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ABSTRACT
NEUTRON STAR TIDAL DEFORMABILITY AND GRAVITATIONAL

SELF-FORCE

by

Eric D. Van Oeveren

The University of Wisconsin–Milwaukee, August 2018

Under the Supervision of Professor Alan Wiseman

The recent direct observations of gravitational waves by the LIGO-Virgo collaboration

[1–6] have been important pieces of evidence in agreement with Einstein’s theory of

gravity, the General Theory of Relativity. In addition, they open an era of gravitational-

wave astronomy that promises to give us much more information on the systems that

produce gravitational radiation. Perhaps most prominent among these are binary systems

composed of either two black holes, two neutron stars, or one black hole and one neutron

star. This dissertation details theoretical predictions regarding such systems.

It is hoped that gravitational radiation emanating from binary systems that include

at least one neutron star will allow us to determine the equation of state of matter at very

high densities, and therefore information on the composition of such matter. We place

a theoretical upper limit on the tidal deformability of neutron stars, which describes

how easily the shape of neutron stars change in response to an external gravitational

field. This upper limit exists because of causality: the sound speed inside a neutron star

must be less than the speed of light. This puts a limit on the stiffness of high-density

matter, and therefore on the size of neutron stars, which closely corresponds to the tidal

deformability. Our upper limit is consistent with observational information from the

observation of gravitational waves emanating from a neutron star-neutron star binary

[6, 7].

Another system that produces gravitational waves is one made of two black holes.

We study such systems, specifically ones where one black hole is much more massive

than the other. The gravitational waves sourced by these systems will not be observable

by LIGO, but will require a space-based gravitational wave detector. We use a scalar
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point charge as a toy model for the smaller black hole and apply a method discovered by

Hikida et al. [8, 9] to compute the self-force on an accelerated scalar charge in circular

orbit analytically through 6th Post-Newtonian order. Our results are compatible with

previous Post-Newtonian calculations [9] and with numerical work on accelerated scalar

charges [10].

Finally, we extend the method of Hikida et al. to the gravitational case. In particular,

we calculate a gauge-invariant quantity discovered by Detweiler [11] through 6th Post-

Newtonian order. We also calculate the time derivative of that quantity, which gives the

power of the radiated gravitational waves. Interestingly, we find that if the Equivalence

Principle is not obeyed and freely-falling particles can follow non-geodesic paths, dipolar

gravitational radiation is produced. When we do enforce the Equivalence Principle, our

results are consistent with previous Post-Newtonian calculations [12, 13].
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CONVENTIONS

• We use metric signature (−+ ++).

• We use Einstein sum notation. That is, gµνu
ν =

∑
ν

gµνu
ν .

• We use units where c = G = 1.
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Chapter 1

Introduction

This dissertation will discuss my contributions to predictions regarding gravitational

waves, which were originally predicted by Albert Einstein in 1916 [14] and directly de-

tected for the first time in 2015 [1]. These predictions all involve binary systems, that is,

systems of two objects. There are several techniques used in General Relativity to study

such systems, and we start with a conceptual explanation of three of them.

1.1 Numerical Relativity, Post-Newtonian Theory, and Self-

Force

The remaining chapters of this dissertation will discuss different sources of gravitational

waves and make predictions regarding their motion. All of the sources discussed in

this dissertation are binary systems. While the gravitational fields surrounding isolated,

spherically-symmetric objects are well-understood, binary systems are notoriously tricky

to study in General Relativity due to the non-linearity of Einstein’s equation. In order to

study binary systems theoretically, physicists have developed three different techniques

that are discussed in this dissertation: numerical relativity, Post-Newtonian theory, and

self-force. Each technique is useful in a different situation (see Fig. 1). Here we also

briefly mention the Effective One Body (EOB) formalism pioneered by Buonanno and

Damour [15]. The EOB formalism attempts to combine information from all three of the

1



Figure 1 : Different methods for solving the binary problem. For small mass ratios and small interbody

distances, numerical relativity is most useful. For large interbody distances, Post-Newtonian theory

reigns supreme. For large mass ratios, gravitational self-force is used.

techniques discussed below to give analytical results applicable to all binaries, with much

success. For more information on the EOB formalism, we direct the reader to the review

by Damour [16].

1.1.1 Numerical Relativity

In numerical relativity, one uses computers to solve Einstein’s equation. Foundational

work in numerical relativity was originally done by Arnowitt, Deser, and Misner [17];

their methods were later improved upon by Shibata and Nakamura [18] and Baumgarte

and Shapiro [19]. In principle, any problem in gravitational physics could be solved this

way, but in practice, it is difficult in situations where the two objects involved are far

from each other or have very different masses. This is where the two other formalisms

come into play.
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1.1.2 Post-Newtonian Theory

Post-Newtonian (PN) Theory was developed to accurately describe binary systems com-

prised of two objects that are slow-moving and far from each other. The two objects

are considered to be far enough from each other that they can each be considered point

particles. Post-Newtonian results are given in powers of the quantity M/r or v2, where

M is the total mass of the system, r is the separation distance, and v is the speed of one

of the objects. Since these two quantities are small when r is large and v is small, this

simplifies Einstein’s equation to the point where it is solvable. In non-geometrized units,

a PN expansion can be thought of as a series in 1/c2; since c is large compared to velocites

we encounter in our solar system, a PN expansion is useful in describing a system that

is not relativistic. The term “Post-Newtonian” comes from the fact that, as the separa-

tion distance increases, the predictions from General Relativity become indistinguishable

from those of Newtonian gravity. Each new term in a PN expansion therefore gives a

finer correction to Newtonian predictions. For a review on PN Theory, see [20].

1.1.3 Self-Force

Self-force is applicable when the mass of one object is much smaller than that of the other,

but can be used for any inter-object distance r. In this situation, numerical relativity

is insufficient because the gravitational field due to the smaller mass is quite small and

difficult to compute. Self-force gives results in a series of the ratio of the masses. This

ratio, again, is small in situations where self-force is used, and writing answers in terms of

this quantity simplifies Einstein’s equation. For more details on how self-force calculations

are performed, see the third and fourth chapters of this dissertation. For a review on self-

force, see [21].

1.2 The Format of this Dissertation

The rest of this dissertation is split into three chapters. Chapter 2 will describe work I

did with John Friedman that placed a theoretical upper limit on the tidal deformability

3



of a neutron star and its effects on gravitational waves sourced by binaries including

neutron stars. This work was originally published in Physical Review D [22]. Since then,

gravitional waves from a neutron star-neutron star binary have been observed [6], and

the 90% confidence interval based on that data [7] is consistent with our results.

Chapter 3 will detail work I did with Tom Linz under the supervision of Alan Wiseman,

with help from John Friedman. This work used a method pioneered by Hikida et al. [8, 9]

to generate a PN expansion for the self-force on a scalar charge in an accelerated circular

orbit around a non-spinning black hole. Our results are consistent with Hikida et al. and

numerical self-force data reported in [10] on accelerated scalar charges.

Chapter 4 will report work I did under the supervision of Alan Wiseman that extended

the method of Hikida et al. to the gravitational case. Once again, we study a particle in

circular orbit around a non-spinning black hole, and we treat the particle’s orbital angular

velocity as independent from its radial coordinate. However, we do not calculate the

radial self-force—which is gauge-dependent—and instead find a related gauge-invariant

quantity discovered by Detweiler [11] and its time-derivative, which gives the temporal

component of the force. Furthermore, we cannot claim that the results accurately portray

the gravitational perturbation from an accelerated particle, since we have not included the

stress-energy of the accelerating force as a source for the gravitational field. Nevertheless,

treating the particle’s angular velocity as independent of its radial coordinate leads to

an interesting result: if such a freely-falling particle were to follow a non-geodesic path,

it would result in dipolar gravitational radiation. When we enforce geodesic motion on

the particle, our results are consistent with previous PN gravitational self-force results,

including those from Bini and Damour [12], Kavanagh et al. [13], and Fujita [111].

4



Chapter 2

Neutron Star Tidal Deformability

In this chapter, we discuss work I did with John Friedman constraining the tidal deforma-

bility of a neutron. In particular, we set an upper limit on the tidal deformability and its

effect on the gravitational waveform of a black hole-neutron star binary. This upper limit

is based on causality, which prevents anything from traveling faster than light. Applying

this speed limit to the sound speed through neutron stars constrains the stiffness of high-

density matter, which in turn constrains the size of neutron stars. This size constraint

corresponds to a constraint on the tidal deformability, as we show in this chapter. This

work was originally published in Physical Review D [22], and I reproduce it here with

minimal changes. I also compare our results to the 90% confidence interval [7] on the

dimensionless tidal deformability that arose from the observation of GW170817 [6].

2.1 Introduction

Recently, Advanced LIGO [6] detected gravitational waves sourced by a coalescing neu-

tron star binary, and in the future we are likely to detect each year the inspiral and

coalescence of several compact binary systems that include neutron stars, both black

hole-neutron star (BHNS) and binary neutron-star (BNS) systems. These observations

can constrain the neutron-star equation of state (EOS), which gives the pressure p in

terms of the energy density ε. A stiffer EOS, where the pressure increases rapidly with

density, yields stars with larger radii and larger tidal effects on the waveform, governed
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by the star’s tidal deformablity. In particular, tidal distortion during inspiral increases

with the stiffness of the EOSs. Because energy is lost both to gravitational waves and

to the work needed to distort the stars, the inspiral proceeds more rapidly for stars with

greater tidal deformability. The result is a waveform in which the increase in frequency

is more rapid and in which coalescence occurs sooner – at lower frequency.

Beginning with work by Kochanek [23] and Lai and Wiseman [24], a number of authors

have studied the effect of tides on inspiral waveforms. Simulations [25–43] of BHNS and

BNS systems and analytic approximations in the context of post-Newtonian theory [44]

and the Effective-One-Body (EOB) formalism [45–47] are nearing the precision needed

to extract neutron-star deformability from observations with the projected sensitivity of

Advanced LIGO. Recent estimates of the measurability of tidal effects and the ability of

these observatories to constrain the EOS with signals from BHNS and BNS systems are

given in [48–52] and references therein.

In this work, we obtain the upper limit imposed by causality on the tidal deformability

of neutron stars and estimate the resulting constraint on the maximum departure of the

waveform of a BHNS inspiral from a corresponding spinless binary black hole (BBH)

inspiral.1 The limit is analogous to the upper limits on neutron-star mass MNS [55, 56]

and radius R [57]. In each case, one assumes an EOS of the form p = p(ε) that is known

below an energy density εmatch, and one obtains a limit on M and R by requiring that the

EOS be causal for ε > εmatch in the sense that the sound speed, given by
√
dp/dε, must

be less than the speed of light. Because the sound speed is a measure of the stiffness

of the EOS, this is a constraint on the stiffness. An upper limit on tidal deformability

then implies an upper limit on the departure of gravitational wave phase shifts from

corresponding waveforms of BBH inspiral.

1After this paper was posted to arXiv, Moustakidis [53] pointed out a preprint by him and his

coauthors that also obtains upper limits on neutron star mass and tidal deformability imposed by bounds

on the speed of sound, including vsound ≤ c. However, they use a matching density (described in the

next section) 50% higher than ours, giving less conservative results. Furthermore, they do not consider

tidal effects during late inspiral, whereas we apply the results of [54] to do so.
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2.2 Method

2.2.1 Causal EOS

For a perfect fluid with a one-parameter EOS p = p(ε), where p is the pressure and ε

the density of the fluid in its own rest frame, causality implies that the speed of sound,√
dp/dε, is less than the speed of light. That is, the dynamical equations describing the

evolution of fluid and metric are hyperbolic, with characteristics associated with fluid

degrees of freedom lying outside the light cone unless

dp

dε
≤ 1. (2.2.1)

There is some inaccuracy in using the one-parameter EOS that governs the equilibrium

star to define the characteristic velocities of the fluid, because fluid oscillations with the

highest velocities have frequencies too high for the temperature of a fluid element and

the relative density Yi of each species of particle to reach their values for the background

fluid star. Nevertheless, using a result of Geroch and Lindblom [58], we show in Appendix

A that causality implies the equilibrium inequality (2.2.1) for locally stable relativistic

fluids satisfying a two-parameter EOS p = p(ε, s), where s is the entropy per baryon. For

the multi-parameter equation of state p = p(ε, s, Yi), with Yi the relative density of each

species of particle, one must assume without proof that causality implies vsound < 1; the

equilibrium inequality (2.2.1) again follows from local stability.

The speed of sound is a measure of the stiffness of the EOS. The well-known upper

limit on the mass of a neutron star and a corresponding upper limit on its radius are

obtained by using the stiffest EOS consistent with causality and with an assumed known

form at low density. That is, above a density εmatch, the EOS is given by

p− pmatch = ε− εmatch, (2.2.2)

where pmatch is fixed by continuity to be the value of p at εmatch for the assumed low-

density EOS. The upper limits on mass and radius are then found as functions of the

matching density εmatch.
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In this work, we again use an EOS of this form to find an upper limit on neutron-star

deformability. To be conservative, as our low-density EOS we choose the MS1 EOS [59],

which is among the stiffest candidate equations of state. Our matched causal EOS is then

given by

p(ε) =


pMS1(ε), ε ≤ εmatch

ε− εmatch + pMS1(εmatch), ε ≥ εmatch.

(2.2.3)

In computing the deformability, we consider only irrotational neutron stars; and in esti-

mating the effect of tides on the inspiral phase, we neglect resonant coupling of tides to

neutron-star modes. Tidal deformation of slowly rotating relativistic stars is treated by

Pani et al. [60]; and Essick et al. [61] argue that tidal excitation of coupled modes may

alter the waveform in BNS systems.

2.2.2 Static, Spherical Stars

We next construct the sequence of static spherical stars based on the causal EOS (2.2.3).

We numerically integrate the Tolman-Oppenheimer-Volkoff (TOV) equation [62],(
1− 2m

r

)
dp

dr
= − 1

r2
(ε+ p)(m+ 4πr3p), (2.2.4)

where m(r) is the total mass-energy inside radius r, related to ε by

dm

dr
= 4πr2ε. (2.2.5)

A member of the sequence is specified by its central density εc. Its circumferential radius

R is the value of the Schwarzschild coordinate r at which p(r) = 0, and its gravitational

mass is M = m(R).

2.2.3 Calculating the Tidal Deformability

The departure of the inspiral of a BHNS binary from point-particle (or spinless BBH)

inspiral depends on the tidal deformation of the neutron star due to the tidal field of its

companion. For large binary separation, the metric near the neutron star can be written

as a linear perturbation of the Schwarzschild metric of the unperturbed star that has two
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parts: The tidal field of the companion, expressed in Schwarzschild coordinates about

the center of mass of the neutron star, has the form of an external quadrupole field; and

the induced quadrupole distortion of the neutron star gives a second quadrupole contri-

bution to the perturbed metric. That is, outside the support of the star, the quadrupole

perturbation is a sum,

δgαβ = δexternal gαβ + δinduced gαβ, (2.2.6)

of two time-independent solutions to the field equations linearized about a vacuum

Schwarzschild geometry. In a gauge associated with asymptotically Cartesian and mass

centered coordinates, the contributions to the perturbed metric have the form

δexternal gtt = −r2Eijninj +O(r), (2.2.7)

with no r−3 contribution, and

δinduced gtt =
3

r3
Qij

(
ninj − 1

3
δij
)

+O(r−4). (2.2.8)

Here ni = xi/r is an outward-pointing unit vector, Eij is the tracefree tidal field from the

black hole, and Qij is the neutron star’s induced quadrupole moment. The quadrupole

moment tensor Qij is proportional to Eij,

Qij = −λEij, (2.2.9)

and the constant of proportionality λ is the tidal deformability of the neutron star. It

measures the magnitude of the quadrupole moment induced by an external tidal field and

is proportional to the (dimensionless) ` = 2 tidal Love number [63]

k2 =
3λ

2R5
. (2.2.10)

After constructing the one-parameter family of spherical stars satisfying Eqs. (2.2.3),

(2.2.4), and (2.2.5), we tidally perturb them, compute k2 and the radiusR of each star, and

then find the tidal deformability λ from Eq. (2.2.10). To calculate k2, we use the method

described by Hinderer [64]: A perturbation of the spherically symmetric background

metric

g = −e2νdt2 +
1

1− 2m/r
dr2 + r2(dθ2 + sin2 θdφ2), (2.2.11)
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with ν(r) determined by (
1− 2m

r

)
dν

dr
=

1

r2
(m+ 4πr3p),

is found in the Regge-Wheeler gauge [65], with δg a linear, quadrupolar, static, polar-

parity perturbation given by [64] 2

δg =(−e2νdt2 +
1

1− 2m/r
dr2)H Y2,m(θ, φ)

+ r2(dθ2 + sin2 θdφ2)K Y2,m(θ, φ), (2.2.12)

where H and K are both functions of r. The perturbed Einstein equation gives a differ-

ential equation for H [64]:

0 =
d2H

dr2

(
1− 2m

r

)
+
dH

dr

[
2

r
− 2m

r2
+ 4πr(p− ε)

]
−H

[
6

r2
− 4π

(
5ε+ 9p+

ε+ p

dp/dε

)
+4

(
1− 2m

r

)(
dν

dr

)2
]
.

In vacuum, H can be written as a linear combination of P 2
2 (r/M − 1) and Q2

2(r/M − 1),

where P 2
2 and Q2

2 are the ` = m = 2 associated Legendre functions. When expanded

in powers of M/r at infinity, P 2
2 (r/M − 1) = O(M/r)3 and Q2

2(r/M − 1) = O(r/M)2.

The coefficient of P 2
2 is therefore related to the quadrupole moment of the star, and the

coefficient of Q2
2 is related to the tidal field applied by the black hole. By matching H(r)

and its derivative across the surface of the star, one can show [64]

k2 =
8

5
C5(1− 2C)2[2 + 2C(Y − 1)− Y ]

×
{

2C[6− 3Y + 3C(5Y − 8) + 2C2(13− 11Y )

+2C3(3Y − 2) + 4C4(Y + 1)]

+3(1− 2C)2[2− Y + 2C(Y − 1)] log(1− 2C)
}−1

, (2.2.13)

2Note that, because this gauge does not conform to the constraints of an asymptotically Cartesian

and mass-centered chart, there are additional terms in the expansion of the asymptotic metric.
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where C = MNS/R is the compactness of the star, Y = RH ′(R)/H(R), and R is the

radius of the star. Since k2 depends on Y and not H or H ′ individually, Postinkov,

Prakash, and Lattimer [66] and Lindblom and Indik [67] define

y(r) = r
H ′(r)

H(r)
,

which gives rise to the first-order differential equation

dy

dr
=− y2

r
− r + 4πr3(p− ε)

r(r − 2m)
y +

4(m+ 4πr3p)2

r(r − 2m)2

+
6

r − 2m
− 4πr2

r − 2m

[
5ε+ 9p+

(ε+ p)2

εdp/dε

]
. (2.2.14)

To find Y = y(R), we numerically integrate Eq. (2.2.14) and evaluate y at the surface of

the star.

Despite appearances, the expression in curly braces in Eq. (2.2.13) is O(C5) due to

cancellations of terms in curly brackets that are polynomial in C with terms from the

expansion of log(1 − 2C). For stars of small compactness, calculating k2 directly from

Eq. (2.2.13) is difficult because it requires that both the numerator and denominator of

the right side are accurately calculated to a large number of decimal places. A calculation

this accurate is challenging due to errors introduced while finding the surface of the star,

where p → 0, and therefore the radius R. As a result, we expand k2 to 20 orders in

C. Since k2 is O(C0), this allows for much more accurate results for small C. The

compactness has a maximum value of 1/2, so this expansion converges for all stars.

2.2.4 Estimating the Gravitational Wave Phase Shift due to Tidal Deforma-

bility

The tidal deformability λ defined in the last section accurately describes the actual de-

formation of a neutron star in a binary system only when the neutron star is far from the

other compact object. This is for several reasons: As the neutron star approaches the

other object, linear perturbation theory and the assumption of a static spacetime used to

define λ break down; higher-order multipoles in the metric become important; as the star

spirals in, its orbital angular velocity increases and becomes comparable to the frequencies
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of the star’s normal modes, and this enhances the star’s response to the tidal perturbation

[45]; and, finally, the neutron star may be tidally disrupted before merger. Nevertheless,

the tidal deformability turns out essentially to determine the departure of gravitational

waveforms from those spinless BBH inspiral in numerical simulations [54, 68, 69].

A post-Newtonian expansion [44] describes the effect of tidal deformability on the

phase of the gravitational waveform to linear order in λ:

∆ΦPN = − 3Λ

128η
(πMf)5/3

[
a0 + a1(πMf)2/3

]
, (2.2.15)

where ∆Φ is the difference in gravitational wave phase between a spinless BBH and a

BHNS binary, Λ = λ/M5
NS is the dimensionless tidal deformability, M = MBH + MNS is

the total mass of the binary system, η = MBHMNS/M
2 is the symmetric mass ratio, f is

the linear frequency of the gravitational radiation, and a0 and a1 are functions of η:

a0 = 12[1 + 7η − 31η2 −
√

1− 4η(1 + 9η − 11η2)],

a1 =
585

28

[
1 +

3775

234
η − 389

6
η2 +

1376

117
η3

−
√

1− 4η

(
1 +

4243

234
η − 6217

234
η2 − 10

9
η3

)]
.

Where Eq. (2.2.15) is valid, in the early inspiral when the frequency f is low, it allows

us to easily compute the phase change (the amplitude of the waveform is also affected

by tidal deformability, but in this regime the difference in amplitude is small). However,

tidal effects are largest during late inspiral when the frequency is high.

To extend the analytic computation to late inspiral, Lackey et al. [54] fit the amplitude

and phase of the gravitational waveforms of neutron star-black hole inspirals to the results

of numerical simulations, for black hole spins χBH between -.5 and .75, and mass ratio

MBH/MNS in the range 2 to 5. In these simulations, the neutron stars are modeled

as piecewise polytropes. The resulting expressions (below) depend on post-Newtonian

theory for low frequencies, when the neutron star is still far from the black hole. At high

frequencies, the fits to numerical results take over:

A =


APN, Mf ≤ .01

APNe
−ηΛB(Λ,η,χBH)(Mf−.01)3 , Mf > .01

(2.2.16)
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∆Φ =


∆ΦPN(Mf), Mf ≤ .02

−ηΛE(η, χBH)(Mf − .02)5/3 + ∆ΦPN(.02) + (Mf − .02)∆Φ′PN(.02), Mf > .02.

(2.2.17)

Here the subscript PN indicates the corresponding result from post-Newtonian theory; B

is a function of Λ, η, and χBH; and E is a function of η and χBH. The parameters of B

and E were determined by the numerical fit. In particular,

B = eb0+b1η+b2χBH + Λec0+c1η+c2χBH ,

with

{b0, b1, b2} = {−64.985, −2521.8, 555.17},

{c0, c1, c2} = {−8.8093, 30.533, 0.6496}

as the fitting parameters. Similarly,

E = eg0+g1η+g2χBH+g3ηχBH ,

with

{g0, g1, g2, g3} = {−1.9051, 15.564, −0.41109, 5.7044}.

The part of B that is independent of Λ is sensitive to the binary parameters due to the

large fitting parameters b0, b1, and b2; it can be as large as ∼ 3 for large mass ratio and

positive black hole spin and essentially zero for small mass ratio and negative black hole

spin. The coefficient of Λ in B varies between ∼ .002 and ∼ .2, depending on the same

binary parameters. As we will see, Λ itself is very sensitive to the mass of the neutron

star. Meanwhile, E varies between ∼ .6 and ∼ 9, with typical values of ∼ 2.

While high tidal deformabilities increase |∆Φ| relative to a point-particle waveform at

a given frequency f , they also cause stars to be tidally disrupted earlier in the inspiral,

damping the resulting gravitational waves. We define the cutoff frequency fcutoff to be

the frequency at which effects from tidal deformation dampen the amplitude by a factor

of e relative to the post-Newtonian waveforms. To estimate the total effect of tidal
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deformability on the phase of the waveform throughout the inspiral, we chose to evaluate

∆Φ at fcutoff .

The errors in the fitting parameters reported in [54] correspond to errors in

∆Φ(Mfcutoff) of ∼15% for typical binary parameters. The ∆Φ-values reported below

should therefore not be taken as accurate predictions of the tidally-induced phase shift.

Still, we expect that applying this fit to the matched causal EOS yields an upper limit on

|∆Φ| with roughly the same error, especially considering the emphasis in [54] on avoiding

over-fitting and the lower errors reported for larger Λ-values. A more accurate calculation

of the phase shift from BHNS or BNS systems with our causal EOS requires numerical

simulations (now in progress for BNS systems [70]) or use of the EOB formalism.

2.3 Results

Most neutron stars observed by gravitational waves in binary inspiral are likely to have

masses in or near the 1.25 M� to 1.45 M� range seen in binary neutron star systems,

a range consistent with formation from an initial binary of two high-mass stars. We

will see that the causal limit on the dimensionless deformability Λ is a monotonically

decreasing function of M and is therefore more stringent for higher mass stars. On the

other hand, the fraction of matter above nuclear density is smaller in a low-mass neutron

star, and that fact limits the effect of a causal EOS above nuclear density. The net result

is that the limit on Λ set by causality is close to the values of Λ associated with candidate

neutron-star EOSs for matching densities near nuclear density.

2.3.1 Effect of Matching Density on Constraints

To understand the results we present in this section, it is helpful first to consider models

for which the causal form (2.2.2) extends to the surface of the star, where p = 0. (Here

we follow Brecher and Caporaso [56] and Lattimer [57].) That is, we consider models

based on the EOS

p = ε− εS, (2.3.1)
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and having finite energy density εS at the surface of the star. Because the only dimen-

sionful constant is εS, having (in gravitational units) dimension length−2, and the mass

M and radius R each have dimension length, we have the exact relations

Mmax ∝ ε
−1/2
S , Rmax ∝ ε

−1/2
S , (2.3.2)

where Rmax is the maximum radius among models with central density greater than

εnuc (low-density models have larger radii). Because the deformability λ has dimension

length5, we similarly have

λmax ∝ ε
−5/2
S . (2.3.3)

Using this truncated causal EOS is equivalent to taking εS = εmatch in the matched causal

EOS and discarding the envelope of the star below εmatch.

We emphasize that the truncated EOS (2.3.1) is used only heuristically, to explain the

near power-law dependence on εmatch of the maximum mass, radius, and deformability.

(The exact dependence of the maximum mass, radius, and deformability on εmatch is

reported below.) Because the truncated EOS sets the pressure to zero below εmatch, it

underestimates the maximum radius and deformability. As noted earlier, to obtain a

conservatively large upper limit on maximum deformability, we use the matched causal

EOS (2.2.3), which has a stiff candidate EOS for ε < εmatch.3

3 There is something paradoxical in using the truncated EOS (2.3.1) as an approximation to the EOS

that gives the largest possible neutron stars: As Lattimer [57] points out (following Koranda et al. [71]),

this same EOS gives maximally compact neutron stars, stars with the smallest possible radius for a given

mass, among all EOSs consistent with a maximum mass at or above a largest observed value, Mobserved.

In these and other papers [72, 73], Eq. (2.3.1) is chosen so that the softest possible EOS (namely p = 0)

is used up to high density; the stiff causal EOS above that density then allows Mmax ≥ Mobserved. The

resolution is this: For a fixed maximum mass, Eq. (2.3.1) yields neutron stars with the smallest possible

radii. On the other hand, for a fixed εmatch (i.e. for a given density up to which we assume a known

EOS), Eq. (2.2.3) gives neutron stars with the largest possible radii; and, for low matching and surface

densities, the difference between the matched causal EOS (2.2.3) and the truncated EOS (2.3.1) becomes

negligible. Equivalently, εmatch → 0 corresponds to Mmax → ∞, and the difference between the softest

and the stiffest possible EOSs vanishes as Mmax → ∞. Physically, this happens because a stiff EOS is

required to support large masses.
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Figure 2 : The (a) maximum radius, mass, and (b) tidal deformability are plotted against the matching

density. The behavior of all three quantities follow a power law except at high εmatch, with the best-fit

lines given by Eq. (2.3.5).

For εmatch . εnuc, where

εnuc = 2.7× 1014 g/cm3 (2.3.4)

is nuclear saturation density (the central density of large nuclei), the contribution of the

envelope to mass and radius is small enough that the dependence on εmatch is very nearly

the dependence on εS in the truncated star: Mmax and Rmax are each nearly proportional

to ε
−1/2
match, and λmax is nearly proportional to ε

−5/2
match, where Mmax is the maximum neutron-

star mass consistent with causality and with a low density EOS below εmatch; and Rmax

and λmax are again the corresponding maximum radius and deformability among models

with central density greater than εnuc. This behavior can be seen in Figs. 2(a) and 2(b),

where linear least-squares fits to the leftmost 10 data points in each plot satisfy

Mmax = (4.1 M�)(εmatch/εnuc)
−.4999, (2.3.5a)

Rmax = (17 km)(εmatch/εnuc)
−.4990, (2.3.5b)

λmax = (1.3× 1037g cm2 s2)(εmatch/εnuc)
−2.4996. (2.3.5c)

The rightmost data points in each plot diverge from the line because, at higher matching

densities, a larger envelope obeys the low-density (MS1) EOS.
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Figure 3 : The dependence of the dimensionless tidal deformability Λ1.4 of 1.4M� stars on matching

density is shown on a log-log plot. The behavior approximates a power law for ε . εnuc, with the best

fit given by Eq. (2.3.6).

Of greater astrophysical relevance than the upper limit on λ, however, is the con-

straint on the dimensionless tidal deformability, Λ = λ/M5
NS = 2

3
k2R

5/M5, that governs

the waveform of a binary inspiral. As we will see below, because of the factor M−5
NS , Λ

is monotonically decreasing with increasing mass for central density above εmatch. The

physically interesting constraint on Λ is then a constraint at known mass: Inspiral wave-

forms detected with a high enough signal-to-noise ratio to measure their tidal departure

from point-particle inspiral will also have the most accurately measured neutron-star

masses. The dependence of Λ on εmatch for fixed mass cannot be found from the previous

dimensional analysis, but it is easy to see that Λ(M, εmatch) is a monotonically decreasing

function of εmatch: As εmatch increases and less of the star is governed by the stiffer causal

EOS, the star becomes more compact: R decreases at fixed M . In addition, as the density

profile becomes more centrally condensed, the tidal Love number k2 decreases, because,

for a given radius, the external tidal force has less effect on a more centrally condensed

star. Decreasing R and k2 gives a sharp decrease in Λ, as shown in Fig. 3 for a 1.4M�
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star. For .33εnuc < εmatch < 1.2εnuc we find a near power-law dependence,

Λ1.4 = 2400(εmatch/εnuc)
−1.8. (2.3.6)

2.3.2 Comparison between Constraint and Results from Candidate EOSs

SLy

MPA1

H4

MS1

Matched Causal

10 12 14 16 18

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R (km)

M
(M

⊙

(a)

SLy

MPA1

H4

MS1

Matched Causal

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

0.5

1.0

1.5

2.0

2.5

M (M )

λ
(1
0
3
7
g
cm

2
s

(b)

Figure 4 : (a) The mass-radius relation for the matched causal EOS with εmatch = εnuc and for candidate

neutron-star equations of state that display the range of uncertainty in stiffness.

(b) Tidal deformability versus mass for stars based on the same EOSs. The top solid curve, displaying

the tidal deformability of stars based on the matched causal EOS, is an upper limit set by causality on

tidal deformability. Stars based on softer EOSs have smaller tidal deformabilities.

We begin by displaying the limit set by causality on the dimensionful tidal deforma-

bility λ as a function of mass, with εmatch taken to be εnuc. There is remaining uncertainty

in the equation of state at εnuc, and we obtain a conservative upper limit by matching to

the MS1 EOS [59], which is particularly stiff for ε . εnuc.

The mass-radius relation for the family of neutron stars obeying the matched causal

EOS is indicated by “Matched Causal” in Fig. 4(a). As we saw in Eqs. (2.3.5), matching

to MS1 below εnuc is a weak constraint, giving Mmax = 4.1M� and Rmax > 18 km,

both significantly larger than their values for any of the candidate EOSs shown. These

candidate EOSs include SLy [74], which is one of the softest EOSs that allow for 2M�

neutron stars, MPA1 [75], which is slightly stiffer, H4 [76], which is stiff at low densities
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Figure 5 : The dimensionless tidal deformability Λ is plotted against mass for several EOSs. For any

given mass, the Matched Causal EOS places an upper limit on the value of Λ.

and soft at high densities, and MS1 [59], which is particularly stiff at all densities. The

maximum masses allowed by these EOSs are all between 2 and 2.8 M�, and the radii are

all between 10 and 15 km.

In Figure 4(b), the top curve displays an upper limit on λ as a function of neutron-star

mass obtained from the matched causal EOS. The comparison λ(M) curves for the same

candidate EOSs of Fig. 4(a) show the decreasing deformability associated with stars of

decreasing stiffness and radius. Note, however, that the maximum value of λ for each

EOS occurs at a smaller mass than that of the model with maximum radius. This is due

to the increase in central condensation as the mass increases, resulting in an decrease

in k2. The maximum of the λ(M) curve for the matched causal EOS gives the mass-

independent upper limit λ < 1.5 × 1037 g cm2 s2, for εmatch = εnuc, with dependence on

εmatch given by Eq. (2.3.5c) for smaller matching density.

The corresponding upper limit Λmax(M) on the dimensionless deformability is given

by the top curve in Fig. 5, for εmatch = εnuc. (The dependence on εmatch was shown in

Fig. 3 for a representative 1.4M� star.) Since Λ ∝ C−5, Λ is large for small masses and

relatively small for larger masses. As a result, it is not meaningful to speak of a mass-

independent maximum of Λ, but it is meaningful to compare Λ-values at constant mass.

The most striking feature of Fig. 5 is how close the curve Λmax(M) is to the range of Λ
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Figure 6 : The estimated total gravitational wave phase shift ∆Φ(fcutoff) corresponding to a BHNS

binary with MNS = 1.4 M� and χBH = 0 is plotted against the mass ratio for several EOSs. For a given

mass ratio, |∆Φ(fcutoff)| is larger for stiffer EOSs, and the Matched Causal EOS provides a constraint

on it. In general, |∆Φ(fcutoff)| decreases with the mass ratio.

allowed by current candidate EOSs. This stringent constraint on Λ is in sharp contrast

to the larger departures of the curves giving Rmax(M) and λmax(M) in Fig. 4 from the

corresponding curves for candidate EOSs. For 1.4 M� stars, for example, it places the

constraint that Λ ≤ 2300. For comparison, 1.4 M� stars resulting from the SLy, MPA1,

H4, and MS1 EOSs have Λ-values of 300, 490, 900, and 1400, respectively. Furthermore,

gravitational-wave data from the one BNS coalescence detected so far [6] has constrained

Λ observationally. In particular, with 90% confidence we now know [7] that 70 < Λ < 580

for 1.4 M� neutron stars. These values are low enough to not only be consistent with our

upper limit Λmax(M) but also to strongly disfavor MS1 as a candidate EOS.

One might naively expect |∆Φ(fcutoff)| to increase monotonically with Λ and therefore

to decrease monotonically with the mass MNS of the neutron star (note that, although

∆Φ is positive when evaluated at a given time, it is negative when evaluated at a given

frequency). This is not the case, because while |∆Φ| increases with Λ (and decreases

with MNS) when evaluated at a fixed frequency, fcutoff decreases monotonically with Λ

(and increases monotonically with MNS). That is, stars with high dimensionless tidal

deformability are tidally disrupted at a larger distance from the black hole, corresponding

to a smaller orbital (and gravitational wave) frequency. A neutron star with high tidal
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Figure 7 : The estimated total gravitational wave phase shift ∆Φ(fcutoff) corresponding to a BHNS

binary with MBH = 4.5 M� and χBH = 0 is plotted against neutron star mass for several EOSs. For a

given mass, |∆Φ(fcutoff)| is larger for stiffer EOSs, and the Matched Causal EOS provides a constraint

on it. The dependence of |∆Φ(fcutoff)| on neutron star mass is complicated and changes with the EOS

used.

deformability therefore has fewer cylces during which to accumulate phase relative to a

point-particle. As a result, the effect of MNS on |∆Φ(fcutoff)| is complicated, and depends

on EOS and the parameters of the binary.

Nevertheless, stiffer EOSs result in larger values of |∆Φ| for given neutron star masses

or mass ratios. As can be seen in Fig. 6, |∆Φ(fcutoff)| decreases with mass ratio for all

EOSs. On the other hand, |∆Φ(fcutoff)| has complicated behavior with respect to neutron

star mass for all EOSs when the spin of the companion black hole is zero (Fig. 7). In

addition, one can see in Fig. 6 and Fig. 7 that |∆Φ(fcutoff)| increases with the stiffness of

the EOS, and is largest for our EOS, but only by a few radians at most. Here, based on

our estimate of ∆Φ, the constraint set by causality is remarkably strong, stronger than

the already stringent constraint on Λ: ∆Φmax(M) differs from its value for the stiffest

candidate equation of state by less than 14%. The strength of the causal constraint is

due to (a) the fact that Λ is largest at small mass, where the causal EOS governs the

smallest fraction of the star, and (b) a smaller cutoff frequency for the stiffest EOSs that

reduces the time over which the phase can accumulate.

As shown in Fig. 8, for a given black hole mass MBH and zero black hole spin χBH,
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Figure 8 : The estimated constraint on ∆Φ(fcutoff) is plotted against the mass of a neutron star for

several different black hole masses and a black hole spin of 0. We expect that the absolute value of ∆Φ

would be lower for any real BHNS binary. The constraint on |∆Φ| decreases with both neutron star mass

and black hole mass.

|∆Φ(fcutoff)| increases with MNS for the Matched Causal EOS. In addition, for a given

MNS, |∆Φ(fcutoff)| decreases withMBH. Changing χBH can change the qualitative behavior

of |∆Φ(fcutoff)|, as can be seen in Fig. 9. In particular, a corotating companion black hole

tends to make |∆Φ(fcutoff)| increase with mass, while antirotating companions tend to

make |∆Φ(fcutoff)| decrease with mass. For a given MNS, higher (corotating) spins result

in smaller |∆Φ(fcutoff)|, but the effect decreases with increasing MNS.

Figure 10 shows how |∆Φ(fcutoff)| varies with mass ratio for several neutron star

masses and 0 black hole spin. For a given MNS, |∆Φ(fcutoff)| decreases with increasing

mass ratio. For a given mass ratio, |∆Φ(fcutoff)| decreases with neutron star mass. The

effect decreases in magnitude as the mass ratio increases.

Finally, Fig. 11 shows |∆Φ(fcutoff)| varying with mass ratio for several black hole spins

and MNS = 1.4 M�. |∆Φ(fcutoff)| decreases with mass ratio regardless of the value of χBH,

but for a given mass ratio, |∆Φ(fcutoff)| decreases with χBH; it is smallest for corotating

black holes, and largest for antirotating black holes.
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Figure 9 : The estimated constraint on ∆Φ(fcutoff) is plotted against the mass of a neutron star for

several different black hole spins and a black hole mass of 4M�. Different black hole spins can change

how ∆Φ qualitatively changes with neutron star mass, and ∆Φ depends more strongly on χBH for smaller

neutron star masses than for larger neutron star masses.
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Figure 10 : The estimated constraint on |∆Φ(fcutoff)| for BHNS binaries with χBH = 0 is plotted against

the mass ratio for several neutron star masses. |∆Φ(fcutoff)| decreases both with mass ratio and with

neutron star mass.
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Figure 11 : The estimated constraint on |∆Φ(fcutoff)| for BHNS binaries with MNS = 1.4 M� is plotted

against the mass ratio for several black hole spins. The value of |∆Φ(fcutoff)| decreases with mass ratio

and with spin.

2.4 Conclusion

By using a stiffest causal EOS consistent with causality at high density, matched to the

MS1 [59] EOS below a density εmatch, we have set upper limits on the quadrupole tidal

deformability λ and on the dimensionless tidal deformability Λ as a function of neutron

star mass. The limit on Λ, given by Eq. (2.3.6) for a 1.4 M� neutron star, is conservative,

because we have matched to an EOS (MS1) that is stiff below nuclear density: With this

low-density EOS and a match at εnuc, the corresponding upper mass limit is 4.1M�. We

now also have observational reasons to believe that Λ cannot exceed our upper limit: the

gravitational-wave event reported in reference [6] constrains Λ for a 1.4 M� neutron star

to be between 70 and 580 with 90% confidence. This disfavors even MS1 as a candidate

EOS, indicating that even our low-density EOS is stiffer than actual neutron star matter.

Using the constraint on dimensionless tidal deformability and the Lackey et al. analytic

fit to numerical data [54], we then estimated the induced phase shift of a BHNS inspiral

and merger waveform.

The implied upper limit on the accumulated phase shift |∆Φ| at merger depends on

the parameters of the binary, but it is surprisingly close to the range of phase shifts seen

in candidate EOSs. Assuming one can neglect resonant interactions of the tidal field with
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neutron-star modes, we think this conclusion is secure. We emphasize, however, that our

upper limits on |∆Φ| rely on an analytic expression based on full numerical simulations

for models with a set of EOSs significantly less stiff than the matched causal EOS. Work

has begun on numerical simulations to obtain an upper limit on the departure of double

neutron star inspiral waveforms from the point-particle (or spinless BBH) case.

2.5 Appendix: Comments on causality and sound speed

With the assumption that the equilibrium equation of state of the neutron star and its

perturbations are governed by the same one-parameter equation of state, causality implies

dp/dε < 1. That is, as mentioned in Section 2.2.1, the time-evolution of a barotropic fluid

is described by a hyperbolic system whose characteristics lie within the light cone precisely

when dp/dε < 1 [77]. The frequencies of stellar perturbations, however, are too high for

the temperature of a fluid element and the relative density Yi of each species of particle

to reach their values for the background fluid at the same pressure: Heat flow and nuclear

reactions are incomplete.

Because of this, one cannot precisely identify the maximum speed of signal propagation

in the fluid with the equilibrium value√
dp

dε

∣∣∣∣
equilibrium

:=

√
dp/dr

dε/dr
.

If short wavelength, high frequency perturbations are too rapid for heat flow and for

nuclear reactions to proceed, their speed of propagation is

vsound =
√

(∂p/∂ε)|s,Yi . (2.5.1)

One therefore expects causality to imply

∂p

∂ε

∣∣∣∣
s,Yi

< 1. (2.5.2)

This is known to be true for a relativistic fluid with a two-parameter EOS of the form p =

p(ε, s): Its dynamical evolution then involves heat flow and is governed by the equations

of a dissipative relativistic fluid. Causal theories of this kind were first introduced by
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Israel and Stewart [78, 79] and by Liu et al. [80]. The general class of such theories

was analyzed by Geroch and Lindblom [58], who pointed out that, for dissipative fluids

obeying p = p(ε, s), causality implies the inequality (2.5.2),

∂p

∂ε

∣∣∣∣
s

< 1. (2.5.3)

Now a star is unstable to convection if

dp

dε

∣∣∣∣
equilibrium

>
∂p

∂ε

∣∣∣∣
s,Yi

. (2.5.4)

Thus, for a locally stable spherical star (a self-gravitating equilibrium configuration of

a relativistic dissipative fluid) based on a two-parameter EOS p = p(ε, s), causality implies√
dp

dε

∣∣∣∣
equilibrium

< 1. (2.5.5)

Thus, at least for two-parameter dissipative fluids, one can rule out the possibility that

dispersion in a dissipative fluid could lead to a group velocity smaller than the phase

velocity (see, for example Bludman and Ruderman [81]) vsound and thereby allow vsound >

1 without superluminal signal propagation.

For a dissipative fluid obeying a multi-parameter EOS of the form p = p(ε, s, Yi), we

are not aware of a general proof that causality implies the inequality (2.5.2). One has

only the weaker statement, for a locally stable spherical star based on an EOS equation

of state p = p(ε, s), vsound < 1 implies the equilibrium inequality (2.5.5). There is one

additional caveat: The core of a neutron star is likely to be a superfluid, and taking that

into account could lead to small corrections in the speed of sound.

Finally, we note that for candidate EOSs, although the inequality vsound < 1 is stronger

than the the equilibrium inequality (2.5.5) used to place upper limits on mass, radius and,

in the present paper, on deformability, the difference is small. The fractional difference√
dp/dε|equilibrium −

√
(∂p)/(∂ε)|s,Yi√

(∂p)/(∂ε)|s,Yi
(2.5.6)

is primarily due to composition (to the constant values of Yi), and it is less than 5%.

(It is approximately half the fractional difference between the adiabatic index γ = Γ1
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and the index Γ governing the equilibrium configuration; the difference determines the

Brunt-Väısälä frequency, a characteristic frequency of g-modes, and an estimate can be

found, for example, in Ref. [82].)
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Chapter 3

Scalar Self-Force and the Method of

Hikida

3.1 Introduction

This chapter will center on work I did with Thomas Linz and my advisor Alan Wiseman,

with help from John Friedman. The results and methods of this chapter were previously

reported in Linz’s dissertation [83].

The end result of this work was an analytical Post-Newtonian expression for the self-

force on an accelerated scalar charge moving on a Schwarzschild background. Before we

can understand that result, we must discuss black hole perturbation theory in general,

and specifically the method pioneered by Mano, Suzuki, and Takasugi [84] to solve for

homogeneous solutions to the Teukolsky equation [85]. We will then briefly introduce the

concept of self-force—where a particle feels a force due to its own field—and how self-force

calculations are carried out. Finally, we will introduce the algorithm developed by Hikida

et al. [8, 9] which allows us to solve for the self-force analytically to high Post-Newtonian

order.
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3.2 Black Hole Perturbation Theory

As mentioned in section 1.1, it is difficult to study systems of more than one object in

General Relativity. One way to do so is to consider small perturbations to known so-

lutions of Einstein’s equation. The next two chapters will consider perturbations to the

Schwarzschild spacetime, which describes a non-rotating black hole. The Schwarzschild

spacetime is a special case among black hole spacetimes. The Kerr solution to Einstein’s

equation describes spinning black holes, and the Kerr-Newman solution describes elec-

trically charged black holes. In reality, we do not expect black holes to be electrically

charged, so the Kerr solution describes the most general astrophysical black holes. In

Boyer-Lindquist coordinates the Schwarzschild solution’s spacetime interval is given by

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dθ2 + r2 sin2 θdφ2, (3.2.1)

with

f(r) = 1− 2M

r
.

3.2.1 The Bardeen-Press Equation

The Bardeen-Press equation [86] describes scalar perturbations to the Schwarzschild

spactime:{
∂r[(r

2f)s+1∂r] + (r2f)s
[
−r2

f
∂2
t +

1

sin θ
∂θ(sin θ∂θ) +

1

sin2 θ
∂2
φ

+2is
cos θ

sin2 θ
∂φ − 2s

r − 3M

f
∂t −

s2

sin2 θ
+ s(s+ 1)

]}
ψs = 4πr2(r2f)sTs, (3.2.2)

where s is the spin-weight of the scalar field and Ts is a source term. The Bardeen-

Press equation is a specialization of the Teukolsky equation [85], which gives solutions

to perturbations to the Kerr spacetime. This chapter studies a scalar (s = 0) field,

but we keep s general for now, because in the next chapter we will study gravitational

perturbations, which involve scalars of spin-weight ±2.
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3.2.2 The MST Method to solve the homogeneous Teukolsky Equation

Mano, Suzuki, and Takasugi [84], hereafter referred to as MST, developed a method

to solve the homogeneous Teukolsky equation in the frequency domain. MST begin by

writing

ψs = e−iωtsY`m(θ, φ)R`mω(r),

where sY`m(θ, φ) is a spin-weighted spherical harmonic,1 satisfying[
1

sin θ
∂θ(sin θ∂θ) +

1

sin2 θ
∂2
φ + 2is

cos θ

sin2 θ
∂φ −

s2

sin2 θ

]
sY`m(θ, φ) = `(`+ 1)sY`m(θ, φ).

(3.2.3)

The spin-weighted spherical harmonics are generalizations of the spherical harmonics

0Y`,m; their properties will be discussed more in the next chapter. After separating the

variables in this way, the equation for R`mω becomes

d

dr

[
(r2f)s+1dR`mω

dr

]
+ (r2f)s

{
rω

f

[
rω + 2is

(
1− 3M

r

)]
+ `(`+ 1) + s(s+ 1)

}
R`mω = 0. (3.2.4)

Note that the above equation is independent of m, so that subscript is superfluous.

From here on, we drop it, and refer to R`mω as R`ω instead2. MST find two forms of

analytical solutions to Eq. (3.2.4): one as an infinite series of hypergeometric functions,

and one as a series of Coulomb wave functions. We will primarily use the latter, but the

former is necessary to mention because only they are regular on the horizon of the black

hole, corresponding to r = 2M . Therefore, we must use them to set correct boundary

conditions on the horizon.

To get the solution as a series of Coulomb wave functions, MST define ε ≡ 2Mω,

1The more general Teukolsky equation separates when the angular harmonic is a spin-weighted

spheroidal harmonic. Also, since the Teukolsky and Bardeen-Press equations are linear, one can write ψs

as a sum over an infinite number of Fourier and spherical harmonic modes. For now, this is unnecessary.
2Note that this is not true in Kerr; the index m appears explicitly in the radial Teukolsky equation

in that case.
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z ≡ ωr, and ζ ≡ z − ε. Then, they write3

R`ω = φνc = Sign(ω)−νζ−1−sfν(ζ);

the relevance and value of ν will soon become apparent. Note that our normalization

here differs from that of MST, Hikida et al., and Linz [8, 83, 84]. In particular, we put

a factor of Sign(ω)−ν out front. This is to ensure that ω is never raised to the power

of ν; instead, |ω| is. We will see the advantage of this normalization when we write our

final expression for φνc . Inserting this expression for R`ω in Eq. (3.2.2) gives the following

equation for fν :

ζ2f ′′ν + [ζ2 + 2(ε+ is)ζ]fν =− εζ(f ′′ν + fν) + ε(s+ 1)f ′ν −
ε(s+ 1 + iε)(1− iε)

ζ
fν

+ [`(`+ 1)− 3ε2 − isε]fν .

While this equation—particularly the right-hand side—appears intractable, MST employ

a trick: they subtract ν(ν + 1)fν from each side of the equation, where ν is a heretofore

undetermined constant. The equation for fν then reads

ζ2f ′′ν +[ζ2 + 2(ε+ is)ζ − ν(ν + 1)]fν

= −εζ(f ′′ν + fν) + ε(s+ 1)f ′ν −
ε(s+ 1 + iε)(1− iε)

ζ
fν

+ [`(`+ 1)− ν(ν + 1)− 3ε2 − isε]fν . (3.2.5)

MST then let ν = ` +O(ε), which makes Eq. (3.2.5) match the differential equation for

Coulomb wave functions in the limit ε → 0. This suggests a representation for fν as a

series of Coulomb wave functions:

fν =
∞∑

n=−∞

in
∣∣∣∣(ν + 1 + s+ iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 aνnFn+ν , (3.2.6)

with

Fn+ν = e−iζ(2ζ)n+νζ
(ν + 1− s+ iε)n

(2ν + 2)2n
1F1(n+ ν + 1− s+ iε; 2n+ 2ν + 2; 2iζ). (3.2.7)

3This notation differs from that of [84], in which ζ is denoted by z and the Coulomb-type radial

function is denoted by Rνc . We choose our notation to match that of Hikida et al. [8]
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Here, we use the Pochhammer symbol (a)n ≡ Γ(a + n)/Γ(a), and denote by 1F1 the

regular confluent hypergeometric function:

1F1(a; b;x) =
∞∑
k=0

(a)k
(b)k

xk

k!
.

We expect that the series (3.2.6) will correspond to a power series in ε.

What remains is to solve for ν, which MST call the renormalized angular momentum,

and the coefficients aνn. First, MST use the recurrence relations of the Coulomb wave

functions to show that aνn satisfies a three-term recurrence relation:

ανna
ν
n+1 + βνna

ν
n + γνna

ν
n−1 = 0, (3.2.8)

where

ανn =
iε|n+ ν + 1 + s+ iε|2(n+ ν + 1 + iε)

(n+ ν + 1)(2n+ 2ν + 3)
,

βνn = −`(`+ 1) + (n+ ν)(n+ ν + 1) + 2ε2 +
ε2(s2 + ε2)

(n+ ν)(n+ ν + 1)
,

and

γνn = −iε|n+ ν − s+ iε|2(n+ ν − iε)
(n+ ν)(2n+ 2ν − 1)

.

We can then introduce ratios of consecutive coefficients:

Rν
n =

aνn
aνn−1

, Lνn =
aνn
aνn+1

. (3.2.9)

The ratiosRν
n and Lνn can be thought of as continued fractions in the parameters appearing

in the recurrence relation for aνn:

Rν
n = − γνn

βνn + ανnR
ν
n+1

, Lνn = − ανn
βνn + γνnL

ν
n−1

(3.2.10)

We are free to choose aν0 = 1, as this is essentially a choice of normalization for fν . Then,

we can solve for aνn with n 6= 0 by repeatedly multiplying by the Rν
n to get the positive-n

coefficients, and multiplying by the Lνn to get the negative-n coefficients. At first, this

seems futile, since to know Rν
1 exactly, one must also know Rν

2 , and so on. However, to

find the positive-n coefficients to finite order in ε, it is sufficient to know that Rν
n = O(ε)

for all n > 0. This follows from that fact that, for all n > 0, ανn = O(ε), γνn = O(ε), and
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βνn = O(1). The negative-n coefficients are a bit more complicated; we will discuss them

shortly.

In the meantime, it will be useful to see that we can simultaneously solve for ν by

requiring that repeatedly applying Rν
n or Lνn gives a consistent set of coefficients; in

particular, it must be true that

Rν
n+1L

ν
n = 1. (3.2.11)

If we apply the above equation to the n = 0 case and write

ν = `+
∞∑
k=1

νkε
k, (3.2.12)

we can solve for ν1. First, we see immediately from 3.2.11 that Lν0 = O(ε−1), since

Rν
1 = O(ε). This in turn requires that βν0 +γν0L

ν
−1 = O(ε2). By looking at the expressions

for ανn, βνn, and γνn, one can easily see that, as long as ` > 0, Lν−1 = O(ε).4 Since γν0 = O(ε),

it must be true that βν0 = O(ε2). This requirement, coupled with the expression for βν0 ,

leads to the knowledge that

ν1 = 0.

Now that we know that ν = `+O(ε2), we can study the behavior of aνn for negative n.

For most negative values of n, Lνn = O(ε), but there are two exceptions. Since ανn = O(1)

when n = −`− 15 and βνn = O(ε2) when n = −2`− 1,

Lν−`−1 = O(1), Lν−2`−1 = O(ε−1). (3.2.13)

The coefficients therefore behave in the following ways, depending on how n compares to

4With a bit more effort, it is also possible to show that Lν−1 = O(1) in the ` = s = 0 case. Even then,

the value of ν1 ends up being the same as it is in the nonzero-` situation.
5Again, there is an exception in the s = 0 case, where ανn = O(ε2) when n = −`− 1.
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`:

aνn =



O(εn), n > 0,

1, n = 0,

O(ε|n|), −1 ≥ n ≥ −`,

O(ε`), n = −`− 1,

O(ε|n|−1), −`− 2 ≥ n ≥ −2`,

O(ε2`−2), n = −2`− 1,

O(ε|n|−3), −2`− 2 ≥ n.

(3.2.14)

To get fν to finite order in ε, then, one only needs to solve for a finite number of coefficients.

We will see later that expanding fν in ε and z results in a Post-Newtonian expansion for

the self-force. Thus, we have exactly what we need to find the self-force analytically to

finite Post-Newtonian order.

It is instructive to solve for ν and aνn explicitly to O(ε2), so we will do so here. We

start with ν, and for now we assume ` > 1 to avoid the special values of n mentioned

above. To solve Eq. 3.2.11 to zeroth order in ε, we need αν−1, βν−1, αν0 , βν0 , γν0 , αν1 , βν1 ,

γν1 , βν2 , and γν2 all to leading order in ε. Remember that βν0 = O(ε2) and contains ν2 at

leading order. Eq. (3.2.11), after setting n = 0 and ν = `+ ν2ε
2 +O(ε3), then gives

(`+ 1 + s)2(`+ 1− s)2

(2`+ 1)(2`+ 2)(2`+ 3)
[
(2`+ 1)ν2 + 2 + s2

`(`+1)
+ (`+s)2(`−s)2

(2`+1)(2`)(2`−1)

] +O(ε2) = 1,

so that

ν2 =
1

2`+ 1

[
−2− s2

`(`+ 1)
− (`+ s)2(`− s)2

(2`+ 1)(2`)(2`− 1)
+

(`+ 1 + s)2(`+ 1− s)2

(2`+ 1)(2`+ 2)(2`+ 3)

]
.

(3.2.15)

Now for the aνn’s. Again, for now we assume ` > 1. Since the numerators of Rν
n and

Lνn are O(ε) and the denominators are equal to −`(`+ 1) + (n+ `)(n+ `+ 1) +O(ε2), we

only need to know the denominators to leading order to get aνn to second order in ε. To

get aν1 = Rν
1 , we need γν1 to second order in ε. To get aν2 = Rν

2R
ν
1 , we only need Rν

2–and

therefore γν2 to first order in ε. Similar arguments apply to αν−1 and αν−2 for the purpose
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of calculating aν−1 and aν−2. The results are

aν2 = − (`+ 1− s)2(`+ 2− s)2

2(2`+ 1)(2`+ 2)(2`+ 3)2
ε2 +O(ε3)

aν1 =
(`+ 1− s)2

(2`+ 1)(2`+ 2)
iε+

(`+ 1− s)2

(`+ 1)(2`+ 1)(2`+ 2)
ε2 +O(ε3)

aν0 = 1

aν−1 =
(`+ s)2

2`(2`+ 1)
iε− (`+ s)2

2`2(2`+ 1)
ε2 +O(ε3)

aν−2 = −(`+ s− 1)2(`+ s)2

4`(2`− 1)2(2`+ 1)
ε2 +O(ε3) (3.2.16)

For completeness, we will solve for ν2 and the aνn’s for ` = 0, 1 as well. Since the

spin-weighted spherical harmonics vanish when ` < |s|, the ` = 0 case is only relevant for

s = 0. In this case, βν−1 = O(ε2). As a result, we not only have to calculate Lν−1, but also

Lν−2, in order to find Lν0 to leading order in ε. After doing the necessary calculations, we

find

Rν
1L

ν
0 =

1

6

[
ν2 + 2 +

1

ν2

+
1

ν2
2(−ν2 + 11

6
− 1

ν2
)

]−1

+O(ε).

Setting the above equal to one, we find an equation for ν2:

0 = ν2
2

(
ν2 +

7

6

)(
ν2 −

7

6

)
The appearance of 1/ν2 in βν0 and βν−1 precludes the apparent solution ν2 = 0. However,

we are free to choose ν2 = ±7/6. Following Hikida et al. [8] and noting that ν2 < 0 for

every other value of `, we choose ν2 = −7/6. Because of the particularities of the ` = 0

case, solving for the coefficients to second order in ε requires knowledge of ν3 and ν4.

These are solved for by setting the O(ε) and O(ε2) contributions to Rν
1L

ν
0 equal to zero.

This is quite cumbersome to do by hand, so here we simply report the results, obtained

with the aid of Mathematica:

ν3 = 0

ν4 = −9449

7560
.

One can find the nonnegative-n coefficients using the general-` expressions above. The
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negative-n coefficients, to second order in ε, are as follows:

aν−1 = −2

9
− 7

27
iε− 1591

2835
ε2 +O(ε3)

aν−2 = −1

9
iε+

1

54
ε2 +O(ε3)

aν−3 =
2

81
ε2 +O(ε3).

Now for the ` = 1 case, which is relevant when s is 0 or ±1. These calculations are

much easier when we treat the s = 0 case separately from the s = ±1 case. We will treat

the ` = 1, s = 0 case first. In this case,

Lν0 = − 4i

5ε(3ν2 + 13
6

)
+O(ε0),

and Eq. 3.2.11 leads to

4

15(3ν2 + 13
6

)
= 1,

so that

ν2 = −19

30
.

This leads directly to

aν−1 =
1

6
iε− 1

6
ε2 +O(ε3)

aν−2 = O(ε3).

When ` = 1 and s = ±1, γν0L
ν
−1 = O(ε4), so knowledge of that term is unnecessary

for calculating L0. We are therefore free to use the general-` expression for ν2, giving

ν2 = −47

60
.

For the s = 1 case, finding the coefficients to second order in ε again requires knowledge

of ν3 and ν4. Again, this is not very feasible by hand, and we simply cite the results

below:

ν3 = 0

ν4 = −43908007

71064000
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For s = 1, then,

aν−1 =
34

141
iε− 34

141
ε2 +O(ε3)

aν−2 =
20

47
iε− 107

141
ε2 +O(ε3)

aν−3 = − 200

2209
ε2 +O(ε3).

While ν remains the same after the replacement s→ −s, the coefficients for s = −1 can

be found using the symmetry property reported in [87]:

aνn(−s) =

∣∣∣∣(ν + 1 + s+ iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 aνn(s).

Now that we know how to solve for ν and the coefficients, we are ready to write φνc

explicitly:

φνc = e−iζ |2ζ|νζ−s
∞∑

n=−∞

aνn

∣∣∣∣(ν + 1 + s+ iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 (ν + 1− s+ iε)n
(2ν + 2)2n

× (2iζ)n1F1(n+ ν + 1− s+ iε; 2n+ 2ν + 2, 2iζ). (3.2.17)

Here, we can see the advantage of our normalization of φνc , which results in a factor of

|2ζ|ν in front of the sum instead of (2ζ)ν . First, note that the expressions for ανn, βνn, γνn,

and therefore Rν
n, Lνn, ν, and aνn, all satisfy the property

X = X|ε→−ε,

where X stands for any of the afore-mentioned quantities. Also note that both ε and ζ

are both equal to positive quantities multiplied by ω. Then it is clear from Eq. (3.2.17)

that

φνc = (−1)sφνc |ω→−ω. (3.2.18)

This symmetry property is not satisfied if the normalization of Hikida and Linz [8, 9, 83]

is used. In particular, the quantity (2ζ)ν goes from real to complex when ω goes from

positive to negative because ν is not an integer. We will see later that our normaliza-

tion also makes it easier to construct Green functions that satisfy the proper boundary

conditions.
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The homogeneous Bardeen-Press equation is second-order and linear, so there are

two linearly independent solutions to it. Since Eq. (3.2.5) remains the same after the

replacement ν → −ν − 1, we can create another solution, φ−ν−1
c , by replacing ν in Eq.

(3.2.17) with −ν − 1. MST [84] show that φνc and φ−ν−1
c are linearly independent.

Finally, we need to mention here that the sum in Eq. (3.2.17) only converges if ζ 6= 0—

that is, when r > 2M , outside the event horizon [84]. In order to construct a Green’s

function that satisfies proper boundary conditions on the horizon, then, we need another

linearly independent pair of solutions that are regular on the horizon. MST finds such a

pair, called Rν
0 and R−ν−1

0 and written as series of hypergeometric functions. Remarkably,

they use the same coefficients {aνn} and renormalized angular momentum ν. With the

definition x ≡ −ζ/ε, Rν
0 is given by

Rν
0 = eiεx(−x)ν−s

∞∑
n=−∞

aνn
Γ(1− s− 2iε)Γ(2n+ 2ν + 1)

Γ(n+ ν + 1− iε)Γ(n+ ν + 1− s− iε)

× (−x)n2F1

(
−n− ν − iε,−n− ν + s+ iε;−2n− 2ν;

1

x

)
,

(3.2.19)

while R−ν−1
0 is obtained by replacing ν with −ν − 1. The solutions Rν

0 and R−ν−1
0 are

regular everywhere except in the limit |x| → ∞, corresponding to r →∞. Furthermore,

in the region 2M < r < ∞ where both Rν
0 and φνc converge, the two types of solutions

are related by a constant factor:

Rν
0 = Kν

c φ
ν
c , (3.2.20)

with

Kν
c = |2ε|−νεs Γ(1− s− 2iε)

|Γ(1 + ν − s+ iε)|2

[
∞∑
n=0

Γ(n+ ν + 1 + iε)Γ(n+ 2ν + 1)

n!Γ(n+ ν − 1− iε)
aνn

]

×

[
0∑

n=−∞

∣∣∣∣(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 1

(−n)!(2ν + 2)n
aνn

]−1

. (3.2.21)

3.2.3 Solving the sourced Bardeen-Press equation with a Green’s function

We seek to solve the sourced Bardeen-Press equation, which we plan to do with the use

of a Green’s function. That is, if we let D be the differential operator on the left side of
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Eq. (3.2.2) so that

Dψs = 4πr2(r2f)sTs,

we seek a function G(x, x′)6 such that

DG(x, x′) = r2δ(4)(x, x′), (3.2.22)

so that a solution to Eq. (3.2.2) is

ψs = 4π

∫
d4x′G(x, x′)

[
r′2f(r′)

]s
Ts(x

′). (3.2.23)

Here, x stands for the Schwarzschild coordinates (t, r, θ, φ), and by δ(4)(x, x′) we mean

δ(4)(x, x′) =
δ(t− t′)δ(r − r′)δ(θ − θ′)δ(φ− φ′)√

− det(gµν)
,

while by d4x′ we mean

d4x′ =
√
− det(gµ′ν′) dt′dr′dθ′dφ′,

and gµ′ν′ is the metric in the primed coordinates. Noting that

δ(t− t′) =
1

2π

∫ ∞
−∞

dωe−iω(t−t′)

and

δ(θ − θ′)δ(φ− φ′)
sin θ

=
∞∑
`=|s|

∑̀
m=−`

sY`m(θ, φ)sY `m(θ′, φ′),

we also decompose the Green’s function into Fourier and angular harmonic modes:

G(x, x′) =
1

2π

∫ ∞
−∞

dω
∞∑
`=|s|

∑̀
m=−`

g`ω(r, r′)e−iω(t−t′)
sY`m(θ, φ)sY `m(θ′, φ′). (3.2.24)

Eq. (3.2.22) then leads to an equation for the radial part of the Green’s function:

d

dr

[
(r2f)s+1dg`ω(r, r′)

dr

]
+ (r2f)s

{
rω

f

[
rω + 2is

(
1− 3M

r

)]
+`(`+ 1) + s(s+ 1)} g`ω(r, r′)

= δ(r − r′), (3.2.25)

6The Green’s function we define here is the additive opposite of that defined in Hikida. This is because

Hikida anticipated that T0 < 0.
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which is Eq. (3.2.4) with a delta function source. This problem thus reduces to solving

for a one-dimensional Green’s function. At this point, it is important to choose retarded

boundary conditions for G so that we get a causal solution for ψs. This means that our

solution must have upgoing radiation—that is, outgoing radiation at future null infinity—

and ingoing radiation—that is, ingoing radiation on the future horizon. Mathematically,

g ∼ ei[ωr+2M ln(ωr)]/r1−2s as r → ∞ and g ∼ (−x)−seiω(x+2M ln(−x)) as x ≡ −ζ/ε → 0.

Following Arfken [88], we write

g`ω(r, r′) =
φνin(r<)φνup(r>)

W`ω(φνin, φ
ν
up)

,

where φνup is a solution to the homogeneous radial Bardeen-Press equation with upgoing

boundary conditions, φνin is that with ingoing boundary conditions, r> is the greater of r

and r′, r< is the lesser of r and r′, and W`ω(φνup, φ
ν
in) is constant in r and proportional to

the Wronskian of φνup and φνin:

W`ω(φνup, φ
ν
in) = (r2f)s+1

[
φνup

d

dr
φνin − φνin

d

dr
φνup

]
.

To construct G(x, x′), we now need to find the linear combinations of φνc and φ−ν−1
c

that give φνup and φνin. We start with φνup. Following the notation of Hikida et al. [8], we

seek the constant γνc such that

φνup = γνc φ
ν
c + φ−ν−1

c

gives outgoing radiation at infinity. To find γνc , we need to derive the behavior of φνc and

φ−ν−1
c in the limit r → ∞. We start with an identity for the confluent hypergeometric

function:

1F1(a; b; z) =
Γ(b)

Γ(b− a)
eiπSign(=(z))aU(a; b; z)

+
Γ(b)

Γ(a)
e−iπSign(=(z))(b−a)ezU(b− a; b; e−iπSign(=(z))z),

where U(a; b; z) is the irregular confluent hypergeometric function. This is useful because

U has a simple asymptotic form:

lim
z−>∞

U(a; b; z) = z−a.
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Before going further, we define the following constants:

A1 = ν + 1− s+ iε

A2 = ν + 1 + s− iε

B = 2ν + 2,

which themselves satisfy the following properties:

A1 = B − A2

A2 = B − A1

A1|ν→−ν−1 = 1− A2

A2|ν→−ν−1 = 1− A1

Now, when we insert the above identity for 1F1 into Eq. (3.2.17), we get

φνc = Ũν
1 (ζ) + Ũν

2 (ζ),

where

Ũν
1 (ζ) =e−iζ |2ζ|νζ−s

∞∑
n=−∞

aνn

∣∣∣∣(A2)n
(A1)n

∣∣∣∣2 (A1)n
(B)2n

Γ(B + 2n)

Γ(A2 + n)
eiπσω(A1+n)

× (2iζ)nU(A1 + n;B + 2n; 2iζ),

Ũν
2 (ζ) =eiζ |2ζ|νζ−s

∞∑
n=−∞

aνn

∣∣∣∣(A2)n
(A1)n

∣∣∣∣2 (A1)n
(B)2n

Γ(B + 2n)

Γ(A1 + n)
e−iπσω(A2+n)

× (2iζ)nU(A2 + n;B + 2n; e−iπσω2iζ),

and

σω = Sign(ω).

When we apply the asymptotic form of U(a; b; z), we find

lim
ζ→∞

Ũν
1 =

e−i(ζ+ln(ζ))

ζ
(iσω)−ν(2i)s−1−iε

∞∑
n=−∞

aνn

∣∣∣∣(A2)n
(A1)n

∣∣∣∣2 (A1)n
(B)2n

Γ(B)

Γ(A2)
eiπσω(A1+n),

corresponding to incoming radiation at infinity. Meanwhile,

lim
ζ→∞

Ũν
2 =

ei(ζ+ln(ζ))

ζ1+2s
(iσω)−ν(2i)−s−1+iε

∞∑
n=−∞

aνn

∣∣∣∣(A2)n
(A1)n

∣∣∣∣2 Γ(B)

Γ(A1)
,
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corresponding to outgoing radiation at infinity. We are therefore seeking the value of γνc

such that

γνc φ
ν
c + φ−ν−1

c ∝ Ũν
2 .

We must now write φ−c ν − 1 as a linear combination of Ũν
1 and Ũν

2 . By replacing ν with

−ν − 1, one finds Ũ−ν−1
1 and Ũ−ν−1

2 such that

φ−ν−1
c = Ũ−ν−1

1 (ζ) + Ũ−ν−1
2 (ζ).

Remarkably, it turns out that Ũ−ν−1
1 (ζ) ∝ Ũν

1 (ζ) and Ũ−ν−1
2 (ζ) ∝ Ũν

2 (ζ). By using one of

the properties of the coefficients [87]

aνn = a−ν−1
−n ,

another property of the irregular confluent hypergeometric functions [89]

U(a; b; z) = z1−bU(a− b+ 1; 2− b; z),

and two properties of the Gamma function [89]

Γ(z + 1) = zΓ(z),

Γ(z)Γ(1− z) =
π

sin(πz)
,

and a fair amount of algebra, one finds

Ũ−ν−1
1 (ζ) = (−1)se−iπσω(ν+ 1

2) Γ(A2)Γ(A1)

Γ(B)Γ(B − 1)

sinπ(ν + iε)

sin(2πν)
Ũν

1 (ζ),

and

Ũ−ν−1
2 (ζ) = (iσω)2ν+1 Γ(2−B)Γ(A1)

Γ(1− A2)Γ(B)
Ũν

2

Finally, we can solve for γνc such that the coefficient of Ũν
1 vanishes. The result is

γνc = −(−1)se−iπσω(ν+ 1
2) Γ(A1)Γ(A2)

Γ(B)Γ(B − 1)

sin π(ν + iε)

sin(2πν)

= (−1)s
Γ(ν + 1− s+ iε)Γ(ν + 1 + s− iε)

Γ(2ν + 2)Γ(2ν + 1) sin(2πν)
(3.2.26)

×
[
sin2(πν)eπ|ε| − sinh(π|ε|) +

iσω
2

sin(2πν)eπ|ε|
]
. (3.2.27)
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Now, we need to find φνin, equivalent to finding βνc such that

φνin = φνc + βνc φ
−ν−1
c

has purely ingoing radiation on the horizon. MST actually define Rν
in, which satisfies

exactly that boundary condition, before they define Rν
0 :

Rν
in = eiεx(−x)−s−iε

∞∑
n=−∞

aνn 2F1(n+ ν + 1− iε,−n− ν − iε; 1− s− 2iε;x).

MST then use a property of 2F1, [89]

2F1(a, b, ; c; z) =
Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b 2F1

(
b, b− c+ 1; b− a+ 1;

1

z

)
+

Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)a 2F1

(
a, a− c+ 1; a− b+ 1;

1

z

)
,

to show that

Rν
in = Rν

0 +R−ν−1
0 . (3.2.28)

MST later defineRν
out, which has an outgoing radiative boundary condition on the horizon:

Rν
out = eiεx(−x)iε(1− x)−s

∞∑
n=−∞

aνn
(ν + 1 + s+ iε)n(ν + 1 + iε)n
(ν + 1− s− iε)n(ν + 1− ε)n

× 2F1(n+ ν + 1 + iε,−n− ν + iε; 1 + s+ 2iε;x).

The function Rν
out can also be written as a linear combination of Rν

0 and R−ν−1
0 . To find

it, we again use the identity for 2F1 above to see that

Rν
out =

Γ(ν + 1− s− iε)Γ(ν + 1− iε)
Γ(ν + 1 + s+ iε)Γ(ν + 1 + iε)

eiεx(−x)ν(1− x)−s

×
∞∑

n=−∞

aνn
Γ(1 + s+ 2iε)Γ(2n+ 2ν + 1)

Γ(n+ ν + 1− s− iε)Γ(n+ ν + 1− iε)
(−x)n

× 2F1

(
−n− ν + iε,−n− ν − s− iε;−2n− 2ν;

1

x

)
+ (ν → −ν − 1),

where by +(ν → −ν−1) we mean to add the same expression with ν replaced by −ν−1.

Meanwhile, using another identity [89]

2F1(a, b, ; c; z) = (1− z)c−a−b2F1(c− a, c− b; c; z),
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we see that

Rν
0 = eiεx(−x)ν(1− x)−s

∞∑
n=−∞

aνn
Γ(1− s− 2iε)Γ(2n+ 2ν + 1)

Γ(n+ ν + 1− iε)Γ(n+ ν + 1− s− iε)
(−x)n

× 2F1

(
−n− ν + iε,−n− ν − s− iε;−2n− 2ν;

1

x

)
.

By comparing the expression for Rν
0 above with that of Rν

out, one can see that

Rν
out = AνR

ν
0 + A−ν−1R

−ν−1
0 , (3.2.29)

where

Aν =
Γ(ν + 1− s− iε)Γ(ν + 1− iε)Γ(1 + s+ 2iε)

Γ(ν + 1 + s+ iε)Γ(ν + 1 + iε)Γ(1− s− 2iε)

and A−ν−1 can be found by replacing ν in the above expression with −ν−1. Remembering

that Rν
0 = Kν

c φ
ν
c in the region where both Rν

0 and R−ν−1
0 converge, we now have an

expression for φνc + βνc φ
−ν−1
c in terms of Rν

in and Rν
out:

φνc + βνc φ
−ν−1
c =

[
Γ(2ν + 2)

Γ(ν + 1− s+ iε)

1

Kν
c (Aν − A−ν−1)

−βνc
Γ(−2ν)

Γ(−ν − s+ iε)

1

K−ν−1
c (Aν − A−ν−1)

]
Rν

out

+

[
− Γ(2ν + 2)

Γ(ν + 1− s+ iε)

A−ν−1

Kν
c (Aν − A−ν−1)

+βνc
Γ(−2ν)

Γ(−ν − s+ iε)

Aν
K−ν−1
c (Aν − A−ν−1)

]
Rν

in.

Since the coefficient of Rν
out needs to vanish,

βνc =
Γ(2ν + 2)

Γ(−2ν)

Γ(−ν − s+ iε)

Γ(ν + 1− s+ iε)

K−ν−1
c

Kν
c

=
(−1)s

π
22ν |ε|2ν+1 Γ(ν + 1 + s+ iε)Γ(ν + 1− s− iε)

Γ(2ν + 2)Γ(2ν + 1)
|Γ(ν + 1 + iε)|2

× Ξ−ν−1

Ξν

[csc(2πν)− cot(2πν) cosh(2πε) + i sinh(2πε)], (3.2.30)

where

Ξν =

[
∞∑
n=0

1

n!
(2ν + 1)n

(ν + 1 + iε)n
(ν + 1− iε)n

aνn

][
∞∑
n=0

(−1)n

n!
(2ν + 1)n

∣∣∣∣(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 aνn
]
.

The last quantity we need to calculate for g`ω(r, r′) is W`ω. While we are free to get

W`ω directly from φνin, φνup, and their derivatives, it is also useful to have a more explicit
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expression. To do this, we again follow Arfken [88] and note that

W [φνc , φ
−ν−1
c ] = W [φνc , φ

−ν−1
c ]|r=b exp

[
−
∫ r

b

dr′
2(s+ 1)(r′ −M)

r′2 − 2Mr′

]
= W [φνc , φ

−ν−1
c ]|r=b

(
r2 − 2Mr

b2 − 2Mb

)−s−1

,

where W [f1, f2] is the Wronskian of f1 and f2 and b is any constant. Since we understand

the behavior of φνc and φ−ν−1
c at infinity, we will take the limit as b→∞. The result is

lim
b→∞

W [φνc , φ
−ν−1
c ]|r=b =− 2ν + 1

2
|ω|−2s−1b−2s−2

[
∞∑

n=−∞

∣∣∣∣(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 aνn
]

×

[
∞∑

n=−∞

(−1)n
(ν + 1 + s+ iε)n
(ν + 1− s− iε)n

aνn

]
.

This means that the Wronskian at any r-value is

W [φνc , φ
−ν−1
c ] =− (r2 − 2Mr)−s−1 2ν + 1

2
|ω|−2s−1

[
∞∑

n=−∞

∣∣∣∣(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 aνn
]

×

[
∞∑

n=−∞

(−1)n
(ν + 1 + s+ iε)n
(ν + 1− s− iε)n

aνn

]
,

and W`ω(φνc , φ
−ν−1
c ) ≡ (r2 − 2Mr)s+1W [φνc , φ

−ν−1
c ] is given by

W`ω(φνc , φ
−ν−1
c ) =− 2ν + 1

2
|ω|−2s−1

[
∞∑

n=−∞

∣∣∣∣(ν + 1 + s− iε)n
(ν + 1− s+ iε)n

∣∣∣∣2 aνn
]

×

[
∞∑

n=−∞

(−1)n
(ν + 1 + s+ iε)n
(ν + 1− s− iε)n

aνn

]
. (3.2.31)

It is easy to show that

W`ω(φνin, φ
ν
up) = (1− βνc γνc )W`ω(φνc , φ

−ν−1
c ).

We now know how to construct g`ω(r, r′) and therefore G(x, x′), which will be indispens-

able in finding the self-force on a point particle orbiting a Schwarzschild black hole.
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3.3 Scalar Self-Force

For the rest of this chapter, we specialize to the scalar (s = 0) case. The source term is

T0 = −ρ in this case7, and the Bardeen-Press equation reduces to8

∇α∇αψ = −4πρ, (3.3.1)

where ρ is the scalar charge density, and we now refer to ψ0 from the last section as ψ.

We now wish to consider a scalar charge in circular orbit around a Schwarzschild black

hole. In particular, we take the charged particle to be small—both in the sense that its

volume is small compared to the black hole and in the sense that its charge q is small.

The latter condition means that ψ’s influence on the gravitational field can be neglected,

and we can consider ψ to be a scalar field on the background Schwarzschild spacetime.

The former condition leads us to treat the scalar charge as a point particle, so that ρ

is given by a delta function. This allows us to easily integrate the Green’s function we

derived in the last section against ρ to find the retarded scalar field ψ.

However, there is a problem with this: namely, the retarded field diverges at the

particle’s position. Our goal is to derive the self-force Fα of the particle; that is, the force

that the particle feels due to its own field. Naively, we would try to take a derivative of

the field and multiply by the charge of the particle. The divergent field blows a hole in

this prescription. We therefore need a way to renormalize the field, so that

FR,α = lim
x→x0

Pα
β∇βψR (3.3.2)

exists, where ψR is continuous and differentiable at the particle. Meanwhile, Pα
β = δαβ +

uαuβ projects the force onto a direction perpendicular to uα; this keeps the scalar charge

constant and is conventionally used in scalar self-force work. We explain how to do this

in the following subsection.

7Hikida et al. [8, 9] implicitly choose T0 = −ρ/4π. This is not materially different and their expression

can be thought of as the result of defining the unit of scalar charge differently. Nevertheless, our results

will appear to differ with theirs by a factor of 4π.
8Sometimes, the scalar field is defined to couple to the background spacetime via a term proportional

to Rψ, where R is the Ricci scalar. A scalar field defined as it is here is referred to as minimally coupled.
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3.3.1 Mode-Sum Renormalization

Quinn’s axiomatic approach to renormalizing the field[90] is consistent with that of Quinn

and Wald [91] in the electromagnetic and gravitational cases. Furthermore, in the other

two cases Quinn and Wald [91] give the same results as Mino, Sasaki, and Tanaka [92].

Mino, Sasaki, and Tanaka arrived at the results in two other ways, one of which is referred

to as matched asymptotic expansions. It is that last method that is considered standard

in the gravitational case; Quinn’s axioms in [90] are more directly applicable to the scalar

case, and we use them here.

Quinn’s axioms are as follows:

1. Comparison Axiom: consider two point particles in two possibly different space-

times, each particle having scalar charge q. Suppose that, at points x0 and x̃0 on

their respective trajectories, the magnitude of the particle’s 4-accelerations coin-

cide. We may then choose Riemann Normal Coordinate systems about x0 and x̃0

for which the components of the 4-velocities and 4-accelerations coincide: uα = ũα

and aα = ãα. Let ψret and ψ̃ret be the scalar fields of the particles. With the Rie-

mann Normal Coordinates used to identify the neighborhood around x0 with that

around x̃0 the difference between the renormalized scalar self-forces, FR,α and F̃R,α,

is given by the limit as r → 0 of the gradients of the fields averaged over a sphere

of geodesic distance r about x0:

FR,α − F̃R,α = q lim
r→0

〈
∇αψret −∇αψ̃ret

〉
r
. (3.3.3)

2. Flat Spacetime Axiom: let ψadv be the scalar field with advanced boundary condi-

tions. If, for a uniformly accelerated scalar charge in flat spacetime,

ψ̃ =
1

2

(
ψ̃ret + ψ̃adv

)
,

then

F̃R,α = 0 (3.3.4)

at every point along the particle’s path.
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These two axioms allow us to write the scalar self-force on a particle in Riemann Normal

Coordinates as

FR,α = q lim
r→0

〈
∇αψret −∇αψ̃

〉
r
. (3.3.5)

While a useful starting point, Quinn’s axioms are difficult to use for practical cal-

culations. Thankfully, much work has been done to make self-force calculations more

tractable. Namely, Detweiler and Whiting showed that ψ can be decomposed into two

parts, ψS and ψR:

ψ = ψS + ψR, (3.3.6)

where ψS is referred to as the singular field and ψR is called the renormalized field. The

singular field has many important properties, including:

• The singular field is only defined in a local region of spacetime about the particle.

• The singular field is a solution to the sourced differential equation for ψ: ∇α∇αψS =

−4πρ.

• The singular field reproduces the singular behavior of ψret near the particle, so that

ψR is continuous and differentiable at the particle.

• According to Quinn’s axioms, the singular field does not contribute to the self-force.

Thus, the Detweiler-Whiting singular field gives us exactly what we need: to find the

self-force, we can simply take a derivative of ψR = ψret − ψS:

FR,α = q ∇αψR
∣∣
x=x0

. (3.3.7)

We omit any expression for the Detweiler-Whiting singular field here simply because

it takes a very simple form once we use mode-sum renormalization. The mode-sum

renormalization method was first introduced by Barack and Ori [93] for scalar charges

following geodesics through Schwarzschild spacetime; eventually, Linz, Friedman, and

Wiseman [94] showed that it can be used for any kind (scalar, electromagnetic, or grav-

itational) of charge following an arbitrary path on any smooth spacetime. The idea is
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this: when one decomposes the retarded field into spherical harmonics

ψ(t, r, θ, φ) =
∞∑
`=0

∑̀
m=−`

ψ`m(t, r) 0Y`m(θ, φ), (3.3.8)

the individual `m-modes {ψ`m} and their derivatives are finite, even in the limit x→ x0.

Thus, in this prescription the retarded field is regularized—that is, it is decomposed into

an infinite set of finite pieces. We can similarly decompose the self-force (allowing it to

be defined off the particle’s world line):

Fα =
∞∑
`=0

∑̀
m=−`

Fα
`m(t, r) 0Y`m(θ, φ) (3.3.9)

=
∞∑
`=0

Fα
` , (3.3.10)

where

Fα
` =

∑̀
m=−`

Fα
`m 0Y`m.

Because the sum over m is finite, Fα
` is also finite. Finally, this method shines most

brightly when one considers the `-modes of the singular part of the force. It turns out

that one can write

lim
r→r±0

F S,α
` = ∓Aα

(
`+

1

2

)
+Bα, (3.3.11)

where Aα and Bα are `-independent vectors. That is, the `-modes of the singular part

of the force have one term proportional to ` + 1/2 and another that is independent of

`. Clearly, these two terms diverge when we do the sum over `. Once one subtracts

these two terms from the full force, resulting from the retarded field, we are left with the

renormalized force:

FR,α =
∞∑
`=0

Fα
` − F

S,α
` . (3.3.12)

In this way, we can renormalize the self-force without directly dealing with any diverging

quantities.

As we will show below, Hikida [8, 9] found a way to calculate the regularization

parameters Aα and Bα—as well as FR,α—analytically, to finite post-Newtonian order.

The mode-sum renormalization will therefore be indispensable to us.
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3.3.2 Description of the system and the resulting scalar perturbation

We now specialize to the specific system considered in this chapter: a scalar point charge

in circular orbit around a Schwarzschild black hole of mass M . We use Schwarzschild

coordinates (t, r, θ, φ), and give the particle naughted coordinates x0 = (t0, r0, θ0, φ0).

We choose our angular coordinates so that θ0 = π/2; because the orbit is circular, the

particle’s radial coordinate r0 is constant in t0. The particle’s angular velocity as measured

by a stationary observer at infinity is Ω = dφ0/dt0. We note that the coordinates of the

particle’s four-velocity can be written

uα = ut(1, 0, 0,Ω)

with

ut =

√
1

1− 2M
r0
− r2

0Ω2
.

Finally, we emphasize here that we allow the particle to be accelerated; that is, we allow

the particle’s angular velocity to deviate from the Keplerian value ΩK obtained from the

geodesic equation:

ΩK =

√
M

r3
0

. (3.3.13)

This is counter to what is normally done in self-force calculations, where the particle’s

motion to zeroth order in q is taken to be a geodesic. We do not specify what is responsible

for the acceleration, but we do assume that its associated stress-energy tensor is small

enough that we can still consider the particle to be moving through a Schwarzschild

spacetime. Our motivation, beyond academic curiosity, is twofold. First, studying an

accelerated particle will allow us to compare our answer to special cases for the self-force

on a scalar charge. For example, Wiseman [95] showed that the self-force on a static

scalar charge outside a Schwarzschild black hole is zero. We can’t compare our result

to his if we require the charge to follow a geodesic. Second, Galley and collaborators

[96–100] have pioneered the use of effective field theory to solve self-force problems. Since

terms proportional to, say, M2Ω2 are associated with a different Feynman diagram than

terms proportional to Mr3
0Ω4, having these terms separated out can be useful points of

comparison even though they are identical when the particle follows a geodesic.
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Now that we’ve specified the system we are studying, we can make progress solving

for the resulting scalar field ψ. The particle’s charge density is given by a delta function

spiked at its position:

ρ(x) = q

∫ ∞
−∞

dτ
δ(t− t0)δ(r − r0)δ(θ − θ0)δ(φ− φ0)√

− det(gµν)

=
q

ut
δ(r − r0)δ(θ − θ0)δ(φ− Ωt)

r2 sin θ
,

and the resulting scalar field is

ψ = −4π

∫
d4x′G(x, x′)ρ(x′)

= −4π
q

ut

∫ ∞
−∞

dt0G(x, x0). (3.3.14)

To move forward, it is helpful to look at the form of G given by Eq. (3.2.24):∫ ∞
−∞

dt0G(x, x0) =
1

2π

∫ ∞
−∞

dt0

∫ ∞
−∞

dω
∞∑
`=0

∑̀
m=−`

g`ω(r, r0)e−iω(t−t0)
0Y`m(θ, φ) 0Y `m(θ0, φ0).

We note that 0Y `m(θ0, φ0) = 0Y `m(θ0,Ωt0) = 0Y `m(θ0, 0)e−imΩt0 . Therefore, collecting

the terms involving t0 and performing the integrations,∫ ∞
−∞

dt0G(x, x0) =
1

2π

∫ ∞
−∞

dt0

∫ ∞
−∞

dω
∞∑
`=0

∑̀
m=−`

g`ω(r, r0)e−iωtei(ω−mΩ)t0

× 0Y`m(θ, φ) 0Y `m(θ0, 0)

=

∫ ∞
−∞

dω
∞∑
`=0

∑̀
m=−`

g`ω(r, r0)e−iωtδ(ω −mΩ) 0Y`m(θ, φ) 0Y `m(θ0, 0)

=
∞∑
`=0

∑̀
m=−`

g`m(r, r0)e−imΩt
0Y`m(θ, φ) 0Y `m(θ0, 0)

=
∞∑
`=0

∑̀
m=−`

g`m(r, r0) 0Y`m(θ, φ− Ωt) 0Y `m(θ0, 0),

where g`m(r, r0) = g`ω(r, r0)|ω→mΩ. Therefore,

ψ = −4π
q

ut

∞∑
`=0

∑̀
m=−`

g`m(r, r0)e−imΩt
0Y`m(θ, φ) 0Y `m(θ0, 0) (3.3.15)

= −4π
q

ut

∞∑
`=0

∑̀
m=−`

g`m(r, r0) 0Y`m(θ, φ− Ωt) 0Y `m(θ0, 0). (3.3.16)
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We report both equations above because, while the first one more explicitly gives the

time-dependence, the second more clearly shows that, when one evaluates ψ at x = x0,

the resulting summand is proportional to |0Y`m(θ0, 0)|2. We note here that the above inte-

grations over t0 and ω are simple only because of the particle’s circular motion; otherwise,

r0 would be a function of t0.

The way to complete the self-force calculation now seems clear: we know how to

calculate g`m to finite PN order from Eq. (3.2.3) and MST’s method. If we do that and

sum over m, we can find the high-` behavior of

ψ` ≡ −4π
q

ut

∑̀
m=−`

g`m(r, r0)e−imΩt
0Y`m(θ, φ) 0Y`m(θ0, 0) (3.3.17)

and therefore of

Fα
` ≡ Pα

β∇βψ`|x=x0 (3.3.18)

and recover Aα and Bα. We can then subtract the `-modes of the singular part of the

force and recover the renormalized self-force.

There is one difficulty with the above prescription: the sum over m. In particular, the

factor of |2ζ|ν in φνc creates difficulty. When expanded in z and ε (which are now equal

to mΩr and 2Mmω, respectively), this factor gives rise to terms proportional to ln |z|.

Terms logarithmic in z are challenging to sum over m analytically for generic `. We will

therefore need to use a trick discovered by Hikida et al. [8, 9], which we discuss in the

next subsection.

3.3.3 Hikida’s Method

Before we discuss Hikida’s method in detail, I wish to write φνc for s = 0 in terms of ε and

z. As we will see, our PN expansions will coincide with a double Taylor series in ε and z,

and ζ ≡ z − ε will be less useful to us. Also, φνc is significantly simpler in the s = 0 case:

φνc = e−i(z−ε)|2z|ν
(

1− ε

z

)ν ∞∑
n=−∞

aνn
(ν + 1 + iε)n

(2ν + 2)2n

[2i(z − ε)]n

× 1F1(n+ ν + 1 + iε; 2n+ 2ν + 2, 2i(z − ε)). (3.3.19)
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Here, we have factored out |2z|ν from |2ζ|ν . We don’t need an absolute value sign on

(1 − ε/z) = (1 − 2M/r) because it is always positive. Hikida et al. noticed that if we

define Φν and Φ−ν−1 by

φνc = |2z|νΦν , (3.3.20)

φ−ν−1
c = |2z|−ν−1Φ−ν−1, (3.3.21)

then Φν and Φ−ν−1 can be expanded as polynomials in ε and z. That is, there are no

logarithmic terms in Φν and Φ−ν−1. The terms that are logarithmic in ω—which are the

terms that make the sum over m in Eq. (3.3.17) difficult—are due solely to the factor of

|2z|ν . To see this more explicitly, we write ν = `+
∑∞

n=1 ν2nε
2n. Then

|2z|ν = |2z|`|2z|
∑∞

n=1 ν2nε
2n

= |2z|` exp

(
ln |2z|

∞∑
n=1

ν2nε
2n

)
= |2z|`[1 + ν2ε

2 ln |2z|+O(ε4)].

Next, Hikida et al. write g`ω in terms of φνc and φ−ν−1
c :

g`ω(r, r′) =
1

(1− βνc γνc )W`ω(φνc , φ
−ν−1
c )

[
φνc (r<) + βνc φ

−ν−1
c (r<)

] [
γνc φ

ν
c (r>) + φ−ν−1

c (r>)
]

=
1

(1− βνc γνc )W`ω(φνc , φ
−ν−1
c )

[
φνc (r<)φ−ν−1

c (r>) + βνc γ
ν
c φ

ν
c (r>)φ−ν−1

c (r<)

+γνc φ
ν
c (r<)φνc (r>) + βνc φ

−ν−1
c (r<)φ−ν−1

c (r>)
]

=
1

(1− βνc γνc )W`ω(φνc , φ
−ν−1
c )

{
(1− βνc γνc )φνc (r<)φ−ν−1

c (r>)

+ γνc φ
ν
c (r<)φνc (r>) + βνc φ

−ν−1
c (r<)φ−ν−1

c (r>)

+βνc γ
ν
c

[
φνc (r<)φ−ν−1

c (r>) + φνc (r>)φ−ν−1
c (r<)

]}
Let us notice a few things about the terms on the right side of the last equation. First,

the first term is the only one whose derivative is discontinuous at the particle. The rest

of g`ω is symmetric in r< and r> and therefore in r and r′. The first term is also free of

terms logarithmic in ω; the factors of |2z|ν cancel out. Hikida et al., noticing this, then

split g`ω into two parts:

g`ω(r, r′) = gS̃
`ω(r, r′) + gR̃

`ω(r, r′), (3.3.22)
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with

gS̃
`ω(r, r′) =

φνc (r<)φ−ν−1
c (r>)

W`ω(φνc , φ
−ν−1
c )

, (3.3.23)

gR̃
`ω(r, r′) =

1

(1− βνc γνc )W`ω(φνc , φ
−ν−1
c )

{
γνc φ

ν
c (r)φ

ν
c (r
′) + βνc φ

−ν−1
c (r)φ−ν−1

c (r′)

+βνc γ
ν
c

[
φνc (r)φ

−ν−1
c (r′) + φνc (r

′)φ−ν−1
c (r)

]}
. (3.3.24)

Let’s study gR̃
`ω more closely. We note from the expressions for βνc and γνc that βνc =

O(ε2`+1) and γνc = O(ε−1). Furthermore, for ` 6= 0, Φν and Φ−ν−1 are O(1), so φνc = O(z`)

and φ−ν−1
c = O(z−`−1). Finally, in order to convert expansions in z and ε into a Post-

Newtonian expansion, we see that z = PN(.5) and ε = PN(1.5), where PN(x) indicates

that a term is at xth Post-Newtonian order. Taking all these results together and looking

at the terms in gR̃
`ω, it becomes clear that for ` 6= 0 the lowest-order term in gR̃

`ω is the first

one in Eq. (3.3.24), and gR̃
`ω = PN(` − 1.5). Thus, the PN order of gR̃

`ω increases with `,

and to do a finite-PN order calculation, we only need to calculate gR̃
`ω for a finite number

of `-values. Making the replacement ω → mΩ and summing over m is therefore not a

problem because the sum can be done explicitly.

While we still need to calculate gS̃
`ω(r, r′) for all `-values, it turns out that we can: we

saw general-` expressions for the coefficients {aνn} in Eq. (3.2.16), and we saw a general-`

expression for ν2 in Eq. (3.2.15). It follows that there are general-` expressions for φνc and

φ−ν−1
c . We also saw that the general-` expressions do not work for all `-values; specifically,

we saw that in order to calculate the coefficients and ν to second order in ε, we couldn’t

use the general-` expressions for ` = 0, 1. It turns out that the general-` expressions for

φνc and φ−ν−1
c are only valid to (`− 1)th PN order. Thus, to calculate gS̃

`ω(r, r′) accurately

to nth PN order, we can use the general-` expressions when ` > n + 1, but we need to

calculate gS̃
`ω(r, r′) explicitly for lower `-values. Furthermore, since gS̃

`ω(r, r′) is polynomial

in ω, gS̃
`m(r, r′) is polynomial in m, and it is possible to do the sum over m indicated in

Eq. (3.3.17) for general ` analytically using

∑̀
m=−`

m2n
∣∣∣0Y`m (π

2
, 0
)∣∣∣2 = (−1)n

2`+ 1

4π

d

dφ
P`(cosφ)

∣∣∣∣
φ=0

. (3.3.25)
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Therefore, for `-values that are high enough relative to the PN order we calculate to,

we can use the general-` expressions to find gS̃
`m(r, r′) and then do the sum over m using

Eq. (3.3.25). For the lower `-values, we must calculate each gS̃
`m(r, r′) explicitly.

It is now clear that, at least to finite PN order, the field ψS̃ calculated from gS̃
`ω(r, r′)

contains the singular field ψS, while gR̃
`ω produces a regular field ψR̃. Thus, we only need

to renormalize the S̃ part of the force F S̃ resulting from ψS̃. We can do so using the

general-` expression for ψS̃, computing the sum over m using Eq. (3.3.25), and recovering

the regularization parameters analytically from the high-` behavior of the result.

Finally, Hikida et al. employ one more trick: they notice that gS̃ can be split into to

parts: one that is symmetric in r and r′ and one that is antisymmetric. Specifically,

gS̃
`ω = g

S̃(+)
`ω (r, r′) + g

S̃(−)
`ω (r, r′)Sign(r − r′), (3.3.26)

and

g
S̃(±)
`ω (r, r′) =

1

2W`ω(φνc , φ
−ν−1
c )

[
φνc (r)φ

−ν−1
c (r′)± φ−ν−1

c (r′)φνc (r
′)
]
. (3.3.27)

When we introduced mode-sum regularization, we saw that the “A-term” Aα(` + 1/2)

switches sign if one approaches the particle from the opposite radial direction, whereas

the “B-term” Bα is unchanged regardless of the the direction from which one approaches

the particle. Clearly, then, the antisymmetric part of the Green’s function is responsible

only for the A-term, and we are free to discard it. This is equivalent to averaging the

field outside the particle’s orbit with the field inside the orbit, and is standard practice

in self-force calculations. This allows us to only have to subtract the B-term when we

renormalize.

Our method is therefore as follows:

1. Choose a PN order.

2. Generate the general-` expression for gS̃
`m(r, r′) to said PN Order.

3. Find the general-` expression for ψ
S̃(+)
` using Eq. (3.3.25)

4. Compute the resulting general-` expression for F
S̃(+),α
` .
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5. Get the regularization parameter

Bα = lim
`→∞

F
S̃(+),α
`

6. For low `-values, compute F
S̃(+),α
`

7. Perform the sum

F S̃−S,α =
∞∑
`=0

[
F

S̃(+),α
` −Bα

]
.

8. Compute F R̃,α
` explicitly for all `-values needed to be accurate to the given PN

order.

9. Perform the sum

F R̃,α =
`max∑
`=0

F R̃,α
` ,

where `max is the maximum `-value needed for that PN order.

10. Add the (S̃− S) and R̃ parts of the force:

FR,α = F S̃−S,α + F R̃,α.

3.4 Results

We choose to find the self-force to 6th PN order. This means we must explicitly calculate

Φν and Φ−ν−1 for ` ∈ [0, 7], and we may use general-` expressions for ` ≥ 8. We also note

here that for ` = 0, Φ−ν−1 = PN(−1), so we need to calculate Φν to 7th PN order, whereas

for all other `-values we find both Φν and Φ−ν−1 to 6th order.9 We will report intermediate

results, including general- and specific-` expressions for Φν , Φ−ν−1, and F
S̃(+)
α,` , as well as

9The reason for this is that the specific-` expressions for Φ−ν−1 have terms proportional to M−1.

These terms enter Φ−ν−1 at PN(` − 1), and are one of the ways that the specific-` expressions deviate

from the general-` ones. For ` = 0, then, there is a PN(−1) term proportional to r/M . After we add the

S̃− S part of the force—which has M−1 terms due to the presence of Φ−ν−1—to the R̃ part—which has

these terms both due to Φ−ν−1 and γνc , whose leading order term is inversely proportional to M—the

terms inversely proportional to M cancel in an apparently miraculous way. However, Hikida et al. [8]

show that these terms cannot contribute to the force for physical reasons.
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F R̃
α,`, which only has specific-` expressions. We show these to help the reader understand

how the renormalized force is ultimately calculated, but because typesetting the general-`

expressions becomes intractable at high PN order, we only give them to 2nd PN order. We

give quantities that are calculated from the intermediate results to 6th PN order; these

include the regularization parameter Bα, the renormalized S̃ part of the force F S̃−S
α , the

R̃ part of the force, and the total renormalized force FR
α .

Before we get to more complicated results, we mention that, in the scalar case, φνc and

φ−ν−1
c are real, and because of Eq. (3.2.18), even in ω. After the replacement ω → mΩ,

they are even in m. Therefore, gS̃
`m is also even in m. When we take a time derivative

of ψS̃, this introduces a factor of −imΩ to its corresponding summand in Eq. (3.3.15),

causing the summand to be odd in m. The sum over m is therefore zero, with the end

result that

F
S̃(+)
t,` = 0 (3.4.1)

for all values of `, and therefore

F S̃
t = 0. (3.4.2)

Since the motion is circular, F S̃
φ ∝ F S̃

t , and

F S̃
φ = 0. (3.4.3)

The t- (or φ-) component of the force modifies the energy of the particle, and this energy

is carried away by the resulting scalar radiation. Since the t-component of the S̃ part of

the force is zero, it must be that the R̃ part of the field carries the radiative information.

This is an unexpected benefit of the otherwise unphysical R̃-S̃ decomposition.

We also note that, since the quantity ∂θ 0Y`m(θ, 0)|θ=θ0 0Y`m(θ0, 0) = 0,

F S̃
θ = F R̃

θ = FR
θ = 0. (3.4.4)

3.4.1 Intermediate Results

All expressions in this section will be accurate through 2nd PN order. The general-`

expressions will therefore be true for all ` > 3. We start with the general-` expressions
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for Φν and Φ−ν−1. We manually insert factors of c so that the reader can easily distinguish

between different PN orders.

Φν =1 +

[
−M
r
`− (rω)2

2

1

2`+ 3

]
1

c2
+

[
M2

r2

`(`− 1)2

2`− 1

+
M

r

(rω)2

2

`2 − 5`− 10

(`+ 1)(2`+ 3)
+

(rω)4

8

1

(2`+ 3)(2`+ 5)

]
1

c4
+ PN(3) (3.4.5)

Φ−ν−1 =1 +

[
M

r
(`+ 1) +

(rω)2

2

1

2`− 1

]
1

c2
+

[
M2

r2

(`+ 1)(`+ 2)2

2`+ 3

+
M

r

(rω)2

2

`2 + 7`− 4

`(2`− 1)
+

(rω)4

8

1

(2`− 1)(2`− 3)

]
1

c4
+ PN(3) (3.4.6)

Now for the specific-` expressions for the same quantities. For ` = 0, we report Φν

through PN(3) because that is required to find the force through PN(2). For ` = 0:

Φν =
7

9
+

[
−14

27

M

r
− 7

54
(rω)2

]
1

c2
+

[
−14

27

M2

r2
− 28

27

M

r
(rω)2 +

7

1080
(rω)4

]
1

c4

+

[
−56

81

M3

r3
+

7601

2835

M2

r2
(rω)2 +

203

1620

M

r
(rω)4 − 1

6480
(rω)6

]
1

c6
+ PN(4) (3.4.7)

Φ−ν−1 =− 1

3

r

M
c2 +

[
1 +

1

18

r

M
(rω)2

]
+

[
M

r
+

1

18
(rω)2 − 1

360

r

M
(rω)4

]
1

c2

+

[
4

3

M2

r2
+

2243

1890

M

r
(rω)2 − 23

1080
(rω)4 +

1

15120

r

M
(rω)6

]
1

c4
+ PN(3) (3.4.8)

For ` = 1:

Φν =1 +

[
−M
r
− 1

10
(rω)2

]
1

c2
+

[
− 7

10

M

r
(rω)2 +

1

280
(rω)4

]
1

c4
+ PN(3) (3.4.9)

Φ−ν−1 =

[
1− 5

19

r

M
(rω)2

]
+

[
2
M

r
+

29

38
(rω)2 +

1

38

r

M
(rω)4

]
1

c2

+

[
18

5

M2

r2
+ 2

M

r
(rω)2 +

9

152
(rω)4 − 1

1064

r

M
(rω)6

]
1

c4
+ PN(3) (3.4.10)

For ` = 2:

Φν =1 +

[
−2

M

r
− 1

14
(rω)2

]
1

c2
+

[
2

3

M2

r2
− 8

21

M

r
(rω)2 +

1

504
(rω)4

]
1

c4
+ PN(3)

(3.4.11)
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Φ−ν−1 =1 +

[
3
M

r
+

1

6
(rω)2 − 7

237

r

M
(rω)4

]
1

c2

+

[
48

7

M2

r2
+

7

6

M

r
(rω)2 +

191

1896
(rω)4 +

1

474

r

M
(rω)6

]
1

c4
+ PN(3) (3.4.12)

For ` = 3:

Φν =1 +

[
−3

M

r
− 1

18
(rω)2

]
1

c2
+

[
12

5

M2

r2
− 2

9

M

r
(rω)2 +

1

792
(rω)4

]
1

c4
+ PN(3)

(3.4.13)

Φ−ν−1 =1 +

[
4
M

r
+

1

10
(rω)2

]
1

c2

+

[
100

9

M2

r2
+

13

15

M

r
(rω)2 +

1

120
(rω)4 − 1

845

r

M
(rω)6

]
1

c4
+ PN(3) (3.4.14)

The functions Φν and Φ−ν−1 are used to construct the radial Green’s function and its

R̃ and S̃ parts. These give rise to the respective parts of the scalar field ψ, and then to

the force. The general-` expression for F
S̃(+)
r,` is

F
S̃(+)
r,` =

q2

r2
0

{[
−1

2

]
+

[
−1

2

M

r0

+
3 (−1 + 2`+ 2`2)

4(−1 + 2`)(3 + 2`)
(r0ω)2

]
1

c2

+

[
− −9 + 16`+ 16`2

4(−1 + 2`)(3 + 2`)

M2

r2
0

+
−9 + 10`+ 10`2

4(−1 + 2`)(3 + 2`)

M

r0

(r0ω)

+
3 (15− 16`+ 2`2 + 36`3 + 18`4)

16(−3 + 2`)(−1 + 2`)(3 + 2`)(5 + 2`)
(r0ω)4

]
1

c4
+ PN(3)

}
(3.4.15)

To get F
S̃(+)
r through 2nd PN order, we need to calculate the `-modes explicitly up through

` = 3. These explicit `-modes are as follows.

F
S̃(+)
r,0 =

q2

r2
0

[
−11

14
+

(
M

14r0

+
11

28
Ω2r2

0

)
1

c2
+

(
15M2

28r2
0

+
3

4
MΩ2r0 +

11

112
Ω4r4

0

)
1

c4

+PN(3)] (3.4.16)

F
S̃(+)
r,1 =

q2

r2
0

[(
−1

2
− 5Ω2r3

0

19M

)
+

(
−M

2r0

+
371

380
Ω2r2

0 +
9Ω4r5

0

38M

)
1

c2

+

(
−23M2

20r2
0

+
159

380
MΩ2r0 +

157Ω4r4
0

2128
− 177Ω6r7

0

5320M

)
1

c4
+ PN(3)

]
(3.4.17)

F
S̃(+)
r,2 =

q2

r2
0

[
−1

2
+

(
−M

2r0

+
11

28
Ω2r2

0 −
56Ω4r5

0

79M

)
1

c2

+

(
−29M2

28r2
0

+
17

28
MΩ2r0 +

4295Ω4r4
0

1264
+

76Ω6r7
0

79M

)
1

c4
+ PN(3)

]
(3.4.18)
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F
S̃(+)
r,3 =

q2

r2
0

[
−1

2
+

(
−M

2r0

+
23

60
Ω2r2

0

)
1

c2

+

(
−61M2

60r2
0

+
37

60
MΩ2r0 +

161

528
Ω4r4

0 −
1368Ω6r7

0

845M

)
1

c4
+ PN(3)

]
(3.4.19)

We will now report the expressions for the `-modes of the R̃ part of the force, accurate

through 2nd PN Order. We will first show these for the radial component.

F R̃
r,0 =

q2

r2
0

[
−9

7
+

(
−3

7

M

r0

+
9

14
(r0Ω)2

)
1

c2
+

(
− 3

14

M2

r2
0

+
3

2

M

r0

(r0Ω)2 +
9

56
(r0Ω)4

)
+PN(3)] (3.4.20)

F R̃
r,1 =

q2

r2
0

[
5

19

r0

M
(r0Ω)2 +

(
−10

19
(r0Ω)2 − 9

38

r0

M
(r0Ω)4

)
1

c2

+

(
5

38

M

r0

(r0Ω)2 − 7

19
(r0Ω)4 +

177

5320

r0

M
(r0Ω)6

)
1

c4
+ PN(3)

]
(3.4.21)

F R̃
r,2 =

q2

r2
0

[(
56

79

r0

M
(r0Ω)4

)
1

c2
+

(
−224

79
(r0Ω)4 − 76

79

r0

M
(r0Ω)6

)
1

c4
+ PN(3)

]
(3.4.22)

F R̃
r,3 =

q2

r2
0

[(
1368

845

r0

M
(r0Ω)6

)
1

c4
+ PN(3)

]
(3.4.23)

As mentioned in the last section, each `-mode of the R̃ part of the force enters at a higher

PN order than the previous `-mode.

Finally, we show the `-modes of the temporal component of the R̃ part of the force.

Again, since the S̃ part doesn’t contribute to the temporal component, these are all one

needs to compute the damping force FR
t .

F R̃
t,0 = 0 (3.4.24)

F R̃
t,1 =

q2

r2
0

r0Ω

c

[(
1

3
(r0Ω)3

)
1

c3
+

(
−M
r0

(r0Ω)3 − 7

30
(r0Ω)5

)
1

c5
+ PN(3)

]
(3.4.25)

F R̃
t,2 =

q2

r2
0

r0Ω

c

[(
16

15
(r0Ω)5

)
1

c5
+ PN(3.5)

]
(3.4.26)

To reiterate from the last section, in order to calculate the full renormalized force FR
α ,

we first need to take the high-` limit of F
S̃(+)
α,` . This gives us the regularization parameter
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Bα. We then subtract Bα from F
S̃(+)
α,` for all `-values, and sum from ` = 0 to ∞. Because

we have general-` expressions for F
S̃(+)
α,` that are valid for ` > PN + 1, we can do this sum

analytically. After that, we add the `-modes of the R̃ part of the force, which does not

need to be renormalized. Only a finite number of the R̃ `-modes contributes to finite PN

order, so no infinite sum is needed for that part.

3.4.2 Bα and F S̃−S
α

We now report the regularization parameter Br, obtained by taking the high-` limit of

the general-` expression for F
S̃(+)
r,` . To 6th PN order, it is

Br =
q2

r2
0

[
−1

2
+

(
−M

2r0

+
3

8
Ω2r2

0

)(
1

c

)2

+

(
−M

2

r2
0

+
5

8
MΩ2r0 +

27

128
Ω4r4

0

)(
1

c

)4

+

(
M2Ω2 − 2M3

r3
0

+
95

128
MΩ4r3

0 +
79

512
Ω6r6

0

)(
1

c

)6

+

(
−4M4

r4
0

+
3M3Ω2

2r0

+
123

64
M2Ω4r2

0 +
429

512
MΩ6r5

0 +
4095Ω8r8

0

32768

)(
1

c

)8

+

(
−8M5

r5
0

+
2M4Ω2

r2
0

+
69

16
M3Ω4r0 + 3M2Ω6r4

0 +
30183MΩ8r7

0

32768

+
13995Ω10r10

0

131072

)(
1

c

)10

+

(
35M4Ω4

4
− 16M6

r6
0

+
2M5Ω2

r3
0

+
565

64
M3Ω6r3

0 +
69015M2Ω8r6

0

16384

+
130533MΩ10r9

0

131072
+

197659Ω12r12
0

2097152

)(
1

c

)12

+ PN(7)

]
,

where we have manually re-added factors of 1/c so that one can easily demarcate terms

of different PN orders. We write the resulting renormalized S̃ force as

F S̃−S
r =

q2

r2
0

6∑
n=0

C S̃−S
r,n , (3.4.27)

where n refers to the PN order of the term, and

C S̃−S
r,0 = −2

7
− 5r3

0Ω2

19M
(3.4.28)

C S̃−S
r,1 =

4M

7r0

+
89r2

0Ω2

133
− 1417r5

0Ω4

3002M
(3.4.29)
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C S̃−S
r,2 =

9M2

7r2
0

− 5

38
Mr0Ω2 +

136153r4
0Ω4

42028
− 9804331r7

0Ω6

14205464M
(3.4.30)

C S̃−S
r,3 =

482M3

133r3
0

− 3949M2Ω2

5054
+

7

64
M2π2Ω2 − 866709919Mr3

0Ω4

97534980
+

1243509067r6
0Ω6

127849176

− 1015083323057r9
0Ω8

1108452355920M
(3.4.31)

C S̃−S
r,4 =

4919M4

532r4
0

− 13687M3Ω2

20216r0

+
7M3π2Ω2

64r0

+
1634173681M2r2

0Ω4

195069960
− 83M2π2r2

0Ω4

1024

− 710943482539363Mr5
0Ω6

12153768834480
+

94836548674327r8
0Ω8

4433809423680

− 342957264845834411r11
0 Ω10

299752119897310080M
(3.4.32)

C S̃−S
r,5 =

2355447M5

105070r5
0

− 57835M4Ω2

20216r2
0

+
11M4π2Ω2

256r2
0

− 4498242521M3r0Ω4

2730979440

− 141M3π2r0Ω4

1024
+

5779923174043661M2r4
0Ω6

36461306503440
+

1529M2π2r4
0Ω6

2048

− 44807891407047808136653Mr7
0Ω8

205683170492936256120
+

19645812110644890187r10
0 Ω10

499586866495516800

− 189346213123387017025r13
0 Ω12

137834589075065955072M
(3.4.33)

C S̃−S
r,6 =

22121093M6

420280r6
0

− 5515976489M5Ω2

2730979440r3
0

− 23M5π2Ω2

256r3
0

− 5027838304339M4Ω4

546560018592

+
5221M4π2Ω4

2048
− 76585M4π4Ω4

524288
− 17575679246803750626521M3r3

0Ω6

82923949380773592000

− 857101M3π2r3
0Ω6

276480
+

2175028272323202689892893M2r6
0Ω8

1974558436732188058752

+
423951M2π2r6

0Ω8

131072
− 67449102739100897175124383220723Mr9

0Ω10

112731391541992244040866246400

+
16796339394328549334797373r12

0 Ω12

260507373351874655086080

− 38100898637282739376513402669r15
0 Ω14

23755667375957449797299635200M
(3.4.34)

3.4.3 F R̃
α

Unlike the S̃ part of the force, the R̃ part doesn’t need to be regularized and is fully

responsible for the temporal component of the force. It is still true that

F R̃
θ = 0, (3.4.35)
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but F R̃
t , F R̃

r , and F R̃
φ are all nonzero. We start with the radial component, and again we

write

F R̃
r =

q2

r2
0

12∑
p=0

CR̃
r,p/2, (3.4.36)

where p denotes the PN order divided by two. The coefficients are

CR̃
r,0 =

2

7
+

5Ω2r3
0

19M
(3.4.37)

CR̃
r,1 = −4M

7r0

− 89

133
Ω2r2

0 +
1417Ω4r5

0

3002M
(3.4.38)

CR̃
r,2 = −9M2

7r2
0

+
5

38
MΩ2r0 −

136153Ω4r4
0

42028
+

9804331Ω6r7
0

14205464M
(3.4.39)

CR̃
r,3 =

3949M2Ω2

5054
− 482M3

133r3
0

+
93892831MΩ4r3

0

10837220
− 4

3
γMΩ4r3

0 −
4

3
MΩ4 ln |2Ωr0| r3

0

− 1243509067Ω6r6
0

127849176
+

1015083323057Ω8r9
0

1108452355920M
(3.4.40)

CR̃
r,4 = −4919M4

532r4
0

+
54119M3Ω2

20216r0

− 494150867M2Ω4r2
0

65023320
+

8

3
γM2Ω4r2

0

+
8

3
M2Ω4 ln |2Ωr0| r2

0 +
2520940799065817MΩ6r5

0

36461306503440
− 22

3
γMΩ6r5

0

+
6

5
MΩ6 ln |2Ωr0| r5

0 −
128

15
MΩ6 ln |4Ωr0| r5

0 −
94836548674327Ω8r8

0

4433809423680

+
342957264845834411Ω10r11

0

299752119897310080M
(3.4.41)

CR̃
r,4.5 = −38

45
M2π|Ω|5r3

0 (3.4.42)

CR̃
r,5 = −2355447M5

105070r5
0

+
138699M4Ω2

20216r2
0

− 140795391M3Ω4r0

303442160
− 2

3
γM3Ω4r0

− 2

3
M3Ω4 ln |2Ωr0| r0 −

7036622871528893M2Ω6r4
0

36461306503440
+ 36γM2Ω6r4

0

+
28

15
M2Ω6 ln |2Ωr0| r4

0 +
512

15
M2Ω6 ln |4Ωr0| r4

0

+
53728501103815655428867MΩ8r7

0

205683170492936256120
− 119

6
γMΩ8r7

0 −
6

35
MΩ8 ln |2Ωr0| r7

0

+
1216

105
MΩ8 ln |4Ωr0| r7

0 −
2187

70
MΩ8 ln |6Ωr0| r7

0

− 19645812110644890187Ω10r10
0

499586866495516800
+

189346213123387017025Ω12r13
0

137834589075065955072M
(3.4.43)
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CR̃
r,5.5 =

76

45
M3π|Ω|5r2

0 −
1783

315
M2π|Ω|7r5

0 (3.4.44)

CR̃
r,6 =

11348688119305M4Ω4

1639680055776
− 22121093M6

420280r6
0

+
26210731801M5Ω2

2730979440r3
0

+
16M5Ω2

3r3
0

ln

∣∣∣∣2Mr0

∣∣∣∣+
18610404287177043507497M3Ω6r3

0

82923949380773592000
− 49207

675
γM3Ω6r3

0

+
152

45
[γ + ln |2Ωr0|]2M3Ω6r3

0 −
38

27
M3π2Ω6r3

0 −
19447

675
M3Ω6 ln |2Ωr0| r3

0

− 1984

45
M3Ω6 ln |4Ωr0| r3

0 +
8

3
M3Ω6ψ(2)(2)r3

0

− 14021972419142980434311137M2Ω8r6
0

9872792183660940293760
+

5131

27
γM2Ω8r6

0

− 1786

945
M2Ω8 ln |2Ωr0| r6

0 +
1408

315
M2Ω8 ln |4Ωr0| r6

0 +
6561

35
M2Ω8 ln |6Ωr0| r6

0

+
79576586453183332553093144212243MΩ10r9

0

112731391541992244040866246400
− 161

4
γMΩ10r9

0

+
65MΩ10 ln |2Ωr0| r9

0

1134
− 14512MΩ10 ln |4Ωr0| r9

0

2835
+

8019

140
MΩ10 ln |6Ωr0| r9

0

− 262144MΩ10 ln |8Ωr0| r9
0

2835
− 16796339394328549334797373Ω12r12

0

260507373351874655086080

+
38100898637282739376513402669Ω14r15

0

23755667375957449797299635200M
, (3.4.45)

where γ is the Euler-Mascheroni constant and ψ(2) is the second derivative of the digamma

function. As expected, there are logarithmic terms in the R̃ part of the force, and there

are also terms at half-integer PN order.

We now report F R̃
t . Because the S̃ part of the force doesn’t contribute to the time

component, the R̃ part is the full renormalized force. We write

F R̃
t = FR

t =
q2

r2
0

(r0Ω)
12∑
p=3

CR
p/2, (3.4.46)

with

CR
1.5 =

1

3
Ω3r3

0 (3.4.47)

CR
2.5 = −MΩ3r2

0 +
5

6
Ω5r5

0 (3.4.48)

CR
3 =

2

3
MπΩ3Abs[Ω]r3

0 (3.4.49)

64



CR
3.5 =

5

6
M2Ω3r0 −

11

2
MΩ5r4

0 +
35

24
Ω7r7

0 (3.4.50)

CR
4 = −2M2πΩ3Abs[Ω]r2

0 +
19

5
MπΩ5Abs[Ω]r5

0 (3.4.51)

CR
4.5 = −1

6
M3Ω3 +

4M4Ω

3r3
0

+
46537M2Ω5r3

0

2700
− 76

45
γM2Ω5r3

0 +
4

9
M2π2Ω5r3

0

− 76

45
M2Ω5 ln |2Ωr0| r3

0 −
19201MΩ7r6

0

1080
+

35

16
Ω9r9

0 (3.4.52)

CR
5 =

5

3
M3πΩ3|Ω|r0 −

65

3
M2πΩ5|Ω|r4

0 +
4639

420
MπΩ7|Ω|r7

0 (3.4.53)

CR
5.5 =

4M5Ω

r4
0

+
5M4Ω3

8r0

− 20417

900
M3Ω5r2

0 +
76

15
γM3Ω5r2

0 −
4

3
M3π2Ω5r2

0

+
76

15
M3Ω5 ln |2Ωr0| r2

0 +
335959619M2Ω7r5

0

2646000
− 18362γM2Ω7r5

0

1575

+
242

45
M2π2Ω7r5

0 −
20224M2Ω7 ln |2Ωr0| r5

0

1575
+

266M2Ω7 ln |4Ωr0| r5
0

225

− 3215311MΩ9r8
0

75600
+

385

128
Ω11r11

0 (3.4.54)

CR
6 = −1

3
M4πΩ3|Ω|+ 71977M3πΩ5|Ω|r3

0

1350
− 152

45
γM3πΩ5|Ω|r3

0

− 152

45
M3πΩ5|Ω| ln |2Ωr0| r3

0 −
11675

108
M2πΩ7|Ω|r6

0 +
546307MπΩ9|Ω|r9

0

22680
. (3.4.55)

The φ-component of the force FR
φ is proportional to the t-component:

FR,φ = ΩFR,t. (3.4.56)

Here we note that the 1.5-PN term is proportional to the particle’s jerk and was first

predicted by Gal’tsov [101]. Furthermore, in the limit Ω → 0, FR
t → 0; as one should

expect, a static particle does not feel a force in the temporal direction and does not radiate.

However, FR
t remains non-zero when the mass of the black hole goes to zero, which is

also unsurprising: a particle undergoing circular motion in flat spacetime radiates. These

are limits we could not check if we forced the scalar charge to follow a geodesic.

To allow for easy comparison to other Post-Newtonian work, we also report the force

when the particle does follow a geodesic. To do this, we will use the usual gauge-invariant
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Post-Newtonian expansion parameter x ≡ (MΩK)2/3 = (r0ΩK)2, where ΩK =
√
M/r3

0 is

the Keplerian angular velocity. The result is

FR
t,geo =

q2

r0

x1/2

[
1

3
x3/2 − 1

6
x5/2 +

2π

3
x3 − 77

24
x7/2 +

9π

5
x4

+

(
10121

3600
+

4π2

9
− 76

45
γ − 38

45
ln(4x)

)
x9/2 − 3761π

420
x5

+

(
163194823

2352000
+

182π2

45
− 10382

1575
γ +

20224

1575
ln(2x)− 5083

315
ln(4x)

)
x11/2

+

(
−3518947π

113400
− 152π

45
γ − 76π

45
ln(4x)

)
x6 +O(x13/2)

]
. (3.4.57)

This agrees with Hikida et al. [9], who report the above through 4th PN order.

3.4.4 FR
r

Here, we finally report the radial component of the renormalized force. Similarly to

before, we write

FR
r = F S̃−S

r + F R̃
r =

q2

r2
0

12∑
p=6

CR
r,p/2. (3.4.58)

Then the coefficients are given by

CR
r,3 =

7

64
M2π2Ω2 − 2

9
MΩ4r3

0 −
4

3
γMΩ4r3

0 −
4

3
MΩ4 ln |2Ωr0| r3

0 (3.4.59)

CR
r,4 =

2M3Ω2

r0

+
7M3π2Ω2

64r0

+
7

9
M2Ω4r2

0 +
8

3
γM2Ω4r2

0 −
83M2π2Ω4r2

0

1024

+
8

3
M2Ω4 ln |2Ωr0| r2

0 +
479

45
MΩ6r5

0 −
22

3
γMΩ6r5

0 +
6

5
MΩ6 ln |2Ωr0| r5

0

− 128

15
MΩ6 ln |4Ωr0| r5

0 (3.4.60)

CR
r,4.5 = −38

45
M2π|Ω|5r3

0 (3.4.61)

CR
r,5 =

4M4Ω2

r2
0

+
11M4π2Ω2

256r2
0

− 19

9
M3Ω4r0 −

2

3
γM3Ω4r0 −

141M3π2Ω4r0

1024

− 2

3
M3Ω4 ln |2Ωr0| r0 −

517

15
M2Ω6r4

0 + 36γM2Ω6r4
0 +

1529M2π2Ω6r4
0

2048

+
28

15
M2Ω6 ln |2Ωr0| r4

0 +
512

15
M2Ω6 ln |4Ωr0| r4

0 +
54647MΩ8r7

0

1260
− 119

6
γMΩ8r7

0

− 6

35
MΩ8 ln |2Ωr0| r7

0 +
1216

105
MΩ8 ln |4Ωr0| r7

0 −
2187

70
MΩ8 ln |6Ωr0| r7

0 (3.4.62)
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CR
r,5.5 =

76

45
M3π|Ω|5r2

0 −
1783

315
M2π|Ω|7r5

0 (3.4.63)

CR
r,6 = −41

18
M4Ω4 +

5221M4π2Ω4

2048
− 76585M4π4Ω4

524288
+

341M5Ω2

45r3
0

− 23M5π2Ω2

256r3
0

+
16M5Ω2

3r3
0

ln

∣∣∣∣2Mr0

∣∣∣∣+
6239

500
M3Ω6r3

0 −
49207

675
γM3Ω6r3

0

+
152

45
[γ + ln |2Ωr0|]2M3Ω6r3

0 −
138469M3π2Ω6r3

0

30720
+−19447

675
M3Ω6 ln |2Ωr0| r3

0

− 1984

45
M3Ω6 ln |4Ωr0| r3

0 +
8

3
M3Ω6ψ(2)(2)r3

0 −
803219M2Ω8r6

0

2520

+
5131

27
γM2Ω8r6

0 +
423951M2π2Ω8r6

0

131072
− 1786

945
M2Ω8 ln |2Ωr0| r6

0

+
1408

315
M2Ω8 ln |4Ωr0| r6

0 +
6561

35
M2Ω8 ln |6Ωr0| r6

0 +
7319647MΩ10r9

0

68040

− 161

4
γMΩ10r9

0 +
65MΩ10 ln |2Ωr0| r9

0

1134
− 14512MΩ10 ln |4Ωr0| r9

0

2835

+
8019

140
MΩ10 ln |6Ωr0| r9

0 −
262144MΩ10 ln |8Ωr0| r9

0

2835
. (3.4.64)

Because we allowed the scalar charge to be accelerated, we can easily see that the radial

component of the self force both for a static particle outside a black hole (corresponding

to Ω→ 0) and for a particle undergoing circular motion in flat spacetime (corresponding

to M → 0).

For non-accelerated motion, the radial component of the force reduces to

FR
r,geo =

q2

r2
0

{[
−2

9
+

7π2

64
− 4

3
γ − 2

3
ln(4x)

]
x3 +

[
604

45
+

29π2

1024
− 14

3
γ +

128

15
ln(2x)

−163

15
ln(4x)

]
x4 +

38

45
πx9/2 +

[
1511

140
+

1335π2

2048
+

31

2
γ − 1013

70
ln(2x)

+
1497

28
ln(4x)− 2187

70
ln(6x)

]
x5 − 139

45
πx11/2 +

[
−41117659

212625
+

2332769π2

1966080

− 76585

524288π4
+

152

45

(
γ +

1

2
ln(4x)

)2

+
69199

900
γ − 36781

3780
ln(2x)− 7228421

37800
ln(4x)

+
34263

140
ln(6x) +

8

3
ψ(2)(2)

]
x6 +O(x13/2)

}
. (3.4.65)

This is again in agreement with Hikida et al. [9], who report the above expression through

4th PN order.
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3.4.5 Comparisons to Other Work

Our results are consistent with those of Hikida et al. [9], who calculate the self-force

for geodesic motion to 4th PN order. Accelerated scalar charges are rarely studied due

to their doubly non-physical nature, but Heffernan et al. [10] recently studied them

numerically. Niels Warburton, one of the coauthors of that work, graciously shared some

of the numerical data with us. In Fig. 12 and Fig. 13, one can see how our results

compare. In both figures, a dimensionless quantity proportional to the radial component

of the force is plotted against the ratio between the particle’s angular velocity and it’s

Keplerian angular velocity ΩK for constant radial coordinate r0. In Fig. 12, r0 = 50M ,

whereas for Fig. 13, r0 = 6M . The numerical data is plotted in blue dots, where as

our analytical results are plotted in curves of successively higher accuracy. In Fig. 12,

one can see how curves accurate to higher PN orders stick with the numerical results to

higher angular velocities. However, even our results accurate to 6th PN order no longer

accurately describe the force when Ω ' 3ΩK .

In Fig. 13, the particle is at its innermost stable circular orbit, r0 = 6M . Remarkably,

our 6th PN-accurate expression still correctly gives the force for geodesic motion, although

it becomes inaccurate for faster-moving particles.

3.5 Conclusion

In this chapter, we have successfully calculated the self-force on an accelerated scalar

charge in circular orbit around a Schwarzschild black hole to 6th PN order. We used a

method developed by Hikida et al. [8, 9], which allowed us to compute only a handful of

the field’s `-modes, along with general-` expressions that are valid for high `-values. Our

results are compatible with previous PN calculations, as well as numerical results found

in [10].

We do not expect scalar charges to be astrophysically relevant; instead we have used

the scalar field as a toy model for the gravitational field, with the intention of eventually

applying Hikida’s method to finding the gravitational self-force. We do just that in the
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Figure 12 : The radial component of the self-force on an acceler-

ated scalar charge at r0 = 50M as a function of angular velocity.

The blue dots are numerical results obtained from Warburton and

reported in [10]. The curves are our analytical results, accurate

to 3rd, 4th, 5th, and 6th PN order. As the particle’s angular ve-

locity increases, it becomes more relativistic, and PN expansions

become less useful. Here, when the particle’s angular velocity ex-

ceeds thrice the Keplerian velocity, even our results accurate to

6th PN order become inaccurate.

M2

q2
FR
r

frame 3PN 6PN

0.0 0.5 1.0 1.5

-0.001

0.000

0.001

0.002

0.003

Ω/Ωk

Figure 13 : The radial component of the self-force on an acceler-

ated scalar charge at r0 = 6M as a function of angular velocity.

Once again, the dots are numerical results given by Warburton

and reported in [10]. For clarity, we only show our results accu-

rate to 3rd and 6th PN order. Remarkably, our analytical results

at 6th PN order still accurately compute the self-force for geodesic

motion at r0 = 6M , otherwise known as the innermost stable cir-

cular orbit.
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next chapter.
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Chapter 4

Gravitational Self-Force

4.1 Introduction

This chapter will discuss work I did under the supervision of Alan Wiseman. It is a

continuation of the last chapter, and discusses how the methods of the last chapter can

be extended to the gravitational case.

To be more specific, in this chapter we consider the gravitational self-force on a massive

point particle in circular orbit around a Schwarzschild black hole. As with the last chapter,

we describe the particle’s position with a radial coordinate r0 and angular coordinates

θ0 = π/2 and φ0; the angular velocity as measured by a stationary observer at infinity is

Ω. This system is much more astrophysically motivated than that of the last chapter; it

models an extreme mass ratio inspiral (EMRI), where a supermassive black hole is orbited

by a stellar-mass black hole. EMRIs are expected to produce gravitational waves that

are too low in frequency to be detected by terrestrial detectors like LIGO; instead, we

will need space-based gravitational-wave observatories to study EMRIs observationally.

This chapter begins by discussing the spin-weighted spherical harmonics, because their

identities and relationships to ordinary spherical harmonics will be needed for the calcu-

lations in the rest of the chapter. We then discuss the tetrad formalism of Newman and

Penrose [102] and the resulting description of gravitational perturbations to Schwarzschild

spacetimes. Next, we explain how gravitational self-force differs from scalar self-force and
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introduce Detweiler’s [11] gauge-invariant redshift factor. Finally, we show how to apply

the method discovered by Hikida et al. [8, 9] to find the redshift factor, and report the

results we thereby obtain. To our knowledge, this is the first time Hikida’s method has

been successfully applied to the gravitational case.

4.2 Properties of the Spin-Weighted Spherical Harmonics

This chapter will make extensive use of the spin-weighted spherical harmonics sY`m(θ, φ),

and we consider their properties here. We stated the differential equation they satisfy in

Eq. (3.2.3). Along with the harmonics we have the spin-weight raising operator ð̂(s) and

the spin-weight lowering operator ð̌(s).1 These operators are given by

ð̂(s) = −∂θ − i csc θ∂φ + s cot θ, (4.2.1)

ð̌(s) = −∂θ + i csc θ∂φ − s cot θ, (4.2.2)

and when they act on a spin-weighted spherical harmonic, they have the properties

ð̂(s)
sY`m(θ, φ) =

√
(`− s)(`+ s+ 1) s+1Y`m(θ, φ),

ð̌(s)
sY`m(θ, φ) = −

√
(`+ s)(`− s+ 1) s−1Y`m(θ, φ).

Like the usual spherical harmonics, the spin-weighted spherical harmonics of a particular

spin-weight form a complete orthonormal basis on S2:∫
dΩ sY`m(θ, φ)sY `′m′(θ, φ) = δ``′δmm′ (4.2.3)

∞∑
`=|s|

∑̀
m=−`

sY`m(θ, φ)sY`m(θ′, φ′) = δ(cos θ − cos θ′)δ(φ− φ′) (4.2.4)

We choose the spin-weighted spherical harmonics to satisfy the phase conventions

sY`m(θ, φ) = (−1)s+m−sY `,−m(θ, φ), (4.2.5)

sY`m(θ, φ) = (−1)`−sY`m(π − θ, φ+ π); (4.2.6)

1Note that this is counter to the usual and simpler notation, with ð as the spin-weight raising operator

and ð as the spin-weight lowering operator. The notation here will be useful because it will allow us to

have operators corresponding to different spin weights in the same equation without confusion. Also,

this notation allows us to continue using an overline to exclusively denote complex conjugation.
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they then can be explicitly written [103]

sY`m(θ, φ) =(−1)m

√
2`+ 1

4π

(`+m)!(`−m)!

(`+ s)!(`− s)!
sin2`

(
θ

2

)

×
`−s∑
r=0

(
`− s
r

)(
`+ s

r + s−m

)
(−1)`−r−s cot2r+s−m

(
θ

2

)
eimφ. (4.2.7)

Our two phase conventions, along with the explicit φ-dependence shown above, have

implications when we evaluate sY`m at the angular position (θ0, 0) of the particle:

sY`m(θ0, 0) = (−1)`+m−sY`m(θ0, 0) (4.2.8)

sY`m(θ0, 0) = (−1)`+ssY `,−m(θ0, 0). (4.2.9)

Since the factor of eimφ is the only complex term in the explicit expression for sY`m(θ, φ),

sY`m(θ, 0) = sY `m(θ, 0). (4.2.10)

Finally, when evaluated at (θ0, 0) the spin-weighted spherical harmonics can be written

simply in terms of ` and m. First, we define 01n:

01n =


1, n even

0, n odd

Then the expressions for the spin-weighted harmonics with |s| ≤ 2 are [104]

0Y`m(θ0, 0) = i`+m
√

2`+ 1

4π

√
(`+m)!(`−m)!

(`+m)!!(`−m)!!
01`+m

±1Y`m(θ0, 0) = i`+m
√

2`+ 1

4π

√
(`+m)!(`−m)!

`(`+ 1)

[
m

(`+m)!!(`−m)!!
01`+m

∓ i

(`+m− 1)!!(`−m− 1)!!
01`+m−1

]

±2Y`m(θ0, 0) = i`+m
√

2`+ 1

4π

√
(`+m)!(`−m)!

(`+ 2)(`+ 1)`(`− 1)

[
2m2 − `(`+ 1)

(`+m)!!(`−m)!!
01`+m

∓ 2im

(`+m− 1)!!(`−m− 1)!!
01`+m−1

]
.

4.3 Gravitational Perturbations to Schwarzschild Spacetimes

In this chapter, we make use of the tetrad formalism developed by Newman and Penrose

[102]. In particular, we use the Kinnersley tetrad [105] {eαa} = {lα, nα,mα,mα}, where
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the tetrad vectors in Schwarzschild have components

`α =

(
1

f(r)
, 1, 0, 0

)
(4.3.1)

nα =
1

2
(1,−f(r), 0, 0) (4.3.2)

mα =
1√
2

(
0, 0,

1

r
,

i

r sin θ

)
(4.3.3)

and throughout this chapter we use an overline to denote a complex conjugate. These

vectors are each associated with a directional derivative:

D = `α∇α (4.3.4)

∆ = nα∇α (4.3.5)

δ = mα∇α. (4.3.6)

The tetrad formalism gives rise to spin coefficients; in Schwarzschild, the non-zero spin

coefficients are

α = −β = − cot θ

2
√

2r

γ =
M

2r2

ρ = −1

r

µ = −f(r)

2r
.

The Bardeen-Press equation, given in the last chapter as Eq. (3.2.2), gives information

about gravitational perturbations for s = ±2. In this chapter, we specialize to s = −2.

The solution to Eq. (3.2.2) is then

ψ−2 ≡
ψ4

ρ4
, (4.3.7)

where ψ4 ≡ Cαβγδn
αmβnγmδ is one of the Weyl scalars. Meanwhile, while the stress-

energy Tαβ that sources the metric is proportional to a three-dimensional delta function,

Tαβ =
m

utr2
0

uαuβδ(r − r0)δ(θ − θ0)δ(φ− φ0),

the source T−2 of ψ−2 is no longer so simple. Defining the tetrad components of the

stress-energy tensor,

Tab = Tαβe
α
ae

β
b ,
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the source is given by [85, 106]

T−2 =2ρ−4
{

(∆ + 2γ + 5µ)
[(
δ + 2α

)
T24 − (∆ + µ)T44

]
+
(
δ + 2α

) [
(∆ + 2γ + 2µ)T24 − δT22

]}
. (4.3.8)

Since we will be integrating a Green’s function against this source, it is convenient to

write it in terms of Dirac delta functions and their derivatives. The result is

T−2(x, x0) =
mut

4

{[
2

(
1− 2M

r0

)2

− 2r2
0Ω2

(
1− 4M

r0

)]
δ(r − r0)δ(cos θ − cos θ0)

×δ(φ− φ0)

−2

(
1− 4M2

r2
0

)
r3

0Ω2δ′(r − r0)δ(cos θ − cos θ0)δ(φ− φ0)

−8iM

r0

(
1− 2M

r0

)
r0Ωδ(r − r0)δ′(cos θ − cos θ0)δ(φ− φ0)

+

[
8M

r0

(
1− 2M

r0

)
− 2r2

0Ω2

(
1 +

M

r0

)]
r0Ωδ(r − r0)δ(cos θ − cos θ0)

×δ′(φ− φ0)

+2i

(
1− 2M

r0

)2

r2
0Ωδ′(r − r0)δ′(cos θ − cos θ0)δ(φ− φ0)

−2

(
1− 2M

r0

)(
1− 2M

r0

− r2
0Ω2

)
r2

0Ωδ′(r − r0)δ(cos θ − cos θ0)δ′(φ− φ0)

−2i

(
1− 2M

r0

)(
1− 2M

r0

− r2
0Ω2

)
δ(r − r0)δ′(cos θ − cos θ0)δ′(φ− φ0)

+

(
1− 2M

r0

)2

r4
0Ω2δ′′(r − r0)δ(cos θ − cos θ0)δ(φ− φ0)

−
(

1− 2M

r0

)2

δ(r − r0)δ′′(cos θ − cos θ0)δ(φ− φ0)

+

(
1− 2M

r0

− r2
0Ω2

)2

δ(r − r0)δ(cos θ − cos θ0)δ′′(φ− φ0)

}
.

As outlined in the last chapter, we now integrate our Green’s function G(x, x′) against

4π(r′2f(r′))−2T−2(x′, x0). The result is

ψ−2 =
πm

r2
0

∞∑
`=2

∑̀
m=−`

−2Y`m(θ, φ− φ0)
[
−2Y `m(θ0, 0)ψ

(−2)
−2,`m

+
√

(`+ 2)(`− 1)−1Y `m(θ0, 0)ψ
(−1)
−2,`m

+
√

(`+ 2)(`+ 1)(`)(`− 1)0Y `m(θ0, 0)ψ
(0)
−2,`m

]
, (4.3.9)
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with

ψ
(−2)
−2,`m =

(
r0Ω

f0

)2{
g`m(r, r0)

[
2imr0Ω

(
1− M

r0

)
−m2r2

0Ω2

]
−2r0f0∂r0g`m(r, r0) [imr0Ω + f0] + r2

0f
2
0∂

2
r0
g`m(r, r0)

}
, (4.3.10)

ψ
(−1)
−2,`m =

r0Ω

f0

{2g`m(r, r0)[mr0Ω− 2if0] + 2ir0f0∂r0g`m(r, r0), (4.3.11)

and

ψ
(0)
−2,`m = −g`m(r, r0), (4.3.12)

where g`m is the same radial Green’s function defined in the last chapter but for s = −2,

f0 = f(r0), and ∂r0g(r, r0) = [∂r′g(r, r′)]|r′=r0 . The quantities ψ−2, ψ
(−2)
−2,`m, ψ

(−1)
−2,`m, and

ψ
(0)
−2,`m all have S̃ and R̃ parts, and Eqns. (4.3.9)-(4.3.12) all hold for both parts as long

as the relevant label is placed on g`m. While we are free to absorb terms proportional

to sY `m(θ0, 0), which are constant in r, into the radial functions ψ
(s)
−2,`m, we will see later

that factoring out their dependence on ` and m will be useful.

Our goal in this section is to find the linear perturbation hαβ to the background metric

gαβ. Of course, ψ−2 is a scalar quantity, and finding it is not equivalent to calculating the

tensor hαβ. However, it turns out that ψ−2 contains all of the radiative information about

the metric perturbation. That is, we can construct the radiative part of hαβ from ψ−2;

then we can add the contributions due to the particle’s mass and angular momentum

separately. In doing so, we use a method originally discovered by Chrzanowski [107] and

Cohen and Kegeles [108], called the CCK metric reconstruction procedure. Our choice of

s = −2 means we specialize to the ingoing radiation gauge, where

hαβl
α = 0 (4.3.13)

hαα = 0. (4.3.14)

The first step in CCK metric reconstruction is finding the Hertz Potential Ψ, which

satisfies a differential equation sourced by ψ−2:

12M∂tΨ− ð̌(−1)ð̌(0)ð̌(1)ð̌(2)Ψ = −8ψ−2. (4.3.15)
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If we decompose Ψ into spin-weighted spherical harmonics

Ψ =
∞∑
`=2

∑̀
m=−`

Ψ`m−2Y`m(θ, φ− φ0)

and use Eq. (4.2.5), then we can write the `m modes of Ψ algebraically in terms of the

`m modes of ψ−2:

Ψ`m = 8
(`+ 2)(`+ 1)`(`− 1)(−1)mψ2,`,−m − 12iMmΩψ−2,`m

(`+ 2)2(`+ 1)2`2(`− 1)2 + (12MmΩ)2
, (4.3.16)

where ψ−2,`m is everything contained in the square brackets in Eq. (4.3.9). The radiative

part of the metric is follows directly from Ψ:

h±αβ =

{
−1

2r2
`α`βð̂(−1)ð̂(−2) − `(αmβ)

[
D

(
1√
2r

ð̂(−2)

)
+

1√
2r

ð̂(−2)(D + 3ρ)

]
−mαmβ(D− ρ)(D + 3ρ)}Ψ± c.c., (4.3.17)

where the ± refers to the two polarizations of hαβ. We point out here that Ψ and hαβ have

S̃ and R̃ parts that are calculated from the corresponding parts of ψ−2, and ultimately

constructed from the corresponding parts of g`m.

We still need to obtain the contributions to hαβ due to the energy and angular mo-

mentum that the particle adds to the spacetime. As we will see later, the only relevant

components of the metric perturbation are the tt, tφ, and φφ components. In Schwarz-

schild, the added energy and angular momentum do not contribute anything to hφφ. The

contributions to htt and hφφ are [104]

h
(nonrad)
tt = −2mut

r
(4.3.18)

h
(nonrad)
φφ =

2Mmuφ
r

. (4.3.19)

4.4 Gravitational Self-Force

In many ways, gravitational self-force calculations are analogous to those of scalar self-

force. As in the scalar case, the perturbation to the gravitational field can be decomposed

into singular and renormalized parts [109]:

hαβ = hS
αβ + hR

αβ (4.4.1)
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such that hR
αβ is continuous and differentiable at the particle and is solely responsible

for the modification to the particle’s motion. The renormalized gravitational “self-force”

relative to geodesics on the background metric is given by [91, 92]

FR,α = −m(gαβ + uαuβ)

(
∇µh

R
νβ −

1

2
∇βh

R
µν

)
uµuν , (4.4.2)

and similarly for the singular part of the force, where ∇α is the covariant derivative

that is compatible with the background metric. The scare quotes around the term self-

force appear here for two reasons. First, gravity is not thought of as a force in General

Relativity; instead, freely-falling objects are considered inertial. Second, the motion

resulting from the “force” given above is that of a geodesic on the renormalized perturbed

spacetime with metric gαβ + hR
αβ. It is tempting, then, to say that the gravitational self-

force is completely fictitious and results simply from the fact that we stubbornly measure

the motion of the particle relative to geodesics on the background spacetime. However,

this is also not quite right because while the massive particle follows a geodesic on the

metric gαβ + hR
αβ, nearby test particles follow geodesics on the full perturbed metric

gαβ + hαβ. Thus, there is something unique about the effect of the particle’s own field on

its motion; this effect is referred to as the gravitational self-force, regardless of interpretive

difficulties.

However, there is one remaining difficulty with the gravitational self-force: the renor-

malized metric perturbation hR
αβ is gauge-dependent, and therefore so is FR,α, in sharp

contrast to the scalar case. This makes it impossible to compare two self-force results

if the calculations are done in different gauges. To remedy this, Detweiler [11] found a

gauge-invariant2 quantity3

H ≡ 1

2
hαβu

αuβ. (4.4.3)

Thus, in this chapter we choose to compute HR, called the renormalized redshift factor,

instead of the self-force. This will allow us to compare our results with those of other

authors who worked in different gauges.

2That is, for any gauge that preserves the helical symmetry of the system.
3Alternatively, some compute ∆U = −utH, and others compute hkk = H/(ut)2.
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In order to take the limits required to renormalize H, we need to define it such that

it has well-defined values away from the particle, which means we need to extend the

particle’s four-velocity off its worldline. We are free to do this in any way we like, and we

choose the components of uα to be constant as we move away from the particle. With that

choice, we can speak of H as a function of the Schwarzschild coordinates and decompose

it into spherical harmonics:

H =
∞∑
`=0

∑̀
m=−`

H`m 0Y`m(θ, φ). (4.4.4)

Similarly to the scalar case, the `m-modes of H are finite, and we can define the `-modes

H` = lim
x→x0

∑̀
m=−`

H`m 0Y`m(θ, φ). (4.4.5)

The limit of H` as `→∞ is a constant BH :

lim
`→∞

H` = BH . (4.4.6)

To renormalize the redshift factor, we need only to subtract BH from H` and then sum

to infinity:

HS
` = BH , (4.4.7)

so

HR =
∞∑
`=0

(H` −BH). (4.4.8)

Finally, we note here that the time rate of change of the particle’s energy E ≡ mut is

related to the time derivative of HR:

dE

dt
= −m

ut
∂tH

R. (4.4.9)

This in turn is the opposite of the gravitational power radiated by the particle.

4.5 Using Hikida’s Method to Find the Redshift Factor

As in the scalar case, we split our radial Green’s function into S̃ and R̃ parts, defined

in the same way as the last chapter. The S̃ part of g`m is still polynomial in m, and it
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follows immediately that the S̃ part of ψ−2,`m is also polynomial in m. In the scalar case,

it followed immediately that ψS̃
`m, when evaluated at the particle, was equal to the sum

of a polynomial in m multiplied by |0Y`m(θ0, 0)|2. This is what allowed us to do the sum

over m analytically for general `-values. In this chapter, it is clear that the S̃ parts of

ψ
(−2)
−2,`m, ψ

(−1)
−2,`m, and ψ

(0)
−2,`m are polynomials in m. It is not clear at this point whether H

can be written as the sum of a polynomial in m multiplied by |0Y`m(θ0, 0)|2. There are

two reasons for the uncertainty here: first, it is not obvious that the polynomial nature of

ψ
S̃(−2)
−2,`m, ψ

S̃(−1)
−2,`m, and ψ

S̃(0)
−2,`m will meaningfully translate to the Hertz potential Ψ and then

the metric perturbation hαβ. Second, ψ−2,`m is decomposed into spin-weighted spherical

harmonics of spin-weight −2, but the mode-sum renormalization needs to be done with

respect to the non-spin-weighted basis 0Y`m. We expect that decomposing H into the

usual spherical harmonics will affect our expressions non-trivially.

We start by calculating Ψ, and we will try to keep terms polynomial in m factored

from terms with a more complicated m-dependence. All of the equations in the rest of

this section are true whether they refer to the full perturbation, the S̃ part, the R̃ part, or

the renormalized perturbation, as long as the relevant labels are placed on the quantities

involved. The challenge here is dealing with the factor of (−1)mψ2,`,−m in Eq. (4.3.16). As

mentioned in the last chapter, g`m = g`,−m. It follows from expressions (4.3.10)-(4.3.12)

that

ψ
(−2)
−2,`m = ψ

(−2)

−2,`,−m

ψ
(−1)
−2,`m = −ψ(−1)

−2,`,−m

ψ
(0)
−2,`m = ψ

(0)

−2,`,−m.

We can then use Eq. (4.2.8), Eq. (4.2.9), and Eq. (4.2.10) to show that

(−1)mψ2,`,−m = 2Y`m(θ0, 0)ψ
(−2)
−2,`m +

√
(`+ 2)(`− 1) 1Y`m(θ0, 0)ψ

(−1)
−2,`m

+
√

(`+ 2)(`+ 1)`(`− 1) 0Y`m(θ0, 0)ψ
(0)
−2,`m.
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We now define

Ψ
(2)
`m =

8

[(`+ 2)(`+ 1)`(`− 1)]2 + (12MmΩ)2
ψ

(−2)
−2,`m,

Ψ
(1)
`m =

8

[(`+ 2)(`+ 1)`(`− 1)]2 + (12MmΩ)2
ψ

(−1)
−2,`m,

Ψ
(0)
`m =

8

[(`+ 2)(`+ 1)`(`− 1)]2 + (12MmΩ)2
ψ

(0)
−2,`m,

and we can then write

Ψ`m =[(`+ 2)(`+ 1)`(`− 1) 2Y`m(θ0, 0)− 12iMmΩ −2Y`m(θ0, 0)]Ψ
(2)
`m

+ [(`+ 2)(`+ 1)`(`− 1) 1Y`m(θ0, 0)− 12iMmΩ −1Y`m(θ0, 0)]Ψ
(1)
`m

+ [(`+ 2)(`+ 1)`(`− 1)− 12iMmΩ] 0Y`m(θ0, 0)Ψ
(0)
`m. (4.5.1)

It should be clear that Ψ
S̃(2)
`m , Ψ

S̃(1)
`m , and Ψ

S̃(0)
`m are polynomial in m when written as a PN

expansion.

Finally, we need to see what happens with htt, htφ, and hφφ. We start with htt. From

Eq. (4.3.17), and summing over both polarizations, we see that the radiative part of htt

is

htt = − 1

r2

∞∑
`=2

∑̀
m=−`

Ψ`m

√
(`+ 2)(`+ 1)`(`− 1) 0Y`m(θ, φ− φ0), (4.5.2)

where we are helped by the fact that the angular derivatives acting on Ψ are two successive

spin-weight raising operators. Similarly,

htφ =
1

2r
sin θ

∞∑
`=2

∑̀
m=−`

D(tφ)
m Ψ`m

√
(`+ 2)(`− 1) −1Y`m(θ, φ− φ0), (4.5.3)

hφφ = − sin2 θ
∞∑

`=−2

∑̀
m=−`

D(φφ)
m Ψ`m −2Y`m(θ, φ− φ0), (4.5.4)

where D
(tφ)
m and D

(φφ)
m are radial derivatives:

D(tφ)
m =

r0mΩ

f0

− 2i+ ir0∂r

and

D(φφ)
m =

1

f 2
0

[
−r2

0m
2Ω2 + 2ir0mΩ

(
1− M

r0

)]
−
(

2ir0mΩ

f0

+ 2

)
r0∂r + r2

0∂
2
r .
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As mentioned before, H needs to be decomposed into spherical harmonics, which

means we need to express htφ and hφφ in terms of spherical harmonics. We use the

expressions in Appendix C of [110] to show that

sin θ −1Y`m(θ, φ) =
1√

`(`+ 1)
[`
√
C`+1,m 0Y`+1,m(θ, φ) +m 0Y`m(θ, φ)

− (`+ 1)
√
C`m 0Y`−1,m(θ, φ)],

sin2 θ −2Y`m(θ, φ) =
1√

(`+ 2)(`+ 1)`(`− 1)
{`(`− 1)

√
C`+1,mC`+2,m 0Y`+2m(θ, φ)

+ 2m(`− 1)
√
C`+1,m 0Y`+1,m

+ [`(`− 1)C`+1,m + (`+ 1)(`+ 2)C`,m + 2m2 − `(`+ 1)] 0Y`m(θ, φ)

− 2m(`+ 2)
√
C`m −1Y`−1,m(θ, φ)

+ (`+ 1)(`+ 2)
√
C`mC`−1,m 0Y`−2,m(θ, φ)},

where

C`m =
(`+m)(`−m)

(2`+ 1)(2`− 1)
. (4.5.5)

We can then plug these expressions into our equations for htφ and hφφ. Before we do, we

make the following definitions:

X`m = (`+ 2)(`+ 1)`(`− 1)− 12iMmΩ

Z
(1)
`m =

2m2 − `(`+ 1)

(`+ 2)(`+ 1)`(`− 1)
Ψ

(2)
`m +

m

`(`+ 1)
Ψ

(1)
`m + Ψ

(0)
`m

Z
(2)
`m = 2mΨ

(2)
`m + (`+ 2)(`− 1)Ψ

(1)
`m.

Finally, evaluating the components of the metric perturbation at the position of the

particle and using the explicit expressions for sY`m(θ0, 0), we find that

htt|x=x0 = − 1

r2
0

∞∑
`=2

∑̀
m=−`

(`+ 2)(`+ 1)`(`− 1)X`mZ
(1)
`m |0Y`m(θ0, 0)|2, (4.5.6)

82



htφ|x=x0 =− 1

r0

∞∑
`=3

∑̀
m=−`

D(tφ)
m

[
m(`+ 2)(`− 1)X`mZ

(1)
`m −

2`− 1

`
C`mX`−1,mZ

(2)
`−1,m

−2`+ 3

`+ 1
C`+1,mX`+1,mZ

(2)
`+1,m

]
|0Y`m(θ0, 0)|2

− 1

r0

2∑
m=−2

D(tφ)
m

[
4mX2,mZ

(1)
2,m −

7

3
C3,mX3,mZ

(2)
3,m

]
|0Y2,m(θ0, 0)|2

− 1

r0

1∑
m=−1

D(tφ)
m

[
−5

2
C2,mX2,mZ

(2)
2,m

]
|0Y1,m(θ0, 0)|2, (4.5.7)

and

hφφ|x=x0 =
∞∑
`=4

∑̀
m=−`

D(φφ)
m

[
−(`− 2)(`− 3)C`mX`−2,mZ

(1)
`−2,m

− 2m(2`− 1)

(`+ 1)`(`− 1)
C`mX`−1,mZ

(2)
`−1,m + (`(`− 1)C`+1,m

+(`+ 1)(`+ 2)C`m + 2m2 − `(`+ 1))X`mZ
(1)
`m

− 2m(2`+ 3)

(`+ 2)(`+ 1)`
C`+1,mX`+1,mZ

(2)
`+1,m

−(`+ 4)(`+ 3)C`+1,mX`+2,mZ
(1)
`+2,m

]
|0Y`m(θ0, 0)|2

+
3∑

m=−3

D(φφ)
m

[
−10m

24
C3,mX2,mZ

(2)
2,m + (6C4,m + 20C3,m + 2m2 − 12)X3,mZ

(1)
3,m

−3m

10
C4,mX4,mZ

(2)
4,m − 42C4,mX5,mZ

(1)
5,m

]
|0Y3,m(θ0, 0)|2

+
2∑

m=−2

D(φφ)
m

[
(2C3,m + 12C2,m + 2m2 − 6)X2,mZ

(1)
2,m −

7m

12
C3,mX3,mZ

(2)
3,m

−30C3,mX4,mZ
(1)
4,m

]
|0Y2,m(θ0, 0)|2

+
1∑

m=−1

D(φφ)
m

[
−5m

3
C2,mX2,mZ

(2)
2,m − 20C2,mX3,mZ

(1)
3,m

]
|0Y1,m(θ0, 0)|2

+D
(φφ)
0

[
−12C1,0X2,0Z

(1)
2,0

]
|0Y0,m(θ0, 0)|2. (4.5.8)

Remarkably, our final expressions are free of square roots. Noting that C`m, X`m, and

the S̃ parts of Z
(1)
`m and Z

(2)
`m are all polynomial in m, it follows that H S̃ is a sum over

polynomials in m times |0Y0,m(θ0, 0)|2. Thus, we can once again do the renormalization

analytically, and Hikida’s method still works in the gravitational case. Notice, however,

that Ψ`−2 contributes to H`, so we need to compute the `-modes explicitly through ` = 9
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to get an expression for H that is accurate through 6th PN Order.

Finally, we note here that

∂tH =
∞∑
`=0

∑̀
m=−`

imΩH`m 0Y`m(θ, φ− φ0); (4.5.9)

that is, to get ∂tH and therefore the power radiated by the particle, we simply need to

multiply the `m-modes of H by imΩ.

4.6 Results

Following the format of the last chapter, we will first report several intermediate results:

general- and specific-` expressions for Φν and Φ−ν−1; general- and specific-` expressions

for H S̃
` and (dE/dt)S̃

` ; and expressions for HR̃
` and (dE/dt)R̃

` . Unlike the last chapter,

the expressions for Φν , Φ−ν−1, and the `-modes of both parts of H will be given through

1st PN order, and the `-modes of both parts of dE/dt will be given through 1.5th order.

Higher-order expressions are too complicated to easily typeset.

We will then report the primary results of the chapter: the renormalized S̃ part of H

and dE/dt; the R̃ parts of the same quantities; and finally, the full renormalized redshift

factor HR and the power radiated by the particle, (dE/dt)R. All results will be given

through 6th PN order.

For all results, we will treat the particle’s angular velocity Ω as independent of its

radial coordinate r0. In this chapter, we cannot interpret these results as corresponding

to an accelerated particle. The reason is that whatever force was responsible for the

acceleration would have a stress-energy tensor associated with it and would therefore

source its own perturbation to the gravitational field. This is in contrast to the scalar

case, where you could accelerate the particle with something other than a scalar field.

Still, we will learn interesting things from keeping factors of r0Ω and factors of M/r0

separated. We also remind the reader here of the effective field theory work of Galley

[96–100], which calculates terms of different powers of M/r0 separately. The results here

are therefore useful as intermediate points of comparison.
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4.6.1 Intermediate Results

We begin with general-` expressions for Φν and Φ−ν−1. They are as follows.

Φν = (rω)2

[
1 +

(
2i

`+ 1
rω

)
1

c
+

(
−(`+ 2)

M

r
− `+ 9

2(`+ 1)(2`+ 3)
(rω)2

)
1

c2
+ PN(1.5)

]
(4.6.1)

Φ−ν−1 = (rω)2

[
1 +

(
−2i

`
rω

)
1

c
+

(
(`− 1)

M

r
+

`− 8

2`(2`− 1)

)
1

c2
+ PN(1.5)

]
(4.6.2)

Now, we show the ` = 2 expressions for these two functions. Remember that they are

solutions to a radial differential equation that resulted from the Bardeen-Press equation.

We used spin-weighted spherical harmonics with spin-weight −2, so ` ≥ 2. At 1st PN

order, the general-` expressions are sufficient for ` ≥ 3. For ` = 2:

Φν = (rω)2

[
1 +

(
2i

3
rω

)
1

c
+

(
−4

M

r
− 11

42
(rω)2

)
1

c2
+ PN(1.5)

]
(4.6.3)

Φ−ν−1 = (rω)2

[
1− (irω)

1

c
+

(
M

r
− 1

2
(rω)2 − 14

107

r

M
(rω)4

)
1

c2
+ PN(1.5)

]
(4.6.4)

Now for the general-` expressions for H S̃
` and (dE/dt)S̃

` :

H S̃
` =

m

r0

[
1−

(
8`4 + 16`3 + 46`2 + 38`− 147

2(2`+ 5)(2`+ 3)(2`− 1)(2`− 3)
(r0Ω)2

)
1

c2
+ PN(2)

]
(4.6.5)

(
dE

dt

)S̃

`

=
m2

r2
0

r0Ω

c

[(
2(`2 + `+ 1)

(`+ 2)(`− 1)

M

r0

r0Ω

− `(`+ 1)(32`4 + 64`3 − 80`2 − 112`− 9)

(`+ 2)(`− 1)(2`+ 5)(2`+ 3)(2`− 1)(2`− 3)
(r0Ω)3

)
1

c3
+ PN(2.5)

]
(4.6.6)

Because the `-modes of H and dE/dt are expressed with respect to the usual spherical

harmonics (which have spin-weight 0), they start at ` = 0. The expression shown for H S̃
`

above is true for ` ≥ 3, while that for (dE/dt)S̃
` is true for ` ≥ 4. We show the low-`

expressions for H S̃
` below.

H S̃
0 =

m

r0

[
1 +

(
M

r0

+
49

30
(r0Ω)2

)
1

c2
+ PN(2)

]
(4.6.7)

H S̃
1 =

m

r0

[(
−107

35
(r0Ω)2

)
1

c2
+ PN(2)

]
(4.6.8)
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H S̃
2 =

m

r0

[
1 +

(
1

42
(r0Ω)2 − 168

107

r0

M
(r0Ω)4

)
1

c2
+ PN(2)

]
(4.6.9)

Next are the low-` expressions for (dE/dt)S̃
` .(

dE

dt

)S̃

0

= 0 (4.6.10)

(
dE

dt

)S̃

1

=
m2

r2
0

r0Ω

c

[(
− 9

140
(r0Ω)3

)
1

c3
+ PN(2.5)

]
(4.6.11)

(
dE

dt

)S̃

2

=
m2

r2
0

r0Ω

c

[(
7

2

M

r0

r0Ω− 293

84
(r0Ω)3

)
1

c3
+ PN(2.5)

]
(4.6.12)

(
dE

dt

)S̃

3

=
m2

r2
0

r0Ω

c

[(
13

5

M

r0

r0Ω− 167

66
(r0Ω)3

)
1

c3
+ PN(2.5)

]
(4.6.13)

For every `-value other than 2, HR̃
` = PN(4) or higher. For ` = 2,

HR̃
2 =

m

r0

[(
168

107

r0

M
(r0Ω)4

)
1

c2
+ PN(4)

]
. (4.6.14)

Meanwhile, for all `-values, (dE/dt)R̃
` = PN(2.5) or higher.

We remind the reader here that in order to find the full renormalized quantities HR

and (dE/dt)R, we need to take the high-` limit of H S̃
` and (dE/dt)S̃

` to get their respective

B-terms, which are reported to 6th PN order in the next subsection. To renormalize the S̃

parts of these quantities, we subtract these B-terms from them and them sum the result

form ` = 0 to infinity. Finally, we can add the respective R̃ parts, which do not need to

be renormalized.

4.6.2 BH, H S̃−S, BdE/dt, and (dE/dt)S̃−S

The regularization parameter BH was found analytically by Detweiler [11]:

BH =
m

r0

√
1− 3M

r0

f0
2F1

(
1

2
,
1

2
, 1,

M

r0f0

)
. (4.6.15)
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This expression is true once we have enforced geodesic motion: Ω = ΩK =
√
M/r3

0.

Treating Ω and r0 as independent, we find, to 6th PN order,

BH =
m

r0

[
1− 1

4

(
r2

0Ω2
)(1

c

)2

+

(
−1

2
Mr0Ω2 − 7r4

0Ω4

64

)(
1

c

)4

+

(
−M2Ω2 − 7

16
Mr3

0Ω4 − 17r6
0Ω6

256

)(
1

c

)6

+

(
−2M3Ω2

r0

− 21

16
M2r2

0Ω4 − 51

128
Mr5

0Ω6 − 759r8
0Ω8

16384

)(
1

c

)8

+

(
−4M4Ω2

r2
0

− 7

2
M3r0Ω4 − 51

32
M2r4

0Ω6 − 759Mr7
0Ω8

2048
− 2289r10

0 Ω10

65536

)(
1

c

)10

+

(
−8M5Ω2

r3
0

− 35M4Ω4

4
− 85

16
M3r3

0Ω6 − 3795M2r6
0Ω8

2048
− 11445Mr9

0Ω10

32768

−29023r12
0 Ω12

1048576

)(
1

c

)12

+ PN(7)

]
, (4.6.16)

which is consistent with

BH =
m

r0

√√√√1− 2M
r0
− r2

0Ω2

1− 2M
r0

2F1

(
1

2
,
1

2
, 1,

r2
0Ω2

1− 2M
r0

)
. (4.6.17)

Now that we have BH , we can calculate

H S̃−S =
∞∑
`=0

(H S̃
` −BH).

The result is

H S̃−S =
m

r0

6∑
n=0

C S̃−S
H,n ,

with

C S̃−S
H,0 = −1 (4.6.18)

C S̃−S
H,1 =

M

r0

− 3

2
Ω2r2

0 −
168Ω4r5

0

107M
(4.6.19)

C S̃−S
H,2 =

M2

2r2
0

− 3

2
MΩ2r0 +

6827

856
Ω4r4

0 −
27396Ω6r7

0

6955M
(4.6.20)

C S̃−S
H,3 =− 221

36
M2Ω2 − 5

96
M2π2Ω2 +

M3

2r3
0

− 276151MΩ4r3
0

7704
+

4

3
Mπ2Ω4r3

0 +
9010381Ω6r6

0

333840

− 540816331Ω8r9
0

98336745M
(4.6.21)
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C S̃−S
H,4 =

5M4

8r4
0

− 173M3Ω2

12r0

+
6032429M2Ω4r2

0

385200
− 6041M2π2Ω4r2

0

1536
− 130815307817MΩ6r5

0

750138480

+
10

3
Mπ2Ω6r5

0 +
13088784257Ω8r8

0

279713408
− 17355718782469Ω10r11

0

2701431414990M
(4.6.22)

C S̃−S
H,5 =− 147M5

856r5
0

− 1699M4Ω2

48r2
0

+
31M4π2Ω2

128r2
0

+
84704899M3Ω4r0

128400
− 57619

768
M3π2Ω4r0

+
27101275436783M2Ω6r4

0

52509693600
− 11995M2π2Ω6r4

0

1024

− 108675152345097293281MΩ8r7
0

235929203926416000
+

9

2
Mπ2Ω8r7

0 +
652032768366053603Ω10r10

0

10216322442144000

− 256455367054976073943Ω12r13
0

35258079439638198000M
(4.6.23)

C S̃−S
H,6 =− 53038469341M4Ω4

59351616
− 1110607M4π2Ω4

27648
+

130233589M4π4Ω4

11796480
− 6713M6

1712r6
0

− 832519M5Ω2

15408r3
0

− 419M5π2Ω2

192r3
0

+
2012925308063017M3Ω6r3

0

472587242400

− 2395843M3π2Ω6r3
0

4608
− 16

45
M3π4Ω6r3

0 +
12286170424911491857937M2Ω8r6

0

5460075862297056000

− 58085759M2π2Ω8r6
0

1769472
− 41323494822573725279873416799MΩ10r9

0

46414363141187200295136000

+
553

108
Mπ2Ω10r9

0 +
18730900383696291572893Ω12r12

0

243009532137814041600

− 5219081280575517982158517Ω14r15
0

648745841042987672144160M
(4.6.24)

Now for (dE/dt)S̃−S. Detweiler [11] reported that dE/dt doesn’t need to be renormalized.

This is true for geodesic motion. If we don’t enforce geodesic motion, we find a non-zero

B-term:

BdE/dt =m2

[(
2MΩ2

r0

− 2Ω4r2
0

)(
1

c

)3

+

(
2M2Ω2

r2
0

− 1

4
MΩ4r0 −

7

4
Ω6r4

0

)(
1

c

)5

+

(
9M2Ω4

4
+

3M3Ω2

r3
0

− 113

32
MΩ6r3

0 −
55

32
Ω8r6

0

)(
1

c

)7

+

(
5M4Ω2

r4
0

+
65M3Ω4

8r0

− 145

32
M2Ω6r2

0 −
3525

512
MΩ8r5

0 −
875

512
Ω10r8

0

)(
1

c

)9

+

(
35M5Ω2

4r5
0

+
175M4Ω4

8r2
0

− 35

64
M3Ω6r0 −

9275

512
M2Ω8r4

0 −
84035MΩ10r7

0

8192

−13965Ω12r10
0

8192

)(
1

c

)11

+ PN(6.5)

]
. (4.6.25)
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As soon as we require Ω = ΩK , the above is zero. Meanwhile,(
dE

dt

)S̃−S

=

(
−MΩ2

3r0

+
1

3
Ω4r2

0

)(
1

c

)3

+

(
−23M2Ω2

3r2
0

+
57

5
MΩ4r0 −

9352Ω6r4
0

1605
+

224Ω8r7
0

107M

)(
1

c

)5

+

(
17M2Ω4

15
− 22M3Ω2

3r3
0

+
225088MΩ6r3

0

11235
− 13169981Ω8r6

0

730275

+
146046Ω10r9

0

34775M

)(
1

c

)7

+

(
−8M4Ω2

r4
0

− 3098M3Ω4

45r0

+
487M3π2Ω4

96r0

+
25412

315
M2Ω6r2

0

−1205

288
M2π2Ω6r2

0 +
605529446MΩ8r5

0

19717425
− 8

9
Mπ2Ω8r5

0

−1238833072684Ω10r8
0

30976074675
+

8045342788Ω12r11
0

1475051175M

)(
1

c

)9

+

(
−8M5Ω2

r5
0

+
6694M4Ω4

45r2
0

− 1901M4π2Ω4

96r2
0

− 4984166M3Ω6r0

7875

+
796979M3π2Ω6r0

11520
+

4264013536816M2Ω8r4
0

10548822375
− 184841M2π2Ω8r4

0

3840

+
18449132889161543MΩ10r7

0

121529466308250
− 56

45
Mπ2Ω10r7

0

−259409565425251607Ω12r10
0

3687453881461350
+

11945011819910723Ω14r13
0

1843726940730675M

)(
1

c

)11

+

PN(6.5). (4.6.26)

Remarkably, when we enforce geodesic motion,(
dE

dt

)S̃−S

= 0. (4.6.27)

This means that, as in the scalar case, the R̃ part of the field contains all of the radiative

information—but this is only apparent when we make the replacement Ω→ ΩK .

4.6.3 HR̃ and (dE/dt)R̃

The R̃ part of the redshift factor can be written

HR̃ =
m

r0

12∑
p=0

CR̃
H,p/2, (4.6.28)
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with

CR̃
H,1 =

168Ω4r5
0

107M
(4.6.29)

CR̃
H,2 = −840

107
Ω4r4

0 +
27396Ω6r7

0

6955M
(4.6.30)

CR̃
H,3 =

1260

107
MΩ4r3

0 −
546196Ω6r6

0

20865
+

540816331Ω8r9
0

98336745M
(4.6.31)

CR̃
H,4 =− 420

107
M2Ω4r2

0 +
13670721634MΩ6r5

0

78139425
− 128

5
γMΩ6r5

0 −
128

5
MΩ6 ln (4|Ω|r0) r5

0

− 1631444539Ω8r8
0

32778915
+

17355718782469Ω10r11
0

2701431414990M
(4.6.32)

CR̃
H,5 =

112M5

107r5
0

− 105

107
M3Ω4r0 −

2753696702M2Ω6r4
0

5209295
+ 128γM2Ω6r4

0

+ 128M2Ω6 ln (4|Ω|r0) r4
0 +

2021293463103094699MΩ8r7
0

3686393811350250
− 7496

105
γMΩ8r7

0

− 5

7
MΩ8 ln(2|Ω|r0)− 3776

105
MΩ8 ln(4|Ω|r0)r7

0 −
243

7
MΩ8 ln(6|Ω|r0)r7

0

− 5635275949322671Ω10r10
0

79815019079250
+

256455367054976073943Ω12r13
0

35258079439638198000M
(4.6.33)

CR̃
H,5.5 =

3072

175
M2π|Ω|7r5

0 −
128

15
Mπ|Ω|9r8

0 (4.6.34)

CR̃
H,6 =− 44373M4Ω4

11449
+

560M6

107r6
0

+
392M5Ω2

107r3
0

+
5565517751M3Ω6r3

0

10418590
− 192γM3Ω6r3

0

− 192M3Ω6 ln (4|Ω|r0) r3
0 −

4164919900017694087M2Ω8r6
0

1579883062007250
+

4408

9
γM2Ω8r6

0

+
11

15
M2Ω8 ln(2|Ω|r0)r6

0 +
11072

45
M2Ω8 ln(4|Ω|r0)r6

0 + 243M2Ω8 ln(6|Ω|r0)r6
0

+
87859625901756909129597209MΩ10r9

0

80580491564561111623500
− 327428γMΩ10r9

0

2835

+
322439

5670
MΩ10 ln(2|Ω|r0)r9

0 −
2926

189
MΩ10 ln(4|Ω|r0)r9

0 −
243

14
MΩ10 ln(6|Ω|r0)r9

0

− 140198399902919180261Ω12r12
0

1627295974137147600
+

5219081280575517982158517Ω14r15
0

648745841042987672144160M
.

(4.6.35)
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Now, (dE/dt)R̃ can be written(
dE

dt

)R̃

= m2

12∑
p=0

CR̃
dE/dt,p/2, (4.6.36)

with

CR̃
dE/dt,2.5 = −2304

535
r4

0Ω6 − 224r7
0Ω8

107M
(4.6.37)

CR̃
dE/dt,3.5 =

18304

535
Mr3

0Ω6 − 4572224r6
0Ω8

730275
− 146046r9

0Ω10

34775M
(4.6.38)

CR̃
dE/dt,4 = −128

5
πr4

0M |Ω|7 (4.6.39)

CR̃
dE/dt,4.5 =− 384

5
M2r2

0Ω6 +
25503564Mr5

0Ω8

243425
+

279612756734r8
0Ω10

30976074675

− 8045342788r11
0 Ω12

1475051175M
(4.6.40)

CR̃
dE/dt,5 =

768

5
Mπr3

0M |Ω|7 −
3328

105
πr6

0M |Ω|9 −
4609

105
πr6

0M |Ω|9 (4.6.41)

CR̃
dE/dt,5.5 =

256

5
M3r0Ω6 − 5824767162556M2r4

0Ω8

8204639625
+

12288

175
γM2r4

0Ω8 − 512

15
M2π2r4

0Ω8

+
65605444274612Mr7

0Ω10

3314439990225
+

512

15
γMr7

0Ω10 +
15047672593787723r10

0 Ω12

409717097940150

− 11945011819910723r13
0 Ω14

1843726940730675M
+

12288

175
M2r4

0Ω8 ln(4|Ω|r0)

+
512

15
Mr7

0Ω10 ln(4|Ω|r0) (4.6.42)

CR̃
dE/dt,6 =− 1536

5
M2πr2

0M |Ω|7 +
15616

63
Mπr5

0M |Ω|9 −
20992

945
πr8

0M |Ω|11

+
14008

35
Mπr5

0M |Ω|9 −
21148

189
πr8

0M |Ω|11. (4.6.43)

4.6.4 HR and (dE/dt)R

Finally, we can add the renormalized S̃ and R̃ parts of H and dE/dt to find the full,

renormalized expressions for each. We start with H:

HR =
m

r0

12∑
p=0

CR
H,p/2, (4.6.44)
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with

CR
H,0 = −1 (4.6.45)

CR
H,1 =

M

r0

− 3

2
Ω2r2

0 (4.6.46)

CR
H,2 =

M2

2r2
0

− 3

2
MΩ2r0 +

1

8
Ω4r4

0 (4.6.47)

CR
H,3 = −221

36
M2Ω2 − 5

96
M2π2Ω2 +

M3

2r3
0

− 1733

72
MΩ4r3

0 +
4

3
Mπ2Ω4r3

0 +
13

16
Ω6r6

0 (4.6.48)

CR
H,4 =

5M4

8r4
0

− 173M3Ω2

12r0

+
42247M2Ω4r2

0

3600
− 6041M2π2Ω4r2

0

1536
+

2033MΩ6r5
0

3600

− 128

5
γMΩ6r5

0 +
10

3
Mπ2Ω6r5

0 −
128

5
MΩ6 ln(4r0|Ω|)r5

0 −
5717Ω8r8

0

1920
(4.6.49)

CR
H,5 =

7M5

8r5
0

− 1699M4Ω2

48r2
0

+
31M4π2Ω2

128r2
0

+
790457M3Ω4r0

1200
− 57619

768
M3π2Ω4r0

− 4407421M2Ω6r4
0

352800
+ 128γM2Ω6r4

0 −
11995M2π2Ω6r4

0

1024
+ 128M2Ω6 ln(4r0|Ω|)r4

0

+
41247377MΩ8r7

0

470400
− 7496

105
γMΩ8r7

0 +
9

2
Mπ2Ω8r7

0 −
5

7
MΩ8 ln(2|Ω|r0)

− 3776

105
MΩ8 ln(4|Ω|r0)r7

0 −
243

7
MΩ8 ln(6|Ω|r0)r7

0 −
911441Ω10r10

0

134400
(4.6.50)

CR
H,5.5 =

128

15
M2πΩ6|Ω|r5

0 −
13696

525
M2π|Ω|7r5

0 −
128

15
MπΩ8|Ω|r8

0 (4.6.51)

CR
H,6 =− 4652677M4Ω4

5184
− 1110607M4π2Ω4

27648
+

130233589M4π4Ω4

11796480
+

21M6

16r6
0

− 7253M5Ω2

144r3
0

− 419M5π2Ω2

192r3
0

+
15220524421M3Ω6r3

0

3175200
− 192γM3Ω6r3

0 −
2395843M3π2Ω6r3

0

4608

− 16

45
M3π4Ω6r3

0 − 192M3Ω6 ln(4r0|Ω|)r3
0 −

1801095461M2Ω8r6
0

4665600
+

4408

9
γM2Ω8r6

0

− 58085759M2π2Ω8r6
0

1769472
+

11

15
M2Ω8 ln(2|Ω|r0)r6

0 +
11072

45
M2Ω8 ln(4|Ω|r0)r6

0

+ 243M2Ω8 ln(6|Ω|r0)r6
0 +

45726707459MΩ10r9
0

228614400
− 327428γMΩ10r9

0

2835

+
553

108
Mπ2Ω10r9

0 +
322439

5670
MΩ10 ln(2r0|Ω|)r9

0 −
29296

189
MΩ10 ln(4r0|Ω|)r9

0

− 243

14
MΩ10 ln(6r0|Ω|)r9

0 −
395191103Ω12r12

0

43545600
. (4.6.52)
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For when we enforce geodesic motion, the redshift factor reduces to

HR =
m

r0

[
−1− 1

2
x− 7

8
x2 +

(
−1387

48
+

41π2

32

)
x3 +

(
−8581

1920
− 307π2

512
− 128

5
γ

−64

5
ln(16x)

)
x4 +

(
279258271

403200
− 251893π2

3072
+

5944

105
γ − 6019

105
ln(2x)

+
4212

35
ln(4x)− 243

7
ln(6x)

)
x5 − 13696π

525
x11/2 +

(
10601627591

2903040

−1043969471π2

1769472
+

2800873π4

262144
+

516772

2835
γ − 235649

1890
ln(2x)− 27838

2835
ln(4x)

+
3159

14
ln(6x)

)
x6 +O(x13/2)

]
. (4.6.53)

This agrees with previous PN expansions of the redshift factor, including those of Bini

and Damour [12], who report it to PN(6), and Kavanagh et al. [13], who report it to

PN(21.5).

Finally, we write a similar expression for dE/dt:(
dE

dt

)R

= m2

12∑
p=0

CR
dE/dt,p/2,

with

CR
dE/dt,1.5 = −MΩ2

3r0

+
1

3
Ω4r2

0 (4.6.54)

CR
dE/dt,2.5 = −23M2Ω2

3r2
0

+
57

5
MΩ4r0 −

152

15
Ω6r4

0 (4.6.55)

CR
dE/dt,3.5 =

17M2Ω4

15
− 22M3Ω2

3r3
0

+
5696

105
MΩ6r3

0 −
2551

105
Ω8r6

0 (4.6.56)

CR
dE/dt,4 = −128

5
πM |Ω|7r4

0 (4.6.57)

CR
dE/dt,4.5 =− 8M4Ω2

r4
0

− 3098M3Ω4

45r0

+
487M3π2Ω4

96r0

+
244

63
M2Ω6r2

0 −
1205

288
M2π2Ω6r2

0

+
384086MΩ8r5

0

2835
− 8

9
Mπ2Ω8r5

0 −
17558

567
Ω10r8

0 (4.6.58)

CR
dE/dt,5 =

768

5
M2π|Ω|7r3

0 −
3328

105
πM |Ω|9r6

0 −
4609

105
πM |Ω|9r6

0 (4.6.59)
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CR
dE/dt,5.5 =− 8M5Ω2

r5
0

+
6694M4Ω4

45r2
0

− 1901M4π2Ω4

96r2
0

− 4580966M3Ω6r0

7875

+
796979M3π2Ω6r0

11520
− 151674716M2Ω8r4

0

496125
+

12288

175
γM2Ω8r4

0

− 315913M2π2Ω8r4
0

3840
+

12288

175
M2Ω8 ln(4|Ω|r0)r4

0 +
267569987MΩ10r7

0

1559250

+
512

15
γMΩ10r7

0 −
56

45
Mπ2Ω10r7

0 +
512

15
MΩ10 ln(4|Ω|r0)r7

0 −
209702Ω12r10

0

6237

(4.6.60)

CR
dE/dt,6 =− 1536

5
M3π|Ω|7r2

0 +
15616

63
M2π|Ω|9r5

0 +
14008

35
M2π|Ω|9r5

0

− 20992

945
πM |Ω|11r8

0 −
21148

189
πM |Ω|11r8

0 (4.6.61)

After we set Ω = ΩK , (dE/dt)R reduces to(
dE

dt

)R

=
m2

r2
0

x1/2

[
−32

5
x5/2 +

2494

105
x7/2 − 128π

5
x4 +

89422

2835
x9/2 +

8191π

105
x5+(

−6643739519

10914750
− 512π2

15
+

54784

525
γ +

54784

525
ln(16x)

)
x11/2

+
13028π

63
x6 +O(x13/2)

]
(4.6.62)

This agrees with previous high-PN-order calculations of the gravitational wave flux, like

that of Fujita [111].

We note here how terms simplify after adding the R̃ and renormalized S̃ parts of

the quantities. In particular, all of the terms proportional to M−1 again went away, even

though in this case we can’t take the limit as M → 0 independently of the limit as Ω→ 0.

Furthermore, there are no terms independent of Ω in (dE/dt)R.

Interestingly, there is a PN(1.5) term in (dE/dt)R. This suggests dipolar radiation. Of

course, gravitational radiation is quadrupolar. We do see that, when we enforce geodesic

motion, CR
dE/dt,1.5 = 0. Still, this is interesting because it suggests that if freely-falling

particles did not follow geodesics—that is, if the Equivalence Principle did not hold—

dipolar radiation would exist. This comports with alternate theories of gravity that do not

respect the Equivalence Principle, like Rosen’s bimetric theory of gravity, which predicted

dipolar gravitational radiation [112].
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When we enforce geodesic motion, our results agree with previous Post-Newtonian

calculations [12, 13]. In particular, the 2.5 PN term in dE/dt is exactly what one obtains

by applying the quadrupole formula to our system.

4.7 Conclusion

In this section, we successfully applied the method of Hikida et al. [8, 9] to find Detweiler’s

[11] redshift factor and the power radiated by a massive point particle in circular orbit

around a Schwarzschild black hole. As in chapter 3, we treated the particle’s angular

velocity Ω as independent from its radial coordinate r0 and black hole mass M . Unlike in

chapter 3, we cannot interpret our expressions to be accurate for an accelerated particle,

because whatever accelerated the particle would also perturb the spacetime. Neverthe-

less, this gave interesting results. First, we found that if the Equivalence Principle is

violated—that is, if a freely falling particle does not follow a geodesic—dipolar gravita-

tional radiation can result. We also found that the resulting expressions agree with what

one would expect of expressions that do describe an accelerated particle. In particular,

our expressions have no terms proportional to M−1, despite the fact that the S̃ and R̃

parts individually have such terms. We also saw that our Post-Newtonian expression for

the power radiated by the particle is free of terms independent of Ω, which we would also

expect if it correctly described an accelerated particle.

To our knowledge, this is the first time that Hikida’s method has been successfully

applied to the gravitational case. Knowing that Hikida’s method allows for the analytical

renormalization of a particle following an arbitrary path, we hope that Hikida’s method

is eventually applied to more complicated orbits in the future.
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