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ABSTRACT 

ROLE OF THE TWO ADAPTOR PROTEINS IN THE CHP CHEMOSENSORY SYSTEM OF 
PSEUDOMONAS AERUGINOSA 

 

by 

Swati Sharma 

 

The University of Wisconsin-Milwaukee, 2018 
Under the Supervision of Professor Sonia L. Bardy 

 

 

The Chp chemosensory system in Pseudomonas aeruginosa controls two outputs: 

twitching motility (surface-mediated movement via Type IV pili) and intracellular adenosine 3’, 

5’-cyclic monophosphate (cAMP) levels (by modulating the activity of major adenylate cyclase 

CyaB). This study was done to investigate the roles of the two adaptor proteins, PilI and ChpC in 

connecting one methyl-accepting protein (MCP) to one histidine kinase. We assayed b-

galactosidase activity as an indicator of the relative levels of intracellular cAMP and measured 

twitching motility. We also studied the interaction of the adaptor proteins within the Chp 

chemosensory system. Our bacterial adenylate cyclase two-hybrid analysis showed that PilI and 

ChpC interacted with each other, but did not show interaction with themselves or with the MCP. 

Both adaptor proteins were required for the proper functioning of the system. However, PilI 

played a much bigger role than ChpC in regulating both twitching motility and cAMP levels. 
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Introduction 

Pseudomonas aeruginosa is a Gram-negative, rod shaped bacterium. It is commonly 

found in the environment and is an opportunistic pathogen that can infect compromised patients 

including those with Cystic Fibrosis, AIDS, burn injuries, those undergoing chemotherapy and 

more. It is the primary cause of mortality in patients with Cystic Fibrosis, an inherited disease 

(Fulcher, Holliday, Klem, Cann, & Wolfgang, 2010). Additionally, it infects numerous other 

eukaryotes such as nematodes, insects, plants etc (Bertrand, West, & Engel, 2010). It is a leading 

cause of nosocomial infections, and can cause both acute and chronic biofilm infections in 

humans (Hickman, Tifrea, & Harwood, 2005). 

Type IV pili (TFP) are filamentous appendages located at the poles of P. aeruginosa that 

play a role in surface attachment, virulence, DNA uptake and biofilm formation (Bertrand et al., 

2010; Buensuceso et al., 2017). PilA is the major pilin subunit in P. aeruginosa (Burrows, 2012). 

TFP function to extend or retract via assembly or disassembly of pilin monomers at the base of 

the pilus structure to bring about locomotion over surfaces, known as twitching motility (Inclan 

et al., 2016). Pilus fibers extend, explore the surface before adhering to it and then the attached 

pili become shorter so that the cell can move forward. Twitching occurs on moderately viscous 

moist surfaces such as 0.1% agar (Burrows, 2012).  

There are a total of five clusters of chemotaxis-like genes in P. aeruginosa and 26 genes 

that are homologous to the Escherichia coli methyl-accepting chemotaxis protein (MCP) genes 

(Ferrandez, Hawkins, Summerfield, & Harwood, 2002). The Chp chemosensory system (cluster 

IV) (Fig. 1) regulates twitching motility and intracellular levels of second messenger signaling 

molecule adenosine 3’, 5’-cyclic monophosphate (cAMP) by modulating the activity of the 

major adenylate cyclase CyaB (Fulcher et al., 2010; Jansari, Potharla, Riddell, & Bardy, 2016) 
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(Fig. 2). cAMP binds and activates the Vfr protein (Virulence factor regulator; homolog of 

CAP/CRP in E. coli) which modulates expression of more than 200 genes including virulence 

genes, genes for the TFP motor ATPases PilB/T/U, and TFP assembly genes (Buensuceso et al., 

2017; Francis, Stevenson, & Porter, 2017). While TFP production is controlled through 

modulation of cAMP, the function of TFP (extension and retraction of T4P; twitching motility) 

is cAMP independent, yet also controlled through the Chp system (Fulcher et al., 2010).  

The Chp chemosensory system is a two-component signal transduction system and is 

similar to the chemotaxis system in E. coli. PilJ is the transmembrane MCP in the Chp 

chemosensory system. This chemoreceptor, PilJ, senses the external signal(s) and transduces it to 

the histidine kinase, ChpA (Inclan et al., 2016; Whitchurch et al., 2004). PilK is the 

methyltransferase (homolog of CheR in E. coli) and ChpB is the methylesterase (homologous to 

CheB in E. coli), that is activated when phosphorylated by ChpA (Ferrandez et al., 2002) (Fig. 

3).  

When the MCP senses the environmental signal, it undergoes a conformational change 

and the signal is transmitted to the histidine kinase (Inclan et al., 2016). There is trans-

autophosphorylation of a histidine residue on one of the monomers of the histidine protein kinase 

dimer by the g-phosphoryl group of an ATP molecule which is bound on the other monomer 

(Wadhams & Armitage, 2004). ChpA is known to have eight potential phosphorylation sites, out 

of which six are histidine domains, one threonine and one serine domain. ChpA also has a 

receiver domain which has a role in auto-dephosphorylation (Silversmith, Wang, Fulcher, 

Wolfgang, & Bourret, 2016). Three out of the six histidine phosphotransfer (Hpt4-6) domains 

can be phosphorylated by ATP. These three domains plus two others (Hpt2-6) can be reversibly 

phosphorylated by the ChpA receiver domains. One Hpt domain (Hpt1) and the two 
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serine/threonine domains cannot be phosphorylated at all. The phosphoryl group from the 

histidine is then transferred to the aspartate residue of the response regulators PilG or PilH  (both 

are homologous to CheY in E. coli), or  transferred to the receiver domain of ChpA (Inclan et al., 

2016) (Fig. 3). Hpt2 and Hpt3 phosphorylate PilG and PilH, respectively (Bertrand et al., 2010; 

Silversmith et al., 2016). When PilG is phosphorylated, it modulates the activity of ATPase PilB 

to activate pilus extension and modulates CyaB to increase intracellular cAMP levels. When 

PilH is phosphorylated it acts as a phosphate sink to limit signaling through PilG and modulates 

the activity of the ATPase PilT to drive pilus retraction and reduce the intracellular cAMP levels 

by inhibiting CyaB (Bertrand et al., 2010; Buensuceso et al., 2017). The phosphorylation of PilH 

is preferred over PilG (Buensuceso et al., 2017).  

In chemotaxis-like systems, the interaction between the MCP and the histidine kinase is 

mediated by the adaptor protein(s). The Chp chemosensory system differs from the well-studied 

E. coli chemotaxis system in that there is only one MCP, ChpA is significantly more complex 

than CheA, and there are two CheW-like adaptor proteins in the Chp system: PilI and ChpC 

(Fulcher et al., 2010; Park et al., 2006; Wadhams & Armitage, 2004) (Fig. 3).   

A chemotactic signaling array is made up of a trimer of MCP homodimers, two adaptor 

proteins, and a histidine kinase dimer. E. coli is able to form functional signaling arrays from 

five different MCPs, one adaptor protein and one histidine kinase. Other bacteria, such as 

Helicobacter pylori use multiple versions of adaptor proteins (CheW and CheVs) when forming 

signaling arrays. CheVs have a CheW-like domain and a receiver domain, which acts as a 

phosphate sink leading to signal termination. In H. pylori there are four transducer proteins 

(MCP-like), four adaptor proteins (two perform the  majority of the function: CheW and CheV1) 
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and one histidine kinase that form the signaling arrays (Abedrabbo, Castellon, Collins, Johnson, 

& Ottemann, 2017). 

This study was done to investigate why there are two CheW-like adaptor proteins to 

connect one MCP to one histidine kinase in the P. aeruginosa Chp chemosensory system. This 

chemosensory system is more complicated than the chemosensory system in E. coli and other 

organisms as it has two outputs: twitching motility and cAMP, so we considered the possibility 

that each adaptor protein was functionally distinct – one adaptor forming signaling arrays to 

regulate cAMP, while the other adaptor forming signaling arrays to regulate twitching motility 

(Fig. 4). In contrast to our hypothesis, our results show that both adaptor proteins are important 

in both outputs, with PilI having a larger impact on signal transduction. We also studied the 

interaction of the two adaptor proteins with each other and with PilJ. 

 

Materials and methods: 

Growth conditions 

P. aeruginosa PAO1 and derived mutants were grown at 37°C in Luria Bertani (LB) (10 

g/L tryptone, 5 g/L yeast extract, 2.5 g/L NaCl). E. coli S17-1 was grown at 30°C in LB unless 

otherwise specified. Tetracycline at 10 µg/ml was used to grow E. coli strains with pEX18Tc 

plasmid. Gentamicin was used at 10 µg/ml (E. coli), 50 µg/ml and 100 µg/ml (P. aeruginosa) for 

pSB109 plasmids. In P. aeruginosa, transformants were selected using 100 µg/ml gentamicin, 

and plasmids were maintained with 50 µg/ml gentamicin. Strains for bacterial adenylate cyclase 

two-hybrid assay (BACTH) were grown at 37°C in LB with ampicillin (100 µg/ml) selection for 

pUT18 based plasmids and kanamycin (50 µg/ml) for pKNT25 based plasmids. E. coli DHM1 

was used as the host for the BACTH.  
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Mutant Generation 

In-frame deletion of chpC was made using splicing by overlap extension (SOE) PCR.  

1kb sections of the PAO1 genome immediately upstream and downstream of chpC were 

amplified and fused together during a subsequent round of PCR using the primers listed in table 

3. Colony PCR was used for the initial amplification. The ∆chpC fusion was ligated into 

pEX18Tc, and was transformed into NEB5a competent E. coli cells. The construct was 

sequenced to ensure that there were no mutations. This construct was then transformed into E. 

coli S17-1 by electroporation and then introduced into P. aeruginosa PAO1 via conjugation. 

Merodiploids were selected on 75 µg/ml tetracycline and 5 µg/ml chloramphenicol. Resolution 

of the merodiploids was achieved through 10% sucrose counter selection, and screened on 

tetracycline and sucrose plates. The deletion was confirmed by PCR and gel electrophoresis. 

 

Complementation of deleted gene 

PCR amplified pilI and chpC were each ligated in pSB109 and transformed into NEB5a 

competent E. coli cells. The constructs were confirmed with sequencing to make sure that there 

were no mutations. pilI and chpC were then transformed into the corresponding PAO1 (∆pilI/∆

chpC) strains and the ∆pilI/∆chpC reporter strains by electroporation. pSB109 is derived from 

pJN105 and has an arabinose inducible promoter (araC-PBAD) that allows for induction (Newman 

& Fuqua, 1999).  

 

Ligations 

Ligations of insert and plasmid DNA were set up with 1X NEB T4 DNA ligase buffer 

and 400 units (for 20 µl reaction) or 200 units (for 10 µl reaction) of T4 DNA ligase enzyme. 
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The reactions were incubated at 16°C overnight before proceeding with the transformations in 

NEB5a competent E. coli cells. 

 

Transformations 

Heat Shock 

NEB5a competent E. coli cells were incubated with ligation products on ice for 30 

minutes. The cells were heat shocked at 42°C for 30 seconds. Following a 5 minutes incubation 

on ice, Super Optimal broth with Catabolite repression (SOC) media was added and the cells 

were grown at 37°C for 1 hour for recovery. Then the cells were spread on plates with the 

appropriate antibiotic. 

Electroporation  

Overnight cultures of P. aeruginosa, E. coli S17-1, or E. coli reporter strain DHM1 were 

centrifuged (8000 rpm, 2.5 min). The resulting cell pellet was washed two times in 10% ice cold 

glycerol. The final cell pellet was re-suspended in ice cold glycerol, and 50 µl aliquots were used 

for each transformation. Approximately 100 ng of plasmid DNA was added to the competent 

cells and electroporated at 1600 V. SOC was added and the cells were incubated at 37°C for 2 

hours, prior to plating on LB agar containing the appropriate antibiotic. 

 

Twitching motility assay 

Nine bacterial colonies were stab inoculated into 1% LB or 1% LB gentamicin (50 

µg/ml) agar plates. The plates were incubated at 37°C for 40 hours. After 40 hours of incubation, 

the agar was scraped off and diameters of the twitching zones on the plates were measured.  
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b-galactosidase assay 

To estimate the relative levels of intracellular cAMP in P. aeruginosa, the indicated 

strains containing the lacP1-lacZ reporter construct were grown on LB plates for lawn growth 

(37°C, overnight)(Fulcher et al., 2010). The cells were scraped off the plate and re-suspended in 

LB broth. Optical density (OD600) was measured and the cultures were diluted to OD600 0.28-0.7. 

100 µl of cells were added to 400 µl Z-buffer. The cells were lysed with chloroform and 0.1% 

SDS and incubated at 30°C for 5 minutes. Addition of ONPG started the reaction and 1M 

Na2CO3 was added to stop the reaction when the sample turned yellow. Then the samples were 

centrifuged at 14,000 rpm for 3 minutes and the OD420 of the supernatant was measured.  

 

Immunoblotting 

Surface grown cells from LB or LB+0.01% arabinose plates were suspended in liquid LB 

or LB+0.01% arabinose respectively. 1:10 dilutions of the samples were separated on a 15% 

SDS-PAGE and transferred to polyvinylidene difluoride (PVDF) membrane by semi-dry 

transfer. After blocking in 5% skim milk powder, the membrane was then exposed to mouse 

anti-His primary antibody (1:3000 dilution) and then to sheep anti-mouse secondary antibody 

(1:10,000 dilution). Immunoblots were developed with chemiluminescent reagent from 

SuperSignal West Femto maximum sensitivity substrate kit and a Fotodyne Luminary system.  

 

Bacterial adenylate cyclase two-hybrid (BACTH) strains generation 

The gene of interest was PCR amplified and then ligated into pUT18 or pKNT25. The 

resulting plasmids were transformed into NEB5a competent E. coli cells using heat-shock 

method. Then the respective pUT18 plasmids containing the C–terminus T18 complementary 
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fragment of the adenylate cyclase and the pKNT25 plasmids containing the C–terminus T25 

complementary fragment of the adenylate cyclase were co-transformed into E. coli DHM1 by 

electroporation method. 

 

BACTH assay 

To study the protein-protein interactions, E. coli DHM1 containing the indicated 

plasmids were grown in LB liquid media with ampicillin and kanamycin to obtain an optical 

density OD600 between 0.4-0.9. 100 µl of cells were added to 400 µl Z-buffer. The cells were 

lysed with chloroform and 0.1% SDS and incubated at 30°C for 5 minutes. Addition of ONPG 

started the reaction and 1M Na2CO3 was added to stop the reaction when the sample turned 

yellow. Then the samples were centrifuged at 14,000 rpm for 3 minutes and the OD420 of the 

supernatant was measured. 

The DHM1 strains were streaked for isolation on LB X-gal (5-bromo-4-chloro-3-indoyl-

b-D-galactopyranoside 40 µg/ml), IPTG (Isopropylthio-b-D-thiogalactopyranoside 0.5 mM), 

ampicillin and kanamycin plates to screen for blue-white colonies to study the interaction 

between two proteins. Blue colonies indicate positive interaction while white (or pale blue) 

colonies indicate no interaction between the two test proteins.  

 

Results 

PilI plays a larger role on intracellular cAMP levels than ChpC  

One output of the Chp chemosensory system is the regulation of CyaB activity to 

increase the levels of intracellular cAMP when the response regulator PilG is phosphorylated and 

to decrease the levels of intracellular cAMP when the other response regulator PilH is 
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phosphorylated (Fulcher et al., 2010). In P. aeruginosa, Vfr is the master virulence regulator; a 

protein homologous to CAP (catabolite activator protein) in E. coli. To measure the levels of 

cAMP, a reporter construct containing the lacP1 promoter fused to lacZ was inserted into the 

genome of PAO1 at the fCTX phage site (Fulcher et al., 2010). All mutants for the b-

galactosidase assays were derived from this original reporter strain. cAMP binds to Vfr to turn 

on the promoter for lacZ gene transcription. So, the output (b-galactosidase activity, measured in 

Miller Units) indirectly indicates the relative level of cAMP bound to Vfr. CyaB is the major 

adenylate cyclase and produces approximately 90% of the intracellular cAMP. Correspondingly, 

∆cyaB was used as the negative control for these b-galactosidase assays. 

With the pilI deletion, there was about 94% reduction in cAMP levels and with the chpC 

deletion there was about 47% reduction in cAMP levels as compared to the wild type levels (Fig. 

5A). cAMP levels were not restored to wild type levels in either the chpC or pilI 

complementation, with or without arabinose induction. In ChpC complementation, the cAMP 

levels were 65% of the wild type (without arabinose) and 54% of the wild type (0.01% arabinose 

induction) (Fig. 5A and 5B). Protein levels were slightly increased with 0.01% arabinose 

induction in ChpC complement strain than without arabinose as seen on a Western Blot (Fig. 

6B). In PilI complementation, cAMP levels were only 19% of wild type (without arabinose) and 

15% of wild type (0.01% arabinose induction (Fig. 5A and 5B). Arabinose induction increased 

expression of PilI protein in the ∆pilI::lacP1-lacZ complementation strain, compared to the 

uninduced sample, as seen in Fig 6B. Expression of ChpC-His and PilI-His was not detected in ∆

chpC::lacP1-lacZ and ∆pilI::lacP1-lacZ containing empty vector (pSB109), similar to wild type 

(WT containing pSB109). The PilI complementation experiment was repeated three times but 

there was discrepancy with this data. In one experiment the PilI protein levels were the same 
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regardless of arabinose induction, however there were differences in the amount of protein 

loading as seen on the SDS gel (data not shown). The other two times the PilI levels were 

increased with 0.01% arabinose than without arabinose. One representative image is shown in 

Fig. 6B. The increased expression of ChpC and PilI proteins with arabinose induction did not 

correlate with an increase in the cAMP levels upon complementation (Fig. 5 and 6), emphasizing 

the importance of stoichiometry in the function of chemotaxis-like systems (Sourjik & Armitage, 

2010). 

 

PilI has a larger role in regulating twitching motility than ChpC  

The second output of the Chp chemosensory system is the regulation of twitching 

motility. Phosphorylation of the response regulators PilG or PilH results in extension and 

retraction of the TFP, respectively. Twitching motility assays were done to understand the role of 

the two adaptor proteins in the Chp chemosensory system of P. aeruginosa PAO1 in regulating 

twitching motility.  

With the pilI deletion, there was about 89% reduction in twitching motility as compared 

to 36% reduction with the chpC deletion with respect to the wild type strain. It was also seen that 

twitching motility was restored completely to the wild type levels with chpC complementation. 

Interestingly, the partial complementation of cAMP levels and full complementation of twitching 

motility occurred with similar levels of the ChpC protein in both the non-reporter strain (∆

chpC+chpC-His; used in twitching motility assay) and reporter strain (∆chpC::lacP1-lacZ 

+chpC-His; used in b-galactosidase assays for estimating cAMP levels) as seen in Fig. 6A. ∆

chpC (V) had no ChpC-His protein expression, as expected.  

Similar to the cAMP complementation studies, pilI complementation only partially 
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restored twitching motility (43% of the wild type, Fig 7A). Following inclusion of 0.01% 

arabinose, PilI expression was increased (Fig 6B) resulting in maximum complementation at 

65% of the wild type (Fig. 7B). Further increases in arabinose decreased twitching motility 

below the levels seen in Fig 7B (data not shown). ∆pilA (major pilin subunit; non-piliated strain) 

was the negative control for the twitching motility assay. 

 

The adaptor proteins PilI and ChpC interact with each other  

The BACTH system was used to study the protein-protein interactions. This experiment 

used the two complementary fragments (T25 and T18) of the catalytic domain of adenylate 

cyclase CyaA from Bordetella pertussis. When these fragments are separated, there is no cAMP 

production. In this assay, the two fragments are fused with the two test proteins, and if the two 

test proteins interact, only then there is functional complementation of the T25 and T18 

fragments which results in the synthesis of cAMP. The cAMP binds to the CAP site in E. coli to 

turn on expression of genes for lac and mal operons (Euromedex). The stronger the interaction 

between the test proteins, the more cAMP is produced which allows more cAMP to bind to CAP 

resulting in higher b-galactosidase activity (which is measured in Miller Units). As a result, 

higher b-galactosidase activity correlates with a stronger interaction between the proteins. The 

interaction was also studied on the X-gal/IPTG plates for blue-white screening. Blue color results 

from the cleavage of the chromogenic substrate X-gal by b-galactosidase. IPTG is the inducer of 

the lac promoter and induces full expression of the hybrid proteins and the b-galactosidase 

reporter enzyme (Euromedex). 

To study the interaction between the two adaptor proteins, PilI-T18 (pilI-pUT18) and 

PilI-T25 (pilI-pKNT25) fusion proteins were generated, along with ChpC-T18 (chpC-pUT18) 
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and ChpC-T25 (chpC-pKNT25). There is an interaction between PilI and ChpC, as shown in Fig. 

8 and 9. As controls, it was also tested that the adaptor protein-fusions did not interact with the 

empty vector, pUT18 or pKNT25. Suprisingly, in this assay PilI and ChpC did not interact with 

themselves, as shown in Fig. 10 and 11. The two adaptor proteins also did not show interaction 

with the MCP, PilJ (Fig. 12 and 13). T18-zip (pUT18C-zip) and T25-zip (pKT25-zip) was the 

positive control and (-) indicates the empty vectors present in the cell used as negative controls. 

Based on statistical analysis by ANOVA, followed by Tukey HSD, our values for PilI 

(T18/T25)-ChpC (T25/T18), PilI-PilI, ChpC-ChpC and PilJ (T18)-PilI (T25)/ChpC (T25) were 

not significantly different from the negative control (T18-T25). 

 

Discussion 

Across a variety of bacterial species there are various combinations of proteins that make 

up a chemosensory system. The most well-studied system is found in E. coli, which has five 

MCPs, one adaptor protein (CheW) and one histidine kinase, CheA (Wadhams & Armitage, 

2004). Examples of these different protein combinations found in other bacteria can include a 

wide range in the number of MCPs that feed into a system, or the presence or absence of 

phosphate sinks (such as CheZ in E. coli) (Wadhams & Armitage, 2004). Adaptor proteins are 

important in linking the MCPs to the histidine kinase and are essential for signal transduction 

(Park et al., 2006; Wadhams & Armitage, 2004). Some bacteria have more than one adaptor 

protein for a single chemosensory system. H. pylori, for example, has four transducer (MCP-

like) proteins (Wadhams & Armitage, 2004), four adaptor proteins (out of which two are major 

functional ones), and one histidine kinase. The four adaptor proteins in H. pylori are CheW, 

CheV1, CheV2 and CheV3. The CheV proteins have a CheW domain plus a response regulator-
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like domain (Rec). The rec domain acts as a phosphate sink and leads to signal termination as the 

response regulator, CheY, does not get phosphorylated by CheA. CheW and CheV1 are the two 

major adaptor proteins as both are absolutely necessary for wild type chemotaxis (Abedrabbo et 

al., 2017). In a recent study the histidine kinase CheA was not activated in the absence of CheW 

or CheV1 (Abedrabbo et al., 2017). However, the influence of CheW was stronger than CheV1 

and had a greater ability to activate CheA. The cheW deletion resulted in non-polarly localized, 

non-functional chemotaxis whereas the cheV1 deletion resulted in non-polarly localized, 

functionally impaired chemotaxis. The other two CheV proteins, CheV2 and CheV3 play a 

minor role in the chemotaxis system in H. pylori (Abedrabbo et al., 2017). cheV2, cheV3 single 

mutants and cheV2V3 double mutant were fully chemotactic. CheV1 was seen to substitute for 

the loss of CheV2 and CheV3 (Pittman, Goodwin, & Kelly, 2001). 

The P. aeruginosa Chp chemosensory system has one MCP, PilJ, two adaptor proteins, 

ChpC and PilI, and one histidine kinase, ChpA (Whitchurch et al., 2004) (Fig. 3). We did this 

study to investigate why the Chp chemosensory system needs two adaptor proteins when there is 

only one MCP and one histidine kinase in this signal transduction system. The system has two 

outputs: twitching motility and regulation of intracellular cAMP levels by modulating the 

activity of CyaB. cAMP is required for TFP biogenesis, yet the function of TFP (twitching 

motility) is independent of cAMP (Fulcher et al., 2010). Experiments were performed to check 

the importance of both adaptor proteins on twitching motility and cAMP levels. We deleted the 

chpC and pilI genes and then complemented them and performed the twitching motility assay 

and b-galactosidase assay to estimate the cAMP levels.  

Of the two adaptors encoded in the pil-chp gene cluster, PilI seems to play a greater role 

in signal transduction than ChpC, as both relative cAMP levels and twitching motility show 
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greater decreases in ∆pilI than ∆chpC. This is consistent with a previous study done by Fulcher et 

al. where similar studies were done on strain PAK (Fulcher et al., 2010). In our study, deletion of 

pilI resulted in ~6% b-galactosidase activity (relative to wild type), which is comparable to the 

negative control (∆cyaB, 6% of wild type) (Fig. 5A) suggesting that PilI is required to activate 

CyaB. In the PAK strain, DpilI had ~20% b-galactosidase activity relative to the parent strain, 

comparable to the negative control ∆cyaAB (~14% of the parent strain) (Fulcher et al., 2010). 

However, in contrast to previous studies (Fulcher et al., 2010), we were not able to restore cAMP 

to wild type levels in ∆pilI through complementation even with arabinose induction (Fig. 5A and 

5B). This incomplete complementation could be because of downstream effects from the pilI 

deletion on pilJ expression. The MCP PilJ is absolutely necessary in the functioning of the Chp 

chemosensory system in P. aeruginosa as without PilJ, there is loss of twitching motility and 

significant reduction in cAMP levels (Jansari et al., 2016). In support of  our hypothesis for the 

pilI deletion resulting in downstream effects on PilJ expression, previous studies revealed the 

levels of pilJ-mCherry expressed from the native site in the chromosome were slightly less in the 

pilI deletion strain than in wild type, as seen by western blot (Jansari, 2017).  

Given that T4P biogenesis is dependent on cAMP, it was not unexpected that the pilI 

deletion strain also showed reductions in twitching motility (11% relative to wild type), 

comparable to the negative control for twitching (∆pilA, 10% of wild type) (Fig 7A). Previous 

studies have shown that the pilI deletion strain also has a significant reduction in twitching 

motility (17% relative to the parent strain) in the PAK strain (Fulcher et al., 2010). Again, unlike 

Fulcher et al., we could not fully restore twitching motility in the PilI complement. This partial 

complementation of twitching motility likely correlates with the partial complementation of 

cAMP levels (and expected partial complementation of pilus biogenesis).  
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The chpC mutant resulted in ~54% b-galactosidase activity (relative to wild type) (Fig. 

5A), comparable to ~70% b-galactosidase activity, relative to the parent PAK strain in the study 

by Fulcher et al. (Fulcher et al., 2010). Fulcher et al. also studied the intracellular cAMP levels 

as measured by an enzyme immunoassay and found that the levels in ∆chpC were not statistically 

different relative to the parent strain (Fulcher et al., 2010). It is important to note however, that 

the reporter construct indicates levels of cAMP bound to Vfr, while the enzyme immunoassay 

quantifies levels of free cAMP. We did not use the immunoassay to measure the intracellular 

cAMP levels.  

Similar to PilI complementation, we were not able to restore cAMP to wild type levels in 

∆chpC upon complementation (Fig. 5A and 5B). It is under question why we were not able to 

restore cAMP levels in ∆chpC upon complementation. One possibility is that the addition of the 

His-tag interferes with the function of ChpC. Alternatively, the use of a multi-copy plasmid may 

result in expression of ChpC at levels higher than seen in wild type. In protein complexes that are 

sensitive to stoichiometry, including chemotaxis systems, too much protein can be as detrimental 

as insufficient amounts of protein (S. Parkinson, personal communication). 

With the chpC deletion, twitching motility was ~65% relative to the wild type in our 

PAO1 strain (Fig. 7A), comparable to ~80% in the PAK strain in the study by Fulcher et al 

(Fulcher et al., 2010). We were able to restore twitching motility to wild type levels with chpC 

complementation (Fig. 7A). The restoration of twitching motility through chpC complementation 

may indicate that these levels of intracellular cAMP support TFP formation at levels sufficient to 

mediate wild type levels of twitching motility. This hypothesis will need to be tested by 

examining the levels of surface piliation in the ∆chpC and complemented strain, relative to wild 

type.  
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With both PilI and ChpC, there was an increase in protein expression with arabinose 

induction as compared to without arabinose in the lacP1-lacZ reporter construct, but this increase 

did not result in increased cAMP production (Fig. 5 and 6B). We hypothesize that too much 

protein expression is hindering the cAMP production. Further experimentation will include 

quantitation of the PilI protein levels in the complemented ∆pilI + pilI-His strain (used in 

twitching motility assay) to check if there is a difference in expression levels with and without 

arabinose induction. Additionally, we need to remake the pilI mutant to see if we can eliminate 

any downstream effects on PilJ expression and repeat these assays. 

We also studied the interaction of the adaptor proteins in the Chp chemosensory system 

with themselves and with the MCP, PilJ. We wanted to check whether signaling complexes 

(trimer of MCP dimers, two adaptor proteins and a histidine kinase dimer) could be made with 

PilI-PilI or PilI-ChpC or ChpC-ChpC interaction (Fig. 4). The BACTH study was done in E. coli 

and we expect these results will hold true in P. aeruginosa as well. Our results indicate that PilI 

and ChpC can interact (Fig. 8 and 9), but we found no evidence for PilI-PilI or ChpC-ChpC 

interactions (Fig. 10 and 11).  

Given the functional difference between the two adaptor proteins, we tested if this could 

be explained through preferential interaction between PilJ (the MCP) and PilI compared to 

ChpC. However, our results do not show interaction between the two adaptor proteins and PilJ 

(Fig 12. and 13). These results are surprising, as previous studies done in E. coli, H. pylori and 

Thermotoga maritima show that the adaptor proteins interact with the MCP. CheW was shown to 

interact with the MCP Tar in E. coli using direct pull down assay (Boukhvalova, Dahlquist, & 

Stewart, 2002).  In H. pylori, both the major adaptor proteins CheW and CheV1 interacted with 

the transducer TlpA, while only CheV1 interacted with transducers TlpB and TlpD, as seen by 
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BACTH analysis. Both the adaptor proteins were seen to interact with each other and with 

themselves (Abedrabbo et al., 2017). In T. maritima, a 3.2 Å resolution crystal structure of the 

MCP shows its interaction with the adaptor protein CheW (Li et al., 2013). We expected that in 

the P. aeruginosa Chp chemosensory system, where there is only one MCP, at least one of the 

adaptor proteins would interact with PilJ. One possible reason why we did not see interaction 

might be because the adenylate cyclase T18 fragment-tag is at the C-terminus of PilJ, so the tag 

could be affecting the protein folding and interfering with its interaction with the adaptor 

proteins.  

In summary, our work shows that PilI plays a larger role than the second adaptor protein, 

ChpC, in controlling both twitching motility and cAMP levels in the Chp chemosensory system 

of P. aeruginosa. As seen with the BACTH analysis, both the adaptor proteins surprisingly did 

not interact with themselves, they interacted with each other, but neither of them showed 

interaction with PilJ, which is unlikely. This is the first time the interaction study has been done 

in P. aeruginosa, but based on similar chemosensory system in other bacteria the MCP is known 

to interact with the adaptor protein(s). Future work will include cloning pilJ in the pUT18C or 

pKT25 plasmids thereby placing the tag at the N-terminus of the PilJ and then testing for 

interaction with the adaptor proteins. Further experimentation would also include BACTH 

analysis to study interaction between the adaptor proteins and the histidine kinase, ChpA.  
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chpEpilG pilH pilI pilJ pilK chpA chpDchpCchpB
cheY cheY cheA/YcheRmcpcheW cheWcheB

Fig. 1. Genetic organization of the cluster IV chemosensory genes in P. aeruginosa. The
P. aeruginosa gene names are indicated above the black arrows and the respective E.
coli homologous gene names are indicated above the P. aeruginosa gene names.
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Virulence factor regulator (Vfr; homologous to CAP protein in E. coli) protein and
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PilG
P



	 20	

Periplasm

Cytoplasm

Pi
lJ	
(M

CP
)

Pi
lJ	
(M

CP
)

Signal

PilI ChpC

ChpA

PilG PilH

PilK ChpB

+	CH3 - CH3

P

+	PO4

Pilus extension

Increase in intracellular 
cAMP levels

Pilus retraction

Decrease in intracellular 
cAMP levels

Fig. 3. Schematic of the Chp chemosensory system in P. aeruginosa. PilJ is the MCP;
PilI and ChpC are the two adaptor proteins; ChpA is the histidine kinase; PilG and PilH
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Fig. 4. Different potential signaling array combinations in Chp chemosensory system of
P. aeruginosa We tested whether there is a PilI-PilI, PilI-ChpC or a ChpC-ChpC
interaction that forms the signaling complex.
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Fig. 5. PilI plays a larger role in regulating intracellular cAMP levels as compared to the
other adaptor protein, ChpC. Relative levels of intracellular cAMP bound to Vfr were
measured using b-galactosidase assay. All the strains contained the lacP1-lacZ reporter
construct (see materials and methods). Three biological replicates of surface grown cells
of each strain were assayed in triplicate to calculate the average Miller Units and
standard error of the mean. A) β-galactosidase activity of each strain grown on LB
plates with Gentamicin 50µg/ml and no arabinose. B) β-galactosidase activity of each
strain grown on LB plates with Gentamicin 50µg/ml and 0.01% arabinose.
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Fig. 6. Expression levels of His tagged adaptor proteins during complementation
studies. Whole cell levels of His-ChpC and His-PilI were tested. A) Expression of
ChpC was similar in both the reporter (lacP1-lacZ) and non-reporter strains. Two
different colonies were tested for each strain. B) Induction with 0.01% arabinose
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Fig. 7. PilI plays a larger role in twitching motility as compared to the other adaptor
protein, ChpC. The diameter (in cm) of the zone of twitching motility was measured.
Nine individual colonies of the strains were tested to determine the average diameter
and the standard error of mean. (V) indicates the cells contained empty vector pSB109.
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motility measured on LB Gentamicin 50 µg/ml plate containing 0.01% arabinose.
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interaction grown on LB X-gal+IPTG plates. Interacting proteins show blue color and
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Fig. 9. The two adaptor proteins, PilI and ChpC, interact slightly with each other as
shown by the BACTH analysis. The indicated plasmids were co-expressed in DHM1.
A) The assay was done in triplicates from the liquid cultures and it was repeated with
three independent colonies to calculate the average b-galactosidase activity resulting
from the protein-protein interaction and the standard error of the mean. B) Colonies
from each interaction grown on LB X-gal+IPTG plates. Interacting proteins show blue
color and non-interacting proteins show white color. The positive control was cells with
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independent colonies to calculate the average b-galactosidase activity resulting from
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each interaction grown on LB X-gal+IPTG plates. Interacting proteins show blue color
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leucine zippers fused to T18 and T25. Empty vectors are indicated by T18 and T25
alone.
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BACTH analysis. The indicated plasmids were co-expressed in DHM1. A) The assay
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activity resulting from the protein-protein interaction and the standard error of the
mean. B) Colonies from each interaction grown on LB X-gal+IPTG plates. Interacting
proteins show blue color and non-interacting proteins show white color. The positive
control was cells with leucine zippers fused to T18 and T25. Empty vectors are
indicated by T18 and T25 alone.
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Fig. 13. BACTH analysis does not reveal interaction between the adaptor protein,
ChpC with the methyl accepting chemotaxis protein, PilJ. The indicated plasmids were
co-expressed in DHM1. A) The assay was done in triplicates from the liquid cultures
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Interacting proteins show blue color and non-interacting proteins show white color. The
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indicated by T18 and T25 alone.
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Table 1: Strains used in this study. 
Strain Description Reference or Source 
Pseudomonas aeruginosa   
PAO1 Wild type Iglewski strain C. Harwood 
PAO1:: lacP1-lacZ Chromosomal lacP1 

promoter reporter in PAO1 
(Jansari, 2017) 

∆chpC Deletion of chpC (PA0415), 
made by leaving sequence 
for 9 amino acids in the 
middle 

This study 

∆chpC ::lacP1-lacZ chpC deletion introduced 
into PAO1::lacP1-lacZ 
reporter strain 

This study 

∆pilI 
 

In frame deletion of pilI 
(PA0410) 

(Jansari, 2017) 

∆pilI::lacP1-lacZ 
 

pilI deletion introduced into 
PAO1::lacP1-lacZ reporter 
strain 

(Jansari, 2017) 

Escherichia coli   
NEB5a competent cells fhuA2 Δ(argF-lacZ)U169 

phoA glnV44 Φ80 
Δ(lacZ)M15 gyrA96 recA1 
relA1 endA1 thi-1 hsdR17 
 

New England BioLabs 

DHM1 
 

Reporter strain for Bacterial 
two-hybrid assay. F-, cya-
854 , recA1, endA1, gyrA96 
(Nal r) , thi1, hsdR17 , 
spoT1 , rfbD1, glnV44(AS)  

D. Frank 

DHM1(pKT25zip-pUT18Czip) Positive control for bacterial 
adenylate cyclase two-
hybrid assay 

D. Frank 

S17-1 Thi pro hsdR recA RP4-
2(Tc::Mu) (Km::Tn7) 

D. Saffarini 
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Table 2: Plasmids used in this study 
Plasmid name Description Reference or Source 
pEX18Tc Gene replacement vector, TetR This study 
pEX18Tc-∆chpC 
 

pEX18Tc based plasmid for 
deletion of chpC 

This study 

pSB109 Arabinose inducible expression 
vector, GmR 

(Ketelboeter & Bardy, 
2017) 

pSB109-chpC chpC cloned into pSB109 at 
EcoRI and SmaI sites 

This study 

pSB109-pilI pilI cloned into pSB109 at 
EcoRI and HindIII sites 

This study 

pUT18 Bacterial adenylate cyclase two 
hybrid vector, AmpR 

D. Frank 

pUT18-chpC chpC fused in frame at the N-
terminus of T18 fragment of 
the pUT18 plasmid at EcoRI 
and PstI sites 

This study 

pUT18-pilI pilI fused in frame at the N-
terminus of T18 fragment of 
the pUT18 plasmid at EcoRI 
and PstI sites 

This study 

pUT18-pilJ pilJ fused in frame at the N-
terminus of T18 fragment of 
the pUT18 plasmid at EcoRI 
and BamHI sites 

This study 

pKNT25 Bacterial adenylate cyclase two 
hybrid vector, KanR 

D. Frank 

pKNT25-chpC chpC fused in frame at the N-
terminus of T25 fragment of 
the pKNT25 plasmid at EcoRI 
and PstI sites 

This study 

pKNT25-pilI pilI fused in frame at the N-
terminus of T25 fragment of 
the pKNT25 plasmid at EcoRI 
and PstI sites 

This study 
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Table 3: Primers used in this study 
Primer name Oligonucleotide sequence (5’-3’) 
chpC_Del_UpF TGCCGGAATTCGCAGCGCCACGTGTTGCA 
chpC_Del_UpRev GCTCAGATCAGGCCGGCGTCGGCCTGGTTCATGTTTCG 
chpC_Del_DnF CGAAACATGAACCAGGCCGACGCCGGCCTGATCTGAGC 
chpC_Del_DnRevNew ACAAAGCTTGGAAGCCGCCGGTCAAACCG 
DelChpC_PAO1outA CTCTTTGTGGCGCTCGCG 
DelChpC_PAO1outB GGCGTCGCGCAAGCCTTG 
UP_ChpC_Insert CATGCGAATTCATGAACCAGGCCGTGATC 
DN_ChpC_Insert CTGCGGCCGGACTAGACTGGGCCCTATG 
ChpCInsert_Rev GTATCCCGGGTCAGATCAGGCCGGCGTC 
pilI_Insert_REV CGCGCAAGCTTTTATACGGCGACGTCGAG 
ForwardpilI_inser GTACAGAATTCATGTCGGACGTTCAGACC 
Primers for BACTH 
assays 

 

pilIFR-KNT-UT-C GTTCTGCAGGATGTCGGACGTTCAGACCCCCTTC 
chpCFR-KNT-UT-C GAAGCCTGCAGGATGAACCAGGCCGTGATCGAGC 
pilIrev-KNT-UT CAGGGATCCTCTACGGCGACGTCGAGGAAGCC 
chpCrev-KNT-UT CAGGGATCCTCGATCAGGCCGGCGTCGGCGAG 
pilJ-all-For GTCGGATCCCATGAAGAAAATCAACGCAG 
PilJ-KNT-UT/CRev GTTAGAATTCGAGGCCTGCTCCACGCCCTC 
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