that the strength of social ties is important for promoting healthy behaviors whereas 

similarity of friends plays a role in some unhealthy behaviors but not others.  This is an 

important finding since it shows that while social influence in online friendship is critical in 

promoting all types of health-related behaviors, the impacts of friendship attributes in terms of 

strength and similarity depend on the context of the behaviors.  This is an unexpected finding in 

that it introduces context-dependency in the study of social influence.  

In H5, we hypothesized socioeconomic status (SES) has positive association with healthy 

lifestyle behaviors (H5a) and negative association with unhealthy lifestyle behaviors (H5b).  

These hypotheses were supported for healthy lifestyle behaviors (fitness center & gym) at 

p<0.001 and unhealthy lifestyle behaviors (bar at p<0.001 and fast food restaurant at p<0.01) in 
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Model 4 in Tables 2.4-2.6.  The control variables—individuals’ behaviors at time t and activity 

level at time t+1—were significant in all estimated models.  Table 2.7 summarizes estimation 

results for each hypothesis.  

Table 2.7. Supported Hypotheses 
Healthy Lifestyle Behavior  H1a H2a H3a H4a H5a 
Fitness Center & Gym yes yes no yes yes 
Unhealthy Lifestyle Behavior H1b H2b H3b H4b H5b 
Bar yes yes yes no yes 
Fast Food Restaurant yes yes no yes yes 

Group B/Zero-inflated.  The ZINB estimations provide additional insights regarding the 

impacts of social factors on inhibiting individuals to post about health-related lifestyle behaviors.  

The zero-inflated parts of Tables 2.4-2.6 report these impacts. A significant negative coefficient 

for a factor in the Zero Inflated part of tables indicates that the factor reduces individuals’ 

inhibition to post about specific health-related behaviors, thus reducing the probability of their 

memberships in Group B.   

Per Part B/Zero Inflated of Table 2.4, the social influence of friends’ check-ins of fitness 

center & gym at time t significantly reduces individuals’ inhibition to post about their check-ins 

at time t+1 (coefficient -0.039, p <0.01).  Similarly, social influence of the ratio of friends with 

strong ties who post their check-ins of fitness center & gym at time t significantly reduces 

inhibitions about posting check-ins in such venues at time t+1 (coefficient -0.052, p < 0.01).  

Social support and similarity of friends have no impact on willingness to post check-ins of 

fitness center & gym. 

Per Part B/Zero Inflated of Table 2.5, social support of friends who post their check-ins 

of bar venues at time t significantly reduces the inhibition of individuals about posting their bar 

check-ins at time t+1 (coefficient -0.168, p<0.05).  This finding is interesting in that social 

support related to bar venues increases individuals’ inclinations to post their check-ins of bar 
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venues.  In other words, social support increases individuals’ incentives to reveal their unhealthy 

behaviors online.  Moreover, social influence of friends’ bar check-ins at time t also reduces 

individuals’ inhibition about posting their check-ins at time t+1 (coefficient -0.059, p<0.01).  

The strength and similarity of friendship do not have any impact on individuals’ inhibition about 

posting bar check-ins. 

Per Part B/Zero Inflated of Table 2.6, the social influence of friends’ posting their check-

ins of fast-food restaurants venues reduce inhibition about posting about check-ins of this venue 

type (coefficient 0.098, p< 0.001)—hence increasing individuals’ willingness to reveal their 

unhealthy behaviors online.  Strength and similarity of friendship, and social support do not play 

a role here.   

Part B/Zero Inflated results in Tables 2.4-2.6 uniformly show that online social network 

activities at time t+1 and higher records of check-ins about health-related lifestyle behaviors at 

time t reduce the inhibition to post health-related lifestyle check-ins at time t+1.  Finally, we 

found that socioeconomic status is not associated with individuals’ willingness to post health-

related lifestyle behaviors online. 

 

2.8. Discussions  

 

This study’s first research question was whether it was possible to observe individuals’ health-

related lifestyle behaviors in online social networks. We answered this question by our dynamic 

sequential approach to data capture, extraction, and integration from posts on Twitter, 

Foursquare location-based check-ins and integration with Census Bureau community data.  This 

data collection process was guided by the literature on health-related lifestyle behaviors—
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physical activities, alcohol & smoking and diet.  Our approach made it possible to assemble the 

first large nationwide online observational dataset for individuals’ healthy and unhealthy lifestyle 

behaviors 

The second research question in this study was to identify significant social factors 

contributing to individuals’ healthy and unhealthy lifestyle behaviors.  Guided by the Berkman 

framework and associated theories, we developed the Health-related Lifestyle Behavior (HLB) 

model, which covered the main social pathways in the Berkman framework and identified the 

social factors contributing to individuals’ health-related lifestyle behaviors.  The estimation of 

the HLB model revealed the high potential of the online social network ecosystem to influence 

individuals’ healthy and unhealthy lifestyle behaviors.   

First, the empirical results of estimating the HLB model uncovered the way friends’ 

healthy lifestyle behaviors could influence individuals’ healthy choices.  We found strong 

impacts of friends’ online social support through Twitter’s favorites on individuals’ healthy 

lifestyle behaviors.  This is a novel finding, documenting the significant soft power of online 

nudging by friends.  In their seminal work, Thaler and Sunstein (2008) refer to nudging as soft 

persuasion in human decision making for health and other critical choices without compulsion.  

Our findings show that online social support for healthy choices acts as the nudge that could 

steer individuals toward healthy lifestyle behaviors or encourage them to maintain healthy 

lifestyle choices.   

Second, online social support on unhealthy choices could be just as effective.  In 

unhealthy lifestyle behaviors related to bars and fast food restaurants, online social support in the 

form of Twitter’s favorites positively and significantly contributes to the adoption and reporting 

of these unhealthy behaviors. Our results indicate that in bar venues, online social support could 
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reduce individuals’ inhibition to share their bar-going behaviors. The soft power of social-

network nudging works both ways.  This is another novel finding that shows the critical role of 

online social support in promoting or accentuating health-related lifestyle choices. 

Third, online social influence exerts its impact though the friends’ visible healthy and 

unhealthy choices in online social networks.  This influence is uniformly significant for healthy 

and unhealthy lifestyle behaviors.  An interesting insight gained from the Zero-Inflated results 

was that for both healthy and unhealthy behaviors, friends’ online social influence encourages 

people to share about their healthy and unhealthy behaviors in online social networks.  

Fourth, our study revealed that the friendship attributes (strength and 

similarity/homophily) play different roles depending on the context and nature of behaviors.  

This is an unexpected and novel finding. The strength of friendship as measured by reciprocity 

and embeddedness can significantly increase the social influence of friends’ unhealthy lifestyle 

behaviors related to bars.  This is in line with prior studies on social influence of alcohol 

consumption within offline social networks in which Rosenquist et al. (2010) found that increase 

in social distance significantly reduces the social influence of friends.  In the case of healthy 

lifestyle behaviors (fitness center & gym), it is homophily/similarity in friendship that exerts 

additional influence on people’s healthy behaviors.  This is in line with prior studies that found 

homophily significantly improves the adoption of healthy behaviors (Centola 2011). Our work 

shows homophily increases social influence in fast food restaurants but not bars. Thus, our 

findings introduce the perspective of context-dependency in studying the influence of homophily 

and the strength of social ties.   

Fifth, our results showed that the socioeconomic status of the communities in which 

individuals reside has significant positive association with healthy lifestyle (fitness center & 
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gym) choices and negative association with unhealthy lifestyle (bar and fast food restaurant) 

choices.  This confirmed offline study reports that environmental and socioeconomic factors 

influence health-related lifestyle behaviors (Phelan et al. 2004, Zenk et al. 2005, Foster and 

Giles-Corti 2008).  Finally, the significant coefficients of activity level in online social network 

with almost identical coefficients in Models 2-4 and for all three choices—fitness center & gym, 

bar and fast food restaurant—shows that this factor contributes to the variability of online posts 

and must be taken into account in modeling online behaviors. 

 

2.9. Implications 

 

Most behavior studies in IS have focused on psychological and perceptual studies involving 

information technology.  Our study is the first to focus on a national observational study of 

individuals’ behaviors that have health consequences as observed on location-based social 

networks with the following theoretical and practical implications.  Our study showed how 

online friends’ healthy and unhealthy lifestyle behaviors cause significant changes in 

individuals’ health-related behaviors.  

 

2.9.1. Theoretical Contributions  

This paper makes a number of novel contributions to theory and research.  First, our dynamic 

sequential approach through capturing, extracting and integrating online social network public 

data and the derivation of healthy and unhealthy lifestyle behaviors opens a new avenue in 

observational study of health-related lifestyle behaviors at national, regional, and global levels.  

It demonstrates the great potential of online social networks for large-scale health studies. 
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Second, our theory-based Health-related Lifestyle Behavior (HLB) model provides a 

conceptual framework for studying online self-disclosed behaviors and the social factors that 

could influence them.  This first attempt could motivate researchers to build on it to create a 

comprehensive theory of self-disclosed online health-related lifestyle behaviors. Therefore, the 

HLB model makes a significant contribution to theory in this respect. 

Third, this work makes novel contributions in measuring social factors that are salient to 

online health-related lifestyle behaviors. Our measurement of favorites as representative of 

online social support showed that online appraisals have a nudging effect that could steer 

individuals equally to healthy and unhealthy lifestyle choices.   

Fourth, this study has a broad implication studying strength of social ties in health-related 

lifestyle behaviors and by extension in other types of lifestyle behaviors. Research has reported 

that different types of ties and relationships are the main factors that distinguish social networks 

from other forms of network (Borgatti et al. 2009), and both strong and weak ties facilitate the 

process of information dissemination (Granovetter 1973).  Our work adds to this body of work 

by showing that the causal influence of strength of ties depends on the context of lifestyle 

behaviors that have health consequences.  It seems that strength of ties plays a significant role in 

unhealthy lifestyle behaviors that are less socially acceptable (bars as compared to fast food 

venues).  Our work adds to the growing body of literature on the importance of context in the 

study of individuals’ behaviors (Chen and Zahedi 2016, Hong et al. 2014).  

Fifth, we addressed the divide between social influence and homophily and showed that 

such a divide is unwarranted. Indeed, homophily in terms of gender similarity and geographical 

proximity could increase the level of social influence on health-related lifestyle choices 

associated with fitness center & gym and fast food restaurants. Another novel research 
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implication of this work is that the extent of such influences depends on the context and outcome 

clarity of behavior choices and not their healthy and unhealthy nature.  

Sixth, our study showed that the online social network ecosystem does reflect the realities 

of socioeconomic divides.  Therefore, it is possible to study different strata of people within this 

eco-system and investigate the forces that operate on and exacerbate such divides through 

negative social reinforcements online.    

 

2.9.2. Practical and Policy Implications 

The results of our study offer important practical implications. In recent years, mobile 

technologies and online social networks have become an inseparable part of daily life in which 

people share a great amount of information about their lifestyle behaviors. In 2015, it was 

estimated that people spend an average of 1.7 hours daily on online social networks.13 This 

figure was reported to be 9 hours for teens.14 Such pervasive reliance on online social networks, 

particularly for the younger generation, calls for a deeper understanding of how online social 

factors positively and negatively influence health-related lifestyle choices.  It is, therefore, 

important to study whether and how online social networks could influence health-related 

lifestyle behaviors. Such studies require data extraction and integration approaches that go 

beyond the simple one-time download of posts in one social network.  Observational studies of 

publicly accessible activities on online social networks require a well-planned, dynamic, and 

sequential data capture, extraction, and integration.  Our study provides a first example of such 

an approach and provides evidence for the significant effect of online social factors in changing 

                                                
 
13 http://www.globalwebindex.net  
14 http://www.cnn.com/2015/11/03/health/teens-tweens-media-screen-use-report/  
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individuals’ health-related lifestyle choices.  We showed how multiple factors of social influence 

and social support could alter such behaviors. 

Our work presented metrics that capture social factors based on a sound theoretical 

foundation.  These metrics could be used for the prediction of positive and negative impacts of 

policy initiatives.  Awareness of the influence of online social factors provides personal coaches, 

school psychologists and government policy-making bodies with the tools to promote 

personalized strategies and public policies that positively influence such factors and reduce their 

negative roles.   

Our findings showed that close friends exert additional influence in the selection of bars 

for lifestyle activities.  Furthermore, friends’ posting of their check-ins in bars encourages 

individuals to do the same, hence accelerating the promotion of alcohol consumption across 

online social networks.  Therefore, any policy for helping individuals to address alcohol abuse 

needs to consider the online social networks with which the individual interacts. This work 

emphasizes the possible role of close online friends’ behaviors in other unhealthy behaviors, 

such as drug abuse. 

Finally, online social networks go beyond physical and cultural boundaries. Our work 

shows the wide reach of online social friends in changing individuals’ health-related behaviors.  

Online social networks could be an important channel when developing policies to deal with 

unhealthy behaviors or promoting healthy behaviors. Social support in the context of face-to-face 

support groups produces positive results.  Our work shows that online social support and 

influences have similar consequences, which could supplement and reinforce face-to-face 

counseling. 
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2.10. Limitation and Future Research Directions 

 

While our population of interest for this study is individuals who post location-based activities 

on their online social network pages, our dataset does not cover those who are not active on 

Twitter and Foursquare at the same time. Therefore, interpretations of our results are limited to 

the population who self-disclose their lifestyle behaviors on Twitter and Foursquare.  Second, 

although location-based check-ins provide the opportunity for a nationwide data collection, 

caution should be exercised in using our results since check-ins are only a surrogate for actual 

health-related lifestyle activities and individuals may also differ in their willingness to share their 

location from specific types of venues leading to self-selection bias. Third, individuals’ friends 

within the social networks were captured once.  However, such networks are dynamic in nature 

and friends change over time.  Future studies are needed to collect friends’ information over time 

to gain a deeper understanding of the social impacts of online friendships.   

In this study, we investigated social factors in relation to egocentric networks.  Future 

studies need to investigate different types of online communities and memberships in such 

communities.  Furthermore, our work can be extended to studying the role of online social 

networks in changing other behaviors, such as disclosing personal information or engaging 

addictive behaviors in online platforms.  Furthermore, the future extension of our work could 

also involve investigating the structure of the network and the positions of people in the network 

as additional social factors.  Finally, our work opens new avenues for comparative studies of 

peoples’ behaviors across different regions, countries, and cultures.  Such comparative studies 

could provide insights about health issues and the ways to deal with them by taking advantage of 

unique features of online social networks and communities. 
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CHAPTER 3 

 

Essay 2: The Moderating Impact of Friends’ Posted Images on Observed 
Healthy and Unhealthy Lifestyle Behaviors of Individuals in Online Social 

Networks 
 

 

3.1. Introduction 

 

Over the past few years, photo-sharing services have gain popularity. Users of Facebook alone 

share hundreds of millions of photos every single day.15 The number of active users in Instagram 

reached 300 million users in 2016,16 and looking at photos has replaced listening to music as the 

first entertainment activity on the Internet (Dutton 2013). It is shown that social interaction and 

self-expression are strong motives for photo sharing (Lee et al. 2015). Research argues that 

photographs are good for impression management and have credibility that text lacks (Marwick 

2015). Photo-sharing provides a quick method for people to share their preferences, lifestyles, 

and behaviors with their social circles.  

A recent experimental study found that most adolescent users tend to share photos that 

contain food items and in a majority of cases, depict foods that do not have nutrientional value 

(Holmberg et al. 2016).  Pictures of shared photos could influence people’s friends or relatives 

who view them. Research in neuroscience has found that food images affect appetite-related 

brain activities (Beaver et al. 2006) and can provoke reactions from people (Mejova et al. 2015). 

                                                
 
15 https://newsroom.fb.com/news/2016/06/introducing-360-photos-on-facebook/ 
16 http://blog.business.instagram.com/post/146255227588/500m-instagram 
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This phenomena raises the question: can sharing photos with friends and family in online social 

networks influence people’s behaviors? Of particular importance is the examination of its 

impacts on people’s healthy and unhealthy lifestyle behaviors. To our knowledge, no prior study 

has investigated health-related behavioral impacts of shared photos in online social networks.   

To address this gap, we extend the work in Essay 1 to answer the following research 

questions within the context of self-disclosed behaviors in online social networks, (i) Does the 

presence of photos moderate the impact of friends’ healthy and unhealthy lifestyle behaviors? (ii) 

How do the contents of posted photos contribute to friends’ healthy and unhealthy lifestyle 

behaviors? 

To answer to first research question, we rely on multimodality and observational learning 

as the theoretical basis of our study. We argue that adding images to texts in self-disclosed posts 

enhances the effectiveness of communication among individuals and facilitates the process of 

learning from others. We modify the dynamic sequential data extraction and integration method 

discussed in Essay 1 to capture the photos posted along with location-based check-ins at gyms 

and fitness centers, bars, and fast food restaurants. We explore the effects of both posted photos 

and individuals’ disclosed health-related lifestyle behaviors. Our results indicate that the 

presence of photos—regardless of content—in self-disclosed check-ins at bars and fast food 

restaurants increases friends’ social influence over unhealthy lifestyle behaviors.  

To answer the second research question, we develop a novel approach in image analysis 

to identify image contents. This approach combines analysis tools offered by Amazon Web 

Services (AWS)17 with our newly developed tools to capture and categorize image contents 

within the three health-related contexts—gym and fitness center, bar, and fast food restaurant. 

                                                
 
17 https://aws.amazon.com  
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This approach allows us to examine the effects of various types of image content on individuals’ 

healthy and unhealthy lifestyle behaviors. Our results show that photo content types related to 

each context have significant effect either on the frequency of engaging in health-related lifestyle 

behaviors or on individuals’ decision to disclose their health-related lifestyle activities.  

To our knowledge this is the first study that captures the impact of individuals’ posted 

photos in online social networks on their friends’ health-related lifestyle behaviors. This paper 

provides insights about the role of online social networks in formation of health behaviors and 

makes several important contributions. First, we offered a new approach to image analysis in 

identifying and categorizing images’ contents. Second, we capture the additive effect of visual 

contents in online social networks. Another contribution is our novel method of collecting a 

unique dataset from Twitter and Foursquare that contains both the visual and non-visual contents 

of individuals’ self-disclosed health-related lifestyle behaviors. Third, the results of our work 

uncover different pathways by which shared photos in online platforms can impact individuals’ 

behaviors. Fourth, we add to the literature of observational learning by considering the effect of 

image content on the process of learning from each other.  

 

3.2. Literature Review 

 
3.2.1. Health-related Lifestyle Behaviors and Social Environment 

The impact of social environment on individuals’ health behaviors is well established in health 

literature (Zenk et. al 2005, Moore and Diez Roux 2006, Christakis and Fowler 2007, 2008, 

Naidoo and Wills 2009, Rosenquist et al. 2010). Social environment is defined as “the immediate 

physical surroundings, social relationships and cultural milieus in which defined groups of 

people function and interact” (Barnett and Casper 2001 p. 465) and it can impact individuals’ 
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health at two levels (macro- and micro- levels)18 and from three different pathways (health 

behavioral, psychological, and physiological) (Berkman et al. 2000). The health-related lifestyle 

behavior of individuals is a prominent area that has been affected by the social environment. 

Health-related lifestyle behavior is a subset of the health behavioral pathway. Reports show that 

unhealthy lifestyle behaviors are the major contributors to the chronic diseases that pose a huge 

cost burden to healthcare systems (CDC 2015). In Essay 1 we defined health-related lifestyle 

behavior as a pattern of choices made by people from a set of available alternatives with health-

consequences. Physical activity, alcohol consumption, smoking and unhealthy food diets are 

prominent forms of health-related lifestyle behaviors.  

Social influence is a micro-level factor of social environment that may have significant 

impact on individuals’ health-related lifestyle behaviors. In a large study of offline friends, 

Christakis and colleagues have observed that unhealthy behaviors, such as smoking, alcohol 

consumption, and obesity can spread across the social network through interaction among friends 

(Christakis and Fowler 2007, 2008, Rosenquist et al. 2010), leading to the argument that friends 

observe and mimic one another’s lifestyle behaviors. Online social networks provide another 

type of environment for the social influence of friends. The mechanisms of social influence in 

online social networks differ from those in offline social networks.  

Compared to offline social networks, online social networks expand the level of 

connections but provide lower levels of social presence and information richness for individuals 

(Chan and Cheng 2004). Social presence refers to “the degree of salience of the other person in 

an interaction” (Short et al. 1976, p. 65), and information richness is defined as “the ability of 

                                                
 
18 The macro level consists of cultural, political and socioeconomic factors and the micro level is formed by the 
psychosocial mechanisms underpinning human relationships. 
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information to change understanding within a time interval” (Daft and Lengel 1986, p. 560). 

Lower levels of social presence and information richness can negatively affect social influence in 

online social networks, which could differ depending on the type and nature of online platforms. 

Social presence and information richness in online social networks depend on how extensively 

platforms mediate individuals’ interaction and also the structure and contents of individuals’ 

posts (Strekalova and Krieger 2017, Bateman et al. 2017). For instance, visual contents can 

provide a higher level of social presence and can convey meaning faster than texts (Barry 1997). 

Content also plays a role in the effectiveness of the health messages. Research shows that 

different formats of health-related messages can affect individuals’ choices and behaviors 

differently (Gallagher and Updegraff 2012, Rothman et al. 2006).  

To our knowledge no prior study has analyzed the influence of images and their contents 

on individuals’ lifestyle behaviors. This study addresses this gap by focusing on photos that are 

posted along with self-disclosed health-related lifestyle behavior in online social networks and 

distinguishes the effects of photos from the text-based self-disclosures studied in Essay 1. 

 

3.2.2. Photo Sharing in Online Social Networks 

“Visual imagery is central to how individuals represent themselves, make meaning, create 

identities, and communicate with the rest of the world” (Kenix 2013 p. 1). Research has found 

that the structure of visual communication is different from linguistic communication (Kress and 

van Leeuwen 2010). Visual contents are attention grabbing (Powell et al. 2015), reproduce 

reality (Messaris and Abraham 2001), heighten emotional experience (Iyer and Oldmeadow 

2006), and can be more memorable (Lutz and Lutz 1977, Powell 2015). Moreover, individuals 
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have higher levels of trust for what they can see over what they can just read about (Sundar 

2008). 

Over the past few years, with the growth of online photo-sharing platforms, scholars have 

investigated the role of images in changing the pattern of individuals’ interaction with online 

social networks. Research has shown that posted contents with images get more feedbacks (like, 

shares, and comments) than those without image content (Corliss 2012). Additionally, findings 

show that the presence of images can increase the likelihood of clicking on the provided content 

within online social network sites (Ulloa et al. 2015). A large portion of literature on online 

photo sharing has focused on individuals’ motivational factors. Research shows that multiple 

factors could motivate individuals to share a photo, including fulfillment of intrinsic and 

extrinsic needs (Nov et al. 2010), self-disclosure and self-presentation (Rui and Stefanone 2013, 

Sheldon and Bryant 2016), surveillance (Sheldon and Bryant 2016), impression management 

(Lee et al. 2015), documentation and archiving (Sheldon and Bryant 2016, Lee et al. 2015), and 

enjoyment (Nov et al. 2010, Nightingale 2007).  

In online social networks, photo sharing serves as a personal recommendation to others—

a capability that makes photos influential (Eftekhar et al. 2014). Insights about the power of 

images in online social networks are limited and come primarily from marketing literature.  

Research in marketing has reported the effect of photos on users’ engagement (Shin et al. 2017), 

click-through rate (Jalali and Papatla 2016), and purchase intention (Kim and Lennon 2008). 

However, these studies have not examined the social influence of photos in the formation of 

individuals’ lifestyle behaviors. In other words, it is not clear whether the images individuals 

post in online social networks have any impact on their friends’ lifestyle behaviors. We aim to 

fill this gap in the context of healthy and unhealthy lifestyle behaviors. 
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3.3. Theoretical Background and Hypothesis Development 

 
In this study, we rely on multimodality and social learning theories to build on the Health-related 

Lifestyle Behavior (HLB) model. Multimodality is a theory of communication which discusses 

the effectiveness of using combinatory modes in communication (Kress and Van Leeuwen 

2001). Modes of communication consist of but are not limited to written text, gesture, posture, 

gaze, photo, and video. Multimodality uses different modes to generate meaning beyond the 

capacity of either alone (Geise and Baden 2015, O’Halloran and Smith 2012). Online social-

network sites (similar to traditional media such as newspapers and TV) benefit from 

multimodality. However, in contrast to traditional media, online social networks are not formed 

based on a one-to-many principle of mass communication platforms but on a network of 

connections among peers in which the roles of producer and consumer constantly change 

(Bateman et al. 2017). In such platforms, individuals can observe each other’s self-disclosed 

multimodal posts revealing their behaviors over time.  

According to social learning theory (Bandura 1969), behavior is learned through the 

process of observing others’ behaviors in social environments. In this process, people pay 

attention to what others do and try to imitate those behaviors. If people find the imitation process 

is rewarding, they will continue repeating the behavior. In online social networks, textual words 

and visual contents are the elements that can be independently used for disclosure of behaviors. 

However, multimodality is a factor that can contribute to the process of learning from others. 

According to multimedia principle, “people learn more deeply from words and pictures than 

from words alone” (Mayer 2005, p. 3). This assertion is in line with the information processing 

theory, which argues that the level of elaboration on a concept affects how well information is 

processed and learned (Craik and Lockhart 1972). We therefore add multimodality to our model 
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of health-related lifestyle behavior in Essay 1 and analyze the effect of photos in diffusion of 

health-related lifestyle behaviors across the online social networks.  

Research has shown that media and its type of content play an important role in attracting 

individuals’ attention (Bucher and Schumacher 2006). Eye-tracking studies emphasized the role 

of visual cues and found that visual cues command a higher level of visual attention (Geise 2011, 

Yantis 2005). However, people have limited level of attention (Kahneman 1973). The first step 

in media reception is to grab the attention of observers to a stimulus (Bucher and Schumacher 

2006). The study of online news readership shows that individuals’ visual attention is first drawn 

to photos (Bucher and Schumacher 2006). Moreover, individuals spend longer duration of time 

looking at posted images than looking at the same size area of textual content in online social 

network sites (Ulloa et al. 2015). 

Prior research shows that individuals’ visual attention influences the level of 

observational learning (Yussen 1974). It has also been established that attention-grabbing 

contents are more likely to influence individuals (Barber and Odean 2007). Accordingly, we 

argue that images increase individuals’ attention to friends’ self-disclosed lifestyle behaviors 

within online social networks, thus positively moderating the observed social influence of friends 

in such platforms. Hence,  

Hypothesis 1. Presence of images in self-disclosed lifestyle behaviors (a) increases the 
influence of friends’ healthy lifestyle behaviors at time t on the individuals’ healthy 
lifestyle behavior at time t+1 (b) increases the influence of friends’ unhealthy lifestyle 
behaviors at time t on the individuals’ unhealthy lifestyle behavior at time t+1 

 
The effect of images is not just limited to grabbing individuals’ attention, but it can also play 

direct roles in the process of observational learning. Once the visual attention is attracted, the 

human brain simultaneously processes the incoming stimulus including image-based and text-

based information from different channels (LaBerge and Samuels 1974). Research shows that 



 61 

receiving information from multiple channels improves learning and memory (Paivio 1991). In 

this phase, summation of cues between channels helps people to remember the information better 

(Severin 1967). In other words, combining of text with related visual contents provides the 

greatest gain in learning. A recent study found that high congruency of image and text in media 

play a major role in the process of learning (Powell et al. 2015). Accordingly, we expect that the 

content of disclosed images from health-related venues be another source of social influence in 

online social networks, in which congruency between posted images and type of disclosed 

behavior positively impact friends’ health-related lifestyle behaviors over time. By congruence, 

we refer to whether the shared images match the textual content describing the healthy and 

unhealthy lifestyle behaviors of individuals. Research has shown that repeating the same 

message over different channels helps recipients to better understanding the message (Lane 

2000). Hence, 

Hypothesis 2. Individuals’ (a) healthy lifestyle behaviors at time t+1, are positively 
influenced by context-congruent images posted along with friends’ disclosed healthy 
lifestyle behaviors at time t (b) unhealthy lifestyle behaviors at time t+1, are positively 
influenced by context-congruent images posted along with friends’ disclosed unhealthy 
lifestyle behaviors at time t. 

 
 
3.4. Data Collection 

 
To collect both individuals’ health-related lifestyle behavior and any posted photos, we used the 

dynamic sequential data extraction and integration method described in Essay 1 with some 

modifications to meet the data requirements of this study. We modified the three-phase 

procedure in the dynamic sequential data extraction and integration method. In Phase 1, we 

identified active users in U.S. who have posted at least one check-in every two weeks after their 

first check-in in the time period of January 28–April 22, 2014. Of the total collected data, 32,700 
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unique individuals met this requirement. In Phase 2, we continued the procedure of data 

collection from active users for two sequential four-week time periods (time t and t+1). In this 

phase, in addition to general check-in information, we collected image URLs posted along with 

tweets using Twitter API. Finally, in Phase 3, we collected complementary information such as 

the number of received favorite counts and information about venues. The final captured dataset 

contains more than 5 million check-in tweets, more than 100 thousand images, and 1,127,420 

distinct U.S. venues. 

In order to analyze the effect of posted images on individuals health-related lifestyle 

behaviors, we focused on check-ins that represent individuals’ health-related lifestyle behaviors 

at time period t (April 22 to May 20, 2014) and time t+1 (May 20 to June 17, 2014). In doing so, 

we relied on venue type as the proxy and combined the salient categories in Foursquare to 

identify three types of venues associated with health-related lifestyle behaviors: fitness center & 

gym, bar, and fast food restaurant. Table 3.1 lists the Foursquare categories and number of 

venues in each type. 

Table 3.1. List of Categories 
Venue 
Type Foursquare Categories # of 

Venues 

Fitness 
Center & 
Gym 

Badminton Court, Baseball Field, Basketball Court, Boxing Gym, Climbing Gym, 
College Basketball Court, College Cricket Pitch, College Football Field, College Gym, 
College Hockey Rink, College Soccer Field, College Tennis Court, Cricket Ground, 
Gym, Gym / Fitness Center, Gym Pool, Gymnastics Gym, Hockey Field, Paintball Field, 
Rock Climbing Spot, Roller Rink, Rugby Pitch, Skate Park, Skating Rink, Soccer Field, 
Sports Club, Squash Court, Swim School, Tennis Court, Volleyball Court, Yoga Studio 

36,047 

Bar 
Apres Ski Bar, Bar, Beach Bar, Beer Garden, Beer Store, Champagne Bar, Cocktail Bar, 
Dive Bar, Gastropub, Gay Bar, Hookah Bar, Hotel Bar, Irish Pub, Karaoke Bar, Piano 
Bar, Pub, Sake Bar, Sports Bar, Whisky Bar, Wine Bar 

66,687 

Fast Food 
Restaurant 

BBQ Joint, Fast Food Restaurant, Food Court, Fried Chicken Joint, Hot Dog Joint, Mac 
& Cheese Joint, Pizza Place, Wings Joint 109,575 
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3.5. Image Analysis: Extraction, Processing, Dimensionality Reduction, and 

Categorization 

 
To capture the effect of posted images on friends’ healthy and unhealthy lifestyle behaviors, we 

extracted, processed and categorized posted images at time period t using a number of tools in 

four distinct phases. At Phase 1 (image extraction), posted images along with health-related 

lifestyle check-ins at time period t have been extracted through image URLs. From the total 

number of check-ins, 5.1% of check-ins at fitness center & gym venues, 8.3% of check-ins at 

bars, and 7.1% of check-ins at fast food restaurants had images in addition to textual content.  

At Phase 2 (image processing), we used services inside the AWS (Amazon Web 

Services) to process the images extracted at the first phase. AWS is a cloud-based platform that 

offers various computational analysis, data management and web development services. In order 

to perform the image processing task, we initially transferred images into Buckets inside the 

AWS platform. Buckets are cloud-based logical units of storage that can be used for analysis of 

data using available services at AWS. Then, we used Rekognition API to perform the image 

processing task. Rekognition is a deep learning technology developed by Amazon’s computer 

vision scientists to analyze images and videos. The API detects objects inside visual objects and 

reports them with associated confidence values. A confidence value shows the probability that an 

object exists inside a photo. Figure 3.1 shows an example of detected objects for a sample photo 

in our dataset. 
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Object Label Confidence 
Fries 98.78 % 
Food 98.78 % 
Ketchup 94.20 % 
Seasoning 94.20 % 
Aluminium 78.26 % 
Tin 78.26 % 
Can 78.26 % 
Meal 73.53 % 
Plate 60.65 % 
Dish 60.65 % 
Bowl 58.10 % 
Taco 54.95 % 
Beverage 51.59 % 
Drink 51.59 % 
Salad 51.14 % 
Meat Loaf 50.58 % 
  

Figure 3.1. An Example of Analyzed Photo by Rekognition API 
Phase 3 (dimensionality reduction) reduced the dimensionality of detected labels by 

identifying the granularity of objects in images, and then clustering and categorizing objects 

within images. We rely on Rekognition API, which provides labels at different levels of 

granularity. A high-granular label defines what an object exactly is, and a low-granular label 

shows the type of an object without exactly specifying that object (i.e. “Fries” is a high-granular 

label, and “Food” is a low-granular label). Each label at a high level of granularity is associated 

with one or more labels at lower levels of granularity and always comes together in the list of 

detected objects (i.e. “Fries” is associated with “Food” and “Meal”). 

This phase involves a two-step procedure: (Step 1) label granularity identification and 

filtering, and (Step 2) label clustering.  At Step 1 (of Phase 3), we identified the level of 

granularity by applying association rule mining techniques (Agrawal et al. 1993). Association 

rule mining is a popular technique to study transactional data where identified rules can show 

how two different item sets are associated with each other in large number of transactions. 
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Accordingly, each rule is composed by two different sets of items and can be represented in the 

format of 𝐴 → 𝐵, in which A is the antecedent item and B is the consequence item. In such rules, 

existence of items of set A inside a transaction list increases the chance having items of set B 

inside the same transaction list. In our context, we use the rule mining techniques to capture the 

pairwise association of labels inside images. Association rules can be at different levels of 

accuracy. Thus, in order to find meaningful rules, we used Confidence and Support constraints as 

two main factors in the selection of association rules (Klemettinen et al. 1994). These two 

constraints are computed as follows: 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 → 𝐵) =
|𝐴 ∩ 𝐵|
|𝐴|  

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|
𝑀  

Where A and B are two different object labels, |𝐴| is the number of images with label A, |𝐴 ∩ 𝐵| 

is the number of images with A and B, and M is the total number of images in a dataset. 

Confidence and Support are two values between 0 and 1. Confidence shows the association of 

two labels, where 0 shows no association and 1 indicates the highest level of association between 

two labels. Support is another metric that shows how frequently two labels appear in images with 

each other. In this study, we consider association rules that have a Confidence value of 1 and a 

value more than 0.05 for its Support constraint. The confidence value of 1 indicates that label A 

(label with higher granularity) is always be presented by label B (label with lower granularity). 

Support value has also been used to eliminate the rules with low frequency values. Appendix F 

shows labels at different levels of granularity and the pattern of association among labels for 

each health-related lifestyle behavior separately. At the end, we reduced the assigned labels of 

images by limiting the labels to those at the lowest level of granularity. 
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At Step 2 (of Phase 3), we aggregated labels at the lowest level of granularity using their 

similarity in describing images. In doing that, we applied a three-step sequential method: (Step 

2.1) computing of labels’ similarity matrix, (Step 2.2) applying a modularity-based clustering 

method, and (Step 2.3) assigning descriptive labels to clusters. At Step 2.1, in order to compute 

the similarity matrix, we measured similarity of labels by using the Jaccard index. Jaccard index 

is a pairwise similarity method that can be computed as follows: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| = 	

|𝐴 ∩ 𝐵|
|𝐴| + |𝐵| − |𝐴 ∩ 𝐵| 

Where A and B are two different object labels at the lowest level of granularity that describe a 

series of images, |𝐴 ∩ 𝐵| is the number of images that can be described by both A and B, |𝐴 ∪ 𝐵| 

is the number of images that can be described by either A or B, |𝐴| is the number of images with 

label A, and |𝐵| is the number of images with label B. The Jaccard index always returns a value 

between 0 and 1. Computation of a similarity index across labels helps us to form similarity 

matrices of labels–one similarity matrix for each health-related lifestyle behavior. Figure 3.2 

illustrates the process of generating a similarity matrix. 

 
Figure 3.2. Formation of Similarity Matrix  
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At Step 2.2, we applied the Louvain clustering method (Blondel et al. 2008) to put labels 

into different clusters. Louvian is a modularity-based optimization method that identifies clusters 

by computing the deviation of a similarity matrix from a randomly generated similarity matrix. 

This process put the labels for Fitness Center & Gym types of venue into seven clusters, labels 

for Bar venues into nine clusters, and labels for Fast Food Restaurant into eight clusters. At Step 

2.3, we assigned a unique label to each cluster. Table 3.2 shows detected clusters along with their 

assigned labels for all the three types of health-related lifestyle behaviors. 

Table 3.2. List of Object Clusters 
Venue Type Clusters  Labels at the Lowest Level of Granularity 

Fitness Center 
& Gym 

Flora Flora, Jar, Pottery 
Food & Beverage Beverage, Bowl, Food 

Human Clothing, Glasses, Head, Human 
Indoors Electronics, Flooring, Furniture, Indoors, Screen, Wood 

Outdoors 
Animal, Asphalt, Bench, Billboard, Building, Field, Lighting, 
Machine, Nature, Outdoors, Park, Path, Road, Soil, Terminal, 
Transportation, Urban, Water 

Sport Sport 
Text Emblem, Paper, Poster, Sign, Text, Trademark, Word 

Bar 

Beverage Aluminium, Beverage, Bottle, Cup, Glass 
Club Club, Leisure Activities, Light, Lighting, Night Life, Stage 

Decor Accessories, Art, Home Decor, Ornament 
Flora Flora, Jar, Pottery 
Food Bowl, Food 

Human Clothing, Hair, Head, Human 

Indoors Bench, Crypt, Electrical Device, Electronics, Furniture, Indoors, 
Market, Pub, Restaurant, Screen, Shelf, Shop, Wood 

Outdoors 
Animal, Asphalt, Billboard, Brick, Building, Canopy, Nature, 
Outdoors, Path, Pier, Road, Soil, Terminal, Transportation, Urban, 
Water 

Text Blackboard, Book, Emblem, Paper, Poster, Text, Trademark, Word 

Fast Food 
Restaurant 

Beverage Aluminium, Beverage, Bottle, Cup, Glass 
Decor Art, Home Decor, Ornament 
Flora Flora, Jar, Pottery 
Food Bowl, Food 

Human Accessories, Clothing, Glasses, Hair, Head, Human, Leisure 
Activities 

Indoors Bench, Electrical Device, Electronics, Furniture, Indoors, Lighting, 
Market, Night Life, Pub, Restaurant, Screen, Shelf, Shop, Wood 

Outdoors Animal, Asphalt, Brick, Building, Canopy, Machine, Nature, 
Outdoors, Parking Lot, Path, Road, Terminal, Transportation, Urban 

Text Book, Emblem, Paper, Poster, Sign, Text, Trademark, Word 
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At phase 4 (image categorization), each image got one or more cluster labels based on the 

types of object label originally identified by the Rekognition API. For instance, the depicted 

image in Figure 3.1 gets two cluster labels of Food and Beverage. Figure 3.3 shows the process 

of image analysis in detail.  

 
Figure 3.3. Image Analysis Process  

To check the accuracy of assigned categories, we randomly selected 100 images and 

manually labeled them using the clustered labels. The comparison of assigned categories and 

manual labeled categories shows an accuracy of 95 percent in our categorization of images.  
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3.6. Variable Measurements 

 
In this study, we followed the measurement method described in Essay 1 and measured 

individual’s healthy and unhealthy lifestyle behaviors by the number of days that each individual 

had check-ins within each type of health-related venue (fitness center & gym for healthy and bar 

and fast food restaurant for unhealthy lifestyle behaviors) in two sequential four-week time 

periods. We also measured social support and social influence variables (variables in the original 

HLB model) using the same procedures described in Essay 1. In the following sections, we 

describe how we measured the social influence variables related to images.   

 

3.6.1. Social Influence Moderation: Image Presence 

To capture the effect of friends’ posted images on social influence, we computed the number of 

images posted along with friends’ health-related lifestyle check-ins at time period t. To compute 

this value in the fitness center & gym context, we considered the directional egocentric network 

of users inside Twitter. The egocentric network demonstrates the friendship network of a single 

individual (ego) within a large social network. In a directional egocentric network, individuals 

can only observe activities of people who are directly followed by them. Thus, for each 

individual we counted the number of observable images that are posted along with friends’ 

check-ins at fitness center & gym venues at time period t. Figure 3.4 illustrates this concept. We 

independently repeated this process for bar and fast food restaurant venues. Later, in our model 

estimation, we consider the interaction of the number of images variable and the social influence 

variable in each health-related lifestyle context to capture the moderation effect of posted 

images. 
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Figure 3.4. Egocentric Network 

3.6.2. Social Influence: Image Types  

To analyze the social influence of congruent images posted along with friends’ disclosed health-

related lifestyle behaviors, we relied on the cluster labels identified in our image analysis 

process. Those labels capture repeated types of objects within posted images in different health-

related lifestyle contexts. Accordingly, in the context of fitness center & gym venues, we 

computed the number of friends’ observable images at time period t that had been labeled by 

each of the Flora, Food & Beverage, Human, Indoors, Outdoors, Sport, and Text labels 

separately. This computation provided seven unique values representing the number of images 

posted by friends with specified labels. We repeated this computation for bar and fast food 

restaurant venues using their own detected cluster labels. 

 

3.6.3. Control Variables 

In this study we control for the number of friends who have posted images at time period t since 

the effect of observed images on individuals could be different when they have been observed 

through the posts of few versus large numbers of friends. To measure this variable in the context 
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of fitness center & gym, we considered each individual’s directional egocentric network and 

computed the number of friends who have posted images along with their check-in at fitness 

center & gym type of venues. We also repeated this computation for bar and fast food restaurant 

venues. In our model, we also controlled for the two control variables in original HLB model. 

Table 3.3 summarizes the measurement of the variables in our model – both original HLB 

variables and variables in this study.  

Table 3.3 Variable Measurements at Individual Level 
Model Variable Definition Metric and Computation 
Dependent Variables 
Individual’s healthy 
lifestyle behavior at 
time t+1 

Lifestyle behaviors 
that promote health 

Individual’s total number of days with check-ins at fitness center 
& gym venues at time t+1 

Individual’s 
unhealthy lifestyle 
behavior at time t+1  

Lifestyle behaviors 
that inhibit health 

Individuals’ total number days with check-ins at time t+1 
measured for two venue types separately: 
1. Bar. 2. Fast food restaurant. 

Original HLB Model Independent Variables, all lagged to measure impacts 
Online social support 
healthy (or 
unhealthy) lifestyle 
behaviors at time t 

The support provided 
via feedback in online 
social networks for 
individuals’ healthy 
(or unhealthy) lifestyle 
behaviors 

1. For healthy lifestyle: Average number of Favorites an 
individual receives for check-ins at fitness center & gym venues at 
t, computed as the sum all Favorite counts received for fitness 
center & gym check-ins divided by number of days with fitness 
center & gym check-ins.   
2. For unhealthy lifestyle: the fitness counts are replaced once by 
bar counts and again by fast food restaurant counts in the above 
computation. All computed at time t. 

Social influence of 
friends’ healthy 
(unhealthy) lifestyle 
behaviors at time t 

The influence of 
friends’ engagement in 
the same healthy 
(unhealthy) lifestyle 
behaviors 

1. For healthy lifestyle: the average of friends’ number of days 
with fitness center & gym check-ins at time t, computed as: sum of 
all friends’ number of days with fitness center & gym check-ins 
divided by number of friends. 
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and again by fast food restaurant check-ins in the 
above computation. All computed at time t. 

Social influence of 
strong ties’ healthy 
(unhealthy) lifestyle 
behaviors at time t 

The impact of strong 
friendship ties in 
social influences of 
friends’ engagement in 
the same healthy 
(unhealthy) lifestyle 
behaviors 

1. For healthy lifestyle: the ratio of weighted average strong ties’ 
number of days with check-ins at fitness center & gym venues 
divided by non-weighted average of friends’ number of days with 
check-ins at fitness center & gym venues. This ratio is computed 
for the first measurement period. The weights for strong ties are 
computed as follows: (i) Non-reciprocated friends’ lifestyle 
behavior gets no weight, (ii) Reciprocated friends’ lifestyle 
behavior gets weight proportional to the number of common 
friends with focal individual. 
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and again by fast food restaurant check-ins in the 
above computation. All computed at time t. 

Social influence of 
similar friends’ 
healthy (unhealthy) 
lifestyle behaviors at 

The impact of 
similarity with 
friends/homophily in 
social influences of 

1. For healthy lifestyle: The ratio of weighted average of similar 
friends’ number of days with check-ins at fitness center & gym 
venues divided by non-weighted average of friends’ number of 
days with check-ins at fitness center & gym venues. This ratio is 
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time t friends’ engagement in 
the same healthy 
(unhealthy) lifestyle 
behaviors 

computed for the first measurement period. The weights for 
similar friends are computed as follows: (i) Friends get .5 
similarity score if they reside in 0-10 miles of the focal individual 
(ii) Friends get .5 similarity score if they have similar gender as 
focal individual (iii) Friends’ lifestyle behavior gets weight 
proportional to the final calculated similarity score.  
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and again by fast food restaurant check-ins in the 
above computation. All computed at time t.    

Independent Variables for The Present Study, all lagged to measure impacts  
Moderation effect of 
images on social 
influence at time t 

The moderation effect 
of image presence in 
friends’ disclosed 
healthy (unhealthy) 
lifestyle behaviors on 
the level of social 
influence 

1. For healthy lifestyle: Number of images posted by friends along 
with their check-ins at fitness center & gym venues at time t 
multiplied by the healthy social influence variable measured at 
time t.  
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and multiplied by unhealthy(bar) social influence 
variable and again by fast food restaurant check-ins and multiplied 
by unhealthy (fast food restaurant) social influence variable. All 
computed at time t. 

Social influence of 
images posted along 
with friends’ healthy 
(unhealthy) lifestyle 
behaviors at time t  

The influence of 
different type of 
images posted along 
with friends’ healthy 
(unhealthy) lifestyle 
behaviors.  

1. For healthy lifestyle: first, posted images at time t have been 
labeled by one or more of the following labels: Flora, Food & 
Beverage, Human, Indoors, Outdoors, Sport, and Text. Second, 
the number of friends’ posted images containing each of the 
above-mentioned labels has been counted separately. That 
generates 7 different variables representing friends’ posted image 
types at time t.  
2. For unhealthy lifestyle: the labels were replaced with associated 
unhealthy lifestyle behaviors which are Beverage, Club, Décor, 
Flora, Food, Human, Indoors, Outdoors, and Text for bar venues 
and Beverage, Décor, Flora, Food, Human, Indoors, Outdoors, and 
Text for fast food restaurant venues. Then we repeat the above 
computation for bar and fast food restaurant separately. That 
generates 9 different variables representing friends’ type of posted 
images at bar and 8 different variables representing friends’ type 
of posted images at fast food restaurants. All computed at time t. 

Control Variables 
Activity level in 
social network at 
time t+1 
 

Activity level in online 
social network at time 
t+1 

Individuals total number of check-ins in online social network at 
time t+1 

Individuals’ healthy 
(unhealthy) lifestyle 
behavior at time t 

Individuals’ healthy 
(unhealthy) lifestyle 
behavior at time t 
 

Individuals’ healthy (unhealthy) lifestyle behavior at time t 

Number of friends 
posted images along 
with healthy lifestyle 
behavior at time t 

Number of friends 
who have posted 
images along with 
healthy (unhealthy) 
lifestyle behavior at 
time t 

1. For healthy lifestyle: Number of friends who have posted at 
least one image with their check-ins at fitness center & gym 
venues at time t 
2. For unhealthy lifestyle: the fitness check-ins are replaced once 
by bar check-ins and again by fast food restaurant check-ins in the 
above computation. All computed at time t 
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3.7. Data Analysis and Model Estimation 

 

The distributions of individual check-ins at different health-related venues in the second 

measurement time period (t+1) are presented in Appendix E. The distributions of check-ins 

show over-dispersion with high occurrence of zeros at this time period. We confirmed over-

dispersion using the alpha test (Cameron and Trivedi 1990). Over-dispersion occurs when the 

variance in data is greater than the mean. As described in Essay 1, zero-inflated negative 

binomial regression (ZINB) is a suitable method for estimation of over-dispersed count data with 

a high occurrence of zeros.  

ZINB undertakes two distinct processes in formation of data which both can lead to 

observation of zeros. In the first process, individuals – Group A – disclose their health-related 

lifestyle behaviors as they occur in their real life. For these individuals, the dependent variable – 

number of check-ins at time period t+1–is greater than or equal to zero (𝑦" ≥ 0). For this group 

of individuals, zero values indicate that individuals have not gone to the captured type of venue. 

ZINB assumes negative binomial distribution in the first process. The second process relates to 

people – Group B – who have gone to the captured type of venue but have not reported it in their 

online social networks. The dependent variable for this group of people are naturally equal to 

zero (𝑦" = 0). ZINB considers a probability value (𝜑) to distinguish between each different 

process by which the data is generated. The following equation represents this concept:   

𝑦",#$%~1
0																							𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝜑",#$%				

	 		

𝑓>𝑦",#$%?𝑋",#)				𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	1 − 𝜑",#$%
 

Accordingly, the probability of 𝑦" number of check-ins at the captured venues is equal to: 
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𝑃>𝑌" = 𝑦",#$%?𝑋",#, 𝑍",#D = 1
𝜑>𝛾𝑍",#D + G1 − 𝜑>𝛾𝑍",#DH𝑓>0?𝑋",#D										𝑖𝑓	𝑦",#$% = 0

	
G1 − 𝜑>𝛾𝑍",#DH𝑓>𝑦",#$%?𝑋",#D																							𝑖𝑓	𝑦",#$% > 0

					 

where Xi,t is the vector of independent variables for individual i at time period t, 𝑍",#	is a vector of 

covariates measured at time period t that contribute to not reporting corresponding health-related 

behavior at time period t+1, and 𝛾 is the vector of estimated zero-inflated coefficients. We used 

R for the model estimation (R Development Core Team 2016). 

 

3.7.1. Estimation Results 

We test our hypothesizes using the ZINB method. The models were independently estimated for 

each health-related lifestyle behavior. The result of estimation models is presented in Tables 3.4-

3.6.19 The Group A/Count part of the tables shows the estimated coefficient for the group of 

people who disclose their captured lifestyle behavior in online social networks. We use the 

estimated coefficients in these parts of the tables to test our hypothesizes. The Group B/Zero 

Inflated part of the tables provides additional insight about people who have not reported the 

captured health-related lifestyle behaviors in online social networks. The estimated coefficients 

in this part represent factors that can contribute to the inhibition against disclosing health-related 

lifestyle behaviors.  

 

                                                
 
19 To capture the effect of strong ties and homophily on the individuals’ healthy and unhealthy lifestyle behaviors in original 
theHLB model, we had to consider only those individuals who have friends with non-zero average value for the same health-
related lifestyle behavior. That reduced the number of observations in each model, as reported in Tables 3.4-3.6.   
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Table 3.4. Estimated Model for Healthy Lifestyle Behaviors (Fitness Center & Gym) 
 Model 1 Model 2 Model 3 

Group A/Count   
Control Variables 
Activity level in online social network @ t+1 .002*** .002*** .002*** 
Individual’s healthy lifestyle behavior @ t .185*** .185*** .185*** 
Number of friends posted images along with healthy lifestyle behavior @ t  -.010 -.048** 
Online social support: healthy lifestyle behavior @ t .142*** .144** .142*** 
Social Influence – Friends’ Observed Behavior 
Friends’ healthy lifestyle behavior @ t .026*** .025*** .026*** 
Ratio of strong ties’ healthy lifestyle behavior @ t .016 .017 .015 
Ratio of similar friends’ healthy lifestyle behavior @ t .048** .049** .048** 
Social Influence Moderation– Friends’ Posted Images 
Friends’ healthy lifestyle behavior @ t × Number of friends’ posted images @ t  -.001  
Social Influence – Image Types 
‘Flora’ images posted along with friends’ healthy lifestyle behaviors @ t   .025 
‘Food&Beverage’ images posted along with friends’ healthy lifestyle behaviors @ t   .101 
‘Human’ images posted along with friends’ healthy lifestyle behaviors @ t   -.009 
‘Indoors’ images posted along with friends’ healthy lifestyle behaviors @ t   .051 
‘Outdoors’ images posted along with friends’ healthy lifestyle behaviors @ t   .006 
‘Sport’ images posted along with friends’ healthy lifestyle behaviors @ t   .063* 
‘Text’ images posted along with friends’ healthy lifestyle behaviors @ t   -.003 
Constant -.160*** -.153*** -.148*** 
Group B/Zero Inflated  
Control Variables 
Activity level in online social network @ t+1 -.083*** -.083*** -.083*** 
Individual’s healthy lifestyle behavior @ t -1.398*** -1.391*** -1.397*** 
Number of friends posted images along with healthy lifestyle behavior @ t  .045 -.011 
Online social support: healthy lifestyle behaviors @ t -.0001 -.011 -.013 
Social Influence – Friends’ Observed Behavior 
Friends’ healthy lifestyle behavior @ t -.039** -.028 -.037** 
Ratio of strong ties’ healthy lifestyle behavior @ t -.081** -.079** -.082** 
Ratio of similar friends’ healthy lifestyle behaviors @ t -.015 -.011 -.014 
Social Influence Moderation– Friends’ Posted Images 
Friends’ healthy lifestyle behavior @ t × Number of friends’ posted images @ t  -.035**  
Social Influence – Image Types 
‘Flora’ images posted along with friends’ healthy lifestyle behaviors @ t   -.194 
‘Food&Beverage’ images posted along with friends’ healthy lifestyle behaviors @ t   .138 
‘Human’ images posted along with friends’ healthy lifestyle behaviors @ t   .029 
‘Indoors’ images posted along with friends’ healthy lifestyle behaviors @ t   -.096 
‘Outdoors’ images posted along with friends’ healthy lifestyle behaviors @ t   -.043 
‘Sport’ images posted along with friends’ healthy lifestyle behaviors @ t   .066 
‘Text’ images posted along with friends’ healthy lifestyle behaviors @ t   -.102 
Constant 2.039*** 2.027*** 2.054*** 
Log Likelihood -21,499 -21,496 -21,487 
Wald 𝑥K 2,374*** 2,390*** 2,398*** 
N=22,423; *p<.05; **p<.01; ***p<.001.  

 

 



 76 

 

Table 3.5. Estimated Model for Unhealthy Lifestyle Behaviors (Bar) 
 Model 1 Model 2 Model 3 

Group A/Count   
Control Variables 
Activity level in online social network @ t+1 .005*** .005*** .005*** 
Individual’s unhealthy lifestyle behavior @ t .175*** .175*** .175*** 
Number of friends posted images along with unhealthy lifestyle behavior @ t  -.009*** -.005 
Online social support: unhealthy lifestyle behavior @ t .104*** .104*** .105*** 
Social Influence – Friends’ Observed Behavior 
Friends’ unhealthy lifestyle behavior @ t .039*** .034*** .038*** 
Ratio of strong ties’ unhealthy lifestyle behavior @ t .052*** .050*** .050*** 
Ratio of similar friends’ unhealthy lifestyle behavior @ t .020 0.019 .020 
Social Influence Moderation– Friends’ Posted Images 
Friends’ unhealthy lifestyle behavior @ t × Number of friends’ posted images @ t  0.003***  
Social Influence – Image Types 
‘Beverage’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .008 
‘Club’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .017 
‘Decor’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .045 
‘Flora’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.021 
‘Food’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.015 
‘Human’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .000 
‘Indoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.002 
‘Outdoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .009 
‘Text’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .006 
Constant -.133*** -.122*** -.130*** 
Group B/Zero Inflated  
Control Variables 
Activity level in online social network @ t+1 -1.072*** -1.070*** -1.070*** 
Individual’s unhealthy lifestyle behavior @ t -.101*** -.101*** -.101*** 
Number of friends posted images along with unhealthy lifestyle behavior @ t  .035 .011 
Online social support: unhealthy lifestyle behaviors @ t -.168* -.175* -.172* 
Social Influence – Friends’ Observed Behavior 
Friends’ unhealthy lifestyle behavior @ t -.059** -.050* -.054** 
Ratio of strong ties’ unhealthy lifestyle behavior @ t .000 .001 .000 
Ratio of similar friends’ unhealthy lifestyle behaviors @ t -.092 -.097 -.095 
Social Influence Moderation– Friends’ Posted Images 
Friends’ unhealthy lifestyle behavior @ t × Number of friends’ posted images @ t  -.006  
Social Influence – Image Types 
‘Beverage’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.093** 
‘Club’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.114 
‘Decor’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .249 
‘Flora’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.020 
‘Food’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .044 
‘Human’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .152*** 
‘Indoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .006 
‘Outdoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.044 
‘Text’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.197** 
Constant 3.270*** 3.243*** 3.244*** 
Log Likelihood -39,347 -39,339 -39,330 
Wald 𝑥K 6,990*** 7,007*** 7,017*** 
N= 28594; *p<.05; **p<.01; ***p<.001 
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Table 3.6. Estimated Model for Unhealthy Lifestyle Behaviors (Fast Food Restaurant) 
 Model 1 Model 2 Model 3 

Group A/Count   
Control Variables 
Activity level in online social network @ t+1 .009*** .009*** .009*** 
Individual’s unhealthy lifestyle behavior @ t .154** .154** .154** 
Number of friends posted images along with unhealthy lifestyle behavior @ t  -.016*** -.040*** 
Online social support: unhealthy lifestyle behavior @ t .051** .056*** .051** 
Social Influence – Friends’ Observed Behavior 
Friends’ unhealthy lifestyle behavior @ t .017*** .010* .013** 
Ratio of strong ties’ unhealthy lifestyle behavior @ t -.011 -.010 -.010 
Ratio of similar friends’ unhealthy lifestyle behavior @ t .028* .029* .029* 
Social Influence Moderation– Friends’ Posted Images 
Friends’ unhealthy lifestyle behavior @ t × Number of friends’ posted images @ t  .004***  
Social Influence – Image Types 
‘Beverage’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .018 
‘Decor’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.008 
‘Flora’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .011 
‘Food’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .042*** 
‘Human’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.001 
‘Indoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .010 
‘Outdoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .017 
‘Text’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.019 
Constant -.168*** -.154*** -.159*** 
Group B/Zero Inflated  
Control Variables 
Activity level in online social network @ t+1 -.606*** -.605*** -.615*** 
Individual’s unhealthy lifestyle behavior @ t -.081*** -.081*** -.081*** 
Number of friends posted images along with unhealthy lifestyle behavior @ t  .010 -.064 
Online social support: unhealthy lifestyle behaviors @ t -.042 -.045 -.050 
Social Influence – Friends’ Observed Behavior 
Friends’ unhealthy lifestyle behavior @ t -.098*** -.100*** -.102*** 
Ratio of strong ties’ unhealthy lifestyle behavior @ t -.021 -.023 .062 
Ratio of similar friends’ unhealthy lifestyle behaviors @ t .052 .050 .074 
Social Influence Moderation– Friends’ Posted Images 
Friends’ unhealthy lifestyle behavior @ t × Number of friends’ posted images @ t  -.000  
Social Influence – Image Types 
‘Beverage’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .036 
‘Decor’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .088 
‘Flora’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .319** 
‘Food’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .030 
‘Human’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.043 
‘Indoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   .118 
‘Outdoors’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.086 
‘Text’ images posted along with friends’ unhealthy lifestyle behaviors @ t   -.040 
Constant 2.714*** 2.711*** 2.732*** 
Log Likelihood -32,501 -32,492 -32,478 
Wald 𝑥K 4,652*** 4,668*** 4,695*** 
N=27,253; *p<.05; **p<.01; ***p<.001 

In Tables 3.4-3.6, Model 1 represents the coefficients for the original HLB model as it was 

captured in Essay 1. Model 2 tests the moderation effect of image presence on the social 
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influence. Finally, Model 3 was used to capture the effect of different image types and tests for 

the influence of congruent images.  

Group A/Count: In H1(a/b), we hypothesized that presence of images in self-disclosed 

lifestyle behaviors increases the influence of friends’ healthy/unhealthy lifestyle behaviors at 

time t on the individuals’ healthy/unhealthy lifestyle behavior at time t+1. H1a was not 

supported in Model 2 for healthy lifestyle behaviors (fitness center & gym check-ins). However, 

H1b was supported for unhealthy lifestyle behaviors (bar and fast food restaurant both check-ins, 

at p<0.001).  

In H2(a/b) we hypothesized that individuals’ healthy/unhealthy lifestyle behaviors at time 

t+1, are positively influenced by congruent images posted along with friends’ disclosed 

healthy/unhealthy lifestyle behaviors at time t. For the healthy lifestyle behaviors, we could only 

find a significant positive coefficient (at p<.05) in Model 3 for images containing Sport-related 

objects. This finding provides support for H2a as the images with a Sport label are congruent 

with the context of healthy lifestyle behaviors. For unhealthy lifestyle behaviors related to bars, 

we could not find any significant coefficient for different types of images. Thus, we could not 

find support for H2b in the context of unhealthy lifestyle behaviors associated with bars. 

However, as we will discuss in the next part (Group B/Zero inflated), higher numbers of images 

containing Beverage- or Text-related objects posted along with friends’ disclosed unhealthy 

lifestyle behaviors (bar) at time t, significantly reduces individuals’ inhibition to post about their 

check-ins in bar places at time t+1.  For the unhealthy lifestyle behaviors related to fast food 

restaurants, we found positive significant coefficient (at p<.001) for images containing Food 

items. This result supports H2b, since Food is highly congruent with the context of unhealthy 

lifestyle behaviors related to fast food restaurants. As we discussed, our findings showed a mixed 
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support for the influential power of congruent images in the context of unhealthy lifestyle 

behaviors (H2b). This result provides more evidence confirming our findings in Essay 1 showing 

that social influence is a context-dependent factor. Table 3.7 summarizes estimation results for 

each hypothesis. 

Table 3.7. Supported Hypotheses 
Healthy Lifestyle Behavior  H1a H2a 
Fitness Center & Gym no yes 
Unhealthy Lifestyle Behavior H1b H2b 
Bar yes no 
Fast Food Restaurant yes Yes 

Group B/Zero inflated. As discussed in Essay 1, the estimation coefficients in the Zero 

Inflated part of ZINB models provides additional insights regarding factors that inhibit 

individuals from disclosing their health-related lifestyle behaviors in online social networks. A 

significant negative coefficient for a factor in the Zero-Inflated part of tables indicates that the 

factor reduces individuals’ inhibition to post about specific health-related lifestyle behaviors. 

Per Part B/Zero Inflated of Table 3.4, presence of images in friends’ check-ins at fitness 

places at time t significantly moderates (at p<.01) the social influence of friends on individuals in 

posting their healthy lifestyle behaviors at time t+1 in online social networks. This is an 

interesting finding, showing that a higher number of images posted by friends from healthy 

places can increase individuals’ incentive to share their healthy lifestyle behaviors in online 

social networks. We could not find significant impact in the Zero Inflated part of the table for 

types of images.  

Per Part B/Zero Inflated of Table 3.5, images containing one of the labels of Beverage, 

Text, or Human can impact the likelihood of reporting unhealthy lifestyle behaviors related to 

bars in online social networks. The coefficients for Beverage and Text labels are both negative 

and significant at p<.01. This result indicates that the existence of Beverage and Text objects in 
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posted images along with unhealthy lifestyle check-ins at bars decreases the likelihood of 

inhibition to disclose similar behaviors in online social networks. An interesting finding relates 

to images with Human labels. Our result reveals that a higher number of images containing 

Human objects posted by friends from bar places can increase the inhibition to share similar 

behaviors by individuals in online social networks. We could not find significant result for the 

moderation role of image presence on social influence for inhibition of behavior disclosing 

related to bar venues.  

Per Part B/Zero Inflated of Table 3.6, friends’ images containing Flora objects can 

decrease the chance of reporting unhealthy lifestyle behaviors related to fast food restaurants by 

individuals in online social networks. We could not find significant results for other types of 

images. We also did not find a significant coefficient for the moderation role of image presence 

in inhibition behavior of individuals to report their check-ins at fast food restaurants.  

 

3.8. Discussions 

 
These days, online social network sites increasingly play a prominent role in our lives and can 

influence both our online and offline behaviors. Indeed, prior studies observed the impact of 

online social networks on behaviors such as adoption of paid services (Bapna and Umyarov 

2015), political mobilization (Bond et al. 2012), and physical activity (Althoff et al. 2016). In 

light of these findings, understanding the factors that can influence individuals’ behaviors in 

online social networks becomes paramount.  

In this study, we focused on individuals’ health-related lifestyle behavior and built from 

the model in Essay 1 to investigate the influential power of images. In Essay 1, we have 

established that disclosed healthy and unhealthy lifestyle behaviors of individuals in online social 
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networks influence others’ health-related lifestyle behaviors. Our content investigation has 

shown that images are a prominent part of revealed lifestyle behaviors in online social networks. 

Images grab individuals’ attention (Yantis 2005, Bucher and Schumacher 2006, Geise 2011) and 

play roles in the process of observational learning (Yussen 1974). Thus, this study’s first 

research question: Does the presence of photos moderate the impact of friends’ healthy and 

unhealthy lifestyle behaviors? We answered this question by collecting image content posted 

along with lifestyle check-ins and computed the number of observable images posted on 

egocentric network of individuals. Later, we estimated the interaction effect of average number 

of friends’ posted lifestyle behaviors and the number of observable images in different health-

related contexts. 

The second research question in this study: How do the contents of posted photos 

contribute to friends’ healthy and unhealthy lifestyle behaviors? We answered this question by 

capturing content of images. We used Rekognition API in our study and analyzed images in 

three different phases. Our approach helped us to find major type of objects inside posted images 

in different contexts and label each of them by one or more labels. Later, we aggregated the 

number of observable images of each type and captured the influence they had on individuals’ 

healthy and unhealthy lifestyle behaviors over time. Our estimated models in this study revealed 

the potential power of shared photos in formation of individuals’ healthy and unhealthy lifestyle 

behaviors.   

First, our empirical results uncovered effect of images in grabbing individuals’ attention 

and the moderation effect of that on friends’ social influence over healthy and unhealthy lifestyle 

behaviors. We found that while the presence of images can increase the social influence of 

observed friends’ unhealthy lifestyle behaviors, it cannot moderate the effect of observed 
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friends’ healthy lifestyle behaviors. In another insight gained from the Zero Inflated part of our 

analysis, we found that images posted from gym and fitness center places can moderate the effect 

of friends’ posted check-ins on incentive of individuals to share their healthy lifestyle behaviors. 

These novel findings show that posted images moderate the social influence of friends over 

healthy and unhealthy lifestyle behaviors differently.  

Second, our study revealed that congruent images posted along with health-related 

lifestyle behaviors in online social networks can be the source of social influence and impact 

individuals’ healthy and unhealthy lifestyle behaviors. Particularly, we found that sport-related 

images posted along with friends’ check-ins at gym and fitness centers can lead to higher 

numbers of disclosed healthy lifestyle behaviors for individuals over time. Similarly, we found 

that food-related images posted along with friends’ check-ins at fast food restaurants can 

increase the number of observed individuals’ unhealthy lifestyle behaviors at fast food 

restaurants. These are important findings showing that relevance of images and disclosed 

lifestyle behaviors can reinforce the social influence power of friends in online social networks.  

 

3.9. Implications 

 
Online photo-sharing has been considered an identity-construction tool (Marcus 2015, Eftekhar 

et al. 2014) that helps online users to form their implicit identities by showing rather than telling 

(Zhao et al. 2008). Research has also shown that shared photos in online platforms contain 

personal recommendations that can make them influential (Eftekhar et al. 2014). This study is 

the first to investigate about the social influence power of images on individuals’ healthy and 

unhealthy lifestyle behaviors.  Our findings showed that the influential power of images is 
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extended to health-related lifestyle behaviors of individuals as observed in online social 

networks. This study also makes several contributions to theory and practice.  

3.9.1. Theoretical Contributions  

This study makes a number of novel contributions to theory and research. First, to our 

knowledge, this is the first study that investigates the role of visual contents in the mechanism of 

peers’ influence in the context of health behaviors. This research can provide a solid foundation 

for future studies to build from this work and study the other roles that visual contents can play 

in formation of individuals’ lifestyle behaviors. 

Second, we contribute to observational learning theory by expanding its application to 

analysis of image content. Our study suggests that the effect of visual content in grabbing 

individuals’ attention should be separated from their direct effect on individuals’ behaviors. In 

some contexts, visual contents can only play the role of moderators for the effects of textual 

information and in some others, they can be the main source of influence on human behavior.   

Third, this study provides a framework for analysis of images. The introduced image 

analysis procedure in this study can be widely used by other studies and can help them to 

identify the prominent types of objects and categorize images in different contexts.  

 

3.9.2. Practical and Policy Implications 

This study also offers important practical implications. In recent years, the concern over lack of 

physical activity and unhealthy lifestyle behavior of individuals has grown. We found that online 

social network platforms can play significant roles in formation of individuals healthy and 

unhealthy lifestyle behaviors. It is, therefore, important for us to make better use of these 
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platforms and promote our healthy behaviors rather than unhealthy behaviors as they can have 

broad impact on the long-term wellbeing of individuals in societies.  

Our work showed that visual content can moderate the imposed social influence of 

friends over unhealthy lifestyle behaviors and can also be the direct source of influence on 

individuals’ behavior. Thus, it is important for health policy makers to increase individuals’ 

awareness about the consequences of unhealthy lifestyle behaviors. Health practitioners can also 

use proper visual contents to promote healthy lifestyle behaviors and target those individuals 

who have suffered from unhealthy lifestyle behaviors the most.  

Finally, the results of our study suggest that the health practitioners should pay additional 

attention to online photo-sharing platforms like Instagram, as these platforms have facilitated the 

process of sharing photos for adolescents and can be widely used for sharing health-related 

lifestyle activities. 

 

3.10. Limitation and Future Studies 

 
Since this study has built on the HLB model that was developed in the Essay 1, it suffers from 

similar limitations including lack of access to a full list of active users in Foursquare, the 

possibility of self-selection bias in report of healthy and unhealthy lifestyle behaviors by 

individuals, and the static nature of captured social networks in our study. Additionally, in this 

study we have only captured the impact of friends’ posted images on individuals’ lifestyle 

behaviors in a relatively long-term period. Therefore, our study might not be able to capture the 

full influential power of images, as images can also have short-term impact on humans’ 

behavior. Future studies can fill this gap by capturing larger numbers of observation in a short-

term period and provide additional insights about the short-term impact of images. 
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In this study, we have only considered the role of image presence and different types of 

content inside images as the sources of influence. Our work can be extended by considering 

other attributes of images such as their visual appeal rating and the structure of images. 

Furthermore, future studies might be able to use the content of images to estimate the food 

calories and more accurately investigate the social impact of unhealthy images.   
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CHAPTER 4 

 

Essay 3: Communities of Interest in Online Social Networks: 
Detection Method and its Application in Explaining Self-Disclosed Lifestyle 

Behaviors 
 

 

4.1. Introduction 

 

Unhealthy lifestyle behavior is one of the major causes of disease and death in the U.S. (CDC 

2015). Approximately one third of American adults suffer from cardiovascular diseases 

(Rosamond et al. 2008) and more than half of them struggle with one or more type of chronic 

diseases (CDC 2015). Poor dietary habits, obesity, physical inactivity, and excessive alcohol 

drinking are considered the main contributors (CDC 2015, Artinian 2010). In the U.S. these 

unhealthy lifestyle behaviors impose a huge cost burden on the healthcare system. The healthcare 

cost for inadequate levels of physical activity alone has been estimated to be $117 billion per 

year (Carlson et al. 2015). Despite all the evidences supporting the benefits of healthy lifestyle 

behaviors, American adults are increasingly burdened with the consequences of unhealthy 

lifestyle behaviors. 

Research has demonstrated that online social network platforms can be used for health 

promotional purposes such as advocating physical activity (Valle et al. 2013), smoking cessation 

(Pechmann et al. 2015, Ramo et al. 2015), and weight loss (Waring et al. 2016, Napolitano et al. 

2013). There are programs in online social networks to promote healthy lifestyle behaviors and 

prevent diseases, disability, and premature death. Examples are VERB and TRUTH—programs 
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by non-profit organizations to increase physical activity and reduce smoking among adolescents 

(Huhman et al. 2004, Evans 2006). These programs offer a practical framework for 

understanding how individuals’ lifestyle behaviors can lead to health problems and then suggests 

a set of motivational alternatives to improve individuals’ and societies’ health status (Aceves-

Martins 2016, Hastings and Haywood 1991). For such programs to succeed, there is a need to 

identify vulnerable individuals in online platforms and recognize the motivational factors 

underpinning their healthy and unhealthy lifestyle behaviors. Hence, such programs need 

information about individuals’ lifestyle behaviors. Self-disclosure in OSNs provides an 

opportunity to capture the needed information.  

Self-disclosure is the “process of making the self known to others” (Jourard & Lasakow, 

1958, p. 91) and can fulfill basic social needs of individuals for belonging and connectedness 

(Bazarova and Choi 2014). While self-disclosure can happen in both offline and online social 

environments, research shows online social network sites have unique features that facilitate the 

process of self-disclosure (Lee et al. 2013, Nguyen et al. 2012). There is a continuum of modes 

for self-disclosure within digital platforms. These modes range from explicit to implicit (Zhao et 

al. 2008). In explicit presentation, people have the opportunity to self-disclose themselves in a 

narrative format. However, in implicit presentation, people present themselves through shared 

activities, interests, and preferences without actually telling them. Research shows that most 

people prefer to present themselves online by disclosing implicit information (Zhao et al. 2008). 

Study of self-disclosed information in online social networks for analysis of individuals’ 

health-related behaviors is limited to only a few studies (Essay 1). Research has demonstrated 

that interests and preferences are sources of intrinsic motivations to perform activities (Deci 

1992, Ryan and Deci 2000) and can play important roles in the formation of lifestyle behaviors 

(Deci 1992, Sagiv et al. 2011, Schwartz 2015). Thus, having access to individuals’ interests 
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helps health practitioners to not only understand reasons for the behaviors but also provide 

opportunities for them to develop and suggest alternatives that are in line with the interests and 

preferences of targeted individuals. However, to our knowledge, no prior study has investigated 

the relationship of individuals’ observed preferences and interest in online social networks with 

their health-related lifestyle behavior.  

To fill this gap, in this study we plan to investigate (i) how individuals’ interests and 

preferences can be detected within online social networks and, (ii) how self-disclosed health-

related lifestyle behaviors of individuals in online social networks are associated with their 

observed interests and preferences. 

To answer these questions, we rely on the structure of online social networks and develop 

a theory-based community detection algorithm that can detect various communities of interest. 

Later, we use a dataset of more than 32,000 active users in Twitter and Foursquare to conduct 

our study. Our algorithm has successfully identified 43 different communities of interest 

representing individuals’ interest and preferences. Our statistical models also show that such 

interests have direct relationships with observed healthy and unhealthy lifestyle behaviors of 

individuals in online social networks.  

Our study makes several contributions. First, we developed a theory-based community 

detection algorithm that can capture a wide variety of individuals’ interests and preferences.  

Second, we found that the interests that individuals reveal in online social networks are 

associated with individuals’ healthy and unhealthy lifestyle behaviors.  Third, our results uncover 

and distinguish the online social communities associated with healthy behaviors as opposed to 

unhealthy behaviors. Fourth, we add to the literature of disclosure in online communities by 

showing that individuals’ self-disclosure follows the norm of disclosure on those communities. 

Finally, the results of our work could be used in targeting individuals for health promotion 
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programs, for understanding how unhealthy programs get propagated, for projects and programs 

to promote healthy lifestyle, and for comparative analysis of how social networks in various 

countries create communities of interest and how such communities promote or inhibit healthy 

and unhealthy behaviors.   

 

4.2. Literature Review 

4.2.1. Literature on Self-Disclosure Behavior  

Self-disclosure is an important part of our lives. It refers to “the act of revealing personal 

information to others” (Jourard, 1971, p. 2). The act of self-disclosure is intrinsically rewarding 

(Tamir and Mitchell 2012) and can fulfill human’s social needs such as sense of belonging 

(Bazarova and Choi 2014). Research demonstrates that individuals tend to reveal their offline 

attributes and lifestyle activities in online environments through posted contents (Rahman 2016, 

Moore and McElroy 2012, Amichai-Hamburger and Vinitzky 2010, Barkhuus et al. 2008). This 

tendency makes individuals self-reporting objects (Mitrou et al. 2014) who reveal information 

about themselves over time. 

There are five goals involved in self-disclosure: social validation, self-expression, 

relational development, identity clarification, and social control (Bazarova and Choi 2014). Self-

disclosure is considered one of the key elements of online social networks (Kaplan and Haenlein 

2010) that has a direct impact on the success of these platforms (Wang et al 2016). Research 

shows that individuals are more satisfied with online platforms that promote self-disclosure 

(Special and Li-Barber 2012) and tend to use those platforms more often (Trepte and Reinecke 

2013). Prior studies also compared the interactions of individuals in online platforms with face-

to-face relationships and found that the unique features of online platforms promote a higher 
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level of self-disclosure (Lee et al. 2013, Nguyen et al. 2012). Accordingly, we have witnessed 

that millions of users share their thoughts, beliefs, experiences and lifestyle behaviors on a daily 

basis with their friends and followers in online social networks. It was argued that self-disclosure 

in online social networks fosters feelings of connectedness (Utz 2015) and increases the level of 

intimacy among users (Park et al. 2011). In fact, revealing personal information helps individuals 

to draw attention and be liked by others, which facilitates the process of social interactions 

(Sheldon 2009, Posey et al. 2010) 

However, people generally tend to present an idealized version of themselves in their 

disclosures (Goffman 1959). This practice allows them to manage the impression they make 

(Wang et al 2016). Hogan (2010) discussed that, similar to real-life situations, online social 

networks consist of “front stage” and “back stage” settings. In the front stage, people are trying 

to present the idealized version of themselves according to their social role in society. But back 

stage is the place where people do the real work to keep up the appearances (Hogan 2010). This 

difference causes doubts about the representativeness of self-disclosed behaviors. Despite the 

importance of this issue in understanding self-disclosed behaviors, insights into the nature of 

self-disclosure in online platforms remain scarce. In this work, we study the relationship between 

individuals’ self-disclosed lifestyle behaviors and their observed interests to investigate how 

disclosed behaviors can represent the lifestyle behaviors of individuals. 

 

4.2.2. Literature on Location-Sharing Behavior 

With ubiquitous access of individuals to internet and mobile services and the increasing growth 

of location-based social networks, people have started to share their location with their friends 

and followers in online platforms. Research shows that while privacy concerns negatively impact 

intention to share location-related information, perceived benefits have a stronger positive 
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influence (Zhao et al. 2012). A recent study suggests that in the context of online location-

sharing, the concept of “location has changed from being something you have (a property or 

state) to something you do (an action)” (Cramer et al. 2011, p. 65). This indicates that 

individuals’ shared location in online social networks is not about expressing the current 

geographical coordinates but the type of their current activities.  

Prior studies find several motivations behind location sharing include gaming, sending 

signals to friends, and self-impression (Patil et al. 2012, Lindqvist et al. 2011). Location sharing 

is less about showing physical presence and more about to achieve socially oriented goals 

(Rahman 2016). Indeed, there is a distinction between location as a “space” and location as a 

“place” (Dourish 2006). Location as a space describes a geometrical arrangement that can be 

helpful for activities such as movement, and location as a place refers to recognizable and 

persistent social meaning (Dourish 2006). It is important to understand this distinction and 

distinguish between purpose-driven and social-driven location sharing. In a purpose-driven 

location-sharing, the main goal is to share “space” and perform activities like coordination or 

planning. However, in a social-driven location-sharing people share their “place” through online 

social networks to attract attention and do self-presentation (Tang et al. 2010). In social-driven 

location-sharing the main focus in on the semantic aspects of the location (Tang et al. 2010). 

 

4.3. Communities of Interest 

 

Online social networks create platforms that connect people with similar interests and values 

(Boyd and Ellison 2008). Research shows that individuals tend to reveal their attributes in online 

environments through posted contents and their pattern of relationships (Moore and McElroy 

2012, Amichai-Hamburger and Vinitzky 2010). Accordingly, prior studies used text-based and 
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network analysis approaches to detect individuals’ common interests. Table 4.1 lists a selected 

number of recent studies that offered relevant techniques for capturing individuals’ attributes in 

online platforms. 

Table 4.1. Review of Attribute Detection Methods 
Study Method Summary 

Trusov et al. 
(2016) 

Text 
Mining 

This study used a rich dataset from a leading global information 
company to develop an extension of the Correlated Topic Model in 
Natural Language Processing. Their model captures individual’s roles 
(i.e. Information Seeker, Online Shopper) during their web surfing time 
periods. 

Argamon et 
al. (2009) 

Text 
Mining 

This study used full sets of blog posts for more than 19,000 users to 
train a supervised learning model that could be used for prediction of 
age, gender, language and personality of individuals. 

Li et al. 
(2014) 

Network 
Analysis 

This study considered networks around individuals as the source for 
attribute detection. It argued that each ego individual has several social 
circles in her/his ego network and she/he only takes the attributes that 
are common in each social circle. The main goal of the study was to 
find the optimal number of social circles in ego-networks that can 
represents individual attributes.      

Palsetia et al. 
(2012) 

Network 
Analysis 

This study used Jaccard index to compute similarity among set of 
preselected accounts in Facebook and Twitter. The similarity index was 
computed based on users’ pattern of interaction with the accounts. 
Later, a hierarchical approach was used to partition the accounts into 
different communities of interest.   

Mislove et al. 
(2010) 
 

Network 
Analysis  

This study considered social networks of users on Facebook. It captured 
individuals’ attributes and formed communities of individuals based on 
commonality of their attributes. This study found that these 
communities generate significant values for the community index 
(modularity). Accordingly, they conclude that community detection can 
be used for attribute detection.    

Ikeda et al. 
(2013) 

Hybrid 
Model  

This study offered a three-layer framework (i) Extracting demographic 
features from users’ tweets (ii) Applying community detection 
techniques to put users in different communities (iii) Estimating 
demographic information for community members using the extracted 
features    

Pennacchiotti 
et al. (2011) 
 

Hybrid 
Model  

This study used LDA model to detect linguistic features for different 
classes and then applied sentiment analysis to capture individuals’ 
sentiment toward the features in each class. These features along with 
some captured features in online social network have been used to train 
a supervised machine learning algorithm.     

Proposed methods generally suffer from one or more of the following limitations: (1) 

they cannot represent actual interests of individuals and suffer from the social desirability 

element of self-disclosure (2) they can only capture a few attributes (3) while the silent users 
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(lurkers) make up the majority of online communities (Gong et al. 2015, Nielsen 2006), the 

proposed algorithms only capture the attributes of active users (4) capturing an individual’s 

attributes requires advanced knowledge about the personal attributes of the individual’s friends 

(5) they limit the relationships of users to inside community relationships and ignore interaction 

of them with outside users. Our study addresses these limitations by introducing a novel theory-

based clustering model for capturing individuals’ community of interest in online social 

networks. 

We develop our algorithm based on the concept of homophily (McPherson et al. 2001, 

Lazarsfeld and Merton 1954) in social science. Homophily refers to the strong tendency of 

individuals with similar attributes to interact with each other rather than with people with 

dissimilar attributes (McPherson et al. 2001, Lazarsfeld and Merton 1954). Studies have shown 

that homophilous relationships can promote the spread of similar behavior among individuals 

(McPherson et al. 2001, Rogers 1995). Homophily has also been considered as one of the main 

dimensions of social structure in healthy lifestyle theory, where it plays a role in the formation of 

health-related lifestyle behaviors (Cockerham 2005). 

Homophily has roots in demographic or psychographic factors (Gu et al. 2014). These 

factors can change over time (i.e. marital status) or can be constant attributes (i.e. race) (Li et al. 

2013). Researchers articulated several explanations for observed homophilous relationships 

among individuals. Gu et al. (2014) argued that individuals develop relationships with similar 

others because: (1) it increases the chance of being liked by others and (2) it is easier to get 

confirmation from similar others. Kossinets and Watts (2009) considered the role of trust and 

solidarity in creation of homophilous ties and noted that the ongoing cost of maintaining 

relationships with similar others is lower than with dissimilar ones. They also emphasized a 

prominent fact of social life: that individuals’ choices of relationship are primarily constrained 
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by other factors such as geographical locations, neighborhoods, working places, and schools. 

These constraints in nature provide homogenous choices of relationships for individuals. 

 

4.3.1. Homophily-based Interest Detection (HID)  

Users of online social networks come from different social and cultural backgrounds and possess 

different interests and preferences. According to selective exposure theory, people have a 

tendency to expose themselves to those mass communication channels which reinforce their own 

views and are in agreement with their own interests and type of thinking (Sears and Freedman 

1967, Zillmann and Bryant 1985, Zillmann 1988). Therefore, it is expected that in interaction 

with online social networks, individuals follow the social pages20 that promote their own views 

and are in line with their interests and preferences. Relying on this assumption, and by applying 

clustering techniques in network studies, we offer a Homophily-based Interest Detection (HID) 

method for capturing communities of interest in online social networks. 

HID is an algorithm that can be applied to extended bipartite graphs within online social 

networks and is composed of four sequential steps: (1) Network Simplification, (2) Network 

Clustering, (3) Cluster Labeling, and (4) Measurement of Interest. An extended bipartite graph in 

online social networks consists of two separate networks: the social network of individuals and 

the bipartite network of individuals and social pages. A social network of individuals refers to a 

graph in which a node represents an individual and an edge indicates the existence of 

reciprocated relationship between two individuals. A bipartite network of individuals and social 

pages is a graph that has two types of node (individuals and social pages), and edges represent 

                                                
 
20 A social page refers to an account in online social networks related to an organization, a brand, a celebrity, a 
program, a news agency or any other popular entity that can attract individuals’ interests. 
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the pattern of following social pages by individuals. Figure 4.1 shows a sample of an extended 

bipartite graph in online social networks.   

 

 

Figure 4.1. Extended Bipartite Graph  

Step 1: Network Simplification. The main purpose of this step is to convert an extended 

bipartite graph into a weighted graph of social pages, where weights represent the similarity of 

the social pages. To achieve this goal, in the first stage, each social page is mapped to the graph 

of its followers and their relationships. In the second stage we compute the similarity of the 

social pages using the mapped graphs. Similarity is computed based on two main assumptions: 

(1) individuals who are friends with each other are more likely to have similar interests and 

follow similar social pages in online social networks. This criterion is in line with the concept of 

homophily (McPherson et al. 2001, Lazarsfeld and Merton 1954) (2) social pages with higher 

numbers of common followers are more likely to be similar to each other. This assumption is in 
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line with the concept of embeddedness (Aral and Walker 2014, Easley and Kleinberg 2010) in 

social network studies. According to this concept a higher number of common friends is an 

indicator of a strong relationship between two individuals. Accordingly, two mapped graphs 

have a higher level of similarity when (1) the number of edges among common nodes in two 

mapped graphs be higher than the number of edges among the rest of the nodes in the graph (2) 

the number of common nodes in the two mapped graphs is higher than the number of uncommon 

nodes in the graphs. To satisfy those needs, we use the following similarity function in graph 

theories (Johnson 1985):  

𝑆𝑖𝑚(𝐺^, 𝐺_) =
(|𝑉(𝐺^, 𝐺_)| + |𝐸(𝐺^, 𝐺_)|)K

(|𝑉(𝐺^)| + |𝐸(𝐺^)|)	. 	(|𝑉(𝐺_)| + 	|𝐸(𝐺_)|)
 

Where 𝐺^, 𝐺_ represent the mapped graphs of social page A and social page B. |𝑉(𝐺	)| returns 

the number of nodes (follower) and |𝐸(𝐺	)| returns the number of links (relationships) in graph 

𝐺	. |𝑉(𝐺^, 𝐺_)| and |𝐸(𝐺^, 𝐺_)| are the number of common nodes and links between 𝐺^ and 𝐺_ 

respectively. This formula considers both the numbers of common followers and their 

relationship in computation of similarities and return a value between 0 and 1. The output of this 

similarity function can be used to weight the simplified network of social pages in online social 

networks.21 Figure 4.2 depicts the process of converting an extended bipartite graph to a 

simplified weighted graph. 

                                                
 
21 We ignore the similarity of each social page with itself as it produces self-loop connections for all the nodes in the 
graph which cause bias in the graph clustering process.  
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Figure 4.2. Mapped Network of Social Pages 
 

Step 2: Network Clustering. In this step we use optimization techniques for graph 

clustering. The method can be used to find the best value of modularity in weighted graphs 

(Newman 2004). Modularity (Newman and Girvan 2004) is a quantity that measures how the 

structure of communities is different from a random graph. The following formula can be used to 

compute the modularity in weighted graphs (Newman 2004): 

𝑄 =
1
2𝑚e[𝐴"g −

𝑘"𝑘g
2𝑚 ]𝛿(𝑐", 𝑐g)

"g

 

Where 𝐴"g is the weighted adjacency matrix of a graph, 𝑚 is the total sum of the weights in the 

graph and computed as 𝑚 = %
K
∑ 𝐴"g"g , 𝑘" is the sum of the edges’ weight that have one end in 

node 𝑖 and computed as 𝑘" = ∑ 𝐴"gg , 𝑐" represents the cluster that node 𝑖 is assigned to it. Finally, 

the function 𝛿(𝑐", 𝑐g) returns 1 if node 𝑖 and 𝑗 are assigned to the same cluster and 0 otherwise. 

The main purpose of modularity-based graph clustering algorithms is to assign nodes to various 

clusters in order to maximize the value of modularity. This process leads to detection of graph 

clusters that has meaningful difference with random graphs. In this study we use the modularity 

optimization method that was proposed by Blondel et al. (2008). This method is one of the best 

modularity optimization methods in terms of performance and speed (Fortunato 2010). This 
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method uses a greedy approach that iteratively optimizes the value of modularity by assigning 

the nodes to different clusters. Applying the algorithm to the graph in Figure 4.2 leads to a 

modularity of .48 and two clusters (C1 = {A, B}, C2 = {C, D}). By definition a nonzero value 

for the modularity indicates the existence of graph clusters that deviate from random graphs. It 

was argued that real world communities have a modularity value between 0.3 and 0.7 (Clauset et 

al. 2004). 

However, Modularity-based algorithms suffer from the resolution problem in large 

graphs (Fortunato and Barthelemy 2007, Kumpula et al. 2007). This means that modularity-

based algorithms cannot capture small clusters within the large set of clusters. In order to solve 

this problem, we use the hierarchical clustering approach in HID. In the hierarchical clustering 

approach, we continuously apply our clustering algorithm to newly detected clusters in order to 

divide them to the smaller cluster. In this process, we check the value of modularity in each level 

to make sure that it satisfies the minimum threshold of real world communities. 

Step 3: Cluster Labeling. After detection of page clusters in online social networks, we 

have to consider the functional property of the clusters. The functional property can be captured 

by considering common attributes of social pages in each cluster. Detection of functional 

property for clusters confirms the validity of the clustering approach (Yang and Leskovec 2015). 

We later assign the functional property of each cluster as its label. 

Step 4: Measurement of Interest. Each cluster of social pages represents a community 

of interest with a set of homogenous social pages. Accordingly, the final step in the HID model 

is to measure the connectedness of users to their communities of interest. In order to measure this 

quantity, the normalized number of social pages that each user has followed in each community 

should be computed. The captured values demonstrate the strength of interest of users to 

different communities of interest in online social networks. Figure 4.3 demonstrates this process. 
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Figure 4.3. Measurement of Users’ Interests 
 

4.4. Theoretical Foundation and Hypothesis Development 

 
This section discusses the theoretical foundation and hypothesis development related to 

communities of interest.  

4.4.1. Communities of Interest and Motivational Factors 

According to the functional theory of disclosure, understanding individuals’ self-disclosed 

behaviors requires identification and measurement of major sources of interests and values for 

individuals (Derlega and Grzelak 1979). Research demonstrates that personal attributes such as 

interests, values, and preferences are not just the reasons behind self-disclosure of behavior, but 

also form motivational factors behind performing different activities and lifestyle behaviors 

(Deci 1992, Sagiv et al. 2011, Schwartz 2015).  

Self-determination theory (SDT) is a motivational theory in psychology that captures the 

role of personal attributes in formation of self-regulated behaviors (Ryan and Deci 2000, Deci 

and Ryan 2011). It distinguishes between the motivational basis of self-determined behaviors 

and those activities that are instrumental for some forms of reward (Ryan and Deci 2000). SDT 

argues that developing a sense of autonomy (being the origin of our own behavior), competence 
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(control over the desired outcome) and relatedness (having interaction with others and being 

understood and cared for by them) are critical in the formation of self-motivated behavior (Ryan 

and Deci 2000). Prior studies in the field found that the internalized values, interests and 

preferences of individuals play important roles in the process of developing senses of autonomy, 

competence, and relatedness in individuals (Deci 1992, Ryan et al. 2008, Waterman et al. 2003). 

In fact, interest stimulates effort (Dewey 1913) and is associated with engagement in activities 

(Ainley et al. 2002).  

Accordingly, we expect that interests and preferences of individuals play a role in the 

formation of their health-related lifestyle behaviors. Thus, we argue that health-related interests 

of individuals are associated with their health-related lifestyle behaviors. Hence,  

Hypothesis 1: Disclosed healthy lifestyle behaviors are (a) positively associated with 
observed individuals’ healthy interests. (b) negatively associated with observed 
individuals’ unhealthy interests.  
 
Hypothesis 2: Disclosed unhealthy lifestyle behaviors are (a) positively associated with 
observed individuals’ unhealthy interests. (b) negatively associated with observed 
individuals’ healthy interests. 

 

4.4.2. Inhibition Role of Communities of Interest  

The self is constructed through “a process of social interactions with various communities, 

physical structures, environments, as well as with other humans and objects” (Morie et al, 2008, 

p. 367). According to the social identity model of deindividuation (SIDE), the notion of self 

consists of two identities: (1) personal identity (2) social identity (Reicher et al. 1995). Personal 

identity refers to unique personal attributes of individuals and social identity refers to different 

groups that the individuals belong to. Research indicates that social identities play important 

roles in demarcating the accepted behaviors and norms within social groups (Pegg et al. 2018, 

Pugh 1997, Erikson 1994). Social identity is also at work in online social networks. 
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Communities of interest not only represent the strength of individuals’ interest in different topics 

but also reveal the social group that individuals interact with, in which they have their own 

defined norms. Accordingly, self-disclosure in online social networks follow the perceived 

norms of self-disclosure within these groups (Nguyen et al. 2012, Cramer et al. 2011).  

However, not all individuals’ social identities are compatible (Farnham and Churchill 

2011). This means that while performing one form of lifestyle behavior could match with 

existing norms in one social group, it may not be appropriate in the other group. We argue that in 

these situations, people who participate in conflicting lifestyle behaviors are less likely to 

disclose their behavior in online social networks. Accordingly, we propose our last set of 

hypotheses as: 

Hypothesis 3: Individuals who belong to unhealthy communities of interest are less likely 
to disclose their healthy lifestyle behaviors in online social networks. 

Hypothesis 4: Individuals who belong to healthy communities of interest are less likely 
to disclose their unhealthy lifestyle behaviors in online social networks. 

 

4.4.3. Control Variables 

In our study, we control for three factor groups that can impact individuals’ self-disclosure in 

online social network. First, we control for other non-health-related interests of individuals. This 

helps to separate the effects of health-related interests from non-health-related interests. 

Moreover, capturing the effect of non-health-related interests provides additional insights for 

interpretation of relationships between communities of interest and individuals’ disclosed health-

related lifestyle behaviors. Second, we control for the individuals’ social network size. Wang et 

al. (2016) showed that a higher number of friends in Facebook is negatively associated with the 

individual’s level of self-disclosure in that platform. Finally, we control for the effects of 

demographic factors. A recent study argued that gender can play an important role in making 

decisions for self-disclosure (Wang et al. 2016). Socio-economic status (SES) is another 
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important demographic factor. In Essay 1, we have demonstrated that SES is positively 

associated with observed individuals’ healthy lifestyle behaviors and negatively associated with 

their unhealthy lifestyle behaviors. 

 

4.5. Data Collection and Measurement 

Data for this study were collected from two popular online social network sites, Twitter and 

Foursquare. Twitter is a platform that allows users to share their opinions and activities in real 

time with others. Foursquare is a location-based social network that gives individuals the 

opportunity to share their lifestyle activities and can be integrated with other social networks 

such as Twitter. In this study, we took advantage of this integration and followed the proposed 

data collection approach in Essay 1. We captured tweets of users inside the U.S. who have 

connected their Foursquare account to their Twitter account and shared their lifestyle activities 

from Foursquare in Twitter. The data collection period was from January 28 to June 17, 2014. 

Data collection was conducted in three stages: user identification, health-related lifestyle 

behavior observation, and complementary data collection. At the first stage, we captured check-

ins of users in Twitter for a twelve-week period (January 28 – April 22, 2014). In this period, we 

selected users who post at-least one check-in every two weeks after their initial captured check-

in. Of our collected data, 32,700 unique individuals met this requirement with average posted 

check-ins of 3.8 in each week. At the second stage, we captured health-related lifestyle behaviors 

of users for an eight-week time period (April 22 – June 17, 2014) from their check-ins in 

different places. We followed the Essay 1’s ideology and considered the types of location from 

which people check-in as the proxy for inferring their health-related lifestyle behaviors. At the 

third stage, we captured the social network of individuals using Twitter API. In the data 
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collection period, we captured more than 5 million check-in tweets, and 1,127,420 distinct 

venues in the U.S.  

4.5.1. Individuals’ Health-related Lifestyle Behaviors 

As it was discussed, we captured individuals’ health-related lifestyle behavior based on 

the shared locations of individuals. We combined the salient categories in Foursquare that 

represent health-related lifestyle behaviors: fitness center & gym, bar, and fast food restaurant. 

Table 4.2 lists the Foursquare categories and number of venues in each type.  

Table 4.2. List of Categories 
Venue 
Type Foursquare Categories # of 

Venues 

Fitness 
Center & 
Gym 

Badminton Court, Baseball Field, Basketball Court, Boxing Gym, Climbing 
Gym, College Basketball Court, College Cricket Pitch, College Football Field, 
College Gym, College Hockey Rink, College Soccer Field, College Tennis 
Court, Cricket Ground, Gym, Gym / Fitness Center, Gym Pool, Gymnastics 
Gym, Hockey Field, Paintball Field, Rock Climbing Spot, Roller Rink, Rugby 
Pitch, Skate Park, Skating Rink, Soccer Field, Sports Club, Squash Court, Swim 
School, Tennis Court, Volleyball Court, Yoga Studio 

36,047 

Bar 
Apres Ski Bar, Bar, Beach Bar, Beer Garden, Beer Store, Champagne Bar, 
Cocktail Bar, Dive Bar, Gastropub, Gay Bar, Hookah Bar, Hotel Bar, Irish Pub, 
Karaoke Bar, Piano Bar, Pub, Sake Bar, Sports Bar, Whisky Bar, Wine Bar 

66,687 

Fast Food 
Restaurant 

BBQ Joint, Fast Food Restaurant, Food Court, Fried Chicken Joint, Hot Dog 
Joint, Mac & Cheese Joint, Pizza Place, Wings Joint 109,575 

Later, we measured individual’s health-related lifestyle behaviors as the number of days that 

each individual posted check-ins from venues within each venue type at the second stage of data 

collection for an eight-week time period. Therefore, for each individual, we computed one 

healthy lifestyle score (Fitness Center & Gym) and two unhealthy lifestyle scores (Bar and Fast 

Food Restaurant). 

 

4.5.2. Individuals’ Interest Metrics 

To capture individuals’ interests, we used the proposed HID model in this study. We used the 

captured social network data in the third stage of data collection to form both the social network 
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of individuals and the bipartite network between individuals and social pages. The social 

network comprises 32,700 nodes (individuals) and 100,898 non-directed edges (reciprocated 

relationships) among them. The bipartite graph includes 32,700 individual nodes, 4,893 social 

page nodes22, and 3,978,613 directed edges that show the pattern of following social pages by 

individuals. Applying HID in a hierarchical structure with a minimum modularity threshold of 

0.3 puts the social pages into 43 distinct communities of interest.23  

 

Figure 4.4. Cluster Labeling Process 

Next, in the cluster labeling step, we developed several information extractor and analyzer tools 

to assign labels to clusters based on extracted descriptions for social pages within each cluster. 

Figure 4.4 illustrates the cluster labeling process in detail.   

This process was conducted in three stages: description extraction, text analysis, and label 

assignment. In the description extraction stage, Twitter and Wikipedia APIs were used to extract 

                                                
 
22 In selection of social pages, we considered the top most popular social pages that have been followed by at least 
1% of individuals in the social network side of the network.  
23 It was argued that real world communities have a modularity value between 0.3 and 0.7 (Clauset et al. 2004). 
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summary descriptions of the social pages. In the second stage, we aggregated the descriptions of 

social pages at the community level and formed an aggregated document for each community. 

Later, we applied the TF-IDF approach to find representative terms for each document (cluster). 

TF-IDF is a standard tool in information retrieval that represents each document by a weighted 

vector in the size of the overall vocabulary (𝑤%,𝑤K, … ,𝑤n). Where 𝑤" is calculated as: 

𝑤" = 𝑇𝐹" 	× 	𝑙𝑜𝑔	(𝐼𝐷𝐹") 
𝑇𝐹" = 𝑇ℎ𝑒	𝑡𝑒𝑟𝑚	𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	𝑜𝑓	𝑡𝑒𝑟𝑚	𝑖	𝑖𝑛	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡	𝐷 

𝐼𝐷𝐹" =
𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠	𝑐𝑜𝑛𝑡𝑎𝑖𝑛	𝑡𝑒𝑟𝑚	𝑖	 

In the final stage of cluster labeling, we considered the terms with the highest TF-IDF weight in 

each document as the representatives of the associated community and assigned a label to each 

community accordingly. Figure 4.5 shows an example of captured terms for a Brewery 

community of interest. 

 
Figure 4.5. Terms with High TF-IDF Weight in Brewery Community of Interest 

Figure 4.6 depicts the hierarchical structure of communities of interest as they were captured by 

the HID method.  
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Figure 4.6. Hierarchical Structure of Communities of Interest 

Figure 4.7 illustrates an example of a cluster that has been divided into four separated sub-

clusters. We used the ForceAtlas 2 layout (Jacomy et al. 2014) in Gephi (Bastian et al. 2009) for 

visualization of clusters. ForceAtlas 2 is a force-directed layout where nodes repulse each other, 

and edges attract the nodes they are connected to toward each other (Jacomy et al. 2014).  
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Figure 4.7. Cluster Visualization 

We classified communities of interest into nine different categories (two of them are health-

related). Table 4.3 shows these categories along with the communities of interest associated with 

them.  

Table 4.3. List of Detected Communities of Interest 
Food 

Communities of Interest 
Travel & Entertainment 
Communities of Interest 

Technology 
Communities of Interest 

Brewery (89) 
Food & Cooking (101) 
Restaurants & Chain Stores (81) 
 

Duck Dynasty (10) 
Film & Music (1538) 
Hip Hop Music (342) 
Sport Media (189) 
Travel (55) 

Apple (25) 
Automobile (9) 
Social Technology (352) 
Mobile Technology (58) 

Business 
Communities of Interest 

Fashion & Art 
Communities of Interest 

Politics 
Communities of Interest 

Business & Finance (33) 
Ecommerce & Online Com. 
(125) 
Influencers (596) 

Art (11) 
Design (12) 
Fashion (159) 

Democratic Party (402) 
Republican Party (79) 

Location  
Communities of Interest 

Sports Team 
Communities of Interest 

Sport 
Communities of Interest 

Austin (12) 
Boston (10) 
Dallas (5) 
Las Vegas (87) 
Los Angles (8) 
New York City (33) 
San Francisco (9) 
Washington DC (10) 

Boston Sports (16) 
Cleveland Sports (3) 
Detroit Sports (11) 
New York Sports (7) 
Milwaukee Sports (8) 
Philadelphia Sports (13) 
Pittsburgh Sports (4) 
St. Luis & Minneapolis Sports (6) 

Baseball (42) 
Basketball & Football (179) 
Car Racing (14) 
Fitness & Health (22) 
Hockey (33) 
Soccer & Tennis (31) 
Wrestling & Fighting (54) 

* Number of social pages is in parenthesis 
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Finally, in the last step of HID, we measured interests of individuals and assigned a 

normalized value based on the level of connectedness to each of the captured communities of 

interest.24  

 

4.5.3. Control Variables  

Per our discussion in the previous section, in addition to individuals’ interests, we control 

for individuals’ social network size and demographic factors. In order to control the effect of 

social network size, we consider individuals’ number of followers in Twitter. In Twitter, 

followers are those users who can observe individuals’ disclosed behaviors. In order to be 

consistent with other factors in our study, we normalized this value by dividing the number of 

followers by the maximum number of followers that users in our study had. We also controlled 

for two demographic attributes of individuals: gender, and socioeconomic status (SES). Gender 

has been captured through the Foursquare profile of individuals using Foursquare API. We use a 

dummy variable to show individuals’ gender (0 = female, 1=male) in our study. For measuring 

SES, we captured the residence of individuals from their Twitter profile and used Census Bureau 

API to extract associated individuals’ income, education and poverty at the city/town level from 

American Community Survey 5-year data (2013). While the extracted values together represent 

SES, they are highly correlated. We used the explanatory factor analysis (EFA) to combine these 

factors and use one single representative factor for SES. The load factors for income, education 

and poverty were 0.86, 0.62, and -0.94, respectively.  

 

                                                
 
24 We test for possible correlation between the size of communities of interest (number of social pages in each 
community) and the average interest score of individuals on those communities. Our results show no significant 
correlation between these two factors. 
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4.6. Data Analysis and Model Estimation 

 
4.6.1. Checking for Collinearity 

To check for the possibility of a collinearity problem among independent variables, we first 

examined the conditioning index and variance proportion associated with independent variables. 

Per Belsley et al. (2005), a conditioning index greater than 30 could be an indicator of 

acollinearity problem. In our case the highest value for the conditioning index was 9.12. As the 

second test, we used the Variance Inflation Factor (VIF). Existence of any variable with a VIF 

score larger than 10 in a model can significantly influence the stability of the estimated 

parameters (Dielman, 2001). The highest value of VIF in our models was 3.16. Therefore, we 

conclude that our estimated models do not suffer from the collinearity problem. 

 

4.6.2. Model Estimation 

The distributions of individuals’ check-ins in the second stage of data collection (Appendix G) 

were over-dispersed25.  The high number of zeroes in the data (our dependent variable) makes 

the zero-inflated negative binomial (ZINB) a suitable method for estimation. Zeroes can have 

two sources: (1) individuals did not go to the captured type of venue and so the number of check-

ins for them are naturally equal to zero (2) individuals went to the captured type of venue but 

they did not report it online.  

The ZINB offers a probability model that distinguishes between these two sources of 

zeros by considering two latent groups. Group A represents individuals who reported their 

captured health-related lifestyle behavior as it happened (will be used for testing hypotheses 1 & 

                                                
 
25 We also test the presence of over-dispersion by the recommended alpha test method (Cameron and Trivedi 1990) 
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2), and Group B consists of people who did not report that behavior (will be used for testing 

hypotheses 3 & 4). The following equation represent this concept:   

𝑦"~ w
0									𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝜑				(𝐺𝑟𝑜𝑢𝑝	𝐵)

	 		

𝑓(𝑦"|𝑋")			𝑤𝑖𝑡ℎ	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	1 − 𝜑		(𝐺𝑟𝑜𝑢𝑝	𝐴)
 

The 𝜑 indicates the probability that individuals come from the latent Group A or Group 

B. Accordingly, the probability of  𝑦" number of check-ins for the captured health-related 

lifestyle behavior is equal to:   

𝑃(𝑌" = 𝑦"|𝑋", 𝑍") = w
𝜑(𝛾𝑍") + [1 − 𝜑(𝛾𝑍")]𝑓(0|𝑋")										𝑖𝑓	𝑦" = 0

	
[1 − 𝜑(𝛾𝑍")]𝑓(𝑦"|𝑋")																							𝑖𝑓	𝑦" > 0

					 

where 𝑋" is the vector of independent variables for individual i, and 𝑍" is a vector of covariates 

that contribute to the generation of zeros by not reporting the behavior – in our case 𝑋" , and 𝑍" 

refer to the same vector of individuals’ interests; 𝛾 is the vector of estimated zero-inflated 

coefficients.  

 

4.6.3. Estimation Result 

We used R for model estimation (R Development Core Team 2016). Tables 4.4 – 4.6 report the 

relationships of individuals’ interests with their online observed behavior associated with fitness 

center & gym, bar, and fast food restaurant venues respectively. The coefficients in the count 

section of the tables show the significance and importance of each of individuals’ interests in 

explaining their observed health-related lifestyle behavior. The coefficients in zero-inflated part 

of the tables determine the odds of being the member of latent Group B.    
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Table 4.4. Estimated Model: Healthy Lifestyle Behaviors (Fitness Center & Gym) 
Variables Group A/Count Group B/Zero Inflated 

Model 1 Model 2 Model 1 Model 2 

Control 
Variables 

Network Size -2.875** -2.247 -50.525 -12.400 
Gender 0.071** 0.113*** 252.725 0.580 
SES 0.071*** 0.080*** -0.201 0.024 

Travel & 
Entertainment 

Duck Dynasty  -0.068  -1.435 
Film & Music  -1.373***  10.110*** 
Hip Hop Music  -0.648**  -30.760** 
Sport Media  -1.544***  -21.560** 
Travel  -0.411*  0.787 

Technology 

Apple  -0.161  0.970 
Automobile  0.095  -3.785 
Social Technology  -3.386***  3.123 
Mobile Technology  -0.608**  -0.442 

Business 
Business & Finance  1.019***  -3.110 
Ecommerce & Online Com  2.526***  1.922 
Marketing & Influencers  0.593*  -14.770** 

Fashion & Art 
Art  -0.684***  -5.137** 
Design  0.200  2.114 
Fashion  0.135  -20.190* 

Politics Democratic Party  0.243  2.226 
Republican Party  0.092  2.341** 

Location 

Austin  -0.727***  -0.120 
Boston  -0.283*  1.020 
Dallas  -0.288**  -0.046 
Las Vegas  0.281  0.879 
Los Angeles  -0.268  -0.483 
New York City  0.038  2.018 
San Francisco  -0.214  0.638 
Washington DC  -0.192  -0.210 

Sports Team 

Boston Sports  0.149  1.062 
Cleveland Sports  -0.281  0.259 
Detroit Sports  0.010  -11.640 
New York Sports  -0.021  -0.064 
Milwaukee Sports  0.161  0.102 
Philadelphia Sports  -0.157  1.175 
Pittsburgh Sports  0.039  1.345 
St. Louis & Minneapolis Sports  -0.232  -11.800 

Food 
Brewery  -1.830***  2.490*** 
Food & Cooking  -0.426**  0.748 
Restaurants & Chain Stores  -0.983***  1.943 

Sport 

Baseball  0.007  -13.950* 
Basketball & Football  2.776***  -59.600*** 
Car Racing  -0.332**  0.642 
Fitness & Health  2.718***  -1585.000 
Hockey  -0.019  -4.015 
Soccer & Tennis  -0.001  -13.800** 
Wrestling & Fighting  0.431**  -2.148 

 Constant 0.720*** 0.777*** -255.592 -1.157*** 
 Log likelihood -52873 -52292 
 Wald 𝒙𝟐 35.68 660.5 

N=32,700; *p<.05; **p<.01; ***p<.001 
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Table 4.5. Estimated Model: Unhealthy Lifestyle Behaviors (Bar)  
Variables Group A/Count Group B/Zero Inflated 

Model 1 Model 2 Model 1 Model 2 

Control 
Variables 

Network Size -3.336*** -1.202 -6.380 -100.612 
Gender 0.040** 0.091*** 148.671* 0.296 
SES -0.089*** -0.085*** -5.606*** -0.301** 

Travel & 
Entertainment 

Duck Dynasty  -0.276***  2.102*** 
Film & Music  2.277***  -58.682*** 
Hip Hop Music  -0.441***  -1.986 
Sport Media  0.739***  -1.760 
Travel  0.535***  -25.747*** 

Technology 

Apple  -1.175***  11.949*** 
Automobile  -0.008  3.857*** 
Social Technology  -0.712***  -46.682*** 
Mobile Technology  -0.286*  2.499 

Business 
Business & Finance  0.264  8.377*** 
Ecommerce & Online Com  -1.307***  16.103*** 
Marketing & Influencers  -0.764***  5.042 

Fashion & Art 
Art  -0.129  -27.556 
Design  -0.006  2.673 
Fashion  0.318**  -316.63*** 

Politics Democratic Party  -0.834***  2.680 
Republican Party  -0.785***  2.594** 

Location 

Austin  0.118  -362.716 
Boston  0.236***  -1.254 
Dallas  0.060  2.110** 
Las Vegas  1.019***  -336.800* 
Los Angeles  -0.135  -2.817 
New York City  1.075***  -233.873 
San Francisco  0.310***  -4.383 
Washington DC  0.627***  -324.034 

Sports Team 

Boston Sports  0.025  -12.765 
Cleveland Sports  0.262***  0.374 
Detroit Sports  0.168*  -0.663 
New York Sports  0.156*  -280.880 
Milwaukee Sports  0.396***  -12.862** 
Philadelphia Sports  0.477***  -3.442 
Pittsburgh Sports  0.018  -8.012** 
St. Louis & Minneapolis Sports  0.379***  -0.529 

Food 
Brewery  1.432***  -1318.073* 
Food & Cooking  0.337***  -41.411*** 
Restaurants & Chain Stores  -0.697***  19.498*** 

Sport 

Baseball  -0.572***  -8.116** 
Basketball & Football  -0.777***  9.398** 
Car Racing  -0.341***  -1.681 
Fitness & Health  -0.684***  8.619*** 
Hockey  0.225*  0.159 
Soccer & Tennis  0.012  -2.410 
Wrestling & Fighting  -0.261**  3.084** 

 Constant 1.062*** 1.045*** -168.803** -2.662*** 
 Log likelihood -73636 -72804 
 Wald 𝒙𝟐 135.38 1305.8 

N=32,700; *p<.05; **p<.01; ***p<.001 
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Table 4.6. Estimated Model: Unhealthy Lifestyle Behaviors (Fast Food Restaurant) 
Variables Group A/Count Group B/Zero Inflated 

Model 1 Model 2 Model 1 Model 2 

Control 
Variables 

Network Size -2.588*** -1.066 -750.820 274.382 
Gender 0.207*** 0.179*** 98.120 52.942 
SES 0.002 0.001 -239.65 -12.627 

Travel & 
Entertainment 

Duck Dynasty  -0.030  -56.610 
Film & Music  1.186***  -182.126 
Hip Hop Music  0.246*  73.936 
Sport Media  -0.325  -614.073 
Travel  -0.111  113.672* 

Technology 

Apple  -0.201  9.686 
Automobile  -0.507***  -105.411 
Social Technology  -3.230***  173.115* 
Mobile Technology  0.843***  -615.188* 

Business 
Business & Finance  0.050  129.457* 
Ecommerce & Online Com  0.598**  379.308 
Marketing & Influencers  0.291  180.681* 

Fashion & Art 
Art  -0.231**  -33.359 
Design  0.187  -313.567 
Fashion  -0.742***  158.326* 

Politics Democratic Party  -0.679***  16.152 
Republican Party  0.397***  -314.702 

Location 

Austin  -0.178*  -38.053 
Boston  -0.241**  -60.095 
Dallas  0.067  -101.723 
Las Vegas  -0.188*  101.085* 
Los Angeles  0.060  -151.885 
New York City  0.015  -248.500 
San Francisco  -0.059  -179.696 
Washington DC  -0.417***  11.733 

Sports Team 

Boston Sports  -0.307***  92.095* 
Cleveland Sports  0.259***  -181.091 
Detroit Sports  0.027  56.271 
New York Sports  -0.038  47.009 
Milwaukee Sports  -0.059  33.140 
Philadelphia Sports  -0.012  65.653 
Pittsburgh Sports  -0.116  -66.968* 
St. Louis & Minneapolis Sports  0.097  -229.603 

Food 
Brewery  -0.266**  -377.953 
Food & Cooking  0.217*  -301.590 
Restaurants & Chain Stores  3.047***  -1189.716 

Sport 

Baseball  0.314**  -184.443 
Basketball & Football  -0.217  175.210 
Car Racing  0.402***  34.313* 
Fitness & Health  -1.010***  182.866* 
Hockey  0.346***  157.067* 
Soccer & Tennis  -0.128  146.533* 
Wrestling & Fighting  0.348***  -36.352 

 Constant 0.744*** 0.730*** -750.820 -156.476* 
 Log likelihood -66877 -66202 
 Wald 𝒙𝟐 210.09 1378.2 

N=32,700; *p<.05; **p<.01; ***p<.001 
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Healthy Lifestyle Behaviors (Fitness Center & Gym). The results in Group A/Count 

section of Table 4.4 show that having interest in three communities of interest in the sport 

category (healthy interest) have positive significant association (Basketball & Football, Fitness & 

Health at p<.001, and Wrestling & Fighting at p<.05) with the self-disclosed numbers of check-

ins at fitness center & gym venues. Thus, these three healthy interests provide support for H1a. 

However, we could not find a significant association between self-disclosed healthy lifestyle 

behaviors and healthy interests related to Baseball, Hockey, or Soccer & Tennis. We also find a 

significant negative association (at p<.01) between Car Racing and the number of check-ins at 

fitness center and gym. This result can be due to the different nature of an interest in Car Racing 

and interests in other types of sport. Additionally, results in Zero Inflated data imply that people 

who have interests in Baseball, Soccer & Tennis, and Basketball & Football have significantly 

higher likelihood (Baseball at p<.05, Soccer & Tennis at p<.01, Basketball & Football at p<.001) 

to share their healthy lifestyle behavior.26 This finding shows that sharing check-ins in fitness 

center and gym is not against the norms of sport communities of interest.  

The second category of interest that we developed a hypothesis on is Food. The results in 

Group A/Count section of Table 4.4 show that all communities of interest in the Food category 

have a negative significant association with the reported number of check-ins in fitness center 

and gym (Brewery, Restaurants & Chains Stores at p<.001 and Food & Cooking at p<.01). This 

result provides support for H1b, where we argued that individuals’ disclosed-healthy lifestyle 

behaviors are negatively associated with observed healthy interests of individuals. We also found 

there is a significantly (p<.001) lower probability of sharing check-ins inside fitness centers & 

                                                
 
26 A significant negative coefficient for a factor in the Zero Inflated part of tables indicates that the larger value of 
the factor decreases the probability of inhibition to report the associated behavior (increases the probability of 
reporting the behavior) in online social networks.   
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gyms for people who have a higher level of interest in alcohol beverages (Brewery).27 This effect 

provides partial support for H3, where we argue that sharing healthy lifestyle behaviors in online 

social networks is against the norm for people who belong to unhealthy communities of interest.   

The remaining categories of interest communities represent control variables.  The first 

category is Travel & Entertainment. Communities of interest within the Travel & Entertainment 

category have significant negative association with healthy lifestyle behaviors (except for Duck 

Dynasty). This finding indicates that a higher level of interest in Film & Music (at p<.001), Hip 

Hop Music (at p<.01), Sport Media (at p<.001), and Travel (at p<.05) is associated with lower 

levels of disclosed check-ins in fitness center & gym venues within online social networks. Zero 

Inflated part of the table also reveals that people who followed social pages related to Sport 

Media and Hip-Hop Music have a significantly higher (at p<.01) tendency to share their check-

ins within fitness center & gym venues (if they visit to those places). Moreover, we found that a 

high interest to Film & Music can significantly (p<.001) reduce the chance of reporting activities 

within fitness center & gym venues. This fact indicates that reporting healthy lifestyle activities 

is not a norm for people in the Film & Music community of interest.  

The second controlled category of interest is Technology. Results for technology-based 

interests reveal that individuals’ interests in mobile and social technologies have negative 

significant association (Social Technology at p<.001, and Mobile Technology at p<.01) with 

numbers of check-ins at fitness center & gym venues. Zero Inflated part of the table does not 

show significant results for communities of interest in this category. 

                                                
 
27 A significant positive coefficient for a factor in the Zero Inflated part of tables indicates that a larger value of the 
factor increases the probability of inhibition to report the associated behavior (reduces the probability of reporting 
the behavior) in online social networks.   
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The other controlled interest category is dedicated to business communities of interest. 

Results in Table 4.4 show that having interests in business related social pages is positively 

associated (Business & Finance, E-commerce and Online communities at p<.001 and Marketing 

& Influencers at p<.05) with the number of times that individuals have participated in healthy 

lifestyle activities within fitness center & gym venues. Zero Inflated part of Table 4.4 also 

indicates that having interests in social pages within the Marketing & Influencers community of 

interest significantly increases (p<.01) the likelihood of sharing healthy lifestyle behaviors in 

online social networks. 

The fourth category of interest is Fashion & Art. We found that higher level of interest to 

social pages within a Art community of interest is negatively and significantly associated 

(p<.001) with the number of check-ins in fitness centers & gyms. Zero Inflated results also show 

that people who have developed an interest in Fashion and Art have significantly (Fashion at 

p<.05, and Art at p<.01) higher tendency to share their healthy lifestyle behaviors related to 

fitness center and gym. 

Another set of results is about Politics. The results reveal that having interests to politics 

is not associated with level of healthy lifestyle behaviors. However, the Zero Inflated part of 

Model 2 indicates that individuals with higher tendency toward republican party have lower 

inclination to share their healthy behaviors in online social networks.  

The next sets of interest categories are related to location and sport teams. The first 

category represents communities of interest related to several large cities inside the United 

States. Our results indicate that interests in two prominent cities in Texas (Dallas and Austin) are 

negatively associated (at p<.01) with healthy lifestyle behaviors. We find similar results for 

Boston, where findings show that having interest in social pages representing the City of Boston 

is negatively associated with lower number of check-ins at fitness center & gym venues. We 
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could not find any significant result in Zero Inflated part for this category. Finally, results 

indicate that having interest in different sport teams does not have association with neither the 

number of check-ins nor with tendency of them to report their healthy behaviors.  

The other set of control variables are demographics and network size. Our results indicate 

that men report significantly higher (at p<.001) numbers of check-ins at fitness center & gym 

venues. We also found that SES is positively associated (at p<.001) with self-reported healthy 

behaviors in online social networks. We could not find significant results for the network size 

variable.  

Unhealthy Lifestyle Behaviors (Bar). Table 4.5 shows the relationship between 

communities of interest and unhealthy lifestyle behaviors associated with bar venues. The first 

category is Food. Group A/Count results show that interest to Brewery companies is significantly 

(at p<.001) associated with higher numbers of check-ins in bar venues. Our findings show 

similar significant positive association at p<.001 for the Food & Cooking community of interest. 

However, in the case of Restaurants & Chain Stores, we surprisingly found that a higher level of 

interests in this community of interest can lead to a significantly lower level of check-ins in bar 

venues at the level of p<.001. The final community of interest in this category is Travel. Results 

show that people who have a higher level of interest in social pages related to traveling are 

significantly (at p<0.001) more inclined to go to bar venues. Group B/Zero Inflated results only 

show a significant coefficient (negative significant at p<0.001) for Brewery in this category. 

Thus, higher levels of interest in Brewery companies in online social networks is associated with 

a higher level of willingness to share check-ins from bar venues. This result supports our H2a 

hypothesis and shows that interests in alcohol beverages is positively associated with a higher 

number of observed unhealthy behaviors related to Bar. Group B/Zero Inflated results also 

indicate that people with higher levels of interest to Brewery and Food & Cooking have a 
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significantly higher (Brewery at p<.05, and Food & Cooking at p<.001) tendency to self-disclose 

their check-ins in bar venues. Similar to the Count result, we observed that the Restaurant & 

Chain Stores category shows distinct results from the other two communities of interest in this 

category. The result show that people who have a higher level of interest Restaurants & Chain 

Stores have a lower inclination to self-report their unhealthy behaviors related to bars in online 

social networks. This indicates that posting about unhealthy behaviors related to bars is not a 

norm for people within Restaurant & Chain Stores community of interest.  

The second category is sport. The Count section of Table 4.5 shows that all sport 

communities of interest – except form Hockey and Soccer &Tennis – have a significant negative 

association with individuals’ unhealthy behaviors related to bar venues (Baseball, Basketball & 

Football, Car Racing, Fitness & Health at p<.001 and Wrestling & Fighting at p<.01). For the 

other two communities of interest, we found a marginal positive and significant coefficient for 

Hockey (at p<.05) and an insignificant coefficient for Soccer & Tennis. This finding provides 

partial support for H2b. Zero Inflated results also indicate that only people who have a higher 

interest in Baseball have significantly higher tendency to share their bar check-ins in online 

social networks. Other people with interests to Basketball & Football, Fitness & Health, and 

Wrestling and Fighting have a significantly lower tendency to share their bar-related unhealthy 

behaviors (Basketball & Football, Wrestling & Fighting at p<.01, and Fitness & Health at 

p<.001). This result shows that posting unhealthy behaviors related to a bar is not a norm for 

people with healthy interests related to above discussed communities of interest. This can be 

considered as partial support for H4.  

The next category is Travel & Entertainment. This represents a controlled interest 

category. In this category, we obtained two distinct sets of results. The first set of results relates 

to Film & Music, Sport Media and Travel. Having interests in all three communities of interest 
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have a positive and significant association (at p<0.001) with number of check-ins at bar venues. 

The Zero Inflated result also shows that interest in Travel and Film & Music is associated with a 

significantly higher (at p<.001) tendency to self-disclosed unhealthy behaviors related to bar. 

The second sets of result are dedicated to Duck Dynasty (a TV series that has characters with 

conservative Protestant Christian views) and Hip Hop Music. We found that individuals who 

have higher levels of interest in these two communities of interest have a significantly (at 

p<0.001) lower number of check-ins at bar venues. The results in Zero Inflated section of the 

table for this set also indicate that interest in the Duck Dynasty TV series is associated with (at 

p<0.01) with a lower tendency to share unhealthy behaviors at bar venues. In other words, as \ 

expected, sharing check-ins at bar venues is not a norm in the Duck Dynasty community of 

interest.   

The second controlled category is Technology. Results show that people who have 

followed social pages related to Apple, Social technologies, and Mobile technologies have 

significantly lower (Apple, Social technologies at p<.001 and Mobile technologies at p<.05) 

numbers of check-ins at bar venues. Zero Inflated result also indicates that while interests in 

social technologies are associated with a significantly higher inclination to self-disclosed 

unhealthy lifestyle behaviors related to bars, interests in Apple and Automobile technologies are 

associated with a lower tendency to self-disclose check-ins at bar venues.  

Business and Politics categories of interest show similar patterns. In the Business 

category, two communities of interest (Ecommerce & Online Community and Marketing & 

Influencers) have a negative significant association (at p<.001) with the number of check-ins at 

bars. Similarly, individuals’ interests in both Republican and Democratic parties have a 

significant negative association (at p<.001) with reported numbers of check-ins in bar venues. 

The results also show similar patterns in Zero Inflated part, where people with higher levels of 
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interest in Business & Finance, Ecommerce & Online Community and Republican Party have a 

significantly lower tendency (Business & Finance, Ecommerce & Online Community at p<.001 

and Republican Party at p<.01) to reveal their behavior in online social networks. 

In the Fashion & Art category, we could only find a significant result for the Fashion 

community of interest. Results in the Count part of the table in this category show that 

individuals’ interest in Fashion has a positive significant relationship at p<0.001 with numbers of 

check-ins at bar venues. Zero Inflated data also shows that interest in Fashion significantly 

increases the tendency of individuals (at p<.001) to reveal their unhealthy check-ins at bar 

venues in online social networks.  

The location category of interest also contains communities related to major cities in the 

United States. Results show that individuals who have followed a higher number of social pages 

related to most of these large cities (Boston, Las Vegas, New York City, San Francisco, 

Washington DC) have a significantly (for all at p<.001) higher level of check-ins in bar venues. 

Zero Inflated results also indicate that people with a higher level of interest in the Las Vegas 

community of interest have a significantly higher tendency (at p<.05) to share their behavior 

within bar venues. Our results also indicate that people who are following social pages related to 

Dallas have significantly lower tendency (at p<.01) to self-disclose their places in online social 

networks when they are in bars.  

The final set of results about communities of interest relates to Sports Teams. We found 

that fans of sports teams have reported a significantly higher number of check-ins (Cleveland, 

Milwaukee, Philadelphia, St. Louis & Minneapolis at p<0.001, and Detroit and New York at 

p<0.05) at bar venues. Zero Inflated findings also indicate that there is a significantly higher 

likelihood for supporters of sports teams in Pittsburgh and Milwaukee (both at p<0.01) to self-

report unhealthy lifestyle behaviors related to bar venues.  
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As with healthy behaviors, we could not find significant results for association between 

network size and self-disclosed unhealthy behaviors related to bar venues. We also found that 

men share a significantly higher number of check-ins (at p<.001) at bar venues. Our findings also 

show that SES is negatively associated (at p<.001) with unhealthy lifestyle behaviors related to 

bar venues.    

Unhealthy Lifestyle Behaviors (Fast Food Restaurant). Table 4.6 shows the result of 

analysis for relationships between communities of interest and lifestyle behaviors related to fast 

food restaurants. The first category that we discuss in this section is Food. Results indicate that 

there are positive and significant associations between two food-related communities of interest 

(Food & Cooking at p<0.01 and Restaurants & Chain Stores at p<0.001) and the number of 

check-ins at fast food restaurants. We also found a significant negative coefficient (at p<.01) for 

interest in Brewery. This result indicates that having interest in alcoholic beverages has direct a 

negative association with unhealthy behaviors related to fast food restaurants.   

The second category is Sport. In contrast with our expectation, results show that fans of 

most sports have a significantly higher number of check-ins (Baseball, Car Racing, Hockey, and 

Wrestling & Fighting at p<.001) at fast food restaurants. Fitness & Health is the only community 

of interest in this category with a significant negative association (at p<.001) with unhealthy 

lifestyle behaviors related to fast food restaurants. Therefore, we could only find marginal 

support for H2b in unhealthy lifestyle behaviors related to fast food restaurants. On the other 

hand, Zero Inflated result indicates that people who have an interest in sport-related communities 

have a significantly lower tendency (Car Racing, Fitness & Health, Hockey, and Soccer & 

Tennis at p<.05) to share their check-ins in fast food restaurants within online social networks. 

This finding indicates that self-disclosure of unhealthy lifestyle behaviors related to fast food 

restaurants is not a norm.  
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Next, we discuss Travel & Entertainment. The Group A/Count shows that Film & Music 

and Hip Hop Music are two communities of interest that have significant positive relationships 

(Film & Music at p<.001, Hip Hop Music at p<.05) with the number of check-ins at fast food 

restaurants. The Zero-Inflated result also indicates that there is a significantly lower likelihood 

(p<0.05) for people who have an interest in Travel to share their unhealthy lifestyle behavior 

related to fast food restaurants in online social networks. 

The second controlled category is Technology. We found that interests in Automobiles 

and Social Technology are two factors that are negatively and significantly (Automobiles at 

p<0.01 and Social Technology at p<0.001) associated with the number of check-ins at fast food 

restaurants. In contrast, results indicate that individuals with higher levels of interest in Mobile 

Technology are going significantly more (at p<0.001) to fast food restaurants. Zero Inflated 

result also indicates that individuals with interest in Social Technology have a significantly lower 

tendency (at p<.05) and those with interest in Mobile Technology have a significantly higher 

tendency (at p<.05) to share their check-ins inside fast food restaurants with their peers in online 

social networks. 

The third controlled category of communities of interest is Business. Among 

communities of interest in this category only Ecommerce & Online Communities have a 

significant coefficient (at p<.01). This finding indicates that there is a positive association 

between having an interest in Ecommerce & Online Communities and going to fast food 

restaurants. However, Zero Inflated result shows that there is a significantly lower chance 

(p<0.05) of sharing check-ins from fast food places into online social networks for people with 

interest in Business & Finance and Marketing & Influencers. 

The next category is Fashion & Art. Except for Design, communities of interest in this 

category have a significant negative association with the number of check-ins at fast food 
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restaurants (Fashion at p<.001 and Art at p<.01). Zero Inflated result also shows that people who 

have a higher level of interest in social pages related to Fashion have a significantly lower (at 

p<.05) desire to share their check-ins at fast food restaurants.  

The other controlled category of interest is Politics. In contrast to other last two discussed 

lifestyle behaviors that belonging to communities of interest related to both Democratic Party 

and Republican party had consistent outcomes, we get different results for Fast Food lifestyle 

behaviors. On one hand, people with higher levels of interest in Democratic Party have a 

significantly lower (at p<.001) number of check-ins at fast food restaurants. On the other hand, 

interest in Republican Party is significantly associated with a higher (at p<.001) number of 

check-ins at fast food restaurants. We could not find any significant result in the Zero Inflated 

part of the table for Politics. 

The sixth controlled category is Location. Our results indicate that individuals who are 

interested in social pages about Austin, Boston, Las Vegas and Washington DC have a 

significantly lower number of check-ins (Austin and Las Vegas at p<.05, Boston at p<.01, and 

Washington DC at p<.001) at fast food restaurants. Zero-inflated result also indicates that 

individuals with interest in Las Vegas have a significantly lower (at p<.05) tendency to share 

their fast food restaurant check-ins in online social networks. 

The final category is Sports Team. The Count result shows that fans of sports teams in 

Boston have a significantly lower number of check-ins (at p<.001) and fans of sports teams in 

Cleveland have a higher number of check-ins (at p<.001) at fast food restaurants. We could not 

find significant results for other sports teams. Zero Inflated result also shows that fans of Boston 

sports teams have a significantly lower (at p<.05) inclination to share their fast food check-ins in 

online social networks. In contrast, findings show that fans of Pittsburgh sports teams have a 

significantly higher (at p<.05) desire to share their fast food check-ins in online social networks.  
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For the demographic and social network size control variables, we could only find a 

significant result for gender. We found that as with the other two lifestyle behaviors, men have a 

significantly higher number of check-ins at fast food restaurants. Table 4.7 summarizes tests of 

our hypotheses. 

Table 4.7 – Supported Hypotheses 
 Healthy Behavior Unhealthy Behavior 

Healthy Interest 
Gym & Fitness Center Bar Fast Food Restaurant 

H1a H2b H4 H2b H4 
Baseball No Yes No No No 
Basketball & Football Yes Yes Yes No No 
Car Racing No Yes No No Yes 
Fitness & Health Yes Yes Yes Yes Yes 
Hockey No No No No Yes 
Soccer & Tennis No No No No Yes 
Wrestling & Fighting Yes Yes Yes No No 

Unhealthy Interest Gym & Fitness Center Bar Fast Food Restaurant 
H1b H3 H2a H2a 

Brewery Yes Yes Yes No 
Restaurants & Chain Stores Yes No No Yes 

 

4.7. Discussions 

 

This study’s first objective was to introduce an approach to detect communities of interest that 

reflects individuals’ personal interests. We achieve this goal by developing a homophily-based 

Interest Detection method (HID). Our method relies on selective exposure theory and the concept 

of homophily in social science as its theoretical bases. It also takes advantage of structural 

features of online social networks and detects individuals’ interests by applying a community 

detection algorithm to an extended bipartite graph of individuals’ relationships in online social 

networks. Applying HID model to an extended bipartite graph of individuals in Twitter 

containing 32,700 individuals and 4,893 social pages shows that this method can successfully 

capture communities of interest within the online platform. The second objective of this study 

was to investigate the relationship between individuals’ observed interests and their disclosed 
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health-related lifestyle behaviors within online social networks. We captured individuals’ 

disclosed health-related lifestyle behaviors based on their location-based check-ins within online 

social networks. Our estimation models show that self-disclosed healthy and unhealthy lifestyle 

behaviors of individuals in online social networks are consistent with their observed interests and 

have direct significant relationships with them. Our study had several important findings. 

First, we found that in addition to the nature of interests which can determine the level of 

individuals’ disclosure about their health-related lifestyle behaviors, the existing norms in 

communities of interest also play an important role in individuals’ decision to share health-

related lifestyle behaviors within online social networks. This is a novel finding, documenting 

the importance of communities of interest in formation of individuals’ self-disclosure behaviors 

in online social networks. 

Second, the empirical results of our study show that Fitness & Health community of 

interest as the best representative of individuals’ healthy interest is positively associated with 

individuals’ healthy lifestyle behaviors and negatively with both unhealthy lifestyle behaviors 

(bar and fast food restaurants) of them. This important and novel finding shows that Fitness & 

Health social pages can play critical roles in the promotion of healthy behaviors among online 

users. Moreover, our estimations show that while people belonging to a Fitness & Health 

community may participate in unhealthy lifestyle activities, disclosing those behaviors is against 

norms in those communities. Considering the impact of social influence in propagation of 

unhealthy behaviors (Essay 1), healthy communities of interest can indirectly help to control 

diffusion of unhealthy lifestyle behaviors among users of online social networks. 

Third, our study distinguishes between interests of individuals who self-disclosed their 

bar check-ins and those who disclosed their fast food restaurant check-ins. Estimated models 

show that interest in brewery social pages is positively associated with the number of check-ins 
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at bars and negatively associated with the number of check-ins at fast food restaurants. We found 

similar result for interest in fast food restaurants, where people with higher interests in social 

pages related to fast food restaurants had a higher number of check-ins at fast-food restaurants 

and a lower number of check-ins at bars. This indicates that while lifestyle behaviors related to 

fast food restaurants and bars both represent unhealthy lifestyle behaviors, they have different 

natures that can even be contradictory. 

Fourth, results revealed that interest in location-based communities for large U.S. cities 

are associated with a lower level of self-reported healthy lifestyle behaviors (Austin, Boston and 

Dallas) and a higher level of self-disclosed behaviors related to bar venues (Boston, Las Vegas, 

New York City, San Francisco, and Washington DC). This result indicates that healthy lifestyle 

behaviors in large cities require additional attention. Thus, it is important that health promotional 

programs target individuals who live in large cities. 

Fifth, our findings indicate that followers of sports teams have a significantly higher 

number of check-ins at bar venues. This is another important finding indicating that sports fans 

are more vulnerable to alcohol drinking problems. Therefore, it is essential that healthy lifestyle 

promoters consider the interest of individuals and offer appropriate alternative choices to them.  

Sixth, the results of the estimated model for healthy lifestyle behavior reveal that interest 

in Social Technology communities of interest is the most important factor in reducing the 

number of check-ins at fitness center & gym venues. This is another novel finding indicating that 

excessive interest in Social Technology reduces individuals’ levels of physical activity.  

Seventh, our results indicate that people belonging to business-related communities of 

interest have healthier life style behaviors in comparison with most other interest communities. 

Estimated models show that all three communities of interest in this category have positive 

relationships with the number of check-ins at fitness centers and gyms. People in these 
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communities (E-commerce & Online community, and Marketing & Influencers) also have a 

lower number of check-ins at bar venues. The results also indicate that revealing check-ins about 

unhealthy lifestyle behaviors is generally not a norm in these communities.  

Finally, the empirical results of our study show that men are more likely than women to 

disclose their lifestyle behaviors within online social networks. This finding is in contrast with 

the findings of Wang et al. (2016), who found that men have a lower tendency for self-

disclosure.    

 

4.8. Implications 

 

4.8.1. Theoretical Contributions 

This study makes several contributions to theory and research. First, our Homophily-based 

interest detection method (HID) introduces a theory-based community detection approach that 

can be used for collection of individuals’ interests form online social networks. To the best of 

our knowledge this is the first study that offers such a comprehensive method for detection of 

individuals’ personal interests solely based on the structure of their social networks. This 

demonstrates the great potential of online social networks for studying the effect of individuals’ 

personal interests in different contexts.  

Second, our study is the first to focus on observed disclosed behaviors within online 

social networks. Prior research used interviews and surveys to conduct their studies. While those 

studies are helpful in understanding the nature of self-disclosure in online social networks, they 

suffer from elements of social desirability and hawthorn effects. Our observational study 



128 
 

eliminates those sources of bias in data and confirms that disclosed behaviors of individuals 

could be a good representative of their observed interests.       

Third, our study shows that the nature of individual’s interests and existing norms within 

online communities of interest can play important roles in disclosure of behaviors within online 

social networks. Additionally, the methodological approach introduced in this study offers an 

analytical method to distinguish between the effects of the interest communities and presented 

norms within those communities. This has a broad implication in future studies of individuals’ 

self-disclosure in online social networks.  

 

4.8.2. Practical and Policy Implications 

The results of our study offer a number of important implications for practitioners and policy 

makers. Massive growth and pervasive use of online social networks make these platforms ideal 

for targeting individuals to promote different products or behaviors. In recent years, social 

marketing programs such as VERB and TRUTH have developed health promotion programs 

using a traditional marketing approach to target individuals in online social networks. The main 

goals of these programs are to promote healthy lifestyle behaviors and encourage people to stop 

their unhealthy lifestyle behaviors by offering alternative healthy lifestyle choices. However, 

these programs cannot easily find their target audience and have limited information about the 

motivational background of targeted users. Our study provides a practical approach for detection 

of communities of interest associated with healthy and unhealthy lifestyle of people. This helps 

health practitioners to not only find vulnerable people inside online social networks, but also 

understand their main interests. This approach provides good sources to them to develop 

alternative lifestyle choices. 
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Our work also shows that social pages in online social networks can play significant roles 

in the formation of individuals’ lifestyle behaviors. Specifically, our findings show that people 

who have followed social pages promoting alcoholic beverages have a higher tendency to go to 

bar venues, and individuals who have followed fast food restaurant pages show a higher 

inclination to go to fast food restaurants, and those who have showed interest in health and 

fitness social pages had higher numbers of check-ins at fitness center and gym venues. This is 

another reason for the importance of attention to online social networks for promoting health 

behaviors. In fact, policy makers can create regulations to control the activity of social pages that 

promote unhealthy lifestyle behaviors, and also provide facilities for healthy social pages to 

expand their activities within online social networks. 

Finally, the proposed approach for detection of interest communities can be widely 

applied to different contexts such as marketing and psychology. Practitioners in those fields can 

use communities of interest to evaluate individuals’ behaviors based on specific interests and the 

norms of these communities of interest. 

 

4.9. Limitations and Future Research Direction 

 
Similar to other empirical studies, our research has some limitations. First our dataset is limited 

to self-disclosed behaviors of users who disclosed their location-based activities from Foursquare 

into their Twitter accounts. Therefore, interpretation of our results was limited to the captured 

population in our study. Future studies might be able to collect data from multiple locations 

based on social networks and further investigate the topics discussed in this paper. Second, in the 

development of the HID model we only considered relationships between strong ties (two-way 

relationships). Future studies can also consider the role of one-way relationships in formation of 
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communities of interest within online social networks. Third, in this study we referred to Clauset 

et al. (2004) and limit the granularity of modularity to 0.3. The future extension of this work can 

consider higher levels of granularity and investigate the role of larger numbers of communities of 

interest in the self-disclosed behavior of individuals.     
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CHAPTER 5 

 

Conclusion 

 

This dissertation makes a number of significant contributions to theory and practice. First, it 

offers a dynamic sequential approach for capturing, extracting and integrating online social 

network public data and the derivation of healthy and unhealthy lifestyle behaviors. This 

approach provides a new venue for studying individuals health-related lifestyle behaviors in a 

large scale. Second, it offers a new theory-based Health-related Lifestyle Behavior (HLB) model 

which provides a conceptual framework for studying online self-disclosed behaviors and the 

social factors that could influence them. Third, it provides new insights about the role of images 

on formation of individuals’ health-related lifestyle behaviors as observed in online social 

networks. Fourth, this work formulates a sequential approach for analysis and categorization of 

images in different contexts. Fifth, it develops a Homophily-based interest detection (HID) 

method that can be used for detection of wide variety of individuals’ interests and preferences 

within online social networks. Sixth, the results of this study show that established norms within 

online communities of interest, and the nature of individuals’ interests and preferences can play 

important roles in disclosure of health-related lifestyle behaviors within online social networks.
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Appendix A: 

Analysis of Highlighted Keywords of Venue Types 

Foursquare boldface-highlighted keywords were collected at venue levels. We collected 

keywords for a total of 114,125 venues (9,054 fitness center & gym venues; 40,172 bar venues; 

64,899 fast food restaurant venues). One unique corpus was created for each type of health-

related venue (fitness center & gym, bar, fast food restaurant). High frequency terms in each of 

the corpuses represent the main characteristics of the venues. To compute the term frequency 

matrices, we applied text preparation algorithms to each corpus. Figure A1 shows the steps for 

text processing of keywords.  First, we removed all the stop words and punctuations from the 

texts, thus removing useless words with high levels of frequency. Second, we converted all the 

words to lowercase formats, making it possible to count keywords with different capitalization 

such as “Gym” and “gym”. Third, we stemmed all the keywords to their roots, making it possible 

to count keywords with same root.  For example, “plays”, “played”, and “playing” was stemmed 

to “play” and counted as the same word.  

 

 
Figure A1. Analysis of Highlighted Keywords  
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involves two words that show up together in the term frequency matrix.  Figures A2-A4 shows 

the 10 most repeated keywords that characterize each venue type based on users’ reviews.28   

   
Figure A2. High Frequency Keywords Fitness Center & Gym  

 

   
Figure A3. High Frequency Keywords Bar  

 

   
Figure A4. High Frequency Keywords Fast Food Restaurant  

                                                
 
28 We omitted adjectives such as great and best in our unigram term visualization since they only provide qualitative 
information about venues.  
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Appendix B: 

Computation of Geo Points as Individuals’ Center-of-Activity Locations 

For each individual’s check-ins, we computed the center of gravity associated with the check-ins 

in venue locations.  This was needed for the computation of individuals’ distances from their 

friends.  We applied the geographic midpoint for this purpose (Zi-xia and Wei 2010, 

geomidpoint.com).  To compute geo midpoints, we used the venues that were located in the state 

where the individual resided because geo points are proxies for individuals’ centers-of-activity. 

The latitude and longitude for each location was converted into Cartesian coordinates. All 

venue locations had equal weights in the computation. The computed x, y, and z coordinates for 

each location were then added together and divided by the total number of check-ins. A line can 

be drawn from the center of the earth out to this new x, y, z coordinate, and the point where the 

line intersects the surface of the earth is the geographic midpoint. This surface point was 

converted into the latitude and longitude for the midpoint. The pseudo code for our algorithm is 

listed below. 

 Venues = findUserCheckinsInTheState(UserId); 
 Counter = 0; 
 SumX = 0; SumY = 0; SumZ = 0; 
 for Venue in Venues{ Counter++; 
  Lat = convertDegreeToRadian(Venue.latitude); 
  Lng = convertDegreeToRadian(Venue.longitude); 
  SumX = SumX + cos(Lat) * cos(Lng); 
  SumY = SumY + cos(Lat) * sin(Lng); 
  SumZ = SumZ + sin(Lat); } 
 AvgX = SumX / Counter; 
 AvgY = SumY / Counter; 
 AvgZ = SumZ / Counter; 
 midLng = convertRadianToDegree(arctan2(AvgY,AvgX)); 
 hyp=sqrt(AvgX^2+ AvgY^2); 
 midLat =  convertRadianToDegree(arctan2(AvgZ,hyp)); 
 
References for Appendix B 
Geomidpoint website. URL: http://www.geomidpoint.com/calculation.html 
Zi-xia C, Wei H. (2010) Study and application of Center-of-Gravity on the location selection of distribution center. 

In Logistics Systems and Intelligent Management, 2010 International Conference 2 981-984. 
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Appendix C: 

Frequency of Distances in Bins 
 

Bin1 (Near) Bin2 (Moderate) 

  
Bin3 (Long) Bin4 (Far away) 

 
 

  
 

 

 

 

 

 

 



158 
 

Appendix D: 

Spearman Correlations 
 

Table D1- Correlations for Fitness Check-ins, N=22,423 
 Variable  1  2  3 4 5 6 7 
1 Individuals’ healthy behavior: Fitness @  t+1         
2 Activity level in social network @  t+1  .373	       
3 Individuals’ healthy behavior: Fitness @ t  .548 .222      
4 Socioeconomic status .018 .008 .029     
5 Social support for healthy behavior: Fitness @ t  .299 .115 .472 .002    
6 Friends’ healthy behavior: Fitness @ t .092 .019 .098 -.005 .039   
7 Ratio of strong ties’ healthy behaviors: Fitness @ t  .034 .018 .035 -.011 .035 .030  
8 Ratio of similar friends’ healthy behaviors: Fitness @ t  .020 .011 .018 .006 .014 -.045 .089 

 
Table D2- Correlations for Alcohol & Smoking Check-ins, N=28,594 

 Variable  1  2  3 4 5 6 7 
1 Individuals’ unhealthy behavior: A&S @ t+1        
2 Activity level in social network @ t+1 .547	       
3 Individuals’ unhealthy behavior: A&S @ t  .456 .274      
4 Socioeconomic status -.036 .008 -.032     
5 Social support for unhealthy behavior: A&S @ t  .214 .098 .464 -.029    
6 Friends’ unhealthy behavior: A&S @ t  .110 -.022 .137 -.034 .079   
7 Ratio of strong ties’ unhealthy behaviors: A&S @ t  .059 .018 .075 -.019 .054 .044  
8 Ratio of similar friends’ un healthy behaviors: A&S @ t  .027 .004 .037 -.017 .042 .027 .116 

 
Table D3- Correlations for Fast Food Check-ins, N=27,253 

 Variable  1  2  3 4 5 6 7 
1 Individuals’ unhealthy behavior: FF @ t+1        
2 Activity level in social network @ t+1 .621	       
3 Individuals’ unhealthy behavior: FF @ t  .395 .360      
4 Socioeconomic status -.007 .005 -.002     
5 Social support for unhealthy behavior: FF @ t  .150 .122 .391 -.008    
6 Friends’ unhealthy behavior: FF @ t .083 .040 .090 -.006 .017   
7 Ratio of strong ties’ unhealthy behaviors: FF @ t  .010 .018 .007 -.012 .018 -.004  
8 Ratio of similar friends’ unhealthy behaviors: FF @ t  .013 .006 .016 .005 .025 -.031 .108 
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Appendix E: 

Distributions of Check-ins of Individuals and Their Friends 
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Appendix F: 

Label Granularity Levels 
 
 

 
Figure F1. Label Structure for Fitness Center & Gym  
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Figure F2. Label Structure for Bar  
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Figure F3. Label Structure for Fast Food Restaurant 
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Appendix G: 

Distribution of Individuals’ Check-ins 
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